1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * Architecture-independent CPU control functions. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/var.h> 33 #include <sys/thread.h> 34 #include <sys/cpuvar.h> 35 #include <sys/cpu_event.h> 36 #include <sys/kstat.h> 37 #include <sys/uadmin.h> 38 #include <sys/systm.h> 39 #include <sys/errno.h> 40 #include <sys/cmn_err.h> 41 #include <sys/procset.h> 42 #include <sys/processor.h> 43 #include <sys/debug.h> 44 #include <sys/cpupart.h> 45 #include <sys/lgrp.h> 46 #include <sys/pset.h> 47 #include <sys/pghw.h> 48 #include <sys/kmem.h> 49 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 50 #include <sys/atomic.h> 51 #include <sys/callb.h> 52 #include <sys/vtrace.h> 53 #include <sys/cyclic.h> 54 #include <sys/bitmap.h> 55 #include <sys/nvpair.h> 56 #include <sys/pool_pset.h> 57 #include <sys/msacct.h> 58 #include <sys/time.h> 59 #include <sys/archsystm.h> 60 #include <sys/sdt.h> 61 #if defined(__x86) || defined(__amd64) 62 #include <sys/x86_archext.h> 63 #endif 64 #include <sys/callo.h> 65 66 extern int mp_cpu_start(cpu_t *); 67 extern int mp_cpu_stop(cpu_t *); 68 extern int mp_cpu_poweron(cpu_t *); 69 extern int mp_cpu_poweroff(cpu_t *); 70 extern int mp_cpu_configure(int); 71 extern int mp_cpu_unconfigure(int); 72 extern void mp_cpu_faulted_enter(cpu_t *); 73 extern void mp_cpu_faulted_exit(cpu_t *); 74 75 extern int cmp_cpu_to_chip(processorid_t cpuid); 76 #ifdef __sparcv9 77 extern char *cpu_fru_fmri(cpu_t *cp); 78 #endif 79 80 static void cpu_add_active_internal(cpu_t *cp); 81 static void cpu_remove_active(cpu_t *cp); 82 static void cpu_info_kstat_create(cpu_t *cp); 83 static void cpu_info_kstat_destroy(cpu_t *cp); 84 static void cpu_stats_kstat_create(cpu_t *cp); 85 static void cpu_stats_kstat_destroy(cpu_t *cp); 86 87 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 89 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 90 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 91 92 /* 93 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 94 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with 95 * respect to related locks is: 96 * 97 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 98 * 99 * Warning: Certain sections of code do not use the cpu_lock when 100 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 101 * all cpus are paused during modifications to this list, a solution 102 * to protect the list is too either disable kernel preemption while 103 * walking the list, *or* recheck the cpu_next pointer at each 104 * iteration in the loop. Note that in no cases can any cached 105 * copies of the cpu pointers be kept as they may become invalid. 106 */ 107 kmutex_t cpu_lock; 108 cpu_t *cpu_list; /* list of all CPUs */ 109 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 110 cpu_t *cpu_active; /* list of active CPUs */ 111 static cpuset_t cpu_available; /* set of available CPUs */ 112 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 113 114 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */ 115 116 /* 117 * max_ncpus keeps the max cpus the system can have. Initially 118 * it's NCPU, but since most archs scan the devtree for cpus 119 * fairly early on during boot, the real max can be known before 120 * ncpus is set (useful for early NCPU based allocations). 121 */ 122 int max_ncpus = NCPU; 123 /* 124 * platforms that set max_ncpus to maxiumum number of cpus that can be 125 * dynamically added will set boot_max_ncpus to the number of cpus found 126 * at device tree scan time during boot. 127 */ 128 int boot_max_ncpus = -1; 129 int boot_ncpus = -1; 130 /* 131 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 132 * used to size arrays that are indexed by CPU id. 133 */ 134 processorid_t max_cpuid = NCPU - 1; 135 136 /* 137 * Maximum cpu_seqid was given. This number can only grow and never shrink. It 138 * can be used to optimize NCPU loops to avoid going through CPUs which were 139 * never on-line. 140 */ 141 processorid_t max_cpu_seqid_ever = 0; 142 143 int ncpus = 1; 144 int ncpus_online = 1; 145 146 /* 147 * CPU that we're trying to offline. Protected by cpu_lock. 148 */ 149 cpu_t *cpu_inmotion; 150 151 /* 152 * Can be raised to suppress further weakbinding, which are instead 153 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 154 * while individual thread weakbinding synchronization is done under thread 155 * lock. 156 */ 157 int weakbindingbarrier; 158 159 /* 160 * Variables used in pause_cpus(). 161 */ 162 static volatile char safe_list[NCPU]; 163 164 static struct _cpu_pause_info { 165 int cp_spl; /* spl saved in pause_cpus() */ 166 volatile int cp_go; /* Go signal sent after all ready */ 167 int cp_count; /* # of CPUs to pause */ 168 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 169 kthread_id_t cp_paused; 170 void *(*cp_func)(void *); 171 } cpu_pause_info; 172 173 static kmutex_t pause_free_mutex; 174 static kcondvar_t pause_free_cv; 175 176 177 static struct cpu_sys_stats_ks_data { 178 kstat_named_t cpu_ticks_idle; 179 kstat_named_t cpu_ticks_user; 180 kstat_named_t cpu_ticks_kernel; 181 kstat_named_t cpu_ticks_wait; 182 kstat_named_t cpu_nsec_idle; 183 kstat_named_t cpu_nsec_user; 184 kstat_named_t cpu_nsec_kernel; 185 kstat_named_t cpu_nsec_dtrace; 186 kstat_named_t cpu_nsec_intr; 187 kstat_named_t cpu_load_intr; 188 kstat_named_t wait_ticks_io; 189 kstat_named_t dtrace_probes; 190 kstat_named_t bread; 191 kstat_named_t bwrite; 192 kstat_named_t lread; 193 kstat_named_t lwrite; 194 kstat_named_t phread; 195 kstat_named_t phwrite; 196 kstat_named_t pswitch; 197 kstat_named_t trap; 198 kstat_named_t intr; 199 kstat_named_t syscall; 200 kstat_named_t sysread; 201 kstat_named_t syswrite; 202 kstat_named_t sysfork; 203 kstat_named_t sysvfork; 204 kstat_named_t sysexec; 205 kstat_named_t readch; 206 kstat_named_t writech; 207 kstat_named_t rcvint; 208 kstat_named_t xmtint; 209 kstat_named_t mdmint; 210 kstat_named_t rawch; 211 kstat_named_t canch; 212 kstat_named_t outch; 213 kstat_named_t msg; 214 kstat_named_t sema; 215 kstat_named_t namei; 216 kstat_named_t ufsiget; 217 kstat_named_t ufsdirblk; 218 kstat_named_t ufsipage; 219 kstat_named_t ufsinopage; 220 kstat_named_t procovf; 221 kstat_named_t intrthread; 222 kstat_named_t intrblk; 223 kstat_named_t intrunpin; 224 kstat_named_t idlethread; 225 kstat_named_t inv_swtch; 226 kstat_named_t nthreads; 227 kstat_named_t cpumigrate; 228 kstat_named_t xcalls; 229 kstat_named_t mutex_adenters; 230 kstat_named_t rw_rdfails; 231 kstat_named_t rw_wrfails; 232 kstat_named_t modload; 233 kstat_named_t modunload; 234 kstat_named_t bawrite; 235 kstat_named_t iowait; 236 } cpu_sys_stats_ks_data_template = { 237 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 238 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 239 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 240 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 241 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 242 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 243 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 244 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 }, 245 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 246 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 247 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 248 { "dtrace_probes", KSTAT_DATA_UINT64 }, 249 { "bread", KSTAT_DATA_UINT64 }, 250 { "bwrite", KSTAT_DATA_UINT64 }, 251 { "lread", KSTAT_DATA_UINT64 }, 252 { "lwrite", KSTAT_DATA_UINT64 }, 253 { "phread", KSTAT_DATA_UINT64 }, 254 { "phwrite", KSTAT_DATA_UINT64 }, 255 { "pswitch", KSTAT_DATA_UINT64 }, 256 { "trap", KSTAT_DATA_UINT64 }, 257 { "intr", KSTAT_DATA_UINT64 }, 258 { "syscall", KSTAT_DATA_UINT64 }, 259 { "sysread", KSTAT_DATA_UINT64 }, 260 { "syswrite", KSTAT_DATA_UINT64 }, 261 { "sysfork", KSTAT_DATA_UINT64 }, 262 { "sysvfork", KSTAT_DATA_UINT64 }, 263 { "sysexec", KSTAT_DATA_UINT64 }, 264 { "readch", KSTAT_DATA_UINT64 }, 265 { "writech", KSTAT_DATA_UINT64 }, 266 { "rcvint", KSTAT_DATA_UINT64 }, 267 { "xmtint", KSTAT_DATA_UINT64 }, 268 { "mdmint", KSTAT_DATA_UINT64 }, 269 { "rawch", KSTAT_DATA_UINT64 }, 270 { "canch", KSTAT_DATA_UINT64 }, 271 { "outch", KSTAT_DATA_UINT64 }, 272 { "msg", KSTAT_DATA_UINT64 }, 273 { "sema", KSTAT_DATA_UINT64 }, 274 { "namei", KSTAT_DATA_UINT64 }, 275 { "ufsiget", KSTAT_DATA_UINT64 }, 276 { "ufsdirblk", KSTAT_DATA_UINT64 }, 277 { "ufsipage", KSTAT_DATA_UINT64 }, 278 { "ufsinopage", KSTAT_DATA_UINT64 }, 279 { "procovf", KSTAT_DATA_UINT64 }, 280 { "intrthread", KSTAT_DATA_UINT64 }, 281 { "intrblk", KSTAT_DATA_UINT64 }, 282 { "intrunpin", KSTAT_DATA_UINT64 }, 283 { "idlethread", KSTAT_DATA_UINT64 }, 284 { "inv_swtch", KSTAT_DATA_UINT64 }, 285 { "nthreads", KSTAT_DATA_UINT64 }, 286 { "cpumigrate", KSTAT_DATA_UINT64 }, 287 { "xcalls", KSTAT_DATA_UINT64 }, 288 { "mutex_adenters", KSTAT_DATA_UINT64 }, 289 { "rw_rdfails", KSTAT_DATA_UINT64 }, 290 { "rw_wrfails", KSTAT_DATA_UINT64 }, 291 { "modload", KSTAT_DATA_UINT64 }, 292 { "modunload", KSTAT_DATA_UINT64 }, 293 { "bawrite", KSTAT_DATA_UINT64 }, 294 { "iowait", KSTAT_DATA_UINT64 }, 295 }; 296 297 static struct cpu_vm_stats_ks_data { 298 kstat_named_t pgrec; 299 kstat_named_t pgfrec; 300 kstat_named_t pgin; 301 kstat_named_t pgpgin; 302 kstat_named_t pgout; 303 kstat_named_t pgpgout; 304 kstat_named_t swapin; 305 kstat_named_t pgswapin; 306 kstat_named_t swapout; 307 kstat_named_t pgswapout; 308 kstat_named_t zfod; 309 kstat_named_t dfree; 310 kstat_named_t scan; 311 kstat_named_t rev; 312 kstat_named_t hat_fault; 313 kstat_named_t as_fault; 314 kstat_named_t maj_fault; 315 kstat_named_t cow_fault; 316 kstat_named_t prot_fault; 317 kstat_named_t softlock; 318 kstat_named_t kernel_asflt; 319 kstat_named_t pgrrun; 320 kstat_named_t execpgin; 321 kstat_named_t execpgout; 322 kstat_named_t execfree; 323 kstat_named_t anonpgin; 324 kstat_named_t anonpgout; 325 kstat_named_t anonfree; 326 kstat_named_t fspgin; 327 kstat_named_t fspgout; 328 kstat_named_t fsfree; 329 } cpu_vm_stats_ks_data_template = { 330 { "pgrec", KSTAT_DATA_UINT64 }, 331 { "pgfrec", KSTAT_DATA_UINT64 }, 332 { "pgin", KSTAT_DATA_UINT64 }, 333 { "pgpgin", KSTAT_DATA_UINT64 }, 334 { "pgout", KSTAT_DATA_UINT64 }, 335 { "pgpgout", KSTAT_DATA_UINT64 }, 336 { "swapin", KSTAT_DATA_UINT64 }, 337 { "pgswapin", KSTAT_DATA_UINT64 }, 338 { "swapout", KSTAT_DATA_UINT64 }, 339 { "pgswapout", KSTAT_DATA_UINT64 }, 340 { "zfod", KSTAT_DATA_UINT64 }, 341 { "dfree", KSTAT_DATA_UINT64 }, 342 { "scan", KSTAT_DATA_UINT64 }, 343 { "rev", KSTAT_DATA_UINT64 }, 344 { "hat_fault", KSTAT_DATA_UINT64 }, 345 { "as_fault", KSTAT_DATA_UINT64 }, 346 { "maj_fault", KSTAT_DATA_UINT64 }, 347 { "cow_fault", KSTAT_DATA_UINT64 }, 348 { "prot_fault", KSTAT_DATA_UINT64 }, 349 { "softlock", KSTAT_DATA_UINT64 }, 350 { "kernel_asflt", KSTAT_DATA_UINT64 }, 351 { "pgrrun", KSTAT_DATA_UINT64 }, 352 { "execpgin", KSTAT_DATA_UINT64 }, 353 { "execpgout", KSTAT_DATA_UINT64 }, 354 { "execfree", KSTAT_DATA_UINT64 }, 355 { "anonpgin", KSTAT_DATA_UINT64 }, 356 { "anonpgout", KSTAT_DATA_UINT64 }, 357 { "anonfree", KSTAT_DATA_UINT64 }, 358 { "fspgin", KSTAT_DATA_UINT64 }, 359 { "fspgout", KSTAT_DATA_UINT64 }, 360 { "fsfree", KSTAT_DATA_UINT64 }, 361 }; 362 363 /* 364 * Force the specified thread to migrate to the appropriate processor. 365 * Called with thread lock held, returns with it dropped. 366 */ 367 static void 368 force_thread_migrate(kthread_id_t tp) 369 { 370 ASSERT(THREAD_LOCK_HELD(tp)); 371 if (tp == curthread) { 372 THREAD_TRANSITION(tp); 373 CL_SETRUN(tp); 374 thread_unlock_nopreempt(tp); 375 swtch(); 376 } else { 377 if (tp->t_state == TS_ONPROC) { 378 cpu_surrender(tp); 379 } else if (tp->t_state == TS_RUN) { 380 (void) dispdeq(tp); 381 setbackdq(tp); 382 } 383 thread_unlock(tp); 384 } 385 } 386 387 /* 388 * Set affinity for a specified CPU. 389 * A reference count is incremented and the affinity is held until the 390 * reference count is decremented to zero by thread_affinity_clear(). 391 * This is so regions of code requiring affinity can be nested. 392 * Caller needs to ensure that cpu_id remains valid, which can be 393 * done by holding cpu_lock across this call, unless the caller 394 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 395 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 396 */ 397 void 398 thread_affinity_set(kthread_id_t t, int cpu_id) 399 { 400 cpu_t *cp; 401 int c; 402 403 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 404 405 if ((c = cpu_id) == CPU_CURRENT) { 406 mutex_enter(&cpu_lock); 407 cpu_id = CPU->cpu_id; 408 } 409 /* 410 * We should be asserting that cpu_lock is held here, but 411 * the NCA code doesn't acquire it. The following assert 412 * should be uncommented when the NCA code is fixed. 413 * 414 * ASSERT(MUTEX_HELD(&cpu_lock)); 415 */ 416 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 417 cp = cpu[cpu_id]; 418 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 419 /* 420 * If there is already a hard affinity requested, and this affinity 421 * conflicts with that, panic. 