xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision 58ac609b99db0b03f3b09299c8fa3a76face3370)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/cpu.h>
36 #include <asm/msr.h>
37 #include <asm/tlb.h>
38 
39 #include "internal.h"
40 
41 struct ucode_patch {
42 	struct list_head plist;
43 	void *data;
44 	unsigned int size;
45 	u32 patch_id;
46 	u16 equiv_cpu;
47 };
48 
49 static LIST_HEAD(microcode_cache);
50 
51 #define UCODE_MAGIC			0x00414d44
52 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
53 #define UCODE_UCODE_TYPE		0x00000001
54 
55 #define SECTION_HDR_SIZE		8
56 #define CONTAINER_HDR_SZ		12
57 
58 struct equiv_cpu_entry {
59 	u32	installed_cpu;
60 	u32	fixed_errata_mask;
61 	u32	fixed_errata_compare;
62 	u16	equiv_cpu;
63 	u16	res;
64 } __packed;
65 
66 struct microcode_header_amd {
67 	u32	data_code;
68 	u32	patch_id;
69 	u16	mc_patch_data_id;
70 	u8	mc_patch_data_len;
71 	u8	init_flag;
72 	u32	mc_patch_data_checksum;
73 	u32	nb_dev_id;
74 	u32	sb_dev_id;
75 	u16	processor_rev_id;
76 	u8	nb_rev_id;
77 	u8	sb_rev_id;
78 	u8	bios_api_rev;
79 	u8	reserved1[3];
80 	u32	match_reg[8];
81 } __packed;
82 
83 struct microcode_amd {
84 	struct microcode_header_amd	hdr;
85 	unsigned int			mpb[];
86 };
87 
88 static struct equiv_cpu_table {
89 	unsigned int num_entries;
90 	struct equiv_cpu_entry *entry;
91 } equiv_table;
92 
93 union zen_patch_rev {
94 	struct {
95 		__u32 rev	 : 8,
96 		      stepping	 : 4,
97 		      model	 : 4,
98 		      __reserved : 4,
99 		      ext_model	 : 4,
100 		      ext_fam	 : 8;
101 	};
102 	__u32 ucode_rev;
103 };
104 
105 union cpuid_1_eax {
106 	struct {
107 		__u32 stepping    : 4,
108 		      model	  : 4,
109 		      family	  : 4,
110 		      __reserved0 : 4,
111 		      ext_model   : 4,
112 		      ext_fam     : 8,
113 		      __reserved1 : 4;
114 	};
115 	__u32 full;
116 };
117 
118 /*
119  * This points to the current valid container of microcode patches which we will
120  * save from the initrd/builtin before jettisoning its contents. @mc is the
121  * microcode patch we found to match.
122  */
123 struct cont_desc {
124 	struct microcode_amd *mc;
125 	u32		     psize;
126 	u8		     *data;
127 	size_t		     size;
128 };
129 
130 /*
131  * Microcode patch container file is prepended to the initrd in cpio
132  * format. See Documentation/arch/x86/microcode.rst
133  */
134 static const char
135 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
136 
137 /*
138  * This is CPUID(1).EAX on the BSP. It is used in two ways:
139  *
140  * 1. To ignore the equivalence table on Zen1 and newer.
141  *
142  * 2. To match which patches to load because the patch revision ID
143  *    already contains the f/m/s for which the microcode is destined
144  *    for.
145  */
146 static u32 bsp_cpuid_1_eax __ro_after_init;
147 
ucode_rev_to_cpuid(unsigned int val)148 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
149 {
150 	union zen_patch_rev p;
151 	union cpuid_1_eax c;
152 
153 	p.ucode_rev = val;
154 	c.full = 0;
155 
156 	c.stepping  = p.stepping;
157 	c.model     = p.model;
158 	c.ext_model = p.ext_model;
159 	c.family    = 0xf;
160 	c.ext_fam   = p.ext_fam;
161 
162 	return c;
163 }
164 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)165 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
166 {
167 	unsigned int i;
168 
169 	/* Zen and newer do not need an equivalence table. */
170 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
171 		return 0;
172 
173 	if (!et || !et->num_entries)
174 		return 0;
175 
176 	for (i = 0; i < et->num_entries; i++) {
177 		struct equiv_cpu_entry *e = &et->entry[i];
178 
179 		if (sig == e->installed_cpu)
180 			return e->equiv_cpu;
181 	}
182 	return 0;
183 }
184 
185 /*
186  * Check whether there is a valid microcode container file at the beginning
187  * of @buf of size @buf_size.
