1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/ConstantRangeList.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalIFunc.h"
34 #include "llvm/IR/GlobalObject.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/IR/ValueSymbolTable.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/ModRef.h"
50 #include "llvm/Support/SaveAndRestore.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstring>
55 #include <optional>
56 #include <vector>
57
58 using namespace llvm;
59
60 static cl::opt<bool> AllowIncompleteIR(
61 "allow-incomplete-ir", cl::init(false), cl::Hidden,
62 cl::desc(
63 "Allow incomplete IR on a best effort basis (references to unknown "
64 "metadata will be dropped)"));
65
66 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
67 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
68 extern bool WriteNewDbgInfoFormatToBitcode;
69 extern cl::opt<bool> WriteNewDbgInfoFormat;
70
getTypeString(Type * T)71 static std::string getTypeString(Type *T) {
72 std::string Result;
73 raw_string_ostream Tmp(Result);
74 Tmp << *T;
75 return Tmp.str();
76 }
77
78 /// Run: module ::= toplevelentity*
Run(bool UpgradeDebugInfo,DataLayoutCallbackTy DataLayoutCallback)79 bool LLParser::Run(bool UpgradeDebugInfo,
80 DataLayoutCallbackTy DataLayoutCallback) {
81 // Prime the lexer.
82 Lex.Lex();
83
84 if (Context.shouldDiscardValueNames())
85 return error(
86 Lex.getLoc(),
87 "Can't read textual IR with a Context that discards named Values");
88
89 if (M) {
90 if (parseTargetDefinitions(DataLayoutCallback))
91 return true;
92 }
93
94 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
95 validateEndOfIndex();
96 }
97
parseStandaloneConstantValue(Constant * & C,const SlotMapping * Slots)98 bool LLParser::parseStandaloneConstantValue(Constant *&C,
99 const SlotMapping *Slots) {
100 restoreParsingState(Slots);
101 Lex.Lex();
102
103 Type *Ty = nullptr;
104 if (parseType(Ty) || parseConstantValue(Ty, C))
105 return true;
106 if (Lex.getKind() != lltok::Eof)
107 return error(Lex.getLoc(), "expected end of string");
108 return false;
109 }
110
parseTypeAtBeginning(Type * & Ty,unsigned & Read,const SlotMapping * Slots)111 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
112 const SlotMapping *Slots) {
113 restoreParsingState(Slots);
114 Lex.Lex();
115
116 Read = 0;
117 SMLoc Start = Lex.getLoc();
118 Ty = nullptr;
119 if (parseType(Ty))
120 return true;
121 SMLoc End = Lex.getLoc();
122 Read = End.getPointer() - Start.getPointer();
123
124 return false;
125 }
126
parseDIExpressionBodyAtBeginning(MDNode * & Result,unsigned & Read,const SlotMapping * Slots)127 bool LLParser::parseDIExpressionBodyAtBeginning(MDNode *&Result, unsigned &Read,
128 const SlotMapping *Slots) {
129 restoreParsingState(Slots);
130 Lex.Lex();
131
132 Read = 0;
133 SMLoc Start = Lex.getLoc();
134 Result = nullptr;
135 bool Status = parseDIExpressionBody(Result, /*IsDistinct=*/false);
136 SMLoc End = Lex.getLoc();
137 Read = End.getPointer() - Start.getPointer();
138
139 return Status;
140 }
141
restoreParsingState(const SlotMapping * Slots)142 void LLParser::restoreParsingState(const SlotMapping *Slots) {
143 if (!Slots)
144 return;
145 NumberedVals = Slots->GlobalValues;
146 NumberedMetadata = Slots->MetadataNodes;
147 for (const auto &I : Slots->NamedTypes)
148 NamedTypes.insert(
149 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
150 for (const auto &I : Slots->Types)
151 NumberedTypes.insert(
152 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
153 }
154
dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst * II)155 static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) {
156 // White-list intrinsics that are safe to drop.
157 if (!isa<DbgInfoIntrinsic>(II) &&
158 II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl)
159 return;
160
161 SmallVector<MetadataAsValue *> MVs;
162 for (Value *V : II->args())
163 if (auto *MV = dyn_cast<MetadataAsValue>(V))
164 if (auto *MD = dyn_cast<MDNode>(MV->getMetadata()))
165 if (MD->isTemporary())
166 MVs.push_back(MV);
167
168 if (!MVs.empty()) {
169 assert(II->use_empty() && "Cannot have uses");
170 II->eraseFromParent();
171
172 // Also remove no longer used MetadataAsValue wrappers.
173 for (MetadataAsValue *MV : MVs)
174 if (MV->use_empty())
175 delete MV;
176 }
177 }
178
dropUnknownMetadataReferences()179 void LLParser::dropUnknownMetadataReferences() {
180 auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); };
181 for (Function &F : *M) {
182 F.eraseMetadataIf(Pred);
183 for (Instruction &I : make_early_inc_range(instructions(F))) {
184 I.eraseMetadataIf(Pred);
185
186 if (auto *II = dyn_cast<IntrinsicInst>(&I))
187 dropIntrinsicWithUnknownMetadataArgument(II);
188 }
189 }
190
191 for (GlobalVariable &GV : M->globals())
192 GV.eraseMetadataIf(Pred);
193
194 for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) {
195 // Check whether there is only a single use left, which would be in our
196 // own NumberedMetadata.
197 if (Info.first->getNumTemporaryUses() == 1) {
198 NumberedMetadata.erase(ID);
199 ForwardRefMDNodes.erase(ID);
200 }
201 }
202 }
203
204 /// validateEndOfModule - Do final validity and basic correctness checks at the
205 /// end of the module.
validateEndOfModule(bool UpgradeDebugInfo)206 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
207 if (!M)
208 return false;
209
210 // We should have already returned an error if we observed both intrinsics and
211 // records in this IR.
212 assert(!(SeenNewDbgInfoFormat && SeenOldDbgInfoFormat) &&
213 "Mixed debug intrinsics/records seen without a parsing error?");
214 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
215 UseNewDbgInfoFormat = SeenNewDbgInfoFormat;
216 WriteNewDbgInfoFormatToBitcode = SeenNewDbgInfoFormat;
217 WriteNewDbgInfoFormat = SeenNewDbgInfoFormat;
218 M->setNewDbgInfoFormatFlag(SeenNewDbgInfoFormat);
219 }
220
221 // Handle any function attribute group forward references.
222 for (const auto &RAG : ForwardRefAttrGroups) {
223 Value *V = RAG.first;
224 const std::vector<unsigned> &Attrs = RAG.second;
225 AttrBuilder B(Context);
226
227 for (const auto &Attr : Attrs) {
228 auto R = NumberedAttrBuilders.find(Attr);
229 if (R != NumberedAttrBuilders.end())
230 B.merge(R->second);
231 }
232
233 if (Function *Fn = dyn_cast<Function>(V)) {
234 AttributeList AS = Fn->getAttributes();
235 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
236 AS = AS.removeFnAttributes(Context);
237
238 FnAttrs.merge(B);
239
240 // If the alignment was parsed as an attribute, move to the alignment
241 // field.
242 if (MaybeAlign A = FnAttrs.getAlignment()) {
243 Fn->setAlignment(*A);
244 FnAttrs.removeAttribute(Attribute::Alignment);
245 }
246
247 AS = AS.addFnAttributes(Context, FnAttrs);
248 Fn->setAttributes(AS);
249 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
250 AttributeList AS = CI->getAttributes();
251 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
252 AS = AS.removeFnAttributes(Context);
253 FnAttrs.merge(B);
254 AS = AS.addFnAttributes(Context, FnAttrs);
255 CI->setAttributes(AS);
256 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
257 AttributeList AS = II->getAttributes();
258 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
259 AS = AS.removeFnAttributes(Context);
260 FnAttrs.merge(B);
261 AS = AS.addFnAttributes(Context, FnAttrs);
262 II->setAttributes(AS);
263 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
264 AttributeList AS = CBI->getAttributes();
265 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
266 AS = AS.removeFnAttributes(Context);
267 FnAttrs.merge(B);
268 AS = AS.addFnAttributes(Context, FnAttrs);
269 CBI->setAttributes(AS);
270 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
271 AttrBuilder Attrs(M->getContext(), GV->getAttributes());
272 Attrs.merge(B);
273 GV->setAttributes(AttributeSet::get(Context,Attrs));
274 } else {
275 llvm_unreachable("invalid object with forward attribute group reference");
276 }
277 }
278
279 // If there are entries in ForwardRefBlockAddresses at this point, the
280 // function was never defined.
281 if (!ForwardRefBlockAddresses.empty())
282 return error(ForwardRefBlockAddresses.begin()->first.Loc,
283 "expected function name in blockaddress");
284
285 auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
286 GlobalValue *FwdRef) {
287 GlobalValue *GV = nullptr;
288 if (GVRef.Kind == ValID::t_GlobalName) {
289 GV = M->getNamedValue(GVRef.StrVal);
290 } else {
291 GV = NumberedVals.get(GVRef.UIntVal);
292 }
293
294 if (!GV)
295 return error(GVRef.Loc, "unknown function '" + GVRef.StrVal +
296 "' referenced by dso_local_equivalent");
297
298 if (!GV->getValueType()->isFunctionTy())
299 return error(GVRef.Loc,
300 "expected a function, alias to function, or ifunc "
301 "in dso_local_equivalent");
302
303 auto *Equiv = DSOLocalEquivalent::get(GV);
304 FwdRef->replaceAllUsesWith(Equiv);
305 FwdRef->eraseFromParent();
306 return false;
307 };
308
309 // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
310 // point, they are references after the function was defined. Resolve those
311 // now.
312 for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
313 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
314 return true;
315 }
316 for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
317 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
318 return true;
319 }
320 ForwardRefDSOLocalEquivalentIDs.clear();
321 ForwardRefDSOLocalEquivalentNames.clear();
322
323 for (const auto &NT : NumberedTypes)
324 if (NT.second.second.isValid())
325 return error(NT.second.second,
326 "use of undefined type '%" + Twine(NT.first) + "'");
327
328 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
329 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
330 if (I->second.second.isValid())
331 return error(I->second.second,
332 "use of undefined type named '" + I->getKey() + "'");
333
334 if (!ForwardRefComdats.empty())
335 return error(ForwardRefComdats.begin()->second,
336 "use of undefined comdat '$" +
337 ForwardRefComdats.begin()->first + "'");
338
339 for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) {
340 if (StringRef(Name).starts_with("llvm.")) {
341 Intrinsic::ID IID = Function::lookupIntrinsicID(Name);
342 if (IID == Intrinsic::not_intrinsic)
343 // Don't do anything for unknown intrinsics.
344 continue;
345
346 // Automatically create declarations for intrinsics. Intrinsics can only
347 // be called directly, so the call function type directly determines the
348 // declaration function type.
349 //
350 // Additionally, automatically add the required mangling suffix to the
351 // intrinsic name. This means that we may replace a single forward
352 // declaration with multiple functions here.
353 for (Use &U : make_early_inc_range(Info.first->uses())) {
354 auto *CB = dyn_cast<CallBase>(U.getUser());
355 if (!CB || !CB->isCallee(&U))
356 return error(Info.second, "intrinsic can only be used as callee");
357
358 SmallVector<Type *> OverloadTys;
359 if (!Intrinsic::getIntrinsicSignature(IID, CB->getFunctionType(),
360 OverloadTys))
361 return error(Info.second, "invalid intrinsic signature");
362
363 U.set(Intrinsic::getDeclaration(M, IID, OverloadTys));
364 }
365
366 Info.first->eraseFromParent();
367 ForwardRefVals.erase(Name);
368 continue;
369 }
370
371 // If incomplete IR is allowed, also add declarations for
372 // non-intrinsics.
373 if (!AllowIncompleteIR)
374 continue;
375
376 auto GetCommonFunctionType = [](Value *V) -> FunctionType * {
377 FunctionType *FTy = nullptr;
378 for (Use &U : V->uses()) {
379 auto *CB = dyn_cast<CallBase>(U.getUser());
380 if (!CB || !CB->isCallee(&U) || (FTy && FTy != CB->getFunctionType()))
381 return nullptr;
382 FTy = CB->getFunctionType();
383 }
384 return FTy;
385 };
386
387 // First check whether this global is only used in calls with the same
388 // type, in which case we'll insert a function. Otherwise, fall back to
389 // using a dummy i8 type.
390 Type *Ty = GetCommonFunctionType(Info.first);
391 if (!Ty)
392 Ty = Type::getInt8Ty(Context);
393
394 GlobalValue *GV;
395 if (auto *FTy = dyn_cast<FunctionType>(Ty))
396 GV = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
397 else
398 GV = new GlobalVariable(*M, Ty, /*isConstant*/ false,
399 GlobalValue::ExternalLinkage,
400 /*Initializer*/ nullptr, Name);
401 Info.first->replaceAllUsesWith(GV);
402 Info.first->eraseFromParent();
403 ForwardRefVals.erase(Name);
404 }
405
406 if (!ForwardRefVals.empty())
407 return error(ForwardRefVals.begin()->second.second,
408 "use of undefined value '@" + ForwardRefVals.begin()->first +
409 "'");
410
411 if (!ForwardRefValIDs.empty())
412 return error(ForwardRefValIDs.begin()->second.second,
413 "use of undefined value '@" +
414 Twine(ForwardRefValIDs.begin()->first) + "'");
415
416 if (AllowIncompleteIR && !ForwardRefMDNodes.empty())
417 dropUnknownMetadataReferences();
418
419 if (!ForwardRefMDNodes.empty())
420 return error(ForwardRefMDNodes.begin()->second.second,
421 "use of undefined metadata '!" +
422 Twine(ForwardRefMDNodes.begin()->first) + "'");
423
424 // Resolve metadata cycles.
425 for (auto &N : NumberedMetadata) {
426 if (N.second && !N.second->isResolved())
427 N.second->resolveCycles();
428 }
429
430 for (auto *Inst : InstsWithTBAATag) {
431 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
432 // With incomplete IR, the tbaa metadata may have been dropped.
433 if (!AllowIncompleteIR)
434 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
435 if (MD) {
436 auto *UpgradedMD = UpgradeTBAANode(*MD);
437 if (MD != UpgradedMD)
438 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
439 }
440 }
441
442 // Look for intrinsic functions and CallInst that need to be upgraded. We use
443 // make_early_inc_range here because we may remove some functions.
444 for (Function &F : llvm::make_early_inc_range(*M))
445 UpgradeCallsToIntrinsic(&F);
446
447 if (UpgradeDebugInfo)
448 llvm::UpgradeDebugInfo(*M);
449
450 UpgradeModuleFlags(*M);
451 UpgradeSectionAttributes(*M);
452
453 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)
454 M->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
455
456 if (!Slots)
457 return false;
458 // Initialize the slot mapping.
459 // Because by this point we've parsed and validated everything, we can "steal"
460 // the mapping from LLParser as it doesn't need it anymore.
461 Slots->GlobalValues = std::move(NumberedVals);
462 Slots->MetadataNodes = std::move(NumberedMetadata);
463 for (const auto &I : NamedTypes)
464 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
465 for (const auto &I : NumberedTypes)
466 Slots->Types.insert(std::make_pair(I.first, I.second.first));
467
468 return false;
469 }
470
471 /// Do final validity and basic correctness checks at the end of the index.
validateEndOfIndex()472 bool LLParser::validateEndOfIndex() {
473 if (!Index)
474 return false;
475
476 if (!ForwardRefValueInfos.empty())
477 return error(ForwardRefValueInfos.begin()->second.front().second,
478 "use of undefined summary '^" +
479 Twine(ForwardRefValueInfos.begin()->first) + "'");
480
481 if (!ForwardRefAliasees.empty())
482 return error(ForwardRefAliasees.begin()->second.front().second,
483 "use of undefined summary '^" +
484 Twine(ForwardRefAliasees.begin()->first) + "'");
485
486 if (!ForwardRefTypeIds.empty())
487 return error(ForwardRefTypeIds.begin()->second.front().second,
488 "use of undefined type id summary '^" +
489 Twine(ForwardRefTypeIds.begin()->first) + "'");
490
491 return false;
492 }
493
494 //===----------------------------------------------------------------------===//
495 // Top-Level Entities
496 //===----------------------------------------------------------------------===//
497
parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback)498 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
499 // Delay parsing of the data layout string until the target triple is known.
500 // Then, pass both the the target triple and the tentative data layout string
501 // to DataLayoutCallback, allowing to override the DL string.
502 // This enables importing modules with invalid DL strings.
503 std::string TentativeDLStr = M->getDataLayoutStr();
504 LocTy DLStrLoc;
505
506 bool Done = false;
507 while (!Done) {
508 switch (Lex.getKind()) {
509 case lltok::kw_target:
510 if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
511 return true;
512 break;
513 case lltok::kw_source_filename:
514 if (parseSourceFileName())
515 return true;
516 break;
517 default:
518 Done = true;
519 }
520 }
521 // Run the override callback to potentially change the data layout string, and
522 // parse the data layout string.
523 if (auto LayoutOverride =
524 DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
525 TentativeDLStr = *LayoutOverride;
526 DLStrLoc = {};
527 }
528 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr);
529 if (!MaybeDL)
530 return error(DLStrLoc, toString(MaybeDL.takeError()));
531 M->setDataLayout(MaybeDL.get());
532 return false;
533 }
534
parseTopLevelEntities()535 bool LLParser::parseTopLevelEntities() {
536 // If there is no Module, then parse just the summary index entries.
537 if (!M) {
538 while (true) {
539 switch (Lex.getKind()) {
540 case lltok::Eof:
541 return false;
542 case lltok::SummaryID:
543 if (parseSummaryEntry())
544 return true;
545 break;
546 case lltok::kw_source_filename:
547 if (parseSourceFileName())
548 return true;
549 break;
550 default:
551 // Skip everything else
552 Lex.Lex();
553 }
554 }
555 }
556 while (true) {
557 switch (Lex.getKind()) {
558 default:
559 return tokError("expected top-level entity");
560 case lltok::Eof: return false;
561 case lltok::kw_declare:
562 if (parseDeclare())
563 return true;
564 break;
565 case lltok::kw_define:
566 if (parseDefine())
567 return true;
568 break;
569 case lltok::kw_module:
570 if (parseModuleAsm())
571 return true;
572 break;
573 case lltok::LocalVarID:
574 if (parseUnnamedType())
575 return true;
576 break;
577 case lltok::LocalVar:
578 if (parseNamedType())
579 return true;
580 break;
581 case lltok::GlobalID:
582 if (parseUnnamedGlobal())
583 return true;
584 break;
585 case lltok::GlobalVar:
586 if (parseNamedGlobal())
587 return true;
588 break;
589 case lltok::ComdatVar: if (parseComdat()) return true; break;
590 case lltok::exclaim:
591 if (parseStandaloneMetadata())
592 return true;
593 break;
594 case lltok::SummaryID:
595 if (parseSummaryEntry())
596 return true;
597 break;
598 case lltok::MetadataVar:
599 if (parseNamedMetadata())
600 return true;
601 break;
602 case lltok::kw_attributes:
603 if (parseUnnamedAttrGrp())
604 return true;
605 break;
606 case lltok::kw_uselistorder:
607 if (parseUseListOrder())
608 return true;
609 break;
610 case lltok::kw_uselistorder_bb:
611 if (parseUseListOrderBB())
612 return true;
613 break;
614 }
615 }
616 }
617
618 /// toplevelentity
619 /// ::= 'module' 'asm' STRINGCONSTANT
parseModuleAsm()620 bool LLParser::parseModuleAsm() {
621 assert(Lex.getKind() == lltok::kw_module);
622 Lex.Lex();
623
624 std::string AsmStr;
625 if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
626 parseStringConstant(AsmStr))
627 return true;
628
629 M->appendModuleInlineAsm(AsmStr);
630 return false;
631 }
632
633 /// toplevelentity
634 /// ::= 'target' 'triple' '=' STRINGCONSTANT
635 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
parseTargetDefinition(std::string & TentativeDLStr,LocTy & DLStrLoc)636 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
637 LocTy &DLStrLoc) {
638 assert(Lex.getKind() == lltok::kw_target);
639 std::string Str;
640 switch (Lex.Lex()) {
641 default:
642 return tokError("unknown target property");
643 case lltok::kw_triple:
644 Lex.Lex();
645 if (parseToken(lltok::equal, "expected '=' after target triple") ||
646 parseStringConstant(Str))
647 return true;
648 M->setTargetTriple(Str);
649 return false;
650 case lltok::kw_datalayout:
651 Lex.Lex();
652 if (parseToken(lltok::equal, "expected '=' after target datalayout"))
653 return true;
654 DLStrLoc = Lex.getLoc();
655 if (parseStringConstant(TentativeDLStr))
656 return true;
657 return false;
658 }
659 }
660
661 /// toplevelentity
662 /// ::= 'source_filename' '=' STRINGCONSTANT
parseSourceFileName()663 bool LLParser::parseSourceFileName() {
664 assert(Lex.getKind() == lltok::kw_source_filename);
665 Lex.Lex();
666 if (parseToken(lltok::equal, "expected '=' after source_filename") ||
667 parseStringConstant(SourceFileName))
668 return true;
669 if (M)
670 M->setSourceFileName(SourceFileName);
671 return false;
672 }
673
674 /// parseUnnamedType:
675 /// ::= LocalVarID '=' 'type' type
parseUnnamedType()676 bool LLParser::parseUnnamedType() {
677 LocTy TypeLoc = Lex.getLoc();
678 unsigned TypeID = Lex.getUIntVal();
679 Lex.Lex(); // eat LocalVarID;
680
681 if (parseToken(lltok::equal, "expected '=' after name") ||
682 parseToken(lltok::kw_type, "expected 'type' after '='"))
683 return true;
684
685 Type *Result = nullptr;
686 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
687 return true;
688
689 if (!isa<StructType>(Result)) {
690 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
691 if (Entry.first)
692 return error(TypeLoc, "non-struct types may not be recursive");
693 Entry.first = Result;
694 Entry.second = SMLoc();
695 }
696
697 return false;
698 }
699
700 /// toplevelentity
701 /// ::= LocalVar '=' 'type' type
parseNamedType()702 bool LLParser::parseNamedType() {
703 std::string Name = Lex.getStrVal();
704 LocTy NameLoc = Lex.getLoc();
705 Lex.Lex(); // eat LocalVar.
706
707 if (parseToken(lltok::equal, "expected '=' after name") ||
708 parseToken(lltok::kw_type, "expected 'type' after name"))
709 return true;
710
711 Type *Result = nullptr;
712 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
713 return true;
714
715 if (!isa<StructType>(Result)) {
716 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
717 if (Entry.first)
718 return error(NameLoc, "non-struct types may not be recursive");
719 Entry.first = Result;
720 Entry.second = SMLoc();
721 }
722
723 return false;
724 }
725
726 /// toplevelentity
727 /// ::= 'declare' FunctionHeader
parseDeclare()728 bool LLParser::parseDeclare() {
729 assert(Lex.getKind() == lltok::kw_declare);
730 Lex.Lex();
731
732 std::vector<std::pair<unsigned, MDNode *>> MDs;
733 while (Lex.getKind() == lltok::MetadataVar) {
734 unsigned MDK;
735 MDNode *N;
736 if (parseMetadataAttachment(MDK, N))
737 return true;
738 MDs.push_back({MDK, N});
739 }
740
741 Function *F;
742 unsigned FunctionNumber = -1;
743 SmallVector<unsigned> UnnamedArgNums;
744 if (parseFunctionHeader(F, false, FunctionNumber, UnnamedArgNums))
745 return true;
746 for (auto &MD : MDs)
747 F->addMetadata(MD.first, *MD.second);
748 return false;
749 }
750
751 /// toplevelentity
752 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
parseDefine()753 bool LLParser::parseDefine() {
754 assert(Lex.getKind() == lltok::kw_define);
755 Lex.Lex();
756
757 Function *F;
758 unsigned FunctionNumber = -1;
759 SmallVector<unsigned> UnnamedArgNums;
760 return parseFunctionHeader(F, true, FunctionNumber, UnnamedArgNums) ||
761 parseOptionalFunctionMetadata(*F) ||
762 parseFunctionBody(*F, FunctionNumber, UnnamedArgNums);
763 }
764
765 /// parseGlobalType
766 /// ::= 'constant'
767 /// ::= 'global'
parseGlobalType(bool & IsConstant)768 bool LLParser::parseGlobalType(bool &IsConstant) {
769 if (Lex.getKind() == lltok::kw_constant)
770 IsConstant = true;
771 else if (Lex.getKind() == lltok::kw_global)
772 IsConstant = false;
773 else {
774 IsConstant = false;
775 return tokError("expected 'global' or 'constant'");
776 }
777 Lex.Lex();
778 return false;
779 }
780
parseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr & UnnamedAddr)781 bool LLParser::parseOptionalUnnamedAddr(
782 GlobalVariable::UnnamedAddr &UnnamedAddr) {
783 if (EatIfPresent(lltok::kw_unnamed_addr))
784 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
785 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
786 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
787 else
788 UnnamedAddr = GlobalValue::UnnamedAddr::None;
789 return false;
790 }
791
792 /// parseUnnamedGlobal:
793 /// OptionalVisibility (ALIAS | IFUNC) ...
794 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
795 /// OptionalDLLStorageClass
796 /// ... -> global variable
797 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
798 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
799 /// OptionalVisibility
800 /// OptionalDLLStorageClass
801 /// ... -> global variable
parseUnnamedGlobal()802 bool LLParser::parseUnnamedGlobal() {
803 unsigned VarID;
804 std::string Name;
805 LocTy NameLoc = Lex.getLoc();
806
807 // Handle the GlobalID form.
808 if (Lex.getKind() == lltok::GlobalID) {
809 VarID = Lex.getUIntVal();
810 if (checkValueID(NameLoc, "global", "@", NumberedVals.getNext(), VarID))
811 return true;
812
813 Lex.Lex(); // eat GlobalID;
814 if (parseToken(lltok::equal, "expected '=' after name"))
815 return true;
816 } else {
817 VarID = NumberedVals.getNext();
818 }
819
820 bool HasLinkage;
821 unsigned Linkage, Visibility, DLLStorageClass;
822 bool DSOLocal;
823 GlobalVariable::ThreadLocalMode TLM;
824 GlobalVariable::UnnamedAddr UnnamedAddr;
825 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
826 DSOLocal) ||
827 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
828 return true;
829
830 switch (Lex.getKind()) {
831 default:
832 return parseGlobal(Name, VarID, NameLoc, Linkage, HasLinkage, Visibility,
833 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
834 case lltok::kw_alias:
835 case lltok::kw_ifunc:
836 return parseAliasOrIFunc(Name, VarID, NameLoc, Linkage, Visibility,
837 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
838 }
839 }
840
841 /// parseNamedGlobal:
842 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
843 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
844 /// OptionalVisibility OptionalDLLStorageClass
845 /// ... -> global variable
parseNamedGlobal()846 bool LLParser::parseNamedGlobal() {
847 assert(Lex.getKind() == lltok::GlobalVar);
848 LocTy NameLoc = Lex.getLoc();
849 std::string Name = Lex.getStrVal();
850 Lex.Lex();
851
852 bool HasLinkage;
853 unsigned Linkage, Visibility, DLLStorageClass;
854 bool DSOLocal;
855 GlobalVariable::ThreadLocalMode TLM;
856 GlobalVariable::UnnamedAddr UnnamedAddr;
857 if (parseToken(lltok::equal, "expected '=' in global variable") ||
858 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
859 DSOLocal) ||
860 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
861 return true;
862
863 switch (Lex.getKind()) {
864 default:
865 return parseGlobal(Name, -1, NameLoc, Linkage, HasLinkage, Visibility,
866 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
867 case lltok::kw_alias:
868 case lltok::kw_ifunc:
869 return parseAliasOrIFunc(Name, -1, NameLoc, Linkage, Visibility,
870 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
871 }
872 }
873
parseComdat()874 bool LLParser::parseComdat() {
875 assert(Lex.getKind() == lltok::ComdatVar);
876 std::string Name = Lex.getStrVal();
877 LocTy NameLoc = Lex.getLoc();
878 Lex.Lex();
879
880 if (parseToken(lltok::equal, "expected '=' here"))
881 return true;
882
883 if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
884 return tokError("expected comdat type");
885
886 Comdat::SelectionKind SK;
887 switch (Lex.getKind()) {
888 default:
889 return tokError("unknown selection kind");
890 case lltok::kw_any:
891 SK = Comdat::Any;
892 break;
893 case lltok::kw_exactmatch:
894 SK = Comdat::ExactMatch;
895 break;
896 case lltok::kw_largest:
897 SK = Comdat::Largest;
898 break;
899 case lltok::kw_nodeduplicate:
900 SK = Comdat::NoDeduplicate;
901 break;
902 case lltok::kw_samesize:
903 SK = Comdat::SameSize;
904 break;
905 }
906 Lex.Lex();
907
908 // See if the comdat was forward referenced, if so, use the comdat.