422 */ 423 thread_lock(t); 424 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 425 panic("affinity_set: setting %p but already bound to %p", 426 (void *)cp, (void *)t->t_bound_cpu); 427 } 428 t->t_affinitycnt++; 429 t->t_bound_cpu = cp; 430 431 /* 432 * Make sure we're running on the right CPU. 433 */ 434 if (cp != t->t_cpu || t != curthread) { 435 force_thread_migrate(t); /* drops thread lock */ 436 } else { 437 thread_unlock(t); 438 } 439 440 if (c == CPU_CURRENT) 441 mutex_exit(&cpu_lock); 442 } 443 444 /* 445 * Wrapper for backward compatibility. 446 */ 447 void 448 affinity_set(int cpu_id) 449 { 450 thread_affinity_set(curthread, cpu_id); 451 } 452 453 /* 454 * Decrement the affinity reservation count and if it becomes zero, 455 * clear the CPU affinity for the current thread, or set it to the user's 456 * software binding request. 457 */ 458 void 459 thread_affinity_clear(kthread_id_t t) 460 { 461 register processorid_t binding; 462 463 thread_lock(t); 464 if (--t->t_affinitycnt == 0) { 465 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 466 /* 467 * Adjust disp_max_unbound_pri if necessary. 468 */ 469 disp_adjust_unbound_pri(t); 470 t->t_bound_cpu = NULL; 471 if (t->t_cpu->cpu_part != t->t_cpupart) { 472 force_thread_migrate(t); 473 return; 474 } 475 } else { 476 t->t_bound_cpu = cpu[binding]; 477 /* 478 * Make sure the thread is running on the bound CPU. 479 */ 480 if (t->t_cpu != t->t_bound_cpu) { 481 force_thread_migrate(t); 482 return; /* already dropped lock */ 483 } 484 } 485 } 486 thread_unlock(t); 487 } 488 489 /* 490 * Wrapper for backward compatibility. 491 */ 492 void 493 affinity_clear(void) 494 { 495 thread_affinity_clear(curthread); 496 } 497 498 /* 499 * Weak cpu affinity. Bind to the "current" cpu for short periods 500 * of time during which the thread must not block (but may be preempted). 501 * Use this instead of kpreempt_disable() when it is only "no migration" 502 * rather than "no preemption" semantics that are required - disabling 503 * preemption holds higher priority threads off of cpu and if the 504 * operation that is protected is more than momentary this is not good 505 * for realtime etc. 506 * 507 * Weakly bound threads will not prevent a cpu from being offlined - 508 * we'll only run them on the cpu to which they are weakly bound but 509 * (because they do not block) we'll always be able to move them on to 510 * another cpu at offline time if we give them just a short moment to 511 * run during which they will unbind. To give a cpu a chance of offlining, 512 * however, we require a barrier to weak bindings that may be raised for a 513 * given cpu (offline/move code may set this and then wait a short time for 514 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 515 * 516 * There are few restrictions on the calling context of thread_nomigrate. 517 * The caller must not hold the thread lock. Calls may be nested. 518 * 519 * After weakbinding a thread must not perform actions that may block. 520 * In particular it must not call thread_affinity_set; calling that when 521 * already weakbound is nonsensical anyway. 522 * 523 * If curthread is prevented from migrating for other reasons 524 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 525 * then the weak binding will succeed even if this cpu is the target of an 526 * offline/move request. 527 */ 528 void 529 thread_nomigrate(void) 530 { 531 cpu_t *cp; 532 kthread_id_t t = curthread; 533 534 again: 535 kpreempt_disable(); 536 cp = CPU; 537 538 /* 539 * A highlevel interrupt must not modify t_nomigrate or 540 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 541 * interrupt thread cannot migrate and we can avoid the 542 * thread_lock call below by short-circuiting here. In either 543 * case we can just return since no migration is possible and 544 * the condition will persist (ie, when we test for these again 545 * in thread_allowmigrate they can't have changed). Migration 546 * is also impossible if we're at or above DISP_LEVEL pil. 547 */ 548 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 549 getpil() >= DISP_LEVEL) { 550 kpreempt_enable(); 551 return; 552 } 553 554 /* 555 * We must be consistent with existing weak bindings. Since we 556 * may be interrupted between the increment of t_nomigrate and 557 * the store to t_weakbound_cpu below we cannot assume that 558 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 559 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 560 * always the case. 561 */ 562 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 563 if (!panicstr) 564 panic("thread_nomigrate: binding to %p but already " 565 "bound to %p", (void *)cp, 566 (void *)t->t_weakbound_cpu); 567 } 568 569 /* 570 * At this point we have preemption disabled and we don't yet hold 571 * the thread lock. So it's possible that somebody else could 572 * set t_bind_cpu here and not be able to force us across to the 573 * new cpu (since we have preemption disabled). 574 */ 575 thread_lock(curthread); 576 577 /* 578 * If further weak bindings are being (temporarily) suppressed then 579 * we'll settle for disabling kernel preemption (which assures 580 * no migration provided the thread does not block which it is 581 * not allowed to if using thread_nomigrate). We must remember 582 * this disposition so we can take appropriate action in 583 * thread_allowmigrate. If this is a nested call and the 584 * thread is already weakbound then fall through as normal. 585 * We remember the decision to settle for kpreempt_disable through 586 * negative nesting counting in t_nomigrate. Once a thread has had one 587 * weakbinding request satisfied in this way any further (nested) 588 * requests will continue to be satisfied in the same way, 589 * even if weak bindings have recommenced. 590 */ 591 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 592 --t->t_nomigrate; 593 thread_unlock(curthread); 594 return; /* with kpreempt_disable still active */ 595 } 596 597 /* 598 * We hold thread_lock so t_bind_cpu cannot change. We could, 599 * however, be running on a different cpu to which we are t_bound_cpu 600 * to (as explained above). If we grant the weak binding request 601 * in that case then the dispatcher must favour our weak binding 602 * over our strong (in which case, just as when preemption is 603 * disabled, we can continue to run on a cpu other than the one to 604 * which we are strongbound; the difference in this case is that 605 * this thread can be preempted and so can appear on the dispatch 606 * queues of a cpu other than the one it is strongbound to). 607 * 608 * If the cpu we are running on does not appear to be a current 609 * offline target (we check cpu_inmotion to determine this - since 610 * we don't hold cpu_lock we may not see a recent store to that, 611 * so it's possible that we at times can grant a weak binding to a 612 * cpu that is an offline target, but that one request will not 613 * prevent the offline from succeeding) then we will always grant 614 * the weak binding request. This includes the case above where 615 * we grant a weakbinding not commensurate with our strong binding. 616 * 617 * If our cpu does appear to be an offline target then we're inclined 618 * not to grant the weakbinding request just yet - we'd prefer to 619 * migrate to another cpu and grant the request there. The 620 * exceptions are those cases where going through preemption code 621 * will not result in us changing cpu: 622 * 623 * . interrupts have already bypassed this case (see above) 624 * . we are already weakbound to this cpu (dispatcher code will 625 * always return us to the weakbound cpu) 626 * . preemption was disabled even before we disabled it above 627 * . we are strongbound to this cpu (if we're strongbound to 628 * another and not yet running there the trip through the 629 * dispatcher will move us to the strongbound cpu and we 630 * will grant the weak binding there) 631 */ 632 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 633 t->t_bound_cpu == cp) { 634 /* 635 * Don't be tempted to store to t_weakbound_cpu only on 636 * the first nested bind request - if we're interrupted 637 * after the increment of t_nomigrate and before the 638 * store to t_weakbound_cpu and the interrupt calls 639 * thread_nomigrate then the assertion in thread_allowmigrate 640 * would fail. 641 */ 642 t->t_nomigrate++; 643 t->t_weakbound_cpu = cp; 644 membar_producer(); 645 thread_unlock(curthread); 646 /* 647 * Now that we have dropped the thread_lock another thread 648 * can set our t_weakbound_cpu, and will try to migrate us 649 * to the strongbound cpu (which will not be prevented by 650 * preemption being disabled since we're about to enable 651 * preemption). We have granted the weakbinding to the current 652 * cpu, so again we are in the position that is is is possible 653 * that our weak and strong bindings differ. Again this 654 * is catered for by dispatcher code which will favour our 655 * weak binding. 656 */ 657 kpreempt_enable(); 658 } else { 659 /* 660 * Move to another cpu before granting the request by 661 * forcing this thread through preemption code. When we 662 * get to set{front,back}dq called from CL_PREEMPT() 663 * cpu_choose() will be used to select a cpu to queue 664 * us on - that will see cpu_inmotion and take 665 * steps to avoid returning us to this cpu. 666 */ 667 cp->cpu_kprunrun = 1; 668 thread_unlock(curthread); 669 kpreempt_enable(); /* will call preempt() */ 670 goto again; 671 } 672 } 673 674 void 675 thread_allowmigrate(void) 676 { 677 kthread_id_t t = curthread; 678 679 ASSERT(t->t_weakbound_cpu == CPU || 680 (t->t_nomigrate < 0 && t->t_preempt > 0) || 681 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 682 getpil() >= DISP_LEVEL); 683 684 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 685 getpil() >= DISP_LEVEL) 686 return; 687 688 if (t->t_nomigrate < 0) { 689 /* 690 * This thread was granted "weak binding" in the 691 * stronger form of kernel preemption disabling. 692 * Undo a level of nesting for both t_nomigrate 693 * and t_preempt. 694 */ 695 ++t->t_nomigrate; 696 kpreempt_enable(); 697 } else if (--t->t_nomigrate == 0) { 698 /* 699 * Time to drop the weak binding. We need to cater 700 * for the case where we're weakbound to a different 701 * cpu than that to which we're strongbound (a very 702 * temporary arrangement that must only persist until 703 * weak binding drops). We don't acquire thread_lock 704 * here so even as this code executes t_bound_cpu 705 * may be changing. So we disable preemption and 706 * a) in the case that t_bound_cpu changes while we 707 * have preemption disabled kprunrun will be set 708 * asynchronously, and b) if before disabling 709 * preemption we were already on a different cpu to 710 * our t_bound_cpu then we set kprunrun ourselves 711 * to force a trip through the dispatcher when 712 * preemption is enabled. 713 */ 714 kpreempt_disable(); 715 if (t->t_bound_cpu && 716 t->t_weakbound_cpu != t->t_bound_cpu) 717 CPU->cpu_kprunrun = 1; 718 t->t_weakbound_cpu = NULL; 719 membar_producer(); 720 kpreempt_enable(); 721 } 722 } 723 724 /* 725 * weakbinding_stop can be used to temporarily cause weakbindings made 726 * with thread_nomigrate to be satisfied through the stronger action of 727 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 728 */ 729 730 void 731 weakbinding_stop(void) 732 { 733 ASSERT(MUTEX_HELD(&cpu_lock)); 734 weakbindingbarrier = 1; 735 membar_producer(); /* make visible before subsequent thread_lock */ 736 } 737 738 void 739 weakbinding_start(void) 740 { 741 ASSERT(MUTEX_HELD(&cpu_lock)); 742 weakbindingbarrier = 0; 743 } 744 745 void 746 null_xcall(void) 747 { 748 } 749 750 /* 751 * This routine is called to place the CPUs in a safe place so that 752 * one of them can be taken off line or placed on line. What we are 753 * trying to do here is prevent a thread from traversing the list 754 * of active CPUs while we are changing it or from getting placed on 755 * the run queue of a CPU that has just gone off line. We do this by 756 * creating a thread with the highest possible prio for each CPU and 757 * having it call this routine. The advantage of this method is that 758 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 759 * This makes disp faster at the expense of making p_online() slower 760 * which is a good trade off. 761 */ 762 static void 763 cpu_pause(int index) 764 { 765 int s; 766 struct _cpu_pause_info *cpi = &cpu_pause_info; 767 volatile char *safe = &safe_list[index]; 768 long lindex = index; 769 770 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 771 772 while (*safe != PAUSE_DIE) { 773 *safe = PAUSE_READY; 774 membar_enter(); /* make sure stores are flushed */ 775 sema_v(&cpi->cp_sem); /* signal requesting thread */ 776 777 /* 778 * Wait here until all pause threads are running. That 779 * indicates that it's safe to do the spl. Until 780 * cpu_pause_info.cp_go is set, we don't want to spl 781 * because that might block clock interrupts needed 782 * to preempt threads on other CPUs. 783 */ 784 while (cpi->cp_go == 0) 785 ; 786 /* 787 * Even though we are at the highest disp prio, we need 788 * to block out all interrupts below LOCK_LEVEL so that 789 * an intr doesn't come in, wake up a thread, and call 790 * setbackdq/setfrontdq. 