xref: /freebsd/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  //  This file defines the parser class for .ll files.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/AsmParser/LLParser.h"
14  #include "llvm/ADT/APSInt.h"
15  #include "llvm/ADT/DenseMap.h"
16  #include "llvm/ADT/STLExtras.h"
17  #include "llvm/ADT/ScopeExit.h"
18  #include "llvm/ADT/SmallPtrSet.h"
19  #include "llvm/AsmParser/LLToken.h"
20  #include "llvm/AsmParser/SlotMapping.h"
21  #include "llvm/BinaryFormat/Dwarf.h"
22  #include "llvm/IR/Argument.h"
23  #include "llvm/IR/AutoUpgrade.h"
24  #include "llvm/IR/BasicBlock.h"
25  #include "llvm/IR/CallingConv.h"
26  #include "llvm/IR/Comdat.h"
27  #include "llvm/IR/ConstantRange.h"
28  #include "llvm/IR/ConstantRangeList.h"
29  #include "llvm/IR/Constants.h"
30  #include "llvm/IR/DebugInfoMetadata.h"
31  #include "llvm/IR/DerivedTypes.h"
32  #include "llvm/IR/Function.h"
33  #include "llvm/IR/GlobalIFunc.h"
34  #include "llvm/IR/GlobalObject.h"
35  #include "llvm/IR/InlineAsm.h"
36  #include "llvm/IR/InstIterator.h"
37  #include "llvm/IR/Instructions.h"
38  #include "llvm/IR/IntrinsicInst.h"
39  #include "llvm/IR/Intrinsics.h"
40  #include "llvm/IR/LLVMContext.h"
41  #include "llvm/IR/Metadata.h"
42  #include "llvm/IR/Module.h"
43  #include "llvm/IR/Operator.h"
44  #include "llvm/IR/Value.h"
45  #include "llvm/IR/ValueSymbolTable.h"
46  #include "llvm/Support/Casting.h"
47  #include "llvm/Support/ErrorHandling.h"
48  #include "llvm/Support/MathExtras.h"
49  #include "llvm/Support/ModRef.h"
50  #include "llvm/Support/SaveAndRestore.h"
51  #include "llvm/Support/raw_ostream.h"
52  #include <algorithm>
53  #include <cassert>
54  #include <cstring>
55  #include <optional>
56  #include <vector>
57  
58  using namespace llvm;
59  
60  static cl::opt<bool> AllowIncompleteIR(
61      "allow-incomplete-ir", cl::init(false), cl::Hidden,
62      cl::desc(
63          "Allow incomplete IR on a best effort basis (references to unknown "
64          "metadata will be dropped)"));
65  
66  extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
67  extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
68  extern bool WriteNewDbgInfoFormatToBitcode;
69  extern cl::opt<bool> WriteNewDbgInfoFormat;
70  
getTypeString(Type * T)71  static std::string getTypeString(Type *T) {
72    std::string Result;
73    raw_string_ostream Tmp(Result);
74    Tmp << *T;
75    return Tmp.str();
76  }
77  
78  /// Run: module ::= toplevelentity*
Run(bool UpgradeDebugInfo,DataLayoutCallbackTy DataLayoutCallback)79  bool LLParser::Run(bool UpgradeDebugInfo,
80                     DataLayoutCallbackTy DataLayoutCallback) {
81    // Prime the lexer.
82    Lex.Lex();
83  
84    if (Context.shouldDiscardValueNames())
85      return error(
86          Lex.getLoc(),
87          "Can't read textual IR with a Context that discards named Values");
88  
89    if (M) {
90      if (parseTargetDefinitions(DataLayoutCallback))
91        return true;
92    }
93  
94    return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
95           validateEndOfIndex();
96  }
97  
parseStandaloneConstantValue(Constant * & C,const SlotMapping * Slots)98  bool LLParser::parseStandaloneConstantValue(Constant *&C,
99                                              const SlotMapping *Slots) {
100    restoreParsingState(Slots);
101    Lex.Lex();
102  
103    Type *Ty = nullptr;
104    if (parseType(Ty) || parseConstantValue(Ty, C))
105      return true;
106    if (Lex.getKind() != lltok::Eof)
107      return error(Lex.getLoc(), "expected end of string");
108    return false;
109  }
110  
parseTypeAtBeginning(Type * & Ty,unsigned & Read,const SlotMapping * Slots)111  bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
112                                      const SlotMapping *Slots) {
113    restoreParsingState(Slots);
114    Lex.Lex();
115  
116    Read = 0;
117    SMLoc Start = Lex.getLoc();
118    Ty = nullptr;
119    if (parseType(Ty))
120      return true;
121    SMLoc End = Lex.getLoc();
122    Read = End.getPointer() - Start.getPointer();
123  
124    return false;
125  }
126  
parseDIExpressionBodyAtBeginning(MDNode * & Result,unsigned & Read,const SlotMapping * Slots)127  bool LLParser::parseDIExpressionBodyAtBeginning(MDNode *&Result, unsigned &Read,
128                                                  const SlotMapping *Slots) {
129    restoreParsingState(Slots);
130    Lex.Lex();
131  
132    Read = 0;
133    SMLoc Start = Lex.getLoc();
134    Result = nullptr;
135    bool Status = parseDIExpressionBody(Result, /*IsDistinct=*/false);
136    SMLoc End = Lex.getLoc();
137    Read = End.getPointer() - Start.getPointer();
138  
139    return Status;
140  }
141  
restoreParsingState(const SlotMapping * Slots)142  void LLParser::restoreParsingState(const SlotMapping *Slots) {
143    if (!Slots)
144      return;
145    NumberedVals = Slots->GlobalValues;
146    NumberedMetadata = Slots->MetadataNodes;
147    for (const auto &I : Slots->NamedTypes)
148      NamedTypes.insert(
149          std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
150    for (const auto &I : Slots->Types)
151      NumberedTypes.insert(
152          std::make_pair(I.first, std::make_pair(I.second, LocTy())));
153  }
154  
dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst * II)155  static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) {
156    // White-list intrinsics that are safe to drop.
157    if (!isa<DbgInfoIntrinsic>(II) &&
158        II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl)
159      return;
160  
161    SmallVector<MetadataAsValue *> MVs;
162    for (Value *V : II->args())
163      if (auto *MV = dyn_cast<MetadataAsValue>(V))
164        if (auto *MD = dyn_cast<MDNode>(MV->getMetadata()))
165          if (MD->isTemporary())
166            MVs.push_back(MV);
167  
168    if (!MVs.empty()) {
169      assert(II->use_empty() && "Cannot have uses");
170      II->eraseFromParent();
171  
172      // Also remove no longer used MetadataAsValue wrappers.
173      for (MetadataAsValue *MV : MVs)
174        if (MV->use_empty())
175          delete MV;
176    }
177  }
178  
dropUnknownMetadataReferences()179  void LLParser::dropUnknownMetadataReferences() {
180    auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); };
181    for (Function &F : *M) {
182      F.eraseMetadataIf(Pred);
183      for (Instruction &I : make_early_inc_range(instructions(F))) {
184        I.eraseMetadataIf(Pred);
185  
186        if (auto *II = dyn_cast<IntrinsicInst>(&I))
187          dropIntrinsicWithUnknownMetadataArgument(II);
188      }
189    }
190  
191    for (GlobalVariable &GV : M->globals())
192      GV.eraseMetadataIf(Pred);
193  
194    for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) {
195      // Check whether there is only a single use left, which would be in our
196      // own NumberedMetadata.
197      if (Info.first->getNumTemporaryUses() == 1) {
198        NumberedMetadata.erase(ID);
199        ForwardRefMDNodes.erase(ID);
200      }
201    }
202  }
203  
204  /// validateEndOfModule - Do final validity and basic correctness checks at the
205  /// end of the module.
validateEndOfModule(bool UpgradeDebugInfo)206  bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
207    if (!M)
208      return false;
209  
210    // We should have already returned an error if we observed both intrinsics and
211    // records in this IR.
212    assert(!(SeenNewDbgInfoFormat && SeenOldDbgInfoFormat) &&
213           "Mixed debug intrinsics/records seen without a parsing error?");
214    if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
215      UseNewDbgInfoFormat = SeenNewDbgInfoFormat;
216      WriteNewDbgInfoFormatToBitcode = SeenNewDbgInfoFormat;
217      WriteNewDbgInfoFormat = SeenNewDbgInfoFormat;
218      M->setNewDbgInfoFormatFlag(SeenNewDbgInfoFormat);
219    }
220  
221    // Handle any function attribute group forward references.
222    for (const auto &RAG : ForwardRefAttrGroups) {
223      Value *V = RAG.first;
224      const std::vector<unsigned> &Attrs = RAG.second;
225      AttrBuilder B(Context);
226  
227      for (const auto &Attr : Attrs) {
228        auto R = NumberedAttrBuilders.find(Attr);
229        if (R != NumberedAttrBuilders.end())
230          B.merge(R->second);
231      }
232  
233      if (Function *Fn = dyn_cast<Function>(V)) {
234        AttributeList AS = Fn->getAttributes();
235        AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
236        AS = AS.removeFnAttributes(Context);
237  
238        FnAttrs.merge(B);
239  
240        // If the alignment was parsed as an attribute, move to the alignment
241        // field.
242        if (MaybeAlign A = FnAttrs.getAlignment()) {
243          Fn->setAlignment(*A);
244          FnAttrs.removeAttribute(Attribute::Alignment);
245        }
246  
247        AS = AS.addFnAttributes(Context, FnAttrs);
248        Fn->setAttributes(AS);
249      } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
250        AttributeList AS = CI->getAttributes();
251        AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
252        AS = AS.removeFnAttributes(Context);
253        FnAttrs.merge(B);
254        AS = AS.addFnAttributes(Context, FnAttrs);
255        CI->setAttributes(AS);
256      } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
257        AttributeList AS = II->getAttributes();
258        AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
259        AS = AS.removeFnAttributes(Context);
260        FnAttrs.merge(B);
261        AS = AS.addFnAttributes(Context, FnAttrs);
262        II->setAttributes(AS);
263      } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
264        AttributeList AS = CBI->getAttributes();
265        AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
266        AS = AS.removeFnAttributes(Context);
267        FnAttrs.merge(B);
268        AS = AS.addFnAttributes(Context, FnAttrs);
269        CBI->setAttributes(AS);
270      } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
271        AttrBuilder Attrs(M->getContext(), GV->getAttributes());
272        Attrs.merge(B);
273        GV->setAttributes(AttributeSet::get(Context,Attrs));
274      } else {
275        llvm_unreachable("invalid object with forward attribute group reference");
276      }
277    }
278  
279    // If there are entries in ForwardRefBlockAddresses at this point, the
280    // function was never defined.
281    if (!ForwardRefBlockAddresses.empty())
282      return error(ForwardRefBlockAddresses.begin()->first.Loc,
283                   "expected function name in blockaddress");
284  
285    auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
286                                                    GlobalValue *FwdRef) {
287      GlobalValue *GV = nullptr;
288      if (GVRef.Kind == ValID::t_GlobalName) {
289        GV = M->getNamedValue(GVRef.StrVal);
290      } else {
291        GV = NumberedVals.get(GVRef.UIntVal);
292      }
293  
294      if (!GV)
295        return error(GVRef.Loc, "unknown function '" + GVRef.StrVal +
296                                    "' referenced by dso_local_equivalent");
297  
298      if (!GV->getValueType()->isFunctionTy())
299        return error(GVRef.Loc,
300                     "expected a function, alias to function, or ifunc "
301                     "in dso_local_equivalent");
302  
303      auto *Equiv = DSOLocalEquivalent::get(GV);
304      FwdRef->replaceAllUsesWith(Equiv);
305      FwdRef->eraseFromParent();
306      return false;
307    };
308  
309    // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
310    // point, they are references after the function was defined.  Resolve those
311    // now.
312    for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
313      if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
314        return true;
315    }
316    for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
317      if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
318        return true;
319    }
320    ForwardRefDSOLocalEquivalentIDs.clear();
321    ForwardRefDSOLocalEquivalentNames.clear();
322  
323    for (const auto &NT : NumberedTypes)
324      if (NT.second.second.isValid())
325        return error(NT.second.second,
326                     "use of undefined type '%" + Twine(NT.first) + "'");
327  
328    for (StringMap<std::pair<Type*, LocTy> >::iterator I =
329         NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
330      if (I->second.second.isValid())
331        return error(I->second.second,
332                     "use of undefined type named '" + I->getKey() + "'");
333  
334    if (!ForwardRefComdats.empty())
335      return error(ForwardRefComdats.begin()->second,
336                   "use of undefined comdat '$" +
337                       ForwardRefComdats.begin()->first + "'");
338  
339    for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) {
340      if (StringRef(Name).starts_with("llvm.")) {
341        Intrinsic::ID IID = Function::lookupIntrinsicID(Name);
342        if (IID == Intrinsic::not_intrinsic)
343          // Don't do anything for unknown intrinsics.
344          continue;
345  
346        // Automatically create declarations for intrinsics. Intrinsics can only
347        // be called directly, so the call function type directly determines the
348        // declaration function type.
349        //
350        // Additionally, automatically add the required mangling suffix to the
351        // intrinsic name. This means that we may replace a single forward
352        // declaration with multiple functions here.
353        for (Use &U : make_early_inc_range(Info.first->uses())) {
354          auto *CB = dyn_cast<CallBase>(U.getUser());
355          if (!CB || !CB->isCallee(&U))
356            return error(Info.second, "intrinsic can only be used as callee");
357  
358          SmallVector<Type *> OverloadTys;
359          if (!Intrinsic::getIntrinsicSignature(IID, CB->getFunctionType(),
360                                                OverloadTys))
361            return error(Info.second, "invalid intrinsic signature");
362  
363          U.set(Intrinsic::getDeclaration(M, IID, OverloadTys));
364        }
365  
366        Info.first->eraseFromParent();
367        ForwardRefVals.erase(Name);
368        continue;
369      }
370  
371      // If incomplete IR is allowed, also add declarations for
372      // non-intrinsics.
373      if (!AllowIncompleteIR)
374        continue;
375  
376      auto GetCommonFunctionType = [](Value *V) -> FunctionType * {
377        FunctionType *FTy = nullptr;
378        for (Use &U : V->uses()) {
379          auto *CB = dyn_cast<CallBase>(U.getUser());
380          if (!CB || !CB->isCallee(&U) || (FTy && FTy != CB->getFunctionType()))
381            return nullptr;
382          FTy = CB->getFunctionType();
383        }
384        return FTy;
385      };
386  
387      // First check whether this global is only used in calls with the same
388      // type, in which case we'll insert a function. Otherwise, fall back to
389      // using a dummy i8 type.
390      Type *Ty = GetCommonFunctionType(Info.first);
391      if (!Ty)
392        Ty = Type::getInt8Ty(Context);
393  
394      GlobalValue *GV;
395      if (auto *FTy = dyn_cast<FunctionType>(Ty))
396        GV = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
397      else
398        GV = new GlobalVariable(*M, Ty, /*isConstant*/ false,
399                                GlobalValue::ExternalLinkage,
400                                /*Initializer*/ nullptr, Name);
401      Info.first->replaceAllUsesWith(GV);
402      Info.first->eraseFromParent();
403      ForwardRefVals.erase(Name);
404    }
405  
406    if (!ForwardRefVals.empty())
407      return error(ForwardRefVals.begin()->second.second,
408                   "use of undefined value '@" + ForwardRefVals.begin()->first +
409                       "'");
410  
411    if (!ForwardRefValIDs.empty())
412      return error(ForwardRefValIDs.begin()->second.second,
413                   "use of undefined value '@" +
414                       Twine(ForwardRefValIDs.begin()->first) + "'");
415  
416    if (AllowIncompleteIR && !ForwardRefMDNodes.empty())
417      dropUnknownMetadataReferences();
418  
419    if (!ForwardRefMDNodes.empty())
420      return error(ForwardRefMDNodes.begin()->second.second,
421                   "use of undefined metadata '!" +
422                       Twine(ForwardRefMDNodes.begin()->first) + "'");
423  
424    // Resolve metadata cycles.
425    for (auto &N : NumberedMetadata) {
426      if (N.second && !N.second->isResolved())
427        N.second->resolveCycles();
428    }
429  
430    for (auto *Inst : InstsWithTBAATag) {
431      MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
432      // With incomplete IR, the tbaa metadata may have been dropped.
433      if (!AllowIncompleteIR)
434        assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
435      if (MD) {
436        auto *UpgradedMD = UpgradeTBAANode(*MD);
437        if (MD != UpgradedMD)
438          Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
439      }
440    }
441  
442    // Look for intrinsic functions and CallInst that need to be upgraded.  We use
443    // make_early_inc_range here because we may remove some functions.
444    for (Function &F : llvm::make_early_inc_range(*M))
445      UpgradeCallsToIntrinsic(&F);
446  
447    if (UpgradeDebugInfo)
448      llvm::UpgradeDebugInfo(*M);
449  
450    UpgradeModuleFlags(*M);
451    UpgradeSectionAttributes(*M);
452  
453    if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)
454      M->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
455  
456    if (!Slots)
457      return false;
458    // Initialize the slot mapping.
459    // Because by this point we've parsed and validated everything, we can "steal"
460    // the mapping from LLParser as it doesn't need it anymore.
461    Slots->GlobalValues = std::move(NumberedVals);
462    Slots->MetadataNodes = std::move(NumberedMetadata);
463    for (const auto &I : NamedTypes)
464      Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
465    for (const auto &I : NumberedTypes)
466      Slots->Types.insert(std::make_pair(I.first, I.second.first));
467  
468    return false;
469  }
470  
471  /// Do final validity and basic correctness checks at the end of the index.
validateEndOfIndex()472  bool LLParser::validateEndOfIndex() {
473    if (!Index)
474      return false;
475  
476    if (!ForwardRefValueInfos.empty())
477      return error(ForwardRefValueInfos.begin()->second.front().second,
478                   "use of undefined summary '^" +
479                       Twine(ForwardRefValueInfos.begin()->first) + "'");
480  
481    if (!ForwardRefAliasees.empty())
482      return error(ForwardRefAliasees.begin()->second.front().second,
483                   "use of undefined summary '^" +
484                       Twine(ForwardRefAliasees.begin()->first) + "'");
485  
486    if (!ForwardRefTypeIds.empty())
487      return error(ForwardRefTypeIds.begin()->second.front().second,
488                   "use of undefined type id summary '^" +
489                       Twine(ForwardRefTypeIds.begin()->first) + "'");
490  
491    return false;
492  }
493  
494  //===----------------------------------------------------------------------===//
495  // Top-Level Entities
496  //===----------------------------------------------------------------------===//
497  
parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback)498  bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
499    // Delay parsing of the data layout string until the target triple is known.
500    // Then, pass both the the target triple and the tentative data layout string
501    // to DataLayoutCallback, allowing to override the DL string.
502    // This enables importing modules with invalid DL strings.
503    std::string TentativeDLStr = M->getDataLayoutStr();
504    LocTy DLStrLoc;
505  
506    bool Done = false;
507    while (!Done) {
508      switch (Lex.getKind()) {
509      case lltok::kw_target:
510        if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
511          return true;
512        break;
513      case lltok::kw_source_filename:
514        if (parseSourceFileName())
515          return true;
516        break;
517      default:
518        Done = true;
519      }
520    }
521    // Run the override callback to potentially change the data layout string, and
522    // parse the data layout string.
523    if (auto LayoutOverride =
524            DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
525      TentativeDLStr = *LayoutOverride;
526      DLStrLoc = {};
527    }
528    Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr);
529    if (!MaybeDL)
530      return error(DLStrLoc, toString(MaybeDL.takeError()));
531    M->setDataLayout(MaybeDL.get());
532    return false;
533  }
534  
parseTopLevelEntities()535  bool LLParser::parseTopLevelEntities() {
536    // If there is no Module, then parse just the summary index entries.
537    if (!M) {
538      while (true) {
539        switch (Lex.getKind()) {
540        case lltok::Eof:
541          return false;
542        case lltok::SummaryID:
543          if (parseSummaryEntry())
544            return true;
545          break;
546        case lltok::kw_source_filename:
547          if (parseSourceFileName())
548            return true;
549          break;
550        default:
551          // Skip everything else
552          Lex.Lex();
553        }
554      }
555    }
556    while (true) {
557      switch (Lex.getKind()) {
558      default:
559        return tokError("expected top-level entity");
560      case lltok::Eof: return false;
561      case lltok::kw_declare:
562        if (parseDeclare())
563          return true;
564        break;
565      case lltok::kw_define:
566        if (parseDefine())
567          return true;
568        break;
569      case lltok::kw_module:
570        if (parseModuleAsm())
571          return true;
572        break;
573      case lltok::LocalVarID:
574        if (parseUnnamedType())
575          return true;
576        break;
577      case lltok::LocalVar:
578        if (parseNamedType())
579          return true;
580        break;
581      case lltok::GlobalID:
582        if (parseUnnamedGlobal())
583          return true;
584        break;
585      case lltok::GlobalVar:
586        if (parseNamedGlobal())
587          return true;
588        break;
589      case lltok::ComdatVar:  if (parseComdat()) return true; break;
590      case lltok::exclaim:
591        if (parseStandaloneMetadata())
592          return true;
593        break;
594      case lltok::SummaryID:
595        if (parseSummaryEntry())
596          return true;
597        break;
598      case lltok::MetadataVar:
599        if (parseNamedMetadata())
600          return true;
601        break;
602      case lltok::kw_attributes:
603        if (parseUnnamedAttrGrp())
604          return true;
605        break;
606      case lltok::kw_uselistorder:
607        if (parseUseListOrder())
608          return true;
609        break;
610      case lltok::kw_uselistorder_bb:
611        if (parseUseListOrderBB())
612          return true;
613        break;
614      }
615    }
616  }
617  
618  /// toplevelentity
619  ///   ::= 'module' 'asm' STRINGCONSTANT
parseModuleAsm()620  bool LLParser::parseModuleAsm() {
621    assert(Lex.getKind() == lltok::kw_module);
622    Lex.Lex();
623  
624    std::string AsmStr;
625    if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
626        parseStringConstant(AsmStr))
627      return true;
628  
629    M->appendModuleInlineAsm(AsmStr);
630    return false;
631  }
632  
633  /// toplevelentity
634  ///   ::= 'target' 'triple' '=' STRINGCONSTANT
635  ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
parseTargetDefinition(std::string & TentativeDLStr,LocTy & DLStrLoc)636  bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
637                                       LocTy &DLStrLoc) {
638    assert(Lex.getKind() == lltok::kw_target);
639    std::string Str;
640    switch (Lex.Lex()) {
641    default:
642      return tokError("unknown target property");
643    case lltok::kw_triple:
644      Lex.Lex();
645      if (parseToken(lltok::equal, "expected '=' after target triple") ||
646          parseStringConstant(Str))
647        return true;
648      M->setTargetTriple(Str);
649      return false;
650    case lltok::kw_datalayout:
651      Lex.Lex();
652      if (parseToken(lltok::equal, "expected '=' after target datalayout"))
653        return true;
654      DLStrLoc = Lex.getLoc();
655      if (parseStringConstant(TentativeDLStr))
656        return true;
657      return false;
658    }
659  }
660  
661  /// toplevelentity
662  ///   ::= 'source_filename' '=' STRINGCONSTANT
parseSourceFileName()663  bool LLParser::parseSourceFileName() {
664    assert(Lex.getKind() == lltok::kw_source_filename);
665    Lex.Lex();
666    if (parseToken(lltok::equal, "expected '=' after source_filename") ||
667        parseStringConstant(SourceFileName))
668      return true;
669    if (M)
670      M->setSourceFileName(SourceFileName);
671    return false;
672  }
673  
674  /// parseUnnamedType:
675  ///   ::= LocalVarID '=' 'type' type
parseUnnamedType()676  bool LLParser::parseUnnamedType() {
677    LocTy TypeLoc = Lex.getLoc();
678    unsigned TypeID = Lex.getUIntVal();
679    Lex.Lex(); // eat LocalVarID;
680  
681    if (parseToken(lltok::equal, "expected '=' after name") ||
682        parseToken(lltok::kw_type, "expected 'type' after '='"))
683      return true;
684  
685    Type *Result = nullptr;
686    if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
687      return true;
688  
689    if (!isa<StructType>(Result)) {
690      std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
691      if (Entry.first)
692        return error(TypeLoc, "non-struct types may not be recursive");
693      Entry.first = Result;
694      Entry.second = SMLoc();
695    }
696  
697    return false;
698  }
699  
700  /// toplevelentity
701  ///   ::= LocalVar '=' 'type' type
parseNamedType()702  bool LLParser::parseNamedType() {
703    std::string Name = Lex.getStrVal();
704    LocTy NameLoc = Lex.getLoc();
705    Lex.Lex();  // eat LocalVar.
706  
707    if (parseToken(lltok::equal, "expected '=' after name") ||
708        parseToken(lltok::kw_type, "expected 'type' after name"))
709      return true;
710  
711    Type *Result = nullptr;
712    if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
713      return true;
714  
715    if (!isa<StructType>(Result)) {
716      std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
717      if (Entry.first)
718        return error(NameLoc, "non-struct types may not be recursive");
719      Entry.first = Result;
720      Entry.second = SMLoc();
721    }
722  
723    return false;
724  }
725  
726  /// toplevelentity
727  ///   ::= 'declare' FunctionHeader
parseDeclare()728  bool LLParser::parseDeclare() {
729    assert(Lex.getKind() == lltok::kw_declare);
730    Lex.Lex();
731  
732    std::vector<std::pair<unsigned, MDNode *>> MDs;
733    while (Lex.getKind() == lltok::MetadataVar) {
734      unsigned MDK;
735      MDNode *N;
736      if (parseMetadataAttachment(MDK, N))
737        return true;
738      MDs.push_back({MDK, N});
739    }
740  
741    Function *F;
742    unsigned FunctionNumber = -1;
743    SmallVector<unsigned> UnnamedArgNums;
744    if (parseFunctionHeader(F, false, FunctionNumber, UnnamedArgNums))
745      return true;
746    for (auto &MD : MDs)
747      F->addMetadata(MD.first, *MD.second);
748    return false;
749  }
750  
751  /// toplevelentity
752  ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
parseDefine()753  bool LLParser::parseDefine() {
754    assert(Lex.getKind() == lltok::kw_define);
755    Lex.Lex();
756  
757    Function *F;
758    unsigned FunctionNumber = -1;
759    SmallVector<unsigned> UnnamedArgNums;
760    return parseFunctionHeader(F, true, FunctionNumber, UnnamedArgNums) ||
761           parseOptionalFunctionMetadata(*F) ||
762           parseFunctionBody(*F, FunctionNumber, UnnamedArgNums);
763  }
764  
765  /// parseGlobalType
766  ///   ::= 'constant'
767  ///   ::= 'global'
parseGlobalType(bool & IsConstant)768  bool LLParser::parseGlobalType(bool &IsConstant) {
769    if (Lex.getKind() == lltok::kw_constant)
770      IsConstant = true;
771    else if (Lex.getKind() == lltok::kw_global)
772      IsConstant = false;
773    else {
774      IsConstant = false;
775      return tokError("expected 'global' or 'constant'");
776    }
777    Lex.Lex();
778    return false;
779  }
780  
parseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr & UnnamedAddr)781  bool LLParser::parseOptionalUnnamedAddr(
782      GlobalVariable::UnnamedAddr &UnnamedAddr) {
783    if (EatIfPresent(lltok::kw_unnamed_addr))
784      UnnamedAddr = GlobalValue::UnnamedAddr::Global;
785    else if (EatIfPresent(lltok::kw_local_unnamed_addr))
786      UnnamedAddr = GlobalValue::UnnamedAddr::Local;
787    else
788      UnnamedAddr = GlobalValue::UnnamedAddr::None;
789    return false;
790  }
791  
792  /// parseUnnamedGlobal:
793  ///   OptionalVisibility (ALIAS | IFUNC) ...
794  ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
795  ///   OptionalDLLStorageClass
796  ///                                                     ...   -> global variable
797  ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
798  ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
799  ///   OptionalVisibility
800  ///                OptionalDLLStorageClass
801  ///                                                     ...   -> global variable
parseUnnamedGlobal()802  bool LLParser::parseUnnamedGlobal() {
803    unsigned VarID;
804    std::string Name;
805    LocTy NameLoc = Lex.getLoc();
806  
807    // Handle the GlobalID form.
808    if (Lex.getKind() == lltok::GlobalID) {
809      VarID = Lex.getUIntVal();
810      if (checkValueID(NameLoc, "global", "@", NumberedVals.getNext(), VarID))
811        return true;
812  
813      Lex.Lex(); // eat GlobalID;
814      if (parseToken(lltok::equal, "expected '=' after name"))
815        return true;
816    } else {
817      VarID = NumberedVals.getNext();
818    }
819  
820    bool HasLinkage;
821    unsigned Linkage, Visibility, DLLStorageClass;
822    bool DSOLocal;
823    GlobalVariable::ThreadLocalMode TLM;
824    GlobalVariable::UnnamedAddr UnnamedAddr;
825    if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
826                             DSOLocal) ||
827        parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
828      return true;
829  
830    switch (Lex.getKind()) {
831    default:
832      return parseGlobal(Name, VarID, NameLoc, Linkage, HasLinkage, Visibility,
833                         DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
834    case lltok::kw_alias:
835    case lltok::kw_ifunc:
836      return parseAliasOrIFunc(Name, VarID, NameLoc, Linkage, Visibility,
837                               DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
838    }
839  }
840  
841  /// parseNamedGlobal:
842  ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
843  ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
844  ///                 OptionalVisibility OptionalDLLStorageClass
845  ///                                                     ...   -> global variable
parseNamedGlobal()846  bool LLParser::parseNamedGlobal() {
847    assert(Lex.getKind() == lltok::GlobalVar);
848    LocTy NameLoc = Lex.getLoc();
849    std::string Name = Lex.getStrVal();
850    Lex.Lex();
851  
852    bool HasLinkage;
853    unsigned Linkage, Visibility, DLLStorageClass;
854    bool DSOLocal;
855    GlobalVariable::ThreadLocalMode TLM;
856    GlobalVariable::UnnamedAddr UnnamedAddr;
857    if (parseToken(lltok::equal, "expected '=' in global variable") ||
858        parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
859                             DSOLocal) ||
860        parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
861      return true;
862  
863    switch (Lex.getKind()) {
864    default:
865      return parseGlobal(Name, -1, NameLoc, Linkage, HasLinkage, Visibility,
866                         DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
867    case lltok::kw_alias:
868    case lltok::kw_ifunc:
869      return parseAliasOrIFunc(Name, -1, NameLoc, Linkage, Visibility,
870                               DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
871    }
872  }
873  
parseComdat()874  bool LLParser::parseComdat() {
875    assert(Lex.getKind() == lltok::ComdatVar);
876    std::string Name = Lex.getStrVal();
877    LocTy NameLoc = Lex.getLoc();
878    Lex.Lex();
879  
880    if (parseToken(lltok::equal, "expected '=' here"))
881      return true;
882  
883    if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
884      return tokError("expected comdat type");
885  
886    Comdat::SelectionKind SK;
887    switch (Lex.getKind()) {
888    default:
889      return tokError("unknown selection kind");
890    case lltok::kw_any:
891      SK = Comdat::Any;
892      break;
893    case lltok::kw_exactmatch:
894      SK = Comdat::ExactMatch;
895      break;
896    case lltok::kw_largest:
897      SK = Comdat::Largest;
898      break;
899    case lltok::kw_nodeduplicate:
900      SK = Comdat::NoDeduplicate;
901      break;
902    case lltok::kw_samesize:
903      SK = Comdat::SameSize;
904      break;
905    }
906    Lex.Lex();
907  
908    // See if the comdat was forward referenced, if so, use the comdat.
909    Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
910    Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
911    if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
912      return error(NameLoc, "redefinition of comdat '$" + Name + "'");
913  
914    Comdat *C;
915    if (I != ComdatSymTab.end())
916      C = &I->second;
917    else
918      C = M->getOrInsertComdat(Name);
919    C->setSelectionKind(SK);
920  
921    return false;
922  }
923  
924  // MDString:
925  //   ::= '!' STRINGCONSTANT
parseMDString(MDString * & Result)926  bool LLParser::parseMDString(MDString *&Result) {
927    std::string Str;
928    if (parseStringConstant(Str))
929      return true;
930    Result = MDString::get(Context, Str);
931    return false;
932  }
933  
934  // MDNode:
935  //   ::= '!' MDNodeNumber
parseMDNodeID(MDNode * & Result)936  bool LLParser::parseMDNodeID(MDNode *&Result) {
937    // !{ ..., !42, ... }
938    LocTy IDLoc = Lex.getLoc();
939    unsigned MID = 0;
940    if (parseUInt32(MID))
941      return true;
942  
943    // If not a forward reference, just return it now.
944    if (NumberedMetadata.count(MID)) {
945      Result = NumberedMetadata[MID];
946      return false;
947    }
948  
949    // Otherwise, create MDNode forward reference.
950    auto &FwdRef = ForwardRefMDNodes[MID];
951    FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc);
952  
953    Result = FwdRef.first.get();
954    NumberedMetadata[MID].reset(Result);
955    return false;
956  }
957  
958  /// parseNamedMetadata:
959  ///   !foo = !{ !1, !2 }
parseNamedMetadata()960  bool LLParser::parseNamedMetadata() {
961    assert(Lex.getKind() == lltok::MetadataVar);
962    std::string Name = Lex.getStrVal();
963    Lex.Lex();
964  
965    if (parseToken(lltok::equal, "expected '=' here") ||
966        parseToken(lltok::exclaim, "Expected '!' here") ||
967        parseToken(lltok::lbrace, "Expected '{' here"))
968      return true;
969  
970    NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
971    if (Lex.getKind() != lltok::rbrace)
972      do {
973        MDNode *N = nullptr;
974        // parse DIExpressions inline as a special case. They are still MDNodes,
975        // so they can still appear in named metadata. Remove this logic if they
976        // become plain Metadata.
977        if (Lex.getKind() == lltok::MetadataVar &&
978            Lex.getStrVal() == "DIExpression") {
979          if (parseDIExpression(N, /*IsDistinct=*/false))
980            return true;
981          // DIArgLists should only appear inline in a function, as they may
982          // contain LocalAsMetadata arguments which require a function context.
983        } else if (Lex.getKind() == lltok::MetadataVar &&
984                   Lex.getStrVal() == "DIArgList") {
985          return tokError("found DIArgList outside of function");
986        } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
987                   parseMDNodeID(N)) {
988          return true;
989        }
990        NMD->addOperand(N);
991      } while (EatIfPresent(lltok::comma));
992  
993    return parseToken(lltok::rbrace, "expected end of metadata node");
994  }
995  
996  /// parseStandaloneMetadata:
997  ///   !42 = !{...}
parseStandaloneMetadata()998  bool LLParser::parseStandaloneMetadata() {
999    assert(Lex.getKind() == lltok::exclaim);
1000    Lex.Lex();
1001    unsigned MetadataID = 0;
1002  
1003    MDNode *Init;
1004    if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
1005      return true;
1006  
1007    // Detect common error, from old metadata syntax.
1008    if (Lex.getKind() == lltok::Type)
1009      return tokError("unexpected type in metadata definition");
1010  
1011    bool IsDistinct = EatIfPresent(lltok::kw_distinct);
1012    if (Lex.getKind() == lltok::MetadataVar) {
1013      if (parseSpecializedMDNode(Init, IsDistinct))
1014        return true;
1015    } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
1016               parseMDTuple(Init, IsDistinct))
1017      return true;
1018  
1019    // See if this was forward referenced, if so, handle it.
1020    auto FI = ForwardRefMDNodes.find(MetadataID);
1021    if (FI != ForwardRefMDNodes.end()) {
1022      auto *ToReplace = FI->second.first.get();
1023      // DIAssignID has its own special forward-reference "replacement" for
1024      // attachments (the temporary attachments are never actually attached).
1025      if (isa<DIAssignID>(Init)) {
1026        for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
1027          assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
1028                 "Inst unexpectedly already has DIAssignID attachment");
1029          Inst->setMetadata(LLVMContext::MD_DIAssignID, Init);
1030        }
1031      }
1032  
1033      ToReplace->replaceAllUsesWith(Init);
1034      ForwardRefMDNodes.erase(FI);
1035  
1036      assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
1037    } else {
1038      if (NumberedMetadata.count(MetadataID))
1039        return tokError("Metadata id is already used");
1040      NumberedMetadata[MetadataID].reset(Init);
1041    }
1042  
1043    return false;
1044  }
1045  
1046  // Skips a single module summary entry.
skipModuleSummaryEntry()1047  bool LLParser::skipModuleSummaryEntry() {
1048    // Each module summary entry consists of a tag for the entry
1049    // type, followed by a colon, then the fields which may be surrounded by
1050    // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
1051    // support is in place we will look for the tokens corresponding to the
1052    // expected tags.
1053    if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
1054        Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
1055        Lex.getKind() != lltok::kw_blockcount)
1056      return tokError(
1057          "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
1058          "start of summary entry");
1059    if (Lex.getKind() == lltok::kw_flags)
1060      return parseSummaryIndexFlags();
1061    if (Lex.getKind() == lltok::kw_blockcount)
1062      return parseBlockCount();
1063    Lex.Lex();
1064    if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
1065        parseToken(lltok::lparen, "expected '(' at start of summary entry"))
1066      return true;
1067    // Now walk through the parenthesized entry, until the number of open
1068    // parentheses goes back down to 0 (the first '(' was parsed above).
1069    unsigned NumOpenParen = 1;
1070    do {
1071      switch (Lex.getKind()) {
1072      case lltok::lparen:
1073        NumOpenParen++;
1074        break;
1075      case lltok::rparen:
1076        NumOpenParen--;
1077        break;
1078      case lltok::Eof:
1079        return tokError("found end of file while parsing summary entry");
1080      default:
1081        // Skip everything in between parentheses.
1082        break;
1083      }
1084      Lex.Lex();
1085    } while (NumOpenParen > 0);
1086    return false;
1087  }
1088  
1089  /// SummaryEntry
1090  ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
parseSummaryEntry()1091  bool LLParser::parseSummaryEntry() {
1092    assert(Lex.getKind() == lltok::SummaryID);
1093    unsigned SummaryID = Lex.getUIntVal();
1094  
1095    // For summary entries, colons should be treated as distinct tokens,
1096    // not an indication of the end of a label token.
1097    Lex.setIgnoreColonInIdentifiers(true);
1098  
1099    Lex.Lex();
1100    if (parseToken(lltok::equal, "expected '=' here"))
1101      return true;
1102  
1103    // If we don't have an index object, skip the summary entry.
1104    if (!Index)
1105      return skipModuleSummaryEntry();
1106  
1107    bool result = false;
1108    switch (Lex.getKind()) {
1109    case lltok::kw_gv:
1110      result = parseGVEntry(SummaryID);
1111      break;
1112    case lltok::kw_module:
1113      result = parseModuleEntry(SummaryID);
1114      break;
1115    case lltok::kw_typeid:
1116      result = parseTypeIdEntry(SummaryID);
1117      break;
1118    case lltok::kw_typeidCompatibleVTable:
1119      result = parseTypeIdCompatibleVtableEntry(SummaryID);
1120      break;
1121    case lltok::kw_flags:
1122      result = parseSummaryIndexFlags();
1123      break;
1124    case lltok::kw_blockcount:
1125      result = parseBlockCount();
1126      break;
1127    default:
1128      result = error(Lex.getLoc(), "unexpected summary kind");
1129      break;
1130    }
1131    Lex.setIgnoreColonInIdentifiers(false);
1132    return result;
1133  }
1134  
isValidVisibilityForLinkage(unsigned V,unsigned L)1135  static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
1136    return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1137           (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
1138  }
isValidDLLStorageClassForLinkage(unsigned S,unsigned L)1139  static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
1140    return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1141           (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
1142  }
1143  
1144  // If there was an explicit dso_local, update GV. In the absence of an explicit
1145  // dso_local we keep the default value.
maybeSetDSOLocal(bool DSOLocal,GlobalValue & GV)1146  static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
1147    if (DSOLocal)
1148      GV.setDSOLocal(true);
1149  }
1150  
1151  /// parseAliasOrIFunc:
1152  ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1153  ///                     OptionalVisibility OptionalDLLStorageClass
1154  ///                     OptionalThreadLocal OptionalUnnamedAddr
1155  ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
1156  ///
1157  /// AliaseeOrResolver
1158  ///   ::= TypeAndValue
1159  ///
1160  /// SymbolAttrs
1161  ///   ::= ',' 'partition' StringConstant
1162  ///
1163  /// Everything through OptionalUnnamedAddr has already been parsed.
1164  ///
parseAliasOrIFunc(const std::string & Name,unsigned NameID,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)1165  bool LLParser::parseAliasOrIFunc(const std::string &Name, unsigned NameID,
1166                                   LocTy NameLoc, unsigned L, unsigned Visibility,
1167                                   unsigned DLLStorageClass, bool DSOLocal,
1168                                   GlobalVariable::ThreadLocalMode TLM,
1169                                   GlobalVariable::UnnamedAddr UnnamedAddr) {
1170    bool IsAlias;
1171    if (Lex.getKind() == lltok::kw_alias)
1172      IsAlias = true;
1173    else if (Lex.getKind() == lltok::kw_ifunc)
1174      IsAlias = false;
1175    else
1176      llvm_unreachable("Not an alias or ifunc!");
1177    Lex.Lex();
1178  
1179    GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1180  
1181    if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
1182      return error(NameLoc, "invalid linkage type for alias");
1183  
1184    if (!isValidVisibilityForLinkage(Visibility, L))
1185      return error(NameLoc,
1186                   "symbol with local linkage must have default visibility");
1187  
1188    if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L))
1189      return error(NameLoc,
1190                   "symbol with local linkage cannot have a DLL storage class");
1191  
1192    Type *Ty;
1193    LocTy ExplicitTypeLoc = Lex.getLoc();
1194    if (parseType(Ty) ||
1195        parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
1196      return true;
1197  
1198    Constant *Aliasee;
1199    LocTy AliaseeLoc = Lex.getLoc();
1200    if (Lex.getKind() != lltok::kw_bitcast &&
1201        Lex.getKind() != lltok::kw_getelementptr &&
1202        Lex.getKind() != lltok::kw_addrspacecast &&
1203        Lex.getKind() != lltok::kw_inttoptr) {
1204      if (parseGlobalTypeAndValue(Aliasee))
1205        return true;
1206    } else {
1207      // The bitcast dest type is not present, it is implied by the dest type.
1208      ValID ID;
1209      if (parseValID(ID, /*PFS=*/nullptr))
1210        return true;
1211      if (ID.Kind != ValID::t_Constant)
1212        return error(AliaseeLoc, "invalid aliasee");
1213      Aliasee = ID.ConstantVal;
1214    }
1215  
1216    Type *AliaseeType = Aliasee->getType();
1217    auto *PTy = dyn_cast<PointerType>(AliaseeType);
1218    if (!PTy)
1219      return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1220    unsigned AddrSpace = PTy->getAddressSpace();
1221  
1222    GlobalValue *GVal = nullptr;
1223  
1224    // See if the alias was forward referenced, if so, prepare to replace the
1225    // forward reference.
1226    if (!Name.empty()) {
1227      auto I = ForwardRefVals.find(Name);
1228      if (I != ForwardRefVals.end()) {
1229        GVal = I->second.first;
1230        ForwardRefVals.erase(Name);
1231      } else if (M->getNamedValue(Name)) {
1232        return error(NameLoc, "redefinition of global '@" + Name + "'");
1233      }
1234    } else {
1235      auto I = ForwardRefValIDs.find(NameID);
1236      if (I != ForwardRefValIDs.end()) {
1237        GVal = I->second.first;
1238        ForwardRefValIDs.erase(I);
1239      }
1240    }
1241  
1242    // Okay, create the alias/ifunc but do not insert it into the module yet.
1243    std::unique_ptr<GlobalAlias> GA;
1244    std::unique_ptr<GlobalIFunc> GI;
1245    GlobalValue *GV;
1246    if (IsAlias) {
1247      GA.reset(GlobalAlias::create(Ty, AddrSpace,
1248                                   (GlobalValue::LinkageTypes)Linkage, Name,
1249                                   Aliasee, /*Parent*/ nullptr));
1250      GV = GA.get();
1251    } else {
1252      GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1253                                   (GlobalValue::LinkageTypes)Linkage, Name,
1254                                   Aliasee, /*Parent*/ nullptr));
1255      GV = GI.get();
1256    }
1257    GV->setThreadLocalMode(TLM);
1258    GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1259    GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1260    GV->setUnnamedAddr(UnnamedAddr);
1261    maybeSetDSOLocal(DSOLocal, *GV);
1262  
1263    // At this point we've parsed everything except for the IndirectSymbolAttrs.
1264    // Now parse them if there are any.
1265    while (Lex.getKind() == lltok::comma) {
1266      Lex.Lex();
1267  
1268      if (Lex.getKind() == lltok::kw_partition) {
1269        Lex.Lex();
1270        GV->setPartition(Lex.getStrVal());
1271        if (parseToken(lltok::StringConstant, "expected partition string"))
1272          return true;
1273      } else {
1274        return tokError("unknown alias or ifunc property!");
1275      }
1276    }
1277  
1278    if (Name.empty())
1279      NumberedVals.add(NameID, GV);
1280  
1281    if (GVal) {
1282      // Verify that types agree.
1283      if (GVal->getType() != GV->getType())
1284        return error(
1285            ExplicitTypeLoc,
1286            "forward reference and definition of alias have different types");
1287  
1288      // If they agree, just RAUW the old value with the alias and remove the
1289      // forward ref info.
1290      GVal->replaceAllUsesWith(GV);
1291      GVal->eraseFromParent();
1292    }
1293  
1294    // Insert into the module, we know its name won't collide now.
1295    if (IsAlias)
1296      M->insertAlias(GA.release());
1297    else
1298      M->insertIFunc(GI.release());
1299    assert(GV->getName() == Name && "Should not be a name conflict!");
1300  
1301    return false;
1302  }
1303  
isSanitizer(lltok::Kind Kind)1304  static bool isSanitizer(lltok::Kind Kind) {
1305    switch (Kind) {
1306    case lltok::kw_no_sanitize_address:
1307    case lltok::kw_no_sanitize_hwaddress:
1308    case lltok::kw_sanitize_memtag:
1309    case lltok::kw_sanitize_address_dyninit:
1310      return true;
1311    default:
1312      return false;
1313    }
1314  }
1315  
parseSanitizer(GlobalVariable * GV)1316  bool LLParser::parseSanitizer(GlobalVariable *GV) {
1317    using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1318    SanitizerMetadata Meta;
1319    if (GV->hasSanitizerMetadata())
1320      Meta = GV->getSanitizerMetadata();
1321  
1322    switch (Lex.getKind()) {
1323    case lltok::kw_no_sanitize_address:
1324      Meta.NoAddress = true;
1325      break;
1326    case lltok::kw_no_sanitize_hwaddress:
1327      Meta.NoHWAddress = true;
1328      break;
1329    case lltok::kw_sanitize_memtag:
1330      Meta.Memtag = true;
1331      break;
1332    case lltok::kw_sanitize_address_dyninit:
1333      Meta.IsDynInit = true;
1334      break;
1335    default:
1336      return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1337    }
1338    GV->setSanitizerMetadata(Meta);
1339    Lex.Lex();
1340    return false;
1341  }
1342  
1343  /// parseGlobal
1344  ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1345  ///       OptionalVisibility OptionalDLLStorageClass
1346  ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1347  ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1348  ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1349  ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1350  ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1351  ///       Const OptionalAttrs
1352  ///
1353  /// Everything up to and including OptionalUnnamedAddr has been parsed
1354  /// already.
