xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision 547c5775a742d9c83891b629b75d1d4c8e88d8c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 static struct equiv_cpu_table {
93 	unsigned int num_entries;
94 	struct equiv_cpu_entry *entry;
95 } equiv_table;
96 
97 union zen_patch_rev {
98 	struct {
99 		__u32 rev	 : 8,
100 		      stepping	 : 4,
101 		      model	 : 4,
102 		      __reserved : 4,
103 		      ext_model	 : 4,
104 		      ext_fam	 : 8;
105 	};
106 	__u32 ucode_rev;
107 };
108 
109 union cpuid_1_eax {
110 	struct {
111 		__u32 stepping    : 4,
112 		      model	  : 4,
113 		      family	  : 4,
114 		      __reserved0 : 4,
115 		      ext_model   : 4,
116 		      ext_fam     : 8,
117 		      __reserved1 : 4;
118 	};
119 	__u32 full;
120 };
121 
122 /*
123  * This points to the current valid container of microcode patches which we will
124  * save from the initrd/builtin before jettisoning its contents. @mc is the
125  * microcode patch we found to match.
126  */
127 struct cont_desc {
128 	struct microcode_amd *mc;
129 	u32		     psize;
130 	u8		     *data;
131 	size_t		     size;
132 };
133 
134 /*
135  * Microcode patch container file is prepended to the initrd in cpio
136  * format. See Documentation/arch/x86/microcode.rst
137  */
138 static const char
139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
140 
141 /*
142  * This is CPUID(1).EAX on the BSP. It is used in two ways:
143  *
144  * 1. To ignore the equivalence table on Zen1 and newer.
145  *
146  * 2. To match which patches to load because the patch revision ID
147  *    already contains the f/m/s for which the microcode is destined
148  *    for.
149  */
150 static u32 bsp_cpuid_1_eax __ro_after_init;
151 
152 static bool sha_check = true;
153 
154 struct patch_digest {
155 	u32 patch_id;
156 	u8 sha256[SHA256_DIGEST_SIZE];
157 };
158 
159 #include "amd_shas.c"
160 
cmp_id(const void * key,const void * elem)161 static int cmp_id(const void *key, const void *elem)
162 {
163 	struct patch_digest *pd = (struct patch_digest *)elem;
164 	u32 patch_id = *(u32 *)key;
165 
166 	if (patch_id == pd->patch_id)
167 		return 0;
168 	else if (patch_id < pd->patch_id)
169 		return -1;
170 	else
171 		return 1;
172 }
173 
need_sha_check(u32 cur_rev)174 static bool need_sha_check(u32 cur_rev)
175 {
176 	switch (cur_rev >> 8) {
177 	case 0x80012: return cur_rev <= 0x800126f; break;
178 	case 0x80082: return cur_rev <= 0x800820f; break;
179 	case 0x83010: return cur_rev <= 0x830107c; break;
180 	case 0x86001: return cur_rev <= 0x860010e; break;
181 	case 0x86081: return cur_rev <= 0x8608108; break;
182 	case 0x87010: return cur_rev <= 0x8701034; break;
183 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
184 	case 0xa0010: return cur_rev <= 0xa00107a; break;
185 	case 0xa0011: return cur_rev <= 0xa0011da; break;
186 	case 0xa0012: return cur_rev <= 0xa001243; break;
187 	case 0xa0082: return cur_rev <= 0xa00820e; break;
188 	case 0xa1011: return cur_rev <= 0xa101153; break;
189 	case 0xa1012: return cur_rev <= 0xa10124e; break;
190 	case 0xa1081: return cur_rev <= 0xa108109; break;
191 	case 0xa2010: return cur_rev <= 0xa20102f; break;
192 	case 0xa2012: return cur_rev <= 0xa201212; break;
193 	case 0xa4041: return cur_rev <= 0xa404109; break;
194 	case 0xa5000: return cur_rev <= 0xa500013; break;
195 	case 0xa6012: return cur_rev <= 0xa60120a; break;
196 	case 0xa7041: return cur_rev <= 0xa704109; break;
197 	case 0xa7052: return cur_rev <= 0xa705208; break;
198 	case 0xa7080: return cur_rev <= 0xa708009; break;
199 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
200 	case 0xaa001: return cur_rev <= 0xaa00116; break;
201 	case 0xaa002: return cur_rev <= 0xaa00218; break;
202 	case 0xb0021: return cur_rev <= 0xb002146; break;
203 	case 0xb1010: return cur_rev <= 0xb101046; break;
204 	case 0xb2040: return cur_rev <= 0xb204031; break;
205 	case 0xb4040: return cur_rev <= 0xb404031; break;
206 	case 0xb6000: return cur_rev <= 0xb600031; break;