791 */ 792 s = splhigh(); 793 /* 794 * if cp_func has been set then call it using index as the 795 * argument, currently only used by cpr_suspend_cpus(). 796 * This function is used as the code to execute on the 797 * "paused" cpu's when a machine comes out of a sleep state 798 * and CPU's were powered off. (could also be used for 799 * hotplugging CPU's). 800 */ 801 if (cpi->cp_func != NULL) 802 (*cpi->cp_func)((void *)lindex); 803 804 mach_cpu_pause(safe); 805 806 splx(s); 807 /* 808 * Waiting is at an end. Switch out of cpu_pause 809 * loop and resume useful work. 810 */ 811 swtch(); 812 } 813 814 mutex_enter(&pause_free_mutex); 815 *safe = PAUSE_DEAD; 816 cv_broadcast(&pause_free_cv); 817 mutex_exit(&pause_free_mutex); 818 } 819 820 /* 821 * Allow the cpus to start running again. 822 */ 823 void 824 start_cpus() 825 { 826 int i; 827 828 ASSERT(MUTEX_HELD(&cpu_lock)); 829 ASSERT(cpu_pause_info.cp_paused); 830 cpu_pause_info.cp_paused = NULL; 831 for (i = 0; i < NCPU; i++) 832 safe_list[i] = PAUSE_IDLE; 833 membar_enter(); /* make sure stores are flushed */ 834 affinity_clear(); 835 splx(cpu_pause_info.cp_spl); 836 kpreempt_enable(); 837 } 838 839 /* 840 * Allocate a pause thread for a CPU. 841 */ 842 static void 843 cpu_pause_alloc(cpu_t *cp) 844 { 845 kthread_id_t t; 846 long cpun = cp->cpu_id; 847 848 /* 849 * Note, v.v_nglobpris will not change value as long as I hold 850 * cpu_lock. 851 */ 852 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 853 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 854 thread_lock(t); 855 t->t_bound_cpu = cp; 856 t->t_disp_queue = cp->cpu_disp; 857 t->t_affinitycnt = 1; 858 t->t_preempt = 1; 859 thread_unlock(t); 860 cp->cpu_pause_thread = t; 861 /* 862 * Registering a thread in the callback table is usually done 863 * in the initialization code of the thread. In this 864 * case, we do it right after thread creation because the 865 * thread itself may never run, and we need to register the 866 * fact that it is safe for cpr suspend. 867 */ 868 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 869 } 870 871 /* 872 * Free a pause thread for a CPU. 873 */ 874 static void 875 cpu_pause_free(cpu_t *cp) 876 { 877 kthread_id_t t; 878 int cpun = cp->cpu_id; 879 880 ASSERT(MUTEX_HELD(&cpu_lock)); 881 /* 882 * We have to get the thread and tell him to die. 883 */ 884 if ((t = cp->cpu_pause_thread) == NULL) { 885 ASSERT(safe_list[cpun] == PAUSE_IDLE); 886 return; 887 } 888 thread_lock(t); 889 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 890 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 891 t->t_pri = v.v_nglobpris - 1; 892 ASSERT(safe_list[cpun] == PAUSE_IDLE); 893 safe_list[cpun] = PAUSE_DIE; 894 THREAD_TRANSITION(t); 895 setbackdq(t); 896 thread_unlock_nopreempt(t); 897 898 /* 899 * If we don't wait for the thread to actually die, it may try to 900 * run on the wrong cpu as part of an actual call to pause_cpus(). 901 */ 902 mutex_enter(&pause_free_mutex); 903 while (safe_list[cpun] != PAUSE_DEAD) { 904 cv_wait(&pause_free_cv, &pause_free_mutex); 905 } 906 mutex_exit(&pause_free_mutex); 907 safe_list[cpun] = PAUSE_IDLE; 908 909 cp->cpu_pause_thread = NULL; 910 } 911 912 /* 913 * Initialize basic structures for pausing CPUs. 914 */ 915 void 916 cpu_pause_init() 917 { 918 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 919 /* 920 * Create initial CPU pause thread. 921 */ 922 cpu_pause_alloc(CPU); 923 } 924 925 /* 926 * Start the threads used to pause another CPU. 927 */ 928 static int 929 cpu_pause_start(processorid_t cpu_id) 930 { 931 int i; 932 int cpu_count = 0; 933 934 for (i = 0; i < NCPU; i++) { 935 cpu_t *cp; 936 kthread_id_t t; 937 938 cp = cpu[i]; 939 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 940 safe_list[i] = PAUSE_WAIT; 941 continue; 942 } 943 944 /* 945 * Skip CPU if it is quiesced or not yet started. 946 */ 947 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 948 safe_list[i] = PAUSE_WAIT; 949 continue; 950 } 951 952 /* 953 * Start this CPU's pause thread. 954 */ 955 t = cp->cpu_pause_thread; 956 thread_lock(t); 957 /* 958 * Reset the priority, since nglobpris may have 959 * changed since the thread was created, if someone 960 * has loaded the RT (or some other) scheduling 961 * class. 962 */ 963 t->t_pri = v.v_nglobpris - 1; 964 THREAD_TRANSITION(t); 965 setbackdq(t); 966 thread_unlock_nopreempt(t); 967 ++cpu_count; 968 } 969 return (cpu_count); 970 } 971 972 973 /* 974 * Pause all of the CPUs except the one we are on by creating a high 975 * priority thread bound to those CPUs. 976 * 977 * Note that one must be extremely careful regarding code 978 * executed while CPUs are paused. Since a CPU may be paused 979 * while a thread scheduling on that CPU is holding an adaptive 980 * lock, code executed with CPUs paused must not acquire adaptive 981 * (or low-level spin) locks. Also, such code must not block, 982 * since the thread that is supposed to initiate the wakeup may 983 * never run. 984 * 985 * With a few exceptions, the restrictions on code executed with CPUs 986 * paused match those for code executed at high-level interrupt 987 * context. 988 */ 989 void 990 pause_cpus(cpu_t *off_cp, void *(*func)(void *)) 991 { 992 processorid_t cpu_id; 993 int i; 994 struct _cpu_pause_info *cpi = &cpu_pause_info; 995 996 ASSERT(MUTEX_HELD(&cpu_lock)); 997 ASSERT(cpi->cp_paused == NULL); 998 cpi->cp_count = 0; 999 cpi->cp_go = 0; 1000 for (i = 0; i < NCPU; i++) 1001 safe_list[i] = PAUSE_IDLE; 1002 kpreempt_disable(); 1003 1004 cpi->cp_func = func; 1005 1006 /* 1007 * If running on the cpu that is going offline, get off it. 1008 * This is so that it won't be necessary to rechoose a CPU 1009 * when done. 1010 */ 1011 if (CPU == off_cp) 1012 cpu_id = off_cp->cpu_next_part->cpu_id; 1013 else 1014 cpu_id = CPU->cpu_id; 1015 affinity_set(cpu_id); 1016 1017 /* 1018 * Start the pause threads and record how many were started 1019 */ 1020 cpi->cp_count = cpu_pause_start(cpu_id); 1021 1022 /* 1023 * Now wait for all CPUs to be running the pause thread. 1024 */ 1025 while (cpi->cp_count > 0) { 1026 /* 1027 * Spin reading the count without grabbing the disp 1028 * lock to make sure we don't prevent the pause 1029 * threads from getting the lock. 1030 */ 1031 while (sema_held(&cpi->cp_sem)) 1032 ; 1033 if (sema_tryp(&cpi->cp_sem)) 1034 --cpi->cp_count; 1035 } 1036 cpi->cp_go = 1; /* all have reached cpu_pause */ 1037 1038 /* 1039 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1040 * to PAUSE_WAIT.) 1041 */ 1042 for (i = 0; i < NCPU; i++) { 1043 while (safe_list[i] != PAUSE_WAIT) 1044 ; 1045 } 1046 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1047 cpi->cp_paused = curthread; 1048 } 1049 1050 /* 1051 * Check whether the current thread has CPUs paused 1052 */ 1053 int 1054 cpus_paused(void) 1055 { 1056 if (cpu_pause_info.cp_paused != NULL) { 1057 ASSERT(cpu_pause_info.cp_paused == curthread); 1058 return (1); 1059 } 1060 return (0); 1061 } 1062 1063 static cpu_t * 1064 cpu_get_all(processorid_t cpun) 1065 { 1066 ASSERT(MUTEX_HELD(&cpu_lock)); 1067 1068 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1069 return (NULL); 1070 return (cpu[cpun]); 1071 } 1072 1073 /* 1074 * Check whether cpun is a valid processor id and whether it should be 1075 * visible from the current zone. If it is, return a pointer to the 1076 * associated CPU structure. 1077 */ 1078 cpu_t * 1079 cpu_get(processorid_t cpun) 1080 { 1081 cpu_t *c; 1082 1083 ASSERT(MUTEX_HELD(&cpu_lock)); 1084 c = cpu_get_all(cpun); 1085 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1086 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1087 return (NULL); 1088 return (c); 1089 } 1090 1091 /* 1092 * The following functions should be used to check CPU states in the kernel. 1093 * They should be invoked with cpu_lock held. Kernel subsystems interested 1094 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1095 * states. Those are for user-land (and system call) use only. 1096 */ 1097 1098 /* 1099 * Determine whether the CPU is online and handling interrupts. 1100 */ 1101 int 1102 cpu_is_online(cpu_t *cpu) 1103 { 1104 ASSERT(MUTEX_HELD(&cpu_lock)); 1105 return (cpu_flagged_online(cpu->cpu_flags)); 1106 } 1107 1108 /* 1109 * Determine whether the CPU is offline (this includes spare and faulted). 1110 */ 1111 int 1112 cpu_is_offline(cpu_t *cpu) 1113 { 1114 ASSERT(MUTEX_HELD(&cpu_lock)); 1115 return (cpu_flagged_offline(cpu->cpu_flags)); 1116 } 1117 1118 /* 1119 * Determine whether the CPU is powered off. 1120 */ 1121 int 1122 cpu_is_poweredoff(cpu_t *cpu) 1123 { 1124 ASSERT(MUTEX_HELD(&cpu_lock)); 1125 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1126 } 1127 1128 /* 1129 * Determine whether the CPU is handling interrupts. 1130 */ 1131 int 1132 cpu_is_nointr(cpu_t *cpu) 1133 { 1134 ASSERT(MUTEX_HELD(&cpu_lock)); 1135 return (cpu_flagged_nointr(cpu->cpu_flags)); 1136 } 1137 1138 /* 1139 * Determine whether the CPU is active (scheduling threads). 1140 */ 1141 int 1142 cpu_is_active(cpu_t *cpu) 1143 { 1144 ASSERT(MUTEX_HELD(&cpu_lock)); 1145 return (cpu_flagged_active(cpu->cpu_flags)); 1146 } 1147 1148 /* 1149 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1150 */ 1151 int 1152 cpu_flagged_online(cpu_flag_t cpu_flags) 1153 { 1154 return (cpu_flagged_active(cpu_flags) && 1155 (cpu_flags & CPU_ENABLE)); 1156 } 1157 1158 int 1159 cpu_flagged_offline(cpu_flag_t cpu_flags) 1160 { 1161 return (((cpu_flags & CPU_POWEROFF) == 0) && 1162 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1163 } 1164 1165 int 1166 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1167 { 1168 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1169 } 1170 1171 int 1172 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1173 { 1174 return (cpu_flagged_active(cpu_flags) && 1175 (cpu_flags & CPU_ENABLE) == 0); 1176 } 1177 1178 int 1179 cpu_flagged_active(cpu_flag_t cpu_flags) 1180 { 1181 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1182 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1183 } 1184 1185 /* 1186 * Bring the indicated CPU online. 1187 */ 1188 int 1189 cpu_online(cpu_t *cp) 1190 { 1191 int error = 0; 1192 1193 /* 1194 * Handle on-line request. 1195 * This code must put the new CPU on the active list before 1196 * starting it because it will not be paused, and will start 1197 * using the active list immediately. The real start occurs 1198 * when the CPU_QUIESCED flag is turned off. 1199 */ 1200 1201 ASSERT(MUTEX_HELD(&cpu_lock)); 1202 1203 /* 1204 * Put all the cpus into a known safe place. 1205 * No mutexes can be entered while CPUs are paused. 1206 */ 1207 error = mp_cpu_start(cp); /* arch-dep hook */ 1208 if (error == 0) { 1209 pg_cpupart_in(cp, cp->cpu_part); 1210 pause_cpus(NULL, NULL); 1211 cpu_add_active_internal(cp); 1212 if (cp->cpu_flags & CPU_FAULTED) { 1213 cp->cpu_flags &= ~CPU_FAULTED; 1214 mp_cpu_faulted_exit(cp); 1215 } 1216 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1217 CPU_SPARE); 1218 CPU_NEW_GENERATION(cp); 1219 start_cpus(); 1220 cpu_stats_kstat_create(cp); 1221 cpu_create_intrstat(cp); 1222 lgrp_kstat_create(cp); 1223 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1224 cpu_intr_enable(cp); /* arch-dep hook */ 1225 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1226 cpu_set_state(cp); 1227 cyclic_online(cp); 1228 /* 1229 * This has to be called only after cyclic_online(). This 1230 * function uses cyclics. 1231 */ 1232 callout_cpu_online(cp); 1233 poke_cpu(cp->cpu_id); 1234 } 1235 1236 return (error); 1237 } 1238 1239 /* 1240 * Take the indicated CPU offline. 1241 */ 1242 int 1243 cpu_offline(cpu_t *cp, int flags) 1244 { 1245 cpupart_t *pp; 1246 int error = 0; 1247 cpu_t *ncp; 1248 int intr_enable; 1249 int cyclic_off = 0; 1250 int callout_off = 0; 1251 int loop_count; 1252 int no_quiesce = 0; 1253 int (*bound_func)(struct cpu *, int); 1254 kthread_t *t; 1255 lpl_t *cpu_lpl; 1256 proc_t *p; 1257 int lgrp_diff_lpl; 1258 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1259 1260 ASSERT(MUTEX_HELD(&cpu_lock)); 1261 1262 /* 1263 * If we're going from faulted or spare to offline, just 1264 * clear these flags and update CPU state. 1265 */ 1266 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1267 if (cp->cpu_flags & CPU_FAULTED) { 1268 cp->cpu_flags &= ~CPU_FAULTED; 1269 mp_cpu_faulted_exit(cp); 1270 } 1271 cp->cpu_flags &= ~CPU_SPARE; 1272 cpu_set_state(cp); 1273 return (0); 1274 } 1275 1276 /* 1277 * Handle off-line request. 