1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc_pc.h"
7
8 #include <linux/delay.h>
9 #include <linux/ktime.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/drm_print.h>
13 #include <generated/xe_wa_oob.h>
14
15 #include "abi/guc_actions_slpc_abi.h"
16 #include "regs/xe_gt_regs.h"
17 #include "regs/xe_regs.h"
18 #include "xe_bo.h"
19 #include "xe_device.h"
20 #include "xe_force_wake.h"
21 #include "xe_gt.h"
22 #include "xe_gt_idle.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_throttle.h"
25 #include "xe_gt_types.h"
26 #include "xe_guc.h"
27 #include "xe_guc_ct.h"
28 #include "xe_map.h"
29 #include "xe_mmio.h"
30 #include "xe_pcode.h"
31 #include "xe_pm.h"
32 #include "xe_sriov.h"
33 #include "xe_wa.h"
34
35 #define MCHBAR_MIRROR_BASE_SNB 0x140000
36
37 #define RP_STATE_CAP XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
38 #define RP0_MASK REG_GENMASK(7, 0)
39 #define RP1_MASK REG_GENMASK(15, 8)
40 #define RPN_MASK REG_GENMASK(23, 16)
41
42 #define FREQ_INFO_REC XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
43 #define RPE_MASK REG_GENMASK(15, 8)
44 #define RPA_MASK REG_GENMASK(31, 16)
45
46 #define GT_PERF_STATUS XE_REG(0x1381b4)
47 #define CAGF_MASK REG_GENMASK(19, 11)
48
49 #define GT_FREQUENCY_MULTIPLIER 50
50 #define GT_FREQUENCY_SCALER 3
51
52 #define LNL_MERT_FREQ_CAP 800
53 #define BMG_MERT_FREQ_CAP 2133
54
55 #define SLPC_RESET_TIMEOUT_MS 5 /* roughly 5ms, but no need for precision */
56 #define SLPC_RESET_EXTENDED_TIMEOUT_MS 1000 /* To be used only at pc_start */
57
58 /**
59 * DOC: GuC Power Conservation (PC)
60 *
61 * GuC Power Conservation (PC) supports multiple features for the most
62 * efficient and performing use of the GT when GuC submission is enabled,
63 * including frequency management, Render-C states management, and various
64 * algorithms for power balancing.
65 *
66 * Single Loop Power Conservation (SLPC) is the name given to the suite of
67 * connected power conservation features in the GuC firmware. The firmware
68 * exposes a programming interface to the host for the control of SLPC.
69 *
70 * Frequency management:
71 * =====================
72 *
73 * Xe driver enables SLPC with all of its defaults features and frequency
74 * selection, which varies per platform.
75 *
76 * Render-C States:
77 * ================
78 *
79 * Render-C states is also a GuC PC feature that is now enabled in Xe for
80 * all platforms.
81 *
82 */
83
pc_to_guc(struct xe_guc_pc * pc)84 static struct xe_guc *pc_to_guc(struct xe_guc_pc *pc)
85 {
86 return container_of(pc, struct xe_guc, pc);
87 }
88
pc_to_ct(struct xe_guc_pc * pc)89 static struct xe_guc_ct *pc_to_ct(struct xe_guc_pc *pc)
90 {
91 return &pc_to_guc(pc)->ct;
92 }
93
pc_to_gt(struct xe_guc_pc * pc)94 static struct xe_gt *pc_to_gt(struct xe_guc_pc *pc)
95 {
96 return guc_to_gt(pc_to_guc(pc));
97 }
98
pc_to_xe(struct xe_guc_pc * pc)99 static struct xe_device *pc_to_xe(struct xe_guc_pc *pc)
100 {
101 return guc_to_xe(pc_to_guc(pc));
102 }
103
pc_to_maps(struct xe_guc_pc * pc)104 static struct iosys_map *pc_to_maps(struct xe_guc_pc *pc)
105 {
106 return &pc->bo->vmap;
107 }
108
109 #define slpc_shared_data_read(pc_, field_) \
110 xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
111 struct slpc_shared_data, field_)
112
113 #define slpc_shared_data_write(pc_, field_, val_) \
114 xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
115 struct slpc_shared_data, field_, val_)
116
117 #define SLPC_EVENT(id, count) \
118 (FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
119 FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
120
wait_for_pc_state(struct xe_guc_pc * pc,enum slpc_global_state state,int timeout_ms)121 static int wait_for_pc_state(struct xe_guc_pc *pc,
122 enum slpc_global_state state,
123 int timeout_ms)
124 {
125 int timeout_us = 1000 * timeout_ms;
126 int slept, wait = 10;
127
128 xe_device_assert_mem_access(pc_to_xe(pc));
129
130 for (slept = 0; slept < timeout_us;) {
131 if (slpc_shared_data_read(pc, header.global_state) == state)
132 return 0;
133
134 usleep_range(wait, wait << 1);
135 slept += wait;
136 wait <<= 1;
137 if (slept + wait > timeout_us)
138 wait = timeout_us - slept;
139 }
140
141 return -ETIMEDOUT;
142 }
143
pc_action_reset(struct xe_guc_pc * pc)144 static int pc_action_reset(struct xe_guc_pc *pc)
145 {
146 struct xe_guc_ct *ct = pc_to_ct(pc);
147 u32 action[] = {
148 GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
149 SLPC_EVENT(SLPC_EVENT_RESET, 2),
150 xe_bo_ggtt_addr(pc->bo),
151 0,
152 };
153 int ret;
154
155 ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
156 if (ret)
157 xe_gt_err(pc_to_gt(pc), "GuC PC reset failed: %pe\n",
158 ERR_PTR(ret));
159
160 return ret;
161 }
162
pc_action_query_task_state(struct xe_guc_pc * pc)163 static int pc_action_query_task_state(struct xe_guc_pc *pc)
164 {
165 struct xe_guc_ct *ct = pc_to_ct(pc);
166 u32 action[] = {
167 GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