207 	case 0xb7000: return cur_rev <= 0xb700031; break;
208 	default: break;
209 	}
210 
211 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
212 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
213 	return true;
214 }
215 
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)216 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
217 {
218 	struct patch_digest *pd = NULL;
219 	u8 digest[SHA256_DIGEST_SIZE];
220 	int i;
221 
222 	if (x86_family(bsp_cpuid_1_eax) < 0x17)
223 		return true;
224 
225 	if (!need_sha_check(cur_rev))
226 		return true;
227 
228 	if (!sha_check)
229 		return true;
230 
231 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
232 	if (!pd) {
233 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
234 		return false;
235 	}
236 
237 	sha256(data, len, digest);
238 
239 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
240 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
241 
242 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
243 			pr_cont("0x%x ", digest[i]);
244 		pr_info("\n");
245 
246 		return false;
247 	}
248 
249 	return true;
250 }
251 
get_patch_level(void)252 static u32 get_patch_level(void)
253 {
254 	u32 rev, dummy __always_unused;
255 
256 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
257 
258 	return rev;
259 }
260 
ucode_rev_to_cpuid(unsigned int val)261 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
262 {
263 	union zen_patch_rev p;
264 	union cpuid_1_eax c;
265 
266 	p.ucode_rev = val;
267 	c.full = 0;
268 
269 	c.stepping  = p.stepping;
270 	c.model     = p.model;
271 	c.ext_model = p.ext_model;
272 	c.family    = 0xf;
273 	c.ext_fam   = p.ext_fam;
274 
275 	return c;
276 }
277 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)278 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
279 {
280 	unsigned int i;
281 
282 	/* Zen and newer do not need an equivalence table. */
283 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
284 		return 0;
285 
286 	if (!et || !et->num_entries)
287 		return 0;
288 
289 	for (i = 0; i < et->num_entries; i++) {
290 		struct equiv_cpu_entry *e = &et->entry[i];
291 
292 		if (sig == e->installed_cpu)
293 			return e->equiv_cpu;
294 	}
295 	return 0;
296 }
297 
298 /*
299  * Check whether there is a valid microcode container file at the beginning
300  * of @buf of size @buf_size.
301  */
verify_container(const u8 * buf,size_t buf_size)302 static bool verify_container(const u8 *buf, size_t buf_size)
303 {
304 	u32 cont_magic;
305 
306 	if (buf_size <= CONTAINER_HDR_SZ) {
307 		pr_debug("Truncated microcode container header.\n");
308 		return false;
309 	}
310 
311 	cont_magic = *(const u32 *)buf;
312 	if (cont_magic != UCODE_MAGIC) {
313 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
314 		return false;
315 	}
316 
317 	return true;
318 }
319 
320 /*
321  * Check whether there is a valid, non-truncated CPU equivalence table at the
322  * beginning of @buf of size @buf_size.
323  */
verify_equivalence_table(const u8 * buf,size_t buf_size)324 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
325 {
326 	const u32 *hdr = (const u32 *)buf;
327 	u32 cont_type, equiv_tbl_len;
328 
329 	if (!verify_container(buf, buf_size))
330 		return false;
331 
332 	/* Zen and newer do not need an equivalence table. */
333 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
334 		return true;
335 
336 	cont_type = hdr[1];
337 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
338 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
339 			 cont_type);
340 		return false;
341 	}
342 
343 	buf_size -= CONTAINER_HDR_SZ;
344 
345 	equiv_tbl_len = hdr[2];
346 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
347 	    buf_size < equiv_tbl_len) {
348 		pr_debug("Truncated equivalence table.\n");
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 /*
356  * Check whether there is a valid, non-truncated microcode patch section at the
357  * beginning of @buf of size @buf_size.