1355  ///
parseGlobal(const std::string & Name,unsigned NameID,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)1356  bool LLParser::parseGlobal(const std::string &Name, unsigned NameID,
1357                             LocTy NameLoc, unsigned Linkage, bool HasLinkage,
1358                             unsigned Visibility, unsigned DLLStorageClass,
1359                             bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1360                             GlobalVariable::UnnamedAddr UnnamedAddr) {
1361    if (!isValidVisibilityForLinkage(Visibility, Linkage))
1362      return error(NameLoc,
1363                   "symbol with local linkage must have default visibility");
1364  
1365    if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
1366      return error(NameLoc,
1367                   "symbol with local linkage cannot have a DLL storage class");
1368  
1369    unsigned AddrSpace;
1370    bool IsConstant, IsExternallyInitialized;
1371    LocTy IsExternallyInitializedLoc;
1372    LocTy TyLoc;
1373  
1374    Type *Ty = nullptr;
1375    if (parseOptionalAddrSpace(AddrSpace) ||
1376        parseOptionalToken(lltok::kw_externally_initialized,
1377                           IsExternallyInitialized,
1378                           &IsExternallyInitializedLoc) ||
1379        parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1380      return true;
1381  
1382    // If the linkage is specified and is external, then no initializer is
1383    // present.
1384    Constant *Init = nullptr;
1385    if (!HasLinkage ||
1386        !GlobalValue::isValidDeclarationLinkage(
1387            (GlobalValue::LinkageTypes)Linkage)) {
1388      if (parseGlobalValue(Ty, Init))
1389        return true;
1390    }
1391  
1392    if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1393      return error(TyLoc, "invalid type for global variable");
1394  
1395    GlobalValue *GVal = nullptr;
1396  
1397    // See if the global was forward referenced, if so, use the global.
1398    if (!Name.empty()) {
1399      auto I = ForwardRefVals.find(Name);
1400      if (I != ForwardRefVals.end()) {
1401        GVal = I->second.first;
1402        ForwardRefVals.erase(I);
1403      } else if (M->getNamedValue(Name)) {
1404        return error(NameLoc, "redefinition of global '@" + Name + "'");
1405      }
1406    } else {
1407      // Handle @"", where a name is syntactically specified, but semantically
1408      // missing.
1409      if (NameID == (unsigned)-1)
1410        NameID = NumberedVals.getNext();
1411  
1412      auto I = ForwardRefValIDs.find(NameID);
1413      if (I != ForwardRefValIDs.end()) {
1414        GVal = I->second.first;
1415        ForwardRefValIDs.erase(I);
1416      }
1417    }
1418  
1419    GlobalVariable *GV = new GlobalVariable(
1420        *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1421        GlobalVariable::NotThreadLocal, AddrSpace);
1422  
1423    if (Name.empty())
1424      NumberedVals.add(NameID, GV);
1425  
1426    // Set the parsed properties on the global.
1427    if (Init)
1428      GV->setInitializer(Init);
1429    GV->setConstant(IsConstant);
1430    GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1431    maybeSetDSOLocal(DSOLocal, *GV);
1432    GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1433    GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1434    GV->setExternallyInitialized(IsExternallyInitialized);
1435    GV->setThreadLocalMode(TLM);
1436    GV->setUnnamedAddr(UnnamedAddr);
1437  
1438    if (GVal) {
1439      if (GVal->getAddressSpace() != AddrSpace)
1440        return error(
1441            TyLoc,
1442            "forward reference and definition of global have different types");
1443  
1444      GVal->replaceAllUsesWith(GV);
1445      GVal->eraseFromParent();
1446    }
1447  
1448    // parse attributes on the global.
1449    while (Lex.getKind() == lltok::comma) {
1450      Lex.Lex();
1451  
1452      if (Lex.getKind() == lltok::kw_section) {
1453        Lex.Lex();
1454        GV->setSection(Lex.getStrVal());
1455        if (parseToken(lltok::StringConstant, "expected global section string"))
1456          return true;
1457      } else if (Lex.getKind() == lltok::kw_partition) {
1458        Lex.Lex();
1459        GV->setPartition(Lex.getStrVal());
1460        if (parseToken(lltok::StringConstant, "expected partition string"))
1461          return true;
1462      } else if (Lex.getKind() == lltok::kw_align) {
1463        MaybeAlign Alignment;
1464        if (parseOptionalAlignment(Alignment))
1465          return true;
1466        if (Alignment)
1467          GV->setAlignment(*Alignment);
1468      } else if (Lex.getKind() == lltok::kw_code_model) {
1469        CodeModel::Model CodeModel;
1470        if (parseOptionalCodeModel(CodeModel))
1471          return true;
1472        GV->setCodeModel(CodeModel);
1473      } else if (Lex.getKind() == lltok::MetadataVar) {
1474        if (parseGlobalObjectMetadataAttachment(*GV))
1475          return true;
1476      } else if (isSanitizer(Lex.getKind())) {
1477        if (parseSanitizer(GV))
1478          return true;
1479      } else {
1480        Comdat *C;
1481        if (parseOptionalComdat(Name, C))
1482          return true;
1483        if (C)
1484          GV->setComdat(C);
1485        else
1486          return tokError("unknown global variable property!");
1487      }
1488    }
1489  
1490    AttrBuilder Attrs(M->getContext());
1491    LocTy BuiltinLoc;
1492    std::vector<unsigned> FwdRefAttrGrps;
1493    if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1494      return true;
1495    if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1496      GV->setAttributes(AttributeSet::get(Context, Attrs));
1497      ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1498    }
1499  
1500    return false;
1501  }
1502  
1503  /// parseUnnamedAttrGrp
1504  ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
parseUnnamedAttrGrp()1505  bool LLParser::parseUnnamedAttrGrp() {
1506    assert(Lex.getKind() == lltok::kw_attributes);
1507    LocTy AttrGrpLoc = Lex.getLoc();
1508    Lex.Lex();
1509  
1510    if (Lex.getKind() != lltok::AttrGrpID)
1511      return tokError("expected attribute group id");
1512  
1513    unsigned VarID = Lex.getUIntVal();
1514    std::vector<unsigned> unused;
1515    LocTy BuiltinLoc;
1516    Lex.Lex();
1517  
1518    if (parseToken(lltok::equal, "expected '=' here") ||
1519        parseToken(lltok::lbrace, "expected '{' here"))
1520      return true;
1521  
1522    auto R = NumberedAttrBuilders.find(VarID);
1523    if (R == NumberedAttrBuilders.end())
1524      R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1525  
1526    if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1527        parseToken(lltok::rbrace, "expected end of attribute group"))
1528      return true;
1529  
1530    if (!R->second.hasAttributes())
1531      return error(AttrGrpLoc, "attribute group has no attributes");
1532  
1533    return false;
1534  }
1535  
tokenToAttribute(lltok::Kind Kind)1536  static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1537    switch (Kind) {
1538  #define GET_ATTR_NAMES
1539  #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1540    case lltok::kw_##DISPLAY_NAME: \
1541      return Attribute::ENUM_NAME;
1542  #include "llvm/IR/Attributes.inc"
1543    default:
1544      return Attribute::None;
1545    }
1546  }
1547  
parseEnumAttribute(Attribute::AttrKind Attr,AttrBuilder & B,bool InAttrGroup)1548  bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1549                                    bool InAttrGroup) {
1550    if (Attribute::isTypeAttrKind(Attr))
1551      return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1552  
1553    switch (Attr) {
1554    case Attribute::Alignment: {
1555      MaybeAlign Alignment;
1556      if (InAttrGroup) {
1557        uint32_t Value = 0;
1558        Lex.Lex();
1559        if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1560          return true;
1561        Alignment = Align(Value);
1562      } else {
1563        if (parseOptionalAlignment(Alignment, true))
1564          return true;
1565      }
1566      B.addAlignmentAttr(Alignment);
1567      return false;
1568    }
1569    case Attribute::StackAlignment: {
1570      unsigned Alignment;
1571      if (InAttrGroup) {
1572        Lex.Lex();
1573        if (parseToken(lltok::equal, "expected '=' here") ||
1574            parseUInt32(Alignment))
1575          return true;
1576      } else {
1577        if (parseOptionalStackAlignment(Alignment))
1578          return true;
1579      }
1580      B.addStackAlignmentAttr(Alignment);
1581      return false;
1582    }
1583    case Attribute::AllocSize: {
1584      unsigned ElemSizeArg;
1585      std::optional<unsigned> NumElemsArg;
1586      if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1587        return true;
1588      B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1589      return false;
1590    }
1591    case Attribute::VScaleRange: {
1592      unsigned MinValue, MaxValue;
1593      if (parseVScaleRangeArguments(MinValue, MaxValue))
1594        return true;
1595      B.addVScaleRangeAttr(MinValue,
1596                           MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1597      return false;
1598    }
1599    case Attribute::Dereferenceable: {
1600      uint64_t Bytes;
1601      if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1602        return true;
1603      B.addDereferenceableAttr(Bytes);
1604      return false;
1605    }
1606    case Attribute::DereferenceableOrNull: {
1607      uint64_t Bytes;
1608      if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1609        return true;
1610      B.addDereferenceableOrNullAttr(Bytes);
1611      return false;
1612    }
1613    case Attribute::UWTable: {
1614      UWTableKind Kind;
1615      if (parseOptionalUWTableKind(Kind))
1616        return true;
1617      B.addUWTableAttr(Kind);
1618      return false;
1619    }
1620    case Attribute::AllocKind: {
1621      AllocFnKind Kind = AllocFnKind::Unknown;
1622      if (parseAllocKind(Kind))
1623        return true;
1624      B.addAllocKindAttr(Kind);
1625      return false;
1626    }
1627    case Attribute::Memory: {
1628      std::optional<MemoryEffects> ME = parseMemoryAttr();
1629      if (!ME)
1630        return true;
1631      B.addMemoryAttr(*ME);
1632      return false;
1633    }
1634    case Attribute::NoFPClass: {
1635      if (FPClassTest NoFPClass =
1636              static_cast<FPClassTest>(parseNoFPClassAttr())) {
1637        B.addNoFPClassAttr(NoFPClass);
1638        return false;
1639      }
1640  
1641      return true;
1642    }
1643    case Attribute::Range:
1644      return parseRangeAttr(B);
1645    case Attribute::Initializes:
1646      return parseInitializesAttr(B);
1647    default:
1648      B.addAttribute(Attr);
1649      Lex.Lex();
1650      return false;
1651    }
1652  }
1653  
upgradeMemoryAttr(MemoryEffects & ME,lltok::Kind Kind)1654  static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1655    switch (Kind) {
1656    case lltok::kw_readnone:
1657      ME &= MemoryEffects::none();
1658      return true;
1659    case lltok::kw_readonly:
1660      ME &= MemoryEffects::readOnly();
1661      return true;
1662    case lltok::kw_writeonly:
1663      ME &= MemoryEffects::writeOnly();
1664      return true;
1665    case lltok::kw_argmemonly:
1666      ME &= MemoryEffects::argMemOnly();
1667      return true;
1668    case lltok::kw_inaccessiblememonly:
1669      ME &= MemoryEffects::inaccessibleMemOnly();
1670      return true;
1671    case lltok::kw_inaccessiblemem_or_argmemonly:
1672      ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1673      return true;
1674    default:
1675      return false;
1676    }
1677  }
1678  
1679  /// parseFnAttributeValuePairs
1680  ///   ::= <attr> | <attr> '=' <value>
parseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool InAttrGrp,LocTy & BuiltinLoc)1681  bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1682                                            std::vector<unsigned> &FwdRefAttrGrps,
1683                                            bool InAttrGrp, LocTy &BuiltinLoc) {
1684    bool HaveError = false;
1685  
1686    B.clear();
1687  
1688    MemoryEffects ME = MemoryEffects::unknown();
1689    while (true) {
1690      lltok::Kind Token = Lex.getKind();
1691      if (Token == lltok::rbrace)
1692        break; // Finished.
1693  
1694      if (Token == lltok::StringConstant) {
1695        if (parseStringAttribute(B))
1696          return true;
1697        continue;
1698      }
1699  
1700      if (Token == lltok::AttrGrpID) {
1701        // Allow a function to reference an attribute group:
1702        //
1703        //   define void @foo() #1 { ... }
1704        if (InAttrGrp) {
1705          HaveError |= error(
1706              Lex.getLoc(),
1707              "cannot have an attribute group reference in an attribute group");
1708        } else {
1709          // Save the reference to the attribute group. We'll fill it in later.
1710          FwdRefAttrGrps.push_back(Lex.getUIntVal());
1711        }
1712        Lex.Lex();
1713        continue;
1714      }
1715  
1716      SMLoc Loc = Lex.getLoc();
1717      if (Token == lltok::kw_builtin)
1718        BuiltinLoc = Loc;
1719  
1720      if (upgradeMemoryAttr(ME, Token)) {
1721        Lex.Lex();
1722        continue;
1723      }
1724  
1725      Attribute::AttrKind Attr = tokenToAttribute(Token);
1726      if (Attr == Attribute::None) {
1727        if (!InAttrGrp)
1728          break;
1729        return error(Lex.getLoc(), "unterminated attribute group");
1730      }
1731  
1732      if (parseEnumAttribute(Attr, B, InAttrGrp))
1733        return true;
1734  
1735      // As a hack, we allow function alignment to be initially parsed as an
1736      // attribute on a function declaration/definition or added to an attribute
1737      // group and later moved to the alignment field.
1738      if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1739        HaveError |= error(Loc, "this attribute does not apply to functions");
1740    }
1741  
1742    if (ME != MemoryEffects::unknown())
1743      B.addMemoryAttr(ME);
1744    return HaveError;
1745  }
1746  
1747  //===----------------------------------------------------------------------===//
1748  // GlobalValue Reference/Resolution Routines.
1749  //===----------------------------------------------------------------------===//
1750  
createGlobalFwdRef(Module * M,PointerType * PTy)1751  static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1752    // The used global type does not matter. We will later RAUW it with a
1753    // global/function of the correct type.
1754    return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1755                              GlobalValue::ExternalWeakLinkage, nullptr, "",
1756                              nullptr, GlobalVariable::NotThreadLocal,
1757                              PTy->getAddressSpace());
1758  }
1759  
checkValidVariableType(LocTy Loc,const Twine & Name,Type * Ty,Value * Val)1760  Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1761                                          Value *Val) {
1762    Type *ValTy = Val->getType();
1763    if (ValTy == Ty)
1764      return Val;
1765    if (Ty->isLabelTy())
1766      error(Loc, "'" + Name + "' is not a basic block");
1767    else
1768      error(Loc, "'" + Name + "' defined with type '" +
1769                     getTypeString(Val->getType()) + "' but expected '" +
1770                     getTypeString(Ty) + "'");
1771    return nullptr;
1772  }
1773  
1774  /// getGlobalVal - Get a value with the specified name or ID, creating a
1775  /// forward reference record if needed.  This can return null if the value
1776  /// exists but does not have the right type.
getGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)1777  GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1778                                      LocTy Loc) {
1779    PointerType *PTy = dyn_cast<PointerType>(Ty);
1780    if (!PTy) {
1781      error(Loc, "global variable reference must have pointer type");
1782      return nullptr;
1783    }
1784  
1785    // Look this name up in the normal function symbol table.
1786    GlobalValue *Val =
1787      cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1788  
1789    // If this is a forward reference for the value, see if we already created a
1790    // forward ref record.
1791    if (!Val) {
1792      auto I = ForwardRefVals.find(Name);
1793      if (I != ForwardRefVals.end())
1794        Val = I->second.first;
1795    }
1796  
1797    // If we have the value in the symbol table or fwd-ref table, return it.
1798    if (Val)
1799      return cast_or_null<GlobalValue>(
1800          checkValidVariableType(Loc, "@" + Name, Ty, Val));
1801  
1802    // Otherwise, create a new forward reference for this value and remember it.
1803    GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1804    ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1805    return FwdVal;
1806  }
1807  
getGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1808  GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1809    PointerType *PTy = dyn_cast<PointerType>(Ty);
1810    if (!PTy) {
1811      error(Loc, "global variable reference must have pointer type");
1812      return nullptr;
1813    }
1814  
1815    GlobalValue *Val = NumberedVals.get(ID);
1816  
1817    // If this is a forward reference for the value, see if we already created a
1818    // forward ref record.
1819    if (!Val) {
1820      auto I = ForwardRefValIDs.find(ID);
1821      if (I != ForwardRefValIDs.end())
1822        Val = I->second.first;
1823    }
1824  
1825    // If we have the value in the symbol table or fwd-ref table, return it.
1826    if (Val)
1827      return cast_or_null<GlobalValue>(
1828          checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1829  
1830    // Otherwise, create a new forward reference for this value and remember it.
1831    GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1832    ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1833    return FwdVal;
1834  }
1835  
1836  //===----------------------------------------------------------------------===//
1837  // Comdat Reference/Resolution Routines.
1838  //===----------------------------------------------------------------------===//
1839  
getComdat(const std::string & Name,LocTy Loc)1840  Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1841    // Look this name up in the comdat symbol table.
1842    Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1843    Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1844    if (I != ComdatSymTab.end())
1845      return &I->second;
1846  
1847    // Otherwise, create a new forward reference for this value and remember it.
1848    Comdat *C = M->getOrInsertComdat(Name);
1849    ForwardRefComdats[Name] = Loc;
1850    return C;
1851  }
1852  
1853  //===----------------------------------------------------------------------===//
1854  // Helper Routines.
1855  //===----------------------------------------------------------------------===//
1856  
1857  /// parseToken - If the current token has the specified kind, eat it and return
1858  /// success.  Otherwise, emit the specified error and return failure.
parseToken(lltok::Kind T,const char * ErrMsg)1859  bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1860    if (Lex.getKind() != T)
1861      return tokError(ErrMsg);
1862    Lex.Lex();
1863    return false;
1864  }
1865  
1866  /// parseStringConstant
1867  ///   ::= StringConstant
parseStringConstant(std::string & Result)1868  bool LLParser::parseStringConstant(std::string &Result) {
1869    if (Lex.getKind() != lltok::StringConstant)
1870      return tokError("expected string constant");
1871    Result = Lex.getStrVal();
1872    Lex.Lex();
1873    return false;
1874  }
1875  
1876  /// parseUInt32
1877  ///   ::= uint32
parseUInt32(uint32_t & Val)1878  bool LLParser::parseUInt32(uint32_t &Val) {
1879    if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1880      return tokError("expected integer");
1881    uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1882    if (Val64 != unsigned(Val64))
1883      return tokError("expected 32-bit integer (too large)");
1884    Val = Val64;
1885    Lex.Lex();
1886    return false;
1887  }
1888  
1889  /// parseUInt64
1890  ///   ::= uint64
parseUInt64(uint64_t & Val)1891  bool LLParser::parseUInt64(uint64_t &Val) {
1892    if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1893      return tokError("expected integer");
1894    Val = Lex.getAPSIntVal().getLimitedValue();
1895    Lex.Lex();
1896    return false;
1897  }
1898  
1899  /// parseTLSModel
1900  ///   := 'localdynamic'
1901  ///   := 'initialexec'
1902  ///   := 'localexec'
parseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1903  bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1904    switch (Lex.getKind()) {
1905      default:
1906        return tokError("expected localdynamic, initialexec or localexec");
1907      case lltok::kw_localdynamic:
1908        TLM = GlobalVariable::LocalDynamicTLSModel;
1909        break;
1910      case lltok::kw_initialexec:
1911        TLM = GlobalVariable::InitialExecTLSModel;
1912        break;
1913      case lltok::kw_localexec:
1914        TLM = GlobalVariable::LocalExecTLSModel;
1915        break;
1916    }
1917  
1918    Lex.Lex();
1919    return false;
1920  }
1921  
1922  /// parseOptionalThreadLocal
1923  ///   := /*empty*/
1924  ///   := 'thread_local'
1925  ///   := 'thread_local' '(' tlsmodel ')'
parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1926  bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1927    TLM = GlobalVariable::NotThreadLocal;
1928    if (!EatIfPresent(lltok::kw_thread_local))
1929      return false;
1930  
1931    TLM = GlobalVariable::GeneralDynamicTLSModel;
1932    if (Lex.getKind() == lltok::lparen) {
1933      Lex.Lex();
1934      return parseTLSModel(TLM) ||
1935             parseToken(lltok::rparen, "expected ')' after thread local model");
1936    }
1937    return false;
1938  }
1939  
1940  /// parseOptionalAddrSpace
1941  ///   := /*empty*/
1942  ///   := 'addrspace' '(' uint32 ')'
parseOptionalAddrSpace(unsigned & AddrSpace,unsigned DefaultAS)1943  bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1944    AddrSpace = DefaultAS;
1945    if (!EatIfPresent(lltok::kw_addrspace))
1946      return false;
1947  
1948    auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1949      if (Lex.getKind() == lltok::StringConstant) {
1950        auto AddrSpaceStr = Lex.getStrVal();
1951        if (AddrSpaceStr == "A") {
1952          AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1953        } else if (AddrSpaceStr == "G") {
1954          AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1955        } else if (AddrSpaceStr == "P") {
1956          AddrSpace = M->getDataLayout().getProgramAddressSpace();
1957        } else {
1958          return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'");
1959        }
1960        Lex.Lex();
1961        return false;
1962      }
1963      if (Lex.getKind() != lltok::APSInt)
1964        return tokError("expected integer or string constant");
1965      SMLoc Loc = Lex.getLoc();
1966      if (parseUInt32(AddrSpace))
1967        return true;
1968      if (!isUInt<24>(AddrSpace))
1969        return error(Loc, "invalid address space, must be a 24-bit integer");
1970      return false;
1971    };
1972  
1973    return parseToken(lltok::lparen, "expected '(' in address space") ||
1974           ParseAddrspaceValue(AddrSpace) ||
1975           parseToken(lltok::rparen, "expected ')' in address space");
1976  }
1977  
1978  /// parseStringAttribute
1979  ///   := StringConstant
1980  ///   := StringConstant '=' StringConstant
parseStringAttribute(AttrBuilder & B)1981  bool LLParser::parseStringAttribute(AttrBuilder &B) {
1982    std::string Attr = Lex.getStrVal();
1983    Lex.Lex();
1984    std::string Val;
1985    if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1986      return true;
1987    B.addAttribute(Attr, Val);
1988    return false;
1989  }
1990  
1991  /// Parse a potentially empty list of parameter or return attributes.
parseOptionalParamOrReturnAttrs(AttrBuilder & B,bool IsParam)1992  bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1993    bool HaveError = false;
1994  
1995    B.clear();
1996  
1997    while (true) {
1998      lltok::Kind Token = Lex.getKind();
1999      if (Token == lltok::StringConstant) {
2000        if (parseStringAttribute(B))
2001          return true;
2002        continue;
2003      }
2004  
2005      SMLoc Loc = Lex.getLoc();
2006      Attribute::AttrKind Attr = tokenToAttribute(Token);
2007      if (Attr == Attribute::None)
2008        return HaveError;
2009  
2010      if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
2011        return true;
2012  
2013      if (IsParam && !Attribute::canUseAsParamAttr(Attr))
2014        HaveError |= error(Loc, "this attribute does not apply to parameters");
2015      if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
2016        HaveError |= error(Loc, "this attribute does not apply to return values");
2017    }
2018  }
2019  
parseOptionalLinkageAux(lltok::Kind Kind,bool & HasLinkage)2020  static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
2021    HasLinkage = true;
2022    switch (Kind) {
2023    default:
2024      HasLinkage = false;
2025      return GlobalValue::ExternalLinkage;
2026    case lltok::kw_private:
2027      return GlobalValue::PrivateLinkage;
2028    case lltok::kw_internal:
2029      return GlobalValue::InternalLinkage;
2030    case lltok::kw_weak:
2031      return GlobalValue::WeakAnyLinkage;
2032    case lltok::kw_weak_odr:
2033      return GlobalValue::WeakODRLinkage;
2034    case lltok::kw_linkonce:
2035      return GlobalValue::LinkOnceAnyLinkage;
2036    case lltok::kw_linkonce_odr:
2037      return GlobalValue::LinkOnceODRLinkage;
2038    case lltok::kw_available_externally:
2039      return GlobalValue::AvailableExternallyLinkage;
2040    case lltok::kw_appending:
2041      return GlobalValue::AppendingLinkage;
2042    case lltok::kw_common:
2043      return GlobalValue::CommonLinkage;
2044    case lltok::kw_extern_weak:
2045      return GlobalValue::ExternalWeakLinkage;
2046    case lltok::kw_external:
2047      return GlobalValue::ExternalLinkage;
2048    }
2049  }
2050  
2051  /// parseOptionalLinkage
2052  ///   ::= /*empty*/
2053  ///   ::= 'private'
2054  ///   ::= 'internal'
2055  ///   ::= 'weak'
2056  ///   ::= 'weak_odr'
2057  ///   ::= 'linkonce'
2058  ///   ::= 'linkonce_odr'
2059  ///   ::= 'available_externally'
2060  ///   ::= 'appending'
2061  ///   ::= 'common'
2062  ///   ::= 'extern_weak'
2063  ///   ::= 'external'
parseOptionalLinkage(unsigned & Res,bool & HasLinkage,unsigned & Visibility,unsigned & DLLStorageClass,bool & DSOLocal)2064  bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2065                                      unsigned &Visibility,
2066                                      unsigned &DLLStorageClass, bool &DSOLocal) {
2067    Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2068    if (HasLinkage)
2069      Lex.Lex();
2070    parseOptionalDSOLocal(DSOLocal);
2071    parseOptionalVisibility(Visibility);
2072    parseOptionalDLLStorageClass(DLLStorageClass);
2073  
2074    if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2075      return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2076    }
2077  
2078    return false;
2079  }
2080  
parseOptionalDSOLocal(bool & DSOLocal)2081  void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2082    switch (Lex.getKind()) {
2083    default:
2084      DSOLocal = false;
2085      break;
2086    case lltok::kw_dso_local:
2087      DSOLocal = true;
2088      Lex.Lex();
2089      break;
2090    case lltok::kw_dso_preemptable:
2091      DSOLocal = false;
2092      Lex.Lex();
2093      break;
2094    }
2095  }
2096  
2097  /// parseOptionalVisibility
2098  ///   ::= /*empty*/
2099  ///   ::= 'default'
2100  ///   ::= 'hidden'
2101  ///   ::= 'protected'
2102  ///
parseOptionalVisibility(unsigned & Res)2103  void LLParser::parseOptionalVisibility(unsigned &Res) {
2104    switch (Lex.getKind()) {
2105    default:
2106      Res = GlobalValue::DefaultVisibility;
2107      return;
2108    case lltok::kw_default:
2109      Res = GlobalValue::DefaultVisibility;
2110      break;
2111    case lltok::kw_hidden:
2112      Res = GlobalValue::HiddenVisibility;
2113      break;
2114    case lltok::kw_protected:
2115      Res = GlobalValue::ProtectedVisibility;
2116      break;
2117    }
2118    Lex.Lex();
2119  }
2120  
parseOptionalImportType(lltok::Kind Kind,GlobalValueSummary::ImportKind & Res)2121  bool LLParser::parseOptionalImportType(lltok::Kind Kind,
2122                                         GlobalValueSummary::ImportKind &Res) {
2123    switch (Kind) {
2124    default:
2125      return tokError("unknown import kind. Expect definition or declaration.");
2126    case lltok::kw_definition:
2127      Res = GlobalValueSummary::Definition;
2128      return false;
2129    case lltok::kw_declaration:
2130      Res = GlobalValueSummary::Declaration;
2131      return false;
2132    }
2133  }
2134  
2135  /// parseOptionalDLLStorageClass
2136  ///   ::= /*empty*/
2137  ///   ::= 'dllimport'
2138  ///   ::= 'dllexport'
2139  ///
parseOptionalDLLStorageClass(unsigned & Res)2140  void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2141    switch (Lex.getKind()) {
2142    default:
2143      Res = GlobalValue::DefaultStorageClass;
2144      return;
2145    case lltok::kw_dllimport:
2146      Res = GlobalValue::DLLImportStorageClass;
2147      break;
2148    case lltok::kw_dllexport:
2149      Res = GlobalValue::DLLExportStorageClass;
2150      break;
2151    }
2152    Lex.Lex();
2153  }
2154  
2155  /// parseOptionalCallingConv
2156  ///   ::= /*empty*/
2157  ///   ::= 'ccc'
2158  ///   ::= 'fastcc'
2159  ///   ::= 'intel_ocl_bicc'
2160  ///   ::= 'coldcc'
2161  ///   ::= 'cfguard_checkcc'
2162  ///   ::= 'x86_stdcallcc'
2163  ///   ::= 'x86_fastcallcc'
2164  ///   ::= 'x86_thiscallcc'
2165  ///   ::= 'x86_vectorcallcc'
2166  ///   ::= 'arm_apcscc'
2167  ///   ::= 'arm_aapcscc'
2168  ///   ::= 'arm_aapcs_vfpcc'
2169  ///   ::= 'aarch64_vector_pcs'
2170  ///   ::= 'aarch64_sve_vector_pcs'
2171  ///   ::= 'aarch64_sme_preservemost_from_x0'
2172  ///   ::= 'aarch64_sme_preservemost_from_x1'
2173  ///   ::= 'aarch64_sme_preservemost_from_x2'
2174  ///   ::= 'msp430_intrcc'
2175  ///   ::= 'avr_intrcc'
2176  ///   ::= 'avr_signalcc'
2177  ///   ::= 'ptx_kernel'
2178  ///   ::= 'ptx_device'
2179  ///   ::= 'spir_func'
2180  ///   ::= 'spir_kernel'
2181  ///   ::= 'x86_64_sysvcc'
2182  ///   ::= 'win64cc'
2183  ///   ::= 'anyregcc'
2184  ///   ::= 'preserve_mostcc'
2185  ///   ::= 'preserve_allcc'
2186  ///   ::= 'preserve_nonecc'
2187  ///   ::= 'ghccc'
2188  ///   ::= 'swiftcc'
2189  ///   ::= 'swifttailcc'
2190  ///   ::= 'x86_intrcc'
2191  ///   ::= 'hhvmcc'
2192  ///   ::= 'hhvm_ccc'
2193  ///   ::= 'cxx_fast_tlscc'
2194  ///   ::= 'amdgpu_vs'
2195  ///   ::= 'amdgpu_ls'
2196  ///   ::= 'amdgpu_hs'
2197  ///   ::= 'amdgpu_es'
2198  ///   ::= 'amdgpu_gs'
2199  ///   ::= 'amdgpu_ps'
2200  ///   ::= 'amdgpu_cs'
2201  ///   ::= 'amdgpu_cs_chain'
2202  ///   ::= 'amdgpu_cs_chain_preserve'
2203  ///   ::= 'amdgpu_kernel'
2204  ///   ::= 'tailcc'
2205  ///   ::= 'm68k_rtdcc'
2206  ///   ::= 'graalcc'
2207  ///   ::= 'riscv_vector_cc'
2208  ///   ::= 'cc' UINT
2209  ///
parseOptionalCallingConv(unsigned & CC)2210  bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2211    switch (Lex.getKind()) {
2212    default:                       CC = CallingConv::C; return false;
2213    case lltok::kw_ccc:            CC = CallingConv::C; break;
2214    case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2215    case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2216    case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2217    case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2218    case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2219    case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2220    case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2221    case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2222    case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2223    case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2224    case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2225    case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2226    case lltok::kw_aarch64_sve_vector_pcs:
2227      CC = CallingConv::AArch64_SVE_VectorCall;
2228      break;
2229    case lltok::kw_aarch64_sme_preservemost_from_x0:
2230      CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2231      break;
2232    case lltok::kw_aarch64_sme_preservemost_from_x1:
2233      CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1;
2234      break;
2235    case lltok::kw_aarch64_sme_preservemost_from_x2:
2236      CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2237      break;
2238    case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2239    case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2240    case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2241    case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2242    case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2243    case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2244    case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2245    case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2246    case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2247    case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2248    case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2249    case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2250    case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2251    case lltok::kw_preserve_nonecc:CC = CallingConv::PreserveNone; break;
2252    case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2253    case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2254    case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2255    case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2256    case lltok::kw_hhvmcc:
2257      CC = CallingConv::DUMMY_HHVM;
2258      break;
2259    case lltok::kw_hhvm_ccc:
2260      CC = CallingConv::DUMMY_HHVM_C;
2261      break;
2262    case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2263    case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2264    case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2265    case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2266    case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2267    case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2268    case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2269    case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2270    case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2271    case lltok::kw_amdgpu_cs_chain:
2272      CC = CallingConv::AMDGPU_CS_Chain;
2273      break;
2274    case lltok::kw_amdgpu_cs_chain_preserve:
2275      CC = CallingConv::AMDGPU_CS_ChainPreserve;
2276      break;
2277    case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2278    case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2279    case lltok::kw_m68k_rtdcc:     CC = CallingConv::M68k_RTD; break;
2280    case lltok::kw_graalcc:        CC = CallingConv::GRAAL; break;
2281    case lltok::kw_riscv_vector_cc:
2282      CC = CallingConv::RISCV_VectorCall;
2283      break;
2284    case lltok::kw_cc: {
2285        Lex.Lex();
2286        return parseUInt32(CC);
2287      }
2288    }
2289  
2290    Lex.Lex();
2291    return false;
2292  }
2293  
2294  /// parseMetadataAttachment
2295  ///   ::= !dbg !42
parseMetadataAttachment(unsigned & Kind,MDNode * & MD)2296  bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2297    assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2298  
2299    std::string Name = Lex.getStrVal();
2300    Kind = M->getMDKindID(Name);
2301    Lex.Lex();
2302  
2303    return parseMDNode(MD);
2304  }
2305  
2306  /// parseInstructionMetadata
2307  ///   ::= !dbg !42 (',' !dbg !57)*
parseInstructionMetadata(Instruction & Inst)2308  bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2309    do {
2310      if (Lex.getKind() != lltok::MetadataVar)
2311        return tokError("expected metadata after comma");
2312  
2313      unsigned MDK;
2314      MDNode *N;
2315      if (parseMetadataAttachment(MDK, N))
2316        return true;
2317  
2318      if (MDK == LLVMContext::MD_DIAssignID)
2319        TempDIAssignIDAttachments[N].push_back(&Inst);
2320      else
2321        Inst.setMetadata(MDK, N);
2322  
2323      if (MDK == LLVMContext::MD_tbaa)
2324        InstsWithTBAATag.push_back(&Inst);
2325  
2326      // If this is the end of the list, we're done.
2327    } while (EatIfPresent(lltok::comma));
2328    return false;
2329  }
2330  
2331  /// parseGlobalObjectMetadataAttachment
2332  ///   ::= !dbg !57
parseGlobalObjectMetadataAttachment(GlobalObject & GO)2333  bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2334    unsigned MDK;
2335    MDNode *N;
2336    if (parseMetadataAttachment(MDK, N))
2337      return true;
2338  
2339    GO.addMetadata(MDK, *N);
2340    return false;
2341  }
2342  
2343  /// parseOptionalFunctionMetadata
2344  ///   ::= (!dbg !57)*
parseOptionalFunctionMetadata(Function & F)2345  bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2346    while (Lex.getKind() == lltok::MetadataVar)
2347      if (parseGlobalObjectMetadataAttachment(F))
2348        return true;
2349    return false;
2350  }
2351  
2352  /// parseOptionalAlignment
2353  ///   ::= /* empty */
2354  ///   ::= 'align' 4
parseOptionalAlignment(MaybeAlign & Alignment,bool AllowParens)2355  bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2356    Alignment = std::nullopt;
2357    if (!EatIfPresent(lltok::kw_align))
2358      return false;
2359    LocTy AlignLoc = Lex.getLoc();
2360    uint64_t Value = 0;
2361  
2362    LocTy ParenLoc = Lex.getLoc();
2363    bool HaveParens = false;
2364    if (AllowParens) {
2365      if (EatIfPresent(lltok::lparen))
2366        HaveParens = true;
2367    }
2368  
2369    if (parseUInt64(Value))
2370      return true;
2371  
2372    if (HaveParens && !EatIfPresent(lltok::rparen))
2373      return error(ParenLoc, "expected ')'");
2374  
2375    if (!isPowerOf2_64(Value))
2376      return error(AlignLoc, "alignment is not a power of two");
2377    if (Value > Value::MaximumAlignment)
2378      return error(AlignLoc, "huge alignments are not supported yet");
2379    Alignment = Align(Value);
2380    return false;
2381  }
2382  
2383  /// parseOptionalCodeModel
2384  ///   ::= /* empty */
2385  ///   ::= 'code_model' "large"
parseOptionalCodeModel(CodeModel::Model & model)2386  bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) {
2387    Lex.Lex();
2388    auto StrVal = Lex.getStrVal();
2389    auto ErrMsg = "expected global code model string";
2390    if (StrVal == "tiny")
2391      model = CodeModel::Tiny;
2392    else if (StrVal == "small")
2393      model = CodeModel::Small;
2394    else if (StrVal == "kernel")
2395      model = CodeModel::Kernel;
2396    else if (StrVal == "medium")
2397      model = CodeModel::Medium;
2398    else if (StrVal == "large")
2399      model = CodeModel::Large;
2400    else
2401      return tokError(ErrMsg);
2402    if (parseToken(lltok::StringConstant, ErrMsg))
2403      return true;
2404    return false;
2405  }
2406  
2407  /// parseOptionalDerefAttrBytes
2408  ///   ::= /* empty */
2409  ///   ::= AttrKind '(' 4 ')'
2410  ///
2411  /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
parseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)2412  bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2413                                             uint64_t &Bytes) {
2414    assert((AttrKind == lltok::kw_dereferenceable ||
2415            AttrKind == lltok::kw_dereferenceable_or_null) &&
2416           "contract!");
2417  
2418    Bytes = 0;
2419    if (!EatIfPresent(AttrKind))
2420      return false;
2421    LocTy ParenLoc = Lex.getLoc();
2422    if (!EatIfPresent(lltok::lparen))
2423      return error(ParenLoc, "expected '('");
2424    LocTy DerefLoc = Lex.getLoc();
2425    if (parseUInt64(Bytes))
2426      return true;
2427    ParenLoc = Lex.getLoc();
2428    if (!EatIfPresent(lltok::rparen))
2429      return error(ParenLoc, "expected ')'");
2430    if (!Bytes)
2431      return error(DerefLoc, "dereferenceable bytes must be non-zero");
2432    return false;
2433  }
2434  
parseOptionalUWTableKind(UWTableKind & Kind)2435  bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2436    Lex.Lex();
2437    Kind = UWTableKind::Default;
2438    if (!EatIfPresent(lltok::lparen))
2439      return false;
2440    LocTy KindLoc = Lex.getLoc();
2441    if (Lex.getKind() == lltok::kw_sync)
2442      Kind = UWTableKind::Sync;
2443    else if (Lex.getKind() == lltok::kw_async)
2444      Kind = UWTableKind::Async;
2445    else
2446      return error(KindLoc, "expected unwind table kind");
2447    Lex.Lex();
2448    return parseToken(lltok::rparen, "expected ')'");
2449  }
2450  
parseAllocKind(AllocFnKind & Kind)2451  bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2452    Lex.Lex();
2453    LocTy ParenLoc = Lex.getLoc();
2454    if (!EatIfPresent(lltok::lparen))
2455      return error(ParenLoc, "expected '('");
2456    LocTy KindLoc = Lex.getLoc();
2457    std::string Arg;
2458    if (parseStringConstant(Arg))
2459      return error(KindLoc, "expected allockind value");
2460    for (StringRef A : llvm::split(Arg, ",")) {
2461      if (A == "alloc") {
2462        Kind |= AllocFnKind::Alloc;
2463      } else if (A == "realloc") {
2464        Kind |= AllocFnKind::Realloc;
2465      } else if (A == "free") {
2466        Kind |= AllocFnKind::Free;
2467      } else if (A == "uninitialized") {
2468        Kind |= AllocFnKind::Uninitialized;
2469      } else if (A == "zeroed") {
2470        Kind |= AllocFnKind::Zeroed;
2471      } else if (A == "aligned") {
2472        Kind |= AllocFnKind::Aligned;
2473      } else {
2474        return error(KindLoc, Twine("unknown allockind ") + A);
2475      }
2476    }
2477    ParenLoc = Lex.getLoc();
2478    if (!EatIfPresent(lltok::rparen))
2479      return error(ParenLoc, "expected ')'");
2480    if (Kind == AllocFnKind::Unknown)
2481      return error(KindLoc, "expected allockind value");
2482    return false;
2483  }
2484  
keywordToLoc(lltok::Kind Tok)2485  static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2486    switch (Tok) {
2487    case lltok::kw_argmem:
2488      return IRMemLocation::ArgMem;
2489    case lltok::kw_inaccessiblemem:
2490      return IRMemLocation::InaccessibleMem;
2491    default:
2492      return std::nullopt;
2493    }
2494  }
2495  
keywordToModRef(lltok::Kind Tok)2496  static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2497    switch (Tok) {
2498    case lltok::kw_none:
2499      return ModRefInfo::NoModRef;
2500    case lltok::kw_read:
2501      return ModRefInfo::Ref;
2502    case lltok::kw_write:
2503      return ModRefInfo::Mod;
2504    case lltok::kw_readwrite:
2505      return ModRefInfo::ModRef;
2506    default:
2507      return std::nullopt;
2508    }
2509  }
2510  
parseMemoryAttr()2511  std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2512    MemoryEffects ME = MemoryEffects::none();
2513  
2514    // We use syntax like memory(argmem: read), so the colon should not be
2515    // interpreted as a label terminator.
2516    Lex.setIgnoreColonInIdentifiers(true);
2517    auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); });
2518  
2519    Lex.Lex();
2520    if (!EatIfPresent(lltok::lparen)) {
2521      tokError("expected '('");
2522      return std::nullopt;
2523    }
2524  
2525    bool SeenLoc = false;
2526    do {
2527      std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind());
2528      if (Loc) {
2529        Lex.Lex();
2530        if (!EatIfPresent(lltok::colon)) {
2531          tokError("expected ':' after location");
2532          return std::nullopt;
2533        }
2534      }
2535  
2536      std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind());
2537      if (!MR) {
2538        if (!Loc)
2539          tokError("expected memory location (argmem, inaccessiblemem) "
2540                   "or access kind (none, read, write, readwrite)");
2541        else
2542          tokError("expected access kind (none, read, write, readwrite)");
2543        return std::nullopt;
2544      }
2545  
2546      Lex.Lex();
2547      if (Loc) {
2548        SeenLoc = true;
2549        ME = ME.getWithModRef(*Loc, *MR);
2550      } else {
2551        if (SeenLoc) {
2552          tokError("default access kind must be specified first");
2553          return std::nullopt;
2554        }
2555        ME = MemoryEffects(*MR);
2556      }
2557  
2558      if (EatIfPresent(lltok::rparen))
2559        return ME;
2560    } while (EatIfPresent(lltok::comma));
2561  
2562    tokError("unterminated memory attribute");
2563    return std::nullopt;
2564  }
2565  
keywordToFPClassTest(lltok::Kind Tok)2566  static unsigned keywordToFPClassTest(lltok::Kind Tok) {
2567    switch (Tok) {
2568    case lltok::kw_all:
2569      return fcAllFlags;
2570    case lltok::kw_nan:
2571      return fcNan;
2572    case lltok::kw_snan:
2573      return fcSNan;
2574    case lltok::kw_qnan:
2575      return fcQNan;
2576    case lltok::kw_inf:
2577      return fcInf;
2578    case lltok::kw_ninf:
2579      return fcNegInf;
2580    case lltok::kw_pinf:
2581      return fcPosInf;
2582    case lltok::kw_norm:
2583      return fcNormal;
2584    case lltok::kw_nnorm:
2585      return fcNegNormal;
2586    case lltok::kw_pnorm:
2587      return fcPosNormal;
2588    case lltok::kw_sub:
2589      return fcSubnormal;
2590    case lltok::kw_nsub:
2591      return fcNegSubnormal;
2592    case lltok::kw_psub:
2593      return fcPosSubnormal;
2594    case lltok::kw_zero:
2595      return fcZero;
2596    case lltok::kw_nzero:
2597      return fcNegZero;
2598    case lltok::kw_pzero:
2599      return fcPosZero;
2600    default:
2601      return 0;
2602    }
2603  }
2604  
parseNoFPClassAttr()2605  unsigned LLParser::parseNoFPClassAttr() {
2606    unsigned Mask = fcNone;
2607  
2608    Lex.Lex();
2609    if (!EatIfPresent(lltok::lparen)) {
2610      tokError("expected '('");
2611      return 0;
2612    }
2613  
2614    do {
2615      uint64_t Value = 0;
2616      unsigned TestMask = keywordToFPClassTest(Lex.getKind());
2617      if (TestMask != 0) {
2618        Mask |= TestMask;
2619        // TODO: Disallow overlapping masks to avoid copy paste errors
2620      } else if (Mask == 0 && Lex.getKind() == lltok::APSInt &&
2621                 !parseUInt64(Value)) {
2622        if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) {
2623          error(Lex.getLoc(), "invalid mask value for 'nofpclass'");
2624          return 0;
2625        }
2626  
2627        if (!EatIfPresent(lltok::rparen)) {
2628          error(Lex.getLoc(), "expected ')'");
2629          return 0;
2630        }
2631  
2632        return Value;
2633      } else {
2634        error(Lex.getLoc(), "expected nofpclass test mask");
2635        return 0;
2636      }
2637  
2638      Lex.Lex();
2639      if (EatIfPresent(lltok::rparen))
2640        return Mask;
2641    } while (1);
2642  
2643    llvm_unreachable("unterminated nofpclass attribute");
2644  }
2645  
2646  /// parseOptionalCommaAlign
2647  ///   ::=
2648  ///   ::= ',' align 4
2649  ///
2650  /// This returns with AteExtraComma set to true if it ate an excess comma at the
2651  /// end.
parseOptionalCommaAlign(MaybeAlign & Alignment,bool & AteExtraComma)2652  bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2653                                         bool &AteExtraComma) {
2654    AteExtraComma = false;
2655    while (EatIfPresent(lltok::comma)) {
2656      // Metadata at the end is an early exit.
2657      if (Lex.getKind() == lltok::MetadataVar) {
2658        AteExtraComma = true;
2659        return false;
2660      }
2661  
2662      if (Lex.getKind() != lltok::kw_align)
2663        return error(Lex.getLoc(), "expected metadata or 'align'");
2664  
2665      if (parseOptionalAlignment(Alignment))
2666        return true;
2667    }
2668  
2669    return false;
2670  }
2671  
2672  /// parseOptionalCommaAddrSpace
2673  ///   ::=
2674  ///   ::= ',' addrspace(1)
2675  ///
2676  /// This returns with AteExtraComma set to true if it ate an excess comma at the
2677  /// end.
parseOptionalCommaAddrSpace(unsigned & AddrSpace,LocTy & Loc,bool & AteExtraComma)2678  bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2679                                             bool &AteExtraComma) {
2680    AteExtraComma = false;
2681    while (EatIfPresent(lltok::comma)) {
2682      // Metadata at the end is an early exit.