909 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
910 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
911 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
912 return error(NameLoc, "redefinition of comdat '$" + Name + "'");
913
914 Comdat *C;
915 if (I != ComdatSymTab.end())
916 C = &I->second;
917 else
918 C = M->getOrInsertComdat(Name);
919 C->setSelectionKind(SK);
920
921 return false;
922 }
923
924 // MDString:
925 // ::= '!' STRINGCONSTANT
parseMDString(MDString * & Result)926 bool LLParser::parseMDString(MDString *&Result) {
927 std::string Str;
928 if (parseStringConstant(Str))
929 return true;
930 Result = MDString::get(Context, Str);
931 return false;
932 }
933
934 // MDNode:
935 // ::= '!' MDNodeNumber
parseMDNodeID(MDNode * & Result)936 bool LLParser::parseMDNodeID(MDNode *&Result) {
937 // !{ ..., !42, ... }
938 LocTy IDLoc = Lex.getLoc();
939 unsigned MID = 0;
940 if (parseUInt32(MID))
941 return true;
942
943 // If not a forward reference, just return it now.
944 if (NumberedMetadata.count(MID)) {
945 Result = NumberedMetadata[MID];
946 return false;
947 }
948
949 // Otherwise, create MDNode forward reference.
950 auto &FwdRef = ForwardRefMDNodes[MID];
951 FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc);
952
953 Result = FwdRef.first.get();
954 NumberedMetadata[MID].reset(Result);
955 return false;
956 }
957
958 /// parseNamedMetadata:
959 /// !foo = !{ !1, !2 }
parseNamedMetadata()960 bool LLParser::parseNamedMetadata() {
961 assert(Lex.getKind() == lltok::MetadataVar);
962 std::string Name = Lex.getStrVal();
963 Lex.Lex();
964
965 if (parseToken(lltok::equal, "expected '=' here") ||
966 parseToken(lltok::exclaim, "Expected '!' here") ||
967 parseToken(lltok::lbrace, "Expected '{' here"))
968 return true;
969
970 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
971 if (Lex.getKind() != lltok::rbrace)
972 do {
973 MDNode *N = nullptr;
974 // parse DIExpressions inline as a special case. They are still MDNodes,
975 // so they can still appear in named metadata. Remove this logic if they
976 // become plain Metadata.
977 if (Lex.getKind() == lltok::MetadataVar &&
978 Lex.getStrVal() == "DIExpression") {
979 if (parseDIExpression(N, /*IsDistinct=*/false))
980 return true;
981 // DIArgLists should only appear inline in a function, as they may
982 // contain LocalAsMetadata arguments which require a function context.
983 } else if (Lex.getKind() == lltok::MetadataVar &&
984 Lex.getStrVal() == "DIArgList") {
985 return tokError("found DIArgList outside of function");
986 } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
987 parseMDNodeID(N)) {
988 return true;
989 }
990 NMD->addOperand(N);
991 } while (EatIfPresent(lltok::comma));
992
993 return parseToken(lltok::rbrace, "expected end of metadata node");
994 }
995
996 /// parseStandaloneMetadata:
997 /// !42 = !{...}
parseStandaloneMetadata()998 bool LLParser::parseStandaloneMetadata() {
999 assert(Lex.getKind() == lltok::exclaim);
1000 Lex.Lex();
1001 unsigned MetadataID = 0;
1002
1003 MDNode *Init;
1004 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
1005 return true;
1006
1007 // Detect common error, from old metadata syntax.
1008 if (Lex.getKind() == lltok::Type)
1009 return tokError("unexpected type in metadata definition");
1010
1011 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
1012 if (Lex.getKind() == lltok::MetadataVar) {
1013 if (parseSpecializedMDNode(Init, IsDistinct))
1014 return true;
1015 } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
1016 parseMDTuple(Init, IsDistinct))
1017 return true;
1018
1019 // See if this was forward referenced, if so, handle it.
1020 auto FI = ForwardRefMDNodes.find(MetadataID);
1021 if (FI != ForwardRefMDNodes.end()) {
1022 auto *ToReplace = FI->second.first.get();
1023 // DIAssignID has its own special forward-reference "replacement" for
1024 // attachments (the temporary attachments are never actually attached).
1025 if (isa<DIAssignID>(Init)) {
1026 for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
1027 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
1028 "Inst unexpectedly already has DIAssignID attachment");
1029 Inst->setMetadata(LLVMContext::MD_DIAssignID, Init);
1030 }
1031 }
1032
1033 ToReplace->replaceAllUsesWith(Init);
1034 ForwardRefMDNodes.erase(FI);
1035
1036 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
1037 } else {
1038 if (NumberedMetadata.count(MetadataID))
1039 return tokError("Metadata id is already used");
1040 NumberedMetadata[MetadataID].reset(Init);
1041 }
1042
1043 return false;
1044 }
1045
1046 // Skips a single module summary entry.
skipModuleSummaryEntry()1047 bool LLParser::skipModuleSummaryEntry() {
1048 // Each module summary entry consists of a tag for the entry
1049 // type, followed by a colon, then the fields which may be surrounded by
1050 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
1051 // support is in place we will look for the tokens corresponding to the
1052 // expected tags.
1053 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
1054 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
1055 Lex.getKind() != lltok::kw_blockcount)
1056 return tokError(
1057 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
1058 "start of summary entry");
1059 if (Lex.getKind() == lltok::kw_flags)
1060 return parseSummaryIndexFlags();
1061 if (Lex.getKind() == lltok::kw_blockcount)
1062 return parseBlockCount();
1063 Lex.Lex();
1064 if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
1065 parseToken(lltok::lparen, "expected '(' at start of summary entry"))
1066 return true;
1067 // Now walk through the parenthesized entry, until the number of open
1068 // parentheses goes back down to 0 (the first '(' was parsed above).
1069 unsigned NumOpenParen = 1;
1070 do {
1071 switch (Lex.getKind()) {
1072 case lltok::lparen:
1073 NumOpenParen++;
1074 break;
1075 case lltok::rparen:
1076 NumOpenParen--;
1077 break;
1078 case lltok::Eof:
1079 return tokError("found end of file while parsing summary entry");
1080 default:
1081 // Skip everything in between parentheses.
1082 break;
1083 }
1084 Lex.Lex();
1085 } while (NumOpenParen > 0);
1086 return false;
1087 }
1088
1089 /// SummaryEntry
1090 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
parseSummaryEntry()1091 bool LLParser::parseSummaryEntry() {
1092 assert(Lex.getKind() == lltok::SummaryID);
1093 unsigned SummaryID = Lex.getUIntVal();
1094
1095 // For summary entries, colons should be treated as distinct tokens,
1096 // not an indication of the end of a label token.
1097 Lex.setIgnoreColonInIdentifiers(true);
1098
1099 Lex.Lex();
1100 if (parseToken(lltok::equal, "expected '=' here"))
1101 return true;
1102
1103 // If we don't have an index object, skip the summary entry.
1104 if (!Index)
1105 return skipModuleSummaryEntry();
1106
1107 bool result = false;
1108 switch (Lex.getKind()) {
1109 case lltok::kw_gv:
1110 result = parseGVEntry(SummaryID);
1111 break;
1112 case lltok::kw_module:
1113 result = parseModuleEntry(SummaryID);
1114 break;
1115 case lltok::kw_typeid:
1116 result = parseTypeIdEntry(SummaryID);
1117 break;
1118 case lltok::kw_typeidCompatibleVTable:
1119 result = parseTypeIdCompatibleVtableEntry(SummaryID);
1120 break;
1121 case lltok::kw_flags:
1122 result = parseSummaryIndexFlags();
1123 break;
1124 case lltok::kw_blockcount:
1125 result = parseBlockCount();
1126 break;
1127 default:
1128 result = error(Lex.getLoc(), "unexpected summary kind");
1129 break;
1130 }
1131 Lex.setIgnoreColonInIdentifiers(false);
1132 return result;
1133 }
1134
isValidVisibilityForLinkage(unsigned V,unsigned L)1135 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
1136 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1137 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
1138 }
isValidDLLStorageClassForLinkage(unsigned S,unsigned L)1139 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
1140 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1141 (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
1142 }
1143
1144 // If there was an explicit dso_local, update GV. In the absence of an explicit
1145 // dso_local we keep the default value.
maybeSetDSOLocal(bool DSOLocal,GlobalValue & GV)1146 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
1147 if (DSOLocal)
1148 GV.setDSOLocal(true);
1149 }
1150
1151 /// parseAliasOrIFunc:
1152 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1153 /// OptionalVisibility OptionalDLLStorageClass
1154 /// OptionalThreadLocal OptionalUnnamedAddr
1155 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs*
1156 ///
1157 /// AliaseeOrResolver
1158 /// ::= TypeAndValue
1159 ///
1160 /// SymbolAttrs
1161 /// ::= ',' 'partition' StringConstant
1162 ///
1163 /// Everything through OptionalUnnamedAddr has already been parsed.
1164 ///
parseAliasOrIFunc(const std::string & Name,unsigned NameID,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)1165 bool LLParser::parseAliasOrIFunc(const std::string &Name, unsigned NameID,
1166 LocTy NameLoc, unsigned L, unsigned Visibility,
1167 unsigned DLLStorageClass, bool DSOLocal,
1168 GlobalVariable::ThreadLocalMode TLM,
1169 GlobalVariable::UnnamedAddr UnnamedAddr) {
1170 bool IsAlias;
1171 if (Lex.getKind() == lltok::kw_alias)
1172 IsAlias = true;
1173 else if (Lex.getKind() == lltok::kw_ifunc)
1174 IsAlias = false;
1175 else
1176 llvm_unreachable("Not an alias or ifunc!");
1177 Lex.Lex();
1178
1179 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1180
1181 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
1182 return error(NameLoc, "invalid linkage type for alias");
1183
1184 if (!isValidVisibilityForLinkage(Visibility, L))
1185 return error(NameLoc,
1186 "symbol with local linkage must have default visibility");
1187
1188 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L))
1189 return error(NameLoc,
1190 "symbol with local linkage cannot have a DLL storage class");
1191
1192 Type *Ty;
1193 LocTy ExplicitTypeLoc = Lex.getLoc();
1194 if (parseType(Ty) ||
1195 parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
1196 return true;
1197
1198 Constant *Aliasee;
1199 LocTy AliaseeLoc = Lex.getLoc();
1200 if (Lex.getKind() != lltok::kw_bitcast &&
1201 Lex.getKind() != lltok::kw_getelementptr &&
1202 Lex.getKind() != lltok::kw_addrspacecast &&
1203 Lex.getKind() != lltok::kw_inttoptr) {
1204 if (parseGlobalTypeAndValue(Aliasee))
1205 return true;
1206 } else {
1207 // The bitcast dest type is not present, it is implied by the dest type.
1208 ValID ID;
1209 if (parseValID(ID, /*PFS=*/nullptr))
1210 return true;
1211 if (ID.Kind != ValID::t_Constant)
1212 return error(AliaseeLoc, "invalid aliasee");
1213 Aliasee = ID.ConstantVal;
1214 }
1215
1216 Type *AliaseeType = Aliasee->getType();
1217 auto *PTy = dyn_cast<PointerType>(AliaseeType);
1218 if (!PTy)
1219 return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1220 unsigned AddrSpace = PTy->getAddressSpace();
1221
1222 GlobalValue *GVal = nullptr;
1223
1224 // See if the alias was forward referenced, if so, prepare to replace the
1225 // forward reference.
1226 if (!Name.empty()) {
1227 auto I = ForwardRefVals.find(Name);
1228 if (I != ForwardRefVals.end()) {
1229 GVal = I->second.first;
1230 ForwardRefVals.erase(Name);
1231 } else if (M->getNamedValue(Name)) {
1232 return error(NameLoc, "redefinition of global '@" + Name + "'");
1233 }
1234 } else {
1235 auto I = ForwardRefValIDs.find(NameID);
1236 if (I != ForwardRefValIDs.end()) {
1237 GVal = I->second.first;
1238 ForwardRefValIDs.erase(I);
1239 }
1240 }
1241
1242 // Okay, create the alias/ifunc but do not insert it into the module yet.
1243 std::unique_ptr<GlobalAlias> GA;
1244 std::unique_ptr<GlobalIFunc> GI;
1245 GlobalValue *GV;
1246 if (IsAlias) {
1247 GA.reset(GlobalAlias::create(Ty, AddrSpace,
1248 (GlobalValue::LinkageTypes)Linkage, Name,
1249 Aliasee, /*Parent*/ nullptr));
1250 GV = GA.get();
1251 } else {
1252 GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1253 (GlobalValue::LinkageTypes)Linkage, Name,
1254 Aliasee, /*Parent*/ nullptr));
1255 GV = GI.get();
1256 }
1257 GV->setThreadLocalMode(TLM);
1258 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1259 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1260 GV->setUnnamedAddr(UnnamedAddr);
1261 maybeSetDSOLocal(DSOLocal, *GV);
1262
1263 // At this point we've parsed everything except for the IndirectSymbolAttrs.
1264 // Now parse them if there are any.
1265 while (Lex.getKind() == lltok::comma) {
1266 Lex.Lex();
1267
1268 if (Lex.getKind() == lltok::kw_partition) {
1269 Lex.Lex();
1270 GV->setPartition(Lex.getStrVal());
1271 if (parseToken(lltok::StringConstant, "expected partition string"))
1272 return true;
1273 } else {
1274 return tokError("unknown alias or ifunc property!");
1275 }
1276 }
1277
1278 if (Name.empty())
1279 NumberedVals.add(NameID, GV);
1280
1281 if (GVal) {
1282 // Verify that types agree.
1283 if (GVal->getType() != GV->getType())
1284 return error(
1285 ExplicitTypeLoc,
1286 "forward reference and definition of alias have different types");
1287
1288 // If they agree, just RAUW the old value with the alias and remove the
1289 // forward ref info.
1290 GVal->replaceAllUsesWith(GV);
1291 GVal->eraseFromParent();
1292 }
1293
1294 // Insert into the module, we know its name won't collide now.
1295 if (IsAlias)
1296 M->insertAlias(GA.release());
1297 else
1298 M->insertIFunc(GI.release());
1299 assert(GV->getName() == Name && "Should not be a name conflict!");
1300
1301 return false;
1302 }
1303
isSanitizer(lltok::Kind Kind)1304 static bool isSanitizer(lltok::Kind Kind) {
1305 switch (Kind) {
1306 case lltok::kw_no_sanitize_address:
1307 case lltok::kw_no_sanitize_hwaddress:
1308 case lltok::kw_sanitize_memtag:
1309 case lltok::kw_sanitize_address_dyninit:
1310 return true;
1311 default:
1312 return false;
1313 }
1314 }
1315
parseSanitizer(GlobalVariable * GV)1316 bool LLParser::parseSanitizer(GlobalVariable *GV) {
1317 using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1318 SanitizerMetadata Meta;
1319 if (GV->hasSanitizerMetadata())
1320 Meta = GV->getSanitizerMetadata();
1321
1322 switch (Lex.getKind()) {
1323 case lltok::kw_no_sanitize_address:
1324 Meta.NoAddress = true;
1325 break;
1326 case lltok::kw_no_sanitize_hwaddress:
1327 Meta.NoHWAddress = true;
1328 break;
1329 case lltok::kw_sanitize_memtag:
1330 Meta.Memtag = true;
1331 break;
1332 case lltok::kw_sanitize_address_dyninit:
1333 Meta.IsDynInit = true;
1334 break;
1335 default:
1336 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1337 }
1338 GV->setSanitizerMetadata(Meta);
1339 Lex.Lex();
1340 return false;
1341 }
1342
1343 /// parseGlobal
1344 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1345 /// OptionalVisibility OptionalDLLStorageClass
1346 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1347 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1348 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1349 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1350 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1351 /// Const OptionalAttrs
1352 ///
1353 /// Everything up to and including OptionalUnnamedAddr has been parsed
1354 /// already.
1355 ///
parseGlobal(const std::string & Name,unsigned NameID,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)1356 bool LLParser::parseGlobal(const std::string &Name, unsigned NameID,
1357 LocTy NameLoc, unsigned Linkage, bool HasLinkage,
1358 unsigned Visibility, unsigned DLLStorageClass,
1359 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1360 GlobalVariable::UnnamedAddr UnnamedAddr) {
1361 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1362 return error(NameLoc,
1363 "symbol with local linkage must have default visibility");
1364
1365 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
1366 return error(NameLoc,
1367 "symbol with local linkage cannot have a DLL storage class");
1368
1369 unsigned AddrSpace;
1370 bool IsConstant, IsExternallyInitialized;
1371 LocTy IsExternallyInitializedLoc;
1372 LocTy TyLoc;
1373
1374 Type *Ty = nullptr;
1375 if (parseOptionalAddrSpace(AddrSpace) ||
1376 parseOptionalToken(lltok::kw_externally_initialized,
1377 IsExternallyInitialized,
1378 &IsExternallyInitializedLoc) ||
1379 parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1380 return true;
1381
1382 // If the linkage is specified and is external, then no initializer is
1383 // present.
1384 Constant *Init = nullptr;
1385 if (!HasLinkage ||
1386 !GlobalValue::isValidDeclarationLinkage(
1387 (GlobalValue::LinkageTypes)Linkage)) {
1388 if (parseGlobalValue(Ty, Init))
1389 return true;
1390 }
1391
1392 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1393 return error(TyLoc, "invalid type for global variable");
1394
1395 GlobalValue *GVal = nullptr;
1396
1397 // See if the global was forward referenced, if so, use the global.
1398 if (!Name.empty()) {
1399 auto I = ForwardRefVals.find(Name);
1400 if (I != ForwardRefVals.end()) {
1401 GVal = I->second.first;
1402 ForwardRefVals.erase(I);
1403 } else if (M->getNamedValue(Name)) {
1404 return error(NameLoc, "redefinition of global '@" + Name + "'");
1405 }
1406 } else {
1407 // Handle @"", where a name is syntactically specified, but semantically
1408 // missing.
1409 if (NameID == (unsigned)-1)
1410 NameID = NumberedVals.getNext();
1411
1412 auto I = ForwardRefValIDs.find(NameID);
1413 if (I != ForwardRefValIDs.end()) {
1414 GVal = I->second.first;
1415 ForwardRefValIDs.erase(I);
1416 }
1417 }
1418
1419 GlobalVariable *GV = new GlobalVariable(
1420 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1421 GlobalVariable::NotThreadLocal, AddrSpace);
1422
1423 if (Name.empty())
1424 NumberedVals.add(NameID, GV);
1425
1426 // Set the parsed properties on the global.
1427 if (Init)
1428 GV->setInitializer(Init);
1429 GV->setConstant(IsConstant);
1430 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1431 maybeSetDSOLocal(DSOLocal, *GV);
1432 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1433 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1434 GV->setExternallyInitialized(IsExternallyInitialized);
1435 GV->setThreadLocalMode(TLM);
1436 GV->setUnnamedAddr(UnnamedAddr);
1437
1438 if (GVal) {
1439 if (GVal->getAddressSpace() != AddrSpace)
1440 return error(
1441 TyLoc,
1442 "forward reference and definition of global have different types");
1443
1444 GVal->replaceAllUsesWith(GV);
1445 GVal->eraseFromParent();
1446 }
1447
1448 // parse attributes on the global.
1449 while (Lex.getKind() == lltok::comma) {
1450 Lex.Lex();
1451
1452 if (Lex.getKind() == lltok::kw_section) {
1453 Lex.Lex();
1454 GV->setSection(Lex.getStrVal());
1455 if (parseToken(lltok::StringConstant, "expected global section string"))
1456 return true;
1457 } else if (Lex.getKind() == lltok::kw_partition) {
1458 Lex.Lex();
1459 GV->setPartition(Lex.getStrVal());
1460 if (parseToken(lltok::StringConstant, "expected partition string"))
1461 return true;
1462 } else if (Lex.getKind() == lltok::kw_align) {
1463 MaybeAlign Alignment;
1464 if (parseOptionalAlignment(Alignment))
1465 return true;
1466 if (Alignment)
1467 GV->setAlignment(*Alignment);
1468 } else if (Lex.getKind() == lltok::kw_code_model) {
1469 CodeModel::Model CodeModel;
1470 if (parseOptionalCodeModel(CodeModel))
1471 return true;
1472 GV->setCodeModel(CodeModel);
1473 } else if (Lex.getKind() == lltok::MetadataVar) {
1474 if (parseGlobalObjectMetadataAttachment(*GV))
1475 return true;
1476 } else if (isSanitizer(Lex.getKind())) {
1477 if (parseSanitizer(GV))
1478 return true;
1479 } else {
1480 Comdat *C;
1481 if (parseOptionalComdat(Name, C))
1482 return true;
1483 if (C)
1484 GV->setComdat(C);
1485 else
1486 return tokError("unknown global variable property!");
1487 }
1488 }
1489
1490 AttrBuilder Attrs(M->getContext());
1491 LocTy BuiltinLoc;
1492 std::vector<unsigned> FwdRefAttrGrps;
1493 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1494 return true;
1495 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1496 GV->setAttributes(AttributeSet::get(Context, Attrs));
1497 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1498 }
1499
1500 return false;
1501 }
1502
1503 /// parseUnnamedAttrGrp
1504 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
parseUnnamedAttrGrp()1505 bool LLParser::parseUnnamedAttrGrp() {
1506 assert(Lex.getKind() == lltok::kw_attributes);
1507 LocTy AttrGrpLoc = Lex.getLoc();
1508 Lex.Lex();
1509
1510 if (Lex.getKind() != lltok::AttrGrpID)
1511 return tokError("expected attribute group id");
1512
1513 unsigned VarID = Lex.getUIntVal();
1514 std::vector<unsigned> unused;
1515 LocTy BuiltinLoc;
1516 Lex.Lex();
1517
1518 if (parseToken(lltok::equal, "expected '=' here") ||
1519 parseToken(lltok::lbrace, "expected '{' here"))
1520 return true;
1521
1522 auto R = NumberedAttrBuilders.find(VarID);
1523 if (R == NumberedAttrBuilders.end())
1524 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1525
1526 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1527 parseToken(lltok::rbrace, "expected end of attribute group"))
1528 return true;
1529
1530 if (!R->second.hasAttributes())
1531 return error(AttrGrpLoc, "attribute group has no attributes");
1532
1533 return false;
1534 }
1535
tokenToAttribute(lltok::Kind Kind)1536 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1537 switch (Kind) {
1538 #define GET_ATTR_NAMES
1539 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1540 case lltok::kw_##DISPLAY_NAME: \
1541 return Attribute::ENUM_NAME;
1542 #include "llvm/IR/Attributes.inc"
1543 default:
1544 return Attribute::None;
1545 }
1546 }
1547
parseEnumAttribute(Attribute::AttrKind Attr,AttrBuilder & B,bool InAttrGroup)1548 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1549 bool InAttrGroup) {
1550 if (Attribute::isTypeAttrKind(Attr))
1551 return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1552
1553 switch (Attr) {
1554 case Attribute::Alignment: {
1555 MaybeAlign Alignment;
1556 if (InAttrGroup) {
1557 uint32_t Value = 0;
1558 Lex.Lex();
1559 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1560 return true;
1561 Alignment = Align(Value);
1562 } else {
1563 if (parseOptionalAlignment(Alignment, true))
1564 return true;
1565 }
1566 B.addAlignmentAttr(Alignment);
1567 return false;
1568 }
1569 case Attribute::StackAlignment: {
1570 unsigned Alignment;
1571 if (InAttrGroup) {
1572 Lex.Lex();
1573 if (parseToken(lltok::equal, "expected '=' here") ||
1574 parseUInt32(Alignment))
1575 return true;
1576 } else {
1577 if (parseOptionalStackAlignment(Alignment))
1578 return true;
1579 }
1580 B.addStackAlignmentAttr(Alignment);
1581 return false;
1582 }
1583 case Attribute::AllocSize: {
1584 unsigned ElemSizeArg;
1585 std::optional<unsigned> NumElemsArg;
1586 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1587 return true;
1588 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1589 return false;
1590 }
1591 case Attribute::VScaleRange: {
1592 unsigned MinValue, MaxValue;
1593 if (parseVScaleRangeArguments(MinValue, MaxValue))
1594 return true;
1595 B.addVScaleRangeAttr(MinValue,
1596 MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1597 return false;
1598 }
1599 case Attribute::Dereferenceable: {
1600 uint64_t Bytes;
1601 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1602 return true;
1603 B.addDereferenceableAttr(Bytes);
1604 return false;
1605 }
1606 case Attribute::DereferenceableOrNull: {
1607 uint64_t Bytes;
1608 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1609 return true;
1610 B.addDereferenceableOrNullAttr(Bytes);
1611 return false;
1612 }
1613 case Attribute::UWTable: {
1614 UWTableKind Kind;
1615 if (parseOptionalUWTableKind(Kind))
1616 return true;
1617 B.addUWTableAttr(Kind);
1618 return false;
1619 }
1620 case Attribute::AllocKind: {
1621 AllocFnKind Kind = AllocFnKind::Unknown;
1622 if (parseAllocKind(Kind))
1623 return true;
1624 B.addAllocKindAttr(Kind);
1625 return false;
1626 }
1627 case Attribute::Memory: {
1628 std::optional<MemoryEffects> ME = parseMemoryAttr();
1629 if (!ME)
1630 return true;
1631 B.addMemoryAttr(*ME);
1632 return false;
1633 }
1634 case Attribute::NoFPClass: {
1635 if (FPClassTest NoFPClass =
1636 static_cast<FPClassTest>(parseNoFPClassAttr())) {
1637 B.addNoFPClassAttr(NoFPClass);
1638 return false;
1639 }
1640
1641 return true;
1642 }
1643 case Attribute::Range:
1644 return parseRangeAttr(B);
1645 case Attribute::Initializes:
1646 return parseInitializesAttr(B);
1647 default:
1648 B.addAttribute(Attr);
1649 Lex.Lex();
1650 return false;
1651 }
1652 }
1653
upgradeMemoryAttr(MemoryEffects & ME,lltok::Kind Kind)1654 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1655 switch (Kind) {
1656 case lltok::kw_readnone:
1657 ME &= MemoryEffects::none();
1658 return true;
1659 case lltok::kw_readonly:
1660 ME &= MemoryEffects::readOnly();
1661 return true;
1662 case lltok::kw_writeonly:
1663 ME &= MemoryEffects::writeOnly();
1664 return true;
1665 case lltok::kw_argmemonly:
1666 ME &= MemoryEffects::argMemOnly();
1667 return true;
1668 case lltok::kw_inaccessiblememonly:
1669 ME &= MemoryEffects::inaccessibleMemOnly();
1670 return true;
1671 case lltok::kw_inaccessiblemem_or_argmemonly:
1672 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1673 return true;
1674 default:
1675 return false;
1676 }
1677 }
1678
1679 /// parseFnAttributeValuePairs
1680 /// ::= <attr> | <attr> '=' <value>
parseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool InAttrGrp,LocTy & BuiltinLoc)1681 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1682 std::vector<unsigned> &FwdRefAttrGrps,
1683 bool InAttrGrp, LocTy &BuiltinLoc) {
1684 bool HaveError = false;
1685
1686 B.clear();
1687
1688 MemoryEffects ME = MemoryEffects::unknown();
1689 while (true) {
1690 lltok::Kind Token = Lex.getKind();
1691 if (Token == lltok::rbrace)
1692 break; // Finished.