358  *
359  * On success, @sh_psize returns the patch size according to the section header,
360  * to the caller.
361  */
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)362 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
363 {
364 	u32 p_type, p_size;
365 	const u32 *hdr;
366 
367 	if (buf_size < SECTION_HDR_SIZE) {
368 		pr_debug("Truncated patch section.\n");
369 		return false;
370 	}
371 
372 	hdr = (const u32 *)buf;
373 	p_type = hdr[0];
374 	p_size = hdr[1];
375 
376 	if (p_type != UCODE_UCODE_TYPE) {
377 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
378 			 p_type);
379 		return false;
380 	}
381 
382 	if (p_size < sizeof(struct microcode_header_amd)) {
383 		pr_debug("Patch of size %u too short.\n", p_size);
384 		return false;
385 	}
386 
387 	*sh_psize = p_size;
388 
389 	return true;
390 }
391 
392 /*
393  * Check whether the passed remaining file @buf_size is large enough to contain
394  * a patch of the indicated @sh_psize (and also whether this size does not
395  * exceed the per-family maximum). @sh_psize is the size read from the section
396  * header.
397  */
__verify_patch_size(u32 sh_psize,size_t buf_size)398 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
399 {
400 	u8 family = x86_family(bsp_cpuid_1_eax);
401 	u32 max_size;
402 
403 	if (family >= 0x15)
404 		goto ret;
405 
406 #define F1XH_MPB_MAX_SIZE 2048
407 #define F14H_MPB_MAX_SIZE 1824
408 
409 	switch (family) {
410 	case 0x10 ... 0x12:
411 		max_size = F1XH_MPB_MAX_SIZE;
412 		break;
413 	case 0x14:
414 		max_size = F14H_MPB_MAX_SIZE;
415 		break;
416 	default:
417 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
418 		return false;
419 	}
420 
421 	if (sh_psize > max_size)
422 		return false;
423 
424 ret:
425 	/* Working with the whole buffer so < is ok. */
426 	return sh_psize <= buf_size;
427 }
428 
429 /*
430  * Verify the patch in @buf.
431  *
432  * Returns:
433  * negative: on error
434  * positive: patch is not for this family, skip it
435  * 0: success
436  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)437 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
438 {
439 	u8 family = x86_family(bsp_cpuid_1_eax);
440 	struct microcode_header_amd *mc_hdr;
441 	u32 sh_psize;
442 	u16 proc_id;
443 	u8 patch_fam;
444 
445 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
446 		return -1;
447 
448 	/*
449 	 * The section header length is not included in this indicated size
450 	 * but is present in the leftover file length so we need to subtract
451 	 * it before passing this value to the function below.
452 	 */
453 	buf_size -= SECTION_HDR_SIZE;
454 
455 	/*
456 	 * Check if the remaining buffer is big enough to contain a patch of
457 	 * size sh_psize, as the section claims.
458 	 */
459 	if (buf_size < sh_psize) {
460 		pr_debug("Patch of size %u truncated.\n", sh_psize);
461 		return -1;
462 	}
463 
464 	if (!__verify_patch_size(sh_psize, buf_size)) {
465 		pr_debug("Per-family patch size mismatch.\n");
466 		return -1;
467 	}
468 
469 	*patch_size = sh_psize;
470 
471 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
472 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
473 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
474 		return -1;
475 	}
476 
477 	proc_id	= mc_hdr->processor_rev_id;
478 	patch_fam = 0xf + (proc_id >> 12);
479 	if (patch_fam != family)
480 		return 1;
481 
482 	return 0;
483 }
484 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)485 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
486 {
487 	/* Zen and newer do not need an equivalence table. */
488 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
489 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
490 	else
491 		return eq_id == mc->hdr.processor_rev_id;
492 }
493 
494 /*
495  * This scans the ucode blob for the proper container as we can have multiple
496  * containers glued together.