168 SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
169 xe_bo_ggtt_addr(pc->bo),
170 0,
171 };
172 int ret;
173
174 if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
175 SLPC_RESET_TIMEOUT_MS))
176 return -EAGAIN;
177
178 /* Blocking here to ensure the results are ready before reading them */
179 ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
180 if (ret)
181 xe_gt_err(pc_to_gt(pc), "GuC PC query task state failed: %pe\n",
182 ERR_PTR(ret));
183
184 return ret;
185 }
186
pc_action_set_param(struct xe_guc_pc * pc,u8 id,u32 value)187 static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
188 {
189 struct xe_guc_ct *ct = pc_to_ct(pc);
190 u32 action[] = {
191 GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
192 SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
193 id,
194 value,
195 };
196 int ret;
197
198 if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
199 SLPC_RESET_TIMEOUT_MS))
200 return -EAGAIN;
201
202 ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
203 if (ret)
204 xe_gt_err(pc_to_gt(pc), "GuC PC set param[%u]=%u failed: %pe\n",
205 id, value, ERR_PTR(ret));
206
207 return ret;
208 }
209
pc_action_unset_param(struct xe_guc_pc * pc,u8 id)210 static int pc_action_unset_param(struct xe_guc_pc *pc, u8 id)
211 {
212 u32 action[] = {
213 GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
214 SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1),
215 id,
216 };
217 struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
218 int ret;
219
220 if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
221 SLPC_RESET_TIMEOUT_MS))
222 return -EAGAIN;
223
224 ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
225 if (ret)
226 xe_gt_err(pc_to_gt(pc), "GuC PC unset param failed: %pe",
227 ERR_PTR(ret));
228
229 return ret;
230 }
231
pc_action_setup_gucrc(struct xe_guc_pc * pc,u32 mode)232 static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
233 {
234 struct xe_guc_ct *ct = pc_to_ct(pc);
235 u32 action[] = {
236 GUC_ACTION_HOST2GUC_SETUP_PC_GUCRC,
237 mode,
238 };
239 int ret;
240
241 ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
242 if (ret)
243 xe_gt_err(pc_to_gt(pc), "GuC RC enable mode=%u failed: %pe\n",
244 mode, ERR_PTR(ret));
245 return ret;
246 }
247
decode_freq(u32 raw)248 static u32 decode_freq(u32 raw)
249 {
250 return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
251 GT_FREQUENCY_SCALER);
252 }
253
encode_freq(u32 freq)254 static u32 encode_freq(u32 freq)
255 {
256 return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
257 GT_FREQUENCY_MULTIPLIER);
258 }
259
pc_get_min_freq(struct xe_guc_pc * pc)260 static u32 pc_get_min_freq(struct xe_guc_pc *pc)
261 {
262 u32 freq;
263
264 freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
265 slpc_shared_data_read(pc, task_state_data.freq));
266
267 return decode_freq(freq);
268 }
269
pc_set_manual_rp_ctrl(struct xe_guc_pc * pc,bool enable)270 static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
271 {
272 struct xe_gt *gt = pc_to_gt(pc);
273 u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
274
275 /* Allow/Disallow punit to process software freq requests */
276 xe_mmio_write32(>->mmio, RP_CONTROL, state);
277 }
278
pc_set_cur_freq(struct xe_guc_pc * pc,u32 freq)279 static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
280 {
281 struct xe_gt *gt = pc_to_gt(pc);
282 u32 rpnswreq;
283
284 pc_set_manual_rp_ctrl(pc, true);
285
286 /* Req freq is in units of 16.66 Mhz */
287 rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
288 xe_mmio_write32(>->mmio, RPNSWREQ, rpnswreq);
289
290 /* Sleep for a small time to allow pcode to respond */
291 usleep_range(100, 300);
292
293 pc_set_manual_rp_ctrl(pc, false);
294 }
295
pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)296 static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
297 {
298 /*
299 * Let's only check for the rpn-rp0 range. If max < min,
300 * min becomes a fixed request.
301 */
302 if (freq < pc->rpn_freq || freq > pc->rp0_freq)
303 return -EINVAL;
304
305 /*
306 * GuC policy is to elevate minimum frequency to the efficient levels
307 * Our goal is to have the admin choices respected.
308 */
309 pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
310 freq < pc->rpe_freq);
311
312 return pc_action_set_param(pc,
313 SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
314 freq);
315 }
316
pc_get_max_freq(struct xe_guc_pc * pc)317 static int pc_get_max_freq(struct xe_guc_pc *pc)
318 {
319 u32 freq;
320
321 freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
322 slpc_shared_data_read(pc, task_state_data.freq));
323
324 return decode_freq(freq);
325 }
326
pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)327 static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
328 {
329 /*
330 * Let's only check for the rpn-rp0 range. If max < min,
331 * min becomes a fixed request.
332 * Also, overclocking is not supported.