1693
1694 if (Token == lltok::StringConstant) {
1695 if (parseStringAttribute(B))
1696 return true;
1697 continue;
1698 }
1699
1700 if (Token == lltok::AttrGrpID) {
1701 // Allow a function to reference an attribute group:
1702 //
1703 // define void @foo() #1 { ... }
1704 if (InAttrGrp) {
1705 HaveError |= error(
1706 Lex.getLoc(),
1707 "cannot have an attribute group reference in an attribute group");
1708 } else {
1709 // Save the reference to the attribute group. We'll fill it in later.
1710 FwdRefAttrGrps.push_back(Lex.getUIntVal());
1711 }
1712 Lex.Lex();
1713 continue;
1714 }
1715
1716 SMLoc Loc = Lex.getLoc();
1717 if (Token == lltok::kw_builtin)
1718 BuiltinLoc = Loc;
1719
1720 if (upgradeMemoryAttr(ME, Token)) {
1721 Lex.Lex();
1722 continue;
1723 }
1724
1725 Attribute::AttrKind Attr = tokenToAttribute(Token);
1726 if (Attr == Attribute::None) {
1727 if (!InAttrGrp)
1728 break;
1729 return error(Lex.getLoc(), "unterminated attribute group");
1730 }
1731
1732 if (parseEnumAttribute(Attr, B, InAttrGrp))
1733 return true;
1734
1735 // As a hack, we allow function alignment to be initially parsed as an
1736 // attribute on a function declaration/definition or added to an attribute
1737 // group and later moved to the alignment field.
1738 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1739 HaveError |= error(Loc, "this attribute does not apply to functions");
1740 }
1741
1742 if (ME != MemoryEffects::unknown())
1743 B.addMemoryAttr(ME);
1744 return HaveError;
1745 }
1746
1747 //===----------------------------------------------------------------------===//
1748 // GlobalValue Reference/Resolution Routines.
1749 //===----------------------------------------------------------------------===//
1750
createGlobalFwdRef(Module * M,PointerType * PTy)1751 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1752 // The used global type does not matter. We will later RAUW it with a
1753 // global/function of the correct type.
1754 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1755 GlobalValue::ExternalWeakLinkage, nullptr, "",
1756 nullptr, GlobalVariable::NotThreadLocal,
1757 PTy->getAddressSpace());
1758 }
1759
checkValidVariableType(LocTy Loc,const Twine & Name,Type * Ty,Value * Val)1760 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1761 Value *Val) {
1762 Type *ValTy = Val->getType();
1763 if (ValTy == Ty)
1764 return Val;
1765 if (Ty->isLabelTy())
1766 error(Loc, "'" + Name + "' is not a basic block");
1767 else
1768 error(Loc, "'" + Name + "' defined with type '" +
1769 getTypeString(Val->getType()) + "' but expected '" +
1770 getTypeString(Ty) + "'");
1771 return nullptr;
1772 }
1773
1774 /// getGlobalVal - Get a value with the specified name or ID, creating a
1775 /// forward reference record if needed. This can return null if the value
1776 /// exists but does not have the right type.
getGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)1777 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1778 LocTy Loc) {
1779 PointerType *PTy = dyn_cast<PointerType>(Ty);
1780 if (!PTy) {
1781 error(Loc, "global variable reference must have pointer type");
1782 return nullptr;
1783 }
1784
1785 // Look this name up in the normal function symbol table.
1786 GlobalValue *Val =
1787 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1788
1789 // If this is a forward reference for the value, see if we already created a
1790 // forward ref record.
1791 if (!Val) {
1792 auto I = ForwardRefVals.find(Name);
1793 if (I != ForwardRefVals.end())
1794 Val = I->second.first;
1795 }
1796
1797 // If we have the value in the symbol table or fwd-ref table, return it.
1798 if (Val)
1799 return cast_or_null<GlobalValue>(
1800 checkValidVariableType(Loc, "@" + Name, Ty, Val));
1801
1802 // Otherwise, create a new forward reference for this value and remember it.
1803 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1804 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1805 return FwdVal;
1806 }
1807
getGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1808 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1809 PointerType *PTy = dyn_cast<PointerType>(Ty);
1810 if (!PTy) {
1811 error(Loc, "global variable reference must have pointer type");
1812 return nullptr;
1813 }
1814
1815 GlobalValue *Val = NumberedVals.get(ID);
1816
1817 // If this is a forward reference for the value, see if we already created a
1818 // forward ref record.
1819 if (!Val) {
1820 auto I = ForwardRefValIDs.find(ID);
1821 if (I != ForwardRefValIDs.end())
1822 Val = I->second.first;
1823 }
1824
1825 // If we have the value in the symbol table or fwd-ref table, return it.
1826 if (Val)
1827 return cast_or_null<GlobalValue>(
1828 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1829
1830 // Otherwise, create a new forward reference for this value and remember it.
1831 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1832 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1833 return FwdVal;
1834 }
1835
1836 //===----------------------------------------------------------------------===//
1837 // Comdat Reference/Resolution Routines.
1838 //===----------------------------------------------------------------------===//
1839
getComdat(const std::string & Name,LocTy Loc)1840 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1841 // Look this name up in the comdat symbol table.
1842 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1843 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1844 if (I != ComdatSymTab.end())
1845 return &I->second;
1846
1847 // Otherwise, create a new forward reference for this value and remember it.
1848 Comdat *C = M->getOrInsertComdat(Name);
1849 ForwardRefComdats[Name] = Loc;
1850 return C;
1851 }
1852
1853 //===----------------------------------------------------------------------===//
1854 // Helper Routines.
1855 //===----------------------------------------------------------------------===//
1856
1857 /// parseToken - If the current token has the specified kind, eat it and return
1858 /// success. Otherwise, emit the specified error and return failure.
parseToken(lltok::Kind T,const char * ErrMsg)1859 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1860 if (Lex.getKind() != T)
1861 return tokError(ErrMsg);
1862 Lex.Lex();
1863 return false;
1864 }
1865
1866 /// parseStringConstant
1867 /// ::= StringConstant
parseStringConstant(std::string & Result)1868 bool LLParser::parseStringConstant(std::string &Result) {
1869 if (Lex.getKind() != lltok::StringConstant)
1870 return tokError("expected string constant");
1871 Result = Lex.getStrVal();
1872 Lex.Lex();
1873 return false;
1874 }
1875
1876 /// parseUInt32
1877 /// ::= uint32
parseUInt32(uint32_t & Val)1878 bool LLParser::parseUInt32(uint32_t &Val) {
1879 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1880 return tokError("expected integer");
1881 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1882 if (Val64 != unsigned(Val64))
1883 return tokError("expected 32-bit integer (too large)");
1884 Val = Val64;
1885 Lex.Lex();
1886 return false;
1887 }
1888
1889 /// parseUInt64
1890 /// ::= uint64
parseUInt64(uint64_t & Val)1891 bool LLParser::parseUInt64(uint64_t &Val) {
1892 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1893 return tokError("expected integer");
1894 Val = Lex.getAPSIntVal().getLimitedValue();
1895 Lex.Lex();
1896 return false;
1897 }
1898
1899 /// parseTLSModel
1900 /// := 'localdynamic'
1901 /// := 'initialexec'
1902 /// := 'localexec'
parseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1903 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1904 switch (Lex.getKind()) {
1905 default:
1906 return tokError("expected localdynamic, initialexec or localexec");
1907 case lltok::kw_localdynamic:
1908 TLM = GlobalVariable::LocalDynamicTLSModel;
1909 break;
1910 case lltok::kw_initialexec:
1911 TLM = GlobalVariable::InitialExecTLSModel;
1912 break;
1913 case lltok::kw_localexec:
1914 TLM = GlobalVariable::LocalExecTLSModel;
1915 break;
1916 }
1917
1918 Lex.Lex();
1919 return false;
1920 }
1921
1922 /// parseOptionalThreadLocal
1923 /// := /*empty*/
1924 /// := 'thread_local'
1925 /// := 'thread_local' '(' tlsmodel ')'
parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1926 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1927 TLM = GlobalVariable::NotThreadLocal;
1928 if (!EatIfPresent(lltok::kw_thread_local))
1929 return false;
1930
1931 TLM = GlobalVariable::GeneralDynamicTLSModel;
1932 if (Lex.getKind() == lltok::lparen) {
1933 Lex.Lex();
1934 return parseTLSModel(TLM) ||
1935 parseToken(lltok::rparen, "expected ')' after thread local model");
1936 }
1937 return false;
1938 }
1939
1940 /// parseOptionalAddrSpace
1941 /// := /*empty*/
1942 /// := 'addrspace' '(' uint32 ')'
parseOptionalAddrSpace(unsigned & AddrSpace,unsigned DefaultAS)1943 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1944 AddrSpace = DefaultAS;
1945 if (!EatIfPresent(lltok::kw_addrspace))
1946 return false;
1947
1948 auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1949 if (Lex.getKind() == lltok::StringConstant) {
1950 auto AddrSpaceStr = Lex.getStrVal();
1951 if (AddrSpaceStr == "A") {
1952 AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1953 } else if (AddrSpaceStr == "G") {
1954 AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1955 } else if (AddrSpaceStr == "P") {
1956 AddrSpace = M->getDataLayout().getProgramAddressSpace();
1957 } else {
1958 return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'");
1959 }
1960 Lex.Lex();
1961 return false;
1962 }
1963 if (Lex.getKind() != lltok::APSInt)
1964 return tokError("expected integer or string constant");
1965 SMLoc Loc = Lex.getLoc();
1966 if (parseUInt32(AddrSpace))
1967 return true;
1968 if (!isUInt<24>(AddrSpace))
1969 return error(Loc, "invalid address space, must be a 24-bit integer");
1970 return false;
1971 };
1972
1973 return parseToken(lltok::lparen, "expected '(' in address space") ||
1974 ParseAddrspaceValue(AddrSpace) ||
1975 parseToken(lltok::rparen, "expected ')' in address space");
1976 }
1977
1978 /// parseStringAttribute
1979 /// := StringConstant
1980 /// := StringConstant '=' StringConstant
parseStringAttribute(AttrBuilder & B)1981 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1982 std::string Attr = Lex.getStrVal();
1983 Lex.Lex();
1984 std::string Val;
1985 if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1986 return true;
1987 B.addAttribute(Attr, Val);
1988 return false;
1989 }
1990
1991 /// Parse a potentially empty list of parameter or return attributes.
parseOptionalParamOrReturnAttrs(AttrBuilder & B,bool IsParam)1992 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1993 bool HaveError = false;
1994
1995 B.clear();
1996
1997 while (true) {
1998 lltok::Kind Token = Lex.getKind();
1999 if (Token == lltok::StringConstant) {
2000 if (parseStringAttribute(B))
2001 return true;
2002 continue;
2003 }
2004
2005 SMLoc Loc = Lex.getLoc();
2006 Attribute::AttrKind Attr = tokenToAttribute(Token);
2007 if (Attr == Attribute::None)
2008 return HaveError;
2009
2010 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
2011 return true;
2012
2013 if (IsParam && !Attribute::canUseAsParamAttr(Attr))
2014 HaveError |= error(Loc, "this attribute does not apply to parameters");
2015 if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
2016 HaveError |= error(Loc, "this attribute does not apply to return values");
2017 }
2018 }
2019
parseOptionalLinkageAux(lltok::Kind Kind,bool & HasLinkage)2020 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
2021 HasLinkage = true;
2022 switch (Kind) {
2023 default:
2024 HasLinkage = false;
2025 return GlobalValue::ExternalLinkage;
2026 case lltok::kw_private:
2027 return GlobalValue::PrivateLinkage;
2028 case lltok::kw_internal:
2029 return GlobalValue::InternalLinkage;
2030 case lltok::kw_weak:
2031 return GlobalValue::WeakAnyLinkage;
2032 case lltok::kw_weak_odr:
2033 return GlobalValue::WeakODRLinkage;
2034 case lltok::kw_linkonce:
2035 return GlobalValue::LinkOnceAnyLinkage;
2036 case lltok::kw_linkonce_odr:
2037 return GlobalValue::LinkOnceODRLinkage;
2038 case lltok::kw_available_externally:
2039 return GlobalValue::AvailableExternallyLinkage;
2040 case lltok::kw_appending:
2041 return GlobalValue::AppendingLinkage;
2042 case lltok::kw_common:
2043 return GlobalValue::CommonLinkage;
2044 case lltok::kw_extern_weak:
2045 return GlobalValue::ExternalWeakLinkage;
2046 case lltok::kw_external:
2047 return GlobalValue::ExternalLinkage;
2048 }
2049 }
2050
2051 /// parseOptionalLinkage
2052 /// ::= /*empty*/
2053 /// ::= 'private'
2054 /// ::= 'internal'
2055 /// ::= 'weak'
2056 /// ::= 'weak_odr'
2057 /// ::= 'linkonce'
2058 /// ::= 'linkonce_odr'
2059 /// ::= 'available_externally'
2060 /// ::= 'appending'
2061 /// ::= 'common'
2062 /// ::= 'extern_weak'
2063 /// ::= 'external'
parseOptionalLinkage(unsigned & Res,bool & HasLinkage,unsigned & Visibility,unsigned & DLLStorageClass,bool & DSOLocal)2064 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2065 unsigned &Visibility,
2066 unsigned &DLLStorageClass, bool &DSOLocal) {
2067 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2068 if (HasLinkage)
2069 Lex.Lex();
2070 parseOptionalDSOLocal(DSOLocal);
2071 parseOptionalVisibility(Visibility);
2072 parseOptionalDLLStorageClass(DLLStorageClass);
2073
2074 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2075 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2076 }
2077
2078 return false;
2079 }
2080
parseOptionalDSOLocal(bool & DSOLocal)2081 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2082 switch (Lex.getKind()) {
2083 default:
2084 DSOLocal = false;
2085 break;
2086 case lltok::kw_dso_local:
2087 DSOLocal = true;
2088 Lex.Lex();
2089 break;
2090 case lltok::kw_dso_preemptable:
2091 DSOLocal = false;
2092 Lex.Lex();
2093 break;
2094 }
2095 }
2096
2097 /// parseOptionalVisibility
2098 /// ::= /*empty*/
2099 /// ::= 'default'
2100 /// ::= 'hidden'
2101 /// ::= 'protected'
2102 ///
parseOptionalVisibility(unsigned & Res)2103 void LLParser::parseOptionalVisibility(unsigned &Res) {
2104 switch (Lex.getKind()) {
2105 default:
2106 Res = GlobalValue::DefaultVisibility;
2107 return;
2108 case lltok::kw_default:
2109 Res = GlobalValue::DefaultVisibility;
2110 break;
2111 case lltok::kw_hidden:
2112 Res = GlobalValue::HiddenVisibility;
2113 break;
2114 case lltok::kw_protected:
2115 Res = GlobalValue::ProtectedVisibility;
2116 break;
2117 }
2118 Lex.Lex();
2119 }
2120
parseOptionalImportType(lltok::Kind Kind,GlobalValueSummary::ImportKind & Res)2121 bool LLParser::parseOptionalImportType(lltok::Kind Kind,
2122 GlobalValueSummary::ImportKind &Res) {
2123 switch (Kind) {
2124 default:
2125 return tokError("unknown import kind. Expect definition or declaration.");
2126 case lltok::kw_definition:
2127 Res = GlobalValueSummary::Definition;
2128 return false;
2129 case lltok::kw_declaration:
2130 Res = GlobalValueSummary::Declaration;
2131 return false;
2132 }
2133 }
2134
2135 /// parseOptionalDLLStorageClass
2136 /// ::= /*empty*/
2137 /// ::= 'dllimport'
2138 /// ::= 'dllexport'
2139 ///
parseOptionalDLLStorageClass(unsigned & Res)2140 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2141 switch (Lex.getKind()) {
2142 default:
2143 Res = GlobalValue::DefaultStorageClass;
2144 return;
2145 case lltok::kw_dllimport:
2146 Res = GlobalValue::DLLImportStorageClass;
2147 break;
2148 case lltok::kw_dllexport:
2149 Res = GlobalValue::DLLExportStorageClass;
2150 break;
2151 }
2152 Lex.Lex();
2153 }
2154
2155 /// parseOptionalCallingConv
2156 /// ::= /*empty*/
2157 /// ::= 'ccc'
2158 /// ::= 'fastcc'
2159 /// ::= 'intel_ocl_bicc'
2160 /// ::= 'coldcc'
2161 /// ::= 'cfguard_checkcc'
2162 /// ::= 'x86_stdcallcc'
2163 /// ::= 'x86_fastcallcc'
2164 /// ::= 'x86_thiscallcc'
2165 /// ::= 'x86_vectorcallcc'
2166 /// ::= 'arm_apcscc'
2167 /// ::= 'arm_aapcscc'
2168 /// ::= 'arm_aapcs_vfpcc'
2169 /// ::= 'aarch64_vector_pcs'
2170 /// ::= 'aarch64_sve_vector_pcs'
2171 /// ::= 'aarch64_sme_preservemost_from_x0'
2172 /// ::= 'aarch64_sme_preservemost_from_x1'
2173 /// ::= 'aarch64_sme_preservemost_from_x2'
2174 /// ::= 'msp430_intrcc'
2175 /// ::= 'avr_intrcc'
2176 /// ::= 'avr_signalcc'
2177 /// ::= 'ptx_kernel'
2178 /// ::= 'ptx_device'
2179 /// ::= 'spir_func'
2180 /// ::= 'spir_kernel'
2181 /// ::= 'x86_64_sysvcc'
2182 /// ::= 'win64cc'
2183 /// ::= 'anyregcc'
2184 /// ::= 'preserve_mostcc'
2185 /// ::= 'preserve_allcc'
2186 /// ::= 'preserve_nonecc'
2187 /// ::= 'ghccc'
2188 /// ::= 'swiftcc'
2189 /// ::= 'swifttailcc'
2190 /// ::= 'x86_intrcc'
2191 /// ::= 'hhvmcc'
2192 /// ::= 'hhvm_ccc'
2193 /// ::= 'cxx_fast_tlscc'
2194 /// ::= 'amdgpu_vs'
2195 /// ::= 'amdgpu_ls'
2196 /// ::= 'amdgpu_hs'
2197 /// ::= 'amdgpu_es'
2198 /// ::= 'amdgpu_gs'
2199 /// ::= 'amdgpu_ps'
2200 /// ::= 'amdgpu_cs'
2201 /// ::= 'amdgpu_cs_chain'
2202 /// ::= 'amdgpu_cs_chain_preserve'
2203 /// ::= 'amdgpu_kernel'
2204 /// ::= 'tailcc'
2205 /// ::= 'm68k_rtdcc'
2206 /// ::= 'graalcc'
2207 /// ::= 'riscv_vector_cc'
2208 /// ::= 'cc' UINT
2209 ///
parseOptionalCallingConv(unsigned & CC)2210 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2211 switch (Lex.getKind()) {
2212 default: CC = CallingConv::C; return false;
2213 case lltok::kw_ccc: CC = CallingConv::C; break;
2214 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
2215 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
2216 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2217 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
2218 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2219 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
2220 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2221 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2222 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
2223 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
2224 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2225 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2226 case lltok::kw_aarch64_sve_vector_pcs:
2227 CC = CallingConv::AArch64_SVE_VectorCall;
2228 break;
2229 case lltok::kw_aarch64_sme_preservemost_from_x0:
2230 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2231 break;
2232 case lltok::kw_aarch64_sme_preservemost_from_x1:
2233 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1;
2234 break;
2235 case lltok::kw_aarch64_sme_preservemost_from_x2:
2236 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2237 break;
2238 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
2239 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
2240 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
2241 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
2242 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
2243 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
2244 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
2245 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2246 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
2247 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
2248 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
2249 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2250 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2251 case lltok::kw_preserve_nonecc:CC = CallingConv::PreserveNone; break;
2252 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
2253 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
2254 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break;
2255 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
2256 case lltok::kw_hhvmcc:
2257 CC = CallingConv::DUMMY_HHVM;
2258 break;
2259 case lltok::kw_hhvm_ccc:
2260 CC = CallingConv::DUMMY_HHVM_C;
2261 break;
2262 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2263 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
2264 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break;
2265 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
2266 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
2267 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
2268 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2269 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2270 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2271 case lltok::kw_amdgpu_cs_chain:
2272 CC = CallingConv::AMDGPU_CS_Chain;
2273 break;
2274 case lltok::kw_amdgpu_cs_chain_preserve:
2275 CC = CallingConv::AMDGPU_CS_ChainPreserve;
2276 break;
2277 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
2278 case lltok::kw_tailcc: CC = CallingConv::Tail; break;
2279 case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break;
2280 case lltok::kw_graalcc: CC = CallingConv::GRAAL; break;
2281 case lltok::kw_riscv_vector_cc:
2282 CC = CallingConv::RISCV_VectorCall;
2283 break;
2284 case lltok::kw_cc: {
2285 Lex.Lex();
2286 return parseUInt32(CC);
2287 }
2288 }
2289
2290 Lex.Lex();
2291 return false;
2292 }
2293
2294 /// parseMetadataAttachment
2295 /// ::= !dbg !42
parseMetadataAttachment(unsigned & Kind,MDNode * & MD)2296 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2297 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2298
2299 std::string Name = Lex.getStrVal();
2300 Kind = M->getMDKindID(Name);
2301 Lex.Lex();
2302
2303 return parseMDNode(MD);
2304 }
2305
2306 /// parseInstructionMetadata
2307 /// ::= !dbg !42 (',' !dbg !57)*
parseInstructionMetadata(Instruction & Inst)2308 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2309 do {
2310 if (Lex.getKind() != lltok::MetadataVar)
2311 return tokError("expected metadata after comma");
2312
2313 unsigned MDK;
2314 MDNode *N;
2315 if (parseMetadataAttachment(MDK, N))
2316 return true;
2317
2318 if (MDK == LLVMContext::MD_DIAssignID)
2319 TempDIAssignIDAttachments[N].push_back(&Inst);
2320 else
2321 Inst.setMetadata(MDK, N);
2322
2323 if (MDK == LLVMContext::MD_tbaa)
2324 InstsWithTBAATag.push_back(&Inst);
2325
2326 // If this is the end of the list, we're done.
2327 } while (EatIfPresent(lltok::comma));
2328 return false;
2329 }
2330
2331 /// parseGlobalObjectMetadataAttachment
2332 /// ::= !dbg !57
parseGlobalObjectMetadataAttachment(GlobalObject & GO)2333 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2334 unsigned MDK;
2335 MDNode *N;
2336 if (parseMetadataAttachment(MDK, N))
2337 return true;
2338
2339 GO.addMetadata(MDK, *N);
2340 return false;
2341 }
2342
2343 /// parseOptionalFunctionMetadata
2344 /// ::= (!dbg !57)*
parseOptionalFunctionMetadata(Function & F)2345 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2346 while (Lex.getKind() == lltok::MetadataVar)
2347 if (parseGlobalObjectMetadataAttachment(F))
2348 return true;
2349 return false;
2350 }
2351
2352 /// parseOptionalAlignment
2353 /// ::= /* empty */
2354 /// ::= 'align' 4
parseOptionalAlignment(MaybeAlign & Alignment,bool AllowParens)2355 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2356 Alignment = std::nullopt;
2357 if (!EatIfPresent(lltok::kw_align))
2358 return false;
2359 LocTy AlignLoc = Lex.getLoc();
2360 uint64_t Value = 0;
2361
2362 LocTy ParenLoc = Lex.getLoc();
2363 bool HaveParens = false;
2364 if (AllowParens) {
2365 if (EatIfPresent(lltok::lparen))
2366 HaveParens = true;
2367 }
2368
2369 if (parseUInt64(Value))
2370 return true;
2371
2372 if (HaveParens && !EatIfPresent(lltok::rparen))
2373 return error(ParenLoc, "expected ')'");
2374
2375 if (!isPowerOf2_64(Value))
2376 return error(AlignLoc, "alignment is not a power of two");
2377 if (Value > Value::MaximumAlignment)
2378 return error(AlignLoc, "huge alignments are not supported yet");
2379 Alignment = Align(Value);
2380 return false;
2381 }
2382
2383 /// parseOptionalCodeModel
2384 /// ::= /* empty */
2385 /// ::= 'code_model' "large"
parseOptionalCodeModel(CodeModel::Model & model)2386 bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) {
2387 Lex.Lex();
2388 auto StrVal = Lex.getStrVal();
2389 auto ErrMsg = "expected global code model string";
2390 if (StrVal == "tiny")
2391 model = CodeModel::Tiny;
2392 else if (StrVal == "small")
2393 model = CodeModel::Small;
2394 else if (StrVal == "kernel")
2395 model = CodeModel::Kernel;
2396 else if (StrVal == "medium")
2397 model = CodeModel::Medium;
2398 else if (StrVal == "large")
2399 model = CodeModel::Large;
2400 else
2401 return tokError(ErrMsg);
2402 if (parseToken(lltok::StringConstant, ErrMsg))
2403 return true;
2404 return false;
2405 }
2406
2407 /// parseOptionalDerefAttrBytes
2408 /// ::= /* empty */
2409 /// ::= AttrKind '(' 4 ')'
2410 ///
2411 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
parseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)2412 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2413 uint64_t &Bytes) {
2414 assert((AttrKind == lltok::kw_dereferenceable ||
2415 AttrKind == lltok::kw_dereferenceable_or_null) &&
2416 "contract!");
2417
2418 Bytes = 0;
2419 if (!EatIfPresent(AttrKind))
2420 return false;
2421 LocTy ParenLoc = Lex.getLoc();
2422 if (!EatIfPresent(lltok::lparen))
2423 return error(ParenLoc, "expected '('");
2424 LocTy DerefLoc = Lex.getLoc();
2425 if (parseUInt64(Bytes))
2426 return true;
2427 ParenLoc = Lex.getLoc();
2428 if (!EatIfPresent(lltok::rparen))
2429 return error(ParenLoc, "expected ')'");
2430 if (!Bytes)
2431 return error(DerefLoc, "dereferenceable bytes must be non-zero");
2432 return false;
2433 }
2434
parseOptionalUWTableKind(UWTableKind & Kind)2435 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2436 Lex.Lex();
2437 Kind = UWTableKind::Default;
2438 if (!EatIfPresent(lltok::lparen))
2439 return false;
2440 LocTy KindLoc = Lex.getLoc();
2441 if (Lex.getKind() == lltok::kw_sync)
2442 Kind = UWTableKind::Sync;
2443 else if (Lex.getKind() == lltok::kw_async)
2444 Kind = UWTableKind::Async;
2445 else
2446 return error(KindLoc, "expected unwind table kind");
2447 Lex.Lex();
2448 return parseToken(lltok::rparen, "expected ')'");
2449 }
2450
parseAllocKind(AllocFnKind & Kind)2451 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2452 Lex.Lex();
2453 LocTy ParenLoc = Lex.getLoc();
2454 if (!EatIfPresent(lltok::lparen))
2455 return error(ParenLoc, "expected '('");
2456 LocTy KindLoc = Lex.getLoc();
2457 std::string Arg;
2458 if (parseStringConstant(Arg))
2459 return error(KindLoc, "expected allockind value");
2460 for (StringRef A : llvm::split(Arg, ",")) {
2461 if (A == "alloc") {
2462 Kind |= AllocFnKind::Alloc;
2463 } else if (A == "realloc") {
2464 Kind |= AllocFnKind::Realloc;
2465 } else if (A == "free") {
2466 Kind |= AllocFnKind::Free;
2467 } else if (A == "uninitialized") {
2468 Kind |= AllocFnKind::Uninitialized;
2469 } else if (A == "zeroed") {
2470 Kind |= AllocFnKind::Zeroed;
2471 } else if (A == "aligned") {
2472 Kind |= AllocFnKind::Aligned;
2473 } else {
2474 return error(KindLoc, Twine("unknown allockind ") + A);
2475 }
2476 }
2477 ParenLoc = Lex.getLoc();
2478 if (!EatIfPresent(lltok::rparen))
2479 return error(ParenLoc, "expected ')'");
2480 if (Kind == AllocFnKind::Unknown)
2481 return error(KindLoc, "expected allockind value");
2482 return false;
2483 }
2484
keywordToLoc(lltok::Kind Tok)2485 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2486 switch (Tok) {
2487 case lltok::kw_argmem:
2488 return IRMemLocation::ArgMem;
2489 case lltok::kw_inaccessiblemem:
2490 return IRMemLocation::InaccessibleMem;
2491 default:
2492 return std::nullopt;
2493 }
2494 }
2495
keywordToModRef(lltok::Kind Tok)2496 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2497 switch (Tok) {
2498 case lltok::kw_none:
2499 return ModRefInfo::NoModRef;
2500 case lltok::kw_read:
2501 return ModRefInfo::Ref;
2502 case lltok::kw_write:
2503 return ModRefInfo::Mod;
2504 case lltok::kw_readwrite:
2505 return ModRefInfo::ModRef;
2506 default:
2507 return std::nullopt;
2508 }
2509 }
2510
parseMemoryAttr()2511 std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2512 MemoryEffects ME = MemoryEffects::none();
2513
2514 // We use syntax like memory(argmem: read), so the colon should not be
2515 // interpreted as a label terminator.