2683      if (Lex.getKind() == lltok::MetadataVar) {
2684        AteExtraComma = true;
2685        return false;
2686      }
2687  
2688      Loc = Lex.getLoc();
2689      if (Lex.getKind() != lltok::kw_addrspace)
2690        return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2691  
2692      if (parseOptionalAddrSpace(AddrSpace))
2693        return true;
2694    }
2695  
2696    return false;
2697  }
2698  
parseAllocSizeArguments(unsigned & BaseSizeArg,std::optional<unsigned> & HowManyArg)2699  bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2700                                         std::optional<unsigned> &HowManyArg) {
2701    Lex.Lex();
2702  
2703    auto StartParen = Lex.getLoc();
2704    if (!EatIfPresent(lltok::lparen))
2705      return error(StartParen, "expected '('");
2706  
2707    if (parseUInt32(BaseSizeArg))
2708      return true;
2709  
2710    if (EatIfPresent(lltok::comma)) {
2711      auto HowManyAt = Lex.getLoc();
2712      unsigned HowMany;
2713      if (parseUInt32(HowMany))
2714        return true;
2715      if (HowMany == BaseSizeArg)
2716        return error(HowManyAt,
2717                     "'allocsize' indices can't refer to the same parameter");
2718      HowManyArg = HowMany;
2719    } else
2720      HowManyArg = std::nullopt;
2721  
2722    auto EndParen = Lex.getLoc();
2723    if (!EatIfPresent(lltok::rparen))
2724      return error(EndParen, "expected ')'");
2725    return false;
2726  }
2727  
parseVScaleRangeArguments(unsigned & MinValue,unsigned & MaxValue)2728  bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2729                                           unsigned &MaxValue) {
2730    Lex.Lex();
2731  
2732    auto StartParen = Lex.getLoc();
2733    if (!EatIfPresent(lltok::lparen))
2734      return error(StartParen, "expected '('");
2735  
2736    if (parseUInt32(MinValue))
2737      return true;
2738  
2739    if (EatIfPresent(lltok::comma)) {
2740      if (parseUInt32(MaxValue))
2741        return true;
2742    } else
2743      MaxValue = MinValue;
2744  
2745    auto EndParen = Lex.getLoc();
2746    if (!EatIfPresent(lltok::rparen))
2747      return error(EndParen, "expected ')'");
2748    return false;
2749  }
2750  
2751  /// parseScopeAndOrdering
2752  ///   if isAtomic: ::= SyncScope? AtomicOrdering
2753  ///   else: ::=
2754  ///
2755  /// This sets Scope and Ordering to the parsed values.
parseScopeAndOrdering(bool IsAtomic,SyncScope::ID & SSID,AtomicOrdering & Ordering)2756  bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2757                                       AtomicOrdering &Ordering) {
2758    if (!IsAtomic)
2759      return false;
2760  
2761    return parseScope(SSID) || parseOrdering(Ordering);
2762  }
2763  
2764  /// parseScope
2765  ///   ::= syncscope("singlethread" | "<target scope>")?
2766  ///
2767  /// This sets synchronization scope ID to the ID of the parsed value.
parseScope(SyncScope::ID & SSID)2768  bool LLParser::parseScope(SyncScope::ID &SSID) {
2769    SSID = SyncScope::System;
2770    if (EatIfPresent(lltok::kw_syncscope)) {
2771      auto StartParenAt = Lex.getLoc();
2772      if (!EatIfPresent(lltok::lparen))
2773        return error(StartParenAt, "Expected '(' in syncscope");
2774  
2775      std::string SSN;
2776      auto SSNAt = Lex.getLoc();
2777      if (parseStringConstant(SSN))
2778        return error(SSNAt, "Expected synchronization scope name");
2779  
2780      auto EndParenAt = Lex.getLoc();
2781      if (!EatIfPresent(lltok::rparen))
2782        return error(EndParenAt, "Expected ')' in syncscope");
2783  
2784      SSID = Context.getOrInsertSyncScopeID(SSN);
2785    }
2786  
2787    return false;
2788  }
2789  
2790  /// parseOrdering
2791  ///   ::= AtomicOrdering
2792  ///
2793  /// This sets Ordering to the parsed value.
parseOrdering(AtomicOrdering & Ordering)2794  bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2795    switch (Lex.getKind()) {
2796    default:
2797      return tokError("Expected ordering on atomic instruction");
2798    case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2799    case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2800    // Not specified yet:
2801    // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2802    case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2803    case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2804    case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2805    case lltok::kw_seq_cst:
2806      Ordering = AtomicOrdering::SequentiallyConsistent;
2807      break;
2808    }
2809    Lex.Lex();
2810    return false;
2811  }
2812  
2813  /// parseOptionalStackAlignment
2814  ///   ::= /* empty */
2815  ///   ::= 'alignstack' '(' 4 ')'
parseOptionalStackAlignment(unsigned & Alignment)2816  bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2817    Alignment = 0;
2818    if (!EatIfPresent(lltok::kw_alignstack))
2819      return false;
2820    LocTy ParenLoc = Lex.getLoc();
2821    if (!EatIfPresent(lltok::lparen))
2822      return error(ParenLoc, "expected '('");
2823    LocTy AlignLoc = Lex.getLoc();
2824    if (parseUInt32(Alignment))
2825      return true;
2826    ParenLoc = Lex.getLoc();
2827    if (!EatIfPresent(lltok::rparen))
2828      return error(ParenLoc, "expected ')'");
2829    if (!isPowerOf2_32(Alignment))
2830      return error(AlignLoc, "stack alignment is not a power of two");
2831    return false;
2832  }
2833  
2834  /// parseIndexList - This parses the index list for an insert/extractvalue
2835  /// instruction.  This sets AteExtraComma in the case where we eat an extra
2836  /// comma at the end of the line and find that it is followed by metadata.
2837  /// Clients that don't allow metadata can call the version of this function that
2838  /// only takes one argument.
2839  ///
2840  /// parseIndexList
2841  ///    ::=  (',' uint32)+
2842  ///
parseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)2843  bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2844                                bool &AteExtraComma) {
2845    AteExtraComma = false;
2846  
2847    if (Lex.getKind() != lltok::comma)
2848      return tokError("expected ',' as start of index list");
2849  
2850    while (EatIfPresent(lltok::comma)) {
2851      if (Lex.getKind() == lltok::MetadataVar) {
2852        if (Indices.empty())
2853          return tokError("expected index");
2854        AteExtraComma = true;
2855        return false;
2856      }
2857      unsigned Idx = 0;
2858      if (parseUInt32(Idx))
2859        return true;
2860      Indices.push_back(Idx);
2861    }
2862  
2863    return false;
2864  }
2865  
2866  //===----------------------------------------------------------------------===//
2867  // Type Parsing.
2868  //===----------------------------------------------------------------------===//
2869  
2870  /// parseType - parse a type.
parseType(Type * & Result,const Twine & Msg,bool AllowVoid)2871  bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2872    SMLoc TypeLoc = Lex.getLoc();
2873    switch (Lex.getKind()) {
2874    default:
2875      return tokError(Msg);
2876    case lltok::Type:
2877      // Type ::= 'float' | 'void' (etc)
2878      Result = Lex.getTyVal();
2879      Lex.Lex();
2880  
2881      // Handle "ptr" opaque pointer type.
2882      //
2883      // Type ::= ptr ('addrspace' '(' uint32 ')')?
2884      if (Result->isPointerTy()) {
2885        unsigned AddrSpace;
2886        if (parseOptionalAddrSpace(AddrSpace))
2887          return true;
2888        Result = PointerType::get(getContext(), AddrSpace);
2889  
2890        // Give a nice error for 'ptr*'.
2891        if (Lex.getKind() == lltok::star)
2892          return tokError("ptr* is invalid - use ptr instead");
2893  
2894        // Fall through to parsing the type suffixes only if this 'ptr' is a
2895        // function return. Otherwise, return success, implicitly rejecting other
2896        // suffixes.
2897        if (Lex.getKind() != lltok::lparen)
2898          return false;
2899      }
2900      break;
2901    case lltok::kw_target: {
2902      // Type ::= TargetExtType
2903      if (parseTargetExtType(Result))
2904        return true;
2905      break;
2906    }
2907    case lltok::lbrace:
2908      // Type ::= StructType
2909      if (parseAnonStructType(Result, false))
2910        return true;
2911      break;
2912    case lltok::lsquare:
2913      // Type ::= '[' ... ']'
2914      Lex.Lex(); // eat the lsquare.
2915      if (parseArrayVectorType(Result, false))
2916        return true;
2917      break;
2918    case lltok::less: // Either vector or packed struct.
2919      // Type ::= '<' ... '>'
2920      Lex.Lex();
2921      if (Lex.getKind() == lltok::lbrace) {
2922        if (parseAnonStructType(Result, true) ||
2923            parseToken(lltok::greater, "expected '>' at end of packed struct"))
2924          return true;
2925      } else if (parseArrayVectorType(Result, true))
2926        return true;
2927      break;
2928    case lltok::LocalVar: {
2929      // Type ::= %foo
2930      std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2931  
2932      // If the type hasn't been defined yet, create a forward definition and
2933      // remember where that forward def'n was seen (in case it never is defined).
2934      if (!Entry.first) {
2935        Entry.first = StructType::create(Context, Lex.getStrVal());
2936        Entry.second = Lex.getLoc();
2937      }
2938      Result = Entry.first;
2939      Lex.Lex();
2940      break;
2941    }
2942  
2943    case lltok::LocalVarID: {
2944      // Type ::= %4
2945      std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2946  
2947      // If the type hasn't been defined yet, create a forward definition and
2948      // remember where that forward def'n was seen (in case it never is defined).
2949      if (!Entry.first) {
2950        Entry.first = StructType::create(Context);
2951        Entry.second = Lex.getLoc();
2952      }
2953      Result = Entry.first;
2954      Lex.Lex();
2955      break;
2956    }
2957    }
2958  
2959    // parse the type suffixes.
2960    while (true) {
2961      switch (Lex.getKind()) {
2962      // End of type.
2963      default:
2964        if (!AllowVoid && Result->isVoidTy())
2965          return error(TypeLoc, "void type only allowed for function results");
2966        return false;
2967  
2968      // Type ::= Type '*'
2969      case lltok::star:
2970        if (Result->isLabelTy())
2971          return tokError("basic block pointers are invalid");
2972        if (Result->isVoidTy())
2973          return tokError("pointers to void are invalid - use i8* instead");
2974        if (!PointerType::isValidElementType(Result))
2975          return tokError("pointer to this type is invalid");
2976        Result = PointerType::getUnqual(Result);
2977        Lex.Lex();
2978        break;
2979  
2980      // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2981      case lltok::kw_addrspace: {
2982        if (Result->isLabelTy())
2983          return tokError("basic block pointers are invalid");
2984        if (Result->isVoidTy())
2985          return tokError("pointers to void are invalid; use i8* instead");
2986        if (!PointerType::isValidElementType(Result))
2987          return tokError("pointer to this type is invalid");
2988        unsigned AddrSpace;
2989        if (parseOptionalAddrSpace(AddrSpace) ||
2990            parseToken(lltok::star, "expected '*' in address space"))
2991          return true;
2992  
2993        Result = PointerType::get(Result, AddrSpace);
2994        break;
2995      }
2996  
2997      /// Types '(' ArgTypeListI ')' OptFuncAttrs
2998      case lltok::lparen:
2999        if (parseFunctionType(Result))
3000          return true;
3001        break;
3002      }
3003    }
3004  }
3005  
3006  /// parseParameterList
3007  ///    ::= '(' ')'
3008  ///    ::= '(' Arg (',' Arg)* ')'
3009  ///  Arg
3010  ///    ::= Type OptionalAttributes Value OptionalAttributes
parseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)3011  bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
3012                                    PerFunctionState &PFS, bool IsMustTailCall,
3013                                    bool InVarArgsFunc) {
3014    if (parseToken(lltok::lparen, "expected '(' in call"))
3015      return true;
3016  
3017    while (Lex.getKind() != lltok::rparen) {
3018      // If this isn't the first argument, we need a comma.
3019      if (!ArgList.empty() &&
3020          parseToken(lltok::comma, "expected ',' in argument list"))
3021        return true;
3022  
3023      // parse an ellipsis if this is a musttail call in a variadic function.
3024      if (Lex.getKind() == lltok::dotdotdot) {
3025        const char *Msg = "unexpected ellipsis in argument list for ";
3026        if (!IsMustTailCall)
3027          return tokError(Twine(Msg) + "non-musttail call");
3028        if (!InVarArgsFunc)
3029          return tokError(Twine(Msg) + "musttail call in non-varargs function");
3030        Lex.Lex();  // Lex the '...', it is purely for readability.
3031        return parseToken(lltok::rparen, "expected ')' at end of argument list");
3032      }
3033  
3034      // parse the argument.
3035      LocTy ArgLoc;
3036      Type *ArgTy = nullptr;
3037      Value *V;
3038      if (parseType(ArgTy, ArgLoc))
3039        return true;
3040  
3041      AttrBuilder ArgAttrs(M->getContext());
3042  
3043      if (ArgTy->isMetadataTy()) {
3044        if (parseMetadataAsValue(V, PFS))
3045          return true;
3046      } else {
3047        // Otherwise, handle normal operands.
3048        if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
3049          return true;
3050      }
3051      ArgList.push_back(ParamInfo(
3052          ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
3053    }
3054  
3055    if (IsMustTailCall && InVarArgsFunc)
3056      return tokError("expected '...' at end of argument list for musttail call "
3057                      "in varargs function");
3058  
3059    Lex.Lex();  // Lex the ')'.
3060    return false;
3061  }
3062  
3063  /// parseRequiredTypeAttr
3064  ///   ::= attrname(<ty>)
parseRequiredTypeAttr(AttrBuilder & B,lltok::Kind AttrToken,Attribute::AttrKind AttrKind)3065  bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
3066                                       Attribute::AttrKind AttrKind) {
3067    Type *Ty = nullptr;
3068    if (!EatIfPresent(AttrToken))
3069      return true;
3070    if (!EatIfPresent(lltok::lparen))
3071      return error(Lex.getLoc(), "expected '('");
3072    if (parseType(Ty))
3073      return true;
3074    if (!EatIfPresent(lltok::rparen))
3075      return error(Lex.getLoc(), "expected ')'");
3076  
3077    B.addTypeAttr(AttrKind, Ty);
3078    return false;
3079  }
3080  
3081  /// parseRangeAttr
3082  ///   ::= range(<ty> <n>,<n>)
parseRangeAttr(AttrBuilder & B)3083  bool LLParser::parseRangeAttr(AttrBuilder &B) {
3084    Lex.Lex();
3085  
3086    APInt Lower;
3087    APInt Upper;
3088    Type *Ty = nullptr;
3089    LocTy TyLoc;
3090  
3091    auto ParseAPSInt = [&](unsigned BitWidth, APInt &Val) {
3092      if (Lex.getKind() != lltok::APSInt)
3093        return tokError("expected integer");
3094      if (Lex.getAPSIntVal().getBitWidth() > BitWidth)
3095        return tokError(
3096            "integer is too large for the bit width of specified type");
3097      Val = Lex.getAPSIntVal().extend(BitWidth);
3098      Lex.Lex();
3099      return false;
3100    };
3101  
3102    if (parseToken(lltok::lparen, "expected '('") || parseType(Ty, TyLoc))
3103      return true;
3104    if (!Ty->isIntegerTy())
3105      return error(TyLoc, "the range must have integer type!");
3106  
3107    unsigned BitWidth = Ty->getPrimitiveSizeInBits();
3108  
3109    if (ParseAPSInt(BitWidth, Lower) ||
3110        parseToken(lltok::comma, "expected ','") || ParseAPSInt(BitWidth, Upper))
3111      return true;
3112    if (Lower == Upper)
3113      return tokError("the range should not represent the full or empty set!");
3114  
3115    if (parseToken(lltok::rparen, "expected ')'"))
3116      return true;
3117  
3118    B.addRangeAttr(ConstantRange(Lower, Upper));
3119    return false;
3120  }
3121  
3122  /// parseInitializesAttr
3123  ///   ::= initializes((Lo1,Hi1),(Lo2,Hi2),...)
parseInitializesAttr(AttrBuilder & B)3124  bool LLParser::parseInitializesAttr(AttrBuilder &B) {
3125    Lex.Lex();
3126  
3127    auto ParseAPSInt = [&](APInt &Val) {
3128      if (Lex.getKind() != lltok::APSInt)
3129        return tokError("expected integer");
3130      Val = Lex.getAPSIntVal().extend(64);
3131      Lex.Lex();
3132      return false;
3133    };
3134  
3135    if (parseToken(lltok::lparen, "expected '('"))
3136      return true;
3137  
3138    SmallVector<ConstantRange, 2> RangeList;
3139    // Parse each constant range.
3140    do {
3141      APInt Lower, Upper;
3142      if (parseToken(lltok::lparen, "expected '('"))
3143        return true;
3144  
3145      if (ParseAPSInt(Lower) || parseToken(lltok::comma, "expected ','") ||
3146          ParseAPSInt(Upper))
3147        return true;
3148  
3149      if (Lower == Upper)
3150        return tokError("the range should not represent the full or empty set!");
3151  
3152      if (parseToken(lltok::rparen, "expected ')'"))
3153        return true;
3154  
3155      RangeList.push_back(ConstantRange(Lower, Upper));
3156    } while (EatIfPresent(lltok::comma));
3157  
3158    if (parseToken(lltok::rparen, "expected ')'"))
3159      return true;
3160  
3161    auto CRLOrNull = ConstantRangeList::getConstantRangeList(RangeList);
3162    if (!CRLOrNull.has_value())
3163      return tokError("Invalid (unordered or overlapping) range list");
3164    B.addInitializesAttr(*CRLOrNull);
3165    return false;
3166  }
3167  
3168  /// parseOptionalOperandBundles
3169  ///    ::= /*empty*/
3170  ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
3171  ///
3172  /// OperandBundle
3173  ///    ::= bundle-tag '(' ')'
3174  ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
3175  ///
3176  /// bundle-tag ::= String Constant
parseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> & BundleList,PerFunctionState & PFS)3177  bool LLParser::parseOptionalOperandBundles(
3178      SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
3179    LocTy BeginLoc = Lex.getLoc();
3180    if (!EatIfPresent(lltok::lsquare))
3181      return false;
3182  
3183    while (Lex.getKind() != lltok::rsquare) {
3184      // If this isn't the first operand bundle, we need a comma.
3185      if (!BundleList.empty() &&
3186          parseToken(lltok::comma, "expected ',' in input list"))
3187        return true;
3188  
3189      std::string Tag;
3190      if (parseStringConstant(Tag))
3191        return true;
3192  
3193      if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
3194        return true;
3195  
3196      std::vector<Value *> Inputs;
3197      while (Lex.getKind() != lltok::rparen) {
3198        // If this isn't the first input, we need a comma.
3199        if (!Inputs.empty() &&
3200            parseToken(lltok::comma, "expected ',' in input list"))
3201          return true;
3202  
3203        Type *Ty = nullptr;
3204        Value *Input = nullptr;
3205        if (parseType(Ty) || parseValue(Ty, Input, PFS))
3206          return true;
3207        Inputs.push_back(Input);
3208      }
3209  
3210      BundleList.emplace_back(std::move(Tag), std::move(Inputs));
3211  
3212      Lex.Lex(); // Lex the ')'.
3213    }
3214  
3215    if (BundleList.empty())
3216      return error(BeginLoc, "operand bundle set must not be empty");
3217  
3218    Lex.Lex(); // Lex the ']'.
3219    return false;
3220  }
3221  
checkValueID(LocTy Loc,StringRef Kind,StringRef Prefix,unsigned NextID,unsigned ID) const3222  bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix,
3223                              unsigned NextID, unsigned ID) const {
3224    if (ID < NextID)
3225      return error(Loc, Kind + " expected to be numbered '" + Prefix +
3226                            Twine(NextID) + "' or greater");
3227  
3228    return false;
3229  }
3230  
3231  /// parseArgumentList - parse the argument list for a function type or function
3232  /// prototype.
3233  ///   ::= '(' ArgTypeListI ')'
3234  /// ArgTypeListI
3235  ///   ::= /*empty*/
3236  ///   ::= '...'
3237  ///   ::= ArgTypeList ',' '...'
3238  ///   ::= ArgType (',' ArgType)*
3239  ///
parseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,SmallVectorImpl<unsigned> & UnnamedArgNums,bool & IsVarArg)3240  bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
3241                                   SmallVectorImpl<unsigned> &UnnamedArgNums,
3242                                   bool &IsVarArg) {
3243    unsigned CurValID = 0;
3244    IsVarArg = false;
3245    assert(Lex.getKind() == lltok::lparen);
3246    Lex.Lex(); // eat the (.
3247  
3248    if (Lex.getKind() != lltok::rparen) {
3249      do {
3250        // Handle ... at end of arg list.
3251        if (EatIfPresent(lltok::dotdotdot)) {
3252          IsVarArg = true;
3253          break;
3254        }
3255  
3256        // Otherwise must be an argument type.
3257        LocTy TypeLoc = Lex.getLoc();
3258        Type *ArgTy = nullptr;
3259        AttrBuilder Attrs(M->getContext());
3260        if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
3261          return true;
3262  
3263        if (ArgTy->isVoidTy())
3264          return error(TypeLoc, "argument can not have void type");
3265  
3266        std::string Name;
3267        if (Lex.getKind() == lltok::LocalVar) {
3268          Name = Lex.getStrVal();
3269          Lex.Lex();
3270        } else {
3271          unsigned ArgID;
3272          if (Lex.getKind() == lltok::LocalVarID) {
3273            ArgID = Lex.getUIntVal();
3274            if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID))
3275              return true;
3276            Lex.Lex();
3277          } else {
3278            ArgID = CurValID;
3279          }
3280          UnnamedArgNums.push_back(ArgID);
3281          CurValID = ArgID + 1;
3282        }
3283  
3284        if (!ArgTy->isFirstClassType())
3285          return error(TypeLoc, "invalid type for function argument");
3286  
3287        ArgList.emplace_back(TypeLoc, ArgTy,
3288                             AttributeSet::get(ArgTy->getContext(), Attrs),
3289                             std::move(Name));
3290      } while (EatIfPresent(lltok::comma));
3291    }
3292  
3293    return parseToken(lltok::rparen, "expected ')' at end of argument list");
3294  }
3295  
3296  /// parseFunctionType
3297  ///  ::= Type ArgumentList OptionalAttrs
parseFunctionType(Type * & Result)3298  bool LLParser::parseFunctionType(Type *&Result) {
3299    assert(Lex.getKind() == lltok::lparen);
3300  
3301    if (!FunctionType::isValidReturnType(Result))
3302      return tokError("invalid function return type");
3303  
3304    SmallVector<ArgInfo, 8> ArgList;
3305    bool IsVarArg;
3306    SmallVector<unsigned> UnnamedArgNums;
3307    if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg))
3308      return true;
3309  
3310    // Reject names on the arguments lists.
3311    for (const ArgInfo &Arg : ArgList) {
3312      if (!Arg.Name.empty())
3313        return error(Arg.Loc, "argument name invalid in function type");
3314      if (Arg.Attrs.hasAttributes())
3315        return error(Arg.Loc, "argument attributes invalid in function type");
3316    }
3317  
3318    SmallVector<Type*, 16> ArgListTy;
3319    for (const ArgInfo &Arg : ArgList)
3320      ArgListTy.push_back(Arg.Ty);
3321  
3322    Result = FunctionType::get(Result, ArgListTy, IsVarArg);
3323    return false;
3324  }
3325  
3326  /// parseAnonStructType - parse an anonymous struct type, which is inlined into
3327  /// other structs.
parseAnonStructType(Type * & Result,bool Packed)3328  bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
3329    SmallVector<Type*, 8> Elts;
3330    if (parseStructBody(Elts))
3331      return true;
3332  
3333    Result = StructType::get(Context, Elts, Packed);
3334    return false;
3335  }
3336  
3337  /// parseStructDefinition - parse a struct in a 'type' definition.
parseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)3338  bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
3339                                       std::pair<Type *, LocTy> &Entry,
3340                                       Type *&ResultTy) {
3341    // If the type was already defined, diagnose the redefinition.
3342    if (Entry.first && !Entry.second.isValid())
3343      return error(TypeLoc, "redefinition of type");
3344  
3345    // If we have opaque, just return without filling in the definition for the
3346    // struct.  This counts as a definition as far as the .ll file goes.
3347    if (EatIfPresent(lltok::kw_opaque)) {
3348      // This type is being defined, so clear the location to indicate this.
3349      Entry.second = SMLoc();
3350  
3351      // If this type number has never been uttered, create it.
3352      if (!Entry.first)
3353        Entry.first = StructType::create(Context, Name);
3354      ResultTy = Entry.first;
3355      return false;
3356    }
3357  
3358    // If the type starts with '<', then it is either a packed struct or a vector.
3359    bool isPacked = EatIfPresent(lltok::less);
3360  
3361    // If we don't have a struct, then we have a random type alias, which we
3362    // accept for compatibility with old files.  These types are not allowed to be
3363    // forward referenced and not allowed to be recursive.
3364    if (Lex.getKind() != lltok::lbrace) {
3365      if (Entry.first)
3366        return error(TypeLoc, "forward references to non-struct type");
3367  
3368      ResultTy = nullptr;
3369      if (isPacked)
3370        return parseArrayVectorType(ResultTy, true);
3371      return parseType(ResultTy);
3372    }
3373  
3374    // This type is being defined, so clear the location to indicate this.
3375    Entry.second = SMLoc();
3376  
3377    // If this type number has never been uttered, create it.
3378    if (!Entry.first)
3379      Entry.first = StructType::create(Context, Name);
3380  
3381    StructType *STy = cast<StructType>(Entry.first);
3382  
3383    SmallVector<Type*, 8> Body;
3384    if (parseStructBody(Body) ||
3385        (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
3386      return true;
3387  
3388    STy->setBody(Body, isPacked);
3389    ResultTy = STy;
3390    return false;
3391  }
3392  
3393  /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
3394  ///   StructType
3395  ///     ::= '{' '}'
3396  ///     ::= '{' Type (',' Type)* '}'
3397  ///     ::= '<' '{' '}' '>'
3398  ///     ::= '<' '{' Type (',' Type)* '}' '>'
parseStructBody(SmallVectorImpl<Type * > & Body)3399  bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3400    assert(Lex.getKind() == lltok::lbrace);
3401    Lex.Lex(); // Consume the '{'
3402  
3403    // Handle the empty struct.
3404    if (EatIfPresent(lltok::rbrace))
3405      return false;
3406  
3407    LocTy EltTyLoc = Lex.getLoc();
3408    Type *Ty = nullptr;
3409    if (parseType(Ty))
3410      return true;
3411    Body.push_back(Ty);
3412  
3413    if (!StructType::isValidElementType(Ty))
3414      return error(EltTyLoc, "invalid element type for struct");
3415  
3416    while (EatIfPresent(lltok::comma)) {
3417      EltTyLoc = Lex.getLoc();
3418      if (parseType(Ty))
3419        return true;
3420  
3421      if (!StructType::isValidElementType(Ty))
3422        return error(EltTyLoc, "invalid element type for struct");
3423  
3424      Body.push_back(Ty);
3425    }
3426  
3427    return parseToken(lltok::rbrace, "expected '}' at end of struct");
3428  }
3429  
3430  /// parseArrayVectorType - parse an array or vector type, assuming the first
3431  /// token has already been consumed.
3432  ///   Type
3433  ///     ::= '[' APSINTVAL 'x' Types ']'
3434  ///     ::= '<' APSINTVAL 'x' Types '>'
3435  ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
parseArrayVectorType(Type * & Result,bool IsVector)3436  bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3437    bool Scalable = false;
3438  
3439    if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3440      Lex.Lex(); // consume the 'vscale'
3441      if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3442        return true;
3443  
3444      Scalable = true;
3445    }
3446  
3447    if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3448        Lex.getAPSIntVal().getBitWidth() > 64)
3449      return tokError("expected number in address space");
3450  
3451    LocTy SizeLoc = Lex.getLoc();
3452    uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3453    Lex.Lex();
3454  
3455    if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3456      return true;
3457  
3458    LocTy TypeLoc = Lex.getLoc();
3459    Type *EltTy = nullptr;
3460    if (parseType(EltTy))
3461      return true;
3462  
3463    if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3464                   "expected end of sequential type"))
3465      return true;
3466  
3467    if (IsVector) {
3468      if (Size == 0)
3469        return error(SizeLoc, "zero element vector is illegal");
3470      if ((unsigned)Size != Size)
3471        return error(SizeLoc, "size too large for vector");
3472      if (!VectorType::isValidElementType(EltTy))
3473        return error(TypeLoc, "invalid vector element type");
3474      Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3475    } else {
3476      if (!ArrayType::isValidElementType(EltTy))
3477        return error(TypeLoc, "invalid array element type");
3478      Result = ArrayType::get(EltTy, Size);
3479    }
3480    return false;
3481  }
3482  
3483  /// parseTargetExtType - handle target extension type syntax
3484  ///   TargetExtType
3485  ///     ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3486  ///
3487  ///   TargetExtTypeParams
3488  ///     ::= /*empty*/
3489  ///     ::= ',' Type TargetExtTypeParams
3490  ///
3491  ///   TargetExtIntParams
3492  ///     ::= /*empty*/
3493  ///     ::= ',' uint32 TargetExtIntParams
parseTargetExtType(Type * & Result)3494  bool LLParser::parseTargetExtType(Type *&Result) {
3495    Lex.Lex(); // Eat the 'target' keyword.
3496  
3497    // Get the mandatory type name.
3498    std::string TypeName;
3499    if (parseToken(lltok::lparen, "expected '(' in target extension type") ||
3500        parseStringConstant(TypeName))
3501      return true;
3502  
3503    // Parse all of the integer and type parameters at the same time; the use of
3504    // SeenInt will allow us to catch cases where type parameters follow integer
3505    // parameters.
3506    SmallVector<Type *> TypeParams;
3507    SmallVector<unsigned> IntParams;
3508    bool SeenInt = false;
3509    while (Lex.getKind() == lltok::comma) {
3510      Lex.Lex(); // Eat the comma.
3511  
3512      if (Lex.getKind() == lltok::APSInt) {
3513        SeenInt = true;
3514        unsigned IntVal;
3515        if (parseUInt32(IntVal))
3516          return true;
3517        IntParams.push_back(IntVal);
3518      } else if (SeenInt) {
3519        // The only other kind of parameter we support is type parameters, which
3520        // must precede the integer parameters. This is therefore an error.
3521        return tokError("expected uint32 param");
3522      } else {
3523        Type *TypeParam;
3524        if (parseType(TypeParam, /*AllowVoid=*/true))
3525          return true;
3526        TypeParams.push_back(TypeParam);
3527      }
3528    }
3529  
3530    if (parseToken(lltok::rparen, "expected ')' in target extension type"))
3531      return true;
3532  
3533    Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
3534    return false;
3535  }
3536  
3537  //===----------------------------------------------------------------------===//
3538  // Function Semantic Analysis.
3539  //===----------------------------------------------------------------------===//
3540  
PerFunctionState(LLParser & p,Function & f,int functionNumber,ArrayRef<unsigned> UnnamedArgNums)3541  LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3542                                               int functionNumber,
3543                                               ArrayRef<unsigned> UnnamedArgNums)
3544    : P(p), F(f), FunctionNumber(functionNumber) {
3545  
3546    // Insert unnamed arguments into the NumberedVals list.
3547    auto It = UnnamedArgNums.begin();
3548    for (Argument &A : F.args()) {
3549      if (!A.hasName()) {
3550        unsigned ArgNum = *It++;
3551        NumberedVals.add(ArgNum, &A);
3552      }
3553    }
3554  }
3555  
~PerFunctionState()3556  LLParser::PerFunctionState::~PerFunctionState() {
3557    // If there were any forward referenced non-basicblock values, delete them.
3558  
3559    for (const auto &P : ForwardRefVals) {
3560      if (isa<BasicBlock>(P.second.first))
3561        continue;
3562      P.second.first->replaceAllUsesWith(
3563          PoisonValue::get(P.second.first->getType()));
3564      P.second.first->deleteValue();
3565    }
3566  
3567    for (const auto &P : ForwardRefValIDs) {
3568      if (isa<BasicBlock>(P.second.first))
3569        continue;
3570      P.second.first->replaceAllUsesWith(
3571          PoisonValue::get(P.second.first->getType()));
3572      P.second.first->deleteValue();
3573    }
3574  }
3575  
finishFunction()3576  bool LLParser::PerFunctionState::finishFunction() {
3577    if (!ForwardRefVals.empty())
3578      return P.error(ForwardRefVals.begin()->second.second,
3579                     "use of undefined value '%" + ForwardRefVals.begin()->first +
3580                         "'");
3581    if (!ForwardRefValIDs.empty())
3582      return P.error(ForwardRefValIDs.begin()->second.second,
3583                     "use of undefined value '%" +
3584                         Twine(ForwardRefValIDs.begin()->first) + "'");
3585    return false;
3586  }
3587  
3588  /// getVal - Get a value with the specified name or ID, creating a
3589  /// forward reference record if needed.  This can return null if the value
3590  /// exists but does not have the right type.
getVal(const std::string & Name,Type * Ty,LocTy Loc)3591  Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3592                                            LocTy Loc) {
3593    // Look this name up in the normal function symbol table.
3594    Value *Val = F.getValueSymbolTable()->lookup(Name);
3595  
3596    // If this is a forward reference for the value, see if we already created a
3597    // forward ref record.
3598    if (!Val) {
3599      auto I = ForwardRefVals.find(Name);
3600      if (I != ForwardRefVals.end())
3601        Val = I->second.first;
3602    }
3603  
3604    // If we have the value in the symbol table or fwd-ref table, return it.
3605    if (Val)
3606      return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
3607  
3608    // Don't make placeholders with invalid type.
3609    if (!Ty->isFirstClassType()) {
3610      P.error(Loc, "invalid use of a non-first-class type");
3611      return nullptr;
3612    }
3613  
3614    // Otherwise, create a new forward reference for this value and remember it.
3615    Value *FwdVal;
3616    if (Ty->isLabelTy()) {
3617      FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3618    } else {
3619      FwdVal = new Argument(Ty, Name);
3620    }
3621    if (FwdVal->getName() != Name) {
3622      P.error(Loc, "name is too long which can result in name collisions, "
3623                   "consider making the name shorter or "
3624                   "increasing -non-global-value-max-name-size");
3625      return nullptr;
3626    }
3627  
3628    ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3629    return FwdVal;
3630  }
3631  
getVal(unsigned ID,Type * Ty,LocTy Loc)3632  Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3633    // Look this name up in the normal function symbol table.
3634    Value *Val = NumberedVals.get(ID);
3635  
3636    // If this is a forward reference for the value, see if we already created a
3637    // forward ref record.
3638    if (!Val) {
3639      auto I = ForwardRefValIDs.find(ID);
3640      if (I != ForwardRefValIDs.end())
3641        Val = I->second.first;
3642    }
3643  
3644    // If we have the value in the symbol table or fwd-ref table, return it.
3645    if (Val)
3646      return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
3647  
3648    if (!Ty->isFirstClassType()) {
3649      P.error(Loc, "invalid use of a non-first-class type");
3650      return nullptr;
3651    }
3652  
3653    // Otherwise, create a new forward reference for this value and remember it.
3654    Value *FwdVal;
3655    if (Ty->isLabelTy()) {
3656      FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3657    } else {
3658      FwdVal = new Argument(Ty);
3659    }
3660  
3661    ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3662    return FwdVal;
3663  }
3664  
3665  /// setInstName - After an instruction is parsed and inserted into its
3666  /// basic block, this installs its name.
setInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)3667  bool LLParser::PerFunctionState::setInstName(int NameID,
3668                                               const std::string &NameStr,
3669                                               LocTy NameLoc, Instruction *Inst) {
3670    // If this instruction has void type, it cannot have a name or ID specified.
3671    if (Inst->getType()->isVoidTy()) {
3672      if (NameID != -1 || !NameStr.empty())
3673        return P.error(NameLoc, "instructions returning void cannot have a name");
3674      return false;
3675    }
3676  
3677    // If this was a numbered instruction, verify that the instruction is the
3678    // expected value and resolve any forward references.
3679    if (NameStr.empty()) {
3680      // If neither a name nor an ID was specified, just use the next ID.
3681      if (NameID == -1)
3682        NameID = NumberedVals.getNext();
3683  
3684      if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(),
3685                         NameID))
3686        return true;
3687  
3688      auto FI = ForwardRefValIDs.find(NameID);
3689      if (FI != ForwardRefValIDs.end()) {
3690        Value *Sentinel = FI->second.first;
3691        if (Sentinel->getType() != Inst->getType())
3692          return P.error(NameLoc, "instruction forward referenced with type '" +
3693                                      getTypeString(FI->second.first->getType()) +
3694                                      "'");
3695  
3696        Sentinel->replaceAllUsesWith(Inst);
3697        Sentinel->deleteValue();
3698        ForwardRefValIDs.erase(FI);
3699      }
3700  
3701      NumberedVals.add(NameID, Inst);
3702      return false;
3703    }
3704  
3705    // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3706    auto FI = ForwardRefVals.find(NameStr);
3707    if (FI != ForwardRefVals.end()) {
3708      Value *Sentinel = FI->second.first;
3709      if (Sentinel->getType() != Inst->getType())
3710        return P.error(NameLoc, "instruction forward referenced with type '" +
3711                                    getTypeString(FI->second.first->getType()) +
3712                                    "'");
3713  
3714      Sentinel->replaceAllUsesWith(Inst);
3715      Sentinel->deleteValue();
3716      ForwardRefVals.erase(FI);
3717    }
3718  
3719    // Set the name on the instruction.
3720    Inst->setName(NameStr);
3721  
3722    if (Inst->getName() != NameStr)
3723      return P.error(NameLoc, "multiple definition of local value named '" +
3724                                  NameStr + "'");
3725    return false;
3726  }
3727  
3728  /// getBB - Get a basic block with the specified name or ID, creating a
3729  /// forward reference record if needed.
getBB(const std::string & Name,LocTy Loc)3730  BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3731                                                LocTy Loc) {
3732    return dyn_cast_or_null<BasicBlock>(
3733        getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3734  }
3735  
getBB(unsigned ID,LocTy Loc)3736  BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3737    return dyn_cast_or_null<BasicBlock>(
3738        getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3739  }
3740  
3741  /// defineBB - Define the specified basic block, which is either named or
3742  /// unnamed.  If there is an error, this returns null otherwise it returns
3743  /// the block being defined.
defineBB(const std::string & Name,int NameID,LocTy Loc)3744  BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3745                                                   int NameID, LocTy Loc) {
3746    BasicBlock *BB;
3747    if (Name.empty()) {
3748      if (NameID != -1) {
3749        if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID))
3750          return nullptr;
3751      } else {
3752        NameID = NumberedVals.getNext();
3753      }
3754      BB = getBB(NameID, Loc);
3755      if (!BB) {
3756        P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'");
3757        return nullptr;
3758      }
3759    } else {
3760      BB = getBB(Name, Loc);
3761      if (!BB) {
3762        P.error(Loc, "unable to create block named '" + Name + "'");
3763        return nullptr;
3764      }
3765    }
3766  
3767    // Move the block to the end of the function.  Forward ref'd blocks are
3768    // inserted wherever they happen to be referenced.
3769    F.splice(F.end(), &F, BB->getIterator());
3770  
3771    // Remove the block from forward ref sets.
3772    if (Name.empty()) {
3773      ForwardRefValIDs.erase(NameID);
3774      NumberedVals.add(NameID, BB);
3775    } else {
3776      // BB forward references are already in the function symbol table.
3777      ForwardRefVals.erase(Name);
3778    }
3779  
3780    return BB;
3781  }
3782  
3783  //===----------------------------------------------------------------------===//
3784  // Constants.
3785  //===----------------------------------------------------------------------===//
3786  
3787  /// parseValID - parse an abstract value that doesn't necessarily have a
3788  /// type implied.  For example, if we parse "4" we don't know what integer type
3789  /// it has.  The value will later be combined with its type and checked for
3790  /// basic correctness.  PFS is used to convert function-local operands of
3791  /// metadata (since metadata operands are not just parsed here but also
3792  /// converted to values). PFS can be null when we are not parsing metadata
3793  /// values inside a function.
parseValID(ValID & ID,PerFunctionState * PFS,Type * ExpectedTy)3794  bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3795    ID.Loc = Lex.getLoc();
3796    switch (Lex.getKind()) {
3797    default:
3798      return tokError("expected value token");
3799    case lltok::GlobalID:  // @42
3800      ID.UIntVal = Lex.getUIntVal();
3801      ID.Kind = ValID::t_GlobalID;
3802      break;
3803    case lltok::GlobalVar:  // @foo
3804      ID.StrVal = Lex.getStrVal();
3805      ID.Kind = ValID::t_GlobalName;
3806      break;
3807    case lltok::LocalVarID:  // %42
3808      ID.UIntVal = Lex.getUIntVal();
3809      ID.Kind = ValID::t_LocalID;
3810      break;
3811    case lltok::LocalVar:  // %foo
3812      ID.StrVal = Lex.getStrVal();
3813      ID.Kind = ValID::t_LocalName;
3814      break;
3815    case lltok::APSInt:
3816      ID.APSIntVal = Lex.getAPSIntVal();
3817      ID.Kind = ValID::t_APSInt;
3818      break;
3819    case lltok::APFloat:
3820      ID.APFloatVal = Lex.getAPFloatVal();
3821      ID.Kind = ValID::t_APFloat;
3822      break;
3823    case lltok::kw_true:
3824      ID.ConstantVal = ConstantInt::getTrue(Context);
3825      ID.Kind = ValID::t_Constant;
3826      break;
3827    case lltok::kw_false:
3828      ID.ConstantVal = ConstantInt::getFalse(Context);
3829      ID.Kind = ValID::t_Constant;
3830      break;
3831    case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3832    case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3833    case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3834    case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3835    case lltok::kw_none: ID.Kind = ValID::t_None; break;
3836  
3837    case lltok::lbrace: {
3838      // ValID ::= '{' ConstVector '}'
3839      Lex.Lex();
3840      SmallVector<Constant*, 16> Elts;
3841      if (parseGlobalValueVector(Elts) ||
3842          parseToken(lltok::rbrace, "expected end of struct constant"))
3843        return true;
3844  
3845      ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3846      ID.UIntVal = Elts.size();
3847      memcpy(ID.ConstantStructElts.get(), Elts.data(),
3848             Elts.size() * sizeof(Elts[0]));
3849      ID.Kind = ValID::t_ConstantStruct;
3850      return false;
3851    }
3852    case lltok::less: {
3853      // ValID ::= '<' ConstVector '>'         --> Vector.
3854      // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3855      Lex.Lex();
3856      bool isPackedStruct = EatIfPresent(lltok::lbrace);
3857  
3858      SmallVector<Constant*, 16> Elts;
3859      LocTy FirstEltLoc = Lex.getLoc();
3860      if (parseGlobalValueVector(Elts) ||
3861          (isPackedStruct &&
3862           parseToken(lltok::rbrace, "expected end of packed struct")) ||
3863          parseToken(lltok::greater, "expected end of constant"))
3864        return true;
3865  
3866      if (isPackedStruct) {
3867        ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3868        memcpy(ID.ConstantStructElts.get(), Elts.data(),
3869               Elts.size() * sizeof(Elts[0]));
3870        ID.UIntVal = Elts.size();
3871        ID.Kind = ValID::t_PackedConstantStruct;
3872        return false;
3873      }
3874  
3875      if (Elts.empty())
3876        return error(ID.Loc, "constant vector must not be empty");
3877  
3878      if (!Elts[0]->getType()->isIntegerTy() &&
3879          !Elts[0]->getType()->isFloatingPointTy() &&
3880          !Elts[0]->getType()->isPointerTy())
3881        return error(
3882            FirstEltLoc,
3883            "vector elements must have integer, pointer or floating point type");
3884  
3885      // Verify that all the vector elements have the same type.
3886      for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3887        if (Elts[i]->getType() != Elts[0]->getType())
3888          return error(FirstEltLoc, "vector element #" + Twine(i) +
3889                                        " is not of type '" +
3890                                        getTypeString(Elts[0]->getType()));
3891  
3892      ID.ConstantVal = ConstantVector::get(Elts);
3893      ID.Kind = ValID::t_Constant;
3894      return false;
3895    }
3896    case lltok::lsquare: {   // Array Constant
3897      Lex.Lex();
3898      SmallVector<Constant*, 16> Elts;
3899      LocTy FirstEltLoc = Lex.getLoc();
3900      if (parseGlobalValueVector(Elts) ||
3901          parseToken(lltok::rsquare, "expected end of array constant"))
3902        return true;
3903  
3904      // Handle empty element.
3905      if (Elts.empty()) {
3906        // Use undef instead of an array because it's inconvenient to determine
3907        // the element type at this point, there being no elements to examine.
3908        ID.Kind = ValID::t_EmptyArray;
3909        return false;
3910      }
3911  
3912      if (!Elts[0]->getType()->isFirstClassType())
3913        return error(FirstEltLoc, "invalid array element type: " +
3914                                      getTypeString(Elts[0]->getType()));
3915  
3916      ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3917  
3918      // Verify all elements are correct type!
3919      for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3920        if (Elts[i]->getType() != Elts[0]->getType())
3921          return error(FirstEltLoc, "array element #" + Twine(i) +
3922                                        " is not of type '" +
3923                                        getTypeString(Elts[0]->getType()));
3924      }
3925  
3926      ID.ConstantVal = ConstantArray::get(ATy, Elts);
3927      ID.Kind = ValID::t_Constant;
3928      return false;
3929    }
3930    case lltok::kw_c:  // c "foo"
3931      Lex.Lex();
3932      ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3933                                                    false);
3934      if (parseToken(lltok::StringConstant, "expected string"))
3935        return true;
3936      ID.Kind = ValID::t_Constant;
3937      return false;
3938  
3939    case lltok::kw_asm: {
3940      // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3941      //             STRINGCONSTANT
3942      bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3943      Lex.Lex();
3944      if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3945          parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3946          parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3947          parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3948          parseStringConstant(ID.StrVal) ||
3949          parseToken(lltok::comma, "expected comma in inline asm expression") ||
3950          parseToken(lltok::StringConstant, "expected constraint string"))
3951        return true;
3952      ID.StrVal2 = Lex.getStrVal();
3953      ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3954                   (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3955      ID.Kind = ValID::t_InlineAsm;
3956      return false;
3957    }
3958  
3959    case lltok::kw_blockaddress: {
3960      // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3961      Lex.Lex();
3962  
3963      ValID Fn, Label;
3964  
3965      if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3966          parseValID(Fn, PFS) ||
3967          parseToken(lltok::comma,
3968                     "expected comma in block address expression") ||
3969          parseValID(Label, PFS) ||
3970          parseToken(lltok::rparen, "expected ')' in block address expression"))
3971        return true;
3972  
3973      if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3974        return error(Fn.Loc, "expected function name in blockaddress");
3975      if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3976        return error(Label.Loc, "expected basic block name in blockaddress");
3977  
3978      // Try to find the function (but skip it if it's forward-referenced).
3979      GlobalValue *GV = nullptr;
3980      if (Fn.Kind == ValID::t_GlobalID) {
3981        GV = NumberedVals.get(Fn.UIntVal);
3982      } else if (!ForwardRefVals.count(Fn.StrVal)) {
3983        GV = M->getNamedValue(Fn.StrVal);
3984      }
3985      Function *F = nullptr;
3986      if (GV) {
3987        // Confirm that it's actually a function with a definition.
3988        if (!isa<Function>(GV))
3989          return error(Fn.Loc, "expected function name in blockaddress");
3990        F = cast<Function>(GV);
3991        if (F->isDeclaration())
3992          return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3993      }
3994  
3995      if (!F) {
3996        // Make a global variable as a placeholder for this reference.
3997        GlobalValue *&FwdRef =
3998            ForwardRefBlockAddresses.insert(std::make_pair(
3999                                                std::move(Fn),
4000                                                std::map<ValID, GlobalValue *>()))
4001                .first->second.insert(std::make_pair(std::move(Label), nullptr))
4002                .first->second;
4003        if (!FwdRef) {
4004          unsigned FwdDeclAS;
4005          if (ExpectedTy) {
4006            // If we know the type that the blockaddress is being assigned to,
4007            // we can use the address space of that type.