188  */
verify_container(const u8 * buf,size_t buf_size)189 static bool verify_container(const u8 *buf, size_t buf_size)
190 {
191 	u32 cont_magic;
192 
193 	if (buf_size <= CONTAINER_HDR_SZ) {
194 		pr_debug("Truncated microcode container header.\n");
195 		return false;
196 	}
197 
198 	cont_magic = *(const u32 *)buf;
199 	if (cont_magic != UCODE_MAGIC) {
200 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
201 		return false;
202 	}
203 
204 	return true;
205 }
206 
207 /*
208  * Check whether there is a valid, non-truncated CPU equivalence table at the
209  * beginning of @buf of size @buf_size.
210  */
verify_equivalence_table(const u8 * buf,size_t buf_size)211 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
212 {
213 	const u32 *hdr = (const u32 *)buf;
214 	u32 cont_type, equiv_tbl_len;
215 
216 	if (!verify_container(buf, buf_size))
217 		return false;
218 
219 	/* Zen and newer do not need an equivalence table. */
220 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
221 		return true;
222 
223 	cont_type = hdr[1];
224 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
225 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
226 			 cont_type);
227 		return false;
228 	}
229 
230 	buf_size -= CONTAINER_HDR_SZ;
231 
232 	equiv_tbl_len = hdr[2];
233 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
234 	    buf_size < equiv_tbl_len) {
235 		pr_debug("Truncated equivalence table.\n");
236 		return false;
237 	}
238 
239 	return true;
240 }
241 
242 /*
243  * Check whether there is a valid, non-truncated microcode patch section at the
244  * beginning of @buf of size @buf_size.
245  *
246  * On success, @sh_psize returns the patch size according to the section header,
247  * to the caller.
248  */
249 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)250 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
251 {
252 	u32 p_type, p_size;
253 	const u32 *hdr;
254 
255 	if (buf_size < SECTION_HDR_SIZE) {
256 		pr_debug("Truncated patch section.\n");
257 		return false;
258 	}
259 
260 	hdr = (const u32 *)buf;
261 	p_type = hdr[0];
262 	p_size = hdr[1];
263 
264 	if (p_type != UCODE_UCODE_TYPE) {
265 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
266 			 p_type);
267 		return false;
268 	}
269 
270 	if (p_size < sizeof(struct microcode_header_amd)) {
271 		pr_debug("Patch of size %u too short.\n", p_size);
272 		return false;
273 	}
274 
275 	*sh_psize = p_size;
276 
277 	return true;
278 }
279 
280 /*
281  * Check whether the passed remaining file @buf_size is large enough to contain
282  * a patch of the indicated @sh_psize (and also whether this size does not
283  * exceed the per-family maximum). @sh_psize is the size read from the section
284  * header.
285  */
__verify_patch_size(u32 sh_psize,size_t buf_size)286 static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size)
287 {
288 	u8 family = x86_family(bsp_cpuid_1_eax);
289 	u32 max_size;
290 
291 	if (family >= 0x15)
292 		return min_t(u32, sh_psize, buf_size);
293 
294 #define F1XH_MPB_MAX_SIZE 2048
295 #define F14H_MPB_MAX_SIZE 1824
296 
297 	switch (family) {
298 	case 0x10 ... 0x12:
299 		max_size = F1XH_MPB_MAX_SIZE;
300 		break;
301 	case 0x14:
302 		max_size = F14H_MPB_MAX_SIZE;
303 		break;
304 	default:
305 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
306 		return 0;
307 	}
308 
309 	if (sh_psize > min_t(u32, buf_size, max_size))
310 		return 0;
311 
312 	return sh_psize;
313 }
314 
315 /*
316  * Verify the patch in @buf.
317  *
318  * Returns:
319  * negative: on error
320  * positive: patch is not for this family, skip it
321  * 0: success
322  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)323 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
324 {
325 	u8 family = x86_family(bsp_cpuid_1_eax);
326 	struct microcode_header_amd *mc_hdr;
327 	unsigned int ret;
328 	u32 sh_psize;
329 	u16 proc_id;
330 	u8 patch_fam;
331 
332 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
333 		return -1;
334 
335 	/*
336 	 * The section header length is not included in this indicated size
337 	 * but is present in the leftover file length so we need to subtract
338 	 * it before passing this value to the function below.