497  *
498  * Returns the amount of bytes consumed while scanning. @desc contains all the
499  * data we're going to use in later stages of the application.
500  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)501 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
502 {
503 	struct equiv_cpu_table table;
504 	size_t orig_size = size;
505 	u32 *hdr = (u32 *)ucode;
506 	u16 eq_id;
507 	u8 *buf;
508 
509 	if (!verify_equivalence_table(ucode, size))
510 		return 0;
511 
512 	buf = ucode;
513 
514 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
515 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
516 
517 	/*
518 	 * Find the equivalence ID of our CPU in this table. Even if this table
519 	 * doesn't contain a patch for the CPU, scan through the whole container
520 	 * so that it can be skipped in case there are other containers appended.
521 	 */
522 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
523 
524 	buf  += hdr[2] + CONTAINER_HDR_SZ;
525 	size -= hdr[2] + CONTAINER_HDR_SZ;
526 
527 	/*
528 	 * Scan through the rest of the container to find where it ends. We do
529 	 * some basic sanity-checking too.
530 	 */
531 	while (size > 0) {
532 		struct microcode_amd *mc;
533 		u32 patch_size;
534 		int ret;
535 
536 		ret = verify_patch(buf, size, &patch_size);
537 		if (ret < 0) {
538 			/*
539 			 * Patch verification failed, skip to the next container, if
540 			 * there is one. Before exit, check whether that container has
541 			 * found a patch already. If so, use it.
542 			 */
543 			goto out;
544 		} else if (ret > 0) {
545 			goto skip;
546 		}
547 
548 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
549 		if (mc_patch_matches(mc, eq_id)) {
550 			desc->psize = patch_size;
551 			desc->mc = mc;
552 		}
553 
554 skip:
555 		/* Skip patch section header too: */
556 		buf  += patch_size + SECTION_HDR_SIZE;
557 		size -= patch_size + SECTION_HDR_SIZE;
558 	}
559 
560 out:
561 	/*
562 	 * If we have found a patch (desc->mc), it means we're looking at the
563 	 * container which has a patch for this CPU so return 0 to mean, @ucode
564 	 * already points to the proper container. Otherwise, we return the size
565 	 * we scanned so that we can advance to the next container in the
566 	 * buffer.
567 	 */
568 	if (desc->mc) {
569 		desc->data = ucode;
570 		desc->size = orig_size - size;
571 
572 		return 0;
573 	}
574 
575 	return orig_size - size;
576 }
577 
578 /*
579  * Scan the ucode blob for the proper container as we can have multiple
580  * containers glued together.
581  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)582 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
583 {
584 	while (size) {
585 		size_t s = parse_container(ucode, size, desc);
586 		if (!s)
587 			return;
588 
589 		/* catch wraparound */
590 		if (size >= s) {
591 			ucode += s;
592 			size  -= s;
593 		} else {
594 			return;
595 		}
596 	}
597 }
598 
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)599 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
600 				  unsigned int psize)
601 {
602 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
603 
604 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
605 		return false;
606 
607 	native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr);
608 
609 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
610 		unsigned long p_addr_end = p_addr + psize - 1;
611 
612 		invlpg(p_addr);
613 
614 		/*
615 		 * Flush next page too if patch image is crossing a page
616 		 * boundary.
617 		 */
618 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
619 			invlpg(p_addr_end);
620 	}
621 
622 	/* verify patch application was successful */
623 	*cur_rev = get_patch_level();
624 	if (*cur_rev != mc->hdr.patch_id)
625 		return false;
626 
627 	return true;
628 }
629 
get_builtin_microcode(struct cpio_data * cp)630 static bool get_builtin_microcode(struct cpio_data *cp)
631 {
632 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
633 	u8 family = x86_family(bsp_cpuid_1_eax);
634 	struct firmware fw;
635 
636 	if (IS_ENABLED(CONFIG_X86_32))
637 		return false;
638 
639 	if (family >= 0x15)
640 		snprintf(fw_name, sizeof(fw_name),
641 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
642 
643 	if (firmware_request_builtin(&fw, fw_name)) {
644 		cp->size = fw.size;
645 		cp->data = (void *)fw.data;
646 		return true;
647 	}
648 
649 	return false;
650 }
651 
find_blobs_in_containers(struct cpio_data * ret)652 static bool __init find_blobs_in_containers(struct cpio_data *ret)
653 {
654 	struct cpio_data cp;
655 	bool found;
656 
657 	if (!get_builtin_microcode(&cp))
658 		cp = find_microcode_in_initrd(ucode_path);
659 
660 	found = cp.data && cp.size;
661 	if (found)
662 		*ret = cp;
663 
664 	return found;
665 }
666 
667 /*
668  * Early load occurs before we can vmalloc(). So we look for the microcode
669  * patch container file in initrd, traverse equivalent cpu table, look for a
670  * matching microcode patch, and update, all in initrd memory in place.