4008            if (!ExpectedTy->isPointerTy())
4009              return error(ID.Loc,
4010                           "type of blockaddress must be a pointer and not '" +
4011                               getTypeString(ExpectedTy) + "'");
4012            FwdDeclAS = ExpectedTy->getPointerAddressSpace();
4013          } else if (PFS) {
4014            // Otherwise, we default the address space of the current function.
4015            FwdDeclAS = PFS->getFunction().getAddressSpace();
4016          } else {
4017            llvm_unreachable("Unknown address space for blockaddress");
4018          }
4019          FwdRef = new GlobalVariable(
4020              *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
4021              nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
4022        }
4023  
4024        ID.ConstantVal = FwdRef;
4025        ID.Kind = ValID::t_Constant;
4026        return false;
4027      }
4028  
4029      // We found the function; now find the basic block.  Don't use PFS, since we
4030      // might be inside a constant expression.
4031      BasicBlock *BB;
4032      if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
4033        if (Label.Kind == ValID::t_LocalID)
4034          BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
4035        else
4036          BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
4037        if (!BB)
4038          return error(Label.Loc, "referenced value is not a basic block");
4039      } else {
4040        if (Label.Kind == ValID::t_LocalID)
4041          return error(Label.Loc, "cannot take address of numeric label after "
4042                                  "the function is defined");
4043        BB = dyn_cast_or_null<BasicBlock>(
4044            F->getValueSymbolTable()->lookup(Label.StrVal));
4045        if (!BB)
4046          return error(Label.Loc, "referenced value is not a basic block");
4047      }
4048  
4049      ID.ConstantVal = BlockAddress::get(F, BB);
4050      ID.Kind = ValID::t_Constant;
4051      return false;
4052    }
4053  
4054    case lltok::kw_dso_local_equivalent: {
4055      // ValID ::= 'dso_local_equivalent' @foo
4056      Lex.Lex();
4057  
4058      ValID Fn;
4059  
4060      if (parseValID(Fn, PFS))
4061        return true;
4062  
4063      if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
4064        return error(Fn.Loc,
4065                     "expected global value name in dso_local_equivalent");
4066  
4067      // Try to find the function (but skip it if it's forward-referenced).
4068      GlobalValue *GV = nullptr;
4069      if (Fn.Kind == ValID::t_GlobalID) {
4070        GV = NumberedVals.get(Fn.UIntVal);
4071      } else if (!ForwardRefVals.count(Fn.StrVal)) {
4072        GV = M->getNamedValue(Fn.StrVal);
4073      }
4074  
4075      if (!GV) {
4076        // Make a placeholder global variable as a placeholder for this reference.
4077        auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
4078                              ? ForwardRefDSOLocalEquivalentIDs
4079                              : ForwardRefDSOLocalEquivalentNames;
4080        GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second;
4081        if (!FwdRef) {
4082          FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
4083                                      GlobalValue::InternalLinkage, nullptr, "",
4084                                      nullptr, GlobalValue::NotThreadLocal);
4085        }
4086  
4087        ID.ConstantVal = FwdRef;
4088        ID.Kind = ValID::t_Constant;
4089        return false;
4090      }
4091  
4092      if (!GV->getValueType()->isFunctionTy())
4093        return error(Fn.Loc, "expected a function, alias to function, or ifunc "
4094                             "in dso_local_equivalent");
4095  
4096      ID.ConstantVal = DSOLocalEquivalent::get(GV);
4097      ID.Kind = ValID::t_Constant;
4098      return false;
4099    }
4100  
4101    case lltok::kw_no_cfi: {
4102      // ValID ::= 'no_cfi' @foo
4103      Lex.Lex();
4104  
4105      if (parseValID(ID, PFS))
4106        return true;
4107  
4108      if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
4109        return error(ID.Loc, "expected global value name in no_cfi");
4110  
4111      ID.NoCFI = true;
4112      return false;
4113    }
4114    case lltok::kw_ptrauth: {
4115      // ValID ::= 'ptrauth' '(' ptr @foo ',' i32 <key>
4116      //                         (',' i64 <disc> (',' ptr addrdisc)? )? ')'
4117      Lex.Lex();
4118  
4119      Constant *Ptr, *Key;
4120      Constant *Disc = nullptr, *AddrDisc = nullptr;
4121  
4122      if (parseToken(lltok::lparen,
4123                     "expected '(' in constant ptrauth expression") ||
4124          parseGlobalTypeAndValue(Ptr) ||
4125          parseToken(lltok::comma,
4126                     "expected comma in constant ptrauth expression") ||
4127          parseGlobalTypeAndValue(Key))
4128        return true;
4129      // If present, parse the optional disc/addrdisc.
4130      if (EatIfPresent(lltok::comma))
4131        if (parseGlobalTypeAndValue(Disc) ||
4132            (EatIfPresent(lltok::comma) && parseGlobalTypeAndValue(AddrDisc)))
4133          return true;
4134      if (parseToken(lltok::rparen,
4135                     "expected ')' in constant ptrauth expression"))
4136        return true;
4137  
4138      if (!Ptr->getType()->isPointerTy())
4139        return error(ID.Loc, "constant ptrauth base pointer must be a pointer");
4140  
4141      auto *KeyC = dyn_cast<ConstantInt>(Key);
4142      if (!KeyC || KeyC->getBitWidth() != 32)
4143        return error(ID.Loc, "constant ptrauth key must be i32 constant");
4144  
4145      ConstantInt *DiscC = nullptr;
4146      if (Disc) {
4147        DiscC = dyn_cast<ConstantInt>(Disc);
4148        if (!DiscC || DiscC->getBitWidth() != 64)
4149          return error(
4150              ID.Loc,
4151              "constant ptrauth integer discriminator must be i64 constant");
4152      } else {
4153        DiscC = ConstantInt::get(Type::getInt64Ty(Context), 0);
4154      }
4155  
4156      if (AddrDisc) {
4157        if (!AddrDisc->getType()->isPointerTy())
4158          return error(
4159              ID.Loc, "constant ptrauth address discriminator must be a pointer");
4160      } else {
4161        AddrDisc = ConstantPointerNull::get(PointerType::get(Context, 0));
4162      }
4163  
4164      ID.ConstantVal = ConstantPtrAuth::get(Ptr, KeyC, DiscC, AddrDisc);
4165      ID.Kind = ValID::t_Constant;
4166      return false;
4167    }
4168  
4169    case lltok::kw_trunc:
4170    case lltok::kw_bitcast:
4171    case lltok::kw_addrspacecast:
4172    case lltok::kw_inttoptr:
4173    case lltok::kw_ptrtoint: {
4174      unsigned Opc = Lex.getUIntVal();
4175      Type *DestTy = nullptr;
4176      Constant *SrcVal;
4177      Lex.Lex();
4178      if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
4179          parseGlobalTypeAndValue(SrcVal) ||
4180          parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
4181          parseType(DestTy) ||
4182          parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
4183        return true;
4184      if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
4185        return error(ID.Loc, "invalid cast opcode for cast from '" +
4186                                 getTypeString(SrcVal->getType()) + "' to '" +
4187                                 getTypeString(DestTy) + "'");
4188      ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
4189                                                   SrcVal, DestTy);
4190      ID.Kind = ValID::t_Constant;
4191      return false;
4192    }
4193    case lltok::kw_extractvalue:
4194      return error(ID.Loc, "extractvalue constexprs are no longer supported");
4195    case lltok::kw_insertvalue:
4196      return error(ID.Loc, "insertvalue constexprs are no longer supported");
4197    case lltok::kw_udiv:
4198      return error(ID.Loc, "udiv constexprs are no longer supported");
4199    case lltok::kw_sdiv:
4200      return error(ID.Loc, "sdiv constexprs are no longer supported");
4201    case lltok::kw_urem:
4202      return error(ID.Loc, "urem constexprs are no longer supported");
4203    case lltok::kw_srem:
4204      return error(ID.Loc, "srem constexprs are no longer supported");
4205    case lltok::kw_fadd:
4206      return error(ID.Loc, "fadd constexprs are no longer supported");
4207    case lltok::kw_fsub:
4208      return error(ID.Loc, "fsub constexprs are no longer supported");
4209    case lltok::kw_fmul:
4210      return error(ID.Loc, "fmul constexprs are no longer supported");
4211    case lltok::kw_fdiv:
4212      return error(ID.Loc, "fdiv constexprs are no longer supported");
4213    case lltok::kw_frem:
4214      return error(ID.Loc, "frem constexprs are no longer supported");
4215    case lltok::kw_and:
4216      return error(ID.Loc, "and constexprs are no longer supported");
4217    case lltok::kw_or:
4218      return error(ID.Loc, "or constexprs are no longer supported");
4219    case lltok::kw_lshr:
4220      return error(ID.Loc, "lshr constexprs are no longer supported");
4221    case lltok::kw_ashr:
4222      return error(ID.Loc, "ashr constexprs are no longer supported");
4223    case lltok::kw_shl:
4224      return error(ID.Loc, "shl constexprs are no longer supported");
4225    case lltok::kw_fneg:
4226      return error(ID.Loc, "fneg constexprs are no longer supported");
4227    case lltok::kw_select:
4228      return error(ID.Loc, "select constexprs are no longer supported");
4229    case lltok::kw_zext:
4230      return error(ID.Loc, "zext constexprs are no longer supported");
4231    case lltok::kw_sext:
4232      return error(ID.Loc, "sext constexprs are no longer supported");
4233    case lltok::kw_fptrunc:
4234      return error(ID.Loc, "fptrunc constexprs are no longer supported");
4235    case lltok::kw_fpext:
4236      return error(ID.Loc, "fpext constexprs are no longer supported");
4237    case lltok::kw_uitofp:
4238      return error(ID.Loc, "uitofp constexprs are no longer supported");
4239    case lltok::kw_sitofp:
4240      return error(ID.Loc, "sitofp constexprs are no longer supported");
4241    case lltok::kw_fptoui:
4242      return error(ID.Loc, "fptoui constexprs are no longer supported");
4243    case lltok::kw_fptosi:
4244      return error(ID.Loc, "fptosi constexprs are no longer supported");
4245    case lltok::kw_icmp:
4246      return error(ID.Loc, "icmp constexprs are no longer supported");
4247    case lltok::kw_fcmp:
4248      return error(ID.Loc, "fcmp constexprs are no longer supported");
4249  
4250    // Binary Operators.
4251    case lltok::kw_add:
4252    case lltok::kw_sub:
4253    case lltok::kw_mul:
4254    case lltok::kw_xor: {
4255      bool NUW = false;
4256      bool NSW = false;
4257      unsigned Opc = Lex.getUIntVal();
4258      Constant *Val0, *Val1;
4259      Lex.Lex();
4260      if (Opc == Instruction::Add || Opc == Instruction::Sub ||
4261          Opc == Instruction::Mul) {
4262        if (EatIfPresent(lltok::kw_nuw))
4263          NUW = true;
4264        if (EatIfPresent(lltok::kw_nsw)) {
4265          NSW = true;
4266          if (EatIfPresent(lltok::kw_nuw))
4267            NUW = true;
4268        }
4269      }
4270      if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
4271          parseGlobalTypeAndValue(Val0) ||
4272          parseToken(lltok::comma, "expected comma in binary constantexpr") ||
4273          parseGlobalTypeAndValue(Val1) ||
4274          parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
4275        return true;
4276      if (Val0->getType() != Val1->getType())
4277        return error(ID.Loc, "operands of constexpr must have same type");
4278      // Check that the type is valid for the operator.
4279      if (!Val0->getType()->isIntOrIntVectorTy())
4280        return error(ID.Loc,
4281                     "constexpr requires integer or integer vector operands");
4282      unsigned Flags = 0;
4283      if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
4284      if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
4285      ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags);
4286      ID.Kind = ValID::t_Constant;
4287      return false;
4288    }
4289  
4290    case lltok::kw_splat: {
4291      Lex.Lex();
4292      if (parseToken(lltok::lparen, "expected '(' after vector splat"))
4293        return true;
4294      Constant *C;
4295      if (parseGlobalTypeAndValue(C))
4296        return true;
4297      if (parseToken(lltok::rparen, "expected ')' at end of vector splat"))
4298        return true;
4299  
4300      ID.ConstantVal = C;
4301      ID.Kind = ValID::t_ConstantSplat;
4302      return false;
4303    }
4304  
4305    case lltok::kw_getelementptr:
4306    case lltok::kw_shufflevector:
4307    case lltok::kw_insertelement:
4308    case lltok::kw_extractelement: {
4309      unsigned Opc = Lex.getUIntVal();
4310      SmallVector<Constant*, 16> Elts;
4311      GEPNoWrapFlags NW;
4312      bool HasInRange = false;
4313      APSInt InRangeStart;
4314      APSInt InRangeEnd;
4315      Type *Ty;
4316      Lex.Lex();
4317  
4318      if (Opc == Instruction::GetElementPtr) {
4319        while (true) {
4320          if (EatIfPresent(lltok::kw_inbounds))
4321            NW |= GEPNoWrapFlags::inBounds();
4322          else if (EatIfPresent(lltok::kw_nusw))
4323            NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
4324          else if (EatIfPresent(lltok::kw_nuw))
4325            NW |= GEPNoWrapFlags::noUnsignedWrap();
4326          else
4327            break;
4328        }
4329  
4330        if (EatIfPresent(lltok::kw_inrange)) {
4331          if (parseToken(lltok::lparen, "expected '('"))
4332            return true;
4333          if (Lex.getKind() != lltok::APSInt)
4334            return tokError("expected integer");
4335          InRangeStart = Lex.getAPSIntVal();
4336          Lex.Lex();
4337          if (parseToken(lltok::comma, "expected ','"))
4338            return true;
4339          if (Lex.getKind() != lltok::APSInt)
4340            return tokError("expected integer");
4341          InRangeEnd = Lex.getAPSIntVal();
4342          Lex.Lex();
4343          if (parseToken(lltok::rparen, "expected ')'"))
4344            return true;
4345          HasInRange = true;
4346        }
4347      }
4348  
4349      if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
4350        return true;
4351  
4352      if (Opc == Instruction::GetElementPtr) {
4353        if (parseType(Ty) ||
4354            parseToken(lltok::comma, "expected comma after getelementptr's type"))
4355          return true;
4356      }
4357  
4358      if (parseGlobalValueVector(Elts) ||
4359          parseToken(lltok::rparen, "expected ')' in constantexpr"))
4360        return true;
4361  
4362      if (Opc == Instruction::GetElementPtr) {
4363        if (Elts.size() == 0 ||
4364            !Elts[0]->getType()->isPtrOrPtrVectorTy())
4365          return error(ID.Loc, "base of getelementptr must be a pointer");
4366  
4367        Type *BaseType = Elts[0]->getType();
4368        std::optional<ConstantRange> InRange;
4369        if (HasInRange) {
4370          unsigned IndexWidth =
4371              M->getDataLayout().getIndexTypeSizeInBits(BaseType);
4372          InRangeStart = InRangeStart.extOrTrunc(IndexWidth);
4373          InRangeEnd = InRangeEnd.extOrTrunc(IndexWidth);
4374          if (InRangeStart.sge(InRangeEnd))
4375            return error(ID.Loc, "expected end to be larger than start");
4376          InRange = ConstantRange::getNonEmpty(InRangeStart, InRangeEnd);
4377        }
4378  
4379        unsigned GEPWidth =
4380            BaseType->isVectorTy()
4381                ? cast<FixedVectorType>(BaseType)->getNumElements()
4382                : 0;
4383  
4384        ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
4385        for (Constant *Val : Indices) {
4386          Type *ValTy = Val->getType();
4387          if (!ValTy->isIntOrIntVectorTy())
4388            return error(ID.Loc, "getelementptr index must be an integer");
4389          if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
4390            unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
4391            if (GEPWidth && (ValNumEl != GEPWidth))
4392              return error(
4393                  ID.Loc,
4394                  "getelementptr vector index has a wrong number of elements");
4395            // GEPWidth may have been unknown because the base is a scalar,
4396            // but it is known now.
4397            GEPWidth = ValNumEl;
4398          }
4399        }
4400  
4401        SmallPtrSet<Type*, 4> Visited;
4402        if (!Indices.empty() && !Ty->isSized(&Visited))
4403          return error(ID.Loc, "base element of getelementptr must be sized");
4404  
4405        if (!GetElementPtrInst::getIndexedType(Ty, Indices))
4406          return error(ID.Loc, "invalid getelementptr indices");
4407  
4408        ID.ConstantVal =
4409            ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, NW, InRange);
4410      } else if (Opc == Instruction::ShuffleVector) {
4411        if (Elts.size() != 3)
4412          return error(ID.Loc, "expected three operands to shufflevector");
4413        if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4414          return error(ID.Loc, "invalid operands to shufflevector");
4415        SmallVector<int, 16> Mask;
4416        ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
4417        ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
4418      } else if (Opc == Instruction::ExtractElement) {
4419        if (Elts.size() != 2)
4420          return error(ID.Loc, "expected two operands to extractelement");
4421        if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
4422          return error(ID.Loc, "invalid extractelement operands");
4423        ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
4424      } else {
4425        assert(Opc == Instruction::InsertElement && "Unknown opcode");
4426        if (Elts.size() != 3)
4427          return error(ID.Loc, "expected three operands to insertelement");
4428        if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4429          return error(ID.Loc, "invalid insertelement operands");
4430        ID.ConstantVal =
4431                   ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
4432      }
4433  
4434      ID.Kind = ValID::t_Constant;
4435      return false;
4436    }
4437    }
4438  
4439    Lex.Lex();
4440    return false;
4441  }
4442  
4443  /// parseGlobalValue - parse a global value with the specified type.
parseGlobalValue(Type * Ty,Constant * & C)4444  bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4445    C = nullptr;
4446    ValID ID;
4447    Value *V = nullptr;
4448    bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
4449                  convertValIDToValue(Ty, ID, V, nullptr);
4450    if (V && !(C = dyn_cast<Constant>(V)))
4451      return error(ID.Loc, "global values must be constants");
4452    return Parsed;
4453  }
4454  
parseGlobalTypeAndValue(Constant * & V)4455  bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4456    Type *Ty = nullptr;
4457    return parseType(Ty) || parseGlobalValue(Ty, V);
4458  }
4459  
parseOptionalComdat(StringRef GlobalName,Comdat * & C)4460  bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4461    C = nullptr;
4462  
4463    LocTy KwLoc = Lex.getLoc();
4464    if (!EatIfPresent(lltok::kw_comdat))
4465      return false;
4466  
4467    if (EatIfPresent(lltok::lparen)) {
4468      if (Lex.getKind() != lltok::ComdatVar)
4469        return tokError("expected comdat variable");
4470      C = getComdat(Lex.getStrVal(), Lex.getLoc());
4471      Lex.Lex();
4472      if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4473        return true;
4474    } else {
4475      if (GlobalName.empty())
4476        return tokError("comdat cannot be unnamed");
4477      C = getComdat(std::string(GlobalName), KwLoc);
4478    }
4479  
4480    return false;
4481  }
4482  
4483  /// parseGlobalValueVector
4484  ///   ::= /*empty*/
4485  ///   ::= TypeAndValue (',' TypeAndValue)*
parseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)4486  bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
4487    // Empty list.
4488    if (Lex.getKind() == lltok::rbrace ||
4489        Lex.getKind() == lltok::rsquare ||
4490        Lex.getKind() == lltok::greater ||
4491        Lex.getKind() == lltok::rparen)
4492      return false;
4493  
4494    do {
4495      // Let the caller deal with inrange.
4496      if (Lex.getKind() == lltok::kw_inrange)
4497        return false;
4498  
4499      Constant *C;
4500      if (parseGlobalTypeAndValue(C))
4501        return true;
4502      Elts.push_back(C);
4503    } while (EatIfPresent(lltok::comma));
4504  
4505    return false;
4506  }
4507  
parseMDTuple(MDNode * & MD,bool IsDistinct)4508  bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4509    SmallVector<Metadata *, 16> Elts;
4510    if (parseMDNodeVector(Elts))
4511      return true;
4512  
4513    MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4514    return false;
4515  }
4516  
4517  /// MDNode:
4518  ///  ::= !{ ... }
4519  ///  ::= !7
4520  ///  ::= !DILocation(...)
parseMDNode(MDNode * & N)4521  bool LLParser::parseMDNode(MDNode *&N) {
4522    if (Lex.getKind() == lltok::MetadataVar)
4523      return parseSpecializedMDNode(N);
4524  
4525    return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4526  }
4527  
parseMDNodeTail(MDNode * & N)4528  bool LLParser::parseMDNodeTail(MDNode *&N) {
4529    // !{ ... }
4530    if (Lex.getKind() == lltok::lbrace)
4531      return parseMDTuple(N);
4532  
4533    // !42
4534    return parseMDNodeID(N);
4535  }
4536  
4537  namespace {
4538  
4539  /// Structure to represent an optional metadata field.
4540  template <class FieldTy> struct MDFieldImpl {
4541    typedef MDFieldImpl ImplTy;
4542    FieldTy Val;
4543    bool Seen;
4544  
assign__anon424f6c520811::MDFieldImpl4545    void assign(FieldTy Val) {
4546      Seen = true;
4547      this->Val = std::move(Val);
4548    }
4549  
MDFieldImpl__anon424f6c520811::MDFieldImpl4550    explicit MDFieldImpl(FieldTy Default)
4551        : Val(std::move(Default)), Seen(false) {}
4552  };
4553  
4554  /// Structure to represent an optional metadata field that
4555  /// can be of either type (A or B) and encapsulates the
4556  /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4557  /// to reimplement the specifics for representing each Field.
4558  template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4559    typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4560    FieldTypeA A;
4561    FieldTypeB B;
4562    bool Seen;
4563  
4564    enum {
4565      IsInvalid = 0,
4566      IsTypeA = 1,
4567      IsTypeB = 2
4568    } WhatIs;
4569  
assign__anon424f6c520811::MDEitherFieldImpl4570    void assign(FieldTypeA A) {
4571      Seen = true;
4572      this->A = std::move(A);
4573      WhatIs = IsTypeA;
4574    }
4575  
assign__anon424f6c520811::MDEitherFieldImpl4576    void assign(FieldTypeB B) {
4577      Seen = true;
4578      this->B = std::move(B);
4579      WhatIs = IsTypeB;
4580    }
4581  
MDEitherFieldImpl__anon424f6c520811::MDEitherFieldImpl4582    explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4583        : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4584          WhatIs(IsInvalid) {}
4585  };
4586  
4587  struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4588    uint64_t Max;
4589  
MDUnsignedField__anon424f6c520811::MDUnsignedField4590    MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4591        : ImplTy(Default), Max(Max) {}
4592  };
4593  
4594  struct LineField : public MDUnsignedField {
LineField__anon424f6c520811::LineField4595    LineField() : MDUnsignedField(0, UINT32_MAX) {}
4596  };
4597  
4598  struct ColumnField : public MDUnsignedField {
ColumnField__anon424f6c520811::ColumnField4599    ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4600  };
4601  
4602  struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon424f6c520811::DwarfTagField4603    DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon424f6c520811::DwarfTagField4604    DwarfTagField(dwarf::Tag DefaultTag)
4605        : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4606  };
4607  
4608  struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField__anon424f6c520811::DwarfMacinfoTypeField4609    DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField__anon424f6c520811::DwarfMacinfoTypeField4610    DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4611      : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4612  };
4613  
4614  struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon424f6c520811::DwarfAttEncodingField4615    DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4616  };
4617  
4618  struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon424f6c520811::DwarfVirtualityField4619    DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4620  };
4621  
4622  struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon424f6c520811::DwarfLangField4623    DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4624  };
4625  
4626  struct DwarfCCField : public MDUnsignedField {
DwarfCCField__anon424f6c520811::DwarfCCField4627    DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4628  };
4629  
4630  struct EmissionKindField : public MDUnsignedField {
EmissionKindField__anon424f6c520811::EmissionKindField4631    EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4632  };
4633  
4634  struct NameTableKindField : public MDUnsignedField {
NameTableKindField__anon424f6c520811::NameTableKindField4635    NameTableKindField()
4636        : MDUnsignedField(
4637              0, (unsigned)
4638                     DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4639  };
4640  
4641  struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
DIFlagField__anon424f6c520811::DIFlagField4642    DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4643  };
4644  
4645  struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
DISPFlagField__anon424f6c520811::DISPFlagField4646    DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4647  };
4648  
4649  struct MDAPSIntField : public MDFieldImpl<APSInt> {
MDAPSIntField__anon424f6c520811::MDAPSIntField4650    MDAPSIntField() : ImplTy(APSInt()) {}
4651  };
4652  
4653  struct MDSignedField : public MDFieldImpl<int64_t> {
4654    int64_t Min = INT64_MIN;
4655    int64_t Max = INT64_MAX;
4656  
MDSignedField__anon424f6c520811::MDSignedField4657    MDSignedField(int64_t Default = 0)
4658        : ImplTy(Default) {}
MDSignedField__anon424f6c520811::MDSignedField4659    MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4660        : ImplTy(Default), Min(Min), Max(Max) {}
4661  };
4662  
4663  struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon424f6c520811::MDBoolField4664    MDBoolField(bool Default = false) : ImplTy(Default) {}
4665  };
4666  
4667  struct MDField : public MDFieldImpl<Metadata *> {
4668    bool AllowNull;
4669  
MDField__anon424f6c520811::MDField4670    MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4671  };
4672  
4673  struct MDStringField : public MDFieldImpl<MDString *> {
4674    bool AllowEmpty;
MDStringField__anon424f6c520811::MDStringField4675    MDStringField(bool AllowEmpty = true)
4676        : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4677  };
4678  
4679  struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon424f6c520811::MDFieldList4680    MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4681  };
4682  
4683  struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
ChecksumKindField__anon424f6c520811::ChecksumKindField4684    ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4685  };
4686  
4687  struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
MDSignedOrMDField__anon424f6c520811::MDSignedOrMDField4688    MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4689        : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4690  
MDSignedOrMDField__anon424f6c520811::MDSignedOrMDField4691    MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4692                      bool AllowNull = true)
4693        : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4694  
isMDSignedField__anon424f6c520811::MDSignedOrMDField4695    bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDField__anon424f6c520811::MDSignedOrMDField4696    bool isMDField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon424f6c520811::MDSignedOrMDField4697    int64_t getMDSignedValue() const {
4698      assert(isMDSignedField() && "Wrong field type");
4699      return A.Val;
4700    }
getMDFieldValue__anon424f6c520811::MDSignedOrMDField4701    Metadata *getMDFieldValue() const {
4702      assert(isMDField() && "Wrong field type");
4703      return B.Val;
4704    }
4705  };
4706  
4707  } // end anonymous namespace
4708  
4709  namespace llvm {
4710  
4711  template <>
parseMDField(LocTy Loc,StringRef Name,MDAPSIntField & Result)4712  bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4713    if (Lex.getKind() != lltok::APSInt)
4714      return tokError("expected integer");
4715  
4716    Result.assign(Lex.getAPSIntVal());
4717    Lex.Lex();
4718    return false;
4719  }
4720  
4721  template <>
parseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)4722  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4723                              MDUnsignedField &Result) {
4724    if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4725      return tokError("expected unsigned integer");
4726  
4727    auto &U = Lex.getAPSIntVal();
4728    if (U.ugt(Result.Max))
4729      return tokError("value for '" + Name + "' too large, limit is " +
4730                      Twine(Result.Max));
4731    Result.assign(U.getZExtValue());
4732    assert(Result.Val <= Result.Max && "Expected value in range");
4733    Lex.Lex();
4734    return false;
4735  }
4736  
4737  template <>
parseMDField(LocTy Loc,StringRef Name,LineField & Result)4738  bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4739    return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4740  }
4741  template <>
parseMDField(LocTy Loc,StringRef Name,ColumnField & Result)4742  bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4743    return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4744  }
4745  
4746  template <>
parseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)4747  bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4748    if (Lex.getKind() == lltok::APSInt)
4749      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4750  
4751    if (Lex.getKind() != lltok::DwarfTag)
4752      return tokError("expected DWARF tag");
4753  
4754    unsigned Tag = dwarf::getTag(Lex.getStrVal());
4755    if (Tag == dwarf::DW_TAG_invalid)
4756      return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4757    assert(Tag <= Result.Max && "Expected valid DWARF tag");
4758  
4759    Result.assign(Tag);
4760    Lex.Lex();
4761    return false;
4762  }
4763  
4764  template <>
parseMDField(LocTy Loc,StringRef Name,DwarfMacinfoTypeField & Result)4765  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4766                              DwarfMacinfoTypeField &Result) {
4767    if (Lex.getKind() == lltok::APSInt)
4768      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4769  
4770    if (Lex.getKind() != lltok::DwarfMacinfo)
4771      return tokError("expected DWARF macinfo type");
4772  
4773    unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4774    if (Macinfo == dwarf::DW_MACINFO_invalid)
4775      return tokError("invalid DWARF macinfo type" + Twine(" '") +
4776                      Lex.getStrVal() + "'");
4777    assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4778  
4779    Result.assign(Macinfo);
4780    Lex.Lex();
4781    return false;
4782  }
4783  
4784  template <>
parseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)4785  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4786                              DwarfVirtualityField &Result) {
4787    if (Lex.getKind() == lltok::APSInt)
4788      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4789  
4790    if (Lex.getKind() != lltok::DwarfVirtuality)
4791      return tokError("expected DWARF virtuality code");
4792  
4793    unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4794    if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4795      return tokError("invalid DWARF virtuality code" + Twine(" '") +
4796                      Lex.getStrVal() + "'");
4797    assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4798    Result.assign(Virtuality);
4799    Lex.Lex();
4800    return false;
4801  }
4802  
4803  template <>
parseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)4804  bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4805    if (Lex.getKind() == lltok::APSInt)
4806      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4807  
4808    if (Lex.getKind() != lltok::DwarfLang)
4809      return tokError("expected DWARF language");
4810  
4811    unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4812    if (!Lang)
4813      return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4814                      "'");
4815    assert(Lang <= Result.Max && "Expected valid DWARF language");
4816    Result.assign(Lang);
4817    Lex.Lex();
4818    return false;
4819  }
4820  
4821  template <>
parseMDField(LocTy Loc,StringRef Name,DwarfCCField & Result)4822  bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4823    if (Lex.getKind() == lltok::APSInt)
4824      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4825  
4826    if (Lex.getKind() != lltok::DwarfCC)
4827      return tokError("expected DWARF calling convention");
4828  
4829    unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4830    if (!CC)
4831      return tokError("invalid DWARF calling convention" + Twine(" '") +
4832                      Lex.getStrVal() + "'");
4833    assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4834    Result.assign(CC);
4835    Lex.Lex();
4836    return false;
4837  }
4838  
4839  template <>
parseMDField(LocTy Loc,StringRef Name,EmissionKindField & Result)4840  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4841                              EmissionKindField &Result) {
4842    if (Lex.getKind() == lltok::APSInt)
4843      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4844  
4845    if (Lex.getKind() != lltok::EmissionKind)
4846      return tokError("expected emission kind");
4847  
4848    auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4849    if (!Kind)
4850      return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4851                      "'");
4852    assert(*Kind <= Result.Max && "Expected valid emission kind");
4853    Result.assign(*Kind);
4854    Lex.Lex();
4855    return false;
4856  }
4857  
4858  template <>
parseMDField(LocTy Loc,StringRef Name,NameTableKindField & Result)4859  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4860                              NameTableKindField &Result) {
4861    if (Lex.getKind() == lltok::APSInt)
4862      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4863  
4864    if (Lex.getKind() != lltok::NameTableKind)
4865      return tokError("expected nameTable kind");
4866  
4867    auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4868    if (!Kind)
4869      return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4870                      "'");
4871    assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4872    Result.assign((unsigned)*Kind);
4873    Lex.Lex();
4874    return false;
4875  }
4876  
4877  template <>
parseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)4878  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4879                              DwarfAttEncodingField &Result) {
4880    if (Lex.getKind() == lltok::APSInt)
4881      return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4882  
4883    if (Lex.getKind() != lltok::DwarfAttEncoding)
4884      return tokError("expected DWARF type attribute encoding");
4885  
4886    unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4887    if (!Encoding)
4888      return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4889                      Lex.getStrVal() + "'");
4890    assert(Encoding <= Result.Max && "Expected valid DWARF language");
4891    Result.assign(Encoding);
4892    Lex.Lex();
4893    return false;
4894  }
4895  
4896  /// DIFlagField
4897  ///  ::= uint32
4898  ///  ::= DIFlagVector
4899  ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4900  template <>
parseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)4901  bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4902  
4903    // parser for a single flag.
4904    auto parseFlag = [&](DINode::DIFlags &Val) {
4905      if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4906        uint32_t TempVal = static_cast<uint32_t>(Val);
4907        bool Res = parseUInt32(TempVal);
4908        Val = static_cast<DINode::DIFlags>(TempVal);
4909        return Res;
4910      }
4911  
4912      if (Lex.getKind() != lltok::DIFlag)
4913        return tokError("expected debug info flag");
4914  
4915      Val = DINode::getFlag(Lex.getStrVal());
4916      if (!Val)
4917        return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4918                        "'");
4919      Lex.Lex();
4920      return false;
4921    };
4922  
4923    // parse the flags and combine them together.
4924    DINode::DIFlags Combined = DINode::FlagZero;
4925    do {
4926      DINode::DIFlags Val;
4927      if (parseFlag(Val))
4928        return true;
4929      Combined |= Val;
4930    } while (EatIfPresent(lltok::bar));
4931  
4932    Result.assign(Combined);
4933    return false;
4934  }
4935  
4936  /// DISPFlagField
4937  ///  ::= uint32
4938  ///  ::= DISPFlagVector
4939  ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4940  template <>
parseMDField(LocTy Loc,StringRef Name,DISPFlagField & Result)4941  bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4942  
4943    // parser for a single flag.
4944    auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4945      if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4946        uint32_t TempVal = static_cast<uint32_t>(Val);
4947        bool Res = parseUInt32(TempVal);
4948        Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4949        return Res;
4950      }
4951  
4952      if (Lex.getKind() != lltok::DISPFlag)
4953        return tokError("expected debug info flag");
4954  
4955      Val = DISubprogram::getFlag(Lex.getStrVal());
4956      if (!Val)
4957        return tokError(Twine("invalid subprogram debug info flag '") +
4958                        Lex.getStrVal() + "'");
4959      Lex.Lex();
4960      return false;
4961    };
4962  
4963    // parse the flags and combine them together.
4964    DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4965    do {
4966      DISubprogram::DISPFlags Val;
4967      if (parseFlag(Val))
4968        return true;
4969      Combined |= Val;
4970    } while (EatIfPresent(lltok::bar));
4971  
4972    Result.assign(Combined);
4973    return false;
4974  }
4975  
4976  template <>
parseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)4977  bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4978    if (Lex.getKind() != lltok::APSInt)
4979      return tokError("expected signed integer");
4980  
4981    auto &S = Lex.getAPSIntVal();
4982    if (S < Result.Min)
4983      return tokError("value for '" + Name + "' too small, limit is " +
4984                      Twine(Result.Min));
4985    if (S > Result.Max)
4986      return tokError("value for '" + Name + "' too large, limit is " +
4987                      Twine(Result.Max));
4988    Result.assign(S.getExtValue());
4989    assert(Result.Val >= Result.Min && "Expected value in range");
4990    assert(Result.Val <= Result.Max && "Expected value in range");
4991    Lex.Lex();
4992    return false;
4993  }
4994  
4995  template <>
parseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)4996  bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4997    switch (Lex.getKind()) {
4998    default:
4999      return tokError("expected 'true' or 'false'");
5000    case lltok::kw_true:
5001      Result.assign(true);
5002      break;
5003    case lltok::kw_false:
5004      Result.assign(false);
5005      break;
5006    }
5007    Lex.Lex();
5008    return false;
5009  }
5010  
5011  template <>
parseMDField(LocTy Loc,StringRef Name,MDField & Result)5012  bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
5013    if (Lex.getKind() == lltok::kw_null) {
5014      if (!Result.AllowNull)
5015        return tokError("'" + Name + "' cannot be null");
5016      Lex.Lex();
5017      Result.assign(nullptr);
5018      return false;
5019    }
5020  
5021    Metadata *MD;
5022    if (parseMetadata(MD, nullptr))
5023      return true;
5024  
5025    Result.assign(MD);
5026    return false;
5027  }
5028  
5029  template <>
parseMDField(LocTy Loc,StringRef Name,MDSignedOrMDField & Result)5030  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5031                              MDSignedOrMDField &Result) {
5032    // Try to parse a signed int.
5033    if (Lex.getKind() == lltok::APSInt) {
5034      MDSignedField Res = Result.A;
5035      if (!parseMDField(Loc, Name, Res)) {
5036        Result.assign(Res);
5037        return false;
5038      }
5039      return true;
5040    }
5041  
5042    // Otherwise, try to parse as an MDField.
5043    MDField Res = Result.B;
5044    if (!parseMDField(Loc, Name, Res)) {
5045      Result.assign(Res);
5046      return false;
5047    }
5048  
5049    return true;
5050  }
5051  
5052  template <>
parseMDField(LocTy Loc,StringRef Name,MDStringField & Result)5053  bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
5054    LocTy ValueLoc = Lex.getLoc();
5055    std::string S;
5056    if (parseStringConstant(S))
5057      return true;
5058  
5059    if (!Result.AllowEmpty && S.empty())
5060      return error(ValueLoc, "'" + Name + "' cannot be empty");
5061  
5062    Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
5063    return false;
5064  }
5065  
5066  template <>
parseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)5067  bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
5068    SmallVector<Metadata *, 4> MDs;
5069    if (parseMDNodeVector(MDs))
5070      return true;
5071  
5072    Result.assign(std::move(MDs));
5073    return false;
5074  }
5075  
5076  template <>
parseMDField(LocTy Loc,StringRef Name,ChecksumKindField & Result)5077  bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5078                              ChecksumKindField &Result) {
5079    std::optional<DIFile::ChecksumKind> CSKind =
5080        DIFile::getChecksumKind(Lex.getStrVal());
5081  
5082    if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
5083      return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
5084                      "'");
5085  
5086    Result.assign(*CSKind);
5087    Lex.Lex();
5088    return false;
5089  }
5090  
5091  } // end namespace llvm
5092  
5093  template <class ParserTy>
parseMDFieldsImplBody(ParserTy ParseField)5094  bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
5095    do {
5096      if (Lex.getKind() != lltok::LabelStr)
5097        return tokError("expected field label here");
5098  
5099      if (ParseField())
5100        return true;
5101    } while (EatIfPresent(lltok::comma));
5102  
5103    return false;
5104  }
5105  
5106  template <class ParserTy>
parseMDFieldsImpl(ParserTy ParseField,LocTy & ClosingLoc)5107  bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
5108    assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5109    Lex.Lex();
5110  
5111    if (parseToken(lltok::lparen, "expected '(' here"))
5112      return true;
5113    if (Lex.getKind() != lltok::rparen)
5114      if (parseMDFieldsImplBody(ParseField))
5115        return true;
5116  
5117    ClosingLoc = Lex.getLoc();
5118    return parseToken(lltok::rparen, "expected ')' here");
5119  }
5120  
5121  template <class FieldTy>
parseMDField(StringRef Name,FieldTy & Result)5122  bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
5123    if (Result.Seen)
5124      return tokError("field '" + Name + "' cannot be specified more than once");
5125  
5126    LocTy Loc = Lex.getLoc();
5127    Lex.Lex();
5128    return parseMDField(Loc, Name, Result);
5129  }
5130  
parseSpecializedMDNode(MDNode * & N,bool IsDistinct)5131  bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
5132    assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5133  
5134  #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
5135    if (Lex.getStrVal() == #CLASS)                                               \
5136      return parse##CLASS(N, IsDistinct);
5137  #include "llvm/IR/Metadata.def"
5138  
5139    return tokError("expected metadata type");
5140  }
5141  
5142  #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
5143  #define NOP_FIELD(NAME, TYPE, INIT)
5144  #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
5145    if (!NAME.Seen)                                                              \
5146      return error(ClosingLoc, "missing required field '" #NAME "'");
5147  #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
5148    if (Lex.getStrVal() == #NAME)                                                \
5149      return parseMDField(#NAME, NAME);
5150  #define PARSE_MD_FIELDS()                                                      \
5151    VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
5152    do {                                                                         \
5153      LocTy ClosingLoc;                                                          \
5154      if (parseMDFieldsImpl(                                                     \
5155              [&]() -> bool {                                                    \
5156                VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
5157                return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
5158                                "'");                                            \
5159              },                                                                 \
5160              ClosingLoc))                                                       \
5161        return true;                                                             \
5162      VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
5163    } while (false)
5164  #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
5165    (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
5166  
5167  /// parseDILocationFields:
5168  ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
5169  ///   isImplicitCode: true)
parseDILocation(MDNode * & Result,bool IsDistinct)5170  bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
5171  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5172    OPTIONAL(line, LineField, );                                                 \
5173    OPTIONAL(column, ColumnField, );                                             \
5174    REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5175    OPTIONAL(inlinedAt, MDField, );                                              \
5176    OPTIONAL(isImplicitCode, MDBoolField, (false));
5177    PARSE_MD_FIELDS();
5178  #undef VISIT_MD_FIELDS
5179  
5180    Result =
5181        GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
5182                                     inlinedAt.Val, isImplicitCode.Val));
5183    return false;
5184  }
5185  
5186  /// parseDIAssignID:
5187  ///   ::= distinct !DIAssignID()
parseDIAssignID(MDNode * & Result,bool IsDistinct)5188  bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
5189    if (!IsDistinct)
5190      return Lex.Error("missing 'distinct', required for !DIAssignID()");
5191  
5192    Lex.Lex();
5193  
5194    // Now eat the parens.
5195    if (parseToken(lltok::lparen, "expected '(' here"))
5196      return true;
5197    if (parseToken(lltok::rparen, "expected ')' here"))
5198      return true;
5199  
5200    Result = DIAssignID::getDistinct(Context);
5201    return false;
5202  }
5203  
5204  /// parseGenericDINode:
5205  ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
parseGenericDINode(MDNode * & Result,bool IsDistinct)5206  bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
5207  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5208    REQUIRED(tag, DwarfTagField, );                                              \
5209    OPTIONAL(header, MDStringField, );                                           \
5210    OPTIONAL(operands, MDFieldList, );
5211    PARSE_MD_FIELDS();
5212  #undef VISIT_MD_FIELDS
5213  
5214    Result = GET_OR_DISTINCT(GenericDINode,
5215                             (Context, tag.Val, header.Val, operands.Val));
5216    return false;
5217  }
5218  
5219  /// parseDISubrange:
5220  ///   ::= !DISubrange(count: 30, lowerBound: 2)
5221  ///   ::= !DISubrange(count: !node, lowerBound: 2)
5222  ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
parseDISubrange(MDNode * & Result,bool IsDistinct)5223  bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
5224  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5225    OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
5226    OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
5227    OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
5228    OPTIONAL(stride, MDSignedOrMDField, );
5229    PARSE_MD_FIELDS();
5230  #undef VISIT_MD_FIELDS
5231  
5232    Metadata *Count = nullptr;
5233    Metadata *LowerBound = nullptr;
5234    Metadata *UpperBound = nullptr;
5235    Metadata *Stride = nullptr;
5236  
5237    auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5238      if (Bound.isMDSignedField())
5239        return ConstantAsMetadata::get(ConstantInt::getSigned(
5240            Type::getInt64Ty(Context), Bound.getMDSignedValue()));
5241      if (Bound.isMDField())
5242        return Bound.getMDFieldValue();
5243      return nullptr;
5244    };
5245  
5246    Count = convToMetadata(count);
5247    LowerBound = convToMetadata(lowerBound);
5248    UpperBound = convToMetadata(upperBound);
5249    Stride = convToMetadata(stride);
5250  
5251    Result = GET_OR_DISTINCT(DISubrange,
5252                             (Context, Count, LowerBound, UpperBound, Stride));
5253  
5254    return false;
5255  }
5256  
5257  /// parseDIGenericSubrange:
5258  ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
5259  ///   !node3)
parseDIGenericSubrange(MDNode * & Result,bool IsDistinct)5260  bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
5261  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5262    OPTIONAL(count, MDSignedOrMDField, );                                        \
5263    OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
5264    OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
5265    OPTIONAL(stride, MDSignedOrMDField, );
5266    PARSE_MD_FIELDS();
5267  #undef VISIT_MD_FIELDS
5268  
5269    auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5270      if (Bound.isMDSignedField())
5271        return DIExpression::get(
5272            Context, {dwarf::DW_OP_consts,
5273                      static_cast<uint64_t>(Bound.getMDSignedValue())});
5274      if (Bound.isMDField())
5275        return Bound.getMDFieldValue();
5276      return nullptr;
5277    };
5278  
5279    Metadata *Count = ConvToMetadata(count);
5280    Metadata *LowerBound = ConvToMetadata(lowerBound);
5281    Metadata *UpperBound = ConvToMetadata(upperBound);
5282    Metadata *Stride = ConvToMetadata(stride);
5283  
5284    Result = GET_OR_DISTINCT(DIGenericSubrange,
5285                             (Context, Count, LowerBound, UpperBound, Stride));
5286  
5287    return false;
5288  }
5289  
5290  /// parseDIEnumerator:
5291  ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
parseDIEnumerator(MDNode * & Result,bool IsDistinct)5292  bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
5293  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5294    REQUIRED(name, MDStringField, );                                             \
5295    REQUIRED(value, MDAPSIntField, );                                            \
5296    OPTIONAL(isUnsigned, MDBoolField, (false));
5297    PARSE_MD_FIELDS();
5298  #undef VISIT_MD_FIELDS
5299  
5300    if (isUnsigned.Val && value.Val.isNegative())
5301      return tokError("unsigned enumerator with negative value");
5302  
5303    APSInt Value(value.Val);
5304    // Add a leading zero so that unsigned values with the msb set are not
5305    // mistaken for negative values when used for signed enumerators.