333 */
334 if (freq < pc->rpn_freq || freq > pc->rp0_freq)
335 return -EINVAL;
336
337 return pc_action_set_param(pc,
338 SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
339 freq);
340 }
341
mtl_update_rpa_value(struct xe_guc_pc * pc)342 static void mtl_update_rpa_value(struct xe_guc_pc *pc)
343 {
344 struct xe_gt *gt = pc_to_gt(pc);
345 u32 reg;
346
347 if (xe_gt_is_media_type(gt))
348 reg = xe_mmio_read32(>->mmio, MTL_MPA_FREQUENCY);
349 else
350 reg = xe_mmio_read32(>->mmio, MTL_GT_RPA_FREQUENCY);
351
352 pc->rpa_freq = decode_freq(REG_FIELD_GET(MTL_RPA_MASK, reg));
353 }
354
mtl_update_rpe_value(struct xe_guc_pc * pc)355 static void mtl_update_rpe_value(struct xe_guc_pc *pc)
356 {
357 struct xe_gt *gt = pc_to_gt(pc);
358 u32 reg;
359
360 if (xe_gt_is_media_type(gt))
361 reg = xe_mmio_read32(>->mmio, MTL_MPE_FREQUENCY);
362 else
363 reg = xe_mmio_read32(>->mmio, MTL_GT_RPE_FREQUENCY);
364
365 pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
366 }
367
tgl_update_rpa_value(struct xe_guc_pc * pc)368 static void tgl_update_rpa_value(struct xe_guc_pc *pc)
369 {
370 struct xe_gt *gt = pc_to_gt(pc);
371 struct xe_device *xe = gt_to_xe(gt);
372 u32 reg;
373
374 /*
375 * For PVC we still need to use fused RP0 as the approximation for RPa
376 * For other platforms than PVC we get the resolved RPa directly from
377 * PCODE at a different register
378 */
379 if (xe->info.platform == XE_PVC) {
380 reg = xe_mmio_read32(>->mmio, PVC_RP_STATE_CAP);
381 pc->rpa_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
382 } else {
383 reg = xe_mmio_read32(>->mmio, FREQ_INFO_REC);
384 pc->rpa_freq = REG_FIELD_GET(RPA_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
385 }
386 }
387
tgl_update_rpe_value(struct xe_guc_pc * pc)388 static void tgl_update_rpe_value(struct xe_guc_pc *pc)
389 {
390 struct xe_gt *gt = pc_to_gt(pc);
391 struct xe_device *xe = gt_to_xe(gt);
392 u32 reg;
393
394 /*
395 * For PVC we still need to use fused RP1 as the approximation for RPe
396 * For other platforms than PVC we get the resolved RPe directly from
397 * PCODE at a different register
398 */
399 if (xe->info.platform == XE_PVC) {
400 reg = xe_mmio_read32(>->mmio, PVC_RP_STATE_CAP);
401 pc->rpe_freq = REG_FIELD_GET(RP1_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
402 } else {
403 reg = xe_mmio_read32(>->mmio, FREQ_INFO_REC);
404 pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
405 }
406 }
407
pc_update_rp_values(struct xe_guc_pc * pc)408 static void pc_update_rp_values(struct xe_guc_pc *pc)
409 {
410 struct xe_gt *gt = pc_to_gt(pc);
411 struct xe_device *xe = gt_to_xe(gt);
412
413 if (GRAPHICS_VERx100(xe) >= 1270) {
414 mtl_update_rpa_value(pc);
415 mtl_update_rpe_value(pc);
416 } else {
417 tgl_update_rpa_value(pc);
418 tgl_update_rpe_value(pc);
419 }
420
421 /*
422 * RPe is decided at runtime by PCODE. In the rare case where that's
423 * smaller than the fused min, we will trust the PCODE and use that
424 * as our minimum one.
425 */
426 pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
427 }
428
429 /**
430 * xe_guc_pc_get_act_freq - Get Actual running frequency
431 * @pc: The GuC PC
432 *
433 * Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
434 */
xe_guc_pc_get_act_freq(struct xe_guc_pc * pc)435 u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
436 {
437 struct xe_gt *gt = pc_to_gt(pc);
438 struct xe_device *xe = gt_to_xe(gt);
439 u32 freq;
440
441 /* When in RC6, actual frequency reported will be 0. */
442 if (GRAPHICS_VERx100(xe) >= 1270) {
443 freq = xe_mmio_read32(>->mmio, MTL_MIRROR_TARGET_WP1);
444 freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
445 } else {
446 freq = xe_mmio_read32(>->mmio, GT_PERF_STATUS);
447 freq = REG_FIELD_GET(CAGF_MASK, freq);
448 }
449
450 freq = decode_freq(freq);
451
452 return freq;
453 }
454
get_cur_freq(struct xe_gt * gt)455 static u32 get_cur_freq(struct xe_gt *gt)
456 {
457 u32 freq;
458
459 freq = xe_mmio_read32(>->mmio, RPNSWREQ);
460 freq = REG_FIELD_GET(REQ_RATIO_MASK, freq);
461 return decode_freq(freq);
462 }
463
464 /**
465 * xe_guc_pc_get_cur_freq_fw - With fw held, get requested frequency
466 * @pc: The GuC PC
467 *
468 * Returns: the requested frequency for that GT instance
469 */
xe_guc_pc_get_cur_freq_fw(struct xe_guc_pc * pc)470 u32 xe_guc_pc_get_cur_freq_fw(struct xe_guc_pc *pc)
471 {
472 struct xe_gt *gt = pc_to_gt(pc);
473
474 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
475
476 return get_cur_freq(gt);
477 }
478
479 /**
480 * xe_guc_pc_get_cur_freq - Get Current requested frequency
481 * @pc: The GuC PC
482 * @freq: A pointer to a u32 where the freq value will be returned
483 *
484 * Returns: 0 on success,
485 * -EAGAIN if GuC PC not ready (likely in middle of a reset).