671  * When vmalloc() is available for use later -- on 64-bit during first AP load,
672  * and on 32-bit during save_microcode_in_initrd() -- we can call
673  * load_microcode_amd() to save equivalent cpu table and microcode patches in
674  * kernel heap memory.
675  */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)676 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
677 {
678 	struct cont_desc desc = { };
679 	struct microcode_amd *mc;
680 	struct cpio_data cp = { };
681 	char buf[4];
682 	u32 rev;
683 
684 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
685 		if (!strncmp(buf, "off", 3)) {
686 			sha_check = false;
687 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
688 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
689 		}
690 	}
691 
692 	bsp_cpuid_1_eax = cpuid_1_eax;
693 
694 	rev = get_patch_level();
695 	ed->old_rev = rev;
696 
697 	/* Needed in load_microcode_amd() */
698 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
699 
700 	if (!find_blobs_in_containers(&cp))
701 		return;
702 
703 	scan_containers(cp.data, cp.size, &desc);
704 
705 	mc = desc.mc;
706 	if (!mc)
707 		return;
708 
709 	/*
710 	 * Allow application of the same revision to pick up SMT-specific
711 	 * changes even if the revision of the other SMT thread is already
712 	 * up-to-date.
713 	 */
714 	if (ed->old_rev > mc->hdr.patch_id)
715 		return;
716 
717 	if (__apply_microcode_amd(mc, &rev, desc.psize))
718 		ed->new_rev = rev;
719 }
720 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)721 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
722 					 struct ucode_patch *n,
723 					 bool ignore_stepping)
724 {
725 	/* Zen and newer hardcode the f/m/s in the patch ID */
726         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
727 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
728 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
729 
730 		if (ignore_stepping) {
731 			p_cid.stepping = 0;
732 			n_cid.stepping = 0;
733 		}
734 
735 		return p_cid.full == n_cid.full;
736 	} else {
737 		return p->equiv_cpu == n->equiv_cpu;
738 	}
739 }
740 
741 /*
742  * a small, trivial cache of per-family ucode patches
743  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)744 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
745 {
746 	struct ucode_patch *p;
747 	struct ucode_patch n;
748 
749 	n.equiv_cpu = equiv_cpu;
750 	n.patch_id  = uci->cpu_sig.rev;
751 
752 	WARN_ON_ONCE(!n.patch_id);
753 
754 	list_for_each_entry(p, &microcode_cache, plist)
755 		if (patch_cpus_equivalent(p, &n, false))
756 			return p;
757 
758 	return NULL;
759 }
760 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)761 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
762 {
763 	/* Zen and newer hardcode the f/m/s in the patch ID */
764         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
765 		union zen_patch_rev zp, zn;
766 
767 		zp.ucode_rev = p->patch_id;
768 		zn.ucode_rev = n->patch_id;
769 
770 		if (zn.stepping != zp.stepping)
771 			return -1;
772 
773 		return zn.rev > zp.rev;
774 	} else {
775 		return n->patch_id > p->patch_id;
776 	}
777 }
778 
update_cache(struct ucode_patch * new_patch)779 static void update_cache(struct ucode_patch *new_patch)
780 {
781 	struct ucode_patch *p;
782 	int ret;
783 
784 	list_for_each_entry(p, &microcode_cache, plist) {
785 		if (patch_cpus_equivalent(p, new_patch, true)) {
786 			ret = patch_newer(p, new_patch);
787 			if (ret < 0)
788 				continue;
789 			else if (!ret) {
790 				/* we already have the latest patch */
791 				kfree(new_patch->data);
792 				kfree(new_patch);
793 				return;
794 			}
795 
796 			list_replace(&p->plist, &new_patch->plist);