2516 Lex.setIgnoreColonInIdentifiers(true);
2517 auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); });
2518
2519 Lex.Lex();
2520 if (!EatIfPresent(lltok::lparen)) {
2521 tokError("expected '('");
2522 return std::nullopt;
2523 }
2524
2525 bool SeenLoc = false;
2526 do {
2527 std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind());
2528 if (Loc) {
2529 Lex.Lex();
2530 if (!EatIfPresent(lltok::colon)) {
2531 tokError("expected ':' after location");
2532 return std::nullopt;
2533 }
2534 }
2535
2536 std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind());
2537 if (!MR) {
2538 if (!Loc)
2539 tokError("expected memory location (argmem, inaccessiblemem) "
2540 "or access kind (none, read, write, readwrite)");
2541 else
2542 tokError("expected access kind (none, read, write, readwrite)");
2543 return std::nullopt;
2544 }
2545
2546 Lex.Lex();
2547 if (Loc) {
2548 SeenLoc = true;
2549 ME = ME.getWithModRef(*Loc, *MR);
2550 } else {
2551 if (SeenLoc) {
2552 tokError("default access kind must be specified first");
2553 return std::nullopt;
2554 }
2555 ME = MemoryEffects(*MR);
2556 }
2557
2558 if (EatIfPresent(lltok::rparen))
2559 return ME;
2560 } while (EatIfPresent(lltok::comma));
2561
2562 tokError("unterminated memory attribute");
2563 return std::nullopt;
2564 }
2565
keywordToFPClassTest(lltok::Kind Tok)2566 static unsigned keywordToFPClassTest(lltok::Kind Tok) {
2567 switch (Tok) {
2568 case lltok::kw_all:
2569 return fcAllFlags;
2570 case lltok::kw_nan:
2571 return fcNan;
2572 case lltok::kw_snan:
2573 return fcSNan;
2574 case lltok::kw_qnan:
2575 return fcQNan;
2576 case lltok::kw_inf:
2577 return fcInf;
2578 case lltok::kw_ninf:
2579 return fcNegInf;
2580 case lltok::kw_pinf:
2581 return fcPosInf;
2582 case lltok::kw_norm:
2583 return fcNormal;
2584 case lltok::kw_nnorm:
2585 return fcNegNormal;
2586 case lltok::kw_pnorm:
2587 return fcPosNormal;
2588 case lltok::kw_sub:
2589 return fcSubnormal;
2590 case lltok::kw_nsub:
2591 return fcNegSubnormal;
2592 case lltok::kw_psub:
2593 return fcPosSubnormal;
2594 case lltok::kw_zero:
2595 return fcZero;
2596 case lltok::kw_nzero:
2597 return fcNegZero;
2598 case lltok::kw_pzero:
2599 return fcPosZero;
2600 default:
2601 return 0;
2602 }
2603 }
2604
parseNoFPClassAttr()2605 unsigned LLParser::parseNoFPClassAttr() {
2606 unsigned Mask = fcNone;
2607
2608 Lex.Lex();
2609 if (!EatIfPresent(lltok::lparen)) {
2610 tokError("expected '('");
2611 return 0;
2612 }
2613
2614 do {
2615 uint64_t Value = 0;
2616 unsigned TestMask = keywordToFPClassTest(Lex.getKind());
2617 if (TestMask != 0) {
2618 Mask |= TestMask;
2619 // TODO: Disallow overlapping masks to avoid copy paste errors
2620 } else if (Mask == 0 && Lex.getKind() == lltok::APSInt &&
2621 !parseUInt64(Value)) {
2622 if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) {
2623 error(Lex.getLoc(), "invalid mask value for 'nofpclass'");
2624 return 0;
2625 }
2626
2627 if (!EatIfPresent(lltok::rparen)) {
2628 error(Lex.getLoc(), "expected ')'");
2629 return 0;
2630 }
2631
2632 return Value;
2633 } else {
2634 error(Lex.getLoc(), "expected nofpclass test mask");
2635 return 0;
2636 }
2637
2638 Lex.Lex();
2639 if (EatIfPresent(lltok::rparen))
2640 return Mask;
2641 } while (1);
2642
2643 llvm_unreachable("unterminated nofpclass attribute");
2644 }
2645
2646 /// parseOptionalCommaAlign
2647 /// ::=
2648 /// ::= ',' align 4
2649 ///
2650 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2651 /// end.
parseOptionalCommaAlign(MaybeAlign & Alignment,bool & AteExtraComma)2652 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2653 bool &AteExtraComma) {
2654 AteExtraComma = false;
2655 while (EatIfPresent(lltok::comma)) {
2656 // Metadata at the end is an early exit.
2657 if (Lex.getKind() == lltok::MetadataVar) {
2658 AteExtraComma = true;
2659 return false;
2660 }
2661
2662 if (Lex.getKind() != lltok::kw_align)
2663 return error(Lex.getLoc(), "expected metadata or 'align'");
2664
2665 if (parseOptionalAlignment(Alignment))
2666 return true;
2667 }
2668
2669 return false;
2670 }
2671
2672 /// parseOptionalCommaAddrSpace
2673 /// ::=
2674 /// ::= ',' addrspace(1)
2675 ///
2676 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2677 /// end.
parseOptionalCommaAddrSpace(unsigned & AddrSpace,LocTy & Loc,bool & AteExtraComma)2678 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2679 bool &AteExtraComma) {
2680 AteExtraComma = false;
2681 while (EatIfPresent(lltok::comma)) {
2682 // Metadata at the end is an early exit.
2683 if (Lex.getKind() == lltok::MetadataVar) {
2684 AteExtraComma = true;
2685 return false;
2686 }
2687
2688 Loc = Lex.getLoc();
2689 if (Lex.getKind() != lltok::kw_addrspace)
2690 return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2691
2692 if (parseOptionalAddrSpace(AddrSpace))
2693 return true;
2694 }
2695
2696 return false;
2697 }
2698
parseAllocSizeArguments(unsigned & BaseSizeArg,std::optional<unsigned> & HowManyArg)2699 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2700 std::optional<unsigned> &HowManyArg) {
2701 Lex.Lex();
2702
2703 auto StartParen = Lex.getLoc();
2704 if (!EatIfPresent(lltok::lparen))
2705 return error(StartParen, "expected '('");
2706
2707 if (parseUInt32(BaseSizeArg))
2708 return true;
2709
2710 if (EatIfPresent(lltok::comma)) {
2711 auto HowManyAt = Lex.getLoc();
2712 unsigned HowMany;
2713 if (parseUInt32(HowMany))
2714 return true;
2715 if (HowMany == BaseSizeArg)
2716 return error(HowManyAt,
2717 "'allocsize' indices can't refer to the same parameter");
2718 HowManyArg = HowMany;
2719 } else
2720 HowManyArg = std::nullopt;
2721
2722 auto EndParen = Lex.getLoc();
2723 if (!EatIfPresent(lltok::rparen))
2724 return error(EndParen, "expected ')'");
2725 return false;
2726 }
2727
parseVScaleRangeArguments(unsigned & MinValue,unsigned & MaxValue)2728 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2729 unsigned &MaxValue) {
2730 Lex.Lex();
2731
2732 auto StartParen = Lex.getLoc();
2733 if (!EatIfPresent(lltok::lparen))
2734 return error(StartParen, "expected '('");
2735
2736 if (parseUInt32(MinValue))
2737 return true;
2738
2739 if (EatIfPresent(lltok::comma)) {
2740 if (parseUInt32(MaxValue))
2741 return true;
2742 } else
2743 MaxValue = MinValue;
2744
2745 auto EndParen = Lex.getLoc();
2746 if (!EatIfPresent(lltok::rparen))
2747 return error(EndParen, "expected ')'");
2748 return false;
2749 }
2750
2751 /// parseScopeAndOrdering
2752 /// if isAtomic: ::= SyncScope? AtomicOrdering
2753 /// else: ::=
2754 ///
2755 /// This sets Scope and Ordering to the parsed values.
parseScopeAndOrdering(bool IsAtomic,SyncScope::ID & SSID,AtomicOrdering & Ordering)2756 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2757 AtomicOrdering &Ordering) {
2758 if (!IsAtomic)
2759 return false;
2760
2761 return parseScope(SSID) || parseOrdering(Ordering);
2762 }
2763
2764 /// parseScope
2765 /// ::= syncscope("singlethread" | "<target scope>")?
2766 ///
2767 /// This sets synchronization scope ID to the ID of the parsed value.
parseScope(SyncScope::ID & SSID)2768 bool LLParser::parseScope(SyncScope::ID &SSID) {
2769 SSID = SyncScope::System;
2770 if (EatIfPresent(lltok::kw_syncscope)) {
2771 auto StartParenAt = Lex.getLoc();
2772 if (!EatIfPresent(lltok::lparen))
2773 return error(StartParenAt, "Expected '(' in syncscope");
2774
2775 std::string SSN;
2776 auto SSNAt = Lex.getLoc();
2777 if (parseStringConstant(SSN))
2778 return error(SSNAt, "Expected synchronization scope name");
2779
2780 auto EndParenAt = Lex.getLoc();
2781 if (!EatIfPresent(lltok::rparen))
2782 return error(EndParenAt, "Expected ')' in syncscope");
2783
2784 SSID = Context.getOrInsertSyncScopeID(SSN);
2785 }
2786
2787 return false;
2788 }
2789
2790 /// parseOrdering
2791 /// ::= AtomicOrdering
2792 ///
2793 /// This sets Ordering to the parsed value.
parseOrdering(AtomicOrdering & Ordering)2794 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2795 switch (Lex.getKind()) {
2796 default:
2797 return tokError("Expected ordering on atomic instruction");
2798 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2799 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2800 // Not specified yet:
2801 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2802 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2803 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2804 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2805 case lltok::kw_seq_cst:
2806 Ordering = AtomicOrdering::SequentiallyConsistent;
2807 break;
2808 }
2809 Lex.Lex();
2810 return false;
2811 }
2812
2813 /// parseOptionalStackAlignment
2814 /// ::= /* empty */
2815 /// ::= 'alignstack' '(' 4 ')'
parseOptionalStackAlignment(unsigned & Alignment)2816 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2817 Alignment = 0;
2818 if (!EatIfPresent(lltok::kw_alignstack))
2819 return false;
2820 LocTy ParenLoc = Lex.getLoc();
2821 if (!EatIfPresent(lltok::lparen))
2822 return error(ParenLoc, "expected '('");
2823 LocTy AlignLoc = Lex.getLoc();
2824 if (parseUInt32(Alignment))
2825 return true;
2826 ParenLoc = Lex.getLoc();
2827 if (!EatIfPresent(lltok::rparen))
2828 return error(ParenLoc, "expected ')'");
2829 if (!isPowerOf2_32(Alignment))
2830 return error(AlignLoc, "stack alignment is not a power of two");
2831 return false;
2832 }
2833
2834 /// parseIndexList - This parses the index list for an insert/extractvalue
2835 /// instruction. This sets AteExtraComma in the case where we eat an extra
2836 /// comma at the end of the line and find that it is followed by metadata.
2837 /// Clients that don't allow metadata can call the version of this function that
2838 /// only takes one argument.
2839 ///
2840 /// parseIndexList
2841 /// ::= (',' uint32)+
2842 ///
parseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)2843 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2844 bool &AteExtraComma) {
2845 AteExtraComma = false;
2846
2847 if (Lex.getKind() != lltok::comma)
2848 return tokError("expected ',' as start of index list");
2849
2850 while (EatIfPresent(lltok::comma)) {
2851 if (Lex.getKind() == lltok::MetadataVar) {
2852 if (Indices.empty())
2853 return tokError("expected index");
2854 AteExtraComma = true;
2855 return false;
2856 }
2857 unsigned Idx = 0;
2858 if (parseUInt32(Idx))
2859 return true;
2860 Indices.push_back(Idx);
2861 }
2862
2863 return false;
2864 }
2865
2866 //===----------------------------------------------------------------------===//
2867 // Type Parsing.
2868 //===----------------------------------------------------------------------===//
2869
2870 /// parseType - parse a type.
parseType(Type * & Result,const Twine & Msg,bool AllowVoid)2871 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2872 SMLoc TypeLoc = Lex.getLoc();
2873 switch (Lex.getKind()) {
2874 default:
2875 return tokError(Msg);
2876 case lltok::Type:
2877 // Type ::= 'float' | 'void' (etc)
2878 Result = Lex.getTyVal();
2879 Lex.Lex();
2880
2881 // Handle "ptr" opaque pointer type.
2882 //
2883 // Type ::= ptr ('addrspace' '(' uint32 ')')?
2884 if (Result->isPointerTy()) {
2885 unsigned AddrSpace;
2886 if (parseOptionalAddrSpace(AddrSpace))
2887 return true;
2888 Result = PointerType::get(getContext(), AddrSpace);
2889
2890 // Give a nice error for 'ptr*'.
2891 if (Lex.getKind() == lltok::star)
2892 return tokError("ptr* is invalid - use ptr instead");
2893
2894 // Fall through to parsing the type suffixes only if this 'ptr' is a
2895 // function return. Otherwise, return success, implicitly rejecting other
2896 // suffixes.
2897 if (Lex.getKind() != lltok::lparen)
2898 return false;
2899 }
2900 break;
2901 case lltok::kw_target: {
2902 // Type ::= TargetExtType
2903 if (parseTargetExtType(Result))
2904 return true;
2905 break;
2906 }
2907 case lltok::lbrace:
2908 // Type ::= StructType
2909 if (parseAnonStructType(Result, false))
2910 return true;
2911 break;
2912 case lltok::lsquare:
2913 // Type ::= '[' ... ']'
2914 Lex.Lex(); // eat the lsquare.
2915 if (parseArrayVectorType(Result, false))
2916 return true;
2917 break;
2918 case lltok::less: // Either vector or packed struct.
2919 // Type ::= '<' ... '>'
2920 Lex.Lex();
2921 if (Lex.getKind() == lltok::lbrace) {
2922 if (parseAnonStructType(Result, true) ||
2923 parseToken(lltok::greater, "expected '>' at end of packed struct"))
2924 return true;
2925 } else if (parseArrayVectorType(Result, true))
2926 return true;
2927 break;
2928 case lltok::LocalVar: {
2929 // Type ::= %foo
2930 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2931
2932 // If the type hasn't been defined yet, create a forward definition and
2933 // remember where that forward def'n was seen (in case it never is defined).
2934 if (!Entry.first) {
2935 Entry.first = StructType::create(Context, Lex.getStrVal());
2936 Entry.second = Lex.getLoc();
2937 }
2938 Result = Entry.first;
2939 Lex.Lex();
2940 break;
2941 }
2942
2943 case lltok::LocalVarID: {
2944 // Type ::= %4
2945 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2946
2947 // If the type hasn't been defined yet, create a forward definition and
2948 // remember where that forward def'n was seen (in case it never is defined).
2949 if (!Entry.first) {
2950 Entry.first = StructType::create(Context);
2951 Entry.second = Lex.getLoc();
2952 }
2953 Result = Entry.first;
2954 Lex.Lex();
2955 break;
2956 }
2957 }
2958
2959 // parse the type suffixes.
2960 while (true) {
2961 switch (Lex.getKind()) {
2962 // End of type.
2963 default:
2964 if (!AllowVoid && Result->isVoidTy())
2965 return error(TypeLoc, "void type only allowed for function results");
2966 return false;
2967
2968 // Type ::= Type '*'
2969 case lltok::star:
2970 if (Result->isLabelTy())
2971 return tokError("basic block pointers are invalid");
2972 if (Result->isVoidTy())
2973 return tokError("pointers to void are invalid - use i8* instead");
2974 if (!PointerType::isValidElementType(Result))
2975 return tokError("pointer to this type is invalid");
2976 Result = PointerType::getUnqual(Result);
2977 Lex.Lex();
2978 break;
2979
2980 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2981 case lltok::kw_addrspace: {
2982 if (Result->isLabelTy())
2983 return tokError("basic block pointers are invalid");
2984 if (Result->isVoidTy())
2985 return tokError("pointers to void are invalid; use i8* instead");
2986 if (!PointerType::isValidElementType(Result))
2987 return tokError("pointer to this type is invalid");
2988 unsigned AddrSpace;
2989 if (parseOptionalAddrSpace(AddrSpace) ||
2990 parseToken(lltok::star, "expected '*' in address space"))
2991 return true;
2992
2993 Result = PointerType::get(Result, AddrSpace);
2994 break;
2995 }
2996
2997 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2998 case lltok::lparen:
2999 if (parseFunctionType(Result))
3000 return true;
3001 break;
3002 }
3003 }
3004 }
3005
3006 /// parseParameterList
3007 /// ::= '(' ')'
3008 /// ::= '(' Arg (',' Arg)* ')'
3009 /// Arg
3010 /// ::= Type OptionalAttributes Value OptionalAttributes
parseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)3011 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
3012 PerFunctionState &PFS, bool IsMustTailCall,
3013 bool InVarArgsFunc) {
3014 if (parseToken(lltok::lparen, "expected '(' in call"))
3015 return true;
3016
3017 while (Lex.getKind() != lltok::rparen) {
3018 // If this isn't the first argument, we need a comma.
3019 if (!ArgList.empty() &&
3020 parseToken(lltok::comma, "expected ',' in argument list"))
3021 return true;
3022
3023 // parse an ellipsis if this is a musttail call in a variadic function.
3024 if (Lex.getKind() == lltok::dotdotdot) {
3025 const char *Msg = "unexpected ellipsis in argument list for ";
3026 if (!IsMustTailCall)
3027 return tokError(Twine(Msg) + "non-musttail call");
3028 if (!InVarArgsFunc)
3029 return tokError(Twine(Msg) + "musttail call in non-varargs function");
3030 Lex.Lex(); // Lex the '...', it is purely for readability.
3031 return parseToken(lltok::rparen, "expected ')' at end of argument list");
3032 }
3033
3034 // parse the argument.
3035 LocTy ArgLoc;
3036 Type *ArgTy = nullptr;
3037 Value *V;
3038 if (parseType(ArgTy, ArgLoc))
3039 return true;
3040
3041 AttrBuilder ArgAttrs(M->getContext());
3042
3043 if (ArgTy->isMetadataTy()) {
3044 if (parseMetadataAsValue(V, PFS))
3045 return true;
3046 } else {
3047 // Otherwise, handle normal operands.
3048 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
3049 return true;
3050 }
3051 ArgList.push_back(ParamInfo(
3052 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
3053 }
3054
3055 if (IsMustTailCall && InVarArgsFunc)
3056 return tokError("expected '...' at end of argument list for musttail call "
3057 "in varargs function");
3058
3059 Lex.Lex(); // Lex the ')'.
3060 return false;
3061 }
3062
3063 /// parseRequiredTypeAttr
3064 /// ::= attrname(<ty>)
parseRequiredTypeAttr(AttrBuilder & B,lltok::Kind AttrToken,Attribute::AttrKind AttrKind)3065 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
3066 Attribute::AttrKind AttrKind) {
3067 Type *Ty = nullptr;
3068 if (!EatIfPresent(AttrToken))
3069 return true;
3070 if (!EatIfPresent(lltok::lparen))
3071 return error(Lex.getLoc(), "expected '('");
3072 if (parseType(Ty))
3073 return true;
3074 if (!EatIfPresent(lltok::rparen))
3075 return error(Lex.getLoc(), "expected ')'");
3076
3077 B.addTypeAttr(AttrKind, Ty);
3078 return false;
3079 }
3080
3081 /// parseRangeAttr
3082 /// ::= range(<ty> <n>,<n>)
parseRangeAttr(AttrBuilder & B)3083 bool LLParser::parseRangeAttr(AttrBuilder &B) {
3084 Lex.Lex();
3085
3086 APInt Lower;
3087 APInt Upper;
3088 Type *Ty = nullptr;
3089 LocTy TyLoc;
3090
3091 auto ParseAPSInt = [&](unsigned BitWidth, APInt &Val) {
3092 if (Lex.getKind() != lltok::APSInt)
3093 return tokError("expected integer");
3094 if (Lex.getAPSIntVal().getBitWidth() > BitWidth)
3095 return tokError(
3096 "integer is too large for the bit width of specified type");
3097 Val = Lex.getAPSIntVal().extend(BitWidth);
3098 Lex.Lex();
3099 return false;
3100 };
3101
3102 if (parseToken(lltok::lparen, "expected '('") || parseType(Ty, TyLoc))
3103 return true;
3104 if (!Ty->isIntegerTy())
3105 return error(TyLoc, "the range must have integer type!");
3106
3107 unsigned BitWidth = Ty->getPrimitiveSizeInBits();
3108
3109 if (ParseAPSInt(BitWidth, Lower) ||
3110 parseToken(lltok::comma, "expected ','") || ParseAPSInt(BitWidth, Upper))
3111 return true;
3112 if (Lower == Upper)
3113 return tokError("the range should not represent the full or empty set!");
3114
3115 if (parseToken(lltok::rparen, "expected ')'"))
3116 return true;
3117
3118 B.addRangeAttr(ConstantRange(Lower, Upper));
3119 return false;
3120 }
3121
3122 /// parseInitializesAttr
3123 /// ::= initializes((Lo1,Hi1),(Lo2,Hi2),...)
parseInitializesAttr(AttrBuilder & B)3124 bool LLParser::parseInitializesAttr(AttrBuilder &B) {
3125 Lex.Lex();
3126
3127 auto ParseAPSInt = [&](APInt &Val) {
3128 if (Lex.getKind() != lltok::APSInt)
3129 return tokError("expected integer");
3130 Val = Lex.getAPSIntVal().extend(64);
3131 Lex.Lex();
3132 return false;
3133 };
3134
3135 if (parseToken(lltok::lparen, "expected '('"))
3136 return true;
3137
3138 SmallVector<ConstantRange, 2> RangeList;
3139 // Parse each constant range.
3140 do {
3141 APInt Lower, Upper;
3142 if (parseToken(lltok::lparen, "expected '('"))
3143 return true;
3144
3145 if (ParseAPSInt(Lower) || parseToken(lltok::comma, "expected ','") ||
3146 ParseAPSInt(Upper))
3147 return true;
3148
3149 if (Lower == Upper)
3150 return tokError("the range should not represent the full or empty set!");
3151
3152 if (parseToken(lltok::rparen, "expected ')'"))
3153 return true;
3154
3155 RangeList.push_back(ConstantRange(Lower, Upper));
3156 } while (EatIfPresent(lltok::comma));
3157
3158 if (parseToken(lltok::rparen, "expected ')'"))
3159 return true;
3160
3161 auto CRLOrNull = ConstantRangeList::getConstantRangeList(RangeList);
3162 if (!CRLOrNull.has_value())
3163 return tokError("Invalid (unordered or overlapping) range list");
3164 B.addInitializesAttr(*CRLOrNull);
3165 return false;
3166 }
3167
3168 /// parseOptionalOperandBundles
3169 /// ::= /*empty*/
3170 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
3171 ///
3172 /// OperandBundle
3173 /// ::= bundle-tag '(' ')'
3174 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
3175 ///
3176 /// bundle-tag ::= String Constant
parseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> & BundleList,PerFunctionState & PFS)3177 bool LLParser::parseOptionalOperandBundles(
3178 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
3179 LocTy BeginLoc = Lex.getLoc();
3180 if (!EatIfPresent(lltok::lsquare))
3181 return false;
3182
3183 while (Lex.getKind() != lltok::rsquare) {
3184 // If this isn't the first operand bundle, we need a comma.
3185 if (!BundleList.empty() &&
3186 parseToken(lltok::comma, "expected ',' in input list"))
3187 return true;
3188
3189 std::string Tag;
3190 if (parseStringConstant(Tag))
3191 return true;
3192
3193 if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
3194 return true;
3195
3196 std::vector<Value *> Inputs;
3197 while (Lex.getKind() != lltok::rparen) {
3198 // If this isn't the first input, we need a comma.
3199 if (!Inputs.empty() &&
3200 parseToken(lltok::comma, "expected ',' in input list"))
3201 return true;
3202
3203 Type *Ty = nullptr;
3204 Value *Input = nullptr;
3205 if (parseType(Ty) || parseValue(Ty, Input, PFS))
3206 return true;
3207 Inputs.push_back(Input);
3208 }
3209
3210 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
3211
3212 Lex.Lex(); // Lex the ')'.
3213 }
3214
3215 if (BundleList.empty())
3216 return error(BeginLoc, "operand bundle set must not be empty");
3217
3218 Lex.Lex(); // Lex the ']'.
3219 return false;
3220 }
3221
checkValueID(LocTy Loc,StringRef Kind,StringRef Prefix,unsigned NextID,unsigned ID) const3222 bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix,
3223 unsigned NextID, unsigned ID) const {
3224 if (ID < NextID)
3225 return error(Loc, Kind + " expected to be numbered '" + Prefix +
3226 Twine(NextID) + "' or greater");
3227
3228 return false;
3229 }
3230
3231 /// parseArgumentList - parse the argument list for a function type or function
3232 /// prototype.