1278 */ 1279 pp = cp->cpu_part; 1280 /* 1281 * Don't offline last online CPU in partition 1282 */ 1283 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1284 return (EBUSY); 1285 /* 1286 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1287 * if we were asked to. 1288 */ 1289 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1290 if (error != 0) 1291 return (error); 1292 /* 1293 * We shouldn't be bound to this CPU ourselves. 1294 */ 1295 if (curthread->t_bound_cpu == cp) 1296 return (EBUSY); 1297 1298 /* 1299 * Tell interested parties that this CPU is going offline. 1300 */ 1301 CPU_NEW_GENERATION(cp); 1302 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1303 1304 /* 1305 * Tell the PG subsystem that the CPU is leaving the partition 1306 */ 1307 pg_cpupart_out(cp, pp); 1308 1309 /* 1310 * Take the CPU out of interrupt participation so we won't find 1311 * bound kernel threads. If the architecture cannot completely 1312 * shut off interrupts on the CPU, don't quiesce it, but don't 1313 * run anything but interrupt thread... this is indicated by 1314 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1315 * off. 1316 */ 1317 intr_enable = cp->cpu_flags & CPU_ENABLE; 1318 if (intr_enable) 1319 no_quiesce = cpu_intr_disable(cp); 1320 1321 /* 1322 * Record that we are aiming to offline this cpu. This acts as 1323 * a barrier to further weak binding requests in thread_nomigrate 1324 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1325 * lean away from this cpu. Further strong bindings are already 1326 * avoided since we hold cpu_lock. Since threads that are set 1327 * runnable around now and others coming off the target cpu are 1328 * directed away from the target, existing strong and weak bindings 1329 * (especially the latter) to the target cpu stand maximum chance of 1330 * being able to unbind during the short delay loop below (if other 1331 * unbound threads compete they may not see cpu in time to unbind 1332 * even if they would do so immediately. 1333 */ 1334 cpu_inmotion = cp; 1335 membar_enter(); 1336 1337 /* 1338 * Check for kernel threads (strong or weak) bound to that CPU. 1339 * Strongly bound threads may not unbind, and we'll have to return 1340 * EBUSY. Weakly bound threads should always disappear - we've 1341 * stopped more weak binding with cpu_inmotion and existing 1342 * bindings will drain imminently (they may not block). Nonetheless 1343 * we will wait for a fixed period for all bound threads to disappear. 1344 * Inactive interrupt threads are OK (they'll be in TS_FREE 1345 * state). If test finds some bound threads, wait a few ticks 1346 * to give short-lived threads (such as interrupts) chance to 1347 * complete. Note that if no_quiesce is set, i.e. this cpu 1348 * is required to service interrupts, then we take the route 1349 * that permits interrupt threads to be active (or bypassed). 1350 */ 1351 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1352 1353 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1354 if (loop_count >= 5) { 1355 error = EBUSY; /* some threads still bound */ 1356 break; 1357 } 1358 1359 /* 1360 * If some threads were assigned, give them 1361 * a chance to complete or move. 1362 * 1363 * This assumes that the clock_thread is not bound 1364 * to any CPU, because the clock_thread is needed to 1365 * do the delay(hz/100). 1366 * 1367 * Note: we still hold the cpu_lock while waiting for 1368 * the next clock tick. This is OK since it isn't 1369 * needed for anything else except processor_bind(2), 1370 * and system initialization. If we drop the lock, 1371 * we would risk another p_online disabling the last 1372 * processor. 1373 */ 1374 delay(hz/100); 1375 } 1376 1377 if (error == 0 && callout_off == 0) { 1378 callout_cpu_offline(cp); 1379 callout_off = 1; 1380 } 1381 1382 if (error == 0 && cyclic_off == 0) { 1383 if (!cyclic_offline(cp)) { 1384 /* 1385 * We must have bound cyclics... 1386 */ 1387 error = EBUSY; 1388 goto out; 1389 } 1390 cyclic_off = 1; 1391 } 1392 1393 /* 1394 * Call mp_cpu_stop() to perform any special operations 1395 * needed for this machine architecture to offline a CPU. 1396 */ 1397 if (error == 0) 1398 error = mp_cpu_stop(cp); /* arch-dep hook */ 1399 1400 /* 1401 * If that all worked, take the CPU offline and decrement 1402 * ncpus_online. 1403 */ 1404 if (error == 0) { 1405 /* 1406 * Put all the cpus into a known safe place. 1407 * No mutexes can be entered while CPUs are paused. 1408 */ 1409 pause_cpus(cp, NULL); 1410 /* 1411 * Repeat the operation, if necessary, to make sure that 1412 * all outstanding low-level interrupts run to completion 1413 * before we set the CPU_QUIESCED flag. It's also possible 1414 * that a thread has weak bound to the cpu despite our raising 1415 * cpu_inmotion above since it may have loaded that 1416 * value before the barrier became visible (this would have 1417 * to be the thread that was on the target cpu at the time 1418 * we raised the barrier). 1419 */ 1420 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1421 (*bound_func)(cp, 1)) { 1422 start_cpus(); 1423 (void) mp_cpu_start(cp); 1424 goto again; 1425 } 1426 ncp = cp->cpu_next_part; 1427 cpu_lpl = cp->cpu_lpl; 1428 ASSERT(cpu_lpl != NULL); 1429 1430 /* 1431 * Remove the CPU from the list of active CPUs. 1432 */ 1433 cpu_remove_active(cp); 1434 1435 /* 1436 * Walk the active process list and look for threads 1437 * whose home lgroup needs to be updated, or 1438 * the last CPU they run on is the one being offlined now. 1439 */ 1440 1441 ASSERT(curthread->t_cpu != cp); 1442 for (p = practive; p != NULL; p = p->p_next) { 1443 1444 t = p->p_tlist; 1445 1446 if (t == NULL) 1447 continue; 1448 1449 lgrp_diff_lpl = 0; 1450 1451 do { 1452 ASSERT(t->t_lpl != NULL); 1453 /* 1454 * Taking last CPU in lpl offline 1455 * Rehome thread if it is in this lpl 1456 * Otherwise, update the count of how many 1457 * threads are in this CPU's lgroup but have 1458 * a different lpl. 1459 */ 1460 1461 if (cpu_lpl->lpl_ncpu == 0) { 1462 if (t->t_lpl == cpu_lpl) 1463 lgrp_move_thread(t, 1464 lgrp_choose(t, 1465 t->t_cpupart), 0); 1466 else if (t->t_lpl->lpl_lgrpid == 1467 cpu_lpl->lpl_lgrpid) 1468 lgrp_diff_lpl++; 1469 } 1470 ASSERT(t->t_lpl->lpl_ncpu > 0); 1471 1472 /* 1473 * Update CPU last ran on if it was this CPU 1474 */ 1475 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1476 t->t_cpu = disp_lowpri_cpu(ncp, 1477 t->t_lpl, t->t_pri, NULL); 1478 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1479 t->t_weakbound_cpu == cp); 1480 1481 t = t->t_forw; 1482 } while (t != p->p_tlist); 1483 1484 /* 1485 * Didn't find any threads in the same lgroup as this 1486 * CPU with a different lpl, so remove the lgroup from 1487 * the process lgroup bitmask. 1488 */ 1489 1490 if (lgrp_diff_lpl == 0) 1491 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1492 } 1493 1494 /* 1495 * Walk thread list looking for threads that need to be 1496 * rehomed, since there are some threads that are not in 1497 * their process's p_tlist. 1498 */ 1499 1500 t = curthread; 1501 do { 1502 ASSERT(t != NULL && t->t_lpl != NULL); 1503 1504 /* 1505 * Rehome threads with same lpl as this CPU when this 1506 * is the last CPU in the lpl. 1507 */ 1508 1509 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1510 lgrp_move_thread(t, 1511 lgrp_choose(t, t->t_cpupart), 1); 1512 1513 ASSERT(t->t_lpl->lpl_ncpu > 0); 1514 1515 /* 1516 * Update CPU last ran on if it was this CPU 1517 */ 1518 1519 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1520 t->t_cpu = disp_lowpri_cpu(ncp, 1521 t->t_lpl, t->t_pri, NULL); 1522 } 1523 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1524 t->t_weakbound_cpu == cp); 1525 t = t->t_next; 1526 1527 } while (t != curthread); 1528 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1529 cp->cpu_flags |= CPU_OFFLINE; 1530 disp_cpu_inactive(cp); 1531 if (!no_quiesce) 1532 cp->cpu_flags |= CPU_QUIESCED; 1533 ncpus_online--; 1534 cpu_set_state(cp); 1535 cpu_inmotion = NULL; 1536 start_cpus(); 1537 cpu_stats_kstat_destroy(cp); 1538 cpu_delete_intrstat(cp); 1539 lgrp_kstat_destroy(cp); 1540 } 1541 1542 out: 1543 cpu_inmotion = NULL; 1544 1545 /* 1546 * If we failed, re-enable interrupts. 1547 * Do this even if cpu_intr_disable returned an error, because 1548 * it may have partially disabled interrupts. 1549 */ 1550 if (error && intr_enable) 1551 cpu_intr_enable(cp); 1552 1553 /* 1554 * If we failed, but managed to offline the cyclic subsystem on this 1555 * CPU, bring it back online. 1556 */ 1557 if (error && cyclic_off) 1558 cyclic_online(cp); 1559 1560 /* 1561 * If we failed, but managed to offline callouts on this CPU, 1562 * bring it back online. 1563 */ 1564 if (error && callout_off) 1565 callout_cpu_online(cp); 1566 1567 /* 1568 * If we failed, tell the PG subsystem that the CPU is back 1569 */ 1570 pg_cpupart_in(cp, pp); 1571 1572 /* 1573 * If we failed, we need to notify everyone that this CPU is back on. 1574 */ 1575 if (error != 0) { 1576 CPU_NEW_GENERATION(cp); 1577 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1578 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON); 1579 } 1580 1581 return (error); 1582 } 1583 1584 /* 1585 * Mark the indicated CPU as faulted, taking it offline. 1586 */ 1587 int 1588 cpu_faulted(cpu_t *cp, int flags) 1589 { 1590 int error = 0; 1591 1592 ASSERT(MUTEX_HELD(&cpu_lock)); 1593 ASSERT(!cpu_is_poweredoff(cp)); 1594 1595 if (cpu_is_offline(cp)) { 1596 cp->cpu_flags &= ~CPU_SPARE; 1597 cp->cpu_flags |= CPU_FAULTED; 1598 mp_cpu_faulted_enter(cp); 1599 cpu_set_state(cp); 1600 return (0); 1601 } 1602 1603 if ((error = cpu_offline(cp, flags)) == 0) { 1604 cp->cpu_flags |= CPU_FAULTED; 1605 mp_cpu_faulted_enter(cp); 1606 cpu_set_state(cp); 1607 } 1608 1609 return (error); 1610 } 1611 1612 /* 1613 * Mark the indicated CPU as a spare, taking it offline. 1614 */ 1615 int 1616 cpu_spare(cpu_t *cp, int flags) 1617 { 1618 int error = 0; 1619 1620 ASSERT(MUTEX_HELD(&cpu_lock)); 1621 ASSERT(!cpu_is_poweredoff(cp)); 1622 1623 if (cpu_is_offline(cp)) { 1624 if (cp->cpu_flags & CPU_FAULTED) { 1625 cp->cpu_flags &= ~CPU_FAULTED; 1626 mp_cpu_faulted_exit(cp); 1627 } 1628 cp->cpu_flags |= CPU_SPARE; 1629 cpu_set_state(cp); 1630 return (0); 1631 } 1632 1633 if ((error = cpu_offline(cp, flags)) == 0) { 1634 cp->cpu_flags |= CPU_SPARE; 1635 cpu_set_state(cp); 1636 } 1637 1638 return (error); 1639 } 1640 1641 /* 1642 * Take the indicated CPU from poweroff to offline. 1643 */ 1644 int 1645 cpu_poweron(cpu_t *cp) 1646 { 1647 int error = ENOTSUP; 1648 1649 ASSERT(MUTEX_HELD(&cpu_lock)); 1650 ASSERT(cpu_is_poweredoff(cp)); 1651 1652 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1653 if (error == 0) 1654 cpu_set_state(cp); 1655 1656 return (error); 1657 } 1658 1659 /* 1660 * Take the indicated CPU from any inactive state to powered off. 1661 */ 1662 int 1663 cpu_poweroff(cpu_t *cp) 1664 { 1665 int error = ENOTSUP; 1666 1667 ASSERT(MUTEX_HELD(&cpu_lock)); 1668 ASSERT(cpu_is_offline(cp)); 1669 1670 if (!(cp->cpu_flags & CPU_QUIESCED)) 1671 return (EBUSY); /* not completely idle */ 1672 1673 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1674 if (error == 0) 1675 cpu_set_state(cp); 1676 1677 return (error); 1678 } 1679 1680 /* 1681 * Initialize the Sequential CPU id lookup table 1682 */ 1683 void 1684 cpu_seq_tbl_init() 1685 { 1686 cpu_t **tbl; 1687 1688 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP); 1689 tbl[0] = CPU; 1690 1691 cpu_seq = tbl; 1692 } 1693 1694 /* 1695 * Initialize the CPU lists for the first CPU. 1696 */ 1697 void 1698 cpu_list_init(cpu_t *cp) 1699 { 1700 cp->cpu_next = cp; 1701 cp->cpu_prev = cp; 1702 cpu_list = cp; 1703 clock_cpu_list = cp; 1704 1705 cp->cpu_next_onln = cp; 1706 cp->cpu_prev_onln = cp; 1707 cpu_active = cp; 1708 1709 cp->cpu_seqid = 0; 1710 CPUSET_ADD(cpu_seqid_inuse, 0); 1711 1712 /* 1713 * Bootstrap cpu_seq using cpu_list 1714 * The cpu_seq[] table will be dynamically allocated 1715 * when kmem later becomes available (but before going MP) 1716 */ 1717 cpu_seq = &cpu_list; 1718 1719 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1720 cp_default.cp_cpulist = cp; 1721 cp_default.cp_ncpus = 1; 1722 cp->cpu_next_part = cp; 1723 cp->cpu_prev_part = cp; 1724 cp->cpu_part = &cp_default; 1725 1726 CPUSET_ADD(cpu_available, cp->cpu_id); 1727 } 1728 1729 /* 1730 * Insert a CPU into the list of available CPUs. 1731 */ 1732 void 1733 cpu_add_unit(cpu_t *cp) 1734 { 1735 int seqid; 1736 1737 ASSERT(MUTEX_HELD(&cpu_lock)); 1738 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1739 1740 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1741 1742 /* 1743 * Note: most users of the cpu_list will grab the 1744 * cpu_lock to insure that it isn't modified. However, 1745 * certain users can't or won't do that. To allow this 1746 * we pause the other cpus. Users who walk the list 1747 * without cpu_lock, must disable kernel preemption 1748 * to insure that the list isn't modified underneath 1749 * them. Also, any cached pointers to cpu structures 1750 * must be revalidated by checking to see if the 1751 * cpu_next pointer points to itself. This check must 1752 * be done with the cpu_lock held or kernel preemption 1753 * disabled. This check relies upon the fact that 1754 * old cpu structures are not free'ed or cleared after 1755 * then are removed from the cpu_list. 1756 * 1757 * Note that the clock code walks the cpu list dereferencing 1758 * the cpu_part pointer, so we need to initialize it before 1759 * adding the cpu to the list. 1760 */ 1761 cp->cpu_part = &cp_default; 1762 pause_cpus(NULL, NULL); 1763 cp->cpu_next = cpu_list; 1764 cp->cpu_prev = cpu_list->cpu_prev; 1765 cpu_list->cpu_prev->cpu_next = cp; 1766 cpu_list->cpu_prev = cp; 1767 start_cpus(); 1768 1769 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1770 continue; 1771 CPUSET_ADD(cpu_seqid_inuse, seqid); 1772 cp->cpu_seqid = seqid; 1773 1774 if (seqid > max_cpu_seqid_ever) 1775 max_cpu_seqid_ever = seqid; 1776 1777 ASSERT(ncpus < max_ncpus); 1778 ncpus++; 1779 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid); 1780 cpu[cp->cpu_id] = cp; 1781 CPUSET_ADD(cpu_available, cp->cpu_id); 1782 cpu_seq[cp->cpu_seqid] = cp; 1783 1784 /* 1785 * allocate a pause thread for this CPU. 1786 */ 1787 cpu_pause_alloc(cp); 1788 1789 /* 1790 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1791 * link them into a list of just that CPU. 1792 * This is so that disp_lowpri_cpu will work for thread_create in 1793 * pause_cpus() when called from the startup thread in a new CPU. 1794 */ 1795 cp->cpu_next_onln = cp; 1796 cp->cpu_prev_onln = cp; 1797 cpu_info_kstat_create(cp); 1798 cp->cpu_next_part = cp; 1799 cp->cpu_prev_part = cp; 1800 1801 init_cpu_mstate(cp, CMS_SYSTEM); 1802 1803 pool_pset_mod = gethrtime(); 1804 } 1805 1806 /* 1807 * Do the opposite of cpu_add_unit(). 