797 			kfree(p->data);
798 			kfree(p);
799 			return;
800 		}
801 	}
802 	/* no patch found, add it */
803 	list_add_tail(&new_patch->plist, &microcode_cache);
804 }
805 
free_cache(void)806 static void free_cache(void)
807 {
808 	struct ucode_patch *p, *tmp;
809 
810 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
811 		__list_del(p->plist.prev, p->plist.next);
812 		kfree(p->data);
813 		kfree(p);
814 	}
815 }
816 
find_patch(unsigned int cpu)817 static struct ucode_patch *find_patch(unsigned int cpu)
818 {
819 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
820 	u16 equiv_id = 0;
821 
822 	uci->cpu_sig.rev = get_patch_level();
823 
824 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
825 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
826 		if (!equiv_id)
827 			return NULL;
828 	}
829 
830 	return cache_find_patch(uci, equiv_id);
831 }
832 
reload_ucode_amd(unsigned int cpu)833 void reload_ucode_amd(unsigned int cpu)
834 {
835 	u32 rev, dummy __always_unused;
836 	struct microcode_amd *mc;
837 	struct ucode_patch *p;
838 
839 	p = find_patch(cpu);
840 	if (!p)
841 		return;
842 
843 	mc = p->data;
844 
845 	rev = get_patch_level();
846 	if (rev < mc->hdr.patch_id) {
847 		if (__apply_microcode_amd(mc, &rev, p->size))
848 			pr_info_once("reload revision: 0x%08x\n", rev);
849 	}
850 }
851 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)852 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
853 {
854 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
855 	struct ucode_patch *p;
856 
857 	csig->sig = cpuid_eax(0x00000001);
858 	csig->rev = get_patch_level();
859 
860 	/*
861 	 * a patch could have been loaded early, set uci->mc so that
862 	 * mc_bp_resume() can call apply_microcode()
863 	 */
864 	p = find_patch(cpu);
865 	if (p && (p->patch_id == csig->rev))
866 		uci->mc = p->data;
867 
868 	return 0;
869 }
870 
apply_microcode_amd(int cpu)871 static enum ucode_state apply_microcode_amd(int cpu)
872 {
873 	struct cpuinfo_x86 *c = &cpu_data(cpu);
874 	struct microcode_amd *mc_amd;
875 	struct ucode_cpu_info *uci;
876 	struct ucode_patch *p;
877 	enum ucode_state ret;
878 	u32 rev;
879 
880 	BUG_ON(raw_smp_processor_id() != cpu);
881 
882 	uci = ucode_cpu_info + cpu;
883 
884 	p = find_patch(cpu);
885 	if (!p)
886 		return UCODE_NFOUND;
887 
888 	rev = uci->cpu_sig.rev;
889 
890 	mc_amd  = p->data;
891 	uci->mc = p->data;
892 
893 	/* need to apply patch? */
894 	if (rev > mc_amd->hdr.patch_id) {
895 		ret = UCODE_OK;
896 		goto out;
897 	}
898 
899 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
900 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
901 			cpu, mc_amd->hdr.patch_id);
902 		return UCODE_ERROR;
903 	}
904 
905 	rev = mc_amd->hdr.patch_id;
906 	ret = UCODE_UPDATED;
907 
908 out:
909 	uci->cpu_sig.rev = rev;
910 	c->microcode	 = rev;
911 
912 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
913 	if (c->cpu_index == boot_cpu_data.cpu_index)
914 		boot_cpu_data.microcode = rev;
915 
916 	return ret;
917 }
918 
load_ucode_amd_ap(unsigned int cpuid_1_eax)919 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
920 {
921 	unsigned int cpu = smp_processor_id();
922 
923 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
924 	apply_microcode_amd(cpu);
925 }
926 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)927 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
928 {
929 	u32 equiv_tbl_len;
930 	const u32 *hdr;
931 
932 	if (!verify_equivalence_table(buf, buf_size))
933 		return 0;
934 
935 	hdr = (const u32 *)buf;
936 	equiv_tbl_len = hdr[2];
937 
938 	/* Zen and newer do not need an equivalence table. */
939 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
940 		goto out;