339 	 */
340 	buf_size -= SECTION_HDR_SIZE;
341 
342 	/*
343 	 * Check if the remaining buffer is big enough to contain a patch of
344 	 * size sh_psize, as the section claims.
345 	 */
346 	if (buf_size < sh_psize) {
347 		pr_debug("Patch of size %u truncated.\n", sh_psize);
348 		return -1;
349 	}
350 
351 	ret = __verify_patch_size(sh_psize, buf_size);
352 	if (!ret) {
353 		pr_debug("Per-family patch size mismatch.\n");
354 		return -1;
355 	}
356 
357 	*patch_size = sh_psize;
358 
359 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
360 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
361 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
362 		return -1;
363 	}
364 
365 	proc_id	= mc_hdr->processor_rev_id;
366 	patch_fam = 0xf + (proc_id >> 12);
367 	if (patch_fam != family)
368 		return 1;
369 
370 	return 0;
371 }
372 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)373 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
374 {
375 	/* Zen and newer do not need an equivalence table. */
376 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
377 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
378 	else
379 		return eq_id == mc->hdr.processor_rev_id;
380 }
381 
382 /*
383  * This scans the ucode blob for the proper container as we can have multiple
384  * containers glued together. Returns the equivalence ID from the equivalence
385  * table or 0 if none found.
386  * Returns the amount of bytes consumed while scanning. @desc contains all the
387  * data we're going to use in later stages of the application.
388  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)389 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
390 {
391 	struct equiv_cpu_table table;
392 	size_t orig_size = size;
393 	u32 *hdr = (u32 *)ucode;
394 	u16 eq_id;
395 	u8 *buf;
396 
397 	if (!verify_equivalence_table(ucode, size))
398 		return 0;
399 
400 	buf = ucode;
401 
402 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
403 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
404 
405 	/*
406 	 * Find the equivalence ID of our CPU in this table. Even if this table
407 	 * doesn't contain a patch for the CPU, scan through the whole container
408 	 * so that it can be skipped in case there are other containers appended.
409 	 */
410 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
411 
412 	buf  += hdr[2] + CONTAINER_HDR_SZ;
413 	size -= hdr[2] + CONTAINER_HDR_SZ;
414 
415 	/*
416 	 * Scan through the rest of the container to find where it ends. We do
417 	 * some basic sanity-checking too.
418 	 */
419 	while (size > 0) {
420 		struct microcode_amd *mc;
421 		u32 patch_size;
422 		int ret;
423 
424 		ret = verify_patch(buf, size, &patch_size);
425 		if (ret < 0) {
426 			/*
427 			 * Patch verification failed, skip to the next container, if
428 			 * there is one. Before exit, check whether that container has
429 			 * found a patch already. If so, use it.
430 			 */
431 			goto out;
432 		} else if (ret > 0) {
433 			goto skip;
434 		}
435 
436 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
437 		if (mc_patch_matches(mc, eq_id)) {
438 			desc->psize = patch_size;
439 			desc->mc = mc;
440 		}
441 
442 skip:
443 		/* Skip patch section header too: */
444 		buf  += patch_size + SECTION_HDR_SIZE;
445 		size -= patch_size + SECTION_HDR_SIZE;
446 	}
447 
448 out:
449 	/*
450 	 * If we have found a patch (desc->mc), it means we're looking at the
451 	 * container which has a patch for this CPU so return 0 to mean, @ucode
452 	 * already points to the proper container. Otherwise, we return the size
453 	 * we scanned so that we can advance to the next container in the
454 	 * buffer.
455 	 */
456 	if (desc->mc) {
457 		desc->data = ucode;
458 		desc->size = orig_size - size;
459 
460 		return 0;
461 	}
462 
463 	return orig_size - size;
464 }
465 
466 /*
467  * Scan the ucode blob for the proper container as we can have multiple
468  * containers glued together.
469  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)470 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
471 {
472 	while (size) {
473 		size_t s = parse_container(ucode, size, desc);
474 		if (!s)
475 			return;
476 
477 		/* catch wraparound */
478 		if (size >= s) {
479 			ucode += s;
480 			size  -= s;
481 		} else {
482 			return;
483 		}
484 	}
485 }
486 
__apply_microcode_amd(struct microcode_amd * mc,unsigned int psize)487 static int __apply_microcode_amd(struct microcode_amd *mc, unsigned int psize)
488 {
489 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
490 	u32 rev, dummy;
491 
492 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
493 
494 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
495 		unsigned long p_addr_end = p_addr + psize - 1;
496 
497 		invlpg(p_addr);
498 
499 		/*
500 		 * Flush next page too if patch image is crossing a page
501 		 * boundary.