3233 /// ::= '(' ArgTypeListI ')'
3234 /// ArgTypeListI
3235 /// ::= /*empty*/
3236 /// ::= '...'
3237 /// ::= ArgTypeList ',' '...'
3238 /// ::= ArgType (',' ArgType)*
3239 ///
parseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,SmallVectorImpl<unsigned> & UnnamedArgNums,bool & IsVarArg)3240 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
3241 SmallVectorImpl<unsigned> &UnnamedArgNums,
3242 bool &IsVarArg) {
3243 unsigned CurValID = 0;
3244 IsVarArg = false;
3245 assert(Lex.getKind() == lltok::lparen);
3246 Lex.Lex(); // eat the (.
3247
3248 if (Lex.getKind() != lltok::rparen) {
3249 do {
3250 // Handle ... at end of arg list.
3251 if (EatIfPresent(lltok::dotdotdot)) {
3252 IsVarArg = true;
3253 break;
3254 }
3255
3256 // Otherwise must be an argument type.
3257 LocTy TypeLoc = Lex.getLoc();
3258 Type *ArgTy = nullptr;
3259 AttrBuilder Attrs(M->getContext());
3260 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
3261 return true;
3262
3263 if (ArgTy->isVoidTy())
3264 return error(TypeLoc, "argument can not have void type");
3265
3266 std::string Name;
3267 if (Lex.getKind() == lltok::LocalVar) {
3268 Name = Lex.getStrVal();
3269 Lex.Lex();
3270 } else {
3271 unsigned ArgID;
3272 if (Lex.getKind() == lltok::LocalVarID) {
3273 ArgID = Lex.getUIntVal();
3274 if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID))
3275 return true;
3276 Lex.Lex();
3277 } else {
3278 ArgID = CurValID;
3279 }
3280 UnnamedArgNums.push_back(ArgID);
3281 CurValID = ArgID + 1;
3282 }
3283
3284 if (!ArgTy->isFirstClassType())
3285 return error(TypeLoc, "invalid type for function argument");
3286
3287 ArgList.emplace_back(TypeLoc, ArgTy,
3288 AttributeSet::get(ArgTy->getContext(), Attrs),
3289 std::move(Name));
3290 } while (EatIfPresent(lltok::comma));
3291 }
3292
3293 return parseToken(lltok::rparen, "expected ')' at end of argument list");
3294 }
3295
3296 /// parseFunctionType
3297 /// ::= Type ArgumentList OptionalAttrs
parseFunctionType(Type * & Result)3298 bool LLParser::parseFunctionType(Type *&Result) {
3299 assert(Lex.getKind() == lltok::lparen);
3300
3301 if (!FunctionType::isValidReturnType(Result))
3302 return tokError("invalid function return type");
3303
3304 SmallVector<ArgInfo, 8> ArgList;
3305 bool IsVarArg;
3306 SmallVector<unsigned> UnnamedArgNums;
3307 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg))
3308 return true;
3309
3310 // Reject names on the arguments lists.
3311 for (const ArgInfo &Arg : ArgList) {
3312 if (!Arg.Name.empty())
3313 return error(Arg.Loc, "argument name invalid in function type");
3314 if (Arg.Attrs.hasAttributes())
3315 return error(Arg.Loc, "argument attributes invalid in function type");
3316 }
3317
3318 SmallVector<Type*, 16> ArgListTy;
3319 for (const ArgInfo &Arg : ArgList)
3320 ArgListTy.push_back(Arg.Ty);
3321
3322 Result = FunctionType::get(Result, ArgListTy, IsVarArg);
3323 return false;
3324 }
3325
3326 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
3327 /// other structs.
parseAnonStructType(Type * & Result,bool Packed)3328 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
3329 SmallVector<Type*, 8> Elts;
3330 if (parseStructBody(Elts))
3331 return true;
3332
3333 Result = StructType::get(Context, Elts, Packed);
3334 return false;
3335 }
3336
3337 /// parseStructDefinition - parse a struct in a 'type' definition.
parseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)3338 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
3339 std::pair<Type *, LocTy> &Entry,
3340 Type *&ResultTy) {
3341 // If the type was already defined, diagnose the redefinition.
3342 if (Entry.first && !Entry.second.isValid())
3343 return error(TypeLoc, "redefinition of type");
3344
3345 // If we have opaque, just return without filling in the definition for the
3346 // struct. This counts as a definition as far as the .ll file goes.
3347 if (EatIfPresent(lltok::kw_opaque)) {
3348 // This type is being defined, so clear the location to indicate this.
3349 Entry.second = SMLoc();
3350
3351 // If this type number has never been uttered, create it.
3352 if (!Entry.first)
3353 Entry.first = StructType::create(Context, Name);
3354 ResultTy = Entry.first;
3355 return false;
3356 }
3357
3358 // If the type starts with '<', then it is either a packed struct or a vector.
3359 bool isPacked = EatIfPresent(lltok::less);
3360
3361 // If we don't have a struct, then we have a random type alias, which we
3362 // accept for compatibility with old files. These types are not allowed to be
3363 // forward referenced and not allowed to be recursive.
3364 if (Lex.getKind() != lltok::lbrace) {
3365 if (Entry.first)
3366 return error(TypeLoc, "forward references to non-struct type");
3367
3368 ResultTy = nullptr;
3369 if (isPacked)
3370 return parseArrayVectorType(ResultTy, true);
3371 return parseType(ResultTy);
3372 }
3373
3374 // This type is being defined, so clear the location to indicate this.
3375 Entry.second = SMLoc();
3376
3377 // If this type number has never been uttered, create it.
3378 if (!Entry.first)
3379 Entry.first = StructType::create(Context, Name);
3380
3381 StructType *STy = cast<StructType>(Entry.first);
3382
3383 SmallVector<Type*, 8> Body;
3384 if (parseStructBody(Body) ||
3385 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
3386 return true;
3387
3388 STy->setBody(Body, isPacked);
3389 ResultTy = STy;
3390 return false;
3391 }
3392
3393 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere.
3394 /// StructType
3395 /// ::= '{' '}'
3396 /// ::= '{' Type (',' Type)* '}'
3397 /// ::= '<' '{' '}' '>'
3398 /// ::= '<' '{' Type (',' Type)* '}' '>'
parseStructBody(SmallVectorImpl<Type * > & Body)3399 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3400 assert(Lex.getKind() == lltok::lbrace);
3401 Lex.Lex(); // Consume the '{'
3402
3403 // Handle the empty struct.
3404 if (EatIfPresent(lltok::rbrace))
3405 return false;
3406
3407 LocTy EltTyLoc = Lex.getLoc();
3408 Type *Ty = nullptr;
3409 if (parseType(Ty))
3410 return true;
3411 Body.push_back(Ty);
3412
3413 if (!StructType::isValidElementType(Ty))
3414 return error(EltTyLoc, "invalid element type for struct");
3415
3416 while (EatIfPresent(lltok::comma)) {
3417 EltTyLoc = Lex.getLoc();
3418 if (parseType(Ty))
3419 return true;
3420
3421 if (!StructType::isValidElementType(Ty))
3422 return error(EltTyLoc, "invalid element type for struct");
3423
3424 Body.push_back(Ty);
3425 }
3426
3427 return parseToken(lltok::rbrace, "expected '}' at end of struct");
3428 }
3429
3430 /// parseArrayVectorType - parse an array or vector type, assuming the first
3431 /// token has already been consumed.
3432 /// Type
3433 /// ::= '[' APSINTVAL 'x' Types ']'
3434 /// ::= '<' APSINTVAL 'x' Types '>'
3435 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
parseArrayVectorType(Type * & Result,bool IsVector)3436 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3437 bool Scalable = false;
3438
3439 if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3440 Lex.Lex(); // consume the 'vscale'
3441 if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3442 return true;
3443
3444 Scalable = true;
3445 }
3446
3447 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3448 Lex.getAPSIntVal().getBitWidth() > 64)
3449 return tokError("expected number in address space");
3450
3451 LocTy SizeLoc = Lex.getLoc();
3452 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3453 Lex.Lex();
3454
3455 if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3456 return true;
3457
3458 LocTy TypeLoc = Lex.getLoc();
3459 Type *EltTy = nullptr;
3460 if (parseType(EltTy))
3461 return true;
3462
3463 if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3464 "expected end of sequential type"))
3465 return true;
3466
3467 if (IsVector) {
3468 if (Size == 0)
3469 return error(SizeLoc, "zero element vector is illegal");
3470 if ((unsigned)Size != Size)
3471 return error(SizeLoc, "size too large for vector");
3472 if (!VectorType::isValidElementType(EltTy))
3473 return error(TypeLoc, "invalid vector element type");
3474 Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3475 } else {
3476 if (!ArrayType::isValidElementType(EltTy))
3477 return error(TypeLoc, "invalid array element type");
3478 Result = ArrayType::get(EltTy, Size);
3479 }
3480 return false;
3481 }
3482
3483 /// parseTargetExtType - handle target extension type syntax
3484 /// TargetExtType
3485 /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3486 ///
3487 /// TargetExtTypeParams
3488 /// ::= /*empty*/
3489 /// ::= ',' Type TargetExtTypeParams
3490 ///
3491 /// TargetExtIntParams
3492 /// ::= /*empty*/
3493 /// ::= ',' uint32 TargetExtIntParams
parseTargetExtType(Type * & Result)3494 bool LLParser::parseTargetExtType(Type *&Result) {
3495 Lex.Lex(); // Eat the 'target' keyword.
3496
3497 // Get the mandatory type name.
3498 std::string TypeName;
3499 if (parseToken(lltok::lparen, "expected '(' in target extension type") ||
3500 parseStringConstant(TypeName))
3501 return true;
3502
3503 // Parse all of the integer and type parameters at the same time; the use of
3504 // SeenInt will allow us to catch cases where type parameters follow integer
3505 // parameters.
3506 SmallVector<Type *> TypeParams;
3507 SmallVector<unsigned> IntParams;
3508 bool SeenInt = false;
3509 while (Lex.getKind() == lltok::comma) {
3510 Lex.Lex(); // Eat the comma.
3511
3512 if (Lex.getKind() == lltok::APSInt) {
3513 SeenInt = true;
3514 unsigned IntVal;
3515 if (parseUInt32(IntVal))
3516 return true;
3517 IntParams.push_back(IntVal);
3518 } else if (SeenInt) {
3519 // The only other kind of parameter we support is type parameters, which
3520 // must precede the integer parameters. This is therefore an error.
3521 return tokError("expected uint32 param");
3522 } else {
3523 Type *TypeParam;
3524 if (parseType(TypeParam, /*AllowVoid=*/true))
3525 return true;
3526 TypeParams.push_back(TypeParam);
3527 }
3528 }
3529
3530 if (parseToken(lltok::rparen, "expected ')' in target extension type"))
3531 return true;
3532
3533 Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
3534 return false;
3535 }
3536
3537 //===----------------------------------------------------------------------===//
3538 // Function Semantic Analysis.
3539 //===----------------------------------------------------------------------===//
3540
PerFunctionState(LLParser & p,Function & f,int functionNumber,ArrayRef<unsigned> UnnamedArgNums)3541 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3542 int functionNumber,
3543 ArrayRef<unsigned> UnnamedArgNums)
3544 : P(p), F(f), FunctionNumber(functionNumber) {
3545
3546 // Insert unnamed arguments into the NumberedVals list.
3547 auto It = UnnamedArgNums.begin();
3548 for (Argument &A : F.args()) {
3549 if (!A.hasName()) {
3550 unsigned ArgNum = *It++;
3551 NumberedVals.add(ArgNum, &A);
3552 }
3553 }
3554 }
3555
~PerFunctionState()3556 LLParser::PerFunctionState::~PerFunctionState() {
3557 // If there were any forward referenced non-basicblock values, delete them.
3558
3559 for (const auto &P : ForwardRefVals) {
3560 if (isa<BasicBlock>(P.second.first))
3561 continue;
3562 P.second.first->replaceAllUsesWith(
3563 PoisonValue::get(P.second.first->getType()));
3564 P.second.first->deleteValue();
3565 }
3566
3567 for (const auto &P : ForwardRefValIDs) {
3568 if (isa<BasicBlock>(P.second.first))
3569 continue;
3570 P.second.first->replaceAllUsesWith(
3571 PoisonValue::get(P.second.first->getType()));
3572 P.second.first->deleteValue();
3573 }
3574 }
3575
finishFunction()3576 bool LLParser::PerFunctionState::finishFunction() {
3577 if (!ForwardRefVals.empty())
3578 return P.error(ForwardRefVals.begin()->second.second,
3579 "use of undefined value '%" + ForwardRefVals.begin()->first +
3580 "'");
3581 if (!ForwardRefValIDs.empty())
3582 return P.error(ForwardRefValIDs.begin()->second.second,
3583 "use of undefined value '%" +
3584 Twine(ForwardRefValIDs.begin()->first) + "'");
3585 return false;
3586 }
3587
3588 /// getVal - Get a value with the specified name or ID, creating a
3589 /// forward reference record if needed. This can return null if the value
3590 /// exists but does not have the right type.
getVal(const std::string & Name,Type * Ty,LocTy Loc)3591 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3592 LocTy Loc) {
3593 // Look this name up in the normal function symbol table.
3594 Value *Val = F.getValueSymbolTable()->lookup(Name);
3595
3596 // If this is a forward reference for the value, see if we already created a
3597 // forward ref record.
3598 if (!Val) {
3599 auto I = ForwardRefVals.find(Name);
3600 if (I != ForwardRefVals.end())
3601 Val = I->second.first;
3602 }
3603
3604 // If we have the value in the symbol table or fwd-ref table, return it.
3605 if (Val)
3606 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
3607
3608 // Don't make placeholders with invalid type.
3609 if (!Ty->isFirstClassType()) {
3610 P.error(Loc, "invalid use of a non-first-class type");
3611 return nullptr;
3612 }
3613
3614 // Otherwise, create a new forward reference for this value and remember it.
3615 Value *FwdVal;
3616 if (Ty->isLabelTy()) {
3617 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3618 } else {
3619 FwdVal = new Argument(Ty, Name);
3620 }
3621 if (FwdVal->getName() != Name) {
3622 P.error(Loc, "name is too long which can result in name collisions, "
3623 "consider making the name shorter or "
3624 "increasing -non-global-value-max-name-size");
3625 return nullptr;
3626 }
3627
3628 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3629 return FwdVal;
3630 }
3631
getVal(unsigned ID,Type * Ty,LocTy Loc)3632 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3633 // Look this name up in the normal function symbol table.
3634 Value *Val = NumberedVals.get(ID);
3635
3636 // If this is a forward reference for the value, see if we already created a
3637 // forward ref record.
3638 if (!Val) {
3639 auto I = ForwardRefValIDs.find(ID);
3640 if (I != ForwardRefValIDs.end())
3641 Val = I->second.first;
3642 }
3643
3644 // If we have the value in the symbol table or fwd-ref table, return it.
3645 if (Val)
3646 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
3647
3648 if (!Ty->isFirstClassType()) {
3649 P.error(Loc, "invalid use of a non-first-class type");
3650 return nullptr;
3651 }
3652
3653 // Otherwise, create a new forward reference for this value and remember it.
3654 Value *FwdVal;
3655 if (Ty->isLabelTy()) {
3656 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3657 } else {
3658 FwdVal = new Argument(Ty);
3659 }
3660
3661 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3662 return FwdVal;
3663 }
3664
3665 /// setInstName - After an instruction is parsed and inserted into its
3666 /// basic block, this installs its name.
setInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)3667 bool LLParser::PerFunctionState::setInstName(int NameID,
3668 const std::string &NameStr,
3669 LocTy NameLoc, Instruction *Inst) {
3670 // If this instruction has void type, it cannot have a name or ID specified.
3671 if (Inst->getType()->isVoidTy()) {
3672 if (NameID != -1 || !NameStr.empty())
3673 return P.error(NameLoc, "instructions returning void cannot have a name");
3674 return false;
3675 }
3676
3677 // If this was a numbered instruction, verify that the instruction is the
3678 // expected value and resolve any forward references.
3679 if (NameStr.empty()) {
3680 // If neither a name nor an ID was specified, just use the next ID.
3681 if (NameID == -1)
3682 NameID = NumberedVals.getNext();
3683
3684 if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(),
3685 NameID))
3686 return true;
3687
3688 auto FI = ForwardRefValIDs.find(NameID);
3689 if (FI != ForwardRefValIDs.end()) {
3690 Value *Sentinel = FI->second.first;
3691 if (Sentinel->getType() != Inst->getType())
3692 return P.error(NameLoc, "instruction forward referenced with type '" +
3693 getTypeString(FI->second.first->getType()) +
3694 "'");
3695
3696 Sentinel->replaceAllUsesWith(Inst);
3697 Sentinel->deleteValue();
3698 ForwardRefValIDs.erase(FI);
3699 }
3700
3701 NumberedVals.add(NameID, Inst);
3702 return false;
3703 }
3704
3705 // Otherwise, the instruction had a name. Resolve forward refs and set it.
3706 auto FI = ForwardRefVals.find(NameStr);
3707 if (FI != ForwardRefVals.end()) {
3708 Value *Sentinel = FI->second.first;
3709 if (Sentinel->getType() != Inst->getType())
3710 return P.error(NameLoc, "instruction forward referenced with type '" +
3711 getTypeString(FI->second.first->getType()) +
3712 "'");
3713
3714 Sentinel->replaceAllUsesWith(Inst);
3715 Sentinel->deleteValue();
3716 ForwardRefVals.erase(FI);
3717 }
3718
3719 // Set the name on the instruction.
3720 Inst->setName(NameStr);
3721
3722 if (Inst->getName() != NameStr)
3723 return P.error(NameLoc, "multiple definition of local value named '" +
3724 NameStr + "'");
3725 return false;
3726 }
3727
3728 /// getBB - Get a basic block with the specified name or ID, creating a
3729 /// forward reference record if needed.
getBB(const std::string & Name,LocTy Loc)3730 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3731 LocTy Loc) {
3732 return dyn_cast_or_null<BasicBlock>(
3733 getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3734 }
3735
getBB(unsigned ID,LocTy Loc)3736 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3737 return dyn_cast_or_null<BasicBlock>(
3738 getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3739 }
3740
3741 /// defineBB - Define the specified basic block, which is either named or
3742 /// unnamed. If there is an error, this returns null otherwise it returns
3743 /// the block being defined.
defineBB(const std::string & Name,int NameID,LocTy Loc)3744 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3745 int NameID, LocTy Loc) {
3746 BasicBlock *BB;
3747 if (Name.empty()) {
3748 if (NameID != -1) {
3749 if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID))
3750 return nullptr;
3751 } else {
3752 NameID = NumberedVals.getNext();
3753 }
3754 BB = getBB(NameID, Loc);
3755 if (!BB) {
3756 P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'");
3757 return nullptr;
3758 }
3759 } else {
3760 BB = getBB(Name, Loc);
3761 if (!BB) {
3762 P.error(Loc, "unable to create block named '" + Name + "'");
3763 return nullptr;
3764 }
3765 }
3766
3767 // Move the block to the end of the function. Forward ref'd blocks are
3768 // inserted wherever they happen to be referenced.
3769 F.splice(F.end(), &F, BB->getIterator());
3770
3771 // Remove the block from forward ref sets.
3772 if (Name.empty()) {
3773 ForwardRefValIDs.erase(NameID);
3774 NumberedVals.add(NameID, BB);
3775 } else {
3776 // BB forward references are already in the function symbol table.
3777 ForwardRefVals.erase(Name);
3778 }
3779
3780 return BB;
3781 }
3782
3783 //===----------------------------------------------------------------------===//
3784 // Constants.
3785 //===----------------------------------------------------------------------===//
3786
3787 /// parseValID - parse an abstract value that doesn't necessarily have a
3788 /// type implied. For example, if we parse "4" we don't know what integer type
3789 /// it has. The value will later be combined with its type and checked for
3790 /// basic correctness. PFS is used to convert function-local operands of
3791 /// metadata (since metadata operands are not just parsed here but also
3792 /// converted to values). PFS can be null when we are not parsing metadata
3793 /// values inside a function.
parseValID(ValID & ID,PerFunctionState * PFS,Type * ExpectedTy)3794 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3795 ID.Loc = Lex.getLoc();
3796 switch (Lex.getKind()) {
3797 default:
3798 return tokError("expected value token");
3799 case lltok::GlobalID: // @42
3800 ID.UIntVal = Lex.getUIntVal();
3801 ID.Kind = ValID::t_GlobalID;
3802 break;
3803 case lltok::GlobalVar: // @foo
3804 ID.StrVal = Lex.getStrVal();
3805 ID.Kind = ValID::t_GlobalName;
3806 break;
3807 case lltok::LocalVarID: // %42
3808 ID.UIntVal = Lex.getUIntVal();
3809 ID.Kind = ValID::t_LocalID;
3810 break;
3811 case lltok::LocalVar: // %foo
3812 ID.StrVal = Lex.getStrVal();
3813 ID.Kind = ValID::t_LocalName;
3814 break;
3815 case lltok::APSInt:
3816 ID.APSIntVal = Lex.getAPSIntVal();
3817 ID.Kind = ValID::t_APSInt;
3818 break;
3819 case lltok::APFloat:
3820 ID.APFloatVal = Lex.getAPFloatVal();
3821 ID.Kind = ValID::t_APFloat;
3822 break;
3823 case lltok::kw_true:
3824 ID.ConstantVal = ConstantInt::getTrue(Context);
3825 ID.Kind = ValID::t_Constant;
3826 break;
3827 case lltok::kw_false:
3828 ID.ConstantVal = ConstantInt::getFalse(Context);
3829 ID.Kind = ValID::t_Constant;
3830 break;
3831 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3832 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3833 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3834 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3835 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3836
3837 case lltok::lbrace: {
3838 // ValID ::= '{' ConstVector '}'
3839 Lex.Lex();
3840 SmallVector<Constant*, 16> Elts;
3841 if (parseGlobalValueVector(Elts) ||
3842 parseToken(lltok::rbrace, "expected end of struct constant"))
3843 return true;
3844
3845 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3846 ID.UIntVal = Elts.size();
3847 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3848 Elts.size() * sizeof(Elts[0]));
3849 ID.Kind = ValID::t_ConstantStruct;
3850 return false;
3851 }
3852 case lltok::less: {
3853 // ValID ::= '<' ConstVector '>' --> Vector.
3854 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3855 Lex.Lex();
3856 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3857
3858 SmallVector<Constant*, 16> Elts;
3859 LocTy FirstEltLoc = Lex.getLoc();
3860 if (parseGlobalValueVector(Elts) ||
3861 (isPackedStruct &&
3862 parseToken(lltok::rbrace, "expected end of packed struct")) ||
3863 parseToken(lltok::greater, "expected end of constant"))
3864 return true;
3865
3866 if (isPackedStruct) {
3867 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3868 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3869 Elts.size() * sizeof(Elts[0]));
3870 ID.UIntVal = Elts.size();
3871 ID.Kind = ValID::t_PackedConstantStruct;
3872 return false;
3873 }
3874
3875 if (Elts.empty())
3876 return error(ID.Loc, "constant vector must not be empty");
3877
3878 if (!Elts[0]->getType()->isIntegerTy() &&
3879 !Elts[0]->getType()->isFloatingPointTy() &&
3880 !Elts[0]->getType()->isPointerTy())
3881 return error(
3882 FirstEltLoc,
3883 "vector elements must have integer, pointer or floating point type");
3884
3885 // Verify that all the vector elements have the same type.
3886 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3887 if (Elts[i]->getType() != Elts[0]->getType())
3888 return error(FirstEltLoc, "vector element #" + Twine(i) +
3889 " is not of type '" +
3890 getTypeString(Elts[0]->getType()));
3891
3892 ID.ConstantVal = ConstantVector::get(Elts);
3893 ID.Kind = ValID::t_Constant;
3894 return false;
3895 }
3896 case lltok::lsquare: { // Array Constant
3897 Lex.Lex();
3898 SmallVector<Constant*, 16> Elts;
3899 LocTy FirstEltLoc = Lex.getLoc();
3900 if (parseGlobalValueVector(Elts) ||
3901 parseToken(lltok::rsquare, "expected end of array constant"))
3902 return true;
3903
3904 // Handle empty element.
3905 if (Elts.empty()) {
3906 // Use undef instead of an array because it's inconvenient to determine
3907 // the element type at this point, there being no elements to examine.
3908 ID.Kind = ValID::t_EmptyArray;
3909 return false;
3910 }
3911
3912 if (!Elts[0]->getType()->isFirstClassType())
3913 return error(FirstEltLoc, "invalid array element type: " +
3914 getTypeString(Elts[0]->getType()));
3915
3916 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3917
3918 // Verify all elements are correct type!
3919 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3920 if (Elts[i]->getType() != Elts[0]->getType())
3921 return error(FirstEltLoc, "array element #" + Twine(i) +
3922 " is not of type '" +
3923 getTypeString(Elts[0]->getType()));
3924 }
3925
3926 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3927 ID.Kind = ValID::t_Constant;
3928 return false;
3929 }
3930 case lltok::kw_c: // c "foo"
3931 Lex.Lex();
3932 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3933 false);
3934 if (parseToken(lltok::StringConstant, "expected string"))
3935 return true;
3936 ID.Kind = ValID::t_Constant;
3937 return false;
3938
3939 case lltok::kw_asm: {
3940 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3941 // STRINGCONSTANT
3942 bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3943 Lex.Lex();
3944 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3945 parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3946 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3947 parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3948 parseStringConstant(ID.StrVal) ||
3949 parseToken(lltok::comma, "expected comma in inline asm expression") ||
3950 parseToken(lltok::StringConstant, "expected constraint string"))
3951 return true;
3952 ID.StrVal2 = Lex.getStrVal();
3953 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3954 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3955 ID.Kind = ValID::t_InlineAsm;
3956 return false;
3957 }
3958
3959 case lltok::kw_blockaddress: {
3960 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3961 Lex.Lex();
3962
3963 ValID Fn, Label;
3964
3965 if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3966 parseValID(Fn, PFS) ||
3967 parseToken(lltok::comma,
3968 "expected comma in block address expression") ||
3969 parseValID(Label, PFS) ||
3970 parseToken(lltok::rparen, "expected ')' in block address expression"))
3971 return true;
3972
3973 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3974 return error(Fn.Loc, "expected function name in blockaddress");
3975 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3976 return error(Label.Loc, "expected basic block name in blockaddress");
3977
3978 // Try to find the function (but skip it if it's forward-referenced).
3979 GlobalValue *GV = nullptr;
3980 if (Fn.Kind == ValID::t_GlobalID) {
3981 GV = NumberedVals.get(Fn.UIntVal);
3982 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3983 GV = M->getNamedValue(Fn.StrVal);
3984 }
3985 Function *F = nullptr;
3986 if (GV) {
3987 // Confirm that it's actually a function with a definition.
3988 if (!isa<Function>(GV))
3989 return error(Fn.Loc, "expected function name in blockaddress");
3990 F = cast<Function>(GV);
3991 if (F->isDeclaration())
3992 return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3993 }
3994
3995 if (!F) {
3996 // Make a global variable as a placeholder for this reference.