941 
942 	equiv_table.entry = vmalloc(equiv_tbl_len);
943 	if (!equiv_table.entry) {
944 		pr_err("failed to allocate equivalent CPU table\n");
945 		return 0;
946 	}
947 
948 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
949 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
950 
951 out:
952 	/* add header length */
953 	return equiv_tbl_len + CONTAINER_HDR_SZ;
954 }
955 
free_equiv_cpu_table(void)956 static void free_equiv_cpu_table(void)
957 {
958 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
959 		return;
960 
961 	vfree(equiv_table.entry);
962 	memset(&equiv_table, 0, sizeof(equiv_table));
963 }
964 
cleanup(void)965 static void cleanup(void)
966 {
967 	free_equiv_cpu_table();
968 	free_cache();
969 }
970 
971 /*
972  * Return a non-negative value even if some of the checks failed so that
973  * we can skip over the next patch. If we return a negative value, we
974  * signal a grave error like a memory allocation has failed and the
975  * driver cannot continue functioning normally. In such cases, we tear
976  * down everything we've used up so far and exit.
977  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)978 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
979 				unsigned int *patch_size)
980 {
981 	struct microcode_header_amd *mc_hdr;
982 	struct ucode_patch *patch;
983 	u16 proc_id;
984 	int ret;
985 
986 	ret = verify_patch(fw, leftover, patch_size);
987 	if (ret)
988 		return ret;
989 
990 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
991 	if (!patch) {
992 		pr_err("Patch allocation failure.\n");
993 		return -EINVAL;
994 	}
995 
996 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
997 	if (!patch->data) {
998 		pr_err("Patch data allocation failure.\n");
999 		kfree(patch);
1000 		return -EINVAL;
1001 	}
1002 	patch->size = *patch_size;
1003 
1004 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1005 	proc_id     = mc_hdr->processor_rev_id;
1006 
1007 	INIT_LIST_HEAD(&patch->plist);
1008 	patch->patch_id  = mc_hdr->patch_id;
1009 	patch->equiv_cpu = proc_id;
1010 
1011 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1012 		 __func__, patch->patch_id, proc_id);
1013 
1014 	/* ... and add to cache. */
1015 	update_cache(patch);
1016 
1017 	return 0;
1018 }
1019 
1020 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1021 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1022 {
1023 	u8 *fw = (u8 *)data;
1024 	size_t offset;
1025 
1026 	offset = install_equiv_cpu_table(data, size);
1027 	if (!offset)
1028 		return UCODE_ERROR;
1029 
1030 	fw   += offset;
1031 	size -= offset;
1032 
1033 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1034 		pr_err("invalid type field in container file section header\n");
1035 		free_equiv_cpu_table();
1036 		return UCODE_ERROR;
1037 	}
1038 
1039 	while (size > 0) {
1040 		unsigned int crnt_size = 0;
1041 		int ret;
1042 
1043 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1044 		if (ret < 0)
1045 			return UCODE_ERROR;
1046 
1047 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1048 		size -= (crnt_size + SECTION_HDR_SIZE);
1049 	}
1050 
1051 	return UCODE_OK;
1052 }
1053 
_load_microcode_amd(u8 family,const u8 * data,size_t size)1054 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1055 {
1056 	enum ucode_state ret;
1057 
1058 	/* free old equiv table */
1059 	free_equiv_cpu_table();
1060 
1061 	ret = __load_microcode_amd(family, data, size);
1062 	if (ret != UCODE_OK)
1063 		cleanup();
1064 
1065 	return ret;
1066 }
1067 
load_microcode_amd(u8 family,const u8 * data,size_t size)1068 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1069 {
1070 	struct cpuinfo_x86 *c;
1071 	unsigned int nid, cpu;