486 */
xe_guc_pc_get_cur_freq(struct xe_guc_pc * pc,u32 * freq)487 int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
488 {
489 struct xe_gt *gt = pc_to_gt(pc);
490 unsigned int fw_ref;
491
492 /*
493 * GuC SLPC plays with cur freq request when GuCRC is enabled
494 * Block RC6 for a more reliable read.
495 */
496 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
497 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT)) {
498 xe_force_wake_put(gt_to_fw(gt), fw_ref);
499 return -ETIMEDOUT;
500 }
501
502 *freq = get_cur_freq(gt);
503
504 xe_force_wake_put(gt_to_fw(gt), fw_ref);
505 return 0;
506 }
507
508 /**
509 * xe_guc_pc_get_rp0_freq - Get the RP0 freq
510 * @pc: The GuC PC
511 *
512 * Returns: RP0 freq.
513 */
xe_guc_pc_get_rp0_freq(struct xe_guc_pc * pc)514 u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
515 {
516 return pc->rp0_freq;
517 }
518
519 /**
520 * xe_guc_pc_get_rpa_freq - Get the RPa freq
521 * @pc: The GuC PC
522 *
523 * Returns: RPa freq.
524 */
xe_guc_pc_get_rpa_freq(struct xe_guc_pc * pc)525 u32 xe_guc_pc_get_rpa_freq(struct xe_guc_pc *pc)
526 {
527 pc_update_rp_values(pc);
528
529 return pc->rpa_freq;
530 }
531
532 /**
533 * xe_guc_pc_get_rpe_freq - Get the RPe freq
534 * @pc: The GuC PC
535 *
536 * Returns: RPe freq.
537 */
xe_guc_pc_get_rpe_freq(struct xe_guc_pc * pc)538 u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
539 {
540 pc_update_rp_values(pc);
541
542 return pc->rpe_freq;
543 }
544
545 /**
546 * xe_guc_pc_get_rpn_freq - Get the RPn freq
547 * @pc: The GuC PC
548 *
549 * Returns: RPn freq.
550 */
xe_guc_pc_get_rpn_freq(struct xe_guc_pc * pc)551 u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
552 {
553 return pc->rpn_freq;
554 }
555
556 /**
557 * xe_guc_pc_get_min_freq - Get the min operational frequency
558 * @pc: The GuC PC
559 * @freq: A pointer to a u32 where the freq value will be returned
560 *
561 * Returns: 0 on success,
562 * -EAGAIN if GuC PC not ready (likely in middle of a reset).
563 */
xe_guc_pc_get_min_freq(struct xe_guc_pc * pc,u32 * freq)564 int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
565 {
566 int ret;
567
568 xe_device_assert_mem_access(pc_to_xe(pc));
569
570 mutex_lock(&pc->freq_lock);
571 if (!pc->freq_ready) {
572 /* Might be in the middle of a gt reset */
573 ret = -EAGAIN;
574 goto out;
575 }
576
577 ret = pc_action_query_task_state(pc);
578 if (ret)
579 goto out;
580
581 *freq = pc_get_min_freq(pc);
582
583 out:
584 mutex_unlock(&pc->freq_lock);
585 return ret;
586 }
587
588 /**
589 * xe_guc_pc_set_min_freq - Set the minimal operational frequency
590 * @pc: The GuC PC
591 * @freq: The selected minimal frequency
592 *
593 * Returns: 0 on success,
594 * -EAGAIN if GuC PC not ready (likely in middle of a reset),
595 * -EINVAL if value out of bounds.
596 */
xe_guc_pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)597 int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
598 {
599 int ret;
600
601 mutex_lock(&pc->freq_lock);
602 if (!pc->freq_ready) {
603 /* Might be in the middle of a gt reset */
604 ret = -EAGAIN;
605 goto out;
606 }
607
608 ret = pc_set_min_freq(pc, freq);
609 if (ret)
610 goto out;
611
612 pc->user_requested_min = freq;
613
614 out:
615 mutex_unlock(&pc->freq_lock);
616 return ret;
617 }
618
619 /**
620 * xe_guc_pc_get_max_freq - Get Maximum operational frequency
621 * @pc: The GuC PC
622 * @freq: A pointer to a u32 where the freq value will be returned
623 *
624 * Returns: 0 on success,
625 * -EAGAIN if GuC PC not ready (likely in middle of a reset).
626 */
xe_guc_pc_get_max_freq(struct xe_guc_pc * pc,u32 * freq)627 int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
628 {
629 int ret;
630
631 mutex_lock(&pc->freq_lock);
632 if (!pc->freq_ready) {
633 /* Might be in the middle of a gt reset */
634 ret = -EAGAIN;
635 goto out;
636 }
637
638 ret = pc_action_query_task_state(pc);
639 if (ret)
640 goto out;
641
642 *freq = pc_get_max_freq(pc);
643
644 out:
645 mutex_unlock(&pc->freq_lock);
646 return ret;
647 }
648
649 /**
650 * xe_guc_pc_set_max_freq - Set the maximum operational frequency
651 * @pc: The GuC PC
652 * @freq: The selected maximum frequency value
653 *
654 * Returns: 0 on success,
655 * -EAGAIN if GuC PC not ready (likely in middle of a reset),
656 * -EINVAL if value out of bounds.