3997 GlobalValue *&FwdRef =
3998 ForwardRefBlockAddresses.insert(std::make_pair(
3999 std::move(Fn),
4000 std::map<ValID, GlobalValue *>()))
4001 .first->second.insert(std::make_pair(std::move(Label), nullptr))
4002 .first->second;
4003 if (!FwdRef) {
4004 unsigned FwdDeclAS;
4005 if (ExpectedTy) {
4006 // If we know the type that the blockaddress is being assigned to,
4007 // we can use the address space of that type.
4008 if (!ExpectedTy->isPointerTy())
4009 return error(ID.Loc,
4010 "type of blockaddress must be a pointer and not '" +
4011 getTypeString(ExpectedTy) + "'");
4012 FwdDeclAS = ExpectedTy->getPointerAddressSpace();
4013 } else if (PFS) {
4014 // Otherwise, we default the address space of the current function.
4015 FwdDeclAS = PFS->getFunction().getAddressSpace();
4016 } else {
4017 llvm_unreachable("Unknown address space for blockaddress");
4018 }
4019 FwdRef = new GlobalVariable(
4020 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
4021 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
4022 }
4023
4024 ID.ConstantVal = FwdRef;
4025 ID.Kind = ValID::t_Constant;
4026 return false;
4027 }
4028
4029 // We found the function; now find the basic block. Don't use PFS, since we
4030 // might be inside a constant expression.
4031 BasicBlock *BB;
4032 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
4033 if (Label.Kind == ValID::t_LocalID)
4034 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
4035 else
4036 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
4037 if (!BB)
4038 return error(Label.Loc, "referenced value is not a basic block");
4039 } else {
4040 if (Label.Kind == ValID::t_LocalID)
4041 return error(Label.Loc, "cannot take address of numeric label after "
4042 "the function is defined");
4043 BB = dyn_cast_or_null<BasicBlock>(
4044 F->getValueSymbolTable()->lookup(Label.StrVal));
4045 if (!BB)
4046 return error(Label.Loc, "referenced value is not a basic block");
4047 }
4048
4049 ID.ConstantVal = BlockAddress::get(F, BB);
4050 ID.Kind = ValID::t_Constant;
4051 return false;
4052 }
4053
4054 case lltok::kw_dso_local_equivalent: {
4055 // ValID ::= 'dso_local_equivalent' @foo
4056 Lex.Lex();
4057
4058 ValID Fn;
4059
4060 if (parseValID(Fn, PFS))
4061 return true;
4062
4063 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
4064 return error(Fn.Loc,
4065 "expected global value name in dso_local_equivalent");
4066
4067 // Try to find the function (but skip it if it's forward-referenced).
4068 GlobalValue *GV = nullptr;
4069 if (Fn.Kind == ValID::t_GlobalID) {
4070 GV = NumberedVals.get(Fn.UIntVal);
4071 } else if (!ForwardRefVals.count(Fn.StrVal)) {
4072 GV = M->getNamedValue(Fn.StrVal);
4073 }
4074
4075 if (!GV) {
4076 // Make a placeholder global variable as a placeholder for this reference.
4077 auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
4078 ? ForwardRefDSOLocalEquivalentIDs
4079 : ForwardRefDSOLocalEquivalentNames;
4080 GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second;
4081 if (!FwdRef) {
4082 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
4083 GlobalValue::InternalLinkage, nullptr, "",
4084 nullptr, GlobalValue::NotThreadLocal);
4085 }
4086
4087 ID.ConstantVal = FwdRef;
4088 ID.Kind = ValID::t_Constant;
4089 return false;
4090 }
4091
4092 if (!GV->getValueType()->isFunctionTy())
4093 return error(Fn.Loc, "expected a function, alias to function, or ifunc "
4094 "in dso_local_equivalent");
4095
4096 ID.ConstantVal = DSOLocalEquivalent::get(GV);
4097 ID.Kind = ValID::t_Constant;
4098 return false;
4099 }
4100
4101 case lltok::kw_no_cfi: {
4102 // ValID ::= 'no_cfi' @foo
4103 Lex.Lex();
4104
4105 if (parseValID(ID, PFS))
4106 return true;
4107
4108 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
4109 return error(ID.Loc, "expected global value name in no_cfi");
4110
4111 ID.NoCFI = true;
4112 return false;
4113 }
4114 case lltok::kw_ptrauth: {
4115 // ValID ::= 'ptrauth' '(' ptr @foo ',' i32 <key>
4116 // (',' i64 <disc> (',' ptr addrdisc)? )? ')'
4117 Lex.Lex();
4118
4119 Constant *Ptr, *Key;
4120 Constant *Disc = nullptr, *AddrDisc = nullptr;
4121
4122 if (parseToken(lltok::lparen,
4123 "expected '(' in constant ptrauth expression") ||
4124 parseGlobalTypeAndValue(Ptr) ||
4125 parseToken(lltok::comma,
4126 "expected comma in constant ptrauth expression") ||
4127 parseGlobalTypeAndValue(Key))
4128 return true;
4129 // If present, parse the optional disc/addrdisc.
4130 if (EatIfPresent(lltok::comma))
4131 if (parseGlobalTypeAndValue(Disc) ||
4132 (EatIfPresent(lltok::comma) && parseGlobalTypeAndValue(AddrDisc)))
4133 return true;
4134 if (parseToken(lltok::rparen,
4135 "expected ')' in constant ptrauth expression"))
4136 return true;
4137
4138 if (!Ptr->getType()->isPointerTy())
4139 return error(ID.Loc, "constant ptrauth base pointer must be a pointer");
4140
4141 auto *KeyC = dyn_cast<ConstantInt>(Key);
4142 if (!KeyC || KeyC->getBitWidth() != 32)
4143 return error(ID.Loc, "constant ptrauth key must be i32 constant");
4144
4145 ConstantInt *DiscC = nullptr;
4146 if (Disc) {
4147 DiscC = dyn_cast<ConstantInt>(Disc);
4148 if (!DiscC || DiscC->getBitWidth() != 64)
4149 return error(
4150 ID.Loc,
4151 "constant ptrauth integer discriminator must be i64 constant");
4152 } else {
4153 DiscC = ConstantInt::get(Type::getInt64Ty(Context), 0);
4154 }
4155
4156 if (AddrDisc) {
4157 if (!AddrDisc->getType()->isPointerTy())
4158 return error(
4159 ID.Loc, "constant ptrauth address discriminator must be a pointer");
4160 } else {
4161 AddrDisc = ConstantPointerNull::get(PointerType::get(Context, 0));
4162 }
4163
4164 ID.ConstantVal = ConstantPtrAuth::get(Ptr, KeyC, DiscC, AddrDisc);
4165 ID.Kind = ValID::t_Constant;
4166 return false;
4167 }
4168
4169 case lltok::kw_trunc:
4170 case lltok::kw_bitcast:
4171 case lltok::kw_addrspacecast:
4172 case lltok::kw_inttoptr:
4173 case lltok::kw_ptrtoint: {
4174 unsigned Opc = Lex.getUIntVal();
4175 Type *DestTy = nullptr;
4176 Constant *SrcVal;
4177 Lex.Lex();
4178 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
4179 parseGlobalTypeAndValue(SrcVal) ||
4180 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
4181 parseType(DestTy) ||
4182 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
4183 return true;
4184 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
4185 return error(ID.Loc, "invalid cast opcode for cast from '" +
4186 getTypeString(SrcVal->getType()) + "' to '" +
4187 getTypeString(DestTy) + "'");
4188 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
4189 SrcVal, DestTy);
4190 ID.Kind = ValID::t_Constant;
4191 return false;
4192 }
4193 case lltok::kw_extractvalue:
4194 return error(ID.Loc, "extractvalue constexprs are no longer supported");
4195 case lltok::kw_insertvalue:
4196 return error(ID.Loc, "insertvalue constexprs are no longer supported");
4197 case lltok::kw_udiv:
4198 return error(ID.Loc, "udiv constexprs are no longer supported");
4199 case lltok::kw_sdiv:
4200 return error(ID.Loc, "sdiv constexprs are no longer supported");
4201 case lltok::kw_urem:
4202 return error(ID.Loc, "urem constexprs are no longer supported");
4203 case lltok::kw_srem:
4204 return error(ID.Loc, "srem constexprs are no longer supported");
4205 case lltok::kw_fadd:
4206 return error(ID.Loc, "fadd constexprs are no longer supported");
4207 case lltok::kw_fsub:
4208 return error(ID.Loc, "fsub constexprs are no longer supported");
4209 case lltok::kw_fmul:
4210 return error(ID.Loc, "fmul constexprs are no longer supported");
4211 case lltok::kw_fdiv:
4212 return error(ID.Loc, "fdiv constexprs are no longer supported");
4213 case lltok::kw_frem:
4214 return error(ID.Loc, "frem constexprs are no longer supported");
4215 case lltok::kw_and:
4216 return error(ID.Loc, "and constexprs are no longer supported");
4217 case lltok::kw_or:
4218 return error(ID.Loc, "or constexprs are no longer supported");
4219 case lltok::kw_lshr:
4220 return error(ID.Loc, "lshr constexprs are no longer supported");
4221 case lltok::kw_ashr:
4222 return error(ID.Loc, "ashr constexprs are no longer supported");
4223 case lltok::kw_shl:
4224 return error(ID.Loc, "shl constexprs are no longer supported");
4225 case lltok::kw_fneg:
4226 return error(ID.Loc, "fneg constexprs are no longer supported");
4227 case lltok::kw_select:
4228 return error(ID.Loc, "select constexprs are no longer supported");
4229 case lltok::kw_zext:
4230 return error(ID.Loc, "zext constexprs are no longer supported");
4231 case lltok::kw_sext:
4232 return error(ID.Loc, "sext constexprs are no longer supported");
4233 case lltok::kw_fptrunc:
4234 return error(ID.Loc, "fptrunc constexprs are no longer supported");
4235 case lltok::kw_fpext:
4236 return error(ID.Loc, "fpext constexprs are no longer supported");
4237 case lltok::kw_uitofp:
4238 return error(ID.Loc, "uitofp constexprs are no longer supported");
4239 case lltok::kw_sitofp:
4240 return error(ID.Loc, "sitofp constexprs are no longer supported");
4241 case lltok::kw_fptoui:
4242 return error(ID.Loc, "fptoui constexprs are no longer supported");
4243 case lltok::kw_fptosi:
4244 return error(ID.Loc, "fptosi constexprs are no longer supported");
4245 case lltok::kw_icmp:
4246 return error(ID.Loc, "icmp constexprs are no longer supported");
4247 case lltok::kw_fcmp:
4248 return error(ID.Loc, "fcmp constexprs are no longer supported");
4249
4250 // Binary Operators.
4251 case lltok::kw_add:
4252 case lltok::kw_sub:
4253 case lltok::kw_mul:
4254 case lltok::kw_xor: {
4255 bool NUW = false;
4256 bool NSW = false;
4257 unsigned Opc = Lex.getUIntVal();
4258 Constant *Val0, *Val1;
4259 Lex.Lex();
4260 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
4261 Opc == Instruction::Mul) {
4262 if (EatIfPresent(lltok::kw_nuw))
4263 NUW = true;
4264 if (EatIfPresent(lltok::kw_nsw)) {
4265 NSW = true;
4266 if (EatIfPresent(lltok::kw_nuw))
4267 NUW = true;
4268 }
4269 }
4270 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
4271 parseGlobalTypeAndValue(Val0) ||
4272 parseToken(lltok::comma, "expected comma in binary constantexpr") ||
4273 parseGlobalTypeAndValue(Val1) ||
4274 parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
4275 return true;
4276 if (Val0->getType() != Val1->getType())
4277 return error(ID.Loc, "operands of constexpr must have same type");
4278 // Check that the type is valid for the operator.
4279 if (!Val0->getType()->isIntOrIntVectorTy())
4280 return error(ID.Loc,
4281 "constexpr requires integer or integer vector operands");
4282 unsigned Flags = 0;
4283 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
4284 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
4285 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags);
4286 ID.Kind = ValID::t_Constant;
4287 return false;
4288 }
4289
4290 case lltok::kw_splat: {
4291 Lex.Lex();
4292 if (parseToken(lltok::lparen, "expected '(' after vector splat"))
4293 return true;
4294 Constant *C;
4295 if (parseGlobalTypeAndValue(C))
4296 return true;
4297 if (parseToken(lltok::rparen, "expected ')' at end of vector splat"))
4298 return true;
4299
4300 ID.ConstantVal = C;
4301 ID.Kind = ValID::t_ConstantSplat;
4302 return false;
4303 }
4304
4305 case lltok::kw_getelementptr:
4306 case lltok::kw_shufflevector:
4307 case lltok::kw_insertelement:
4308 case lltok::kw_extractelement: {
4309 unsigned Opc = Lex.getUIntVal();
4310 SmallVector<Constant*, 16> Elts;
4311 GEPNoWrapFlags NW;
4312 bool HasInRange = false;
4313 APSInt InRangeStart;
4314 APSInt InRangeEnd;
4315 Type *Ty;
4316 Lex.Lex();
4317
4318 if (Opc == Instruction::GetElementPtr) {
4319 while (true) {
4320 if (EatIfPresent(lltok::kw_inbounds))
4321 NW |= GEPNoWrapFlags::inBounds();
4322 else if (EatIfPresent(lltok::kw_nusw))
4323 NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
4324 else if (EatIfPresent(lltok::kw_nuw))
4325 NW |= GEPNoWrapFlags::noUnsignedWrap();
4326 else
4327 break;
4328 }
4329
4330 if (EatIfPresent(lltok::kw_inrange)) {
4331 if (parseToken(lltok::lparen, "expected '('"))
4332 return true;
4333 if (Lex.getKind() != lltok::APSInt)
4334 return tokError("expected integer");
4335 InRangeStart = Lex.getAPSIntVal();
4336 Lex.Lex();
4337 if (parseToken(lltok::comma, "expected ','"))
4338 return true;
4339 if (Lex.getKind() != lltok::APSInt)
4340 return tokError("expected integer");
4341 InRangeEnd = Lex.getAPSIntVal();
4342 Lex.Lex();
4343 if (parseToken(lltok::rparen, "expected ')'"))
4344 return true;
4345 HasInRange = true;
4346 }
4347 }
4348
4349 if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
4350 return true;
4351
4352 if (Opc == Instruction::GetElementPtr) {
4353 if (parseType(Ty) ||
4354 parseToken(lltok::comma, "expected comma after getelementptr's type"))
4355 return true;
4356 }
4357
4358 if (parseGlobalValueVector(Elts) ||
4359 parseToken(lltok::rparen, "expected ')' in constantexpr"))
4360 return true;
4361
4362 if (Opc == Instruction::GetElementPtr) {
4363 if (Elts.size() == 0 ||
4364 !Elts[0]->getType()->isPtrOrPtrVectorTy())
4365 return error(ID.Loc, "base of getelementptr must be a pointer");
4366
4367 Type *BaseType = Elts[0]->getType();
4368 std::optional<ConstantRange> InRange;
4369 if (HasInRange) {
4370 unsigned IndexWidth =
4371 M->getDataLayout().getIndexTypeSizeInBits(BaseType);
4372 InRangeStart = InRangeStart.extOrTrunc(IndexWidth);
4373 InRangeEnd = InRangeEnd.extOrTrunc(IndexWidth);
4374 if (InRangeStart.sge(InRangeEnd))
4375 return error(ID.Loc, "expected end to be larger than start");
4376 InRange = ConstantRange::getNonEmpty(InRangeStart, InRangeEnd);
4377 }
4378
4379 unsigned GEPWidth =
4380 BaseType->isVectorTy()
4381 ? cast<FixedVectorType>(BaseType)->getNumElements()
4382 : 0;
4383
4384 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
4385 for (Constant *Val : Indices) {
4386 Type *ValTy = Val->getType();
4387 if (!ValTy->isIntOrIntVectorTy())
4388 return error(ID.Loc, "getelementptr index must be an integer");
4389 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
4390 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
4391 if (GEPWidth && (ValNumEl != GEPWidth))
4392 return error(
4393 ID.Loc,
4394 "getelementptr vector index has a wrong number of elements");
4395 // GEPWidth may have been unknown because the base is a scalar,
4396 // but it is known now.
4397 GEPWidth = ValNumEl;
4398 }
4399 }
4400
4401 SmallPtrSet<Type*, 4> Visited;
4402 if (!Indices.empty() && !Ty->isSized(&Visited))
4403 return error(ID.Loc, "base element of getelementptr must be sized");
4404
4405 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
4406 return error(ID.Loc, "invalid getelementptr indices");
4407
4408 ID.ConstantVal =
4409 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, NW, InRange);
4410 } else if (Opc == Instruction::ShuffleVector) {
4411 if (Elts.size() != 3)
4412 return error(ID.Loc, "expected three operands to shufflevector");
4413 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4414 return error(ID.Loc, "invalid operands to shufflevector");
4415 SmallVector<int, 16> Mask;
4416 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
4417 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
4418 } else if (Opc == Instruction::ExtractElement) {
4419 if (Elts.size() != 2)
4420 return error(ID.Loc, "expected two operands to extractelement");
4421 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
4422 return error(ID.Loc, "invalid extractelement operands");
4423 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
4424 } else {
4425 assert(Opc == Instruction::InsertElement && "Unknown opcode");
4426 if (Elts.size() != 3)
4427 return error(ID.Loc, "expected three operands to insertelement");
4428 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4429 return error(ID.Loc, "invalid insertelement operands");
4430 ID.ConstantVal =
4431 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
4432 }
4433
4434 ID.Kind = ValID::t_Constant;
4435 return false;
4436 }
4437 }
4438
4439 Lex.Lex();
4440 return false;
4441 }
4442
4443 /// parseGlobalValue - parse a global value with the specified type.
parseGlobalValue(Type * Ty,Constant * & C)4444 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4445 C = nullptr;
4446 ValID ID;
4447 Value *V = nullptr;
4448 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
4449 convertValIDToValue(Ty, ID, V, nullptr);
4450 if (V && !(C = dyn_cast<Constant>(V)))
4451 return error(ID.Loc, "global values must be constants");
4452 return Parsed;
4453 }
4454
parseGlobalTypeAndValue(Constant * & V)4455 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4456 Type *Ty = nullptr;
4457 return parseType(Ty) || parseGlobalValue(Ty, V);
4458 }
4459
parseOptionalComdat(StringRef GlobalName,Comdat * & C)4460 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4461 C = nullptr;
4462
4463 LocTy KwLoc = Lex.getLoc();
4464 if (!EatIfPresent(lltok::kw_comdat))
4465 return false;
4466
4467 if (EatIfPresent(lltok::lparen)) {
4468 if (Lex.getKind() != lltok::ComdatVar)
4469 return tokError("expected comdat variable");
4470 C = getComdat(Lex.getStrVal(), Lex.getLoc());
4471 Lex.Lex();
4472 if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4473 return true;
4474 } else {
4475 if (GlobalName.empty())
4476 return tokError("comdat cannot be unnamed");
4477 C = getComdat(std::string(GlobalName), KwLoc);
4478 }
4479
4480 return false;
4481 }
4482
4483 /// parseGlobalValueVector
4484 /// ::= /*empty*/
4485 /// ::= TypeAndValue (',' TypeAndValue)*
parseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)4486 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
4487 // Empty list.
4488 if (Lex.getKind() == lltok::rbrace ||
4489 Lex.getKind() == lltok::rsquare ||
4490 Lex.getKind() == lltok::greater ||
4491 Lex.getKind() == lltok::rparen)
4492 return false;
4493
4494 do {
4495 // Let the caller deal with inrange.
4496 if (Lex.getKind() == lltok::kw_inrange)
4497 return false;
4498
4499 Constant *C;
4500 if (parseGlobalTypeAndValue(C))
4501 return true;
4502 Elts.push_back(C);
4503 } while (EatIfPresent(lltok::comma));
4504
4505 return false;
4506 }
4507
parseMDTuple(MDNode * & MD,bool IsDistinct)4508 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4509 SmallVector<Metadata *, 16> Elts;
4510 if (parseMDNodeVector(Elts))
4511 return true;
4512
4513 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4514 return false;
4515 }
4516
4517 /// MDNode:
4518 /// ::= !{ ... }
4519 /// ::= !7
4520 /// ::= !DILocation(...)
parseMDNode(MDNode * & N)4521 bool LLParser::parseMDNode(MDNode *&N) {
4522 if (Lex.getKind() == lltok::MetadataVar)
4523 return parseSpecializedMDNode(N);
4524
4525 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4526 }
4527
parseMDNodeTail(MDNode * & N)4528 bool LLParser::parseMDNodeTail(MDNode *&N) {
4529 // !{ ... }
4530 if (Lex.getKind() == lltok::lbrace)
4531 return parseMDTuple(N);
4532
4533 // !42
4534 return parseMDNodeID(N);
4535 }
4536
4537 namespace {
4538
4539 /// Structure to represent an optional metadata field.
4540 template <class FieldTy> struct MDFieldImpl {
4541 typedef MDFieldImpl ImplTy;
4542 FieldTy Val;
4543 bool Seen;
4544
assign__anon424f6c520811::MDFieldImpl4545 void assign(FieldTy Val) {
4546 Seen = true;
4547 this->Val = std::move(Val);
4548 }
4549
MDFieldImpl__anon424f6c520811::MDFieldImpl4550 explicit MDFieldImpl(FieldTy Default)
4551 : Val(std::move(Default)), Seen(false) {}
4552 };
4553
4554 /// Structure to represent an optional metadata field that
4555 /// can be of either type (A or B) and encapsulates the
4556 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4557 /// to reimplement the specifics for representing each Field.
4558 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4559 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4560 FieldTypeA A;
4561 FieldTypeB B;
4562 bool Seen;
4563
4564 enum {
4565 IsInvalid = 0,
4566 IsTypeA = 1,
4567 IsTypeB = 2
4568 } WhatIs;
4569
assign__anon424f6c520811::MDEitherFieldImpl4570 void assign(FieldTypeA A) {
4571 Seen = true;
4572 this->A = std::move(A);
4573 WhatIs = IsTypeA;
4574 }
4575
assign__anon424f6c520811::MDEitherFieldImpl4576 void assign(FieldTypeB B) {
4577 Seen = true;
4578 this->B = std::move(B);
4579 WhatIs = IsTypeB;
4580 }
4581
MDEitherFieldImpl__anon424f6c520811::MDEitherFieldImpl4582 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4583 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4584 WhatIs(IsInvalid) {}
4585 };
4586
4587 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4588 uint64_t Max;
4589
MDUnsignedField__anon424f6c520811::MDUnsignedField4590 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4591 : ImplTy(Default), Max(Max) {}
4592 };
4593
4594 struct LineField : public MDUnsignedField {
LineField__anon424f6c520811::LineField4595 LineField() : MDUnsignedField(0, UINT32_MAX) {}
4596 };
4597
4598 struct ColumnField : public MDUnsignedField {
ColumnField__anon424f6c520811::ColumnField4599 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4600 };
4601
4602 struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon424f6c520811::DwarfTagField4603 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon424f6c520811::DwarfTagField4604 DwarfTagField(dwarf::Tag DefaultTag)
4605 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4606 };
4607
4608 struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField__anon424f6c520811::DwarfMacinfoTypeField4609 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField__anon424f6c520811::DwarfMacinfoTypeField4610 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4611 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4612 };
4613
4614 struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon424f6c520811::DwarfAttEncodingField4615 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4616 };
4617
4618 struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon424f6c520811::DwarfVirtualityField4619 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4620 };
4621
4622 struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon424f6c520811::DwarfLangField4623 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4624 };
4625
4626 struct DwarfCCField : public MDUnsignedField {
DwarfCCField__anon424f6c520811::DwarfCCField4627 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4628 };
4629
4630 struct EmissionKindField : public MDUnsignedField {
EmissionKindField__anon424f6c520811::EmissionKindField4631 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4632 };
4633
4634 struct NameTableKindField : public MDUnsignedField {
NameTableKindField__anon424f6c520811::NameTableKindField4635 NameTableKindField()
4636 : MDUnsignedField(
4637 0, (unsigned)
4638 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4639 };
4640
4641 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
DIFlagField__anon424f6c520811::DIFlagField4642 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4643 };
4644
4645 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
DISPFlagField__anon424f6c520811::DISPFlagField4646 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4647 };
4648
4649 struct MDAPSIntField : public MDFieldImpl<APSInt> {
MDAPSIntField__anon424f6c520811::MDAPSIntField4650 MDAPSIntField() : ImplTy(APSInt()) {}
4651 };
4652
4653 struct MDSignedField : public MDFieldImpl<int64_t> {
4654 int64_t Min = INT64_MIN;
4655 int64_t Max = INT64_MAX;
4656
MDSignedField__anon424f6c520811::MDSignedField4657 MDSignedField(int64_t Default = 0)
4658 : ImplTy(Default) {}
MDSignedField__anon424f6c520811::MDSignedField4659 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4660 : ImplTy(Default), Min(Min), Max(Max) {}
4661 };
4662
4663 struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon424f6c520811::MDBoolField4664 MDBoolField(bool Default = false) : ImplTy(Default) {}
4665 };
4666
4667 struct MDField : public MDFieldImpl<Metadata *> {
4668 bool AllowNull;
4669
MDField__anon424f6c520811::MDField4670 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4671 };
4672
4673 struct MDStringField : public MDFieldImpl<MDString *> {
4674 bool AllowEmpty;
MDStringField__anon424f6c520811::MDStringField4675 MDStringField(bool AllowEmpty = true)
4676 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4677 };
4678
4679 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon424f6c520811::MDFieldList4680 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4681 };
4682
4683 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
ChecksumKindField__anon424f6c520811::ChecksumKindField4684 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4685 };
4686
4687 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
MDSignedOrMDField__anon424f6c520811::MDSignedOrMDField4688 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4689 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4690
MDSignedOrMDField__anon424f6c520811::MDSignedOrMDField4691 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4692 bool AllowNull = true)
4693 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4694
isMDSignedField__anon424f6c520811::MDSignedOrMDField4695 bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDField__anon424f6c520811::MDSignedOrMDField4696 bool isMDField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon424f6c520811::MDSignedOrMDField4697 int64_t getMDSignedValue() const {
4698 assert(isMDSignedField() && "Wrong field type");
4699 return A.Val;
4700 }
getMDFieldValue__anon424f6c520811::MDSignedOrMDField4701 Metadata *getMDFieldValue() const {
4702 assert(isMDField() && "Wrong field type");
4703 return B.Val;
4704 }
4705 };
4706
4707 } // end anonymous namespace
4708
4709 namespace llvm {
4710
4711 template <>
parseMDField(LocTy Loc,StringRef Name,MDAPSIntField & Result)4712 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4713 if (Lex.getKind() != lltok::APSInt)
4714 return tokError("expected integer");
4715
4716 Result.assign(Lex.getAPSIntVal());
4717 Lex.Lex();
4718 return false;
4719 }
4720
4721 template <>
parseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)4722 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4723 MDUnsignedField &Result) {
4724 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4725 return tokError("expected unsigned integer");
4726
4727 auto &U = Lex.getAPSIntVal();
4728 if (U.ugt(Result.Max))
4729 return tokError("value for '" + Name + "' too large, limit is " +
4730 Twine(Result.Max));
4731 Result.assign(U.getZExtValue());
4732 assert(Result.Val <= Result.Max && "Expected value in range");
4733 Lex.Lex();
4734 return false;
4735 }
4736
4737 template <>
parseMDField(LocTy Loc,StringRef Name,LineField & Result)4738 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4739 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4740 }
4741 template <>
parseMDField(LocTy Loc,StringRef Name,ColumnField & Result)4742 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4743 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4744 }
4745
4746 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)4747 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4748 if (Lex.getKind() == lltok::APSInt)
4749 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4750
4751 if (Lex.getKind() != lltok::DwarfTag)
4752 return tokError("expected DWARF tag");
4753
4754 unsigned Tag = dwarf::getTag(Lex.getStrVal());
4755 if (Tag == dwarf::DW_TAG_invalid)
4756 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4757 assert(Tag <= Result.Max && "Expected valid DWARF tag");
4758
4759 Result.assign(Tag);
4760 Lex.Lex();
4761 return false;
4762 }
4763
4764 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfMacinfoTypeField & Result)4765 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4766 DwarfMacinfoTypeField &Result) {
4767 if (Lex.getKind() == lltok::APSInt)
4768 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4769
4770 if (Lex.getKind() != lltok::DwarfMacinfo)
4771 return tokError("expected DWARF macinfo type");
4772
4773 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4774 if (Macinfo == dwarf::DW_MACINFO_invalid)
4775 return tokError("invalid DWARF macinfo type" + Twine(" '") +
4776 Lex.getStrVal() + "'");
4777 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4778
4779 Result.assign(Macinfo);
4780 Lex.Lex();
4781 return false;
4782 }
4783
4784 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)4785 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4786 DwarfVirtualityField &Result) {
4787 if (Lex.getKind() == lltok::APSInt)
4788 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4789
4790 if (Lex.getKind() != lltok::DwarfVirtuality)
4791 return tokError("expected DWARF virtuality code");
4792
4793 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4794 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4795 return tokError("invalid DWARF virtuality code" + Twine(" '") +
4796 Lex.getStrVal() + "'");
4797 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4798 Result.assign(Virtuality);
4799 Lex.Lex();
4800 return false;
4801 }
4802
4803 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)4804 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4805 if (Lex.getKind() == lltok::APSInt)
4806 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4807
4808 if (Lex.getKind() != lltok::DwarfLang)
4809 return tokError("expected DWARF language");
4810
4811 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4812 if (!Lang)
4813 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4814 "'");
4815 assert(Lang <= Result.Max && "Expected valid DWARF language");
4816 Result.assign(Lang);
4817 Lex.Lex();
4818 return false;
4819 }
4820
4821 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfCCField & Result)4822 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4823 if (Lex.getKind() == lltok::APSInt)
4824 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4825
4826 if (Lex.getKind() != lltok::DwarfCC)
4827 return tokError("expected DWARF calling convention");
4828
4829 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4830 if (!CC)
4831 return tokError("invalid DWARF calling convention" + Twine(" '") +
4832 Lex.getStrVal() + "'");
4833 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4834 Result.assign(CC);
4835 Lex.Lex();
4836 return false;
4837 }
4838
4839 template <>
parseMDField(LocTy Loc,StringRef Name,EmissionKindField & Result)4840 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4841 EmissionKindField &Result) {
4842 if (Lex.getKind() == lltok::APSInt)
4843 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4844
4845 if (Lex.getKind() != lltok::EmissionKind)
4846 return tokError("expected emission kind");
4847
4848 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4849 if (!Kind)
4850 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4851 "'");
4852 assert(*Kind <= Result.Max && "Expected valid emission kind");
4853 Result.assign(*Kind);
4854 Lex.Lex();
4855 return false;
4856 }
4857
4858 template <>
parseMDField(LocTy Loc,StringRef Name,NameTableKindField & Result)4859 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4860 NameTableKindField &Result) {
4861 if (Lex.getKind() == lltok::APSInt)
4862 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4863
4864 if (Lex.getKind() != lltok::NameTableKind)
4865 return tokError("expected nameTable kind");
4866
4867 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4868 if (!Kind)
4869 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4870 "'");
4871 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4872 Result.assign((unsigned)*Kind);
4873 Lex.Lex();
4874 return false;
4875 }
4876
4877 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)4878 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4879 DwarfAttEncodingField &Result) {
4880 if (Lex.getKind() == lltok::APSInt)
4881 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4882
4883 if (Lex.getKind() != lltok::DwarfAttEncoding)
4884 return tokError("expected DWARF type attribute encoding");
4885
4886 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4887 if (!Encoding)
4888 return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4889 Lex.getStrVal() + "'");
4890 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4891 Result.assign(Encoding);
4892 Lex.Lex();
4893 return false;
4894 }
4895
4896 /// DIFlagField
4897 /// ::= uint32
4898 /// ::= DIFlagVector
4899 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4900 template <>
parseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)4901 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4902
4903 // parser for a single flag.