502 		 */
503 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
504 			invlpg(p_addr_end);
505 	}
506 
507 	/* verify patch application was successful */
508 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
509 
510 	if (rev != mc->hdr.patch_id)
511 		return -1;
512 
513 	return 0;
514 }
515 
516 /*
517  * Early load occurs before we can vmalloc(). So we look for the microcode
518  * patch container file in initrd, traverse equivalent cpu table, look for a
519  * matching microcode patch, and update, all in initrd memory in place.
520  * When vmalloc() is available for use later -- on 64-bit during first AP load,
521  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
522  * load_microcode_amd() to save equivalent cpu table and microcode patches in
523  * kernel heap memory.
524  *
525  * Returns true if container found (sets @desc), false otherwise.
526  */
early_apply_microcode(u32 old_rev,void * ucode,size_t size)527 static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size)
528 {
529 	struct cont_desc desc = { 0 };
530 	struct microcode_amd *mc;
531 	bool ret = false;
532 
533 	scan_containers(ucode, size, &desc);
534 
535 	mc = desc.mc;
536 	if (!mc)
537 		return ret;
538 
539 	/*
540 	 * Allow application of the same revision to pick up SMT-specific
541 	 * changes even if the revision of the other SMT thread is already
542 	 * up-to-date.
543 	 */
544 	if (old_rev > mc->hdr.patch_id)
545 		return ret;
546 
547 	return !__apply_microcode_amd(mc, desc.psize);
548 }
549 
get_builtin_microcode(struct cpio_data * cp)550 static bool get_builtin_microcode(struct cpio_data *cp)
551 {
552 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
553 	u8 family = x86_family(bsp_cpuid_1_eax);
554 	struct firmware fw;
555 
556 	if (IS_ENABLED(CONFIG_X86_32))
557 		return false;
558 
559 	if (family >= 0x15)
560 		snprintf(fw_name, sizeof(fw_name),
561 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
562 
563 	if (firmware_request_builtin(&fw, fw_name)) {
564 		cp->size = fw.size;
565 		cp->data = (void *)fw.data;
566 		return true;
567 	}
568 
569 	return false;
570 }
571 
find_blobs_in_containers(struct cpio_data * ret)572 static void __init find_blobs_in_containers(struct cpio_data *ret)
573 {
574 	struct cpio_data cp;
575 
576 	if (!get_builtin_microcode(&cp))
577 		cp = find_microcode_in_initrd(ucode_path);
578 
579 	*ret = cp;
580 }
581 
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)582 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
583 {
584 	struct cpio_data cp = { };
585 	u32 dummy;
586 
587 	bsp_cpuid_1_eax = cpuid_1_eax;
588 
589 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
590 
591 	/* Needed in load_microcode_amd() */
592 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
593 
594 	find_blobs_in_containers(&cp);
595 	if (!(cp.data && cp.size))
596 		return;
597 
598 	if (early_apply_microcode(ed->old_rev, cp.data, cp.size))
599 		native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
600 }
601 
602 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size);
603 
save_microcode_in_initrd(void)604 static int __init save_microcode_in_initrd(void)
605 {
606 	unsigned int cpuid_1_eax = native_cpuid_eax(1);
607 	struct cpuinfo_x86 *c = &boot_cpu_data;
608 	struct cont_desc desc = { 0 };
609 	enum ucode_state ret;
610 	struct cpio_data cp;
611 
612 	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
613 		return 0;
614 
615 	find_blobs_in_containers(&cp);
616 	if (!(cp.data && cp.size))
617 		return -EINVAL;
618 
619 	scan_containers(cp.data, cp.size, &desc);
620 	if (!desc.mc)
621 		return -EINVAL;
622 
623 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