1808 */ 1809 void 1810 cpu_del_unit(int cpuid) 1811 { 1812 struct cpu *cp, *cpnext; 1813 1814 ASSERT(MUTEX_HELD(&cpu_lock)); 1815 cp = cpu[cpuid]; 1816 ASSERT(cp != NULL); 1817 1818 ASSERT(cp->cpu_next_onln == cp); 1819 ASSERT(cp->cpu_prev_onln == cp); 1820 ASSERT(cp->cpu_next_part == cp); 1821 ASSERT(cp->cpu_prev_part == cp); 1822 1823 /* 1824 * Tear down the CPU's physical ID cache, and update any 1825 * processor groups 1826 */ 1827 pg_cpu_fini(cp, NULL); 1828 pghw_physid_destroy(cp); 1829 1830 /* 1831 * Destroy kstat stuff. 1832 */ 1833 cpu_info_kstat_destroy(cp); 1834 term_cpu_mstate(cp); 1835 /* 1836 * Free up pause thread. 1837 */ 1838 cpu_pause_free(cp); 1839 CPUSET_DEL(cpu_available, cp->cpu_id); 1840 cpu[cp->cpu_id] = NULL; 1841 cpu_seq[cp->cpu_seqid] = NULL; 1842 1843 /* 1844 * The clock thread and mutex_vector_enter cannot hold the 1845 * cpu_lock while traversing the cpu list, therefore we pause 1846 * all other threads by pausing the other cpus. These, and any 1847 * other routines holding cpu pointers while possibly sleeping 1848 * must be sure to call kpreempt_disable before processing the 1849 * list and be sure to check that the cpu has not been deleted 1850 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1851 * to keep the deleted cpu structure around. 1852 * 1853 * Note that this MUST be done AFTER cpu_available 1854 * has been updated so that we don't waste time 1855 * trying to pause the cpu we're trying to delete. 1856 */ 1857 pause_cpus(NULL, NULL); 1858 1859 cpnext = cp->cpu_next; 1860 cp->cpu_prev->cpu_next = cp->cpu_next; 1861 cp->cpu_next->cpu_prev = cp->cpu_prev; 1862 if (cp == cpu_list) 1863 cpu_list = cpnext; 1864 1865 /* 1866 * Signals that the cpu has been deleted (see above). 1867 */ 1868 cp->cpu_next = NULL; 1869 cp->cpu_prev = NULL; 1870 1871 start_cpus(); 1872 1873 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1874 ncpus--; 1875 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1876 1877 pool_pset_mod = gethrtime(); 1878 } 1879 1880 /* 1881 * Add a CPU to the list of active CPUs. 1882 * This routine must not get any locks, because other CPUs are paused. 1883 */ 1884 static void 1885 cpu_add_active_internal(cpu_t *cp) 1886 { 1887 cpupart_t *pp = cp->cpu_part; 1888 1889 ASSERT(MUTEX_HELD(&cpu_lock)); 1890 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1891 1892 ncpus_online++; 1893 cpu_set_state(cp); 1894 cp->cpu_next_onln = cpu_active; 1895 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1896 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1897 cpu_active->cpu_prev_onln = cp; 1898 1899 if (pp->cp_cpulist) { 1900 cp->cpu_next_part = pp->cp_cpulist; 1901 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1902 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1903 pp->cp_cpulist->cpu_prev_part = cp; 1904 } else { 1905 ASSERT(pp->cp_ncpus == 0); 1906 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1907 } 1908 pp->cp_ncpus++; 1909 if (pp->cp_ncpus == 1) { 1910 cp_numparts_nonempty++; 1911 ASSERT(cp_numparts_nonempty != 0); 1912 } 1913 1914 pg_cpu_active(cp); 1915 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1916 1917 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1918 } 1919 1920 /* 1921 * Add a CPU to the list of active CPUs. 1922 * This is called from machine-dependent layers when a new CPU is started. 1923 */ 1924 void 1925 cpu_add_active(cpu_t *cp) 1926 { 1927 pg_cpupart_in(cp, cp->cpu_part); 1928 1929 pause_cpus(NULL, NULL); 1930 cpu_add_active_internal(cp); 1931 start_cpus(); 1932 1933 cpu_stats_kstat_create(cp); 1934 cpu_create_intrstat(cp); 1935 lgrp_kstat_create(cp); 1936 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1937 } 1938 1939 1940 /* 1941 * Remove a CPU from the list of active CPUs. 1942 * This routine must not get any locks, because other CPUs are paused. 1943 */ 1944 /* ARGSUSED */ 1945 static void 1946 cpu_remove_active(cpu_t *cp) 1947 { 1948 cpupart_t *pp = cp->cpu_part; 1949 1950 ASSERT(MUTEX_HELD(&cpu_lock)); 1951 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1952 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1953 1954 pg_cpu_inactive(cp); 1955 1956 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1957 1958 if (cp == clock_cpu_list) 1959 clock_cpu_list = cp->cpu_next_onln; 1960 1961 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1962 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1963 if (cpu_active == cp) { 1964 cpu_active = cp->cpu_next_onln; 1965 } 1966 cp->cpu_next_onln = cp; 1967 cp->cpu_prev_onln = cp; 1968 1969 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1970 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1971 if (pp->cp_cpulist == cp) { 1972 pp->cp_cpulist = cp->cpu_next_part; 1973 ASSERT(pp->cp_cpulist != cp); 1974 } 1975 cp->cpu_next_part = cp; 1976 cp->cpu_prev_part = cp; 1977 pp->cp_ncpus--; 1978 if (pp->cp_ncpus == 0) { 1979 cp_numparts_nonempty--; 1980 ASSERT(cp_numparts_nonempty != 0); 1981 } 1982 } 1983 1984 /* 1985 * Routine used to setup a newly inserted CPU in preparation for starting 1986 * it running code. 1987 */ 1988 int 1989 cpu_configure(int cpuid) 1990 { 1991 int retval = 0; 1992 1993 ASSERT(MUTEX_HELD(&cpu_lock)); 1994 1995 /* 1996 * Some structures are statically allocated based upon 1997 * the maximum number of cpus the system supports. Do not 1998 * try to add anything beyond this limit. 1999 */ 2000 if (cpuid < 0 || cpuid >= NCPU) { 2001 return (EINVAL); 2002 } 2003 2004 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 2005 return (EALREADY); 2006 } 2007 2008 if ((retval = mp_cpu_configure(cpuid)) != 0) { 2009 return (retval); 2010 } 2011 2012 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 2013 cpu_set_state(cpu[cpuid]); 2014 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 2015 if (retval != 0) 2016 (void) mp_cpu_unconfigure(cpuid); 2017 2018 return (retval); 2019 } 2020 2021 /* 2022 * Routine used to cleanup a CPU that has been powered off. This will 2023 * destroy all per-cpu information related to this cpu. 2024 */ 2025 int 2026 cpu_unconfigure(int cpuid) 2027 { 2028 int error; 2029 2030 ASSERT(MUTEX_HELD(&cpu_lock)); 2031 2032 if (cpu[cpuid] == NULL) { 2033 return (ENODEV); 2034 } 2035 2036 if (cpu[cpuid]->cpu_flags == 0) { 2037 return (EALREADY); 2038 } 2039 2040 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 2041 return (EBUSY); 2042 } 2043 2044 if (cpu[cpuid]->cpu_props != NULL) { 2045 (void) nvlist_free(cpu[cpuid]->cpu_props); 2046 cpu[cpuid]->cpu_props = NULL; 2047 } 2048 2049 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 2050 2051 if (error != 0) 2052 return (error); 2053 2054 return (mp_cpu_unconfigure(cpuid)); 2055 } 2056 2057 /* 2058 * Routines for registering and de-registering cpu_setup callback functions. 2059 * 2060 * Caller's context 2061 * These routines must not be called from a driver's attach(9E) or 2062 * detach(9E) entry point. 2063 * 2064 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 2065 */ 2066 2067 /* 2068 * Ideally, these would be dynamically allocated and put into a linked 2069 * list; however that is not feasible because the registration routine 2070 * has to be available before the kmem allocator is working (in fact, 2071 * it is called by the kmem allocator init code). In any case, there 2072 * are quite a few extra entries for future users. 2073 */ 2074 #define NCPU_SETUPS 20 2075 2076 struct cpu_setup { 2077 cpu_setup_func_t *func; 2078 void *arg; 2079 } cpu_setups[NCPU_SETUPS]; 2080 2081 void 2082 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2083 { 2084 int i; 2085 2086 ASSERT(MUTEX_HELD(&cpu_lock)); 2087 2088 for (i = 0; i < NCPU_SETUPS; i++) 2089 if (cpu_setups[i].func == NULL) 2090 break; 2091 if (i >= NCPU_SETUPS) 2092 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2093 2094 cpu_setups[i].func = func; 2095 cpu_setups[i].arg = arg; 2096 } 2097 2098 void 2099 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2100 { 2101 int i; 2102 2103 ASSERT(MUTEX_HELD(&cpu_lock)); 2104 2105 for (i = 0; i < NCPU_SETUPS; i++) 2106 if ((cpu_setups[i].func == func) && 2107 (cpu_setups[i].arg == arg)) 2108 break; 2109 if (i >= NCPU_SETUPS) 2110 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2111 "deregister"); 2112 2113 cpu_setups[i].func = NULL; 2114 cpu_setups[i].arg = 0; 2115 } 2116 2117 /* 2118 * Call any state change hooks for this CPU, ignore any errors. 2119 */ 2120 void 2121 cpu_state_change_notify(int id, cpu_setup_t what) 2122 { 2123 int i; 2124 2125 ASSERT(MUTEX_HELD(&cpu_lock)); 2126 2127 for (i = 0; i < NCPU_SETUPS; i++) { 2128 if (cpu_setups[i].func != NULL) { 2129 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2130 } 2131 } 2132 } 2133 2134 /* 2135 * Call any state change hooks for this CPU, undo it if error found. 2136 */ 2137 static int 2138 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2139 { 2140 int i; 2141 int retval = 0; 2142 2143 ASSERT(MUTEX_HELD(&cpu_lock)); 2144 2145 for (i = 0; i < NCPU_SETUPS; i++) { 2146 if (cpu_setups[i].func != NULL) { 2147 retval = cpu_setups[i].func(what, id, 2148 cpu_setups[i].arg); 2149 if (retval) { 2150 for (i--; i >= 0; i--) { 2151 if (cpu_setups[i].func != NULL) 2152 cpu_setups[i].func(undo, 2153 id, cpu_setups[i].arg); 2154 } 2155 break; 2156 } 2157 } 2158 } 2159 return (retval); 2160 } 2161 2162 /* 2163 * Export information about this CPU via the kstat mechanism. 