1072 	struct ucode_patch *p;
1073 	enum ucode_state ret;
1074 
1075 	ret = _load_microcode_amd(family, data, size);
1076 	if (ret != UCODE_OK)
1077 		return ret;
1078 
1079 	for_each_node_with_cpus(nid) {
1080 		cpu = cpumask_first(cpumask_of_node(nid));
1081 		c = &cpu_data(cpu);
1082 
1083 		p = find_patch(cpu);
1084 		if (!p)
1085 			continue;
1086 
1087 		if (c->microcode >= p->patch_id)
1088 			continue;
1089 
1090 		ret = UCODE_NEW;
1091 	}
1092 
1093 	return ret;
1094 }
1095 
save_microcode_in_initrd(void)1096 static int __init save_microcode_in_initrd(void)
1097 {
1098 	struct cpuinfo_x86 *c = &boot_cpu_data;
1099 	struct cont_desc desc = { 0 };
1100 	unsigned int cpuid_1_eax;
1101 	enum ucode_state ret;
1102 	struct cpio_data cp;
1103 
1104 	if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1105 		return 0;
1106 
1107 	cpuid_1_eax = native_cpuid_eax(1);
1108 
1109 	if (!find_blobs_in_containers(&cp))
1110 		return -EINVAL;
1111 
1112 	scan_containers(cp.data, cp.size, &desc);
1113 	if (!desc.mc)
1114 		return -EINVAL;
1115 
1116 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1117 	if (ret > UCODE_UPDATED)
1118 		return -EINVAL;
1119 
1120 	return 0;
1121 }
1122 early_initcall(save_microcode_in_initrd);
1123 
1124 /*
1125  * AMD microcode firmware naming convention, up to family 15h they are in
1126  * the legacy file:
1127  *
1128  *    amd-ucode/microcode_amd.bin
1129  *
1130  * This legacy file is always smaller than 2K in size.
1131  *
1132  * Beginning with family 15h, they are in family-specific firmware files:
1133  *
1134  *    amd-ucode/microcode_amd_fam15h.bin
1135  *    amd-ucode/microcode_amd_fam16h.bin
1136  *    ...
1137  *
1138  * These might be larger than 2K.
1139  */
request_microcode_amd(int cpu,struct device * device)1140 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1141 {
1142 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1143 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1144 	enum ucode_state ret = UCODE_NFOUND;
1145 	const struct firmware *fw;
1146 
1147 	if (force_minrev)
1148 		return UCODE_NFOUND;
1149 
1150 	if (c->x86 >= 0x15)
1151 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1152 
1153 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1154 		pr_debug("failed to load file %s\n", fw_name);
1155 		goto out;
1156 	}
1157 
1158 	ret = UCODE_ERROR;
1159 	if (!verify_container(fw->data, fw->size))
1160 		goto fw_release;
1161 
1162 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1163 
1164  fw_release:
1165 	release_firmware(fw);
1166 
1167  out:
1168 	return ret;
1169 }
1170 
microcode_fini_cpu_amd(int cpu)1171 static void microcode_fini_cpu_amd(int cpu)
1172 {
1173 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1174 
1175 	uci->mc = NULL;
1176 }
1177 
finalize_late_load_amd(int result)1178 static void finalize_late_load_amd(int result)
1179 {
1180 	if (result)
1181 		cleanup();
1182 }
1183 
1184 static struct microcode_ops microcode_amd_ops = {
1185 	.request_microcode_fw	= request_microcode_amd,
1186 	.collect_cpu_info	= collect_cpu_info_amd,
1187 	.apply_microcode	= apply_microcode_amd,
1188 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1189 	.finalize_late_load	= finalize_late_load_amd,
1190 	.nmi_safe		= true,
1191 };
1192 
init_amd_microcode(void)1193 struct microcode_ops * __init init_amd_microcode(void)
1194 {
1195 	struct cpuinfo_x86 *c = &boot_cpu_data;
1196 
1197 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1198 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1199 		return NULL;
1200 	}
1201 	return &microcode_amd_ops;
1202 }
1203 
exit_amd_microcode(void)1204 void __exit exit_amd_microcode(void)
1205 {
1206 	cleanup();
1207 }
1208