624 	if (ret > UCODE_UPDATED)
625 		return -EINVAL;
626 
627 	return 0;
628 }
629 early_initcall(save_microcode_in_initrd);
630 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)631 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
632 					 struct ucode_patch *n,
633 					 bool ignore_stepping)
634 {
635 	/* Zen and newer hardcode the f/m/s in the patch ID */
636         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
637 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
638 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
639 
640 		if (ignore_stepping) {
641 			p_cid.stepping = 0;
642 			n_cid.stepping = 0;
643 		}
644 
645 		return p_cid.full == n_cid.full;
646 	} else {
647 		return p->equiv_cpu == n->equiv_cpu;
648 	}
649 }
650 
651 /*
652  * a small, trivial cache of per-family ucode patches
653  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)654 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
655 {
656 	struct ucode_patch *p;
657 	struct ucode_patch n;
658 
659 	n.equiv_cpu = equiv_cpu;
660 	n.patch_id  = uci->cpu_sig.rev;
661 
662 	WARN_ON_ONCE(!n.patch_id);
663 
664 	list_for_each_entry(p, &microcode_cache, plist)
665 		if (patch_cpus_equivalent(p, &n, false))
666 			return p;
667 
668 	return NULL;
669 }
670 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)671 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
672 {
673 	/* Zen and newer hardcode the f/m/s in the patch ID */
674         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
675 		union zen_patch_rev zp, zn;
676 
677 		zp.ucode_rev = p->patch_id;
678 		zn.ucode_rev = n->patch_id;
679 
680 		if (zn.stepping != zp.stepping)
681 			return -1;
682 
683 		return zn.rev > zp.rev;
684 	} else {
685 		return n->patch_id > p->patch_id;
686 	}
687 }
688 
update_cache(struct ucode_patch * new_patch)689 static void update_cache(struct ucode_patch *new_patch)
690 {
691 	struct ucode_patch *p;
692 	int ret;
693 
694 	list_for_each_entry(p, &microcode_cache, plist) {
695 		if (patch_cpus_equivalent(p, new_patch, true)) {
696 			ret = patch_newer(p, new_patch);
697 			if (ret < 0)
698 				continue;
699 			else if (!ret) {
700 				/* we already have the latest patch */
701 				kfree(new_patch->data);
702 				kfree(new_patch);
703 				return;
704 			}
705 
706 			list_replace(&p->plist, &new_patch->plist);
707 			kfree(p->data);
708 			kfree(p);
709 			return;
710 		}
711 	}
712 	/* no patch found, add it */
713 	list_add_tail(&new_patch->plist, &microcode_cache);
714 }
715 
free_cache(void)716 static void free_cache(void)
717 {
718 	struct ucode_patch *p, *tmp;
719 
720 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
721 		__list_del(p->plist.prev, p->plist.next);
722 		kfree(p->data);
723 		kfree(p);
724 	}
725 }
726 
find_patch(unsigned int cpu)727 static struct ucode_patch *find_patch(unsigned int cpu)
728 {
729 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
730 	u32 rev, dummy __always_unused;
731 	u16 equiv_id = 0;
732 
733 	/* fetch rev if not populated yet: */
734 	if (!uci->cpu_sig.rev) {
735 		rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
736 		uci->cpu_sig.rev = rev;
737 	}
738 
739 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
740 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
741 		if (!equiv_id)
742 			return NULL;
743 	}
744 
745 	return cache_find_patch(uci, equiv_id);
746 }
747 
reload_ucode_amd(unsigned int cpu)748 void reload_ucode_amd(unsigned int cpu)
749 {
750 	u32 rev, dummy __always_unused;
751 	struct microcode_amd *mc;
752 	struct ucode_patch *p;
753 
754 	p = find_patch(cpu);
755 	if (!p)
756 		return;
757 
758 	mc = p->data;
759 
760 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