2164 */ 2165 static struct { 2166 kstat_named_t ci_state; 2167 kstat_named_t ci_state_begin; 2168 kstat_named_t ci_cpu_type; 2169 kstat_named_t ci_fpu_type; 2170 kstat_named_t ci_clock_MHz; 2171 kstat_named_t ci_chip_id; 2172 kstat_named_t ci_implementation; 2173 kstat_named_t ci_brandstr; 2174 kstat_named_t ci_core_id; 2175 kstat_named_t ci_curr_clock_Hz; 2176 kstat_named_t ci_supp_freq_Hz; 2177 kstat_named_t ci_pg_id; 2178 #if defined(__sparcv9) 2179 kstat_named_t ci_device_ID; 2180 kstat_named_t ci_cpu_fru; 2181 #endif 2182 #if defined(__x86) 2183 kstat_named_t ci_vendorstr; 2184 kstat_named_t ci_family; 2185 kstat_named_t ci_model; 2186 kstat_named_t ci_step; 2187 kstat_named_t ci_clogid; 2188 kstat_named_t ci_pkg_core_id; 2189 kstat_named_t ci_ncpuperchip; 2190 kstat_named_t ci_ncoreperchip; 2191 kstat_named_t ci_max_cstates; 2192 kstat_named_t ci_curr_cstate; 2193 kstat_named_t ci_cacheid; 2194 kstat_named_t ci_sktstr; 2195 #endif 2196 } cpu_info_template = { 2197 { "state", KSTAT_DATA_CHAR }, 2198 { "state_begin", KSTAT_DATA_LONG }, 2199 { "cpu_type", KSTAT_DATA_CHAR }, 2200 { "fpu_type", KSTAT_DATA_CHAR }, 2201 { "clock_MHz", KSTAT_DATA_LONG }, 2202 { "chip_id", KSTAT_DATA_LONG }, 2203 { "implementation", KSTAT_DATA_STRING }, 2204 { "brand", KSTAT_DATA_STRING }, 2205 { "core_id", KSTAT_DATA_LONG }, 2206 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2207 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2208 { "pg_id", KSTAT_DATA_LONG }, 2209 #if defined(__sparcv9) 2210 { "device_ID", KSTAT_DATA_UINT64 }, 2211 { "cpu_fru", KSTAT_DATA_STRING }, 2212 #endif 2213 #if defined(__x86) 2214 { "vendor_id", KSTAT_DATA_STRING }, 2215 { "family", KSTAT_DATA_INT32 }, 2216 { "model", KSTAT_DATA_INT32 }, 2217 { "stepping", KSTAT_DATA_INT32 }, 2218 { "clog_id", KSTAT_DATA_INT32 }, 2219 { "pkg_core_id", KSTAT_DATA_LONG }, 2220 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2221 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2222 { "supported_max_cstates", KSTAT_DATA_INT32 }, 2223 { "current_cstate", KSTAT_DATA_INT32 }, 2224 { "cache_id", KSTAT_DATA_INT32 }, 2225 { "socket_type", KSTAT_DATA_STRING }, 2226 #endif 2227 }; 2228 2229 static kmutex_t cpu_info_template_lock; 2230 2231 static int 2232 cpu_info_kstat_update(kstat_t *ksp, int rw) 2233 { 2234 cpu_t *cp = ksp->ks_private; 2235 const char *pi_state; 2236 2237 if (rw == KSTAT_WRITE) 2238 return (EACCES); 2239 2240 #if defined(__x86) 2241 /* Is the cpu still initialising itself? */ 2242 if (cpuid_checkpass(cp, 1) == 0) 2243 return (ENXIO); 2244 #endif 2245 switch (cp->cpu_type_info.pi_state) { 2246 case P_ONLINE: 2247 pi_state = PS_ONLINE; 2248 break; 2249 case P_POWEROFF: 2250 pi_state = PS_POWEROFF; 2251 break; 2252 case P_NOINTR: 2253 pi_state = PS_NOINTR; 2254 break; 2255 case P_FAULTED: 2256 pi_state = PS_FAULTED; 2257 break; 2258 case P_SPARE: 2259 pi_state = PS_SPARE; 2260 break; 2261 case P_OFFLINE: 2262 pi_state = PS_OFFLINE; 2263 break; 2264 default: 2265 pi_state = "unknown"; 2266 } 2267 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2268 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2269 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2270 cp->cpu_type_info.pi_processor_type, 15); 2271 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2272 cp->cpu_type_info.pi_fputypes, 15); 2273 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2274 cpu_info_template.ci_chip_id.value.l = 2275 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2276 kstat_named_setstr(&cpu_info_template.ci_implementation, 2277 cp->cpu_idstr); 2278 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2279 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2280 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2281 cp->cpu_curr_clock; 2282 cpu_info_template.ci_pg_id.value.l = 2283 cp->cpu_pg && cp->cpu_pg->cmt_lineage ? 2284 cp->cpu_pg->cmt_lineage->pg_id : -1; 2285 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2286 cp->cpu_supp_freqs); 2287 #if defined(__sparcv9) 2288 cpu_info_template.ci_device_ID.value.ui64 = 2289 cpunodes[cp->cpu_id].device_id; 2290 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2291 #endif 2292 #if defined(__x86) 2293 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2294 cpuid_getvendorstr(cp)); 2295 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2296 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2297 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2298 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2299 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2300 cpu_info_template.ci_ncoreperchip.value.l = 2301 cpuid_get_ncore_per_chip(cp); 2302 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2303 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates; 2304 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp); 2305 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp); 2306 kstat_named_setstr(&cpu_info_template.ci_sktstr, 2307 cpuid_getsocketstr(cp)); 2308 #endif 2309 2310 return (0); 2311 } 2312 2313 static void 2314 cpu_info_kstat_create(cpu_t *cp) 2315 { 2316 zoneid_t zoneid; 2317 2318 ASSERT(MUTEX_HELD(&cpu_lock)); 2319 2320 if (pool_pset_enabled()) 2321 zoneid = GLOBAL_ZONEID; 2322 else 2323 zoneid = ALL_ZONES; 2324 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2325 NULL, "misc", KSTAT_TYPE_NAMED, 2326 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2327 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) { 2328 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2329 #if defined(__sparcv9) 2330 cp->cpu_info_kstat->ks_data_size += 2331 strlen(cpu_fru_fmri(cp)) + 1; 2332 #endif 2333 #if defined(__x86) 2334 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2335 #endif 2336 if (cp->cpu_supp_freqs != NULL) 2337 cp->cpu_info_kstat->ks_data_size += 2338 strlen(cp->cpu_supp_freqs) + 1; 2339 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2340 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2341 cp->cpu_info_kstat->ks_private = cp; 2342 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2343 kstat_install(cp->cpu_info_kstat); 2344 } 2345 } 2346 2347 static void 2348 cpu_info_kstat_destroy(cpu_t *cp) 2349 { 2350 ASSERT(MUTEX_HELD(&cpu_lock)); 2351 2352 kstat_delete(cp->cpu_info_kstat); 2353 cp->cpu_info_kstat = NULL; 2354 } 2355 2356 /* 2357 * Create and install kstats for the boot CPU. 2358 */ 2359 void 2360 cpu_kstat_init(cpu_t *cp) 2361 { 2362 mutex_enter(&cpu_lock); 2363 cpu_info_kstat_create(cp); 2364 cpu_stats_kstat_create(cp); 2365 cpu_create_intrstat(cp); 2366 cpu_set_state(cp); 2367 mutex_exit(&cpu_lock); 2368 } 2369 2370 /* 2371 * Make visible to the zone that subset of the cpu information that would be 2372 * initialized when a cpu is configured (but still offline). 2373 */ 2374 void 2375 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2376 { 2377 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2378 2379 ASSERT(MUTEX_HELD(&cpu_lock)); 2380 ASSERT(pool_pset_enabled()); 2381 ASSERT(cp != NULL); 2382 2383 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2384 zone->zone_ncpus++; 2385 ASSERT(zone->zone_ncpus <= ncpus); 2386 } 2387 if (cp->cpu_info_kstat != NULL) 2388 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2389 } 2390 2391 /* 2392 * Make visible to the zone that subset of the cpu information that would be 2393 * initialized when a previously configured cpu is onlined. 2394 */ 2395 void 2396 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2397 { 2398 kstat_t *ksp; 2399 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2400 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2401 processorid_t cpun; 2402 2403 ASSERT(MUTEX_HELD(&cpu_lock)); 2404 ASSERT(pool_pset_enabled()); 2405 ASSERT(cp != NULL); 2406 ASSERT(cpu_is_active(cp)); 2407 2408 cpun = cp->cpu_id; 2409 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2410 zone->zone_ncpus_online++; 2411 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2412 } 2413 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2414 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2415 != NULL) { 2416 kstat_zone_add(ksp, zoneid); 2417 kstat_rele(ksp); 2418 } 2419 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2420 kstat_zone_add(ksp, zoneid); 2421 kstat_rele(ksp); 2422 } 2423 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2424 kstat_zone_add(ksp, zoneid); 2425 kstat_rele(ksp); 2426 } 2427 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2428 NULL) { 2429 kstat_zone_add(ksp, zoneid); 2430 kstat_rele(ksp); 2431 } 2432 } 2433 2434 /* 2435 * Update relevant kstats such that cpu is now visible to processes 2436 * executing in specified zone. 2437 */ 2438 void 2439 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2440 { 2441 cpu_visibility_configure(cp, zone); 2442 if (cpu_is_active(cp)) 2443 cpu_visibility_online(cp, zone); 2444 } 2445 2446 /* 2447 * Make invisible to the zone that subset of the cpu information that would be 2448 * torn down when a previously offlined cpu is unconfigured. 2449 */ 2450 void 2451 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2452 { 2453 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2454 2455 ASSERT(MUTEX_HELD(&cpu_lock)); 2456 ASSERT(pool_pset_enabled()); 2457 ASSERT(cp != NULL); 2458 2459 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2460 ASSERT(zone->zone_ncpus != 0); 2461 zone->zone_ncpus--; 2462 } 2463 if (cp->cpu_info_kstat) 2464 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2465 } 2466 2467 /* 2468 * Make invisible to the zone that subset of the cpu information that would be 2469 * torn down when a cpu is offlined (but still configured). 2470 */ 2471 void 2472 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2473 { 2474 kstat_t *ksp; 2475 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2476 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2477 processorid_t cpun; 2478 2479 ASSERT(MUTEX_HELD(&cpu_lock)); 2480 ASSERT(pool_pset_enabled()); 2481 ASSERT(cp != NULL); 2482 ASSERT(cpu_is_active(cp)); 2483 2484 cpun = cp->cpu_id; 2485 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2486 ASSERT(zone->zone_ncpus_online != 0); 2487 zone->zone_ncpus_online--; 2488 } 2489 2490 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2491 NULL) { 2492 kstat_zone_remove(ksp, zoneid); 2493 kstat_rele(ksp); 2494 } 2495 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2496 kstat_zone_remove(ksp, zoneid); 2497 kstat_rele(ksp); 2498 } 2499 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2500 kstat_zone_remove(ksp, zoneid); 2501 kstat_rele(ksp); 2502 } 2503 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2504 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2505 != NULL) { 2506 kstat_zone_remove(ksp, zoneid); 2507 kstat_rele(ksp); 2508 } 2509 } 2510 2511 /* 2512 * Update relevant kstats such that cpu is no longer visible to processes 2513 * executing in specified zone. 2514 */ 2515 void 2516 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2517 { 2518 if (cpu_is_active(cp)) 2519 cpu_visibility_offline(cp, zone); 2520 cpu_visibility_unconfigure(cp, zone); 2521 } 2522 2523 /* 2524 * Bind a thread to a CPU as requested. 2525 */ 2526 int 2527 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2528 int *error) 2529 { 2530 processorid_t binding; 2531 cpu_t *cp = NULL; 2532 2533 ASSERT(MUTEX_HELD(&cpu_lock)); 2534 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2535 2536 thread_lock(tp); 2537 2538 /* 2539 * Record old binding, but change the obind, which was initialized 2540 * to PBIND_NONE, only if this thread has a binding. This avoids 2541 * reporting PBIND_NONE for a process when some LWPs are bound. 2542 */ 2543 binding = tp->t_bind_cpu; 2544 if (binding != PBIND_NONE) 2545 *obind = binding; /* record old binding */ 2546 2547 switch (bind) { 2548 case PBIND_QUERY: 2549 /* Just return the old binding */ 2550 thread_unlock(tp); 2551 return (0); 2552 2553 case PBIND_QUERY_TYPE: 2554 /* Return the binding type */ 2555 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2556 thread_unlock(tp); 2557 return (0); 2558 2559 case PBIND_SOFT: 2560 /* 2561 * Set soft binding for this thread and return the actual 2562 * binding 2563 */ 2564 TB_CPU_SOFT_SET(tp); 2565 thread_unlock(tp); 2566 return (0); 2567 2568 case PBIND_HARD: 2569 /* 2570 * Set hard binding for this thread and return the actual 2571 * binding 2572 */ 2573 TB_CPU_HARD_SET(tp); 2574 thread_unlock(tp); 2575 return (0); 2576 2577 default: 2578 break; 2579 } 2580 2581 /* 2582 * If this thread/LWP cannot be bound because of permission 2583 * problems, just note that and return success so that the 2584 * other threads/LWPs will be bound. This is the way 2585 * processor_bind() is defined to work. 2586 * 2587 * Binding will get EPERM if the thread is of system class 2588 * or hasprocperm() fails. 2589 */ 2590 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2591 *error = EPERM; 2592 thread_unlock(tp); 2593 return (0); 2594 } 2595 2596 binding = bind; 2597 if (binding != PBIND_NONE) { 2598 cp = cpu_get((processorid_t)binding); 2599 /* 2600 * Make sure binding is valid and is in right partition. 2601 */ 2602 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2603 *error = EINVAL; 2604 thread_unlock(tp); 2605 return (0); 2606 } 2607 } 2608 tp->t_bind_cpu = binding; /* set new binding */ 2609 2610 /* 2611 * If there is no system-set reason for affinity, set 2612 * the t_bound_cpu field to reflect the binding. 2613 */ 2614 if (tp->t_affinitycnt == 0) { 2615 if (binding == PBIND_NONE) { 2616 /* 2617 * We may need to adjust disp_max_unbound_pri 2618 * since we're becoming unbound. 2619 */ 2620 disp_adjust_unbound_pri(tp); 2621 2622 tp->t_bound_cpu = NULL; /* set new binding */ 2623 2624 /* 2625 * Move thread to lgroup with strongest affinity 2626 * after unbinding 2627 */ 2628 if (tp->t_lgrp_affinity) 2629 lgrp_move_thread(tp, 2630 lgrp_choose(tp, tp->t_cpupart), 1); 2631 2632 if (tp->t_state == TS_ONPROC && 2633 tp->t_cpu->cpu_part != tp->t_cpupart) 2634 cpu_surrender(tp); 2635 } else { 2636 lpl_t *lpl; 2637 2638 tp->t_bound_cpu = cp; 2639 ASSERT(cp->cpu_lpl != NULL); 2640 2641 /* 2642 * Set home to lgroup with most affinity containing CPU 2643 * that thread is being bound or minimum bounding 2644 * lgroup if no affinities set 2645 */ 2646 if (tp->t_lgrp_affinity) 2647 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2648 LGRP_NONE, B_FALSE); 2649 else 2650 lpl = cp->cpu_lpl; 2651 2652 if (tp->t_lpl != lpl) { 2653 /* can't grab cpu_lock */ 2654 lgrp_move_thread(tp, lpl, 1); 2655 } 2656 2657 /* 2658 * Make the thread switch to the bound CPU. 2659 * If the thread is runnable, we need to 2660 * requeue it even if t_cpu is already set 2661 * to the right CPU, since it may be on a 2662 * kpreempt queue and need to move to a local 2663 * queue. We could check t_disp_queue to 2664 * avoid unnecessary overhead if it's already 2665 * on the right queue, but since this isn't 2666 * a performance-critical operation it doesn't 2667 * seem worth the extra code and complexity. 