657 */
xe_guc_pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)658 int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
659 {
660 int ret;
661
662 mutex_lock(&pc->freq_lock);
663 if (!pc->freq_ready) {
664 /* Might be in the middle of a gt reset */
665 ret = -EAGAIN;
666 goto out;
667 }
668
669 ret = pc_set_max_freq(pc, freq);
670 if (ret)
671 goto out;
672
673 pc->user_requested_max = freq;
674
675 out:
676 mutex_unlock(&pc->freq_lock);
677 return ret;
678 }
679
680 /**
681 * xe_guc_pc_c_status - get the current GT C state
682 * @pc: XE_GuC_PC instance
683 */
xe_guc_pc_c_status(struct xe_guc_pc * pc)684 enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
685 {
686 struct xe_gt *gt = pc_to_gt(pc);
687 u32 reg, gt_c_state;
688
689 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
690 reg = xe_mmio_read32(>->mmio, MTL_MIRROR_TARGET_WP1);
691 gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
692 } else {
693 reg = xe_mmio_read32(>->mmio, GT_CORE_STATUS);
694 gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
695 }
696
697 switch (gt_c_state) {
698 case GT_C6:
699 return GT_IDLE_C6;
700 case GT_C0:
701 return GT_IDLE_C0;
702 default:
703 return GT_IDLE_UNKNOWN;
704 }
705 }
706
707 /**
708 * xe_guc_pc_rc6_residency - rc6 residency counter
709 * @pc: Xe_GuC_PC instance
710 */
xe_guc_pc_rc6_residency(struct xe_guc_pc * pc)711 u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
712 {
713 struct xe_gt *gt = pc_to_gt(pc);
714 u32 reg;
715
716 reg = xe_mmio_read32(>->mmio, GT_GFX_RC6);
717
718 return reg;
719 }
720
721 /**
722 * xe_guc_pc_mc6_residency - mc6 residency counter
723 * @pc: Xe_GuC_PC instance
724 */
xe_guc_pc_mc6_residency(struct xe_guc_pc * pc)725 u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
726 {
727 struct xe_gt *gt = pc_to_gt(pc);
728 u64 reg;
729
730 reg = xe_mmio_read32(>->mmio, MTL_MEDIA_MC6);
731
732 return reg;
733 }
734
mtl_init_fused_rp_values(struct xe_guc_pc * pc)735 static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
736 {
737 struct xe_gt *gt = pc_to_gt(pc);
738 u32 reg;
739
740 xe_device_assert_mem_access(pc_to_xe(pc));
741
742 if (xe_gt_is_media_type(gt))
743 reg = xe_mmio_read32(>->mmio, MTL_MEDIAP_STATE_CAP);
744 else
745 reg = xe_mmio_read32(>->mmio, MTL_RP_STATE_CAP);
746
747 pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
748
749 pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
750 }
751
tgl_init_fused_rp_values(struct xe_guc_pc * pc)752 static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
753 {
754 struct xe_gt *gt = pc_to_gt(pc);
755 struct xe_device *xe = gt_to_xe(gt);
756 u32 reg;
757
758 xe_device_assert_mem_access(pc_to_xe(pc));
759
760 if (xe->info.platform == XE_PVC)
761 reg = xe_mmio_read32(>->mmio, PVC_RP_STATE_CAP);
762 else
763 reg = xe_mmio_read32(>->mmio, RP_STATE_CAP);
764 pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
765 pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
766 }
767
pc_init_fused_rp_values(struct xe_guc_pc * pc)768 static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
769 {
770 struct xe_gt *gt = pc_to_gt(pc);
771 struct xe_device *xe = gt_to_xe(gt);
772
773 if (GRAPHICS_VERx100(xe) >= 1270)
774 mtl_init_fused_rp_values(pc);
775 else
776 tgl_init_fused_rp_values(pc);
777 }
778
pc_max_freq_cap(struct xe_guc_pc * pc)779 static u32 pc_max_freq_cap(struct xe_guc_pc *pc)
780 {
781 struct xe_gt *gt = pc_to_gt(pc);
782
783 if (XE_WA(gt, 22019338487)) {
784 if (xe_gt_is_media_type(gt))
785 return min(LNL_MERT_FREQ_CAP, pc->rp0_freq);
786 else
787 return min(BMG_MERT_FREQ_CAP, pc->rp0_freq);
788 } else {
789 return pc->rp0_freq;
790 }
791 }
792
793 /**
794 * xe_guc_pc_raise_unslice - Initialize RPx values and request a higher GT
795 * frequency to allow faster GuC load times
796 * @pc: Xe_GuC_PC instance
797 */
xe_guc_pc_raise_unslice(struct xe_guc_pc * pc)798 void xe_guc_pc_raise_unslice(struct xe_guc_pc *pc)
799 {
800 struct xe_gt *gt = pc_to_gt(pc);
801
802 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