761 
762 	if (rev < mc->hdr.patch_id) {
763 		if (!__apply_microcode_amd(mc, p->size))
764 			pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
765 	}
766 }
767 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)768 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
769 {
770 	struct cpuinfo_x86 *c = &cpu_data(cpu);
771 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
772 	struct ucode_patch *p;
773 
774 	csig->sig = cpuid_eax(0x00000001);
775 	csig->rev = c->microcode;
776 
777 	/*
778 	 * a patch could have been loaded early, set uci->mc so that
779 	 * mc_bp_resume() can call apply_microcode()
780 	 */
781 	p = find_patch(cpu);
782 	if (p && (p->patch_id == csig->rev))
783 		uci->mc = p->data;
784 
785 	return 0;
786 }
787 
apply_microcode_amd(int cpu)788 static enum ucode_state apply_microcode_amd(int cpu)
789 {
790 	struct cpuinfo_x86 *c = &cpu_data(cpu);
791 	struct microcode_amd *mc_amd;
792 	struct ucode_cpu_info *uci;
793 	struct ucode_patch *p;
794 	enum ucode_state ret;
795 	u32 rev;
796 
797 	BUG_ON(raw_smp_processor_id() != cpu);
798 
799 	uci = ucode_cpu_info + cpu;
800 
801 	p = find_patch(cpu);
802 	if (!p)
803 		return UCODE_NFOUND;
804 
805 	rev = uci->cpu_sig.rev;
806 
807 	mc_amd  = p->data;
808 	uci->mc = p->data;
809 
810 	/* need to apply patch? */
811 	if (rev > mc_amd->hdr.patch_id) {
812 		ret = UCODE_OK;
813 		goto out;
814 	}
815 
816 	if (__apply_microcode_amd(mc_amd, p->size)) {
817 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
818 			cpu, mc_amd->hdr.patch_id);
819 		return UCODE_ERROR;
820 	}
821 
822 	rev = mc_amd->hdr.patch_id;
823 	ret = UCODE_UPDATED;
824 
825 out:
826 	uci->cpu_sig.rev = rev;
827 	c->microcode	 = rev;
828 
829 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
830 	if (c->cpu_index == boot_cpu_data.cpu_index)
831 		boot_cpu_data.microcode = rev;
832 
833 	return ret;
834 }
835 
load_ucode_amd_ap(unsigned int cpuid_1_eax)836 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
837 {
838 	unsigned int cpu = smp_processor_id();
839 
840 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
841 	apply_microcode_amd(cpu);
842 }
843 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)844 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
845 {
846 	u32 equiv_tbl_len;
847 	const u32 *hdr;
848 
849 	if (!verify_equivalence_table(buf, buf_size))
850 		return 0;
851 
852 	hdr = (const u32 *)buf;
853 	equiv_tbl_len = hdr[2];
854 
855 	/* Zen and newer do not need an equivalence table. */
856 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
857 		goto out;
858 
859 	equiv_table.entry = vmalloc(equiv_tbl_len);
860 	if (!equiv_table.entry) {
861 		pr_err("failed to allocate equivalent CPU table\n");
862 		return 0;
863 	}
864 
865 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
866 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
867 
868 out:
869 	/* add header length */
870 	return equiv_tbl_len + CONTAINER_HDR_SZ;
871 }
872 
free_equiv_cpu_table(void)873 static void free_equiv_cpu_table(void)
874 {
875 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
876 		return;
877 
878 	vfree(equiv_table.entry);
879 	memset(&equiv_table, 0, sizeof(equiv_table));
880 }
881 
cleanup(void)882 static void cleanup(void)
883 {
884 	free_equiv_cpu_table();
885 	free_cache();
886 }
887 
888 /*
889  * Return a non-negative value even if some of the checks failed so that
890  * we can skip over the next patch. If we return a negative value, we
891  * signal a grave error like a memory allocation has failed and the
892  * driver cannot continue functioning normally. In such cases, we tear
893  * down everything we've used up so far and exit.