5306    if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
5307      Value = Value.zext(Value.getBitWidth() + 1);
5308  
5309    Result =
5310        GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
5311  
5312    return false;
5313  }
5314  
5315  /// parseDIBasicType:
5316  ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
5317  ///                    encoding: DW_ATE_encoding, flags: 0)
parseDIBasicType(MDNode * & Result,bool IsDistinct)5318  bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
5319  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5320    OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
5321    OPTIONAL(name, MDStringField, );                                             \
5322    OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5323    OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5324    OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
5325    OPTIONAL(flags, DIFlagField, );
5326    PARSE_MD_FIELDS();
5327  #undef VISIT_MD_FIELDS
5328  
5329    Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
5330                                           align.Val, encoding.Val, flags.Val));
5331    return false;
5332  }
5333  
5334  /// parseDIStringType:
5335  ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
parseDIStringType(MDNode * & Result,bool IsDistinct)5336  bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
5337  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5338    OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
5339    OPTIONAL(name, MDStringField, );                                             \
5340    OPTIONAL(stringLength, MDField, );                                           \
5341    OPTIONAL(stringLengthExpression, MDField, );                                 \
5342    OPTIONAL(stringLocationExpression, MDField, );                               \
5343    OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5344    OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5345    OPTIONAL(encoding, DwarfAttEncodingField, );
5346    PARSE_MD_FIELDS();
5347  #undef VISIT_MD_FIELDS
5348  
5349    Result = GET_OR_DISTINCT(
5350        DIStringType,
5351        (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
5352         stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
5353    return false;
5354  }
5355  
5356  /// parseDIDerivedType:
5357  ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
5358  ///                      line: 7, scope: !1, baseType: !2, size: 32,
5359  ///                      align: 32, offset: 0, flags: 0, extraData: !3,
5360  ///                      dwarfAddressSpace: 3, ptrAuthKey: 1,
5361  ///                      ptrAuthIsAddressDiscriminated: true,
5362  ///                      ptrAuthExtraDiscriminator: 0x1234,
5363  ///                      ptrAuthIsaPointer: 1, ptrAuthAuthenticatesNullValues:1
5364  ///                      )
parseDIDerivedType(MDNode * & Result,bool IsDistinct)5365  bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
5366  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5367    REQUIRED(tag, DwarfTagField, );                                              \
5368    OPTIONAL(name, MDStringField, );                                             \
5369    OPTIONAL(file, MDField, );                                                   \
5370    OPTIONAL(line, LineField, );                                                 \
5371    OPTIONAL(scope, MDField, );                                                  \
5372    REQUIRED(baseType, MDField, );                                               \
5373    OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5374    OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5375    OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
5376    OPTIONAL(flags, DIFlagField, );                                              \
5377    OPTIONAL(extraData, MDField, );                                              \
5378    OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
5379    OPTIONAL(annotations, MDField, );                                            \
5380    OPTIONAL(ptrAuthKey, MDUnsignedField, (0, 7));                               \
5381    OPTIONAL(ptrAuthIsAddressDiscriminated, MDBoolField, );                      \
5382    OPTIONAL(ptrAuthExtraDiscriminator, MDUnsignedField, (0, 0xffff));           \
5383    OPTIONAL(ptrAuthIsaPointer, MDBoolField, );                                  \
5384    OPTIONAL(ptrAuthAuthenticatesNullValues, MDBoolField, );
5385    PARSE_MD_FIELDS();
5386  #undef VISIT_MD_FIELDS
5387  
5388    std::optional<unsigned> DWARFAddressSpace;
5389    if (dwarfAddressSpace.Val != UINT32_MAX)
5390      DWARFAddressSpace = dwarfAddressSpace.Val;
5391    std::optional<DIDerivedType::PtrAuthData> PtrAuthData;
5392    if (ptrAuthKey.Val)
5393      PtrAuthData.emplace(
5394          (unsigned)ptrAuthKey.Val, ptrAuthIsAddressDiscriminated.Val,
5395          (unsigned)ptrAuthExtraDiscriminator.Val, ptrAuthIsaPointer.Val,
5396          ptrAuthAuthenticatesNullValues.Val);
5397  
5398    Result = GET_OR_DISTINCT(DIDerivedType,
5399                             (Context, tag.Val, name.Val, file.Val, line.Val,
5400                              scope.Val, baseType.Val, size.Val, align.Val,
5401                              offset.Val, DWARFAddressSpace, PtrAuthData,
5402                              flags.Val, extraData.Val, annotations.Val));
5403    return false;
5404  }
5405  
parseDICompositeType(MDNode * & Result,bool IsDistinct)5406  bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
5407  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5408    REQUIRED(tag, DwarfTagField, );                                              \
5409    OPTIONAL(name, MDStringField, );                                             \
5410    OPTIONAL(file, MDField, );                                                   \
5411    OPTIONAL(line, LineField, );                                                 \
5412    OPTIONAL(scope, MDField, );                                                  \
5413    OPTIONAL(baseType, MDField, );                                               \
5414    OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5415    OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5416    OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
5417    OPTIONAL(flags, DIFlagField, );                                              \
5418    OPTIONAL(elements, MDField, );                                               \
5419    OPTIONAL(runtimeLang, DwarfLangField, );                                     \
5420    OPTIONAL(vtableHolder, MDField, );                                           \
5421    OPTIONAL(templateParams, MDField, );                                         \
5422    OPTIONAL(identifier, MDStringField, );                                       \
5423    OPTIONAL(discriminator, MDField, );                                          \
5424    OPTIONAL(dataLocation, MDField, );                                           \
5425    OPTIONAL(associated, MDField, );                                             \
5426    OPTIONAL(allocated, MDField, );                                              \
5427    OPTIONAL(rank, MDSignedOrMDField, );                                         \
5428    OPTIONAL(annotations, MDField, );
5429    PARSE_MD_FIELDS();
5430  #undef VISIT_MD_FIELDS
5431  
5432    Metadata *Rank = nullptr;
5433    if (rank.isMDSignedField())
5434      Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
5435          Type::getInt64Ty(Context), rank.getMDSignedValue()));
5436    else if (rank.isMDField())
5437      Rank = rank.getMDFieldValue();
5438  
5439    // If this has an identifier try to build an ODR type.
5440    if (identifier.Val)
5441      if (auto *CT = DICompositeType::buildODRType(
5442              Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
5443              scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
5444              elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
5445              discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
5446              Rank, annotations.Val)) {
5447        Result = CT;
5448        return false;
5449      }
5450  
5451    // Create a new node, and save it in the context if it belongs in the type
5452    // map.
5453    Result = GET_OR_DISTINCT(
5454        DICompositeType,
5455        (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5456         size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5457         runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5458         discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5459         annotations.Val));
5460    return false;
5461  }
5462  
parseDISubroutineType(MDNode * & Result,bool IsDistinct)5463  bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5464  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5465    OPTIONAL(flags, DIFlagField, );                                              \
5466    OPTIONAL(cc, DwarfCCField, );                                                \
5467    REQUIRED(types, MDField, );
5468    PARSE_MD_FIELDS();
5469  #undef VISIT_MD_FIELDS
5470  
5471    Result = GET_OR_DISTINCT(DISubroutineType,
5472                             (Context, flags.Val, cc.Val, types.Val));
5473    return false;
5474  }
5475  
5476  /// parseDIFileType:
5477  ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5478  ///                   checksumkind: CSK_MD5,
5479  ///                   checksum: "000102030405060708090a0b0c0d0e0f",
5480  ///                   source: "source file contents")
parseDIFile(MDNode * & Result,bool IsDistinct)5481  bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5482    // The default constructed value for checksumkind is required, but will never
5483    // be used, as the parser checks if the field was actually Seen before using
5484    // the Val.
5485  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5486    REQUIRED(filename, MDStringField, );                                         \
5487    REQUIRED(directory, MDStringField, );                                        \
5488    OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
5489    OPTIONAL(checksum, MDStringField, );                                         \
5490    OPTIONAL(source, MDStringField, );
5491    PARSE_MD_FIELDS();
5492  #undef VISIT_MD_FIELDS
5493  
5494    std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5495    if (checksumkind.Seen && checksum.Seen)
5496      OptChecksum.emplace(checksumkind.Val, checksum.Val);
5497    else if (checksumkind.Seen || checksum.Seen)
5498      return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5499  
5500    MDString *Source = nullptr;
5501    if (source.Seen)
5502      Source = source.Val;
5503    Result = GET_OR_DISTINCT(
5504        DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5505    return false;
5506  }
5507  
5508  /// parseDICompileUnit:
5509  ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5510  ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5511  ///                      splitDebugFilename: "abc.debug",
5512  ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5513  ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5514  ///                      sysroot: "/", sdk: "MacOSX.sdk")
parseDICompileUnit(MDNode * & Result,bool IsDistinct)5515  bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5516    if (!IsDistinct)
5517      return Lex.Error("missing 'distinct', required for !DICompileUnit");
5518  
5519  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5520    REQUIRED(language, DwarfLangField, );                                        \
5521    REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5522    OPTIONAL(producer, MDStringField, );                                         \
5523    OPTIONAL(isOptimized, MDBoolField, );                                        \
5524    OPTIONAL(flags, MDStringField, );                                            \
5525    OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5526    OPTIONAL(splitDebugFilename, MDStringField, );                               \
5527    OPTIONAL(emissionKind, EmissionKindField, );                                 \
5528    OPTIONAL(enums, MDField, );                                                  \
5529    OPTIONAL(retainedTypes, MDField, );                                          \
5530    OPTIONAL(globals, MDField, );                                                \
5531    OPTIONAL(imports, MDField, );                                                \
5532    OPTIONAL(macros, MDField, );                                                 \
5533    OPTIONAL(dwoId, MDUnsignedField, );                                          \
5534    OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5535    OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5536    OPTIONAL(nameTableKind, NameTableKindField, );                               \
5537    OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5538    OPTIONAL(sysroot, MDStringField, );                                          \
5539    OPTIONAL(sdk, MDStringField, );
5540    PARSE_MD_FIELDS();
5541  #undef VISIT_MD_FIELDS
5542  
5543    Result = DICompileUnit::getDistinct(
5544        Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5545        runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5546        retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5547        splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5548        rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5549    return false;
5550  }
5551  
5552  /// parseDISubprogram:
5553  ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5554  ///                     file: !1, line: 7, type: !2, isLocal: false,
5555  ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5556  ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5557  ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5558  ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5559  ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
5560  ///                     annotations: !8)
parseDISubprogram(MDNode * & Result,bool IsDistinct)5561  bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5562    auto Loc = Lex.getLoc();
5563  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5564    OPTIONAL(scope, MDField, );                                                  \
5565    OPTIONAL(name, MDStringField, );                                             \
5566    OPTIONAL(linkageName, MDStringField, );                                      \
5567    OPTIONAL(file, MDField, );                                                   \
5568    OPTIONAL(line, LineField, );                                                 \
5569    OPTIONAL(type, MDField, );                                                   \
5570    OPTIONAL(isLocal, MDBoolField, );                                            \
5571    OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5572    OPTIONAL(scopeLine, LineField, );                                            \
5573    OPTIONAL(containingType, MDField, );                                         \
5574    OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5575    OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5576    OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5577    OPTIONAL(flags, DIFlagField, );                                              \
5578    OPTIONAL(spFlags, DISPFlagField, );                                          \
5579    OPTIONAL(isOptimized, MDBoolField, );                                        \
5580    OPTIONAL(unit, MDField, );                                                   \
5581    OPTIONAL(templateParams, MDField, );                                         \
5582    OPTIONAL(declaration, MDField, );                                            \
5583    OPTIONAL(retainedNodes, MDField, );                                          \
5584    OPTIONAL(thrownTypes, MDField, );                                            \
5585    OPTIONAL(annotations, MDField, );                                            \
5586    OPTIONAL(targetFuncName, MDStringField, );
5587    PARSE_MD_FIELDS();
5588  #undef VISIT_MD_FIELDS
5589  
5590    // An explicit spFlags field takes precedence over individual fields in
5591    // older IR versions.
5592    DISubprogram::DISPFlags SPFlags =
5593        spFlags.Seen ? spFlags.Val
5594                     : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5595                                               isOptimized.Val, virtuality.Val);
5596    if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5597      return Lex.Error(
5598          Loc,
5599          "missing 'distinct', required for !DISubprogram that is a Definition");
5600    Result = GET_OR_DISTINCT(
5601        DISubprogram,
5602        (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5603         type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5604         thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5605         declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5606         targetFuncName.Val));
5607    return false;
5608  }
5609  
5610  /// parseDILexicalBlock:
5611  ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
parseDILexicalBlock(MDNode * & Result,bool IsDistinct)5612  bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5613  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5614    REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5615    OPTIONAL(file, MDField, );                                                   \
5616    OPTIONAL(line, LineField, );                                                 \
5617    OPTIONAL(column, ColumnField, );
5618    PARSE_MD_FIELDS();
5619  #undef VISIT_MD_FIELDS
5620  
5621    Result = GET_OR_DISTINCT(
5622        DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5623    return false;
5624  }
5625  
5626  /// parseDILexicalBlockFile:
5627  ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
parseDILexicalBlockFile(MDNode * & Result,bool IsDistinct)5628  bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5629  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5630    REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5631    OPTIONAL(file, MDField, );                                                   \
5632    REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5633    PARSE_MD_FIELDS();
5634  #undef VISIT_MD_FIELDS
5635  
5636    Result = GET_OR_DISTINCT(DILexicalBlockFile,
5637                             (Context, scope.Val, file.Val, discriminator.Val));
5638    return false;
5639  }
5640  
5641  /// parseDICommonBlock:
5642  ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
parseDICommonBlock(MDNode * & Result,bool IsDistinct)5643  bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5644  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5645    REQUIRED(scope, MDField, );                                                  \
5646    OPTIONAL(declaration, MDField, );                                            \
5647    OPTIONAL(name, MDStringField, );                                             \
5648    OPTIONAL(file, MDField, );                                                   \
5649    OPTIONAL(line, LineField, );
5650    PARSE_MD_FIELDS();
5651  #undef VISIT_MD_FIELDS
5652  
5653    Result = GET_OR_DISTINCT(DICommonBlock,
5654                             (Context, scope.Val, declaration.Val, name.Val,
5655                              file.Val, line.Val));
5656    return false;
5657  }
5658  
5659  /// parseDINamespace:
5660  ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
parseDINamespace(MDNode * & Result,bool IsDistinct)5661  bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5662  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5663    REQUIRED(scope, MDField, );                                                  \
5664    OPTIONAL(name, MDStringField, );                                             \
5665    OPTIONAL(exportSymbols, MDBoolField, );
5666    PARSE_MD_FIELDS();
5667  #undef VISIT_MD_FIELDS
5668  
5669    Result = GET_OR_DISTINCT(DINamespace,
5670                             (Context, scope.Val, name.Val, exportSymbols.Val));
5671    return false;
5672  }
5673  
5674  /// parseDIMacro:
5675  ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5676  ///   "SomeValue")
parseDIMacro(MDNode * & Result,bool IsDistinct)5677  bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5678  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5679    REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5680    OPTIONAL(line, LineField, );                                                 \
5681    REQUIRED(name, MDStringField, );                                             \
5682    OPTIONAL(value, MDStringField, );
5683    PARSE_MD_FIELDS();
5684  #undef VISIT_MD_FIELDS
5685  
5686    Result = GET_OR_DISTINCT(DIMacro,
5687                             (Context, type.Val, line.Val, name.Val, value.Val));
5688    return false;
5689  }
5690  
5691  /// parseDIMacroFile:
5692  ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
parseDIMacroFile(MDNode * & Result,bool IsDistinct)5693  bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5694  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5695    OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5696    OPTIONAL(line, LineField, );                                                 \
5697    REQUIRED(file, MDField, );                                                   \
5698    OPTIONAL(nodes, MDField, );
5699    PARSE_MD_FIELDS();
5700  #undef VISIT_MD_FIELDS
5701  
5702    Result = GET_OR_DISTINCT(DIMacroFile,
5703                             (Context, type.Val, line.Val, file.Val, nodes.Val));
5704    return false;
5705  }
5706  
5707  /// parseDIModule:
5708  ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5709  ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5710  ///   file: !1, line: 4, isDecl: false)
parseDIModule(MDNode * & Result,bool IsDistinct)5711  bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5712  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5713    REQUIRED(scope, MDField, );                                                  \
5714    REQUIRED(name, MDStringField, );                                             \
5715    OPTIONAL(configMacros, MDStringField, );                                     \
5716    OPTIONAL(includePath, MDStringField, );                                      \
5717    OPTIONAL(apinotes, MDStringField, );                                         \
5718    OPTIONAL(file, MDField, );                                                   \
5719    OPTIONAL(line, LineField, );                                                 \
5720    OPTIONAL(isDecl, MDBoolField, );
5721    PARSE_MD_FIELDS();
5722  #undef VISIT_MD_FIELDS
5723  
5724    Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5725                                        configMacros.Val, includePath.Val,
5726                                        apinotes.Val, line.Val, isDecl.Val));
5727    return false;
5728  }
5729  
5730  /// parseDITemplateTypeParameter:
5731  ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
parseDITemplateTypeParameter(MDNode * & Result,bool IsDistinct)5732  bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5733  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5734    OPTIONAL(name, MDStringField, );                                             \
5735    REQUIRED(type, MDField, );                                                   \
5736    OPTIONAL(defaulted, MDBoolField, );
5737    PARSE_MD_FIELDS();
5738  #undef VISIT_MD_FIELDS
5739  
5740    Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5741                             (Context, name.Val, type.Val, defaulted.Val));
5742    return false;
5743  }
5744  
5745  /// parseDITemplateValueParameter:
5746  ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5747  ///                                 name: "V", type: !1, defaulted: false,
5748  ///                                 value: i32 7)
parseDITemplateValueParameter(MDNode * & Result,bool IsDistinct)5749  bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5750  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5751    OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5752    OPTIONAL(name, MDStringField, );                                             \
5753    OPTIONAL(type, MDField, );                                                   \
5754    OPTIONAL(defaulted, MDBoolField, );                                          \
5755    REQUIRED(value, MDField, );
5756  
5757    PARSE_MD_FIELDS();
5758  #undef VISIT_MD_FIELDS
5759  
5760    Result = GET_OR_DISTINCT(
5761        DITemplateValueParameter,
5762        (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5763    return false;
5764  }
5765  
5766  /// parseDIGlobalVariable:
5767  ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5768  ///                         file: !1, line: 7, type: !2, isLocal: false,
5769  ///                         isDefinition: true, templateParams: !3,
5770  ///                         declaration: !4, align: 8)
parseDIGlobalVariable(MDNode * & Result,bool IsDistinct)5771  bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5772  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5773    OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5774    OPTIONAL(scope, MDField, );                                                  \
5775    OPTIONAL(linkageName, MDStringField, );                                      \
5776    OPTIONAL(file, MDField, );                                                   \
5777    OPTIONAL(line, LineField, );                                                 \
5778    OPTIONAL(type, MDField, );                                                   \
5779    OPTIONAL(isLocal, MDBoolField, );                                            \
5780    OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5781    OPTIONAL(templateParams, MDField, );                                         \
5782    OPTIONAL(declaration, MDField, );                                            \
5783    OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5784    OPTIONAL(annotations, MDField, );
5785    PARSE_MD_FIELDS();
5786  #undef VISIT_MD_FIELDS
5787  
5788    Result =
5789        GET_OR_DISTINCT(DIGlobalVariable,
5790                        (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5791                         line.Val, type.Val, isLocal.Val, isDefinition.Val,
5792                         declaration.Val, templateParams.Val, align.Val,
5793                         annotations.Val));
5794    return false;
5795  }
5796  
5797  /// parseDILocalVariable:
5798  ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5799  ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5800  ///                        align: 8)
5801  ///   ::= !DILocalVariable(scope: !0, name: "foo",
5802  ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5803  ///                        align: 8)
parseDILocalVariable(MDNode * & Result,bool IsDistinct)5804  bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5805  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5806    REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5807    OPTIONAL(name, MDStringField, );                                             \
5808    OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5809    OPTIONAL(file, MDField, );                                                   \
5810    OPTIONAL(line, LineField, );                                                 \
5811    OPTIONAL(type, MDField, );                                                   \
5812    OPTIONAL(flags, DIFlagField, );                                              \
5813    OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5814    OPTIONAL(annotations, MDField, );
5815    PARSE_MD_FIELDS();
5816  #undef VISIT_MD_FIELDS
5817  
5818    Result = GET_OR_DISTINCT(DILocalVariable,
5819                             (Context, scope.Val, name.Val, file.Val, line.Val,
5820                              type.Val, arg.Val, flags.Val, align.Val,
5821                              annotations.Val));
5822    return false;
5823  }
5824  
5825  /// parseDILabel:
5826  ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
parseDILabel(MDNode * & Result,bool IsDistinct)5827  bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5828  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5829    REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5830    REQUIRED(name, MDStringField, );                                             \
5831    REQUIRED(file, MDField, );                                                   \
5832    REQUIRED(line, LineField, );
5833    PARSE_MD_FIELDS();
5834  #undef VISIT_MD_FIELDS
5835  
5836    Result = GET_OR_DISTINCT(DILabel,
5837                             (Context, scope.Val, name.Val, file.Val, line.Val));
5838    return false;
5839  }
5840  
5841  /// parseDIExpressionBody:
5842  ///   ::= (0, 7, -1)
parseDIExpressionBody(MDNode * & Result,bool IsDistinct)5843  bool LLParser::parseDIExpressionBody(MDNode *&Result, bool IsDistinct) {
5844    if (parseToken(lltok::lparen, "expected '(' here"))
5845      return true;
5846  
5847    SmallVector<uint64_t, 8> Elements;
5848    if (Lex.getKind() != lltok::rparen)
5849      do {
5850        if (Lex.getKind() == lltok::DwarfOp) {
5851          if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5852            Lex.Lex();
5853            Elements.push_back(Op);
5854            continue;
5855          }
5856          return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5857        }
5858  
5859        if (Lex.getKind() == lltok::DwarfAttEncoding) {
5860          if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5861            Lex.Lex();
5862            Elements.push_back(Op);
5863            continue;
5864          }
5865          return tokError(Twine("invalid DWARF attribute encoding '") +
5866                          Lex.getStrVal() + "'");
5867        }
5868  
5869        if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5870          return tokError("expected unsigned integer");
5871  
5872        auto &U = Lex.getAPSIntVal();
5873        if (U.ugt(UINT64_MAX))
5874          return tokError("element too large, limit is " + Twine(UINT64_MAX));
5875        Elements.push_back(U.getZExtValue());
5876        Lex.Lex();
5877      } while (EatIfPresent(lltok::comma));
5878  
5879    if (parseToken(lltok::rparen, "expected ')' here"))
5880      return true;
5881  
5882    Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5883    return false;
5884  }
5885  
5886  /// parseDIExpression:
5887  ///   ::= !DIExpression(0, 7, -1)
parseDIExpression(MDNode * & Result,bool IsDistinct)5888  bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5889    assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5890    assert(Lex.getStrVal() == "DIExpression" && "Expected '!DIExpression'");
5891    Lex.Lex();
5892  
5893    return parseDIExpressionBody(Result, IsDistinct);
5894  }
5895  
5896  /// ParseDIArgList:
5897  ///   ::= !DIArgList(i32 7, i64 %0)
parseDIArgList(Metadata * & MD,PerFunctionState * PFS)5898  bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) {
5899    assert(PFS && "Expected valid function state");
5900    assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5901    Lex.Lex();
5902  
5903    if (parseToken(lltok::lparen, "expected '(' here"))
5904      return true;
5905  
5906    SmallVector<ValueAsMetadata *, 4> Args;
5907    if (Lex.getKind() != lltok::rparen)
5908      do {
5909        Metadata *MD;
5910        if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5911          return true;
5912        Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5913      } while (EatIfPresent(lltok::comma));
5914  
5915    if (parseToken(lltok::rparen, "expected ')' here"))
5916      return true;
5917  
5918    MD = DIArgList::get(Context, Args);
5919    return false;
5920  }
5921  
5922  /// parseDIGlobalVariableExpression:
5923  ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
parseDIGlobalVariableExpression(MDNode * & Result,bool IsDistinct)5924  bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5925                                                 bool IsDistinct) {
5926  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5927    REQUIRED(var, MDField, );                                                    \
5928    REQUIRED(expr, MDField, );
5929    PARSE_MD_FIELDS();
5930  #undef VISIT_MD_FIELDS
5931  
5932    Result =
5933        GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5934    return false;
5935  }
5936  
5937  /// parseDIObjCProperty:
5938  ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5939  ///                       getter: "getFoo", attributes: 7, type: !2)
parseDIObjCProperty(MDNode * & Result,bool IsDistinct)5940  bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5941  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5942    OPTIONAL(name, MDStringField, );                                             \
5943    OPTIONAL(file, MDField, );                                                   \
5944    OPTIONAL(line, LineField, );                                                 \
5945    OPTIONAL(setter, MDStringField, );                                           \
5946    OPTIONAL(getter, MDStringField, );                                           \
5947    OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5948    OPTIONAL(type, MDField, );
5949    PARSE_MD_FIELDS();
5950  #undef VISIT_MD_FIELDS
5951  
5952    Result = GET_OR_DISTINCT(DIObjCProperty,
5953                             (Context, name.Val, file.Val, line.Val, setter.Val,
5954                              getter.Val, attributes.Val, type.Val));
5955    return false;
5956  }
5957  
5958  /// parseDIImportedEntity:
5959  ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5960  ///                         line: 7, name: "foo", elements: !2)
parseDIImportedEntity(MDNode * & Result,bool IsDistinct)5961  bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5962  #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5963    REQUIRED(tag, DwarfTagField, );                                              \
5964    REQUIRED(scope, MDField, );                                                  \
5965    OPTIONAL(entity, MDField, );                                                 \
5966    OPTIONAL(file, MDField, );                                                   \
5967    OPTIONAL(line, LineField, );                                                 \
5968    OPTIONAL(name, MDStringField, );                                             \
5969    OPTIONAL(elements, MDField, );
5970    PARSE_MD_FIELDS();
5971  #undef VISIT_MD_FIELDS
5972  
5973    Result = GET_OR_DISTINCT(DIImportedEntity,
5974                             (Context, tag.Val, scope.Val, entity.Val, file.Val,
5975                              line.Val, name.Val, elements.Val));
5976    return false;
5977  }
5978  
5979  #undef PARSE_MD_FIELD
5980  #undef NOP_FIELD
5981  #undef REQUIRE_FIELD
5982  #undef DECLARE_FIELD
5983  
5984  /// parseMetadataAsValue
5985  ///  ::= metadata i32 %local
5986  ///  ::= metadata i32 @global
5987  ///  ::= metadata i32 7
5988  ///  ::= metadata !0
5989  ///  ::= metadata !{...}
5990  ///  ::= metadata !"string"
parseMetadataAsValue(Value * & V,PerFunctionState & PFS)5991  bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5992    // Note: the type 'metadata' has already been parsed.
5993    Metadata *MD;
5994    if (parseMetadata(MD, &PFS))
5995      return true;
5996  
5997    V = MetadataAsValue::get(Context, MD);
5998    return false;
5999  }
6000  
6001  /// parseValueAsMetadata
6002  ///  ::= i32 %local
6003  ///  ::= i32 @global
6004  ///  ::= i32 7
parseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)6005  bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
6006                                      PerFunctionState *PFS) {
6007    Type *Ty;
6008    LocTy Loc;
6009    if (parseType(Ty, TypeMsg, Loc))
6010      return true;
6011    if (Ty->isMetadataTy())
6012      return error(Loc, "invalid metadata-value-metadata roundtrip");
6013  
6014    Value *V;
6015    if (parseValue(Ty, V, PFS))
6016      return true;
6017  
6018    MD = ValueAsMetadata::get(V);
6019    return false;
6020  }
6021  
6022  /// parseMetadata
6023  ///  ::= i32 %local
6024  ///  ::= i32 @global
6025  ///  ::= i32 7
6026  ///  ::= !42
6027  ///  ::= !{...}
6028  ///  ::= !"string"
6029  ///  ::= !DILocation(...)
parseMetadata(Metadata * & MD,PerFunctionState * PFS)6030  bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
6031    if (Lex.getKind() == lltok::MetadataVar) {
6032      // DIArgLists are a special case, as they are a list of ValueAsMetadata and
6033      // so parsing this requires a Function State.
6034      if (Lex.getStrVal() == "DIArgList") {
6035        Metadata *AL;
6036        if (parseDIArgList(AL, PFS))
6037          return true;
6038        MD = AL;
6039        return false;
6040      }
6041      MDNode *N;
6042      if (parseSpecializedMDNode(N)) {
6043        return true;
6044      }
6045      MD = N;
6046      return false;
6047    }
6048  
6049    // ValueAsMetadata:
6050    // <type> <value>
6051    if (Lex.getKind() != lltok::exclaim)
6052      return parseValueAsMetadata(MD, "expected metadata operand", PFS);
6053  
6054    // '!'.
6055    assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
6056    Lex.Lex();
6057  
6058    // MDString:
6059    //   ::= '!' STRINGCONSTANT
6060    if (Lex.getKind() == lltok::StringConstant) {
6061      MDString *S;
6062      if (parseMDString(S))
6063        return true;
6064      MD = S;
6065      return false;
6066    }
6067  
6068    // MDNode:
6069    // !{ ... }
6070    // !7
6071    MDNode *N;
6072    if (parseMDNodeTail(N))
6073      return true;
6074    MD = N;
6075    return false;
6076  }
6077  
6078  //===----------------------------------------------------------------------===//
6079  // Function Parsing.
6080  //===----------------------------------------------------------------------===//
6081  
convertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)6082  bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
6083                                     PerFunctionState *PFS) {
6084    if (Ty->isFunctionTy())
6085      return error(ID.Loc, "functions are not values, refer to them as pointers");
6086  
6087    switch (ID.Kind) {
6088    case ValID::t_LocalID:
6089      if (!PFS)
6090        return error(ID.Loc, "invalid use of function-local name");
6091      V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
6092      return V == nullptr;
6093    case ValID::t_LocalName:
6094      if (!PFS)
6095        return error(ID.Loc, "invalid use of function-local name");
6096      V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
6097      return V == nullptr;
6098    case ValID::t_InlineAsm: {
6099      if (!ID.FTy)
6100        return error(ID.Loc, "invalid type for inline asm constraint string");
6101      if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
6102        return error(ID.Loc, toString(std::move(Err)));
6103      V = InlineAsm::get(
6104          ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
6105          InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
6106      return false;
6107    }
6108    case ValID::t_GlobalName:
6109      V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
6110      if (V && ID.NoCFI)
6111        V = NoCFIValue::get(cast<GlobalValue>(V));
6112      return V == nullptr;
6113    case ValID::t_GlobalID:
6114      V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
6115      if (V && ID.NoCFI)
6116        V = NoCFIValue::get(cast<GlobalValue>(V));
6117      return V == nullptr;
6118    case ValID::t_APSInt:
6119      if (!Ty->isIntegerTy())
6120        return error(ID.Loc, "integer constant must have integer type");
6121      ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
6122      V = ConstantInt::get(Context, ID.APSIntVal);
6123      return false;
6124    case ValID::t_APFloat:
6125      if (!Ty->isFloatingPointTy() ||
6126          !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
6127        return error(ID.Loc, "floating point constant invalid for type");
6128  
6129      // The lexer has no type info, so builds all half, bfloat, float, and double
6130      // FP constants as double.  Fix this here.  Long double does not need this.
6131      if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
6132        // Check for signaling before potentially converting and losing that info.
6133        bool IsSNAN = ID.APFloatVal.isSignaling();
6134        bool Ignored;
6135        if (Ty->isHalfTy())
6136          ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
6137                                &Ignored);
6138        else if (Ty->isBFloatTy())
6139          ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
6140                                &Ignored);
6141        else if (Ty->isFloatTy())
6142          ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
6143                                &Ignored);
6144        if (IsSNAN) {
6145          // The convert call above may quiet an SNaN, so manufacture another
6146          // SNaN. The bitcast works because the payload (significand) parameter
6147          // is truncated to fit.
6148          APInt Payload = ID.APFloatVal.bitcastToAPInt();
6149          ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
6150                                           ID.APFloatVal.isNegative(), &Payload);
6151        }
6152      }
6153      V = ConstantFP::get(Context, ID.APFloatVal);
6154  
6155      if (V->getType() != Ty)
6156        return error(ID.Loc, "floating point constant does not have type '" +
6157                                 getTypeString(Ty) + "'");
6158  
6159      return false;
6160    case ValID::t_Null:
6161      if (!Ty->isPointerTy())
6162        return error(ID.Loc, "null must be a pointer type");
6163      V = ConstantPointerNull::get(cast<PointerType>(Ty));
6164      return false;
6165    case ValID::t_Undef:
6166      // FIXME: LabelTy should not be a first-class type.
6167      if (!Ty->isFirstClassType() || Ty->isLabelTy())
6168        return error(ID.Loc, "invalid type for undef constant");
6169      V = UndefValue::get(Ty);
6170      return false;
6171    case ValID::t_EmptyArray:
6172      if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
6173        return error(ID.Loc, "invalid empty array initializer");
6174      V = UndefValue::get(Ty);
6175      return false;
6176    case ValID::t_Zero:
6177      // FIXME: LabelTy should not be a first-class type.
6178      if (!Ty->isFirstClassType() || Ty->isLabelTy())
6179        return error(ID.Loc, "invalid type for null constant");
6180      if (auto *TETy = dyn_cast<TargetExtType>(Ty))
6181        if (!TETy->hasProperty(TargetExtType::HasZeroInit))
6182          return error(ID.Loc, "invalid type for null constant");
6183      V = Constant::getNullValue(Ty);
6184      return false;
6185    case ValID::t_None:
6186      if (!Ty->isTokenTy())
6187        return error(ID.Loc, "invalid type for none constant");
6188      V = Constant::getNullValue(Ty);
6189      return false;
6190    case ValID::t_Poison:
6191      // FIXME: LabelTy should not be a first-class type.
6192      if (!Ty->isFirstClassType() || Ty->isLabelTy())
6193        return error(ID.Loc, "invalid type for poison constant");
6194      V = PoisonValue::get(Ty);
6195      return false;
6196    case ValID::t_Constant:
6197      if (ID.ConstantVal->getType() != Ty)
6198        return error(ID.Loc, "constant expression type mismatch: got type '" +
6199                                 getTypeString(ID.ConstantVal->getType()) +
6200                                 "' but expected '" + getTypeString(Ty) + "'");
6201      V = ID.ConstantVal;
6202      return false;
6203    case ValID::t_ConstantSplat:
6204      if (!Ty->isVectorTy())
6205        return error(ID.Loc, "vector constant must have vector type");
6206      if (ID.ConstantVal->getType() != Ty->getScalarType())
6207        return error(ID.Loc, "constant expression type mismatch: got type '" +
6208                                 getTypeString(ID.ConstantVal->getType()) +
6209                                 "' but expected '" +
6210                                 getTypeString(Ty->getScalarType()) + "'");
6211      V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(),
6212                                   ID.ConstantVal);
6213      return false;
6214    case ValID::t_ConstantStruct:
6215    case ValID::t_PackedConstantStruct:
6216      if (StructType *ST = dyn_cast<StructType>(Ty)) {
6217        if (ST->getNumElements() != ID.UIntVal)
6218          return error(ID.Loc,
6219                       "initializer with struct type has wrong # elements");
6220        if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
6221          return error(ID.Loc, "packed'ness of initializer and type don't match");
6222  
6223        // Verify that the elements are compatible with the structtype.
6224        for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
6225          if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
6226            return error(
6227                ID.Loc,
6228                "element " + Twine(i) +
6229                    " of struct initializer doesn't match struct element type");
6230  
6231        V = ConstantStruct::get(
6232            ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
6233      } else
6234        return error(ID.Loc, "constant expression type mismatch");
6235      return false;
6236    }
6237    llvm_unreachable("Invalid ValID");
6238  }
6239  
parseConstantValue(Type * Ty,Constant * & C)6240  bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
6241    C = nullptr;
6242    ValID ID;
6243    auto Loc = Lex.getLoc();
6244    if (parseValID(ID, /*PFS=*/nullptr))
6245      return true;
6246    switch (ID.Kind) {
6247    case ValID::t_APSInt:
6248    case ValID::t_APFloat:
6249    case ValID::t_Undef:
6250    case ValID::t_Constant:
6251    case ValID::t_ConstantSplat:
6252    case ValID::t_ConstantStruct:
6253    case ValID::t_PackedConstantStruct: {
6254      Value *V;
6255      if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
6256        return true;
6257      assert(isa<Constant>(V) && "Expected a constant value");
6258      C = cast<Constant>(V);
6259      return false;
6260    }
6261    case ValID::t_Null:
6262      C = Constant::getNullValue(Ty);
6263      return false;
6264    default:
6265      return error(Loc, "expected a constant value");
6266    }
6267  }
6268  
parseValue(Type * Ty,Value * & V,PerFunctionState * PFS)6269  bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
6270    V = nullptr;
6271    ValID ID;
6272    return parseValID(ID, PFS, Ty) ||
6273           convertValIDToValue(Ty, ID, V, PFS);
6274  }
6275  
parseTypeAndValue(Value * & V,PerFunctionState * PFS)6276  bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
6277    Type *Ty = nullptr;
6278    return parseType(Ty) || parseValue(Ty, V, PFS);
6279  }
6280  
parseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)6281  bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
6282                                        PerFunctionState &PFS) {
6283    Value *V;
6284    Loc = Lex.getLoc();
6285    if (parseTypeAndValue(V, PFS))
6286      return true;
6287    if (!isa<BasicBlock>(V))
6288      return error(Loc, "expected a basic block");
6289    BB = cast<BasicBlock>(V);
6290    return false;
6291  }
6292  
isOldDbgFormatIntrinsic(StringRef Name)6293  bool isOldDbgFormatIntrinsic(StringRef Name) {
6294    // Exit early for the common (non-debug-intrinsic) case.
6295    // We can make this the only check when we begin supporting all "llvm.dbg"
6296    // intrinsics in the new debug info format.
6297    if (!Name.starts_with("llvm.dbg."))
6298      return false;
6299    Intrinsic::ID FnID = Function::lookupIntrinsicID(Name);
6300    return FnID == Intrinsic::dbg_declare || FnID == Intrinsic::dbg_value ||
6301           FnID == Intrinsic::dbg_assign;
6302  }
6303  
6304  /// FunctionHeader
6305  ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
6306  ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
6307  ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
6308  ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
parseFunctionHeader(Function * & Fn,bool IsDefine,unsigned & FunctionNumber,SmallVectorImpl<unsigned> & UnnamedArgNums)6309  bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine,
6310                                     unsigned &FunctionNumber,
6311                                     SmallVectorImpl<unsigned> &UnnamedArgNums) {
6312    // parse the linkage.
6313    LocTy LinkageLoc = Lex.getLoc();
6314    unsigned Linkage;
6315    unsigned Visibility;
6316    unsigned DLLStorageClass;
6317    bool DSOLocal;
6318    AttrBuilder RetAttrs(M->getContext());
6319    unsigned CC;
6320    bool HasLinkage;
6321    Type *RetType = nullptr;
6322    LocTy RetTypeLoc = Lex.getLoc();
6323    if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
6324                             DSOLocal) ||
6325        parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6326        parseType(RetType, RetTypeLoc, true /*void allowed*/))
6327      return true;
6328  
6329    // Verify that the linkage is ok.
6330    switch ((GlobalValue::LinkageTypes)Linkage) {
6331    case GlobalValue::ExternalLinkage:
6332      break; // always ok.
6333    case GlobalValue::ExternalWeakLinkage:
6334      if (IsDefine)
6335        return error(LinkageLoc, "invalid linkage for function definition");
6336      break;
6337    case GlobalValue::PrivateLinkage:
6338    case GlobalValue::InternalLinkage:
6339    case GlobalValue::AvailableExternallyLinkage:
6340    case GlobalValue::LinkOnceAnyLinkage:
6341    case GlobalValue::LinkOnceODRLinkage:
6342    case GlobalValue::WeakAnyLinkage:
6343    case GlobalValue::WeakODRLinkage:
6344      if (!IsDefine)
6345        return error(LinkageLoc, "invalid linkage for function declaration");
6346      break;
6347    case GlobalValue::AppendingLinkage:
6348    case GlobalValue::CommonLinkage:
6349      return error(LinkageLoc, "invalid function linkage type");
6350    }
6351  
6352    if (!isValidVisibilityForLinkage(Visibility, Linkage))
6353      return error(LinkageLoc,
6354                   "symbol with local linkage must have default visibility");
6355  
6356    if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
6357      return error(LinkageLoc,
6358                   "symbol with local linkage cannot have a DLL storage class");
6359  
6360    if (!FunctionType::isValidReturnType(RetType))
6361      return error(RetTypeLoc, "invalid function return type");
6362  
6363    LocTy NameLoc = Lex.getLoc();
6364  
6365    std::string FunctionName;
6366    if (Lex.getKind() == lltok::GlobalVar) {
6367      FunctionName = Lex.getStrVal();
6368    } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
6369      FunctionNumber = Lex.getUIntVal();
6370      if (checkValueID(NameLoc, "function", "@", NumberedVals.getNext(),
6371                       FunctionNumber))
6372        return true;
6373    } else {
6374      return tokError("expected function name");
6375    }
6376  
6377    Lex.Lex();
6378  
6379    if (Lex.getKind() != lltok::lparen)
6380      return tokError("expected '(' in function argument list");
6381  
6382    SmallVector<ArgInfo, 8> ArgList;
6383    bool IsVarArg;
6384    AttrBuilder FuncAttrs(M->getContext());
6385    std::vector<unsigned> FwdRefAttrGrps;
6386    LocTy BuiltinLoc;
6387    std::string Section;
6388    std::string Partition;
6389    MaybeAlign Alignment;
6390    std::string GC;
6391    GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
6392    unsigned AddrSpace = 0;
6393    Constant *Prefix = nullptr;
6394    Constant *Prologue = nullptr;
6395    Constant *PersonalityFn = nullptr;
6396    Comdat *C;
6397  
6398    if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) ||
6399        parseOptionalUnnamedAddr(UnnamedAddr) ||
6400        parseOptionalProgramAddrSpace(AddrSpace) ||
6401        parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
6402                                   BuiltinLoc) ||
6403        (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
6404        (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
6405        parseOptionalComdat(FunctionName, C) ||
6406        parseOptionalAlignment(Alignment) ||
6407        (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
6408        (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
6409        (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
6410        (EatIfPresent(lltok::kw_personality) &&
6411         parseGlobalTypeAndValue(PersonalityFn)))
6412      return true;
6413  
6414    if (FuncAttrs.contains(Attribute::Builtin))
6415      return error(BuiltinLoc, "'builtin' attribute not valid on function");
6416  
6417    // If the alignment was parsed as an attribute, move to the alignment field.
6418    if (MaybeAlign A = FuncAttrs.getAlignment()) {
6419      Alignment = A;
6420      FuncAttrs.removeAttribute(Attribute::Alignment);
6421    }
6422  
6423    // Okay, if we got here, the function is syntactically valid.  Convert types
6424    // and do semantic checks.
6425    std::vector<Type*> ParamTypeList;
6426    SmallVector<AttributeSet, 8> Attrs;
6427  
6428    for (const ArgInfo &Arg : ArgList) {
6429      ParamTypeList.push_back(Arg.Ty);
6430      Attrs.push_back(Arg.Attrs);
6431    }
6432  
6433    AttributeList PAL =
6434        AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
6435                           AttributeSet::get(Context, RetAttrs), Attrs);
6436  
6437    if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
6438      return error(RetTypeLoc, "functions with 'sret' argument must return void");
6439  
6440    FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
6441    PointerType *PFT = PointerType::get(FT, AddrSpace);
6442  
6443    Fn = nullptr;
6444    GlobalValue *FwdFn = nullptr;
6445    if (!FunctionName.empty()) {
6446      // If this was a definition of a forward reference, remove the definition
6447      // from the forward reference table and fill in the forward ref.
6448      auto FRVI = ForwardRefVals.find(FunctionName);
6449      if (FRVI != ForwardRefVals.end()) {
6450        FwdFn = FRVI->second.first;
6451        if (FwdFn->getType() != PFT)
6452          return error(FRVI->second.second,
6453                       "invalid forward reference to "
6454                       "function '" +
6455                           FunctionName +
6456                           "' with wrong type: "
6457                           "expected '" +
6458                           getTypeString(PFT) + "' but was '" +
6459                           getTypeString(FwdFn->getType()) + "'");
6460        ForwardRefVals.erase(FRVI);
6461      } else if ((Fn = M->getFunction(FunctionName))) {
6462        // Reject redefinitions.
6463        return error(NameLoc,
6464                     "invalid redefinition of function '" + FunctionName + "'");
6465      } else if (M->getNamedValue(FunctionName)) {
6466        return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
6467      }
6468  
6469    } else {
6470      // Handle @"", where a name is syntactically specified, but semantically
6471      // missing.
6472      if (FunctionNumber == (unsigned)-1)
6473        FunctionNumber = NumberedVals.getNext();
6474  
6475      // If this is a definition of a forward referenced function, make sure the
6476      // types agree.
6477      auto I = ForwardRefValIDs.find(FunctionNumber);
6478      if (I != ForwardRefValIDs.end()) {
6479        FwdFn = I->second.first;
6480        if (FwdFn->getType() != PFT)
6481          return error(NameLoc, "type of definition and forward reference of '@" +
6482                                    Twine(FunctionNumber) +
6483                                    "' disagree: "
6484                                    "expected '" +
6485                                    getTypeString(PFT) + "' but was '" +
6486                                    getTypeString(FwdFn->getType()) + "'");
6487        ForwardRefValIDs.erase(I);
6488      }
6489    }
6490  
6491    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
6492                          FunctionName, M);
6493  
6494    assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6495  
6496    if (FunctionName.empty())
6497      NumberedVals.add(FunctionNumber, Fn);
6498  
6499    Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6500    maybeSetDSOLocal(DSOLocal, *Fn);
6501    Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6502    Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6503    Fn->setCallingConv(CC);
6504    Fn->setAttributes(PAL);
6505    Fn->setUnnamedAddr(UnnamedAddr);
6506    if (Alignment)
6507      Fn->setAlignment(*Alignment);
6508    Fn->setSection(Section);
6509    Fn->setPartition(Partition);
6510    Fn->setComdat(C);
6511    Fn->setPersonalityFn(PersonalityFn);
6512    if (!GC.empty()) Fn->setGC(GC);
6513    Fn->setPrefixData(Prefix);
6514    Fn->setPrologueData(Prologue);
6515    ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6516  
6517    // Add all of the arguments we parsed to the function.
6518    Function::arg_iterator ArgIt = Fn->arg_begin();
6519    for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6520      // If the argument has a name, insert it into the argument symbol table.
6521      if (ArgList[i].Name.empty()) continue;
6522  
6523      // Set the name, if it conflicted, it will be auto-renamed.
6524      ArgIt->setName(ArgList[i].Name);
6525  
6526      if (ArgIt->getName() != ArgList[i].Name)
6527        return error(ArgList[i].Loc,
6528                     "redefinition of argument '%" + ArgList[i].Name + "'");
6529    }
6530  
6531    if (FwdFn) {
6532      FwdFn->replaceAllUsesWith(Fn);
6533      FwdFn->eraseFromParent();
6534    }
6535  
6536    if (IsDefine)
6537      return false;
6538  
6539    // Check the declaration has no block address forward references.
6540    ValID ID;
6541    if (FunctionName.empty()) {
6542      ID.Kind = ValID::t_GlobalID;
6543      ID.UIntVal = FunctionNumber;
6544    } else {
6545      ID.Kind = ValID::t_GlobalName;
6546      ID.StrVal = FunctionName;
6547    }
6548    auto Blocks = ForwardRefBlockAddresses.find(ID);
6549    if (Blocks != ForwardRefBlockAddresses.end())
6550      return error(Blocks->first.Loc,
6551                   "cannot take blockaddress inside a declaration");
6552    return false;
6553  }
6554  
resolveForwardRefBlockAddresses()6555  bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6556    ValID ID;
6557    if (FunctionNumber == -1) {
6558      ID.Kind = ValID::t_GlobalName;
6559      ID.StrVal = std::string(F.getName());
6560    } else {
6561      ID.Kind = ValID::t_GlobalID;
6562      ID.UIntVal = FunctionNumber;
6563    }
6564  
6565    auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6566    if (Blocks == P.ForwardRefBlockAddresses.end())
6567      return false;
6568  
6569    for (const auto &I : Blocks->second) {
6570      const ValID &BBID = I.first;
6571      GlobalValue *GV = I.second;
6572  
6573      assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6574             "Expected local id or name");
6575      BasicBlock *BB;
6576      if (BBID.Kind == ValID::t_LocalName)
6577        BB = getBB(BBID.StrVal, BBID.Loc);
6578      else
6579        BB = getBB(BBID.UIntVal, BBID.Loc);
6580      if (!BB)
6581        return P.error(BBID.Loc, "referenced value is not a basic block");
6582  
6583      Value *ResolvedVal = BlockAddress::get(&F, BB);
6584      ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6585                                             ResolvedVal);
6586      if (!ResolvedVal)
6587        return true;
6588      GV->replaceAllUsesWith(ResolvedVal);
6589      GV->eraseFromParent();
6590    }
6591  
6592    P.ForwardRefBlockAddresses.erase(Blocks);
6593    return false;
6594  }
6595  
6596  /// parseFunctionBody
6597  ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
parseFunctionBody(Function & Fn,unsigned FunctionNumber,ArrayRef<unsigned> UnnamedArgNums)6598  bool LLParser::parseFunctionBody(Function &Fn, unsigned FunctionNumber,
6599                                   ArrayRef<unsigned> UnnamedArgNums) {
6600    if (Lex.getKind() != lltok::lbrace)
6601      return tokError("expected '{' in function body");
6602    Lex.Lex();  // eat the {.
6603  
6604    PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums);
6605  
6606    // Resolve block addresses and allow basic blocks to be forward-declared
6607    // within this function.