2668 * 2669 * If the thread is weakbound to the cpu then it will 2670 * resist the new binding request until the weak 2671 * binding drops. The cpu_surrender or requeueing 2672 * below could be skipped in such cases (since it 2673 * will have no effect), but that would require 2674 * thread_allowmigrate to acquire thread_lock so 2675 * we'll take the very occasional hit here instead. 2676 */ 2677 if (tp->t_state == TS_ONPROC) { 2678 cpu_surrender(tp); 2679 } else if (tp->t_state == TS_RUN) { 2680 cpu_t *ocp = tp->t_cpu; 2681 2682 (void) dispdeq(tp); 2683 setbackdq(tp); 2684 /* 2685 * Either on the bound CPU's disp queue now, 2686 * or swapped out or on the swap queue. 2687 */ 2688 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2689 tp->t_weakbound_cpu == ocp || 2690 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2691 != TS_LOAD); 2692 } 2693 } 2694 } 2695 2696 /* 2697 * Our binding has changed; set TP_CHANGEBIND. 2698 */ 2699 tp->t_proc_flag |= TP_CHANGEBIND; 2700 aston(tp); 2701 2702 thread_unlock(tp); 2703 2704 return (0); 2705 } 2706 2707 #if CPUSET_WORDS > 1 2708 2709 /* 2710 * Functions for implementing cpuset operations when a cpuset is more 2711 * than one word. On platforms where a cpuset is a single word these 2712 * are implemented as macros in cpuvar.h. 2713 */ 2714 2715 void 2716 cpuset_all(cpuset_t *s) 2717 { 2718 int i; 2719 2720 for (i = 0; i < CPUSET_WORDS; i++) 2721 s->cpub[i] = ~0UL; 2722 } 2723 2724 void 2725 cpuset_all_but(cpuset_t *s, uint_t cpu) 2726 { 2727 cpuset_all(s); 2728 CPUSET_DEL(*s, cpu); 2729 } 2730 2731 void 2732 cpuset_only(cpuset_t *s, uint_t cpu) 2733 { 2734 CPUSET_ZERO(*s); 2735 CPUSET_ADD(*s, cpu); 2736 } 2737 2738 int 2739 cpuset_isnull(cpuset_t *s) 2740 { 2741 int i; 2742 2743 for (i = 0; i < CPUSET_WORDS; i++) 2744 if (s->cpub[i] != 0) 2745 return (0); 2746 return (1); 2747 } 2748 2749 int 2750 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2751 { 2752 int i; 2753 2754 for (i = 0; i < CPUSET_WORDS; i++) 2755 if (s1->cpub[i] != s2->cpub[i]) 2756 return (0); 2757 return (1); 2758 } 2759 2760 uint_t 2761 cpuset_find(cpuset_t *s) 2762 { 2763 2764 uint_t i; 2765 uint_t cpu = (uint_t)-1; 2766 2767 /* 2768 * Find a cpu in the cpuset 2769 */ 2770 for (i = 0; i < CPUSET_WORDS; i++) { 2771 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2772 if (cpu != (uint_t)-1) { 2773 cpu += i * BT_NBIPUL; 2774 break; 2775 } 2776 } 2777 return (cpu); 2778 } 2779 2780 void 2781 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2782 { 2783 int i, j; 2784 uint_t bit; 2785 2786 /* 2787 * First, find the smallest cpu id in the set. 2788 */ 2789 for (i = 0; i < CPUSET_WORDS; i++) { 2790 if (s->cpub[i] != 0) { 2791 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2792 ASSERT(bit != (uint_t)-1); 2793 *smallestid = bit + (i * BT_NBIPUL); 2794 2795 /* 2796 * Now find the largest cpu id in 2797 * the set and return immediately. 2798 * Done in an inner loop to avoid 2799 * having to break out of the first 2800 * loop. 2801 */ 2802 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2803 if (s->cpub[j] != 0) { 2804 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2805 ASSERT(bit != (uint_t)-1); 2806 *largestid = bit + (j * BT_NBIPUL); 2807 ASSERT(*largestid >= *smallestid); 2808 return; 2809 } 2810 } 2811 2812 /* 2813 * If this code is reached, a 2814 * smallestid was found, but not a 2815 * largestid. The cpuset must have 2816 * been changed during the course 2817 * of this function call. 2818 */ 2819 ASSERT(0); 2820 } 2821 } 2822 *smallestid = *largestid = CPUSET_NOTINSET; 2823 } 2824 2825 #endif /* CPUSET_WORDS */ 2826 2827 /* 2828 * Unbind threads bound to specified CPU. 2829 * 2830 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2831 * CPU. Otherwise unbind all soft-bound user threads. 2832 */ 2833 int 2834 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2835 { 2836 processorid_t obind; 2837 kthread_t *tp; 2838 int ret = 0; 2839 proc_t *pp; 2840 int err, berr = 0; 2841 2842 ASSERT(MUTEX_HELD(&cpu_lock)); 2843 2844 mutex_enter(&pidlock); 2845 for (pp = practive; pp != NULL; pp = pp->p_next) { 2846 mutex_enter(&pp->p_lock); 2847 tp = pp->p_tlist; 2848 /* 2849 * Skip zombies, kernel processes, and processes in 2850 * other zones, if called from a non-global zone. 2851 */ 2852 if (tp == NULL || (pp->p_flag & SSYS) || 2853 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2854 mutex_exit(&pp->p_lock); 2855 continue; 2856 } 2857 do { 2858 if (tp->t_bind_cpu != cpu) 2859 continue; 2860 /* 2861 * Skip threads with hard binding when 2862 * `unbind_all_threads' is not specified. 2863 */ 2864 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2865 continue; 2866 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2867 if (ret == 0) 2868 ret = err; 2869 } while ((tp = tp->t_forw) != pp->p_tlist); 2870 mutex_exit(&pp->p_lock); 2871 } 2872 mutex_exit(&pidlock); 2873 if (ret == 0) 2874 ret = berr; 2875 return (ret); 2876 } 2877 2878 2879 /* 2880 * Destroy all remaining bound threads on a cpu. 2881 */ 2882 void 2883 cpu_destroy_bound_threads(cpu_t *cp) 2884 { 2885 extern id_t syscid; 2886 register kthread_id_t t, tlist, tnext; 2887 2888 /* 2889 * Destroy all remaining bound threads on the cpu. This 2890 * should include both the interrupt threads and the idle thread. 2891 * This requires some care, since we need to traverse the 2892 * thread list with the pidlock mutex locked, but thread_free 2893 * also locks the pidlock mutex. So, we collect the threads 2894 * we're going to reap in a list headed by "tlist", then we 2895 * unlock the pidlock mutex and traverse the tlist list, 2896 * doing thread_free's on the thread's. Simple, n'est pas? 2897 * Also, this depends on thread_free not mucking with the 2898 * t_next and t_prev links of the thread. 2899 */ 2900 2901 if ((t = curthread) != NULL) { 2902 2903 tlist = NULL; 2904 mutex_enter(&pidlock); 2905 do { 2906 tnext = t->t_next; 2907 if (t->t_bound_cpu == cp) { 2908 2909 /* 2910 * We've found a bound thread, carefully unlink 2911 * it out of the thread list, and add it to 2912 * our "tlist". We "know" we don't have to 2913 * worry about unlinking curthread (the thread 2914 * that is executing this code). 2915 */ 2916 t->t_next->t_prev = t->t_prev; 2917 t->t_prev->t_next = t->t_next; 2918 t->t_next = tlist; 2919 tlist = t; 2920 ASSERT(t->t_cid == syscid); 2921 /* wake up anyone blocked in thread_join */ 2922 cv_broadcast(&t->t_joincv); 2923 /* 2924 * t_lwp set by interrupt threads and not 2925 * cleared. 2926 */ 2927 t->t_lwp = NULL; 2928 /* 2929 * Pause and idle threads always have 2930 * t_state set to TS_ONPROC. 2931 */ 2932 t->t_state = TS_FREE; 2933 t->t_prev = NULL; /* Just in case */ 2934 } 2935 2936 } while ((t = tnext) != curthread); 2937 2938 mutex_exit(&pidlock); 2939 2940 mutex_sync(); 2941 for (t = tlist; t != NULL; t = tnext) { 2942 tnext = t->t_next; 2943 thread_free(t); 2944 } 2945 } 2946 } 2947 2948 /* 2949 * Update the cpu_supp_freqs of this cpu. This information is returned 2950 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2951 * maintain the kstat data size. 2952 */ 2953 void 2954 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2955 { 2956 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2957 const char *lfreqs = clkstr; 2958 boolean_t kstat_exists = B_FALSE; 2959 kstat_t *ksp; 2960 size_t len; 2961 2962 /* 2963 * A NULL pointer means we only support one speed. 2964 */ 2965 if (freqs == NULL) 2966 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2967 cp->cpu_curr_clock); 2968 else 2969 lfreqs = freqs; 2970 2971 /* 2972 * Make sure the frequency doesn't change while a snapshot is 2973 * going on. Of course, we only need to worry about this if 2974 * the kstat exists. 2975 */ 2976 if ((ksp = cp->cpu_info_kstat) != NULL) { 2977 mutex_enter(ksp->ks_lock); 2978 kstat_exists = B_TRUE; 2979 } 2980 2981 /* 2982 * Free any previously allocated string and if the kstat 2983 * already exists, then update its data size. 2984 */ 2985 if (cp->cpu_supp_freqs != NULL) { 2986 len = strlen(cp->cpu_supp_freqs) + 1; 2987 kmem_free(cp->cpu_supp_freqs, len); 2988 if (kstat_exists) 2989 ksp->ks_data_size -= len; 2990 } 2991 2992 /* 2993 * Allocate the new string and set the pointer. 2994 */ 2995 len = strlen(lfreqs) + 1; 2996 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2997 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2998 2999 /* 3000 * If the kstat already exists then update the data size and 3001 * free the lock. 3002 */ 3003 if (kstat_exists) { 3004 ksp->ks_data_size += len; 3005 mutex_exit(ksp->ks_lock); 3006 } 3007 } 3008 3009 /* 3010 * Indicate the current CPU's clock freqency (in Hz). 3011 * The calling context must be such that CPU references are safe. 3012 */ 3013 void 3014 cpu_set_curr_clock(uint64_t new_clk) 3015 { 3016 uint64_t old_clk; 3017 3018 old_clk = CPU->cpu_curr_clock; 3019 CPU->cpu_curr_clock = new_clk; 3020 3021 /* 3022 * The cpu-change-speed DTrace probe exports the frequency in Hz 3023 */ 3024 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id, 3025 uint64_t, old_clk, uint64_t, new_clk); 3026 } 3027 3028 /* 3029 * processor_info(2) and p_online(2) status support functions 3030 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 3031 * for use in communicating processor state information to userland. Kernel 3032 * subsystems should only be using the cpu_flags value directly. Subsystems 3033 * modifying cpu_flags should record the state change via a call to the 3034 * cpu_set_state(). 3035 */ 3036 3037 /* 3038 * Update the pi_state of this CPU. This function provides the CPU status for 3039 * the information returned by processor_info(2). 3040 */ 3041 void 3042 cpu_set_state(cpu_t *cpu) 3043 { 3044 ASSERT(MUTEX_HELD(&cpu_lock)); 3045 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 3046 cpu->cpu_state_begin = gethrestime_sec(); 3047 pool_cpu_mod = gethrtime(); 3048 } 3049 3050 /* 3051 * Return offline/online/other status for the indicated CPU. Use only for 3052 * communication with user applications; cpu_flags provides the in-kernel 3053 * interface. 3054 */ 3055 int 3056 cpu_get_state(cpu_t *cpu) 3057 { 3058 ASSERT(MUTEX_HELD(&cpu_lock)); 3059 if (cpu->cpu_flags & CPU_POWEROFF) 3060 return (P_POWEROFF); 3061 else if (cpu->cpu_flags & CPU_FAULTED) 3062 return (P_FAULTED); 3063 else if (cpu->cpu_flags & CPU_SPARE) 3064 return (P_SPARE); 3065 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 3066 return (P_OFFLINE); 3067 else if (cpu->cpu_flags & CPU_ENABLE) 3068 return (P_ONLINE); 3069 else 3070 return (P_NOINTR); 3071 } 3072 3073 /* 3074 * Return processor_info(2) state as a string. 3075 */ 3076 const char * 3077 cpu_get_state_str(cpu_t *cpu) 3078 { 3079 const char *string; 3080 3081 switch (cpu_get_state(cpu)) { 3082 case P_ONLINE: 3083 string = PS_ONLINE; 3084 break; 3085 case P_POWEROFF: 3086 string = PS_POWEROFF; 3087 break; 3088 case P_NOINTR: 3089 string = PS_NOINTR; 3090 break; 3091 case P_SPARE: 3092 string = PS_SPARE; 3093 break; 3094 case P_FAULTED: 3095 string = PS_FAULTED; 3096 break; 3097 case P_OFFLINE: 3098 string = PS_OFFLINE; 3099 break; 3100 default: 3101 string = "unknown"; 3102 break; 3103 } 3104 return (string); 3105 } 3106 3107 /* 3108 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 3109 * kstats, respectively. This is done when a CPU is initialized or placed 3110 * online via p_online(2). 3111 */ 3112 static void 3113 cpu_stats_kstat_create(cpu_t *cp) 3114 { 3115 int instance = cp->cpu_id; 3116 char *module = "cpu"; 3117 char *class = "misc"; 3118 kstat_t *ksp; 3119 zoneid_t zoneid; 3120 3121 ASSERT(MUTEX_HELD(&cpu_lock)); 3122 3123 if (pool_pset_enabled()) 3124 zoneid = GLOBAL_ZONEID; 3125 else 3126 zoneid = ALL_ZONES; 3127 /* 3128 * Create named kstats 3129 */ 3130 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3131 ksp = kstat_create_zone(module, instance, (name), class, \ 3132 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3133 zoneid); \ 3134 if (ksp != NULL) { \ 3135 ksp->ks_private = cp; \ 3136 ksp->ks_update = (update_func); \ 3137 kstat_install(ksp); \ 3138 } else \ 3139 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3140 module, instance, (name)); 3141 3142 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3143 cpu_sys_stats_ks_update); 3144 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3145 cpu_vm_stats_ks_update); 3146 3147 /* 3148 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3149 */ 3150 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3151 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3152 if (ksp != NULL) { 3153 ksp->ks_update = cpu_stat_ks_update; 3154 ksp->ks_private = cp; 3155 kstat_install(ksp); 3156 } 3157 } 3158 3159 static void 3160 cpu_stats_kstat_destroy(cpu_t *cp) 3161 { 3162 char ks_name[KSTAT_STRLEN]; 3163 3164 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3165 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3166 3167 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3168 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3169 } 3170 3171 static int 3172 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3173 { 3174 cpu_t *cp = (cpu_t *)ksp->ks_private; 3175 struct cpu_sys_stats_ks_data *csskd; 3176 cpu_sys_stats_t *css; 3177 hrtime_t msnsecs[NCMSTATES]; 3178 int i; 3179 3180 if (rw == KSTAT_WRITE) 3181 return (EACCES); 3182 3183 csskd = ksp->ks_data; 3184 css = &cp->cpu_stats.sys; 3185 3186 /* 3187 * Read CPU mstate, but compare with the last values we 3188 * received to make sure that the returned kstats never 3189 * decrease. 