894  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)895 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
896 				unsigned int *patch_size)
897 {
898 	struct microcode_header_amd *mc_hdr;
899 	struct ucode_patch *patch;
900 	u16 proc_id;
901 	int ret;
902 
903 	ret = verify_patch(fw, leftover, patch_size);
904 	if (ret)
905 		return ret;
906 
907 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
908 	if (!patch) {
909 		pr_err("Patch allocation failure.\n");
910 		return -EINVAL;
911 	}
912 
913 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
914 	if (!patch->data) {
915 		pr_err("Patch data allocation failure.\n");
916 		kfree(patch);
917 		return -EINVAL;
918 	}
919 	patch->size = *patch_size;
920 
921 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
922 	proc_id     = mc_hdr->processor_rev_id;
923 
924 	INIT_LIST_HEAD(&patch->plist);
925 	patch->patch_id  = mc_hdr->patch_id;
926 	patch->equiv_cpu = proc_id;
927 
928 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
929 		 __func__, patch->patch_id, proc_id);
930 
931 	/* ... and add to cache. */
932 	update_cache(patch);
933 
934 	return 0;
935 }
936 
937 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)938 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
939 					     size_t size)
940 {
941 	u8 *fw = (u8 *)data;
942 	size_t offset;
943 
944 	offset = install_equiv_cpu_table(data, size);
945 	if (!offset)
946 		return UCODE_ERROR;
947 
948 	fw   += offset;
949 	size -= offset;
950 
951 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
952 		pr_err("invalid type field in container file section header\n");
953 		free_equiv_cpu_table();
954 		return UCODE_ERROR;
955 	}
956 
957 	while (size > 0) {
958 		unsigned int crnt_size = 0;
959 		int ret;
960 
961 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
962 		if (ret < 0)
963 			return UCODE_ERROR;
964 
965 		fw   +=  crnt_size + SECTION_HDR_SIZE;
966 		size -= (crnt_size + SECTION_HDR_SIZE);
967 	}
968 
969 	return UCODE_OK;
970 }
971 
_load_microcode_amd(u8 family,const u8 * data,size_t size)972 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
973 {
974 	enum ucode_state ret;
975 
976 	/* free old equiv table */
977 	free_equiv_cpu_table();
978 
979 	ret = __load_microcode_amd(family, data, size);
980 	if (ret != UCODE_OK)
981 		cleanup();
982 
983 	return ret;
984 }
985 
load_microcode_amd(u8 family,const u8 * data,size_t size)986 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
987 {
988 	struct cpuinfo_x86 *c;
989 	unsigned int nid, cpu;
990 	struct ucode_patch *p;
991 	enum ucode_state ret;
992 
993 	ret = _load_microcode_amd(family, data, size);
994 	if (ret != UCODE_OK)
995 		return ret;
996 
997 	for_each_node(nid) {
998 		cpu = cpumask_first(cpumask_of_node(nid));
999 		c = &cpu_data(cpu);
1000 
1001 		p = find_patch(cpu);
1002 		if (!p)
1003 			continue;
1004 
1005 		if (c->microcode >= p->patch_id)
1006 			continue;
1007 
1008 		ret = UCODE_NEW;
1009 	}
1010 
1011 	return ret;
1012 }
1013 
1014 /*
1015  * AMD microcode firmware naming convention, up to family 15h they are in
1016  * the legacy file:
1017  *
1018  *    amd-ucode/microcode_amd.bin
1019  *
1020  * This legacy file is always smaller than 2K in size.
1021  *
1022  * Beginning with family 15h, they are in family-specific firmware files:
1023  *
1024  *    amd-ucode/microcode_amd_fam15h.bin
1025  *    amd-ucode/microcode_amd_fam16h.bin
1026  *    ...
1027  *
1028  * These might be larger than 2K.
1029  */
request_microcode_amd(int cpu,struct device * device)1030 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1031 {
1032 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1033 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1034 	enum ucode_state ret = UCODE_NFOUND;
1035 	const struct firmware *fw;
1036 
1037 	if (force_minrev)
1038 		return UCODE_NFOUND;
1039 
1040 	if (c->x86 >= 0x15)
1041 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1042 
1043 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1044 		pr_debug("failed to load file %s\n", fw_name);
1045 		goto out;
1046 	}
1047 
1048 	ret = UCODE_ERROR;
1049 	if (!verify_container(fw->data, fw->size))
1050 		goto fw_release;
1051 
1052 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1053 
1054  fw_release:
1055 	release_firmware(fw);
1056 
1057  out:
1058 	return ret;
1059 }
1060 
microcode_fini_cpu_amd(int cpu)1061 static void microcode_fini_cpu_amd(int cpu)
1062 {
1063 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1064 
1065 	uci->mc = NULL;
1066 }
1067 
1068 static struct microcode_ops microcode_amd_ops = {
1069 	.request_microcode_fw	= request_microcode_amd,
1070 	.collect_cpu_info	= collect_cpu_info_amd,
1071 	.apply_microcode	= apply_microcode_amd,
1072 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1073 	.nmi_safe		= true,
1074 };
1075 
init_amd_microcode(void)1076 struct microcode_ops * __init init_amd_microcode(void)
1077 {
1078 	struct cpuinfo_x86 *c = &boot_cpu_data;
1079 
1080 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1081 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1082 		return NULL;
1083 	}
1084 	return &microcode_amd_ops;
1085 }
1086 
exit_amd_microcode(void)1087 void __exit exit_amd_microcode(void)
1088 {
1089 	cleanup();
1090 }
1091