4904 auto parseFlag = [&](DINode::DIFlags &Val) {
4905 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4906 uint32_t TempVal = static_cast<uint32_t>(Val);
4907 bool Res = parseUInt32(TempVal);
4908 Val = static_cast<DINode::DIFlags>(TempVal);
4909 return Res;
4910 }
4911
4912 if (Lex.getKind() != lltok::DIFlag)
4913 return tokError("expected debug info flag");
4914
4915 Val = DINode::getFlag(Lex.getStrVal());
4916 if (!Val)
4917 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4918 "'");
4919 Lex.Lex();
4920 return false;
4921 };
4922
4923 // parse the flags and combine them together.
4924 DINode::DIFlags Combined = DINode::FlagZero;
4925 do {
4926 DINode::DIFlags Val;
4927 if (parseFlag(Val))
4928 return true;
4929 Combined |= Val;
4930 } while (EatIfPresent(lltok::bar));
4931
4932 Result.assign(Combined);
4933 return false;
4934 }
4935
4936 /// DISPFlagField
4937 /// ::= uint32
4938 /// ::= DISPFlagVector
4939 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4940 template <>
parseMDField(LocTy Loc,StringRef Name,DISPFlagField & Result)4941 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4942
4943 // parser for a single flag.
4944 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4945 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4946 uint32_t TempVal = static_cast<uint32_t>(Val);
4947 bool Res = parseUInt32(TempVal);
4948 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4949 return Res;
4950 }
4951
4952 if (Lex.getKind() != lltok::DISPFlag)
4953 return tokError("expected debug info flag");
4954
4955 Val = DISubprogram::getFlag(Lex.getStrVal());
4956 if (!Val)
4957 return tokError(Twine("invalid subprogram debug info flag '") +
4958 Lex.getStrVal() + "'");
4959 Lex.Lex();
4960 return false;
4961 };
4962
4963 // parse the flags and combine them together.
4964 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4965 do {
4966 DISubprogram::DISPFlags Val;
4967 if (parseFlag(Val))
4968 return true;
4969 Combined |= Val;
4970 } while (EatIfPresent(lltok::bar));
4971
4972 Result.assign(Combined);
4973 return false;
4974 }
4975
4976 template <>
parseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)4977 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4978 if (Lex.getKind() != lltok::APSInt)
4979 return tokError("expected signed integer");
4980
4981 auto &S = Lex.getAPSIntVal();
4982 if (S < Result.Min)
4983 return tokError("value for '" + Name + "' too small, limit is " +
4984 Twine(Result.Min));
4985 if (S > Result.Max)
4986 return tokError("value for '" + Name + "' too large, limit is " +
4987 Twine(Result.Max));
4988 Result.assign(S.getExtValue());
4989 assert(Result.Val >= Result.Min && "Expected value in range");
4990 assert(Result.Val <= Result.Max && "Expected value in range");
4991 Lex.Lex();
4992 return false;
4993 }
4994
4995 template <>
parseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)4996 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4997 switch (Lex.getKind()) {
4998 default:
4999 return tokError("expected 'true' or 'false'");
5000 case lltok::kw_true:
5001 Result.assign(true);
5002 break;
5003 case lltok::kw_false:
5004 Result.assign(false);
5005 break;
5006 }
5007 Lex.Lex();
5008 return false;
5009 }
5010
5011 template <>
parseMDField(LocTy Loc,StringRef Name,MDField & Result)5012 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
5013 if (Lex.getKind() == lltok::kw_null) {
5014 if (!Result.AllowNull)
5015 return tokError("'" + Name + "' cannot be null");
5016 Lex.Lex();
5017 Result.assign(nullptr);
5018 return false;
5019 }
5020
5021 Metadata *MD;
5022 if (parseMetadata(MD, nullptr))
5023 return true;
5024
5025 Result.assign(MD);
5026 return false;
5027 }
5028
5029 template <>
parseMDField(LocTy Loc,StringRef Name,MDSignedOrMDField & Result)5030 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5031 MDSignedOrMDField &Result) {
5032 // Try to parse a signed int.
5033 if (Lex.getKind() == lltok::APSInt) {
5034 MDSignedField Res = Result.A;
5035 if (!parseMDField(Loc, Name, Res)) {
5036 Result.assign(Res);
5037 return false;
5038 }
5039 return true;
5040 }
5041
5042 // Otherwise, try to parse as an MDField.
5043 MDField Res = Result.B;
5044 if (!parseMDField(Loc, Name, Res)) {
5045 Result.assign(Res);
5046 return false;
5047 }
5048
5049 return true;
5050 }
5051
5052 template <>
parseMDField(LocTy Loc,StringRef Name,MDStringField & Result)5053 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
5054 LocTy ValueLoc = Lex.getLoc();
5055 std::string S;
5056 if (parseStringConstant(S))
5057 return true;
5058
5059 if (!Result.AllowEmpty && S.empty())
5060 return error(ValueLoc, "'" + Name + "' cannot be empty");
5061
5062 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
5063 return false;
5064 }
5065
5066 template <>
parseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)5067 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
5068 SmallVector<Metadata *, 4> MDs;
5069 if (parseMDNodeVector(MDs))
5070 return true;
5071
5072 Result.assign(std::move(MDs));
5073 return false;
5074 }
5075
5076 template <>
parseMDField(LocTy Loc,StringRef Name,ChecksumKindField & Result)5077 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5078 ChecksumKindField &Result) {
5079 std::optional<DIFile::ChecksumKind> CSKind =
5080 DIFile::getChecksumKind(Lex.getStrVal());
5081
5082 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
5083 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
5084 "'");
5085
5086 Result.assign(*CSKind);
5087 Lex.Lex();
5088 return false;
5089 }
5090
5091 } // end namespace llvm
5092
5093 template <class ParserTy>
parseMDFieldsImplBody(ParserTy ParseField)5094 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
5095 do {
5096 if (Lex.getKind() != lltok::LabelStr)
5097 return tokError("expected field label here");
5098
5099 if (ParseField())
5100 return true;
5101 } while (EatIfPresent(lltok::comma));
5102
5103 return false;
5104 }
5105
5106 template <class ParserTy>
parseMDFieldsImpl(ParserTy ParseField,LocTy & ClosingLoc)5107 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
5108 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5109 Lex.Lex();
5110
5111 if (parseToken(lltok::lparen, "expected '(' here"))
5112 return true;
5113 if (Lex.getKind() != lltok::rparen)
5114 if (parseMDFieldsImplBody(ParseField))
5115 return true;
5116
5117 ClosingLoc = Lex.getLoc();
5118 return parseToken(lltok::rparen, "expected ')' here");
5119 }
5120
5121 template <class FieldTy>
parseMDField(StringRef Name,FieldTy & Result)5122 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
5123 if (Result.Seen)
5124 return tokError("field '" + Name + "' cannot be specified more than once");
5125
5126 LocTy Loc = Lex.getLoc();
5127 Lex.Lex();
5128 return parseMDField(Loc, Name, Result);
5129 }
5130
parseSpecializedMDNode(MDNode * & N,bool IsDistinct)5131 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
5132 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5133
5134 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
5135 if (Lex.getStrVal() == #CLASS) \
5136 return parse##CLASS(N, IsDistinct);
5137 #include "llvm/IR/Metadata.def"
5138
5139 return tokError("expected metadata type");
5140 }
5141
5142 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
5143 #define NOP_FIELD(NAME, TYPE, INIT)
5144 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
5145 if (!NAME.Seen) \
5146 return error(ClosingLoc, "missing required field '" #NAME "'");
5147 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
5148 if (Lex.getStrVal() == #NAME) \
5149 return parseMDField(#NAME, NAME);
5150 #define PARSE_MD_FIELDS() \
5151 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
5152 do { \
5153 LocTy ClosingLoc; \
5154 if (parseMDFieldsImpl( \
5155 [&]() -> bool { \
5156 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
5157 return tokError(Twine("invalid field '") + Lex.getStrVal() + \
5158 "'"); \
5159 }, \
5160 ClosingLoc)) \
5161 return true; \
5162 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
5163 } while (false)
5164 #define GET_OR_DISTINCT(CLASS, ARGS) \
5165 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
5166
5167 /// parseDILocationFields:
5168 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
5169 /// isImplicitCode: true)
parseDILocation(MDNode * & Result,bool IsDistinct)5170 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
5171 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5172 OPTIONAL(line, LineField, ); \
5173 OPTIONAL(column, ColumnField, ); \
5174 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5175 OPTIONAL(inlinedAt, MDField, ); \
5176 OPTIONAL(isImplicitCode, MDBoolField, (false));
5177 PARSE_MD_FIELDS();
5178 #undef VISIT_MD_FIELDS
5179
5180 Result =
5181 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
5182 inlinedAt.Val, isImplicitCode.Val));
5183 return false;
5184 }
5185
5186 /// parseDIAssignID:
5187 /// ::= distinct !DIAssignID()
parseDIAssignID(MDNode * & Result,bool IsDistinct)5188 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
5189 if (!IsDistinct)
5190 return Lex.Error("missing 'distinct', required for !DIAssignID()");
5191
5192 Lex.Lex();
5193
5194 // Now eat the parens.
5195 if (parseToken(lltok::lparen, "expected '(' here"))
5196 return true;
5197 if (parseToken(lltok::rparen, "expected ')' here"))
5198 return true;
5199
5200 Result = DIAssignID::getDistinct(Context);
5201 return false;
5202 }
5203
5204 /// parseGenericDINode:
5205 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
parseGenericDINode(MDNode * & Result,bool IsDistinct)5206 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
5207 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5208 REQUIRED(tag, DwarfTagField, ); \
5209 OPTIONAL(header, MDStringField, ); \
5210 OPTIONAL(operands, MDFieldList, );
5211 PARSE_MD_FIELDS();
5212 #undef VISIT_MD_FIELDS
5213
5214 Result = GET_OR_DISTINCT(GenericDINode,
5215 (Context, tag.Val, header.Val, operands.Val));
5216 return false;
5217 }
5218
5219 /// parseDISubrange:
5220 /// ::= !DISubrange(count: 30, lowerBound: 2)
5221 /// ::= !DISubrange(count: !node, lowerBound: 2)
5222 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
parseDISubrange(MDNode * & Result,bool IsDistinct)5223 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
5224 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5225 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
5226 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
5227 OPTIONAL(upperBound, MDSignedOrMDField, ); \
5228 OPTIONAL(stride, MDSignedOrMDField, );
5229 PARSE_MD_FIELDS();
5230 #undef VISIT_MD_FIELDS
5231
5232 Metadata *Count = nullptr;
5233 Metadata *LowerBound = nullptr;
5234 Metadata *UpperBound = nullptr;
5235 Metadata *Stride = nullptr;
5236
5237 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5238 if (Bound.isMDSignedField())
5239 return ConstantAsMetadata::get(ConstantInt::getSigned(
5240 Type::getInt64Ty(Context), Bound.getMDSignedValue()));
5241 if (Bound.isMDField())
5242 return Bound.getMDFieldValue();
5243 return nullptr;
5244 };
5245
5246 Count = convToMetadata(count);
5247 LowerBound = convToMetadata(lowerBound);
5248 UpperBound = convToMetadata(upperBound);
5249 Stride = convToMetadata(stride);
5250
5251 Result = GET_OR_DISTINCT(DISubrange,
5252 (Context, Count, LowerBound, UpperBound, Stride));
5253
5254 return false;
5255 }
5256
5257 /// parseDIGenericSubrange:
5258 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
5259 /// !node3)
parseDIGenericSubrange(MDNode * & Result,bool IsDistinct)5260 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
5261 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5262 OPTIONAL(count, MDSignedOrMDField, ); \
5263 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
5264 OPTIONAL(upperBound, MDSignedOrMDField, ); \
5265 OPTIONAL(stride, MDSignedOrMDField, );
5266 PARSE_MD_FIELDS();
5267 #undef VISIT_MD_FIELDS
5268
5269 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5270 if (Bound.isMDSignedField())
5271 return DIExpression::get(
5272 Context, {dwarf::DW_OP_consts,
5273 static_cast<uint64_t>(Bound.getMDSignedValue())});
5274 if (Bound.isMDField())
5275 return Bound.getMDFieldValue();
5276 return nullptr;
5277 };
5278
5279 Metadata *Count = ConvToMetadata(count);
5280 Metadata *LowerBound = ConvToMetadata(lowerBound);
5281 Metadata *UpperBound = ConvToMetadata(upperBound);
5282 Metadata *Stride = ConvToMetadata(stride);
5283
5284 Result = GET_OR_DISTINCT(DIGenericSubrange,
5285 (Context, Count, LowerBound, UpperBound, Stride));
5286
5287 return false;
5288 }
5289
5290 /// parseDIEnumerator:
5291 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
parseDIEnumerator(MDNode * & Result,bool IsDistinct)5292 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
5293 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5294 REQUIRED(name, MDStringField, ); \
5295 REQUIRED(value, MDAPSIntField, ); \
5296 OPTIONAL(isUnsigned, MDBoolField, (false));
5297 PARSE_MD_FIELDS();
5298 #undef VISIT_MD_FIELDS
5299
5300 if (isUnsigned.Val && value.Val.isNegative())
5301 return tokError("unsigned enumerator with negative value");
5302
5303 APSInt Value(value.Val);
5304 // Add a leading zero so that unsigned values with the msb set are not
5305 // mistaken for negative values when used for signed enumerators.
5306 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
5307 Value = Value.zext(Value.getBitWidth() + 1);
5308
5309 Result =
5310 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
5311
5312 return false;
5313 }
5314
5315 /// parseDIBasicType:
5316 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
5317 /// encoding: DW_ATE_encoding, flags: 0)
parseDIBasicType(MDNode * & Result,bool IsDistinct)5318 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
5319 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5320 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
5321 OPTIONAL(name, MDStringField, ); \
5322 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5323 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5324 OPTIONAL(encoding, DwarfAttEncodingField, ); \
5325 OPTIONAL(flags, DIFlagField, );
5326 PARSE_MD_FIELDS();
5327 #undef VISIT_MD_FIELDS
5328
5329 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
5330 align.Val, encoding.Val, flags.Val));
5331 return false;
5332 }
5333
5334 /// parseDIStringType:
5335 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32)
parseDIStringType(MDNode * & Result,bool IsDistinct)5336 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
5337 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5338 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \
5339 OPTIONAL(name, MDStringField, ); \
5340 OPTIONAL(stringLength, MDField, ); \
5341 OPTIONAL(stringLengthExpression, MDField, ); \
5342 OPTIONAL(stringLocationExpression, MDField, ); \
5343 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5344 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5345 OPTIONAL(encoding, DwarfAttEncodingField, );
5346 PARSE_MD_FIELDS();
5347 #undef VISIT_MD_FIELDS
5348
5349 Result = GET_OR_DISTINCT(
5350 DIStringType,
5351 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
5352 stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
5353 return false;
5354 }
5355
5356 /// parseDIDerivedType:
5357 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
5358 /// line: 7, scope: !1, baseType: !2, size: 32,
5359 /// align: 32, offset: 0, flags: 0, extraData: !3,
5360 /// dwarfAddressSpace: 3, ptrAuthKey: 1,
5361 /// ptrAuthIsAddressDiscriminated: true,
5362 /// ptrAuthExtraDiscriminator: 0x1234,
5363 /// ptrAuthIsaPointer: 1, ptrAuthAuthenticatesNullValues:1
5364 /// )
parseDIDerivedType(MDNode * & Result,bool IsDistinct)5365 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
5366 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5367 REQUIRED(tag, DwarfTagField, ); \
5368 OPTIONAL(name, MDStringField, ); \
5369 OPTIONAL(file, MDField, ); \
5370 OPTIONAL(line, LineField, ); \
5371 OPTIONAL(scope, MDField, ); \
5372 REQUIRED(baseType, MDField, ); \
5373 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5374 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5375 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5376 OPTIONAL(flags, DIFlagField, ); \
5377 OPTIONAL(extraData, MDField, ); \
5378 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \
5379 OPTIONAL(annotations, MDField, ); \
5380 OPTIONAL(ptrAuthKey, MDUnsignedField, (0, 7)); \
5381 OPTIONAL(ptrAuthIsAddressDiscriminated, MDBoolField, ); \
5382 OPTIONAL(ptrAuthExtraDiscriminator, MDUnsignedField, (0, 0xffff)); \
5383 OPTIONAL(ptrAuthIsaPointer, MDBoolField, ); \
5384 OPTIONAL(ptrAuthAuthenticatesNullValues, MDBoolField, );
5385 PARSE_MD_FIELDS();
5386 #undef VISIT_MD_FIELDS
5387
5388 std::optional<unsigned> DWARFAddressSpace;
5389 if (dwarfAddressSpace.Val != UINT32_MAX)
5390 DWARFAddressSpace = dwarfAddressSpace.Val;
5391 std::optional<DIDerivedType::PtrAuthData> PtrAuthData;
5392 if (ptrAuthKey.Val)
5393 PtrAuthData.emplace(
5394 (unsigned)ptrAuthKey.Val, ptrAuthIsAddressDiscriminated.Val,
5395 (unsigned)ptrAuthExtraDiscriminator.Val, ptrAuthIsaPointer.Val,
5396 ptrAuthAuthenticatesNullValues.Val);
5397
5398 Result = GET_OR_DISTINCT(DIDerivedType,
5399 (Context, tag.Val, name.Val, file.Val, line.Val,
5400 scope.Val, baseType.Val, size.Val, align.Val,
5401 offset.Val, DWARFAddressSpace, PtrAuthData,
5402 flags.Val, extraData.Val, annotations.Val));
5403 return false;
5404 }
5405
parseDICompositeType(MDNode * & Result,bool IsDistinct)5406 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
5407 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5408 REQUIRED(tag, DwarfTagField, ); \
5409 OPTIONAL(name, MDStringField, ); \
5410 OPTIONAL(file, MDField, ); \
5411 OPTIONAL(line, LineField, ); \
5412 OPTIONAL(scope, MDField, ); \
5413 OPTIONAL(baseType, MDField, ); \
5414 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5415 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5416 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5417 OPTIONAL(flags, DIFlagField, ); \
5418 OPTIONAL(elements, MDField, ); \
5419 OPTIONAL(runtimeLang, DwarfLangField, ); \
5420 OPTIONAL(vtableHolder, MDField, ); \
5421 OPTIONAL(templateParams, MDField, ); \
5422 OPTIONAL(identifier, MDStringField, ); \
5423 OPTIONAL(discriminator, MDField, ); \
5424 OPTIONAL(dataLocation, MDField, ); \
5425 OPTIONAL(associated, MDField, ); \
5426 OPTIONAL(allocated, MDField, ); \
5427 OPTIONAL(rank, MDSignedOrMDField, ); \
5428 OPTIONAL(annotations, MDField, );
5429 PARSE_MD_FIELDS();
5430 #undef VISIT_MD_FIELDS
5431
5432 Metadata *Rank = nullptr;
5433 if (rank.isMDSignedField())
5434 Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
5435 Type::getInt64Ty(Context), rank.getMDSignedValue()));
5436 else if (rank.isMDField())
5437 Rank = rank.getMDFieldValue();
5438
5439 // If this has an identifier try to build an ODR type.
5440 if (identifier.Val)
5441 if (auto *CT = DICompositeType::buildODRType(
5442 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
5443 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
5444 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
5445 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
5446 Rank, annotations.Val)) {
5447 Result = CT;
5448 return false;
5449 }
5450
5451 // Create a new node, and save it in the context if it belongs in the type
5452 // map.
5453 Result = GET_OR_DISTINCT(
5454 DICompositeType,
5455 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5456 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5457 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5458 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5459 annotations.Val));
5460 return false;
5461 }
5462
parseDISubroutineType(MDNode * & Result,bool IsDistinct)5463 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5464 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5465 OPTIONAL(flags, DIFlagField, ); \
5466 OPTIONAL(cc, DwarfCCField, ); \
5467 REQUIRED(types, MDField, );
5468 PARSE_MD_FIELDS();
5469 #undef VISIT_MD_FIELDS
5470
5471 Result = GET_OR_DISTINCT(DISubroutineType,
5472 (Context, flags.Val, cc.Val, types.Val));
5473 return false;
5474 }
5475
5476 /// parseDIFileType:
5477 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5478 /// checksumkind: CSK_MD5,
5479 /// checksum: "000102030405060708090a0b0c0d0e0f",
5480 /// source: "source file contents")
parseDIFile(MDNode * & Result,bool IsDistinct)5481 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5482 // The default constructed value for checksumkind is required, but will never
5483 // be used, as the parser checks if the field was actually Seen before using
5484 // the Val.
5485 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5486 REQUIRED(filename, MDStringField, ); \
5487 REQUIRED(directory, MDStringField, ); \
5488 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
5489 OPTIONAL(checksum, MDStringField, ); \
5490 OPTIONAL(source, MDStringField, );
5491 PARSE_MD_FIELDS();
5492 #undef VISIT_MD_FIELDS
5493
5494 std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5495 if (checksumkind.Seen && checksum.Seen)
5496 OptChecksum.emplace(checksumkind.Val, checksum.Val);
5497 else if (checksumkind.Seen || checksum.Seen)
5498 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5499
5500 MDString *Source = nullptr;
5501 if (source.Seen)
5502 Source = source.Val;
5503 Result = GET_OR_DISTINCT(
5504 DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5505 return false;
5506 }
5507
5508 /// parseDICompileUnit:
5509 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5510 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
5511 /// splitDebugFilename: "abc.debug",
5512 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5513 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5514 /// sysroot: "/", sdk: "MacOSX.sdk")
parseDICompileUnit(MDNode * & Result,bool IsDistinct)5515 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5516 if (!IsDistinct)
5517 return Lex.Error("missing 'distinct', required for !DICompileUnit");
5518
5519 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5520 REQUIRED(language, DwarfLangField, ); \
5521 REQUIRED(file, MDField, (/* AllowNull */ false)); \
5522 OPTIONAL(producer, MDStringField, ); \
5523 OPTIONAL(isOptimized, MDBoolField, ); \
5524 OPTIONAL(flags, MDStringField, ); \
5525 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
5526 OPTIONAL(splitDebugFilename, MDStringField, ); \
5527 OPTIONAL(emissionKind, EmissionKindField, ); \
5528 OPTIONAL(enums, MDField, ); \
5529 OPTIONAL(retainedTypes, MDField, ); \
5530 OPTIONAL(globals, MDField, ); \
5531 OPTIONAL(imports, MDField, ); \
5532 OPTIONAL(macros, MDField, ); \
5533 OPTIONAL(dwoId, MDUnsignedField, ); \
5534 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
5535 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
5536 OPTIONAL(nameTableKind, NameTableKindField, ); \
5537 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \
5538 OPTIONAL(sysroot, MDStringField, ); \
5539 OPTIONAL(sdk, MDStringField, );
5540 PARSE_MD_FIELDS();
5541 #undef VISIT_MD_FIELDS
5542
5543 Result = DICompileUnit::getDistinct(
5544 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5545 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5546 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5547 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5548 rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5549 return false;
5550 }
5551
5552 /// parseDISubprogram:
5553 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5554 /// file: !1, line: 7, type: !2, isLocal: false,
5555 /// isDefinition: true, scopeLine: 8, containingType: !3,
5556 /// virtuality: DW_VIRTUALTIY_pure_virtual,
5557 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
5558 /// spFlags: 10, isOptimized: false, templateParams: !4,
5559 /// declaration: !5, retainedNodes: !6, thrownTypes: !7,
5560 /// annotations: !8)
parseDISubprogram(MDNode * & Result,bool IsDistinct)5561 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5562 auto Loc = Lex.getLoc();
5563 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5564 OPTIONAL(scope, MDField, ); \
5565 OPTIONAL(name, MDStringField, ); \
5566 OPTIONAL(linkageName, MDStringField, ); \
5567 OPTIONAL(file, MDField, ); \
5568 OPTIONAL(line, LineField, ); \
5569 OPTIONAL(type, MDField, ); \
5570 OPTIONAL(isLocal, MDBoolField, ); \
5571 OPTIONAL(isDefinition, MDBoolField, (true)); \
5572 OPTIONAL(scopeLine, LineField, ); \
5573 OPTIONAL(containingType, MDField, ); \
5574 OPTIONAL(virtuality, DwarfVirtualityField, ); \
5575 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
5576 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
5577 OPTIONAL(flags, DIFlagField, ); \
5578 OPTIONAL(spFlags, DISPFlagField, ); \
5579 OPTIONAL(isOptimized, MDBoolField, ); \
5580 OPTIONAL(unit, MDField, ); \
5581 OPTIONAL(templateParams, MDField, ); \
5582 OPTIONAL(declaration, MDField, ); \
5583 OPTIONAL(retainedNodes, MDField, ); \
5584 OPTIONAL(thrownTypes, MDField, ); \
5585 OPTIONAL(annotations, MDField, ); \
5586 OPTIONAL(targetFuncName, MDStringField, );
5587 PARSE_MD_FIELDS();
5588 #undef VISIT_MD_FIELDS
5589
5590 // An explicit spFlags field takes precedence over individual fields in
5591 // older IR versions.