6608    if (PFS.resolveForwardRefBlockAddresses())
6609      return true;
6610    SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6611  
6612    // We need at least one basic block.
6613    if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6614      return tokError("function body requires at least one basic block");
6615  
6616    while (Lex.getKind() != lltok::rbrace &&
6617           Lex.getKind() != lltok::kw_uselistorder)
6618      if (parseBasicBlock(PFS))
6619        return true;
6620  
6621    while (Lex.getKind() != lltok::rbrace)
6622      if (parseUseListOrder(&PFS))
6623        return true;
6624  
6625    // Eat the }.
6626    Lex.Lex();
6627  
6628    // Verify function is ok.
6629    return PFS.finishFunction();
6630  }
6631  
6632  /// parseBasicBlock
6633  ///   ::= (LabelStr|LabelID)? Instruction*
parseBasicBlock(PerFunctionState & PFS)6634  bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6635    // If this basic block starts out with a name, remember it.
6636    std::string Name;
6637    int NameID = -1;
6638    LocTy NameLoc = Lex.getLoc();
6639    if (Lex.getKind() == lltok::LabelStr) {
6640      Name = Lex.getStrVal();
6641      Lex.Lex();
6642    } else if (Lex.getKind() == lltok::LabelID) {
6643      NameID = Lex.getUIntVal();
6644      Lex.Lex();
6645    }
6646  
6647    BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6648    if (!BB)
6649      return true;
6650  
6651    std::string NameStr;
6652  
6653    // Parse the instructions and debug values in this block until we get a
6654    // terminator.
6655    Instruction *Inst;
6656    auto DeleteDbgRecord = [](DbgRecord *DR) { DR->deleteRecord(); };
6657    using DbgRecordPtr = std::unique_ptr<DbgRecord, decltype(DeleteDbgRecord)>;
6658    SmallVector<DbgRecordPtr> TrailingDbgRecord;
6659    do {
6660      // Handle debug records first - there should always be an instruction
6661      // following the debug records, i.e. they cannot appear after the block
6662      // terminator.
6663      while (Lex.getKind() == lltok::hash) {
6664        if (SeenOldDbgInfoFormat)
6665          return error(Lex.getLoc(), "debug record should not appear in a module "
6666                                     "containing debug info intrinsics");
6667        if (!SeenNewDbgInfoFormat)
6668          M->setNewDbgInfoFormatFlag(true);
6669        SeenNewDbgInfoFormat = true;
6670        Lex.Lex();
6671  
6672        DbgRecord *DR;
6673        if (parseDebugRecord(DR, PFS))
6674          return true;
6675        TrailingDbgRecord.emplace_back(DR, DeleteDbgRecord);
6676      }
6677  
6678      // This instruction may have three possibilities for a name: a) none
6679      // specified, b) name specified "%foo =", c) number specified: "%4 =".
6680      LocTy NameLoc = Lex.getLoc();
6681      int NameID = -1;
6682      NameStr = "";
6683  
6684      if (Lex.getKind() == lltok::LocalVarID) {
6685        NameID = Lex.getUIntVal();
6686        Lex.Lex();
6687        if (parseToken(lltok::equal, "expected '=' after instruction id"))
6688          return true;
6689      } else if (Lex.getKind() == lltok::LocalVar) {
6690        NameStr = Lex.getStrVal();
6691        Lex.Lex();
6692        if (parseToken(lltok::equal, "expected '=' after instruction name"))
6693          return true;
6694      }
6695  
6696      switch (parseInstruction(Inst, BB, PFS)) {
6697      default:
6698        llvm_unreachable("Unknown parseInstruction result!");
6699      case InstError: return true;
6700      case InstNormal:
6701        Inst->insertInto(BB, BB->end());
6702  
6703        // With a normal result, we check to see if the instruction is followed by
6704        // a comma and metadata.
6705        if (EatIfPresent(lltok::comma))
6706          if (parseInstructionMetadata(*Inst))
6707            return true;
6708        break;
6709      case InstExtraComma:
6710        Inst->insertInto(BB, BB->end());
6711  
6712        // If the instruction parser ate an extra comma at the end of it, it
6713        // *must* be followed by metadata.
6714        if (parseInstructionMetadata(*Inst))
6715          return true;
6716        break;
6717      }
6718  
6719      // Set the name on the instruction.
6720      if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6721        return true;
6722  
6723      // Attach any preceding debug values to this instruction.
6724      for (DbgRecordPtr &DR : TrailingDbgRecord)
6725        BB->insertDbgRecordBefore(DR.release(), Inst->getIterator());
6726      TrailingDbgRecord.clear();
6727    } while (!Inst->isTerminator());
6728  
6729    assert(TrailingDbgRecord.empty() &&
6730           "All debug values should have been attached to an instruction.");
6731  
6732    return false;
6733  }
6734  
6735  /// parseDebugRecord
6736  ///   ::= #dbg_label '(' MDNode ')'
6737  ///   ::= #dbg_type '(' Metadata ',' MDNode ',' Metadata ','
6738  ///                 (MDNode ',' Metadata ',' Metadata ',')? MDNode ')'
parseDebugRecord(DbgRecord * & DR,PerFunctionState & PFS)6739  bool LLParser::parseDebugRecord(DbgRecord *&DR, PerFunctionState &PFS) {
6740    using RecordKind = DbgRecord::Kind;
6741    using LocType = DbgVariableRecord::LocationType;
6742    LocTy DVRLoc = Lex.getLoc();
6743    if (Lex.getKind() != lltok::DbgRecordType)
6744      return error(DVRLoc, "expected debug record type here");
6745    RecordKind RecordType = StringSwitch<RecordKind>(Lex.getStrVal())
6746                                .Case("declare", RecordKind::ValueKind)
6747                                .Case("value", RecordKind::ValueKind)
6748                                .Case("assign", RecordKind::ValueKind)
6749                                .Case("label", RecordKind::LabelKind);
6750  
6751    // Parsing labels is trivial; parse here and early exit, otherwise go into the
6752    // full DbgVariableRecord processing stage.
6753    if (RecordType == RecordKind::LabelKind) {
6754      Lex.Lex();
6755      if (parseToken(lltok::lparen, "Expected '(' here"))
6756        return true;
6757      MDNode *Label;
6758      if (parseMDNode(Label))
6759        return true;
6760      if (parseToken(lltok::comma, "Expected ',' here"))
6761        return true;
6762      MDNode *DbgLoc;
6763      if (parseMDNode(DbgLoc))
6764        return true;
6765      if (parseToken(lltok::rparen, "Expected ')' here"))
6766        return true;
6767      DR = DbgLabelRecord::createUnresolvedDbgLabelRecord(Label, DbgLoc);
6768      return false;
6769    }
6770  
6771    LocType ValueType = StringSwitch<LocType>(Lex.getStrVal())
6772                            .Case("declare", LocType::Declare)
6773                            .Case("value", LocType::Value)
6774                            .Case("assign", LocType::Assign);
6775  
6776    Lex.Lex();
6777    if (parseToken(lltok::lparen, "Expected '(' here"))
6778      return true;
6779  
6780    // Parse Value field.
6781    Metadata *ValLocMD;
6782    if (parseMetadata(ValLocMD, &PFS))
6783      return true;
6784    if (parseToken(lltok::comma, "Expected ',' here"))
6785      return true;
6786  
6787    // Parse Variable field.
6788    MDNode *Variable;
6789    if (parseMDNode(Variable))
6790      return true;
6791    if (parseToken(lltok::comma, "Expected ',' here"))
6792      return true;
6793  
6794    // Parse Expression field.
6795    MDNode *Expression;
6796    if (parseMDNode(Expression))
6797      return true;
6798    if (parseToken(lltok::comma, "Expected ',' here"))
6799      return true;
6800  
6801    // Parse additional fields for #dbg_assign.
6802    MDNode *AssignID = nullptr;
6803    Metadata *AddressLocation = nullptr;
6804    MDNode *AddressExpression = nullptr;
6805    if (ValueType == LocType::Assign) {
6806      // Parse DIAssignID.
6807      if (parseMDNode(AssignID))
6808        return true;
6809      if (parseToken(lltok::comma, "Expected ',' here"))
6810        return true;
6811  
6812      // Parse address ValueAsMetadata.
6813      if (parseMetadata(AddressLocation, &PFS))
6814        return true;
6815      if (parseToken(lltok::comma, "Expected ',' here"))
6816        return true;
6817  
6818      // Parse address DIExpression.
6819      if (parseMDNode(AddressExpression))
6820        return true;
6821      if (parseToken(lltok::comma, "Expected ',' here"))
6822        return true;
6823    }
6824  
6825    /// Parse DILocation.
6826    MDNode *DebugLoc;
6827    if (parseMDNode(DebugLoc))
6828      return true;
6829  
6830    if (parseToken(lltok::rparen, "Expected ')' here"))
6831      return true;
6832    DR = DbgVariableRecord::createUnresolvedDbgVariableRecord(
6833        ValueType, ValLocMD, Variable, Expression, AssignID, AddressLocation,
6834        AddressExpression, DebugLoc);
6835    return false;
6836  }
6837  //===----------------------------------------------------------------------===//
6838  // Instruction Parsing.
6839  //===----------------------------------------------------------------------===//
6840  
6841  /// parseInstruction - parse one of the many different instructions.
6842  ///
parseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)6843  int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6844                                 PerFunctionState &PFS) {
6845    lltok::Kind Token = Lex.getKind();
6846    if (Token == lltok::Eof)
6847      return tokError("found end of file when expecting more instructions");
6848    LocTy Loc = Lex.getLoc();
6849    unsigned KeywordVal = Lex.getUIntVal();
6850    Lex.Lex();  // Eat the keyword.
6851  
6852    switch (Token) {
6853    default:
6854      return error(Loc, "expected instruction opcode");
6855    // Terminator Instructions.
6856    case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6857    case lltok::kw_ret:
6858      return parseRet(Inst, BB, PFS);
6859    case lltok::kw_br:
6860      return parseBr(Inst, PFS);
6861    case lltok::kw_switch:
6862      return parseSwitch(Inst, PFS);
6863    case lltok::kw_indirectbr:
6864      return parseIndirectBr(Inst, PFS);
6865    case lltok::kw_invoke:
6866      return parseInvoke(Inst, PFS);
6867    case lltok::kw_resume:
6868      return parseResume(Inst, PFS);
6869    case lltok::kw_cleanupret:
6870      return parseCleanupRet(Inst, PFS);
6871    case lltok::kw_catchret:
6872      return parseCatchRet(Inst, PFS);
6873    case lltok::kw_catchswitch:
6874      return parseCatchSwitch(Inst, PFS);
6875    case lltok::kw_catchpad:
6876      return parseCatchPad(Inst, PFS);
6877    case lltok::kw_cleanuppad:
6878      return parseCleanupPad(Inst, PFS);
6879    case lltok::kw_callbr:
6880      return parseCallBr(Inst, PFS);
6881    // Unary Operators.
6882    case lltok::kw_fneg: {
6883      FastMathFlags FMF = EatFastMathFlagsIfPresent();
6884      int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6885      if (Res != 0)
6886        return Res;
6887      if (FMF.any())
6888        Inst->setFastMathFlags(FMF);
6889      return false;
6890    }
6891    // Binary Operators.
6892    case lltok::kw_add:
6893    case lltok::kw_sub:
6894    case lltok::kw_mul:
6895    case lltok::kw_shl: {
6896      bool NUW = EatIfPresent(lltok::kw_nuw);
6897      bool NSW = EatIfPresent(lltok::kw_nsw);
6898      if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6899  
6900      if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6901        return true;
6902  
6903      if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6904      if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6905      return false;
6906    }
6907    case lltok::kw_fadd:
6908    case lltok::kw_fsub:
6909    case lltok::kw_fmul:
6910    case lltok::kw_fdiv:
6911    case lltok::kw_frem: {
6912      FastMathFlags FMF = EatFastMathFlagsIfPresent();
6913      int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6914      if (Res != 0)
6915        return Res;
6916      if (FMF.any())
6917        Inst->setFastMathFlags(FMF);
6918      return 0;
6919    }
6920  
6921    case lltok::kw_sdiv:
6922    case lltok::kw_udiv:
6923    case lltok::kw_lshr:
6924    case lltok::kw_ashr: {
6925      bool Exact = EatIfPresent(lltok::kw_exact);
6926  
6927      if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6928        return true;
6929      if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6930      return false;
6931    }
6932  
6933    case lltok::kw_urem:
6934    case lltok::kw_srem:
6935      return parseArithmetic(Inst, PFS, KeywordVal,
6936                             /*IsFP*/ false);
6937    case lltok::kw_or: {
6938      bool Disjoint = EatIfPresent(lltok::kw_disjoint);
6939      if (parseLogical(Inst, PFS, KeywordVal))
6940        return true;
6941      if (Disjoint)
6942        cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true);
6943      return false;
6944    }
6945    case lltok::kw_and:
6946    case lltok::kw_xor:
6947      return parseLogical(Inst, PFS, KeywordVal);
6948    case lltok::kw_icmp:
6949      return parseCompare(Inst, PFS, KeywordVal);
6950    case lltok::kw_fcmp: {
6951      FastMathFlags FMF = EatFastMathFlagsIfPresent();
6952      int Res = parseCompare(Inst, PFS, KeywordVal);
6953      if (Res != 0)
6954        return Res;
6955      if (FMF.any())
6956        Inst->setFastMathFlags(FMF);
6957      return 0;
6958    }
6959  
6960    // Casts.
6961    case lltok::kw_uitofp:
6962    case lltok::kw_zext: {
6963      bool NonNeg = EatIfPresent(lltok::kw_nneg);
6964      bool Res = parseCast(Inst, PFS, KeywordVal);
6965      if (Res != 0)
6966        return Res;
6967      if (NonNeg)
6968        Inst->setNonNeg();
6969      return 0;
6970    }
6971    case lltok::kw_trunc: {
6972      bool NUW = EatIfPresent(lltok::kw_nuw);
6973      bool NSW = EatIfPresent(lltok::kw_nsw);
6974      if (!NUW)
6975        NUW = EatIfPresent(lltok::kw_nuw);
6976      if (parseCast(Inst, PFS, KeywordVal))
6977        return true;
6978      if (NUW)
6979        cast<TruncInst>(Inst)->setHasNoUnsignedWrap(true);
6980      if (NSW)
6981        cast<TruncInst>(Inst)->setHasNoSignedWrap(true);
6982      return false;
6983    }
6984    case lltok::kw_sext:
6985    case lltok::kw_fptrunc:
6986    case lltok::kw_fpext:
6987    case lltok::kw_bitcast:
6988    case lltok::kw_addrspacecast:
6989    case lltok::kw_sitofp:
6990    case lltok::kw_fptoui:
6991    case lltok::kw_fptosi:
6992    case lltok::kw_inttoptr:
6993    case lltok::kw_ptrtoint:
6994      return parseCast(Inst, PFS, KeywordVal);
6995    // Other.
6996    case lltok::kw_select: {
6997      FastMathFlags FMF = EatFastMathFlagsIfPresent();
6998      int Res = parseSelect(Inst, PFS);
6999      if (Res != 0)
7000        return Res;
7001      if (FMF.any()) {
7002        if (!isa<FPMathOperator>(Inst))
7003          return error(Loc, "fast-math-flags specified for select without "
7004                            "floating-point scalar or vector return type");
7005        Inst->setFastMathFlags(FMF);
7006      }
7007      return 0;
7008    }
7009    case lltok::kw_va_arg:
7010      return parseVAArg(Inst, PFS);
7011    case lltok::kw_extractelement:
7012      return parseExtractElement(Inst, PFS);
7013    case lltok::kw_insertelement:
7014      return parseInsertElement(Inst, PFS);
7015    case lltok::kw_shufflevector:
7016      return parseShuffleVector(Inst, PFS);
7017    case lltok::kw_phi: {
7018      FastMathFlags FMF = EatFastMathFlagsIfPresent();
7019      int Res = parsePHI(Inst, PFS);
7020      if (Res != 0)
7021        return Res;
7022      if (FMF.any()) {
7023        if (!isa<FPMathOperator>(Inst))
7024          return error(Loc, "fast-math-flags specified for phi without "
7025                            "floating-point scalar or vector return type");
7026        Inst->setFastMathFlags(FMF);
7027      }
7028      return 0;
7029    }
7030    case lltok::kw_landingpad:
7031      return parseLandingPad(Inst, PFS);
7032    case lltok::kw_freeze:
7033      return parseFreeze(Inst, PFS);
7034    // Call.
7035    case lltok::kw_call:
7036      return parseCall(Inst, PFS, CallInst::TCK_None);
7037    case lltok::kw_tail:
7038      return parseCall(Inst, PFS, CallInst::TCK_Tail);
7039    case lltok::kw_musttail:
7040      return parseCall(Inst, PFS, CallInst::TCK_MustTail);
7041    case lltok::kw_notail:
7042      return parseCall(Inst, PFS, CallInst::TCK_NoTail);
7043    // Memory.
7044    case lltok::kw_alloca:
7045      return parseAlloc(Inst, PFS);
7046    case lltok::kw_load:
7047      return parseLoad(Inst, PFS);
7048    case lltok::kw_store:
7049      return parseStore(Inst, PFS);
7050    case lltok::kw_cmpxchg:
7051      return parseCmpXchg(Inst, PFS);
7052    case lltok::kw_atomicrmw:
7053      return parseAtomicRMW(Inst, PFS);
7054    case lltok::kw_fence:
7055      return parseFence(Inst, PFS);
7056    case lltok::kw_getelementptr:
7057      return parseGetElementPtr(Inst, PFS);
7058    case lltok::kw_extractvalue:
7059      return parseExtractValue(Inst, PFS);
7060    case lltok::kw_insertvalue:
7061      return parseInsertValue(Inst, PFS);
7062    }
7063  }
7064  
7065  /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
parseCmpPredicate(unsigned & P,unsigned Opc)7066  bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
7067    if (Opc == Instruction::FCmp) {
7068      switch (Lex.getKind()) {
7069      default:
7070        return tokError("expected fcmp predicate (e.g. 'oeq')");
7071      case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
7072      case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
7073      case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
7074      case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
7075      case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
7076      case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
7077      case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
7078      case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
7079      case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
7080      case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
7081      case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
7082      case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
7083      case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
7084      case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
7085      case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
7086      case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
7087      }
7088    } else {
7089      switch (Lex.getKind()) {
7090      default:
7091        return tokError("expected icmp predicate (e.g. 'eq')");
7092      case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
7093      case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
7094      case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
7095      case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
7096      case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
7097      case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
7098      case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
7099      case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
7100      case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
7101      case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
7102      }
7103    }
7104    Lex.Lex();
7105    return false;
7106  }
7107  
7108  //===----------------------------------------------------------------------===//
7109  // Terminator Instructions.
7110  //===----------------------------------------------------------------------===//
7111  
7112  /// parseRet - parse a return instruction.
7113  ///   ::= 'ret' void (',' !dbg, !1)*
7114  ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
parseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)7115  bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
7116                          PerFunctionState &PFS) {
7117    SMLoc TypeLoc = Lex.getLoc();
7118    Type *Ty = nullptr;
7119    if (parseType(Ty, true /*void allowed*/))
7120      return true;
7121  
7122    Type *ResType = PFS.getFunction().getReturnType();
7123  
7124    if (Ty->isVoidTy()) {
7125      if (!ResType->isVoidTy())
7126        return error(TypeLoc, "value doesn't match function result type '" +
7127                                  getTypeString(ResType) + "'");
7128  
7129      Inst = ReturnInst::Create(Context);
7130      return false;
7131    }
7132  
7133    Value *RV;
7134    if (parseValue(Ty, RV, PFS))
7135      return true;
7136  
7137    if (ResType != RV->getType())
7138      return error(TypeLoc, "value doesn't match function result type '" +
7139                                getTypeString(ResType) + "'");
7140  
7141    Inst = ReturnInst::Create(Context, RV);
7142    return false;
7143  }
7144  
7145  /// parseBr
7146  ///   ::= 'br' TypeAndValue
7147  ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseBr(Instruction * & Inst,PerFunctionState & PFS)7148  bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
7149    LocTy Loc, Loc2;
7150    Value *Op0;
7151    BasicBlock *Op1, *Op2;
7152    if (parseTypeAndValue(Op0, Loc, PFS))
7153      return true;
7154  
7155    if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
7156      Inst = BranchInst::Create(BB);
7157      return false;
7158    }
7159  
7160    if (Op0->getType() != Type::getInt1Ty(Context))
7161      return error(Loc, "branch condition must have 'i1' type");
7162  
7163    if (parseToken(lltok::comma, "expected ',' after branch condition") ||
7164        parseTypeAndBasicBlock(Op1, Loc, PFS) ||
7165        parseToken(lltok::comma, "expected ',' after true destination") ||
7166        parseTypeAndBasicBlock(Op2, Loc2, PFS))
7167      return true;
7168  
7169    Inst = BranchInst::Create(Op1, Op2, Op0);
7170    return false;
7171  }
7172  
7173  /// parseSwitch
7174  ///  Instruction
7175  ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
7176  ///  JumpTable
7177  ///    ::= (TypeAndValue ',' TypeAndValue)*
parseSwitch(Instruction * & Inst,PerFunctionState & PFS)7178  bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7179    LocTy CondLoc, BBLoc;
7180    Value *Cond;
7181    BasicBlock *DefaultBB;
7182    if (parseTypeAndValue(Cond, CondLoc, PFS) ||
7183        parseToken(lltok::comma, "expected ',' after switch condition") ||
7184        parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
7185        parseToken(lltok::lsquare, "expected '[' with switch table"))
7186      return true;
7187  
7188    if (!Cond->getType()->isIntegerTy())
7189      return error(CondLoc, "switch condition must have integer type");
7190  
7191    // parse the jump table pairs.
7192    SmallPtrSet<Value*, 32> SeenCases;
7193    SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
7194    while (Lex.getKind() != lltok::rsquare) {
7195      Value *Constant;
7196      BasicBlock *DestBB;
7197  
7198      if (parseTypeAndValue(Constant, CondLoc, PFS) ||
7199          parseToken(lltok::comma, "expected ',' after case value") ||
7200          parseTypeAndBasicBlock(DestBB, PFS))
7201        return true;
7202  
7203      if (!SeenCases.insert(Constant).second)
7204        return error(CondLoc, "duplicate case value in switch");
7205      if (!isa<ConstantInt>(Constant))
7206        return error(CondLoc, "case value is not a constant integer");
7207  
7208      Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
7209    }
7210  
7211    Lex.Lex();  // Eat the ']'.
7212  
7213    SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
7214    for (unsigned i = 0, e = Table.size(); i != e; ++i)
7215      SI->addCase(Table[i].first, Table[i].second);
7216    Inst = SI;
7217    return false;
7218  }
7219  
7220  /// parseIndirectBr
7221  ///  Instruction
7222  ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
parseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)7223  bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
7224    LocTy AddrLoc;
7225    Value *Address;
7226    if (parseTypeAndValue(Address, AddrLoc, PFS) ||
7227        parseToken(lltok::comma, "expected ',' after indirectbr address") ||
7228        parseToken(lltok::lsquare, "expected '[' with indirectbr"))
7229      return true;
7230  
7231    if (!Address->getType()->isPointerTy())
7232      return error(AddrLoc, "indirectbr address must have pointer type");
7233  
7234    // parse the destination list.
7235    SmallVector<BasicBlock*, 16> DestList;
7236  
7237    if (Lex.getKind() != lltok::rsquare) {
7238      BasicBlock *DestBB;
7239      if (parseTypeAndBasicBlock(DestBB, PFS))
7240        return true;
7241      DestList.push_back(DestBB);
7242  
7243      while (EatIfPresent(lltok::comma)) {
7244        if (parseTypeAndBasicBlock(DestBB, PFS))
7245          return true;
7246        DestList.push_back(DestBB);
7247      }
7248    }
7249  
7250    if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7251      return true;
7252  
7253    IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
7254    for (BasicBlock *Dest : DestList)
7255      IBI->addDestination(Dest);
7256    Inst = IBI;
7257    return false;
7258  }
7259  
7260  // If RetType is a non-function pointer type, then this is the short syntax
7261  // for the call, which means that RetType is just the return type.  Infer the
7262  // rest of the function argument types from the arguments that are present.
resolveFunctionType(Type * RetType,const SmallVector<ParamInfo,16> & ArgList,FunctionType * & FuncTy)7263  bool LLParser::resolveFunctionType(Type *RetType,
7264                                     const SmallVector<ParamInfo, 16> &ArgList,
7265                                     FunctionType *&FuncTy) {
7266    FuncTy = dyn_cast<FunctionType>(RetType);
7267    if (!FuncTy) {
7268      // Pull out the types of all of the arguments...
7269      std::vector<Type*> ParamTypes;
7270      for (const ParamInfo &Arg : ArgList)
7271        ParamTypes.push_back(Arg.V->getType());
7272  
7273      if (!FunctionType::isValidReturnType(RetType))
7274        return true;
7275  
7276      FuncTy = FunctionType::get(RetType, ParamTypes, false);
7277    }
7278    return false;
7279  }
7280  
7281  /// parseInvoke
7282  ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
7283  ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
parseInvoke(Instruction * & Inst,PerFunctionState & PFS)7284  bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
7285    LocTy CallLoc = Lex.getLoc();
7286    AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7287    std::vector<unsigned> FwdRefAttrGrps;
7288    LocTy NoBuiltinLoc;
7289    unsigned CC;
7290    unsigned InvokeAddrSpace;
7291    Type *RetType = nullptr;
7292    LocTy RetTypeLoc;
7293    ValID CalleeID;
7294    SmallVector<ParamInfo, 16> ArgList;
7295    SmallVector<OperandBundleDef, 2> BundleList;
7296  
7297    BasicBlock *NormalBB, *UnwindBB;
7298    if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7299        parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
7300        parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7301        parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7302        parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7303                                   NoBuiltinLoc) ||
7304        parseOptionalOperandBundles(BundleList, PFS) ||
7305        parseToken(lltok::kw_to, "expected 'to' in invoke") ||
7306        parseTypeAndBasicBlock(NormalBB, PFS) ||
7307        parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
7308        parseTypeAndBasicBlock(UnwindBB, PFS))
7309      return true;
7310  
7311    // If RetType is a non-function pointer type, then this is the short syntax
7312    // for the call, which means that RetType is just the return type.  Infer the
7313    // rest of the function argument types from the arguments that are present.
7314    FunctionType *Ty;
7315    if (resolveFunctionType(RetType, ArgList, Ty))
7316      return error(RetTypeLoc, "Invalid result type for LLVM function");
7317  
7318    CalleeID.FTy = Ty;
7319  
7320    // Look up the callee.
7321    Value *Callee;
7322    if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
7323                            Callee, &PFS))
7324      return true;
7325  
7326    // Set up the Attribute for the function.
7327    SmallVector<Value *, 8> Args;
7328    SmallVector<AttributeSet, 8> ArgAttrs;
7329  
7330    // Loop through FunctionType's arguments and ensure they are specified
7331    // correctly.  Also, gather any parameter attributes.
7332    FunctionType::param_iterator I = Ty->param_begin();
7333    FunctionType::param_iterator E = Ty->param_end();
7334    for (const ParamInfo &Arg : ArgList) {
7335      Type *ExpectedTy = nullptr;
7336      if (I != E) {
7337        ExpectedTy = *I++;
7338      } else if (!Ty->isVarArg()) {
7339        return error(Arg.Loc, "too many arguments specified");
7340      }
7341  
7342      if (ExpectedTy && ExpectedTy != Arg.V->getType())
7343        return error(Arg.Loc, "argument is not of expected type '" +
7344                                  getTypeString(ExpectedTy) + "'");
7345      Args.push_back(Arg.V);
7346      ArgAttrs.push_back(Arg.Attrs);
7347    }
7348  
7349    if (I != E)
7350      return error(CallLoc, "not enough parameters specified for call");
7351  
7352    // Finish off the Attribute and check them
7353    AttributeList PAL =
7354        AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7355                           AttributeSet::get(Context, RetAttrs), ArgAttrs);
7356  
7357    InvokeInst *II =
7358        InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
7359    II->setCallingConv(CC);
7360    II->setAttributes(PAL);
7361    ForwardRefAttrGroups[II] = FwdRefAttrGrps;
7362    Inst = II;
7363    return false;
7364  }
7365  
7366  /// parseResume
7367  ///   ::= 'resume' TypeAndValue
parseResume(Instruction * & Inst,PerFunctionState & PFS)7368  bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
7369    Value *Exn; LocTy ExnLoc;
7370    if (parseTypeAndValue(Exn, ExnLoc, PFS))
7371      return true;
7372  
7373    ResumeInst *RI = ResumeInst::Create(Exn);
7374    Inst = RI;
7375    return false;
7376  }
7377  
parseExceptionArgs(SmallVectorImpl<Value * > & Args,PerFunctionState & PFS)7378  bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
7379                                    PerFunctionState &PFS) {
7380    if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
7381      return true;
7382  
7383    while (Lex.getKind() != lltok::rsquare) {
7384      // If this isn't the first argument, we need a comma.
7385      if (!Args.empty() &&
7386          parseToken(lltok::comma, "expected ',' in argument list"))
7387        return true;
7388  
7389      // parse the argument.
7390      LocTy ArgLoc;
7391      Type *ArgTy = nullptr;
7392      if (parseType(ArgTy, ArgLoc))
7393        return true;
7394  
7395      Value *V;
7396      if (ArgTy->isMetadataTy()) {
7397        if (parseMetadataAsValue(V, PFS))
7398          return true;
7399      } else {
7400        if (parseValue(ArgTy, V, PFS))
7401          return true;
7402      }
7403      Args.push_back(V);
7404    }
7405  
7406    Lex.Lex();  // Lex the ']'.
7407    return false;
7408  }
7409  
7410  /// parseCleanupRet
7411  ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
parseCleanupRet(Instruction * & Inst,PerFunctionState & PFS)7412  bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
7413    Value *CleanupPad = nullptr;
7414  
7415    if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
7416      return true;
7417  
7418    if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
7419      return true;
7420  
7421    if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
7422      return true;
7423  
7424    BasicBlock *UnwindBB = nullptr;
7425    if (Lex.getKind() == lltok::kw_to) {
7426      Lex.Lex();
7427      if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
7428        return true;
7429    } else {
7430      if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
7431        return true;
7432      }
7433    }
7434  
7435    Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
7436    return false;
7437  }
7438  
7439  /// parseCatchRet
7440  ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
parseCatchRet(Instruction * & Inst,PerFunctionState & PFS)7441  bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
7442    Value *CatchPad = nullptr;
7443  
7444    if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
7445      return true;
7446  
7447    if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
7448      return true;
7449  
7450    BasicBlock *BB;
7451    if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
7452        parseTypeAndBasicBlock(BB, PFS))
7453      return true;
7454  
7455    Inst = CatchReturnInst::Create(CatchPad, BB);
7456    return false;
7457  }
7458  
7459  /// parseCatchSwitch
7460  ///   ::= 'catchswitch' within Parent
parseCatchSwitch(Instruction * & Inst,PerFunctionState & PFS)7461  bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7462    Value *ParentPad;
7463  
7464    if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
7465      return true;
7466  
7467    if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7468        Lex.getKind() != lltok::LocalVarID)
7469      return tokError("expected scope value for catchswitch");
7470  
7471    if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7472      return true;
7473  
7474    if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
7475      return true;
7476  
7477    SmallVector<BasicBlock *, 32> Table;
7478    do {
7479      BasicBlock *DestBB;
7480      if (parseTypeAndBasicBlock(DestBB, PFS))
7481        return true;
7482      Table.push_back(DestBB);
7483    } while (EatIfPresent(lltok::comma));
7484  
7485    if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
7486      return true;
7487  
7488    if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
7489      return true;
7490  
7491    BasicBlock *UnwindBB = nullptr;
7492    if (EatIfPresent(lltok::kw_to)) {
7493      if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
7494        return true;
7495    } else {
7496      if (parseTypeAndBasicBlock(UnwindBB, PFS))
7497        return true;
7498    }
7499  
7500    auto *CatchSwitch =
7501        CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
7502    for (BasicBlock *DestBB : Table)
7503      CatchSwitch->addHandler(DestBB);
7504    Inst = CatchSwitch;
7505    return false;
7506  }
7507  
7508  /// parseCatchPad
7509  ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
parseCatchPad(Instruction * & Inst,PerFunctionState & PFS)7510  bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
7511    Value *CatchSwitch = nullptr;
7512  
7513    if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
7514      return true;
7515  
7516    if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
7517      return tokError("expected scope value for catchpad");
7518  
7519    if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
7520      return true;
7521  
7522    SmallVector<Value *, 8> Args;
7523    if (parseExceptionArgs(Args, PFS))
7524      return true;
7525  
7526    Inst = CatchPadInst::Create(CatchSwitch, Args);
7527    return false;
7528  }
7529  
7530  /// parseCleanupPad
7531  ///   ::= 'cleanuppad' within Parent ParamList
parseCleanupPad(Instruction * & Inst,PerFunctionState & PFS)7532  bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
7533    Value *ParentPad = nullptr;
7534  
7535    if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
7536      return true;
7537  
7538    if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7539        Lex.getKind() != lltok::LocalVarID)
7540      return tokError("expected scope value for cleanuppad");
7541  
7542    if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7543      return true;
7544  
7545    SmallVector<Value *, 8> Args;
7546    if (parseExceptionArgs(Args, PFS))
7547      return true;
7548  
7549    Inst = CleanupPadInst::Create(ParentPad, Args);
7550    return false;
7551  }
7552  
7553  //===----------------------------------------------------------------------===//
7554  // Unary Operators.
7555  //===----------------------------------------------------------------------===//
7556  
7557  /// parseUnaryOp
7558  ///  ::= UnaryOp TypeAndValue ',' Value
7559  ///
7560  /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7561  /// operand is allowed.
parseUnaryOp(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)7562  bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
7563                              unsigned Opc, bool IsFP) {
7564    LocTy Loc; Value *LHS;
7565    if (parseTypeAndValue(LHS, Loc, PFS))
7566      return true;
7567  
7568    bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7569                      : LHS->getType()->isIntOrIntVectorTy();
7570  
7571    if (!Valid)
7572      return error(Loc, "invalid operand type for instruction");
7573  
7574    Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
7575    return false;
7576  }
7577  
7578  /// parseCallBr
7579  ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
7580  ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
7581  ///       '[' LabelList ']'
parseCallBr(Instruction * & Inst,PerFunctionState & PFS)7582  bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
7583    LocTy CallLoc = Lex.getLoc();
7584    AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7585    std::vector<unsigned> FwdRefAttrGrps;
7586    LocTy NoBuiltinLoc;
7587    unsigned CC;
7588    Type *RetType = nullptr;
7589    LocTy RetTypeLoc;
7590    ValID CalleeID;
7591    SmallVector<ParamInfo, 16> ArgList;
7592    SmallVector<OperandBundleDef, 2> BundleList;
7593  
7594    BasicBlock *DefaultDest;
7595    if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7596        parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7597        parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7598        parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7599                                   NoBuiltinLoc) ||
7600        parseOptionalOperandBundles(BundleList, PFS) ||
7601        parseToken(lltok::kw_to, "expected 'to' in callbr") ||
7602        parseTypeAndBasicBlock(DefaultDest, PFS) ||
7603        parseToken(lltok::lsquare, "expected '[' in callbr"))
7604      return true;
7605  
7606    // parse the destination list.
7607    SmallVector<BasicBlock *, 16> IndirectDests;
7608  
7609    if (Lex.getKind() != lltok::rsquare) {
7610      BasicBlock *DestBB;
7611      if (parseTypeAndBasicBlock(DestBB, PFS))
7612        return true;
7613      IndirectDests.push_back(DestBB);
7614  
7615      while (EatIfPresent(lltok::comma)) {
7616        if (parseTypeAndBasicBlock(DestBB, PFS))
7617          return true;
7618        IndirectDests.push_back(DestBB);
7619      }
7620    }
7621  
7622    if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7623      return true;
7624  
7625    // If RetType is a non-function pointer type, then this is the short syntax
7626    // for the call, which means that RetType is just the return type.  Infer the
7627    // rest of the function argument types from the arguments that are present.
7628    FunctionType *Ty;
7629    if (resolveFunctionType(RetType, ArgList, Ty))
7630      return error(RetTypeLoc, "Invalid result type for LLVM function");
7631  
7632    CalleeID.FTy = Ty;
7633  
7634    // Look up the callee.
7635    Value *Callee;
7636    if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
7637      return true;
7638  
7639    // Set up the Attribute for the function.
7640    SmallVector<Value *, 8> Args;
7641    SmallVector<AttributeSet, 8> ArgAttrs;
7642  
7643    // Loop through FunctionType's arguments and ensure they are specified
7644    // correctly.  Also, gather any parameter attributes.
7645    FunctionType::param_iterator I = Ty->param_begin();
7646    FunctionType::param_iterator E = Ty->param_end();
7647    for (const ParamInfo &Arg : ArgList) {
7648      Type *ExpectedTy = nullptr;
7649      if (I != E) {
7650        ExpectedTy = *I++;
7651      } else if (!Ty->isVarArg()) {
7652        return error(Arg.Loc, "too many arguments specified");
7653      }
7654  
7655      if (ExpectedTy && ExpectedTy != Arg.V->getType())
7656        return error(Arg.Loc, "argument is not of expected type '" +
7657                                  getTypeString(ExpectedTy) + "'");
7658      Args.push_back(Arg.V);
7659      ArgAttrs.push_back(Arg.Attrs);
7660    }
7661  
7662    if (I != E)
7663      return error(CallLoc, "not enough parameters specified for call");
7664  
7665    // Finish off the Attribute and check them
7666    AttributeList PAL =
7667        AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7668                           AttributeSet::get(Context, RetAttrs), ArgAttrs);
7669  
7670    CallBrInst *CBI =
7671        CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
7672                           BundleList);
7673    CBI->setCallingConv(CC);
7674    CBI->setAttributes(PAL);
7675    ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7676    Inst = CBI;
7677    return false;
7678  }
7679  
7680  //===----------------------------------------------------------------------===//
7681  // Binary Operators.
7682  //===----------------------------------------------------------------------===//
7683  
7684  /// parseArithmetic
7685  ///  ::= ArithmeticOps TypeAndValue ',' Value
7686  ///
7687  /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7688  /// operand is allowed.
parseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)7689  bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7690                                 unsigned Opc, bool IsFP) {
7691    LocTy Loc; Value *LHS, *RHS;
7692    if (parseTypeAndValue(LHS, Loc, PFS) ||
7693        parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7694        parseValue(LHS->getType(), RHS, PFS))
7695      return true;
7696  
7697    bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7698                      : LHS->getType()->isIntOrIntVectorTy();
7699  
7700    if (!Valid)
7701      return error(Loc, "invalid operand type for instruction");
7702  
7703    Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7704    return false;
7705  }
7706  
7707  /// parseLogical
7708  ///  ::= ArithmeticOps TypeAndValue ',' Value {
parseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7709  bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7710                              unsigned Opc) {
7711    LocTy Loc; Value *LHS, *RHS;
7712    if (parseTypeAndValue(LHS, Loc, PFS) ||
7713        parseToken(lltok::comma, "expected ',' in logical operation") ||
7714        parseValue(LHS->getType(), RHS, PFS))
7715      return true;
7716  
7717    if (!LHS->getType()->isIntOrIntVectorTy())
7718      return error(Loc,
7719                   "instruction requires integer or integer vector operands");
7720  
7721    Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7722    return false;
7723  }
7724  
7725  /// parseCompare
7726  ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7727  ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
parseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7728  bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7729                              unsigned Opc) {
7730    // parse the integer/fp comparison predicate.
7731    LocTy Loc;
7732    unsigned Pred;
7733    Value *LHS, *RHS;
7734    if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7735        parseToken(lltok::comma, "expected ',' after compare value") ||
7736        parseValue(LHS->getType(), RHS, PFS))
7737      return true;
7738  
7739    if (Opc == Instruction::FCmp) {
7740      if (!LHS->getType()->isFPOrFPVectorTy())
7741        return error(Loc, "fcmp requires floating point operands");
7742      Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7743    } else {
7744      assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7745      if (!LHS->getType()->isIntOrIntVectorTy() &&
7746          !LHS->getType()->isPtrOrPtrVectorTy())
7747        return error(Loc, "icmp requires integer operands");
7748      Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7749    }
7750    return false;
7751  }
7752  
7753  //===----------------------------------------------------------------------===//
7754  // Other Instructions.
7755  //===----------------------------------------------------------------------===//
7756  
7757  /// parseCast
7758  ///   ::= CastOpc TypeAndValue 'to' Type
parseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7759  bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7760                           unsigned Opc) {
7761    LocTy Loc;
7762    Value *Op;
7763    Type *DestTy = nullptr;
7764    if (parseTypeAndValue(Op, Loc, PFS) ||
7765        parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7766        parseType(DestTy))
7767      return true;
7768  
7769    if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7770      CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7771      return error(Loc, "invalid cast opcode for cast from '" +
7772                            getTypeString(Op->getType()) + "' to '" +
7773                            getTypeString(DestTy) + "'");
7774    }
7775    Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7776    return false;
7777  }
7778  
7779  /// parseSelect
7780  ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseSelect(Instruction * & Inst,PerFunctionState & PFS)7781  bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7782    LocTy Loc;
7783    Value *Op0, *Op1, *Op2;
7784    if (parseTypeAndValue(Op0, Loc, PFS) ||
7785        parseToken(lltok::comma, "expected ',' after select condition") ||
7786        parseTypeAndValue(Op1, PFS) ||
7787        parseToken(lltok::comma, "expected ',' after select value") ||
7788        parseTypeAndValue(Op2, PFS))
7789      return true;
7790  
7791    if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7792      return error(Loc, Reason);
7793  
7794    Inst = SelectInst::Create(Op0, Op1, Op2);
7795    return false;
7796  }
7797  
7798  /// parseVAArg
7799  ///   ::= 'va_arg' TypeAndValue ',' Type
parseVAArg(Instruction * & Inst,PerFunctionState & PFS)7800  bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7801    Value *Op;
7802    Type *EltTy = nullptr;
7803    LocTy TypeLoc;
7804    if (parseTypeAndValue(Op, PFS) ||
7805        parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7806        parseType(EltTy, TypeLoc))
7807      return true;
7808  
7809    if (!EltTy->isFirstClassType())
7810      return error(TypeLoc, "va_arg requires operand with first class type");
7811  
7812    Inst = new VAArgInst(Op, EltTy);
7813    return false;
7814  }
7815  
7816  /// parseExtractElement
7817  ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
parseExtractElement(Instruction * & Inst,PerFunctionState & PFS)7818  bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7819    LocTy Loc;
7820    Value *Op0, *Op1;
7821    if (parseTypeAndValue(Op0, Loc, PFS) ||
7822        parseToken(lltok::comma, "expected ',' after extract value") ||
7823        parseTypeAndValue(Op1, PFS))
7824      return true;
7825  
7826    if (!ExtractElementInst::isValidOperands(Op0, Op1))
7827      return error(Loc, "invalid extractelement operands");
7828  
7829    Inst = ExtractElementInst::Create(Op0, Op1);
7830    return false;
7831  }
7832  
7833  /// parseInsertElement
7834  ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseInsertElement(Instruction * & Inst,PerFunctionState & PFS)7835  bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7836    LocTy Loc;
7837    Value *Op0, *Op1, *Op2;
7838    if (parseTypeAndValue(Op0, Loc, PFS) ||
7839        parseToken(lltok::comma, "expected ',' after insertelement value") ||
7840        parseTypeAndValue(Op1, PFS) ||
7841        parseToken(lltok::comma, "expected ',' after insertelement value") ||
7842        parseTypeAndValue(Op2, PFS))
7843      return true;
7844  
7845    if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7846      return error(Loc, "invalid insertelement operands");
7847  
7848    Inst = InsertElementInst::Create(Op0, Op1, Op2);
7849    return false;
7850  }
7851  
7852  /// parseShuffleVector
7853  ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)7854  bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7855    LocTy Loc;
7856    Value *Op0, *Op1, *Op2;
7857    if (parseTypeAndValue(Op0, Loc, PFS) ||
7858        parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7859        parseTypeAndValue(Op1, PFS) ||
7860        parseToken(lltok::comma, "expected ',' after shuffle value") ||
7861        parseTypeAndValue(Op2, PFS))
7862      return true;
7863  
7864    if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7865      return error(Loc, "invalid shufflevector operands");
7866  
7867    Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7868    return false;
7869  }
7870  
7871  /// parsePHI
7872  ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
parsePHI(Instruction * & Inst,PerFunctionState & PFS)7873  int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7874    Type *Ty = nullptr;  LocTy TypeLoc;
7875    Value *Op0, *Op1;
7876  
7877    if (parseType(Ty, TypeLoc))
7878      return true;
7879  
7880    if (!Ty->isFirstClassType())
7881      return error(TypeLoc, "phi node must have first class type");
7882  
7883    bool First = true;
7884    bool AteExtraComma = false;
7885    SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7886  
7887    while (true) {
7888      if (First) {
7889        if (Lex.getKind() != lltok::lsquare)
7890          break;
7891        First = false;
7892      } else if (!EatIfPresent(lltok::comma))
7893        break;
7894  
7895      if (Lex.getKind() == lltok::MetadataVar) {
7896        AteExtraComma = true;
7897        break;
7898      }
7899  
7900      if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7901          parseValue(Ty, Op0, PFS) ||
7902          parseToken(lltok::comma, "expected ',' after insertelement value") ||
7903          parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7904          parseToken(lltok::rsquare, "expected ']' in phi value list"))
7905        return true;
7906  
7907      PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7908    }
7909  
7910    PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7911    for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7912      PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7913    Inst = PN;
7914    return AteExtraComma ? InstExtraComma : InstNormal;
7915  }
7916  
7917  /// parseLandingPad
7918  ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7919  /// Clause
7920  ///   ::= 'catch' TypeAndValue
7921  ///   ::= 'filter'
7922  ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
parseLandingPad(Instruction * & Inst,PerFunctionState & PFS)7923  bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7924    Type *Ty = nullptr; LocTy TyLoc;
7925  
7926    if (parseType(Ty, TyLoc))
7927      return true;
7928  
7929    std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7930    LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7931  
7932    while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7933      LandingPadInst::ClauseType CT;
7934      if (EatIfPresent(lltok::kw_catch))
7935        CT = LandingPadInst::Catch;
7936      else if (EatIfPresent(lltok::kw_filter))
7937        CT = LandingPadInst::Filter;
7938      else
7939        return tokError("expected 'catch' or 'filter' clause type");
7940  
7941      Value *V;
7942      LocTy VLoc;
7943      if (parseTypeAndValue(V, VLoc, PFS))
7944        return true;
7945  
7946      // A 'catch' type expects a non-array constant. A filter clause expects an
7947      // array constant.