3190 */ 3191 3192 get_cpu_mstate(cp, msnsecs); 3193 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3194 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3195 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3196 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3197 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3198 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3199 3200 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3201 sizeof (cpu_sys_stats_ks_data_template)); 3202 3203 csskd->cpu_ticks_wait.value.ui64 = 0; 3204 csskd->wait_ticks_io.value.ui64 = 0; 3205 3206 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3207 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3208 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3209 csskd->cpu_ticks_idle.value.ui64 = 3210 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3211 csskd->cpu_ticks_user.value.ui64 = 3212 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3213 csskd->cpu_ticks_kernel.value.ui64 = 3214 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3215 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec; 3216 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes; 3217 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3218 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3219 csskd->bread.value.ui64 = css->bread; 3220 csskd->bwrite.value.ui64 = css->bwrite; 3221 csskd->lread.value.ui64 = css->lread; 3222 csskd->lwrite.value.ui64 = css->lwrite; 3223 csskd->phread.value.ui64 = css->phread; 3224 csskd->phwrite.value.ui64 = css->phwrite; 3225 csskd->pswitch.value.ui64 = css->pswitch; 3226 csskd->trap.value.ui64 = css->trap; 3227 csskd->intr.value.ui64 = 0; 3228 for (i = 0; i < PIL_MAX; i++) 3229 csskd->intr.value.ui64 += css->intr[i]; 3230 csskd->syscall.value.ui64 = css->syscall; 3231 csskd->sysread.value.ui64 = css->sysread; 3232 csskd->syswrite.value.ui64 = css->syswrite; 3233 csskd->sysfork.value.ui64 = css->sysfork; 3234 csskd->sysvfork.value.ui64 = css->sysvfork; 3235 csskd->sysexec.value.ui64 = css->sysexec; 3236 csskd->readch.value.ui64 = css->readch; 3237 csskd->writech.value.ui64 = css->writech; 3238 csskd->rcvint.value.ui64 = css->rcvint; 3239 csskd->xmtint.value.ui64 = css->xmtint; 3240 csskd->mdmint.value.ui64 = css->mdmint; 3241 csskd->rawch.value.ui64 = css->rawch; 3242 csskd->canch.value.ui64 = css->canch; 3243 csskd->outch.value.ui64 = css->outch; 3244 csskd->msg.value.ui64 = css->msg; 3245 csskd->sema.value.ui64 = css->sema; 3246 csskd->namei.value.ui64 = css->namei; 3247 csskd->ufsiget.value.ui64 = css->ufsiget; 3248 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3249 csskd->ufsipage.value.ui64 = css->ufsipage; 3250 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3251 csskd->procovf.value.ui64 = css->procovf; 3252 csskd->intrthread.value.ui64 = 0; 3253 for (i = 0; i < LOCK_LEVEL - 1; i++) 3254 csskd->intrthread.value.ui64 += css->intr[i]; 3255 csskd->intrblk.value.ui64 = css->intrblk; 3256 csskd->intrunpin.value.ui64 = css->intrunpin; 3257 csskd->idlethread.value.ui64 = css->idlethread; 3258 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3259 csskd->nthreads.value.ui64 = css->nthreads; 3260 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3261 csskd->xcalls.value.ui64 = css->xcalls; 3262 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3263 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3264 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3265 csskd->modload.value.ui64 = css->modload; 3266 csskd->modunload.value.ui64 = css->modunload; 3267 csskd->bawrite.value.ui64 = css->bawrite; 3268 csskd->iowait.value.ui64 = css->iowait; 3269 3270 return (0); 3271 } 3272 3273 static int 3274 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3275 { 3276 cpu_t *cp = (cpu_t *)ksp->ks_private; 3277 struct cpu_vm_stats_ks_data *cvskd; 3278 cpu_vm_stats_t *cvs; 3279 3280 if (rw == KSTAT_WRITE) 3281 return (EACCES); 3282 3283 cvs = &cp->cpu_stats.vm; 3284 cvskd = ksp->ks_data; 3285 3286 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3287 sizeof (cpu_vm_stats_ks_data_template)); 3288 cvskd->pgrec.value.ui64 = cvs->pgrec; 3289 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3290 cvskd->pgin.value.ui64 = cvs->pgin; 3291 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3292 cvskd->pgout.value.ui64 = cvs->pgout; 3293 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3294 cvskd->swapin.value.ui64 = cvs->swapin; 3295 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3296 cvskd->swapout.value.ui64 = cvs->swapout; 3297 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3298 cvskd->zfod.value.ui64 = cvs->zfod; 3299 cvskd->dfree.value.ui64 = cvs->dfree; 3300 cvskd->scan.value.ui64 = cvs->scan; 3301 cvskd->rev.value.ui64 = cvs->rev; 3302 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3303 cvskd->as_fault.value.ui64 = cvs->as_fault; 3304 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3305 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3306 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3307 cvskd->softlock.value.ui64 = cvs->softlock; 3308 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3309 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3310 cvskd->execpgin.value.ui64 = cvs->execpgin; 3311 cvskd->execpgout.value.ui64 = cvs->execpgout; 3312 cvskd->execfree.value.ui64 = cvs->execfree; 3313 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3314 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3315 cvskd->anonfree.value.ui64 = cvs->anonfree; 3316 cvskd->fspgin.value.ui64 = cvs->fspgin; 3317 cvskd->fspgout.value.ui64 = cvs->fspgout; 3318 cvskd->fsfree.value.ui64 = cvs->fsfree; 3319 3320 return (0); 3321 } 3322 3323 static int 3324 cpu_stat_ks_update(kstat_t *ksp, int rw) 3325 { 3326 cpu_stat_t *cso; 3327 cpu_t *cp; 3328 int i; 3329 hrtime_t msnsecs[NCMSTATES]; 3330 3331 cso = (cpu_stat_t *)ksp->ks_data; 3332 cp = (cpu_t *)ksp->ks_private; 3333 3334 if (rw == KSTAT_WRITE) 3335 return (EACCES); 3336 3337 /* 3338 * Read CPU mstate, but compare with the last values we 3339 * received to make sure that the returned kstats never 3340 * decrease. 3341 */ 3342 3343 get_cpu_mstate(cp, msnsecs); 3344 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3345 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3346 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3347 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3348 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3349 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3350 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3351 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3352 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3353 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3354 cso->cpu_sysinfo.wait[W_IO] = 0; 3355 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3356 cso->cpu_sysinfo.wait[W_PIO] = 0; 3357 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3358 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3359 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3360 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3361 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3362 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3363 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3364 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3365 cso->cpu_sysinfo.intr = 0; 3366 for (i = 0; i < PIL_MAX; i++) 3367 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3368 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3369 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3370 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3371 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3372 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3373 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3374 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3375 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3376 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3377 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3378 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3379 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3380 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3381 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3382 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3383 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3384 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3385 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3386 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3387 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3388 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3389 cso->cpu_sysinfo.inodeovf = 0; 3390 cso->cpu_sysinfo.fileovf = 0; 3391 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3392 cso->cpu_sysinfo.intrthread = 0; 3393 for (i = 0; i < LOCK_LEVEL - 1; i++) 3394 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3395 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3396 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3397 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3398 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3399 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3400 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3401 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3402 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3403 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3404 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3405 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3406 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3407 cso->cpu_sysinfo.rw_enters = 0; 3408 cso->cpu_sysinfo.win_uo_cnt = 0; 3409 cso->cpu_sysinfo.win_uu_cnt = 0; 3410 cso->cpu_sysinfo.win_so_cnt = 0; 3411 cso->cpu_sysinfo.win_su_cnt = 0; 3412 cso->cpu_sysinfo.win_suo_cnt = 0; 3413 3414 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3415 cso->cpu_syswait.swap = 0; 3416 cso->cpu_syswait.physio = 0; 3417 3418 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3419 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3420 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3421 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3422 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3423 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3424 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3425 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3426 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3427 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3428 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3429 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3430 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3431 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3432 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3433 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3434 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3435 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3436 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3437 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3438 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3439 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3440 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3441 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3442 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3443 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3444 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3445 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3446 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3447 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3448 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3449 3450 return (0); 3451 } 3452