803 pc_set_cur_freq(pc, pc_max_freq_cap(pc));
804 }
805
806 /**
807 * xe_guc_pc_init_early - Initialize RPx values
808 * @pc: Xe_GuC_PC instance
809 */
xe_guc_pc_init_early(struct xe_guc_pc * pc)810 void xe_guc_pc_init_early(struct xe_guc_pc *pc)
811 {
812 struct xe_gt *gt = pc_to_gt(pc);
813
814 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
815 pc_init_fused_rp_values(pc);
816 }
817
pc_adjust_freq_bounds(struct xe_guc_pc * pc)818 static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
819 {
820 int ret;
821
822 lockdep_assert_held(&pc->freq_lock);
823
824 ret = pc_action_query_task_state(pc);
825 if (ret)
826 goto out;
827
828 /*
829 * GuC defaults to some RPmax that is not actually achievable without
830 * overclocking. Let's adjust it to the Hardware RP0, which is the
831 * regular maximum
832 */
833 if (pc_get_max_freq(pc) > pc->rp0_freq) {
834 ret = pc_set_max_freq(pc, pc->rp0_freq);
835 if (ret)
836 goto out;
837 }
838
839 /*
840 * Same thing happens for Server platforms where min is listed as
841 * RPMax
842 */
843 if (pc_get_min_freq(pc) > pc->rp0_freq)
844 ret = pc_set_min_freq(pc, pc->rp0_freq);
845
846 out:
847 return ret;
848 }
849
pc_adjust_requested_freq(struct xe_guc_pc * pc)850 static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
851 {
852 int ret = 0;
853
854 lockdep_assert_held(&pc->freq_lock);
855
856 if (pc->user_requested_min != 0) {
857 ret = pc_set_min_freq(pc, pc->user_requested_min);
858 if (ret)
859 return ret;
860 }
861
862 if (pc->user_requested_max != 0) {
863 ret = pc_set_max_freq(pc, pc->user_requested_max);
864 if (ret)
865 return ret;
866 }
867
868 return ret;
869 }
870
pc_set_mert_freq_cap(struct xe_guc_pc * pc)871 static int pc_set_mert_freq_cap(struct xe_guc_pc *pc)
872 {
873 int ret = 0;
874
875 if (XE_WA(pc_to_gt(pc), 22019338487)) {
876 /*
877 * Get updated min/max and stash them.
878 */
879 ret = xe_guc_pc_get_min_freq(pc, &pc->stashed_min_freq);
880 if (!ret)
881 ret = xe_guc_pc_get_max_freq(pc, &pc->stashed_max_freq);
882 if (ret)
883 return ret;
884
885 /*
886 * Ensure min and max are bound by MERT_FREQ_CAP until driver loads.
887 */
888 mutex_lock(&pc->freq_lock);
889 ret = pc_set_min_freq(pc, min(pc->rpe_freq, pc_max_freq_cap(pc)));
890 if (!ret)
891 ret = pc_set_max_freq(pc, min(pc->rp0_freq, pc_max_freq_cap(pc)));
892 mutex_unlock(&pc->freq_lock);
893 }
894
895 return ret;
896 }
897
898 /**
899 * xe_guc_pc_restore_stashed_freq - Set min/max back to stashed values
900 * @pc: The GuC PC
901 *
902 * Returns: 0 on success,
903 * error code on failure
904 */
xe_guc_pc_restore_stashed_freq(struct xe_guc_pc * pc)905 int xe_guc_pc_restore_stashed_freq(struct xe_guc_pc *pc)
906 {
907 int ret = 0;
908
909 if (IS_SRIOV_VF(pc_to_xe(pc)) || pc_to_xe(pc)->info.skip_guc_pc)
910 return 0;
911
912 mutex_lock(&pc->freq_lock);
913 ret = pc_set_max_freq(pc, pc->stashed_max_freq);
914 if (!ret)
915 ret = pc_set_min_freq(pc, pc->stashed_min_freq);
916 mutex_unlock(&pc->freq_lock);
917
918 return ret;
919 }
920
921 /**
922 * xe_guc_pc_gucrc_disable - Disable GuC RC
923 * @pc: Xe_GuC_PC instance
924 *
925 * Disables GuC RC by taking control of RC6 back from GuC.
926 *
927 * Return: 0 on success, negative error code on error.
928 */
xe_guc_pc_gucrc_disable(struct xe_guc_pc * pc)929 int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
930 {
931 struct xe_device *xe = pc_to_xe(pc);
932 struct xe_gt *gt = pc_to_gt(pc);
933 unsigned int fw_ref;
934 int ret = 0;
935
936 if (xe->info.skip_guc_pc)
937 return 0;
938
939 ret = pc_action_setup_gucrc(pc, GUCRC_HOST_CONTROL);
940 if (ret)
941 return ret;
942
943 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
944 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) {
945 xe_force_wake_put(gt_to_fw(gt), fw_ref);
946 return -ETIMEDOUT;
947 }
948
949 xe_gt_idle_disable_c6(gt);
950
951 xe_force_wake_put(gt_to_fw(gt), fw_ref);
952
953 return 0;
954 }
955
956 /**
957 * xe_guc_pc_override_gucrc_mode - override GUCRC mode
958 * @pc: Xe_GuC_PC instance
959 * @mode: new value of the mode.