7948      if (CT == LandingPadInst::Catch) {
7949        if (isa<ArrayType>(V->getType()))
7950          error(VLoc, "'catch' clause has an invalid type");
7951      } else {
7952        if (!isa<ArrayType>(V->getType()))
7953          error(VLoc, "'filter' clause has an invalid type");
7954      }
7955  
7956      Constant *CV = dyn_cast<Constant>(V);
7957      if (!CV)
7958        return error(VLoc, "clause argument must be a constant");
7959      LP->addClause(CV);
7960    }
7961  
7962    Inst = LP.release();
7963    return false;
7964  }
7965  
7966  /// parseFreeze
7967  ///   ::= 'freeze' Type Value
parseFreeze(Instruction * & Inst,PerFunctionState & PFS)7968  bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7969    LocTy Loc;
7970    Value *Op;
7971    if (parseTypeAndValue(Op, Loc, PFS))
7972      return true;
7973  
7974    Inst = new FreezeInst(Op);
7975    return false;
7976  }
7977  
7978  /// parseCall
7979  ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7980  ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7981  ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7982  ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7983  ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7984  ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7985  ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7986  ///           OptionalAttrs Type Value ParameterList OptionalAttrs
parseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)7987  bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7988                           CallInst::TailCallKind TCK) {
7989    AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7990    std::vector<unsigned> FwdRefAttrGrps;
7991    LocTy BuiltinLoc;
7992    unsigned CallAddrSpace;
7993    unsigned CC;
7994    Type *RetType = nullptr;
7995    LocTy RetTypeLoc;
7996    ValID CalleeID;
7997    SmallVector<ParamInfo, 16> ArgList;
7998    SmallVector<OperandBundleDef, 2> BundleList;
7999    LocTy CallLoc = Lex.getLoc();
8000  
8001    if (TCK != CallInst::TCK_None &&
8002        parseToken(lltok::kw_call,
8003                   "expected 'tail call', 'musttail call', or 'notail call'"))
8004      return true;
8005  
8006    FastMathFlags FMF = EatFastMathFlagsIfPresent();
8007  
8008    if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
8009        parseOptionalProgramAddrSpace(CallAddrSpace) ||
8010        parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
8011        parseValID(CalleeID, &PFS) ||
8012        parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
8013                           PFS.getFunction().isVarArg()) ||
8014        parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
8015        parseOptionalOperandBundles(BundleList, PFS))
8016      return true;
8017  
8018    // If RetType is a non-function pointer type, then this is the short syntax
8019    // for the call, which means that RetType is just the return type.  Infer the
8020    // rest of the function argument types from the arguments that are present.
8021    FunctionType *Ty;
8022    if (resolveFunctionType(RetType, ArgList, Ty))
8023      return error(RetTypeLoc, "Invalid result type for LLVM function");
8024  
8025    CalleeID.FTy = Ty;
8026  
8027    // Look up the callee.
8028    Value *Callee;
8029    if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
8030                            &PFS))
8031      return true;
8032  
8033    // Set up the Attribute for the function.
8034    SmallVector<AttributeSet, 8> Attrs;
8035  
8036    SmallVector<Value*, 8> Args;
8037  
8038    // Loop through FunctionType's arguments and ensure they are specified
8039    // correctly.  Also, gather any parameter attributes.
8040    FunctionType::param_iterator I = Ty->param_begin();
8041    FunctionType::param_iterator E = Ty->param_end();
8042    for (const ParamInfo &Arg : ArgList) {
8043      Type *ExpectedTy = nullptr;
8044      if (I != E) {
8045        ExpectedTy = *I++;
8046      } else if (!Ty->isVarArg()) {
8047        return error(Arg.Loc, "too many arguments specified");
8048      }
8049  
8050      if (ExpectedTy && ExpectedTy != Arg.V->getType())
8051        return error(Arg.Loc, "argument is not of expected type '" +
8052                                  getTypeString(ExpectedTy) + "'");
8053      Args.push_back(Arg.V);
8054      Attrs.push_back(Arg.Attrs);
8055    }
8056  
8057    if (I != E)
8058      return error(CallLoc, "not enough parameters specified for call");
8059  
8060    // Finish off the Attribute and check them
8061    AttributeList PAL =
8062        AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
8063                           AttributeSet::get(Context, RetAttrs), Attrs);
8064  
8065    CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
8066    CI->setTailCallKind(TCK);
8067    CI->setCallingConv(CC);
8068    if (FMF.any()) {
8069      if (!isa<FPMathOperator>(CI)) {
8070        CI->deleteValue();
8071        return error(CallLoc, "fast-math-flags specified for call without "
8072                              "floating-point scalar or vector return type");
8073      }
8074      CI->setFastMathFlags(FMF);
8075    }
8076  
8077    if (CalleeID.Kind == ValID::t_GlobalName &&
8078        isOldDbgFormatIntrinsic(CalleeID.StrVal)) {
8079      if (SeenNewDbgInfoFormat) {
8080        CI->deleteValue();
8081        return error(CallLoc, "llvm.dbg intrinsic should not appear in a module "
8082                              "using non-intrinsic debug info");
8083      }
8084      if (!SeenOldDbgInfoFormat)
8085        M->setNewDbgInfoFormatFlag(false);
8086      SeenOldDbgInfoFormat = true;
8087    }
8088    CI->setAttributes(PAL);
8089    ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
8090    Inst = CI;
8091    return false;
8092  }
8093  
8094  //===----------------------------------------------------------------------===//
8095  // Memory Instructions.
8096  //===----------------------------------------------------------------------===//
8097  
8098  /// parseAlloc
8099  ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
8100  ///       (',' 'align' i32)? (',', 'addrspace(n))?
parseAlloc(Instruction * & Inst,PerFunctionState & PFS)8101  int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
8102    Value *Size = nullptr;
8103    LocTy SizeLoc, TyLoc, ASLoc;
8104    MaybeAlign Alignment;
8105    unsigned AddrSpace = 0;
8106    Type *Ty = nullptr;
8107  
8108    bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
8109    bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
8110  
8111    if (parseType(Ty, TyLoc))
8112      return true;
8113  
8114    if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
8115      return error(TyLoc, "invalid type for alloca");
8116  
8117    bool AteExtraComma = false;
8118    if (EatIfPresent(lltok::comma)) {
8119      if (Lex.getKind() == lltok::kw_align) {
8120        if (parseOptionalAlignment(Alignment))
8121          return true;
8122        if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8123          return true;
8124      } else if (Lex.getKind() == lltok::kw_addrspace) {
8125        ASLoc = Lex.getLoc();
8126        if (parseOptionalAddrSpace(AddrSpace))
8127          return true;
8128      } else if (Lex.getKind() == lltok::MetadataVar) {
8129        AteExtraComma = true;
8130      } else {
8131        if (parseTypeAndValue(Size, SizeLoc, PFS))
8132          return true;
8133        if (EatIfPresent(lltok::comma)) {
8134          if (Lex.getKind() == lltok::kw_align) {
8135            if (parseOptionalAlignment(Alignment))
8136              return true;
8137            if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8138              return true;
8139          } else if (Lex.getKind() == lltok::kw_addrspace) {
8140            ASLoc = Lex.getLoc();
8141            if (parseOptionalAddrSpace(AddrSpace))
8142              return true;
8143          } else if (Lex.getKind() == lltok::MetadataVar) {
8144            AteExtraComma = true;
8145          }
8146        }
8147      }
8148    }
8149  
8150    if (Size && !Size->getType()->isIntegerTy())
8151      return error(SizeLoc, "element count must have integer type");
8152  
8153    SmallPtrSet<Type *, 4> Visited;
8154    if (!Alignment && !Ty->isSized(&Visited))
8155      return error(TyLoc, "Cannot allocate unsized type");
8156    if (!Alignment)
8157      Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
8158    AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
8159    AI->setUsedWithInAlloca(IsInAlloca);
8160    AI->setSwiftError(IsSwiftError);
8161    Inst = AI;
8162    return AteExtraComma ? InstExtraComma : InstNormal;
8163  }
8164  
8165  /// parseLoad
8166  ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
8167  ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
8168  ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
parseLoad(Instruction * & Inst,PerFunctionState & PFS)8169  int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
8170    Value *Val; LocTy Loc;
8171    MaybeAlign Alignment;
8172    bool AteExtraComma = false;
8173    bool isAtomic = false;
8174    AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8175    SyncScope::ID SSID = SyncScope::System;
8176  
8177    if (Lex.getKind() == lltok::kw_atomic) {
8178      isAtomic = true;
8179      Lex.Lex();
8180    }
8181  
8182    bool isVolatile = false;
8183    if (Lex.getKind() == lltok::kw_volatile) {
8184      isVolatile = true;
8185      Lex.Lex();
8186    }
8187  
8188    Type *Ty;
8189    LocTy ExplicitTypeLoc = Lex.getLoc();
8190    if (parseType(Ty) ||
8191        parseToken(lltok::comma, "expected comma after load's type") ||
8192        parseTypeAndValue(Val, Loc, PFS) ||
8193        parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8194        parseOptionalCommaAlign(Alignment, AteExtraComma))
8195      return true;
8196  
8197    if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
8198      return error(Loc, "load operand must be a pointer to a first class type");
8199    if (isAtomic && !Alignment)
8200      return error(Loc, "atomic load must have explicit non-zero alignment");
8201    if (Ordering == AtomicOrdering::Release ||
8202        Ordering == AtomicOrdering::AcquireRelease)
8203      return error(Loc, "atomic load cannot use Release ordering");
8204  
8205    SmallPtrSet<Type *, 4> Visited;
8206    if (!Alignment && !Ty->isSized(&Visited))
8207      return error(ExplicitTypeLoc, "loading unsized types is not allowed");
8208    if (!Alignment)
8209      Alignment = M->getDataLayout().getABITypeAlign(Ty);
8210    Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
8211    return AteExtraComma ? InstExtraComma : InstNormal;
8212  }
8213  
8214  /// parseStore
8215  
8216  ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
8217  ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
8218  ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
parseStore(Instruction * & Inst,PerFunctionState & PFS)8219  int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
8220    Value *Val, *Ptr; LocTy Loc, PtrLoc;
8221    MaybeAlign Alignment;
8222    bool AteExtraComma = false;
8223    bool isAtomic = false;
8224    AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8225    SyncScope::ID SSID = SyncScope::System;
8226  
8227    if (Lex.getKind() == lltok::kw_atomic) {
8228      isAtomic = true;
8229      Lex.Lex();
8230    }
8231  
8232    bool isVolatile = false;
8233    if (Lex.getKind() == lltok::kw_volatile) {
8234      isVolatile = true;
8235      Lex.Lex();
8236    }
8237  
8238    if (parseTypeAndValue(Val, Loc, PFS) ||
8239        parseToken(lltok::comma, "expected ',' after store operand") ||
8240        parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8241        parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8242        parseOptionalCommaAlign(Alignment, AteExtraComma))
8243      return true;
8244  
8245    if (!Ptr->getType()->isPointerTy())
8246      return error(PtrLoc, "store operand must be a pointer");
8247    if (!Val->getType()->isFirstClassType())
8248      return error(Loc, "store operand must be a first class value");
8249    if (isAtomic && !Alignment)
8250      return error(Loc, "atomic store must have explicit non-zero alignment");
8251    if (Ordering == AtomicOrdering::Acquire ||
8252        Ordering == AtomicOrdering::AcquireRelease)
8253      return error(Loc, "atomic store cannot use Acquire ordering");
8254    SmallPtrSet<Type *, 4> Visited;
8255    if (!Alignment && !Val->getType()->isSized(&Visited))
8256      return error(Loc, "storing unsized types is not allowed");
8257    if (!Alignment)
8258      Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
8259  
8260    Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
8261    return AteExtraComma ? InstExtraComma : InstNormal;
8262  }
8263  
8264  /// parseCmpXchg
8265  ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
8266  ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
8267  ///       'Align'?
parseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)8268  int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
8269    Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
8270    bool AteExtraComma = false;
8271    AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
8272    AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
8273    SyncScope::ID SSID = SyncScope::System;
8274    bool isVolatile = false;
8275    bool isWeak = false;
8276    MaybeAlign Alignment;
8277  
8278    if (EatIfPresent(lltok::kw_weak))
8279      isWeak = true;
8280  
8281    if (EatIfPresent(lltok::kw_volatile))
8282      isVolatile = true;
8283  
8284    if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8285        parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
8286        parseTypeAndValue(Cmp, CmpLoc, PFS) ||
8287        parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
8288        parseTypeAndValue(New, NewLoc, PFS) ||
8289        parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
8290        parseOrdering(FailureOrdering) ||
8291        parseOptionalCommaAlign(Alignment, AteExtraComma))
8292      return true;
8293  
8294    if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
8295      return tokError("invalid cmpxchg success ordering");
8296    if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
8297      return tokError("invalid cmpxchg failure ordering");
8298    if (!Ptr->getType()->isPointerTy())
8299      return error(PtrLoc, "cmpxchg operand must be a pointer");
8300    if (Cmp->getType() != New->getType())
8301      return error(NewLoc, "compare value and new value type do not match");
8302    if (!New->getType()->isFirstClassType())
8303      return error(NewLoc, "cmpxchg operand must be a first class value");
8304  
8305    const Align DefaultAlignment(
8306        PFS.getFunction().getDataLayout().getTypeStoreSize(
8307            Cmp->getType()));
8308  
8309    AtomicCmpXchgInst *CXI =
8310        new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
8311                              SuccessOrdering, FailureOrdering, SSID);
8312    CXI->setVolatile(isVolatile);
8313    CXI->setWeak(isWeak);
8314  
8315    Inst = CXI;
8316    return AteExtraComma ? InstExtraComma : InstNormal;
8317  }
8318  
8319  /// parseAtomicRMW
8320  ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
8321  ///       'singlethread'? AtomicOrdering
parseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)8322  int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
8323    Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
8324    bool AteExtraComma = false;
8325    AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8326    SyncScope::ID SSID = SyncScope::System;
8327    bool isVolatile = false;
8328    bool IsFP = false;
8329    AtomicRMWInst::BinOp Operation;
8330    MaybeAlign Alignment;
8331  
8332    if (EatIfPresent(lltok::kw_volatile))
8333      isVolatile = true;
8334  
8335    switch (Lex.getKind()) {
8336    default:
8337      return tokError("expected binary operation in atomicrmw");
8338    case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
8339    case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
8340    case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
8341    case lltok::kw_and: Operation = AtomicRMWInst::And; break;
8342    case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
8343    case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
8344    case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
8345    case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
8346    case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
8347    case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
8348    case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
8349    case lltok::kw_uinc_wrap:
8350      Operation = AtomicRMWInst::UIncWrap;
8351      break;
8352    case lltok::kw_udec_wrap:
8353      Operation = AtomicRMWInst::UDecWrap;
8354      break;
8355    case lltok::kw_fadd:
8356      Operation = AtomicRMWInst::FAdd;
8357      IsFP = true;
8358      break;
8359    case lltok::kw_fsub:
8360      Operation = AtomicRMWInst::FSub;
8361      IsFP = true;
8362      break;
8363    case lltok::kw_fmax:
8364      Operation = AtomicRMWInst::FMax;
8365      IsFP = true;
8366      break;
8367    case lltok::kw_fmin:
8368      Operation = AtomicRMWInst::FMin;
8369      IsFP = true;
8370      break;
8371    }
8372    Lex.Lex();  // Eat the operation.
8373  
8374    if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8375        parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
8376        parseTypeAndValue(Val, ValLoc, PFS) ||
8377        parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
8378        parseOptionalCommaAlign(Alignment, AteExtraComma))
8379      return true;
8380  
8381    if (Ordering == AtomicOrdering::Unordered)
8382      return tokError("atomicrmw cannot be unordered");
8383    if (!Ptr->getType()->isPointerTy())
8384      return error(PtrLoc, "atomicrmw operand must be a pointer");
8385    if (Val->getType()->isScalableTy())
8386      return error(ValLoc, "atomicrmw operand may not be scalable");
8387  
8388    if (Operation == AtomicRMWInst::Xchg) {
8389      if (!Val->getType()->isIntegerTy() &&
8390          !Val->getType()->isFloatingPointTy() &&
8391          !Val->getType()->isPointerTy()) {
8392        return error(
8393            ValLoc,
8394            "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
8395                " operand must be an integer, floating point, or pointer type");
8396      }
8397    } else if (IsFP) {
8398      if (!Val->getType()->isFPOrFPVectorTy()) {
8399        return error(ValLoc, "atomicrmw " +
8400                                 AtomicRMWInst::getOperationName(Operation) +
8401                                 " operand must be a floating point type");
8402      }
8403    } else {
8404      if (!Val->getType()->isIntegerTy()) {
8405        return error(ValLoc, "atomicrmw " +
8406                                 AtomicRMWInst::getOperationName(Operation) +
8407                                 " operand must be an integer");
8408      }
8409    }
8410  
8411    unsigned Size =
8412        PFS.getFunction().getDataLayout().getTypeStoreSizeInBits(
8413            Val->getType());
8414    if (Size < 8 || (Size & (Size - 1)))
8415      return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
8416                           " integer");
8417    const Align DefaultAlignment(
8418        PFS.getFunction().getDataLayout().getTypeStoreSize(
8419            Val->getType()));
8420    AtomicRMWInst *RMWI =
8421        new AtomicRMWInst(Operation, Ptr, Val,
8422                          Alignment.value_or(DefaultAlignment), Ordering, SSID);
8423    RMWI->setVolatile(isVolatile);
8424    Inst = RMWI;
8425    return AteExtraComma ? InstExtraComma : InstNormal;
8426  }
8427  
8428  /// parseFence
8429  ///   ::= 'fence' 'singlethread'? AtomicOrdering
parseFence(Instruction * & Inst,PerFunctionState & PFS)8430  int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
8431    AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8432    SyncScope::ID SSID = SyncScope::System;
8433    if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
8434      return true;
8435  
8436    if (Ordering == AtomicOrdering::Unordered)
8437      return tokError("fence cannot be unordered");
8438    if (Ordering == AtomicOrdering::Monotonic)
8439      return tokError("fence cannot be monotonic");
8440  
8441    Inst = new FenceInst(Context, Ordering, SSID);
8442    return InstNormal;
8443  }
8444  
8445  /// parseGetElementPtr
8446  ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
parseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)8447  int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
8448    Value *Ptr = nullptr;
8449    Value *Val = nullptr;
8450    LocTy Loc, EltLoc;
8451    GEPNoWrapFlags NW;
8452  
8453    while (true) {
8454      if (EatIfPresent(lltok::kw_inbounds))
8455        NW |= GEPNoWrapFlags::inBounds();
8456      else if (EatIfPresent(lltok::kw_nusw))
8457        NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
8458      else if (EatIfPresent(lltok::kw_nuw))
8459        NW |= GEPNoWrapFlags::noUnsignedWrap();
8460      else
8461        break;
8462    }
8463  
8464    Type *Ty = nullptr;
8465    if (parseType(Ty) ||
8466        parseToken(lltok::comma, "expected comma after getelementptr's type") ||
8467        parseTypeAndValue(Ptr, Loc, PFS))
8468      return true;
8469  
8470    Type *BaseType = Ptr->getType();
8471    PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
8472    if (!BasePointerType)
8473      return error(Loc, "base of getelementptr must be a pointer");
8474  
8475    SmallVector<Value*, 16> Indices;
8476    bool AteExtraComma = false;
8477    // GEP returns a vector of pointers if at least one of parameters is a vector.
8478    // All vector parameters should have the same vector width.
8479    ElementCount GEPWidth = BaseType->isVectorTy()
8480                                ? cast<VectorType>(BaseType)->getElementCount()
8481                                : ElementCount::getFixed(0);
8482  
8483    while (EatIfPresent(lltok::comma)) {
8484      if (Lex.getKind() == lltok::MetadataVar) {
8485        AteExtraComma = true;
8486        break;
8487      }
8488      if (parseTypeAndValue(Val, EltLoc, PFS))
8489        return true;
8490      if (!Val->getType()->isIntOrIntVectorTy())
8491        return error(EltLoc, "getelementptr index must be an integer");
8492  
8493      if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
8494        ElementCount ValNumEl = ValVTy->getElementCount();
8495        if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
8496          return error(
8497              EltLoc,
8498              "getelementptr vector index has a wrong number of elements");
8499        GEPWidth = ValNumEl;
8500      }
8501      Indices.push_back(Val);
8502    }
8503  
8504    SmallPtrSet<Type*, 4> Visited;
8505    if (!Indices.empty() && !Ty->isSized(&Visited))
8506      return error(Loc, "base element of getelementptr must be sized");
8507  
8508    auto *STy = dyn_cast<StructType>(Ty);
8509    if (STy && STy->containsScalableVectorType())
8510      return error(Loc, "getelementptr cannot target structure that contains "
8511                        "scalable vector type");
8512  
8513    if (!GetElementPtrInst::getIndexedType(Ty, Indices))
8514      return error(Loc, "invalid getelementptr indices");
8515    GetElementPtrInst *GEP = GetElementPtrInst::Create(Ty, Ptr, Indices);
8516    Inst = GEP;
8517    GEP->setNoWrapFlags(NW);
8518    return AteExtraComma ? InstExtraComma : InstNormal;
8519  }
8520  
8521  /// parseExtractValue
8522  ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
parseExtractValue(Instruction * & Inst,PerFunctionState & PFS)8523  int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
8524    Value *Val; LocTy Loc;
8525    SmallVector<unsigned, 4> Indices;
8526    bool AteExtraComma;
8527    if (parseTypeAndValue(Val, Loc, PFS) ||
8528        parseIndexList(Indices, AteExtraComma))
8529      return true;
8530  
8531    if (!Val->getType()->isAggregateType())
8532      return error(Loc, "extractvalue operand must be aggregate type");
8533  
8534    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
8535      return error(Loc, "invalid indices for extractvalue");
8536    Inst = ExtractValueInst::Create(Val, Indices);
8537    return AteExtraComma ? InstExtraComma : InstNormal;
8538  }
8539  
8540  /// parseInsertValue
8541  ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
parseInsertValue(Instruction * & Inst,PerFunctionState & PFS)8542  int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
8543    Value *Val0, *Val1; LocTy Loc0, Loc1;
8544    SmallVector<unsigned, 4> Indices;
8545    bool AteExtraComma;
8546    if (parseTypeAndValue(Val0, Loc0, PFS) ||
8547        parseToken(lltok::comma, "expected comma after insertvalue operand") ||
8548        parseTypeAndValue(Val1, Loc1, PFS) ||
8549        parseIndexList(Indices, AteExtraComma))
8550      return true;
8551  
8552    if (!Val0->getType()->isAggregateType())
8553      return error(Loc0, "insertvalue operand must be aggregate type");
8554  
8555    Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
8556    if (!IndexedType)
8557      return error(Loc0, "invalid indices for insertvalue");
8558    if (IndexedType != Val1->getType())
8559      return error(Loc1, "insertvalue operand and field disagree in type: '" +
8560                             getTypeString(Val1->getType()) + "' instead of '" +
8561                             getTypeString(IndexedType) + "'");
8562    Inst = InsertValueInst::Create(Val0, Val1, Indices);
8563    return AteExtraComma ? InstExtraComma : InstNormal;
8564  }
8565  
8566  //===----------------------------------------------------------------------===//
8567  // Embedded metadata.
8568  //===----------------------------------------------------------------------===//
8569  
8570  /// parseMDNodeVector
8571  ///   ::= { Element (',' Element)* }
8572  /// Element
8573  ///   ::= 'null' | Metadata
parseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)8574  bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
8575    if (parseToken(lltok::lbrace, "expected '{' here"))
8576      return true;
8577  
8578    // Check for an empty list.
8579    if (EatIfPresent(lltok::rbrace))
8580      return false;
8581  
8582    do {
8583      if (EatIfPresent(lltok::kw_null)) {
8584        Elts.push_back(nullptr);
8585        continue;
8586      }
8587  
8588      Metadata *MD;
8589      if (parseMetadata(MD, nullptr))
8590        return true;
8591      Elts.push_back(MD);
8592    } while (EatIfPresent(lltok::comma));
8593  
8594    return parseToken(lltok::rbrace, "expected end of metadata node");
8595  }
8596  
8597  //===----------------------------------------------------------------------===//
8598  // Use-list order directives.
8599  //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)8600  bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
8601                                  SMLoc Loc) {
8602    if (V->use_empty())
8603      return error(Loc, "value has no uses");
8604  
8605    unsigned NumUses = 0;
8606    SmallDenseMap<const Use *, unsigned, 16> Order;
8607    for (const Use &U : V->uses()) {
8608      if (++NumUses > Indexes.size())
8609        break;
8610      Order[&U] = Indexes[NumUses - 1];
8611    }
8612    if (NumUses < 2)
8613      return error(Loc, "value only has one use");
8614    if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8615      return error(Loc,
8616                   "wrong number of indexes, expected " + Twine(V->getNumUses()));
8617  
8618    V->sortUseList([&](const Use &L, const Use &R) {
8619      return Order.lookup(&L) < Order.lookup(&R);
8620    });
8621    return false;
8622  }
8623  
8624  /// parseUseListOrderIndexes
8625  ///   ::= '{' uint32 (',' uint32)+ '}'
parseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)8626  bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8627    SMLoc Loc = Lex.getLoc();
8628    if (parseToken(lltok::lbrace, "expected '{' here"))
8629      return true;
8630    if (Lex.getKind() == lltok::rbrace)
8631      return Lex.Error("expected non-empty list of uselistorder indexes");
8632  
8633    // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
8634    // indexes should be distinct numbers in the range [0, size-1], and should
8635    // not be in order.
8636    unsigned Offset = 0;
8637    unsigned Max = 0;
8638    bool IsOrdered = true;
8639    assert(Indexes.empty() && "Expected empty order vector");
8640    do {
8641      unsigned Index;
8642      if (parseUInt32(Index))
8643        return true;
8644  
8645      // Update consistency checks.
8646      Offset += Index - Indexes.size();
8647      Max = std::max(Max, Index);
8648      IsOrdered &= Index == Indexes.size();
8649  
8650      Indexes.push_back(Index);
8651    } while (EatIfPresent(lltok::comma));
8652  
8653    if (parseToken(lltok::rbrace, "expected '}' here"))
8654      return true;
8655  
8656    if (Indexes.size() < 2)
8657      return error(Loc, "expected >= 2 uselistorder indexes");
8658    if (Offset != 0 || Max >= Indexes.size())
8659      return error(Loc,
8660                   "expected distinct uselistorder indexes in range [0, size)");
8661    if (IsOrdered)
8662      return error(Loc, "expected uselistorder indexes to change the order");
8663  
8664    return false;
8665  }
8666  
8667  /// parseUseListOrder
8668  ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
parseUseListOrder(PerFunctionState * PFS)8669  bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8670    SMLoc Loc = Lex.getLoc();
8671    if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
8672      return true;
8673  
8674    Value *V;
8675    SmallVector<unsigned, 16> Indexes;
8676    if (parseTypeAndValue(V, PFS) ||
8677        parseToken(lltok::comma, "expected comma in uselistorder directive") ||
8678        parseUseListOrderIndexes(Indexes))
8679      return true;
8680  
8681    return sortUseListOrder(V, Indexes, Loc);
8682  }
8683  
8684  /// parseUseListOrderBB
8685  ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
parseUseListOrderBB()8686  bool LLParser::parseUseListOrderBB() {
8687    assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8688    SMLoc Loc = Lex.getLoc();
8689    Lex.Lex();
8690  
8691    ValID Fn, Label;
8692    SmallVector<unsigned, 16> Indexes;
8693    if (parseValID(Fn, /*PFS=*/nullptr) ||
8694        parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8695        parseValID(Label, /*PFS=*/nullptr) ||
8696        parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8697        parseUseListOrderIndexes(Indexes))
8698      return true;
8699  
8700    // Check the function.
8701    GlobalValue *GV;
8702    if (Fn.Kind == ValID::t_GlobalName)
8703      GV = M->getNamedValue(Fn.StrVal);
8704    else if (Fn.Kind == ValID::t_GlobalID)
8705      GV = NumberedVals.get(Fn.UIntVal);
8706    else
8707      return error(Fn.Loc, "expected function name in uselistorder_bb");
8708    if (!GV)
8709      return error(Fn.Loc,
8710                   "invalid function forward reference in uselistorder_bb");
8711    auto *F = dyn_cast<Function>(GV);
8712    if (!F)
8713      return error(Fn.Loc, "expected function name in uselistorder_bb");
8714    if (F->isDeclaration())
8715      return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8716  
8717    // Check the basic block.
8718    if (Label.Kind == ValID::t_LocalID)
8719      return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8720    if (Label.Kind != ValID::t_LocalName)
8721      return error(Label.Loc, "expected basic block name in uselistorder_bb");
8722    Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8723    if (!V)
8724      return error(Label.Loc, "invalid basic block in uselistorder_bb");
8725    if (!isa<BasicBlock>(V))
8726      return error(Label.Loc, "expected basic block in uselistorder_bb");
8727  
8728    return sortUseListOrder(V, Indexes, Loc);
8729  }
8730  
8731  /// ModuleEntry
8732  ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8733  /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
parseModuleEntry(unsigned ID)8734  bool LLParser::parseModuleEntry(unsigned ID) {
8735    assert(Lex.getKind() == lltok::kw_module);
8736    Lex.Lex();
8737  
8738    std::string Path;
8739    if (parseToken(lltok::colon, "expected ':' here") ||
8740        parseToken(lltok::lparen, "expected '(' here") ||
8741        parseToken(lltok::kw_path, "expected 'path' here") ||
8742        parseToken(lltok::colon, "expected ':' here") ||
8743        parseStringConstant(Path) ||
8744        parseToken(lltok::comma, "expected ',' here") ||
8745        parseToken(lltok::kw_hash, "expected 'hash' here") ||
8746        parseToken(lltok::colon, "expected ':' here") ||
8747        parseToken(lltok::lparen, "expected '(' here"))
8748      return true;
8749  
8750    ModuleHash Hash;
8751    if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8752        parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8753        parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8754        parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8755        parseUInt32(Hash[4]))
8756      return true;
8757  
8758    if (parseToken(lltok::rparen, "expected ')' here") ||
8759        parseToken(lltok::rparen, "expected ')' here"))
8760      return true;
8761  
8762    auto ModuleEntry = Index->addModule(Path, Hash);
8763    ModuleIdMap[ID] = ModuleEntry->first();
8764  
8765    return false;
8766  }
8767  
8768  /// TypeIdEntry
8769  ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
parseTypeIdEntry(unsigned ID)8770  bool LLParser::parseTypeIdEntry(unsigned ID) {
8771    assert(Lex.getKind() == lltok::kw_typeid);
8772    Lex.Lex();
8773  
8774    std::string Name;
8775    if (parseToken(lltok::colon, "expected ':' here") ||
8776        parseToken(lltok::lparen, "expected '(' here") ||
8777        parseToken(lltok::kw_name, "expected 'name' here") ||
8778        parseToken(lltok::colon, "expected ':' here") ||
8779        parseStringConstant(Name))
8780      return true;
8781  
8782    TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8783    if (parseToken(lltok::comma, "expected ',' here") ||
8784        parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8785      return true;
8786  
8787    // Check if this ID was forward referenced, and if so, update the
8788    // corresponding GUIDs.
8789    auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8790    if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8791      for (auto TIDRef : FwdRefTIDs->second) {
8792        assert(!*TIDRef.first &&
8793               "Forward referenced type id GUID expected to be 0");
8794        *TIDRef.first = GlobalValue::getGUID(Name);
8795      }
8796      ForwardRefTypeIds.erase(FwdRefTIDs);
8797    }
8798  
8799    return false;
8800  }
8801  
8802  /// TypeIdSummary
8803  ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
parseTypeIdSummary(TypeIdSummary & TIS)8804  bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8805    if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8806        parseToken(lltok::colon, "expected ':' here") ||
8807        parseToken(lltok::lparen, "expected '(' here") ||
8808        parseTypeTestResolution(TIS.TTRes))
8809      return true;
8810  
8811    if (EatIfPresent(lltok::comma)) {
8812      // Expect optional wpdResolutions field
8813      if (parseOptionalWpdResolutions(TIS.WPDRes))
8814        return true;
8815    }
8816  
8817    if (parseToken(lltok::rparen, "expected ')' here"))
8818      return true;
8819  
8820    return false;
8821  }
8822  
8823  static ValueInfo EmptyVI =
8824      ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8825  
8826  /// TypeIdCompatibleVtableEntry
8827  ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8828  ///   TypeIdCompatibleVtableInfo
8829  ///   ')'
parseTypeIdCompatibleVtableEntry(unsigned ID)8830  bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8831    assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8832    Lex.Lex();
8833  
8834    std::string Name;
8835    if (parseToken(lltok::colon, "expected ':' here") ||
8836        parseToken(lltok::lparen, "expected '(' here") ||
8837        parseToken(lltok::kw_name, "expected 'name' here") ||
8838        parseToken(lltok::colon, "expected ':' here") ||
8839        parseStringConstant(Name))
8840      return true;
8841  
8842    TypeIdCompatibleVtableInfo &TI =
8843        Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8844    if (parseToken(lltok::comma, "expected ',' here") ||
8845        parseToken(lltok::kw_summary, "expected 'summary' here") ||
8846        parseToken(lltok::colon, "expected ':' here") ||
8847        parseToken(lltok::lparen, "expected '(' here"))
8848      return true;
8849  
8850    IdToIndexMapType IdToIndexMap;
8851    // parse each call edge
8852    do {
8853      uint64_t Offset;
8854      if (parseToken(lltok::lparen, "expected '(' here") ||
8855          parseToken(lltok::kw_offset, "expected 'offset' here") ||
8856          parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8857          parseToken(lltok::comma, "expected ',' here"))
8858        return true;
8859  
8860      LocTy Loc = Lex.getLoc();
8861      unsigned GVId;
8862      ValueInfo VI;
8863      if (parseGVReference(VI, GVId))
8864        return true;
8865  
8866      // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8867      // forward reference. We will save the location of the ValueInfo needing an
8868      // update, but can only do so once the std::vector is finalized.
8869      if (VI == EmptyVI)
8870        IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8871      TI.push_back({Offset, VI});
8872  
8873      if (parseToken(lltok::rparen, "expected ')' in call"))
8874        return true;
8875    } while (EatIfPresent(lltok::comma));
8876  
8877    // Now that the TI vector is finalized, it is safe to save the locations
8878    // of any forward GV references that need updating later.
8879    for (auto I : IdToIndexMap) {
8880      auto &Infos = ForwardRefValueInfos[I.first];
8881      for (auto P : I.second) {
8882        assert(TI[P.first].VTableVI == EmptyVI &&
8883               "Forward referenced ValueInfo expected to be empty");
8884        Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8885      }
8886    }
8887  
8888    if (parseToken(lltok::rparen, "expected ')' here") ||
8889        parseToken(lltok::rparen, "expected ')' here"))
8890      return true;
8891  
8892    // Check if this ID was forward referenced, and if so, update the
8893    // corresponding GUIDs.
8894    auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8895    if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8896      for (auto TIDRef : FwdRefTIDs->second) {
8897        assert(!*TIDRef.first &&
8898               "Forward referenced type id GUID expected to be 0");
8899        *TIDRef.first = GlobalValue::getGUID(Name);
8900      }
8901      ForwardRefTypeIds.erase(FwdRefTIDs);
8902    }
8903  
8904    return false;
8905  }
8906  
8907  /// TypeTestResolution
8908  ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8909  ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8910  ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8911  ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8912  ///         [',' 'inlinesBits' ':' UInt64]? ')'
parseTypeTestResolution(TypeTestResolution & TTRes)8913  bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8914    if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8915        parseToken(lltok::colon, "expected ':' here") ||
8916        parseToken(lltok::lparen, "expected '(' here") ||
8917        parseToken(lltok::kw_kind, "expected 'kind' here") ||
8918        parseToken(lltok::colon, "expected ':' here"))
8919      return true;
8920  
8921    switch (Lex.getKind()) {
8922    case lltok::kw_unknown:
8923      TTRes.TheKind = TypeTestResolution::Unknown;
8924      break;
8925    case lltok::kw_unsat:
8926      TTRes.TheKind = TypeTestResolution::Unsat;
8927      break;
8928    case lltok::kw_byteArray:
8929      TTRes.TheKind = TypeTestResolution::ByteArray;
8930      break;
8931    case lltok::kw_inline:
8932      TTRes.TheKind = TypeTestResolution::Inline;
8933      break;
8934    case lltok::kw_single:
8935      TTRes.TheKind = TypeTestResolution::Single;
8936      break;
8937    case lltok::kw_allOnes:
8938      TTRes.TheKind = TypeTestResolution::AllOnes;
8939      break;
8940    default:
8941      return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8942    }
8943    Lex.Lex();
8944  
8945    if (parseToken(lltok::comma, "expected ',' here") ||
8946        parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8947        parseToken(lltok::colon, "expected ':' here") ||
8948        parseUInt32(TTRes.SizeM1BitWidth))
8949      return true;
8950  
8951    // parse optional fields
8952    while (EatIfPresent(lltok::comma)) {
8953      switch (Lex.getKind()) {
8954      case lltok::kw_alignLog2:
8955        Lex.Lex();
8956        if (parseToken(lltok::colon, "expected ':'") ||
8957            parseUInt64(TTRes.AlignLog2))
8958          return true;
8959        break;
8960      case lltok::kw_sizeM1:
8961        Lex.Lex();
8962        if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8963          return true;
8964        break;
8965      case lltok::kw_bitMask: {
8966        unsigned Val;
8967        Lex.Lex();
8968        if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8969          return true;
8970        assert(Val <= 0xff);
8971        TTRes.BitMask = (uint8_t)Val;
8972        break;
8973      }
8974      case lltok::kw_inlineBits:
8975        Lex.Lex();
8976        if (parseToken(lltok::colon, "expected ':'") ||
8977            parseUInt64(TTRes.InlineBits))
8978          return true;
8979        break;
8980      default:
8981        return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8982      }
8983    }
8984  
8985    if (parseToken(lltok::rparen, "expected ')' here"))
8986      return true;
8987  
8988    return false;
8989  }
8990  
8991  /// OptionalWpdResolutions
8992  ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8993  /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
parseOptionalWpdResolutions(std::map<uint64_t,WholeProgramDevirtResolution> & WPDResMap)8994  bool LLParser::parseOptionalWpdResolutions(
8995      std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8996    if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8997        parseToken(lltok::colon, "expected ':' here") ||
8998        parseToken(lltok::lparen, "expected '(' here"))
8999      return true;
9000  
9001    do {
9002      uint64_t Offset;
9003      WholeProgramDevirtResolution WPDRes;
9004      if (parseToken(lltok::lparen, "expected '(' here") ||
9005          parseToken(lltok::kw_offset, "expected 'offset' here") ||
9006          parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
9007          parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
9008          parseToken(lltok::rparen, "expected ')' here"))
9009        return true;
9010      WPDResMap[Offset] = WPDRes;
9011    } while (EatIfPresent(lltok::comma));
9012  
9013    if (parseToken(lltok::rparen, "expected ')' here"))
9014      return true;
9015  
9016    return false;
9017  }
9018  
9019  /// WpdRes
9020  ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
9021  ///         [',' OptionalResByArg]? ')'
9022  ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
9023  ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
9024  ///         [',' OptionalResByArg]? ')'
9025  ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
9026  ///         [',' OptionalResByArg]? ')'
parseWpdRes(WholeProgramDevirtResolution & WPDRes)9027  bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
9028    if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
9029        parseToken(lltok::colon, "expected ':' here") ||
9030        parseToken(lltok::lparen, "expected '(' here") ||
9031        parseToken(lltok::kw_kind, "expected 'kind' here") ||
9032        parseToken(lltok::colon, "expected ':' here"))
9033      return true;
9034  
9035    switch (Lex.getKind()) {
9036    case lltok::kw_indir:
9037      WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
9038      break;
9039    case lltok::kw_singleImpl:
9040      WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
9041      break;
9042    case lltok::kw_branchFunnel:
9043      WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
9044      break;
9045    default:
9046      return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
9047    }
9048    Lex.Lex();
9049  
9050    // parse optional fields
9051    while (EatIfPresent(lltok::comma)) {
9052      switch (Lex.getKind()) {
9053      case lltok::kw_singleImplName:
9054        Lex.Lex();
9055        if (parseToken(lltok::colon, "expected ':' here") ||
9056            parseStringConstant(WPDRes.SingleImplName))
9057          return true;
9058        break;
9059      case lltok::kw_resByArg:
9060        if (parseOptionalResByArg(WPDRes.ResByArg))
9061          return true;
9062        break;
9063      default:
9064        return error(Lex.getLoc(),
9065                     "expected optional WholeProgramDevirtResolution field");
9066      }
9067    }
9068  
9069    if (parseToken(lltok::rparen, "expected ')' here"))
9070      return true;
9071  
9072    return false;
9073  }
9074  
9075  /// OptionalResByArg
9076  ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
9077  /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
9078  ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
9079  ///                  'virtualConstProp' )
9080  ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
9081  ///                [',' 'bit' ':' UInt32]? ')'
parseOptionalResByArg(std::map<std::vector<uint64_t>,WholeProgramDevirtResolution::ByArg> & ResByArg)9082  bool LLParser::parseOptionalResByArg(
9083      std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
9084          &ResByArg) {
9085    if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
9086        parseToken(lltok::colon, "expected ':' here") ||
9087        parseToken(lltok::lparen, "expected '(' here"))
9088      return true;
9089  
9090    do {
9091      std::vector<uint64_t> Args;
9092      if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
9093          parseToken(lltok::kw_byArg, "expected 'byArg here") ||
9094          parseToken(lltok::colon, "expected ':' here") ||
9095          parseToken(lltok::lparen, "expected '(' here") ||
9096          parseToken(lltok::kw_kind, "expected 'kind' here") ||
9097          parseToken(lltok::colon, "expected ':' here"))
9098        return true;
9099  
9100      WholeProgramDevirtResolution::ByArg ByArg;
9101      switch (Lex.getKind()) {
9102      case lltok::kw_indir:
9103        ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
9104        break;
9105      case lltok::kw_uniformRetVal:
9106        ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
9107        break;
9108      case lltok::kw_uniqueRetVal:
9109        ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
9110        break;
9111      case lltok::kw_virtualConstProp:
9112        ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
9113        break;
9114      default:
9115        return error(Lex.getLoc(),
9116                     "unexpected WholeProgramDevirtResolution::ByArg kind");
9117      }
9118      Lex.Lex();
9119  
9120      // parse optional fields
9121      while (EatIfPresent(lltok::comma)) {
9122        switch (Lex.getKind()) {
9123        case lltok::kw_info:
9124          Lex.Lex();
9125          if (parseToken(lltok::colon, "expected ':' here") ||
9126              parseUInt64(ByArg.Info))
9127            return true;
9128          break;
9129        case lltok::kw_byte:
9130          Lex.Lex();
9131          if (parseToken(lltok::colon, "expected ':' here") ||
9132              parseUInt32(ByArg.Byte))
9133            return true;
9134          break;
9135        case lltok::kw_bit:
9136          Lex.Lex();
9137          if (parseToken(lltok::colon, "expected ':' here") ||
9138              parseUInt32(ByArg.Bit))
9139            return true;
9140          break;
9141        default:
9142          return error(Lex.getLoc(),
9143                       "expected optional whole program devirt field");
9144        }
9145      }
9146  
9147      if (parseToken(lltok::rparen, "expected ')' here"))
9148        return true;
9149  
9150      ResByArg[Args] = ByArg;
9151    } while (EatIfPresent(lltok::comma));
9152  
9153    if (parseToken(lltok::rparen, "expected ')' here"))
9154      return true;
9155  
9156    return false;
9157  }
9158  
9159  /// OptionalResByArg
9160  ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
parseArgs(std::vector<uint64_t> & Args)9161  bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
9162    if (parseToken(lltok::kw_args, "expected 'args' here") ||
9163        parseToken(lltok::colon, "expected ':' here") ||
9164        parseToken(lltok::lparen, "expected '(' here"))
9165      return true;
9166  
9167    do {
9168      uint64_t Val;
9169      if (parseUInt64(Val))
9170        return true;
9171      Args.push_back(Val);
9172    } while (EatIfPresent(lltok::comma));
9173  
9174    if (parseToken(lltok::rparen, "expected ')' here"))
9175      return true;
9176  
9177    return false;
9178  }
9179  
9180  static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
9181  
resolveFwdRef(ValueInfo * Fwd,ValueInfo & Resolved)9182  static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
9183    bool ReadOnly = Fwd->isReadOnly();
9184    bool WriteOnly = Fwd->isWriteOnly();
9185    assert(!(ReadOnly && WriteOnly));
9186    *Fwd = Resolved;
9187    if (ReadOnly)
9188      Fwd->setReadOnly();
9189    if (WriteOnly)
9190      Fwd->setWriteOnly();
9191  }
9192  
9193  /// Stores the given Name/GUID and associated summary into the Index.
9194  /// Also updates any forward references to the associated entry ID.
addGlobalValueToIndex(std::string Name,GlobalValue::GUID GUID,GlobalValue::LinkageTypes Linkage,unsigned ID,std::unique_ptr<GlobalValueSummary> Summary,LocTy Loc)9195  bool LLParser::addGlobalValueToIndex(
9196      std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
9197      unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) {
9198    // First create the ValueInfo utilizing the Name or GUID.
9199    ValueInfo VI;
9200    if (GUID != 0) {
9201      assert(Name.empty());
9202      VI = Index->getOrInsertValueInfo(GUID);
9203    } else {
9204      assert(!Name.empty());
9205      if (M) {
9206        auto *GV = M->getNamedValue(Name);
9207        if (!GV)
9208          return error(Loc, "Reference to undefined global \"" + Name + "\"");
9209  
9210        VI = Index->getOrInsertValueInfo(GV);
9211      } else {
9212        assert(
9213            (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
9214            "Need a source_filename to compute GUID for local");
9215        GUID = GlobalValue::getGUID(
9216            GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
9217        VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
9218      }
9219    }
9220  
9221    // Resolve forward references from calls/refs
9222    auto FwdRefVIs = ForwardRefValueInfos.find(ID);
9223    if (FwdRefVIs != ForwardRefValueInfos.end()) {
9224      for (auto VIRef : FwdRefVIs->second) {
9225        assert(VIRef.first->getRef() == FwdVIRef &&
9226               "Forward referenced ValueInfo expected to be empty");
9227        resolveFwdRef(VIRef.first, VI);
9228      }
9229      ForwardRefValueInfos.erase(FwdRefVIs);
9230    }
9231  
9232    // Resolve forward references from aliases
9233    auto FwdRefAliasees = ForwardRefAliasees.find(ID);
9234    if (FwdRefAliasees != ForwardRefAliasees.end()) {
9235      for (auto AliaseeRef : FwdRefAliasees->second) {
9236        assert(!AliaseeRef.first->hasAliasee() &&
9237               "Forward referencing alias already has aliasee");
9238        assert(Summary && "Aliasee must be a definition");
9239        AliaseeRef.first->setAliasee(VI, Summary.get());
9240      }
9241      ForwardRefAliasees.erase(FwdRefAliasees);
9242    }
9243  
9244    // Add the summary if one was provided.
9245    if (Summary)
9246      Index->addGlobalValueSummary(VI, std::move(Summary));
9247  
9248    // Save the associated ValueInfo for use in later references by ID.
9249    if (ID == NumberedValueInfos.size())
9250      NumberedValueInfos.push_back(VI);
9251    else {
9252      // Handle non-continuous numbers (to make test simplification easier).