960 *
961 * Return: 0 on success, negative error code on error
962 */
xe_guc_pc_override_gucrc_mode(struct xe_guc_pc * pc,enum slpc_gucrc_mode mode)963 int xe_guc_pc_override_gucrc_mode(struct xe_guc_pc *pc, enum slpc_gucrc_mode mode)
964 {
965 int ret;
966
967 xe_pm_runtime_get(pc_to_xe(pc));
968 ret = pc_action_set_param(pc, SLPC_PARAM_PWRGATE_RC_MODE, mode);
969 xe_pm_runtime_put(pc_to_xe(pc));
970
971 return ret;
972 }
973
974 /**
975 * xe_guc_pc_unset_gucrc_mode - unset GUCRC mode override
976 * @pc: Xe_GuC_PC instance
977 *
978 * Return: 0 on success, negative error code on error
979 */
xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc * pc)980 int xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc *pc)
981 {
982 int ret;
983
984 xe_pm_runtime_get(pc_to_xe(pc));
985 ret = pc_action_unset_param(pc, SLPC_PARAM_PWRGATE_RC_MODE);
986 xe_pm_runtime_put(pc_to_xe(pc));
987
988 return ret;
989 }
990
pc_init_pcode_freq(struct xe_guc_pc * pc)991 static void pc_init_pcode_freq(struct xe_guc_pc *pc)
992 {
993 u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
994 u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
995
996 XE_WARN_ON(xe_pcode_init_min_freq_table(gt_to_tile(pc_to_gt(pc)), min, max));
997 }
998
pc_init_freqs(struct xe_guc_pc * pc)999 static int pc_init_freqs(struct xe_guc_pc *pc)
1000 {
1001 int ret;
1002
1003 mutex_lock(&pc->freq_lock);
1004
1005 ret = pc_adjust_freq_bounds(pc);
1006 if (ret)
1007 goto out;
1008
1009 ret = pc_adjust_requested_freq(pc);
1010 if (ret)
1011 goto out;
1012
1013 pc_update_rp_values(pc);
1014
1015 pc_init_pcode_freq(pc);
1016
1017 /*
1018 * The frequencies are really ready for use only after the user
1019 * requested ones got restored.
1020 */
1021 pc->freq_ready = true;
1022
1023 out:
1024 mutex_unlock(&pc->freq_lock);
1025 return ret;
1026 }
1027
pc_action_set_strategy(struct xe_guc_pc * pc,u32 val)1028 static int pc_action_set_strategy(struct xe_guc_pc *pc, u32 val)
1029 {
1030 int ret = 0;
1031
1032 ret = pc_action_set_param(pc,
1033 SLPC_PARAM_STRATEGIES,
1034 val);
1035
1036 return ret;
1037 }
1038
1039 /**
1040 * xe_guc_pc_start - Start GuC's Power Conservation component
1041 * @pc: Xe_GuC_PC instance
1042 */
xe_guc_pc_start(struct xe_guc_pc * pc)1043 int xe_guc_pc_start(struct xe_guc_pc *pc)
1044 {
1045 struct xe_device *xe = pc_to_xe(pc);
1046 struct xe_gt *gt = pc_to_gt(pc);
1047 u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
1048 unsigned int fw_ref;
1049 ktime_t earlier;
1050 int ret;
1051
1052 xe_gt_assert(gt, xe_device_uc_enabled(xe));
1053
1054 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1055 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT)) {
1056 xe_force_wake_put(gt_to_fw(gt), fw_ref);
1057 return -ETIMEDOUT;
1058 }
1059
1060 if (xe->info.skip_guc_pc) {
1061 if (xe->info.platform != XE_PVC)
1062 xe_gt_idle_enable_c6(gt);
1063
1064 /* Request max possible since dynamic freq mgmt is not enabled */
1065 pc_set_cur_freq(pc, UINT_MAX);
1066
1067 ret = 0;
1068 goto out;
1069 }
1070
1071 xe_map_memset(xe, &pc->bo->vmap, 0, 0, size);
1072 slpc_shared_data_write(pc, header.size, size);
1073
1074 earlier = ktime_get();
1075 ret = pc_action_reset(pc);
1076 if (ret)
1077 goto out;
1078
1079 if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
1080 SLPC_RESET_TIMEOUT_MS)) {
1081 xe_gt_warn(gt, "GuC PC start taking longer than normal [freq = %dMHz (req = %dMHz), perf_limit_reasons = 0x%08X]\n",
1082 xe_guc_pc_get_act_freq(pc), get_cur_freq(gt),
1083 xe_gt_throttle_get_limit_reasons(gt));
1084
1085 if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
1086 SLPC_RESET_EXTENDED_TIMEOUT_MS)) {
1087 xe_gt_err(gt, "GuC PC Start failed: Dynamic GT frequency control and GT sleep states are now disabled.\n");
1088 ret = -EIO;
1089 goto out;
1090 }
1091
1092 xe_gt_warn(gt, "GuC PC excessive start time: %lldms",
1093 ktime_ms_delta(ktime_get(), earlier));
1094 }
1095
1096 ret = pc_init_freqs(pc);
1097 if (ret)
1098 goto out;
1099
1100 ret = pc_set_mert_freq_cap(pc);
1101 if (ret)
1102 goto out;
1103
1104 if (xe->info.platform == XE_PVC) {
1105 xe_guc_pc_gucrc_disable(pc);
1106 ret = 0;
1107 goto out;
1108 }
1109
1110 ret = pc_action_setup_gucrc(pc, GUCRC_FIRMWARE_CONTROL);
1111 if (ret)
1112 goto out;
1113
1114 /* Enable SLPC Optimized Strategy for compute */
1115 ret = pc_action_set_strategy(pc, SLPC_OPTIMIZED_STRATEGY_COMPUTE);
1116
1117 out:
1118 xe_force_wake_put(gt_to_fw(gt), fw_ref);