9253      if (ID > NumberedValueInfos.size())
9254        NumberedValueInfos.resize(ID + 1);
9255      NumberedValueInfos[ID] = VI;
9256    }
9257  
9258    return false;
9259  }
9260  
9261  /// parseSummaryIndexFlags
9262  ///   ::= 'flags' ':' UInt64
parseSummaryIndexFlags()9263  bool LLParser::parseSummaryIndexFlags() {
9264    assert(Lex.getKind() == lltok::kw_flags);
9265    Lex.Lex();
9266  
9267    if (parseToken(lltok::colon, "expected ':' here"))
9268      return true;
9269    uint64_t Flags;
9270    if (parseUInt64(Flags))
9271      return true;
9272    if (Index)
9273      Index->setFlags(Flags);
9274    return false;
9275  }
9276  
9277  /// parseBlockCount
9278  ///   ::= 'blockcount' ':' UInt64
parseBlockCount()9279  bool LLParser::parseBlockCount() {
9280    assert(Lex.getKind() == lltok::kw_blockcount);
9281    Lex.Lex();
9282  
9283    if (parseToken(lltok::colon, "expected ':' here"))
9284      return true;
9285    uint64_t BlockCount;
9286    if (parseUInt64(BlockCount))
9287      return true;
9288    if (Index)
9289      Index->setBlockCount(BlockCount);
9290    return false;
9291  }
9292  
9293  /// parseGVEntry
9294  ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
9295  ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
9296  /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
parseGVEntry(unsigned ID)9297  bool LLParser::parseGVEntry(unsigned ID) {
9298    assert(Lex.getKind() == lltok::kw_gv);
9299    Lex.Lex();
9300  
9301    if (parseToken(lltok::colon, "expected ':' here") ||
9302        parseToken(lltok::lparen, "expected '(' here"))
9303      return true;
9304  
9305    LocTy Loc = Lex.getLoc();
9306    std::string Name;
9307    GlobalValue::GUID GUID = 0;
9308    switch (Lex.getKind()) {
9309    case lltok::kw_name:
9310      Lex.Lex();
9311      if (parseToken(lltok::colon, "expected ':' here") ||
9312          parseStringConstant(Name))
9313        return true;
9314      // Can't create GUID/ValueInfo until we have the linkage.
9315      break;
9316    case lltok::kw_guid:
9317      Lex.Lex();
9318      if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
9319        return true;
9320      break;
9321    default:
9322      return error(Lex.getLoc(), "expected name or guid tag");
9323    }
9324  
9325    if (!EatIfPresent(lltok::comma)) {
9326      // No summaries. Wrap up.
9327      if (parseToken(lltok::rparen, "expected ')' here"))
9328        return true;
9329      // This was created for a call to an external or indirect target.
9330      // A GUID with no summary came from a VALUE_GUID record, dummy GUID
9331      // created for indirect calls with VP. A Name with no GUID came from
9332      // an external definition. We pass ExternalLinkage since that is only
9333      // used when the GUID must be computed from Name, and in that case
9334      // the symbol must have external linkage.
9335      return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
9336                                   nullptr, Loc);
9337    }
9338  
9339    // Have a list of summaries
9340    if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
9341        parseToken(lltok::colon, "expected ':' here") ||
9342        parseToken(lltok::lparen, "expected '(' here"))
9343      return true;
9344    do {
9345      switch (Lex.getKind()) {
9346      case lltok::kw_function:
9347        if (parseFunctionSummary(Name, GUID, ID))
9348          return true;
9349        break;
9350      case lltok::kw_variable:
9351        if (parseVariableSummary(Name, GUID, ID))
9352          return true;
9353        break;
9354      case lltok::kw_alias:
9355        if (parseAliasSummary(Name, GUID, ID))
9356          return true;
9357        break;
9358      default:
9359        return error(Lex.getLoc(), "expected summary type");
9360      }
9361    } while (EatIfPresent(lltok::comma));
9362  
9363    if (parseToken(lltok::rparen, "expected ')' here") ||
9364        parseToken(lltok::rparen, "expected ')' here"))
9365      return true;
9366  
9367    return false;
9368  }
9369  
9370  /// FunctionSummary
9371  ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9372  ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
9373  ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
9374  ///         [',' OptionalRefs]? ')'
parseFunctionSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)9375  bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
9376                                      unsigned ID) {
9377    LocTy Loc = Lex.getLoc();
9378    assert(Lex.getKind() == lltok::kw_function);
9379    Lex.Lex();
9380  
9381    StringRef ModulePath;
9382    GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9383        GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9384        /*NotEligibleToImport=*/false,
9385        /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9386        GlobalValueSummary::Definition);
9387    unsigned InstCount;
9388    std::vector<FunctionSummary::EdgeTy> Calls;
9389    FunctionSummary::TypeIdInfo TypeIdInfo;
9390    std::vector<FunctionSummary::ParamAccess> ParamAccesses;
9391    std::vector<ValueInfo> Refs;
9392    std::vector<CallsiteInfo> Callsites;
9393    std::vector<AllocInfo> Allocs;
9394    // Default is all-zeros (conservative values).
9395    FunctionSummary::FFlags FFlags = {};
9396    if (parseToken(lltok::colon, "expected ':' here") ||
9397        parseToken(lltok::lparen, "expected '(' here") ||
9398        parseModuleReference(ModulePath) ||
9399        parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9400        parseToken(lltok::comma, "expected ',' here") ||
9401        parseToken(lltok::kw_insts, "expected 'insts' here") ||
9402        parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
9403      return true;
9404  
9405    // parse optional fields
9406    while (EatIfPresent(lltok::comma)) {
9407      switch (Lex.getKind()) {
9408      case lltok::kw_funcFlags:
9409        if (parseOptionalFFlags(FFlags))
9410          return true;
9411        break;
9412      case lltok::kw_calls:
9413        if (parseOptionalCalls(Calls))
9414          return true;
9415        break;
9416      case lltok::kw_typeIdInfo:
9417        if (parseOptionalTypeIdInfo(TypeIdInfo))
9418          return true;
9419        break;
9420      case lltok::kw_refs:
9421        if (parseOptionalRefs(Refs))
9422          return true;
9423        break;
9424      case lltok::kw_params:
9425        if (parseOptionalParamAccesses(ParamAccesses))
9426          return true;
9427        break;
9428      case lltok::kw_allocs:
9429        if (parseOptionalAllocs(Allocs))
9430          return true;
9431        break;
9432      case lltok::kw_callsites:
9433        if (parseOptionalCallsites(Callsites))
9434          return true;
9435        break;
9436      default:
9437        return error(Lex.getLoc(), "expected optional function summary field");
9438      }
9439    }
9440  
9441    if (parseToken(lltok::rparen, "expected ')' here"))
9442      return true;
9443  
9444    auto FS = std::make_unique<FunctionSummary>(
9445        GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
9446        std::move(Calls), std::move(TypeIdInfo.TypeTests),
9447        std::move(TypeIdInfo.TypeTestAssumeVCalls),
9448        std::move(TypeIdInfo.TypeCheckedLoadVCalls),
9449        std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
9450        std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
9451        std::move(ParamAccesses), std::move(Callsites), std::move(Allocs));
9452  
9453    FS->setModulePath(ModulePath);
9454  
9455    return addGlobalValueToIndex(Name, GUID,
9456                                 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9457                                 std::move(FS), Loc);
9458  }
9459  
9460  /// VariableSummary
9461  ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9462  ///         [',' OptionalRefs]? ')'
parseVariableSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)9463  bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
9464                                      unsigned ID) {
9465    LocTy Loc = Lex.getLoc();
9466    assert(Lex.getKind() == lltok::kw_variable);
9467    Lex.Lex();
9468  
9469    StringRef ModulePath;
9470    GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9471        GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9472        /*NotEligibleToImport=*/false,
9473        /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9474        GlobalValueSummary::Definition);
9475    GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
9476                                          /* WriteOnly */ false,
9477                                          /* Constant */ false,
9478                                          GlobalObject::VCallVisibilityPublic);
9479    std::vector<ValueInfo> Refs;
9480    VTableFuncList VTableFuncs;
9481    if (parseToken(lltok::colon, "expected ':' here") ||
9482        parseToken(lltok::lparen, "expected '(' here") ||
9483        parseModuleReference(ModulePath) ||
9484        parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9485        parseToken(lltok::comma, "expected ',' here") ||
9486        parseGVarFlags(GVarFlags))
9487      return true;
9488  
9489    // parse optional fields
9490    while (EatIfPresent(lltok::comma)) {
9491      switch (Lex.getKind()) {
9492      case lltok::kw_vTableFuncs:
9493        if (parseOptionalVTableFuncs(VTableFuncs))
9494          return true;
9495        break;
9496      case lltok::kw_refs:
9497        if (parseOptionalRefs(Refs))
9498          return true;
9499        break;
9500      default:
9501        return error(Lex.getLoc(), "expected optional variable summary field");
9502      }
9503    }
9504  
9505    if (parseToken(lltok::rparen, "expected ')' here"))
9506      return true;
9507  
9508    auto GS =
9509        std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
9510  
9511    GS->setModulePath(ModulePath);
9512    GS->setVTableFuncs(std::move(VTableFuncs));
9513  
9514    return addGlobalValueToIndex(Name, GUID,
9515                                 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9516                                 std::move(GS), Loc);
9517  }
9518  
9519  /// AliasSummary
9520  ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
9521  ///         'aliasee' ':' GVReference ')'
parseAliasSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)9522  bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
9523                                   unsigned ID) {
9524    assert(Lex.getKind() == lltok::kw_alias);
9525    LocTy Loc = Lex.getLoc();
9526    Lex.Lex();
9527  
9528    StringRef ModulePath;
9529    GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9530        GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9531        /*NotEligibleToImport=*/false,
9532        /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9533        GlobalValueSummary::Definition);
9534    if (parseToken(lltok::colon, "expected ':' here") ||
9535        parseToken(lltok::lparen, "expected '(' here") ||
9536        parseModuleReference(ModulePath) ||
9537        parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9538        parseToken(lltok::comma, "expected ',' here") ||
9539        parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
9540        parseToken(lltok::colon, "expected ':' here"))
9541      return true;
9542  
9543    ValueInfo AliaseeVI;
9544    unsigned GVId;
9545    if (parseGVReference(AliaseeVI, GVId))
9546      return true;
9547  
9548    if (parseToken(lltok::rparen, "expected ')' here"))
9549      return true;
9550  
9551    auto AS = std::make_unique<AliasSummary>(GVFlags);
9552  
9553    AS->setModulePath(ModulePath);
9554  
9555    // Record forward reference if the aliasee is not parsed yet.
9556    if (AliaseeVI.getRef() == FwdVIRef) {
9557      ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
9558    } else {
9559      auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
9560      assert(Summary && "Aliasee must be a definition");
9561      AS->setAliasee(AliaseeVI, Summary);
9562    }
9563  
9564    return addGlobalValueToIndex(Name, GUID,
9565                                 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9566                                 std::move(AS), Loc);
9567  }
9568  
9569  /// Flag
9570  ///   ::= [0|1]
parseFlag(unsigned & Val)9571  bool LLParser::parseFlag(unsigned &Val) {
9572    if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
9573      return tokError("expected integer");
9574    Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
9575    Lex.Lex();
9576    return false;
9577  }
9578  
9579  /// OptionalFFlags
9580  ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
9581  ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
9582  ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
9583  ///        [',' 'noInline' ':' Flag]? ')'
9584  ///        [',' 'alwaysInline' ':' Flag]? ')'
9585  ///        [',' 'noUnwind' ':' Flag]? ')'
9586  ///        [',' 'mayThrow' ':' Flag]? ')'
9587  ///        [',' 'hasUnknownCall' ':' Flag]? ')'
9588  ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
9589  
parseOptionalFFlags(FunctionSummary::FFlags & FFlags)9590  bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
9591    assert(Lex.getKind() == lltok::kw_funcFlags);
9592    Lex.Lex();
9593  
9594    if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
9595        parseToken(lltok::lparen, "expected '(' in funcFlags"))
9596      return true;
9597  
9598    do {
9599      unsigned Val = 0;
9600      switch (Lex.getKind()) {
9601      case lltok::kw_readNone:
9602        Lex.Lex();
9603        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9604          return true;
9605        FFlags.ReadNone = Val;
9606        break;
9607      case lltok::kw_readOnly:
9608        Lex.Lex();
9609        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9610          return true;
9611        FFlags.ReadOnly = Val;
9612        break;
9613      case lltok::kw_noRecurse:
9614        Lex.Lex();
9615        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9616          return true;
9617        FFlags.NoRecurse = Val;
9618        break;
9619      case lltok::kw_returnDoesNotAlias:
9620        Lex.Lex();
9621        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9622          return true;
9623        FFlags.ReturnDoesNotAlias = Val;
9624        break;
9625      case lltok::kw_noInline:
9626        Lex.Lex();
9627        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9628          return true;
9629        FFlags.NoInline = Val;
9630        break;
9631      case lltok::kw_alwaysInline:
9632        Lex.Lex();
9633        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9634          return true;
9635        FFlags.AlwaysInline = Val;
9636        break;
9637      case lltok::kw_noUnwind:
9638        Lex.Lex();
9639        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9640          return true;
9641        FFlags.NoUnwind = Val;
9642        break;
9643      case lltok::kw_mayThrow:
9644        Lex.Lex();
9645        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9646          return true;
9647        FFlags.MayThrow = Val;
9648        break;
9649      case lltok::kw_hasUnknownCall:
9650        Lex.Lex();
9651        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9652          return true;
9653        FFlags.HasUnknownCall = Val;
9654        break;
9655      case lltok::kw_mustBeUnreachable:
9656        Lex.Lex();
9657        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9658          return true;
9659        FFlags.MustBeUnreachable = Val;
9660        break;
9661      default:
9662        return error(Lex.getLoc(), "expected function flag type");
9663      }
9664    } while (EatIfPresent(lltok::comma));
9665  
9666    if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
9667      return true;
9668  
9669    return false;
9670  }
9671  
9672  /// OptionalCalls
9673  ///   := 'calls' ':' '(' Call [',' Call]* ')'
9674  /// Call ::= '(' 'callee' ':' GVReference
9675  ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]?
9676  ///            [ ',' 'tail' ]? ')'
parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> & Calls)9677  bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9678    assert(Lex.getKind() == lltok::kw_calls);
9679    Lex.Lex();
9680  
9681    if (parseToken(lltok::colon, "expected ':' in calls") ||
9682        parseToken(lltok::lparen, "expected '(' in calls"))
9683      return true;
9684  
9685    IdToIndexMapType IdToIndexMap;
9686    // parse each call edge
9687    do {
9688      ValueInfo VI;
9689      if (parseToken(lltok::lparen, "expected '(' in call") ||
9690          parseToken(lltok::kw_callee, "expected 'callee' in call") ||
9691          parseToken(lltok::colon, "expected ':'"))
9692        return true;
9693  
9694      LocTy Loc = Lex.getLoc();
9695      unsigned GVId;
9696      if (parseGVReference(VI, GVId))
9697        return true;
9698  
9699      CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9700      unsigned RelBF = 0;
9701      unsigned HasTailCall = false;
9702  
9703      // parse optional fields
9704      while (EatIfPresent(lltok::comma)) {
9705        switch (Lex.getKind()) {
9706        case lltok::kw_hotness:
9707          Lex.Lex();
9708          if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
9709            return true;
9710          break;
9711        case lltok::kw_relbf:
9712          Lex.Lex();
9713          if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
9714            return true;
9715          break;
9716        case lltok::kw_tail:
9717          Lex.Lex();
9718          if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall))
9719            return true;
9720          break;
9721        default:
9722          return error(Lex.getLoc(), "expected hotness, relbf, or tail");
9723        }
9724      }
9725      if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0)
9726        return tokError("Expected only one of hotness or relbf");
9727      // Keep track of the Call array index needing a forward reference.
9728      // We will save the location of the ValueInfo needing an update, but
9729      // can only do so once the std::vector is finalized.
9730      if (VI.getRef() == FwdVIRef)
9731        IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
9732      Calls.push_back(
9733          FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)});
9734  
9735      if (parseToken(lltok::rparen, "expected ')' in call"))
9736        return true;
9737    } while (EatIfPresent(lltok::comma));
9738  
9739    // Now that the Calls vector is finalized, it is safe to save the locations
9740    // of any forward GV references that need updating later.
9741    for (auto I : IdToIndexMap) {
9742      auto &Infos = ForwardRefValueInfos[I.first];
9743      for (auto P : I.second) {
9744        assert(Calls[P.first].first.getRef() == FwdVIRef &&
9745               "Forward referenced ValueInfo expected to be empty");
9746        Infos.emplace_back(&Calls[P.first].first, P.second);
9747      }
9748    }
9749  
9750    if (parseToken(lltok::rparen, "expected ')' in calls"))
9751      return true;
9752  
9753    return false;
9754  }
9755  
9756  /// Hotness
9757  ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
parseHotness(CalleeInfo::HotnessType & Hotness)9758  bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9759    switch (Lex.getKind()) {
9760    case lltok::kw_unknown:
9761      Hotness = CalleeInfo::HotnessType::Unknown;
9762      break;
9763    case lltok::kw_cold:
9764      Hotness = CalleeInfo::HotnessType::Cold;
9765      break;
9766    case lltok::kw_none:
9767      Hotness = CalleeInfo::HotnessType::None;
9768      break;
9769    case lltok::kw_hot:
9770      Hotness = CalleeInfo::HotnessType::Hot;
9771      break;
9772    case lltok::kw_critical:
9773      Hotness = CalleeInfo::HotnessType::Critical;
9774      break;
9775    default:
9776      return error(Lex.getLoc(), "invalid call edge hotness");
9777    }
9778    Lex.Lex();
9779    return false;
9780  }
9781  
9782  /// OptionalVTableFuncs
9783  ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9784  /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
parseOptionalVTableFuncs(VTableFuncList & VTableFuncs)9785  bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9786    assert(Lex.getKind() == lltok::kw_vTableFuncs);
9787    Lex.Lex();
9788  
9789    if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
9790        parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9791      return true;
9792  
9793    IdToIndexMapType IdToIndexMap;
9794    // parse each virtual function pair
9795    do {
9796      ValueInfo VI;
9797      if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9798          parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9799          parseToken(lltok::colon, "expected ':'"))
9800        return true;
9801  
9802      LocTy Loc = Lex.getLoc();
9803      unsigned GVId;
9804      if (parseGVReference(VI, GVId))
9805        return true;
9806  
9807      uint64_t Offset;
9808      if (parseToken(lltok::comma, "expected comma") ||
9809          parseToken(lltok::kw_offset, "expected offset") ||
9810          parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9811        return true;
9812  
9813      // Keep track of the VTableFuncs array index needing a forward reference.
9814      // We will save the location of the ValueInfo needing an update, but
9815      // can only do so once the std::vector is finalized.
9816      if (VI == EmptyVI)
9817        IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9818      VTableFuncs.push_back({VI, Offset});
9819  
9820      if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9821        return true;
9822    } while (EatIfPresent(lltok::comma));
9823  
9824    // Now that the VTableFuncs vector is finalized, it is safe to save the
9825    // locations of any forward GV references that need updating later.
9826    for (auto I : IdToIndexMap) {
9827      auto &Infos = ForwardRefValueInfos[I.first];
9828      for (auto P : I.second) {
9829        assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9830               "Forward referenced ValueInfo expected to be empty");
9831        Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9832      }
9833    }
9834  
9835    if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9836      return true;
9837  
9838    return false;
9839  }
9840  
9841  /// ParamNo := 'param' ':' UInt64
parseParamNo(uint64_t & ParamNo)9842  bool LLParser::parseParamNo(uint64_t &ParamNo) {
9843    if (parseToken(lltok::kw_param, "expected 'param' here") ||
9844        parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9845      return true;
9846    return false;
9847  }
9848  
9849  /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
parseParamAccessOffset(ConstantRange & Range)9850  bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9851    APSInt Lower;
9852    APSInt Upper;
9853    auto ParseAPSInt = [&](APSInt &Val) {
9854      if (Lex.getKind() != lltok::APSInt)
9855        return tokError("expected integer");
9856      Val = Lex.getAPSIntVal();
9857      Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9858      Val.setIsSigned(true);
9859      Lex.Lex();
9860      return false;
9861    };
9862    if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9863        parseToken(lltok::colon, "expected ':' here") ||
9864        parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9865        parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9866        parseToken(lltok::rsquare, "expected ']' here"))
9867      return true;
9868  
9869    ++Upper;
9870    Range =
9871        (Lower == Upper && !Lower.isMaxValue())
9872            ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9873            : ConstantRange(Lower, Upper);
9874  
9875    return false;
9876  }
9877  
9878  /// ParamAccessCall
9879  ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
parseParamAccessCall(FunctionSummary::ParamAccess::Call & Call,IdLocListType & IdLocList)9880  bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9881                                      IdLocListType &IdLocList) {
9882    if (parseToken(lltok::lparen, "expected '(' here") ||
9883        parseToken(lltok::kw_callee, "expected 'callee' here") ||
9884        parseToken(lltok::colon, "expected ':' here"))
9885      return true;
9886  
9887    unsigned GVId;
9888    ValueInfo VI;
9889    LocTy Loc = Lex.getLoc();
9890    if (parseGVReference(VI, GVId))
9891      return true;
9892  
9893    Call.Callee = VI;
9894    IdLocList.emplace_back(GVId, Loc);
9895  
9896    if (parseToken(lltok::comma, "expected ',' here") ||
9897        parseParamNo(Call.ParamNo) ||
9898        parseToken(lltok::comma, "expected ',' here") ||
9899        parseParamAccessOffset(Call.Offsets))
9900      return true;
9901  
9902    if (parseToken(lltok::rparen, "expected ')' here"))
9903      return true;
9904  
9905    return false;
9906  }
9907  
9908  /// ParamAccess
9909  ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9910  /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
parseParamAccess(FunctionSummary::ParamAccess & Param,IdLocListType & IdLocList)9911  bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9912                                  IdLocListType &IdLocList) {
9913    if (parseToken(lltok::lparen, "expected '(' here") ||
9914        parseParamNo(Param.ParamNo) ||
9915        parseToken(lltok::comma, "expected ',' here") ||
9916        parseParamAccessOffset(Param.Use))
9917      return true;
9918  
9919    if (EatIfPresent(lltok::comma)) {
9920      if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9921          parseToken(lltok::colon, "expected ':' here") ||
9922          parseToken(lltok::lparen, "expected '(' here"))
9923        return true;
9924      do {
9925        FunctionSummary::ParamAccess::Call Call;
9926        if (parseParamAccessCall(Call, IdLocList))
9927          return true;
9928        Param.Calls.push_back(Call);
9929      } while (EatIfPresent(lltok::comma));
9930  
9931      if (parseToken(lltok::rparen, "expected ')' here"))
9932        return true;
9933    }
9934  
9935    if (parseToken(lltok::rparen, "expected ')' here"))
9936      return true;
9937  
9938    return false;
9939  }
9940  
9941  /// OptionalParamAccesses
9942  ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
parseOptionalParamAccesses(std::vector<FunctionSummary::ParamAccess> & Params)9943  bool LLParser::parseOptionalParamAccesses(
9944      std::vector<FunctionSummary::ParamAccess> &Params) {
9945    assert(Lex.getKind() == lltok::kw_params);
9946    Lex.Lex();
9947  
9948    if (parseToken(lltok::colon, "expected ':' here") ||
9949        parseToken(lltok::lparen, "expected '(' here"))
9950      return true;
9951  
9952    IdLocListType VContexts;
9953    size_t CallsNum = 0;
9954    do {
9955      FunctionSummary::ParamAccess ParamAccess;
9956      if (parseParamAccess(ParamAccess, VContexts))
9957        return true;
9958      CallsNum += ParamAccess.Calls.size();
9959      assert(VContexts.size() == CallsNum);
9960      (void)CallsNum;
9961      Params.emplace_back(std::move(ParamAccess));
9962    } while (EatIfPresent(lltok::comma));
9963  
9964    if (parseToken(lltok::rparen, "expected ')' here"))
9965      return true;
9966  
9967    // Now that the Params is finalized, it is safe to save the locations
9968    // of any forward GV references that need updating later.
9969    IdLocListType::const_iterator ItContext = VContexts.begin();
9970    for (auto &PA : Params) {
9971      for (auto &C : PA.Calls) {
9972        if (C.Callee.getRef() == FwdVIRef)
9973          ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9974                                                              ItContext->second);
9975        ++ItContext;
9976      }
9977    }
9978    assert(ItContext == VContexts.end());
9979  
9980    return false;
9981  }
9982  
9983  /// OptionalRefs
9984  ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
parseOptionalRefs(std::vector<ValueInfo> & Refs)9985  bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9986    assert(Lex.getKind() == lltok::kw_refs);
9987    Lex.Lex();
9988  
9989    if (parseToken(lltok::colon, "expected ':' in refs") ||
9990        parseToken(lltok::lparen, "expected '(' in refs"))
9991      return true;
9992  
9993    struct ValueContext {
9994      ValueInfo VI;
9995      unsigned GVId;
9996      LocTy Loc;
9997    };
9998    std::vector<ValueContext> VContexts;
9999    // parse each ref edge
10000    do {
10001      ValueContext VC;
10002      VC.Loc = Lex.getLoc();
10003      if (parseGVReference(VC.VI, VC.GVId))
10004        return true;
10005      VContexts.push_back(VC);
10006    } while (EatIfPresent(lltok::comma));
10007  
10008    // Sort value contexts so that ones with writeonly
10009    // and readonly ValueInfo  are at the end of VContexts vector.
10010    // See FunctionSummary::specialRefCounts()
10011    llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
10012      return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
10013    });
10014  
10015    IdToIndexMapType IdToIndexMap;
10016    for (auto &VC : VContexts) {
10017      // Keep track of the Refs array index needing a forward reference.
10018      // We will save the location of the ValueInfo needing an update, but
10019      // can only do so once the std::vector is finalized.
10020      if (VC.VI.getRef() == FwdVIRef)
10021        IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
10022      Refs.push_back(VC.VI);
10023    }
10024  
10025    // Now that the Refs vector is finalized, it is safe to save the locations
10026    // of any forward GV references that need updating later.
10027    for (auto I : IdToIndexMap) {
10028      auto &Infos = ForwardRefValueInfos[I.first];
10029      for (auto P : I.second) {
10030        assert(Refs[P.first].getRef() == FwdVIRef &&
10031               "Forward referenced ValueInfo expected to be empty");
10032        Infos.emplace_back(&Refs[P.first], P.second);
10033      }
10034    }
10035  
10036    if (parseToken(lltok::rparen, "expected ')' in refs"))
10037      return true;
10038  
10039    return false;
10040  }
10041  
10042  /// OptionalTypeIdInfo
10043  ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
10044  ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
10045  ///         [',' TypeCheckedLoadConstVCalls]? ')'
parseOptionalTypeIdInfo(FunctionSummary::TypeIdInfo & TypeIdInfo)10046  bool LLParser::parseOptionalTypeIdInfo(
10047      FunctionSummary::TypeIdInfo &TypeIdInfo) {
10048    assert(Lex.getKind() == lltok::kw_typeIdInfo);
10049    Lex.Lex();
10050  
10051    if (parseToken(lltok::colon, "expected ':' here") ||
10052        parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10053      return true;
10054  
10055    do {
10056      switch (Lex.getKind()) {
10057      case lltok::kw_typeTests:
10058        if (parseTypeTests(TypeIdInfo.TypeTests))
10059          return true;
10060        break;
10061      case lltok::kw_typeTestAssumeVCalls:
10062        if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
10063                             TypeIdInfo.TypeTestAssumeVCalls))
10064          return true;
10065        break;
10066      case lltok::kw_typeCheckedLoadVCalls:
10067        if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
10068                             TypeIdInfo.TypeCheckedLoadVCalls))
10069          return true;
10070        break;
10071      case lltok::kw_typeTestAssumeConstVCalls:
10072        if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
10073                                TypeIdInfo.TypeTestAssumeConstVCalls))
10074          return true;
10075        break;
10076      case lltok::kw_typeCheckedLoadConstVCalls:
10077        if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
10078                                TypeIdInfo.TypeCheckedLoadConstVCalls))
10079          return true;
10080        break;
10081      default:
10082        return error(Lex.getLoc(), "invalid typeIdInfo list type");
10083      }
10084    } while (EatIfPresent(lltok::comma));
10085  
10086    if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10087      return true;
10088  
10089    return false;
10090  }
10091  
10092  /// TypeTests
10093  ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
10094  ///         [',' (SummaryID | UInt64)]* ')'
parseTypeTests(std::vector<GlobalValue::GUID> & TypeTests)10095  bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
10096    assert(Lex.getKind() == lltok::kw_typeTests);
10097    Lex.Lex();
10098  
10099    if (parseToken(lltok::colon, "expected ':' here") ||
10100        parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10101      return true;
10102  
10103    IdToIndexMapType IdToIndexMap;
10104    do {
10105      GlobalValue::GUID GUID = 0;
10106      if (Lex.getKind() == lltok::SummaryID) {
10107        unsigned ID = Lex.getUIntVal();
10108        LocTy Loc = Lex.getLoc();
10109        // Keep track of the TypeTests array index needing a forward reference.
10110        // We will save the location of the GUID needing an update, but
10111        // can only do so once the std::vector is finalized.
10112        IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
10113        Lex.Lex();
10114      } else if (parseUInt64(GUID))
10115        return true;
10116      TypeTests.push_back(GUID);
10117    } while (EatIfPresent(lltok::comma));
10118  
10119    // Now that the TypeTests vector is finalized, it is safe to save the
10120    // locations of any forward GV references that need updating later.
10121    for (auto I : IdToIndexMap) {
10122      auto &Ids = ForwardRefTypeIds[I.first];
10123      for (auto P : I.second) {
10124        assert(TypeTests[P.first] == 0 &&
10125               "Forward referenced type id GUID expected to be 0");
10126        Ids.emplace_back(&TypeTests[P.first], P.second);
10127      }
10128    }
10129  
10130    if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10131      return true;
10132  
10133    return false;
10134  }
10135  
10136  /// VFuncIdList
10137  ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
parseVFuncIdList(lltok::Kind Kind,std::vector<FunctionSummary::VFuncId> & VFuncIdList)10138  bool LLParser::parseVFuncIdList(
10139      lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
10140    assert(Lex.getKind() == Kind);
10141    Lex.Lex();
10142  
10143    if (parseToken(lltok::colon, "expected ':' here") ||
10144        parseToken(lltok::lparen, "expected '(' here"))
10145      return true;
10146  
10147    IdToIndexMapType IdToIndexMap;
10148    do {
10149      FunctionSummary::VFuncId VFuncId;
10150      if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
10151        return true;
10152      VFuncIdList.push_back(VFuncId);
10153    } while (EatIfPresent(lltok::comma));
10154  
10155    if (parseToken(lltok::rparen, "expected ')' here"))
10156      return true;
10157  
10158    // Now that the VFuncIdList vector is finalized, it is safe to save the
10159    // locations of any forward GV references that need updating later.
10160    for (auto I : IdToIndexMap) {
10161      auto &Ids = ForwardRefTypeIds[I.first];
10162      for (auto P : I.second) {
10163        assert(VFuncIdList[P.first].GUID == 0 &&
10164               "Forward referenced type id GUID expected to be 0");
10165        Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
10166      }
10167    }
10168  
10169    return false;
10170  }
10171  
10172  /// ConstVCallList
10173  ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
parseConstVCallList(lltok::Kind Kind,std::vector<FunctionSummary::ConstVCall> & ConstVCallList)10174  bool LLParser::parseConstVCallList(
10175      lltok::Kind Kind,
10176      std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
10177    assert(Lex.getKind() == Kind);
10178    Lex.Lex();
10179  
10180    if (parseToken(lltok::colon, "expected ':' here") ||
10181        parseToken(lltok::lparen, "expected '(' here"))
10182      return true;
10183  
10184    IdToIndexMapType IdToIndexMap;
10185    do {
10186      FunctionSummary::ConstVCall ConstVCall;
10187      if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
10188        return true;
10189      ConstVCallList.push_back(ConstVCall);
10190    } while (EatIfPresent(lltok::comma));
10191  
10192    if (parseToken(lltok::rparen, "expected ')' here"))
10193      return true;
10194  
10195    // Now that the ConstVCallList vector is finalized, it is safe to save the
10196    // locations of any forward GV references that need updating later.
10197    for (auto I : IdToIndexMap) {
10198      auto &Ids = ForwardRefTypeIds[I.first];
10199      for (auto P : I.second) {
10200        assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
10201               "Forward referenced type id GUID expected to be 0");
10202        Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
10203      }
10204    }
10205  
10206    return false;
10207  }
10208  
10209  /// ConstVCall
10210  ///   ::= '(' VFuncId ',' Args ')'
parseConstVCall(FunctionSummary::ConstVCall & ConstVCall,IdToIndexMapType & IdToIndexMap,unsigned Index)10211  bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
10212                                 IdToIndexMapType &IdToIndexMap, unsigned Index) {
10213    if (parseToken(lltok::lparen, "expected '(' here") ||
10214        parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
10215      return true;
10216  
10217    if (EatIfPresent(lltok::comma))
10218      if (parseArgs(ConstVCall.Args))
10219        return true;
10220  
10221    if (parseToken(lltok::rparen, "expected ')' here"))
10222      return true;
10223  
10224    return false;
10225  }
10226  
10227  /// VFuncId
10228  ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
10229  ///         'offset' ':' UInt64 ')'
parseVFuncId(FunctionSummary::VFuncId & VFuncId,IdToIndexMapType & IdToIndexMap,unsigned Index)10230  bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
10231                              IdToIndexMapType &IdToIndexMap, unsigned Index) {
10232    assert(Lex.getKind() == lltok::kw_vFuncId);
10233    Lex.Lex();
10234  
10235    if (parseToken(lltok::colon, "expected ':' here") ||
10236        parseToken(lltok::lparen, "expected '(' here"))
10237      return true;
10238  
10239    if (Lex.getKind() == lltok::SummaryID) {
10240      VFuncId.GUID = 0;
10241      unsigned ID = Lex.getUIntVal();
10242      LocTy Loc = Lex.getLoc();
10243      // Keep track of the array index needing a forward reference.
10244      // We will save the location of the GUID needing an update, but
10245      // can only do so once the caller's std::vector is finalized.
10246      IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
10247      Lex.Lex();
10248    } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
10249               parseToken(lltok::colon, "expected ':' here") ||
10250               parseUInt64(VFuncId.GUID))
10251      return true;
10252  
10253    if (parseToken(lltok::comma, "expected ',' here") ||
10254        parseToken(lltok::kw_offset, "expected 'offset' here") ||
10255        parseToken(lltok::colon, "expected ':' here") ||
10256        parseUInt64(VFuncId.Offset) ||
10257        parseToken(lltok::rparen, "expected ')' here"))
10258      return true;
10259  
10260    return false;
10261  }
10262  
10263  /// GVFlags
10264  ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
10265  ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
10266  ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
10267  ///         'canAutoHide' ':' Flag ',' ')'
parseGVFlags(GlobalValueSummary::GVFlags & GVFlags)10268  bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
10269    assert(Lex.getKind() == lltok::kw_flags);
10270    Lex.Lex();
10271  
10272    if (parseToken(lltok::colon, "expected ':' here") ||
10273        parseToken(lltok::lparen, "expected '(' here"))
10274      return true;
10275  
10276    do {
10277      unsigned Flag = 0;
10278      switch (Lex.getKind()) {
10279      case lltok::kw_linkage:
10280        Lex.Lex();
10281        if (parseToken(lltok::colon, "expected ':'"))
10282          return true;
10283        bool HasLinkage;
10284        GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
10285        assert(HasLinkage && "Linkage not optional in summary entry");
10286        Lex.Lex();
10287        break;
10288      case lltok::kw_visibility:
10289        Lex.Lex();
10290        if (parseToken(lltok::colon, "expected ':'"))
10291          return true;
10292        parseOptionalVisibility(Flag);
10293        GVFlags.Visibility = Flag;
10294        break;
10295      case lltok::kw_notEligibleToImport:
10296        Lex.Lex();
10297        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10298          return true;
10299        GVFlags.NotEligibleToImport = Flag;
10300        break;
10301      case lltok::kw_live:
10302        Lex.Lex();
10303        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10304          return true;
10305        GVFlags.Live = Flag;
10306        break;
10307      case lltok::kw_dsoLocal:
10308        Lex.Lex();
10309        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10310          return true;
10311        GVFlags.DSOLocal = Flag;
10312        break;
10313      case lltok::kw_canAutoHide:
10314        Lex.Lex();
10315        if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10316          return true;
10317        GVFlags.CanAutoHide = Flag;
10318        break;
10319      case lltok::kw_importType:
10320        Lex.Lex();
10321        if (parseToken(lltok::colon, "expected ':'"))
10322          return true;
10323        GlobalValueSummary::ImportKind IK;
10324        if (parseOptionalImportType(Lex.getKind(), IK))
10325          return true;
10326        GVFlags.ImportType = static_cast<unsigned>(IK);
10327        Lex.Lex();
10328        break;
10329      default:
10330        return error(Lex.getLoc(), "expected gv flag type");
10331      }
10332    } while (EatIfPresent(lltok::comma));
10333  
10334    if (parseToken(lltok::rparen, "expected ')' here"))
10335      return true;
10336  
10337    return false;
10338  }
10339  
10340  /// GVarFlags
10341  ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
10342  ///                      ',' 'writeonly' ':' Flag
10343  ///                      ',' 'constant' ':' Flag ')'
parseGVarFlags(GlobalVarSummary::GVarFlags & GVarFlags)10344  bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
10345    assert(Lex.getKind() == lltok::kw_varFlags);
10346    Lex.Lex();
10347  
10348    if (parseToken(lltok::colon, "expected ':' here") ||
10349        parseToken(lltok::lparen, "expected '(' here"))
10350      return true;
10351  
10352    auto ParseRest = [this](unsigned int &Val) {
10353      Lex.Lex();
10354      if (parseToken(lltok::colon, "expected ':'"))
10355        return true;
10356      return parseFlag(Val);
10357    };
10358  
10359    do {
10360      unsigned Flag = 0;
10361      switch (Lex.getKind()) {
10362      case lltok::kw_readonly:
10363        if (ParseRest(Flag))
10364          return true;
10365        GVarFlags.MaybeReadOnly = Flag;
10366        break;
10367      case lltok::kw_writeonly:
10368        if (ParseRest(Flag))
10369          return true;
10370        GVarFlags.MaybeWriteOnly = Flag;
10371        break;
10372      case lltok::kw_constant:
10373        if (ParseRest(Flag))
10374          return true;
10375        GVarFlags.Constant = Flag;
10376        break;
10377      case lltok::kw_vcall_visibility:
10378        if (ParseRest(Flag))
10379          return true;
10380        GVarFlags.VCallVisibility = Flag;
10381        break;
10382      default:
10383        return error(Lex.getLoc(), "expected gvar flag type");
10384      }
10385    } while (EatIfPresent(lltok::comma));
10386    return parseToken(lltok::rparen, "expected ')' here");
10387  }
10388  
10389  /// ModuleReference
10390  ///   ::= 'module' ':' UInt
parseModuleReference(StringRef & ModulePath)10391  bool LLParser::parseModuleReference(StringRef &ModulePath) {
10392    // parse module id.
10393    if (parseToken(lltok::kw_module, "expected 'module' here") ||
10394        parseToken(lltok::colon, "expected ':' here") ||
10395        parseToken(lltok::SummaryID, "expected module ID"))
10396      return true;
10397  
10398    unsigned ModuleID = Lex.getUIntVal();
10399    auto I = ModuleIdMap.find(ModuleID);
10400    // We should have already parsed all module IDs
10401    assert(I != ModuleIdMap.end());
10402    ModulePath = I->second;
10403    return false;
10404  }
10405  
10406  /// GVReference
10407  ///   ::= SummaryID
parseGVReference(ValueInfo & VI,unsigned & GVId)10408  bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
10409    bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
10410    if (!ReadOnly)
10411      WriteOnly = EatIfPresent(lltok::kw_writeonly);
10412    if (parseToken(lltok::SummaryID, "expected GV ID"))
10413      return true;
10414  
10415    GVId = Lex.getUIntVal();
10416    // Check if we already have a VI for this GV
10417    if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) {
10418      assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
10419      VI = NumberedValueInfos[GVId];
10420    } else
10421      // We will create a forward reference to the stored location.
10422      VI = ValueInfo(false, FwdVIRef);
10423  
10424    if (ReadOnly)
10425      VI.setReadOnly();
10426    if (WriteOnly)
10427      VI.setWriteOnly();
10428    return false;
10429  }
10430  
10431  /// OptionalAllocs
10432  ///   := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
10433  /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
10434  ///              ',' MemProfs ')'
10435  /// Version ::= UInt32
parseOptionalAllocs(std::vector<AllocInfo> & Allocs)10436  bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
10437    assert(Lex.getKind() == lltok::kw_allocs);
10438    Lex.Lex();
10439  
10440    if (parseToken(lltok::colon, "expected ':' in allocs") ||
10441        parseToken(lltok::lparen, "expected '(' in allocs"))
10442      return true;
10443  
10444    // parse each alloc
10445    do {
10446      if (parseToken(lltok::lparen, "expected '(' in alloc") ||
10447          parseToken(lltok::kw_versions, "expected 'versions' in alloc") ||
10448          parseToken(lltok::colon, "expected ':'") ||
10449          parseToken(lltok::lparen, "expected '(' in versions"))
10450        return true;
10451  
10452      SmallVector<uint8_t> Versions;
10453      do {
10454        uint8_t V = 0;
10455        if (parseAllocType(V))
10456          return true;
10457        Versions.push_back(V);
10458      } while (EatIfPresent(lltok::comma));
10459  
10460      if (parseToken(lltok::rparen, "expected ')' in versions") ||
10461          parseToken(lltok::comma, "expected ',' in alloc"))
10462        return true;
10463  
10464      std::vector<MIBInfo> MIBs;
10465      if (parseMemProfs(MIBs))
10466        return true;
10467  
10468      Allocs.push_back({Versions, MIBs});
10469  
10470      if (parseToken(lltok::rparen, "expected ')' in alloc"))
10471        return true;
10472    } while (EatIfPresent(lltok::comma));
10473  
10474    if (parseToken(lltok::rparen, "expected ')' in allocs"))
10475      return true;
10476  
10477    return false;
10478  }
10479  
10480  /// MemProfs
10481  ///   := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
10482  /// MemProf ::= '(' 'type' ':' AllocType
10483  ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10484  /// StackId ::= UInt64
parseMemProfs(std::vector<MIBInfo> & MIBs)10485  bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
10486    assert(Lex.getKind() == lltok::kw_memProf);
10487    Lex.Lex();
10488  
10489    if (parseToken(lltok::colon, "expected ':' in memprof") ||
10490        parseToken(lltok::lparen, "expected '(' in memprof"))
10491      return true;
10492  
10493    // parse each MIB
10494    do {
10495      if (parseToken(lltok::lparen, "expected '(' in memprof") ||
10496          parseToken(lltok::kw_type, "expected 'type' in memprof") ||
10497          parseToken(lltok::colon, "expected ':'"))
10498        return true;
10499  
10500      uint8_t AllocType;
10501      if (parseAllocType(AllocType))
10502        return true;
10503  
10504      if (parseToken(lltok::comma, "expected ',' in memprof") ||
10505          parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") ||
10506          parseToken(lltok::colon, "expected ':'") ||
10507          parseToken(lltok::lparen, "expected '(' in stackIds"))
10508        return true;
10509  
10510      SmallVector<unsigned> StackIdIndices;
10511      do {
10512        uint64_t StackId = 0;
10513        if (parseUInt64(StackId))
10514          return true;
10515        StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10516      } while (EatIfPresent(lltok::comma));
10517  
10518      if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10519        return true;
10520  
10521      MIBs.push_back({(AllocationType)AllocType, StackIdIndices});
10522  
10523      if (parseToken(lltok::rparen, "expected ')' in memprof"))
10524        return true;
10525    } while (EatIfPresent(lltok::comma));
10526  
10527    if (parseToken(lltok::rparen, "expected ')' in memprof"))
10528      return true;
10529  
10530    return false;
10531  }
10532  
10533  /// AllocType
10534  ///   := ('none'|'notcold'|'cold'|'hot')
parseAllocType(uint8_t & AllocType)10535  bool LLParser::parseAllocType(uint8_t &AllocType) {
10536    switch (Lex.getKind()) {
10537    case lltok::kw_none:
10538      AllocType = (uint8_t)AllocationType::None;
10539      break;
10540    case lltok::kw_notcold:
10541      AllocType = (uint8_t)AllocationType::NotCold;
10542      break;
10543    case lltok::kw_cold:
10544      AllocType = (uint8_t)AllocationType::Cold;
10545      break;
10546    case lltok::kw_hot:
10547      AllocType = (uint8_t)AllocationType::Hot;
10548      break;
10549    default:
10550      return error(Lex.getLoc(), "invalid alloc type");
10551    }
10552    Lex.Lex();
10553    return false;
10554  }
10555  
10556  /// OptionalCallsites
10557  ///   := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
10558  /// Callsite ::= '(' 'callee' ':' GVReference
10559  ///              ',' 'clones' ':' '(' Version [',' Version]* ')'
10560  ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10561  /// Version ::= UInt32
10562  /// StackId ::= UInt64
parseOptionalCallsites(std::vector<CallsiteInfo> & Callsites)10563  bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
10564    assert(Lex.getKind() == lltok::kw_callsites);
10565    Lex.Lex();
10566  
10567    if (parseToken(lltok::colon, "expected ':' in callsites") ||
10568        parseToken(lltok::lparen, "expected '(' in callsites"))
10569      return true;
10570  
10571    IdToIndexMapType IdToIndexMap;
10572    // parse each callsite
10573    do {
10574      if (parseToken(lltok::lparen, "expected '(' in callsite") ||
10575          parseToken(lltok::kw_callee, "expected 'callee' in callsite") ||
10576          parseToken(lltok::colon, "expected ':'"))
10577        return true;
10578  
10579      ValueInfo VI;
10580      unsigned GVId = 0;
10581      LocTy Loc = Lex.getLoc();
10582      if (!EatIfPresent(lltok::kw_null)) {
10583        if (parseGVReference(VI, GVId))
10584          return true;
10585      }
10586  
10587      if (parseToken(lltok::comma, "expected ',' in callsite") ||
10588          parseToken(lltok::kw_clones, "expected 'clones' in callsite") ||
10589          parseToken(lltok::colon, "expected ':'") ||
10590          parseToken(lltok::lparen, "expected '(' in clones"))
10591        return true;
10592  
10593      SmallVector<unsigned> Clones;
10594      do {
10595        unsigned V = 0;
10596        if (parseUInt32(V))
10597          return true;
10598        Clones.push_back(V);
10599      } while (EatIfPresent(lltok::comma));
10600  
10601      if (parseToken(lltok::rparen, "expected ')' in clones") ||
10602          parseToken(lltok::comma, "expected ',' in callsite") ||
10603          parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") ||
10604          parseToken(lltok::colon, "expected ':'") ||
10605          parseToken(lltok::lparen, "expected '(' in stackIds"))
10606        return true;
10607  
10608      SmallVector<unsigned> StackIdIndices;
10609      do {
10610        uint64_t StackId = 0;
10611        if (parseUInt64(StackId))
10612          return true;
10613        StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10614      } while (EatIfPresent(lltok::comma));
10615  
10616      if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10617        return true;
10618  
10619      // Keep track of the Callsites array index needing a forward reference.
10620      // We will save the location of the ValueInfo needing an update, but
10621      // can only do so once the SmallVector is finalized.
10622      if (VI.getRef() == FwdVIRef)
10623        IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc));
10624      Callsites.push_back({VI, Clones, StackIdIndices});
10625  
10626      if (parseToken(lltok::rparen, "expected ')' in callsite"))
10627        return true;
10628    } while (EatIfPresent(lltok::comma));
10629  
10630    // Now that the Callsites vector is finalized, it is safe to save the
10631    // locations of any forward GV references that need updating later.
10632    for (auto I : IdToIndexMap) {
10633      auto &Infos = ForwardRefValueInfos[I.first];
10634      for (auto P : I.second) {
10635        assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
10636               "Forward referenced ValueInfo expected to be empty");
10637        Infos.emplace_back(&Callsites[P.first].Callee, P.second);
10638      }
10639    }
10640  
10641    if (parseToken(lltok::rparen, "expected ')' in callsites"))
10642      return true;
10643  
10644    return false;
10645  }
10646