1119 return ret;
1120 }
1121
1122 /**
1123 * xe_guc_pc_stop - Stop GuC's Power Conservation component
1124 * @pc: Xe_GuC_PC instance
1125 */
xe_guc_pc_stop(struct xe_guc_pc * pc)1126 int xe_guc_pc_stop(struct xe_guc_pc *pc)
1127 {
1128 struct xe_device *xe = pc_to_xe(pc);
1129
1130 if (xe->info.skip_guc_pc) {
1131 xe_gt_idle_disable_c6(pc_to_gt(pc));
1132 return 0;
1133 }
1134
1135 mutex_lock(&pc->freq_lock);
1136 pc->freq_ready = false;
1137 mutex_unlock(&pc->freq_lock);
1138
1139 return 0;
1140 }
1141
1142 /**
1143 * xe_guc_pc_fini_hw - Finalize GuC's Power Conservation component
1144 * @arg: opaque pointer that should point to Xe_GuC_PC instance
1145 */
xe_guc_pc_fini_hw(void * arg)1146 static void xe_guc_pc_fini_hw(void *arg)
1147 {
1148 struct xe_guc_pc *pc = arg;
1149 struct xe_device *xe = pc_to_xe(pc);
1150 unsigned int fw_ref;
1151
1152 if (xe_device_wedged(xe))
1153 return;
1154
1155 fw_ref = xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
1156 xe_guc_pc_gucrc_disable(pc);
1157 XE_WARN_ON(xe_guc_pc_stop(pc));
1158
1159 /* Bind requested freq to mert_freq_cap before unload */
1160 pc_set_cur_freq(pc, min(pc_max_freq_cap(pc), pc->rpe_freq));
1161
1162 xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), fw_ref);
1163 }
1164
1165 /**
1166 * xe_guc_pc_init - Initialize GuC's Power Conservation component
1167 * @pc: Xe_GuC_PC instance
1168 */
xe_guc_pc_init(struct xe_guc_pc * pc)1169 int xe_guc_pc_init(struct xe_guc_pc *pc)
1170 {
1171 struct xe_gt *gt = pc_to_gt(pc);
1172 struct xe_tile *tile = gt_to_tile(gt);
1173 struct xe_device *xe = gt_to_xe(gt);
1174 struct xe_bo *bo;
1175 u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
1176 int err;
1177
1178 if (xe->info.skip_guc_pc)
1179 return 0;
1180
1181 err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
1182 if (err)
1183 return err;
1184
1185 bo = xe_managed_bo_create_pin_map(xe, tile, size,
1186 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
1187 XE_BO_FLAG_GGTT |
1188 XE_BO_FLAG_GGTT_INVALIDATE |
1189 XE_BO_FLAG_PINNED_NORESTORE);
1190 if (IS_ERR(bo))
1191 return PTR_ERR(bo);
1192
1193 pc->bo = bo;
1194
1195 return devm_add_action_or_reset(xe->drm.dev, xe_guc_pc_fini_hw, pc);
1196 }
1197
pc_get_state_string(struct xe_guc_pc * pc)1198 static const char *pc_get_state_string(struct xe_guc_pc *pc)
1199 {
1200 switch (slpc_shared_data_read(pc, header.global_state)) {
1201 case SLPC_GLOBAL_STATE_NOT_RUNNING:
1202 return "not running";
1203 case SLPC_GLOBAL_STATE_INITIALIZING:
1204 return "initializing";
1205 case SLPC_GLOBAL_STATE_RESETTING:
1206 return "resetting";
1207 case SLPC_GLOBAL_STATE_RUNNING:
1208 return "running";
1209 case SLPC_GLOBAL_STATE_SHUTTING_DOWN:
1210 return "shutting down";
1211 case SLPC_GLOBAL_STATE_ERROR:
1212 return "error";
1213 default:
1214 return "unknown";
1215 }
1216 }
1217
1218 /**
1219 * xe_guc_pc_print - Print GuC's Power Conservation information for debug
1220 * @pc: Xe_GuC_PC instance
1221 * @p: drm_printer
1222 */
xe_guc_pc_print(struct xe_guc_pc * pc,struct drm_printer * p)1223 void xe_guc_pc_print(struct xe_guc_pc *pc, struct drm_printer *p)
1224 {
1225 drm_printf(p, "SLPC Shared Data Header:\n");
1226 drm_printf(p, "\tSize: %x\n", slpc_shared_data_read(pc, header.size));
1227 drm_printf(p, "\tGlobal State: %s\n", pc_get_state_string(pc));
1228
1229 if (pc_action_query_task_state(pc))
1230 return;
1231
1232 drm_printf(p, "\nSLPC Tasks Status:\n");
1233 drm_printf(p, "\tGTPERF enabled: %s\n",
1234 str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1235 SLPC_GTPERF_TASK_ENABLED));
1236 drm_printf(p, "\tDCC enabled: %s\n",
1237 str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1238 SLPC_DCC_TASK_ENABLED));
1239 drm_printf(p, "\tDCC in use: %s\n",
1240 str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1241 SLPC_IN_DCC));
1242 drm_printf(p, "\tBalancer enabled: %s\n",
1243 str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1244 SLPC_BALANCER_ENABLED));
1245 drm_printf(p, "\tIBC enabled: %s\n",
1246 str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1247 SLPC_IBC_TASK_ENABLED));
1248 drm_printf(p, "\tBalancer IA LMT enabled: %s\n",
1249 str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1250 SLPC_BALANCER_IA_LMT_ENABLED));
1251 drm_printf(p, "\tBalancer IA LMT active: %s\n",
1252 str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1253 SLPC_BALANCER_IA_LMT_ACTIVE));
1254 }
1255