5592 DISubprogram::DISPFlags SPFlags =
5593 spFlags.Seen ? spFlags.Val
5594 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5595 isOptimized.Val, virtuality.Val);
5596 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5597 return Lex.Error(
5598 Loc,
5599 "missing 'distinct', required for !DISubprogram that is a Definition");
5600 Result = GET_OR_DISTINCT(
5601 DISubprogram,
5602 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5603 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5604 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5605 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5606 targetFuncName.Val));
5607 return false;
5608 }
5609
5610 /// parseDILexicalBlock:
5611 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
parseDILexicalBlock(MDNode * & Result,bool IsDistinct)5612 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5613 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5614 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5615 OPTIONAL(file, MDField, ); \
5616 OPTIONAL(line, LineField, ); \
5617 OPTIONAL(column, ColumnField, );
5618 PARSE_MD_FIELDS();
5619 #undef VISIT_MD_FIELDS
5620
5621 Result = GET_OR_DISTINCT(
5622 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5623 return false;
5624 }
5625
5626 /// parseDILexicalBlockFile:
5627 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
parseDILexicalBlockFile(MDNode * & Result,bool IsDistinct)5628 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5629 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5630 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5631 OPTIONAL(file, MDField, ); \
5632 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5633 PARSE_MD_FIELDS();
5634 #undef VISIT_MD_FIELDS
5635
5636 Result = GET_OR_DISTINCT(DILexicalBlockFile,
5637 (Context, scope.Val, file.Val, discriminator.Val));
5638 return false;
5639 }
5640
5641 /// parseDICommonBlock:
5642 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
parseDICommonBlock(MDNode * & Result,bool IsDistinct)5643 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5644 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5645 REQUIRED(scope, MDField, ); \
5646 OPTIONAL(declaration, MDField, ); \
5647 OPTIONAL(name, MDStringField, ); \
5648 OPTIONAL(file, MDField, ); \
5649 OPTIONAL(line, LineField, );
5650 PARSE_MD_FIELDS();
5651 #undef VISIT_MD_FIELDS
5652
5653 Result = GET_OR_DISTINCT(DICommonBlock,
5654 (Context, scope.Val, declaration.Val, name.Val,
5655 file.Val, line.Val));
5656 return false;
5657 }
5658
5659 /// parseDINamespace:
5660 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
parseDINamespace(MDNode * & Result,bool IsDistinct)5661 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5662 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5663 REQUIRED(scope, MDField, ); \
5664 OPTIONAL(name, MDStringField, ); \
5665 OPTIONAL(exportSymbols, MDBoolField, );
5666 PARSE_MD_FIELDS();
5667 #undef VISIT_MD_FIELDS
5668
5669 Result = GET_OR_DISTINCT(DINamespace,
5670 (Context, scope.Val, name.Val, exportSymbols.Val));
5671 return false;
5672 }
5673
5674 /// parseDIMacro:
5675 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5676 /// "SomeValue")
parseDIMacro(MDNode * & Result,bool IsDistinct)5677 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5678 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5679 REQUIRED(type, DwarfMacinfoTypeField, ); \
5680 OPTIONAL(line, LineField, ); \
5681 REQUIRED(name, MDStringField, ); \
5682 OPTIONAL(value, MDStringField, );
5683 PARSE_MD_FIELDS();
5684 #undef VISIT_MD_FIELDS
5685
5686 Result = GET_OR_DISTINCT(DIMacro,
5687 (Context, type.Val, line.Val, name.Val, value.Val));
5688 return false;
5689 }
5690
5691 /// parseDIMacroFile:
5692 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
parseDIMacroFile(MDNode * & Result,bool IsDistinct)5693 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5694 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5695 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
5696 OPTIONAL(line, LineField, ); \
5697 REQUIRED(file, MDField, ); \
5698 OPTIONAL(nodes, MDField, );
5699 PARSE_MD_FIELDS();
5700 #undef VISIT_MD_FIELDS
5701
5702 Result = GET_OR_DISTINCT(DIMacroFile,
5703 (Context, type.Val, line.Val, file.Val, nodes.Val));
5704 return false;
5705 }
5706
5707 /// parseDIModule:
5708 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5709 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5710 /// file: !1, line: 4, isDecl: false)
parseDIModule(MDNode * & Result,bool IsDistinct)5711 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5712 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5713 REQUIRED(scope, MDField, ); \
5714 REQUIRED(name, MDStringField, ); \
5715 OPTIONAL(configMacros, MDStringField, ); \
5716 OPTIONAL(includePath, MDStringField, ); \
5717 OPTIONAL(apinotes, MDStringField, ); \
5718 OPTIONAL(file, MDField, ); \
5719 OPTIONAL(line, LineField, ); \
5720 OPTIONAL(isDecl, MDBoolField, );
5721 PARSE_MD_FIELDS();
5722 #undef VISIT_MD_FIELDS
5723
5724 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5725 configMacros.Val, includePath.Val,
5726 apinotes.Val, line.Val, isDecl.Val));
5727 return false;
5728 }
5729
5730 /// parseDITemplateTypeParameter:
5731 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
parseDITemplateTypeParameter(MDNode * & Result,bool IsDistinct)5732 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5734 OPTIONAL(name, MDStringField, ); \
5735 REQUIRED(type, MDField, ); \
5736 OPTIONAL(defaulted, MDBoolField, );
5737 PARSE_MD_FIELDS();
5738 #undef VISIT_MD_FIELDS
5739
5740 Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5741 (Context, name.Val, type.Val, defaulted.Val));
5742 return false;
5743 }
5744
5745 /// parseDITemplateValueParameter:
5746 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5747 /// name: "V", type: !1, defaulted: false,
5748 /// value: i32 7)
parseDITemplateValueParameter(MDNode * & Result,bool IsDistinct)5749 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5751 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
5752 OPTIONAL(name, MDStringField, ); \
5753 OPTIONAL(type, MDField, ); \
5754 OPTIONAL(defaulted, MDBoolField, ); \
5755 REQUIRED(value, MDField, );
5756
5757 PARSE_MD_FIELDS();
5758 #undef VISIT_MD_FIELDS
5759
5760 Result = GET_OR_DISTINCT(
5761 DITemplateValueParameter,
5762 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5763 return false;
5764 }
5765
5766 /// parseDIGlobalVariable:
5767 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5768 /// file: !1, line: 7, type: !2, isLocal: false,
5769 /// isDefinition: true, templateParams: !3,
5770 /// declaration: !4, align: 8)
parseDIGlobalVariable(MDNode * & Result,bool IsDistinct)5771 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5772 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5773 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \
5774 OPTIONAL(scope, MDField, ); \
5775 OPTIONAL(linkageName, MDStringField, ); \
5776 OPTIONAL(file, MDField, ); \
5777 OPTIONAL(line, LineField, ); \
5778 OPTIONAL(type, MDField, ); \
5779 OPTIONAL(isLocal, MDBoolField, ); \
5780 OPTIONAL(isDefinition, MDBoolField, (true)); \
5781 OPTIONAL(templateParams, MDField, ); \
5782 OPTIONAL(declaration, MDField, ); \
5783 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5784 OPTIONAL(annotations, MDField, );
5785 PARSE_MD_FIELDS();
5786 #undef VISIT_MD_FIELDS
5787
5788 Result =
5789 GET_OR_DISTINCT(DIGlobalVariable,
5790 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5791 line.Val, type.Val, isLocal.Val, isDefinition.Val,
5792 declaration.Val, templateParams.Val, align.Val,
5793 annotations.Val));
5794 return false;
5795 }
5796
5797 /// parseDILocalVariable:
5798 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5799 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5800 /// align: 8)
5801 /// ::= !DILocalVariable(scope: !0, name: "foo",
5802 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5803 /// align: 8)
parseDILocalVariable(MDNode * & Result,bool IsDistinct)5804 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5805 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5806 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5807 OPTIONAL(name, MDStringField, ); \
5808 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
5809 OPTIONAL(file, MDField, ); \
5810 OPTIONAL(line, LineField, ); \
5811 OPTIONAL(type, MDField, ); \
5812 OPTIONAL(flags, DIFlagField, ); \
5813 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5814 OPTIONAL(annotations, MDField, );
5815 PARSE_MD_FIELDS();
5816 #undef VISIT_MD_FIELDS
5817
5818 Result = GET_OR_DISTINCT(DILocalVariable,
5819 (Context, scope.Val, name.Val, file.Val, line.Val,
5820 type.Val, arg.Val, flags.Val, align.Val,
5821 annotations.Val));
5822 return false;
5823 }
5824
5825 /// parseDILabel:
5826 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
parseDILabel(MDNode * & Result,bool IsDistinct)5827 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5829 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5830 REQUIRED(name, MDStringField, ); \
5831 REQUIRED(file, MDField, ); \
5832 REQUIRED(line, LineField, );
5833 PARSE_MD_FIELDS();
5834 #undef VISIT_MD_FIELDS
5835
5836 Result = GET_OR_DISTINCT(DILabel,
5837 (Context, scope.Val, name.Val, file.Val, line.Val));
5838 return false;
5839 }
5840
5841 /// parseDIExpressionBody:
5842 /// ::= (0, 7, -1)
parseDIExpressionBody(MDNode * & Result,bool IsDistinct)5843 bool LLParser::parseDIExpressionBody(MDNode *&Result, bool IsDistinct) {
5844 if (parseToken(lltok::lparen, "expected '(' here"))
5845 return true;
5846
5847 SmallVector<uint64_t, 8> Elements;
5848 if (Lex.getKind() != lltok::rparen)
5849 do {
5850 if (Lex.getKind() == lltok::DwarfOp) {
5851 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5852 Lex.Lex();
5853 Elements.push_back(Op);
5854 continue;
5855 }
5856 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5857 }
5858
5859 if (Lex.getKind() == lltok::DwarfAttEncoding) {
5860 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5861 Lex.Lex();
5862 Elements.push_back(Op);
5863 continue;
5864 }
5865 return tokError(Twine("invalid DWARF attribute encoding '") +
5866 Lex.getStrVal() + "'");
5867 }
5868
5869 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5870 return tokError("expected unsigned integer");
5871
5872 auto &U = Lex.getAPSIntVal();
5873 if (U.ugt(UINT64_MAX))
5874 return tokError("element too large, limit is " + Twine(UINT64_MAX));
5875 Elements.push_back(U.getZExtValue());
5876 Lex.Lex();
5877 } while (EatIfPresent(lltok::comma));
5878
5879 if (parseToken(lltok::rparen, "expected ')' here"))
5880 return true;
5881
5882 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5883 return false;
5884 }
5885
5886 /// parseDIExpression:
5887 /// ::= !DIExpression(0, 7, -1)
parseDIExpression(MDNode * & Result,bool IsDistinct)5888 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5889 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5890 assert(Lex.getStrVal() == "DIExpression" && "Expected '!DIExpression'");
5891 Lex.Lex();
5892
5893 return parseDIExpressionBody(Result, IsDistinct);
5894 }
5895
5896 /// ParseDIArgList:
5897 /// ::= !DIArgList(i32 7, i64 %0)
parseDIArgList(Metadata * & MD,PerFunctionState * PFS)5898 bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) {
5899 assert(PFS && "Expected valid function state");
5900 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5901 Lex.Lex();
5902
5903 if (parseToken(lltok::lparen, "expected '(' here"))
5904 return true;
5905
5906 SmallVector<ValueAsMetadata *, 4> Args;
5907 if (Lex.getKind() != lltok::rparen)
5908 do {
5909 Metadata *MD;
5910 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5911 return true;
5912 Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5913 } while (EatIfPresent(lltok::comma));
5914
5915 if (parseToken(lltok::rparen, "expected ')' here"))
5916 return true;
5917
5918 MD = DIArgList::get(Context, Args);
5919 return false;
5920 }
5921
5922 /// parseDIGlobalVariableExpression:
5923 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
parseDIGlobalVariableExpression(MDNode * & Result,bool IsDistinct)5924 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5925 bool IsDistinct) {
5926 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5927 REQUIRED(var, MDField, ); \
5928 REQUIRED(expr, MDField, );
5929 PARSE_MD_FIELDS();
5930 #undef VISIT_MD_FIELDS
5931
5932 Result =
5933 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5934 return false;
5935 }
5936
5937 /// parseDIObjCProperty:
5938 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5939 /// getter: "getFoo", attributes: 7, type: !2)
parseDIObjCProperty(MDNode * & Result,bool IsDistinct)5940 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5941 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5942 OPTIONAL(name, MDStringField, ); \
5943 OPTIONAL(file, MDField, ); \
5944 OPTIONAL(line, LineField, ); \
5945 OPTIONAL(setter, MDStringField, ); \
5946 OPTIONAL(getter, MDStringField, ); \
5947 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5948 OPTIONAL(type, MDField, );
5949 PARSE_MD_FIELDS();
5950 #undef VISIT_MD_FIELDS
5951
5952 Result = GET_OR_DISTINCT(DIObjCProperty,
5953 (Context, name.Val, file.Val, line.Val, setter.Val,
5954 getter.Val, attributes.Val, type.Val));
5955 return false;
5956 }
5957
5958 /// parseDIImportedEntity:
5959 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5960 /// line: 7, name: "foo", elements: !2)
parseDIImportedEntity(MDNode * & Result,bool IsDistinct)5961 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5963 REQUIRED(tag, DwarfTagField, ); \
5964 REQUIRED(scope, MDField, ); \
5965 OPTIONAL(entity, MDField, ); \
5966 OPTIONAL(file, MDField, ); \
5967 OPTIONAL(line, LineField, ); \
5968 OPTIONAL(name, MDStringField, ); \
5969 OPTIONAL(elements, MDField, );
5970 PARSE_MD_FIELDS();
5971 #undef VISIT_MD_FIELDS
5972
5973 Result = GET_OR_DISTINCT(DIImportedEntity,
5974 (Context, tag.Val, scope.Val, entity.Val, file.Val,
5975 line.Val, name.Val, elements.Val));
5976 return false;
5977 }
5978
5979 #undef PARSE_MD_FIELD
5980 #undef NOP_FIELD
5981 #undef REQUIRE_FIELD
5982 #undef DECLARE_FIELD
5983
5984 /// parseMetadataAsValue
5985 /// ::= metadata i32 %local
5986 /// ::= metadata i32 @global
5987 /// ::= metadata i32 7
5988 /// ::= metadata !0
5989 /// ::= metadata !{...}
5990 /// ::= metadata !"string"
parseMetadataAsValue(Value * & V,PerFunctionState & PFS)5991 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5992 // Note: the type 'metadata' has already been parsed.
5993 Metadata *MD;
5994 if (parseMetadata(MD, &PFS))
5995 return true;
5996
5997 V = MetadataAsValue::get(Context, MD);
5998 return false;
5999 }
6000
6001 /// parseValueAsMetadata
6002 /// ::= i32 %local
6003 /// ::= i32 @global
6004 /// ::= i32 7
parseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)6005 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
6006 PerFunctionState *PFS) {
6007 Type *Ty;
6008 LocTy Loc;
6009 if (parseType(Ty, TypeMsg, Loc))
6010 return true;
6011 if (Ty->isMetadataTy())
6012 return error(Loc, "invalid metadata-value-metadata roundtrip");
6013
6014 Value *V;
6015 if (parseValue(Ty, V, PFS))
6016 return true;
6017
6018 MD = ValueAsMetadata::get(V);
6019 return false;
6020 }
6021
6022 /// parseMetadata
6023 /// ::= i32 %local
6024 /// ::= i32 @global
6025 /// ::= i32 7
6026 /// ::= !42
6027 /// ::= !{...}
6028 /// ::= !"string"
6029 /// ::= !DILocation(...)
parseMetadata(Metadata * & MD,PerFunctionState * PFS)6030 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
6031 if (Lex.getKind() == lltok::MetadataVar) {
6032 // DIArgLists are a special case, as they are a list of ValueAsMetadata and
6033 // so parsing this requires a Function State.
6034 if (Lex.getStrVal() == "DIArgList") {
6035 Metadata *AL;
6036 if (parseDIArgList(AL, PFS))
6037 return true;
6038 MD = AL;
6039 return false;
6040 }
6041 MDNode *N;
6042 if (parseSpecializedMDNode(N)) {
6043 return true;
6044 }
6045 MD = N;
6046 return false;
6047 }
6048
6049 // ValueAsMetadata:
6050 // <type> <value>
6051 if (Lex.getKind() != lltok::exclaim)
6052 return parseValueAsMetadata(MD, "expected metadata operand", PFS);
6053
6054 // '!'.
6055 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
6056 Lex.Lex();
6057
6058 // MDString:
6059 // ::= '!' STRINGCONSTANT
6060 if (Lex.getKind() == lltok::StringConstant) {
6061 MDString *S;
6062 if (parseMDString(S))
6063 return true;
6064 MD = S;
6065 return false;
6066 }
6067
6068 // MDNode:
6069 // !{ ... }
6070 // !7
6071 MDNode *N;
6072 if (parseMDNodeTail(N))
6073 return true;
6074 MD = N;
6075 return false;
6076 }
6077
6078 //===----------------------------------------------------------------------===//
6079 // Function Parsing.
6080 //===----------------------------------------------------------------------===//
6081
convertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)6082 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
6083 PerFunctionState *PFS) {
6084 if (Ty->isFunctionTy())
6085 return error(ID.Loc, "functions are not values, refer to them as pointers");
6086
6087 switch (ID.Kind) {
6088 case ValID::t_LocalID:
6089 if (!PFS)
6090 return error(ID.Loc, "invalid use of function-local name");
6091 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
6092 return V == nullptr;
6093 case ValID::t_LocalName:
6094 if (!PFS)
6095 return error(ID.Loc, "invalid use of function-local name");
6096 V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
6097 return V == nullptr;
6098 case ValID::t_InlineAsm: {
6099 if (!ID.FTy)
6100 return error(ID.Loc, "invalid type for inline asm constraint string");
6101 if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
6102 return error(ID.Loc, toString(std::move(Err)));
6103 V = InlineAsm::get(
6104 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
6105 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
6106 return false;
6107 }
6108 case ValID::t_GlobalName:
6109 V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
6110 if (V && ID.NoCFI)
6111 V = NoCFIValue::get(cast<GlobalValue>(V));
6112 return V == nullptr;
6113 case ValID::t_GlobalID:
6114 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
6115 if (V && ID.NoCFI)
6116 V = NoCFIValue::get(cast<GlobalValue>(V));
6117 return V == nullptr;
6118 case ValID::t_APSInt:
6119 if (!Ty->isIntegerTy())
6120 return error(ID.Loc, "integer constant must have integer type");
6121 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
6122 V = ConstantInt::get(Context, ID.APSIntVal);
6123 return false;
6124 case ValID::t_APFloat:
6125 if (!Ty->isFloatingPointTy() ||
6126 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
6127 return error(ID.Loc, "floating point constant invalid for type");
6128
6129 // The lexer has no type info, so builds all half, bfloat, float, and double
6130 // FP constants as double. Fix this here. Long double does not need this.
6131 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
6132 // Check for signaling before potentially converting and losing that info.
6133 bool IsSNAN = ID.APFloatVal.isSignaling();
6134 bool Ignored;
6135 if (Ty->isHalfTy())
6136 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
6137 &Ignored);
6138 else if (Ty->isBFloatTy())
6139 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
6140 &Ignored);
6141 else if (Ty->isFloatTy())
6142 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
6143 &Ignored);
6144 if (IsSNAN) {
6145 // The convert call above may quiet an SNaN, so manufacture another
6146 // SNaN. The bitcast works because the payload (significand) parameter
6147 // is truncated to fit.
6148 APInt Payload = ID.APFloatVal.bitcastToAPInt();
6149 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
6150 ID.APFloatVal.isNegative(), &Payload);
6151 }
6152 }
6153 V = ConstantFP::get(Context, ID.APFloatVal);
6154
6155 if (V->getType() != Ty)
6156 return error(ID.Loc, "floating point constant does not have type '" +
6157 getTypeString(Ty) + "'");
6158
6159 return false;
6160 case ValID::t_Null:
6161 if (!Ty->isPointerTy())
6162 return error(ID.Loc, "null must be a pointer type");
6163 V = ConstantPointerNull::get(cast<PointerType>(Ty));
6164 return false;
6165 case ValID::t_Undef:
6166 // FIXME: LabelTy should not be a first-class type.
6167 if (!Ty->isFirstClassType() || Ty->isLabelTy())
6168 return error(ID.Loc, "invalid type for undef constant");
6169 V = UndefValue::get(Ty);
6170 return false;
6171 case ValID::t_EmptyArray:
6172 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
6173 return error(ID.Loc, "invalid empty array initializer");
6174 V = UndefValue::get(Ty);
6175 return false;
6176 case ValID::t_Zero:
6177 // FIXME: LabelTy should not be a first-class type.
6178 if (!Ty->isFirstClassType() || Ty->isLabelTy())
6179 return error(ID.Loc, "invalid type for null constant");
6180 if (auto *TETy = dyn_cast<TargetExtType>(Ty))
6181 if (!TETy->hasProperty(TargetExtType::HasZeroInit))
6182 return error(ID.Loc, "invalid type for null constant");
6183 V = Constant::getNullValue(Ty);
6184 return false;
6185 case ValID::t_None:
6186 if (!Ty->isTokenTy())
6187 return error(ID.Loc, "invalid type for none constant");
6188 V = Constant::getNullValue(Ty);
6189 return false;
6190 case ValID::t_Poison:
6191 // FIXME: LabelTy should not be a first-class type.
6192 if (!Ty->isFirstClassType() || Ty->isLabelTy())
6193 return error(ID.Loc, "invalid type for poison constant");
6194 V = PoisonValue::get(Ty);
6195 return false;
6196 case ValID::t_Constant:
6197 if (ID.ConstantVal->getType() != Ty)
6198 return error(ID.Loc, "constant expression type mismatch: got type '" +
6199 getTypeString(ID.ConstantVal->getType()) +
6200 "' but expected '" + getTypeString(Ty) + "'");
6201 V = ID.ConstantVal;
6202 return false;
6203 case ValID::t_ConstantSplat:
6204 if (!Ty->isVectorTy())
6205 return error(ID.Loc, "vector constant must have vector type");
6206 if (ID.ConstantVal->getType() != Ty->getScalarType())
6207 return error(ID.Loc, "constant expression type mismatch: got type '" +
6208 getTypeString(ID.ConstantVal->getType()) +
6209 "' but expected '" +
6210 getTypeString(Ty->getScalarType()) + "'");
6211 V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(),
6212 ID.ConstantVal);
6213 return false;
6214 case ValID::t_ConstantStruct:
6215 case ValID::t_PackedConstantStruct:
6216 if (StructType *ST = dyn_cast<StructType>(Ty)) {
6217 if (ST->getNumElements() != ID.UIntVal)
6218 return error(ID.Loc,
6219 "initializer with struct type has wrong # elements");
6220 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
6221 return error(ID.Loc, "packed'ness of initializer and type don't match");
6222
6223 // Verify that the elements are compatible with the structtype.
6224 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
6225 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
6226 return error(
6227 ID.Loc,
6228 "element " + Twine(i) +
6229 " of struct initializer doesn't match struct element type");
6230
6231 V = ConstantStruct::get(
6232 ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
6233 } else
6234 return error(ID.Loc, "constant expression type mismatch");
6235 return false;
6236 }
6237 llvm_unreachable("Invalid ValID");
6238 }
6239
parseConstantValue(Type * Ty,Constant * & C)6240 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
6241 C = nullptr;
6242 ValID ID;
6243 auto Loc = Lex.getLoc();
6244 if (parseValID(ID, /*PFS=*/nullptr))
6245 return true;
6246 switch (ID.Kind) {
6247 case ValID::t_APSInt:
6248 case ValID::t_APFloat:
6249 case ValID::t_Undef:
6250 case ValID::t_Constant:
6251 case ValID::t_ConstantSplat:
6252 case ValID::t_ConstantStruct:
6253 case ValID::t_PackedConstantStruct: {
6254 Value *V;
6255 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
6256 return true;
6257 assert(isa<Constant>(V) && "Expected a constant value");
6258 C = cast<Constant>(V);
6259 return false;
6260 }
6261 case ValID::t_Null:
6262 C = Constant::getNullValue(Ty);
6263 return false;
6264 default:
6265 return error(Loc, "expected a constant value");
6266 }
6267 }
6268
parseValue(Type * Ty,Value * & V,PerFunctionState * PFS)6269 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
6270 V = nullptr;
6271 ValID ID;
6272 return parseValID(ID, PFS, Ty) ||
6273 convertValIDToValue(Ty, ID, V, PFS);
6274 }
6275
parseTypeAndValue(Value * & V,PerFunctionState * PFS)6276 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
6277 Type *Ty = nullptr;
6278 return parseType(Ty) || parseValue(Ty, V, PFS);
6279 }
6280
parseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)6281 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
6282 PerFunctionState &PFS) {
6283 Value *V;
6284 Loc = Lex.getLoc();
6285 if (parseTypeAndValue(V, PFS))
6286 return true;
6287 if (!isa<BasicBlock>(V))
6288 return error(Loc, "expected a basic block");
6289 BB = cast<BasicBlock>(V);
6290 return false;
6291 }
6292
isOldDbgFormatIntrinsic(StringRef Name)6293 bool isOldDbgFormatIntrinsic(StringRef Name) {
6294 // Exit early for the common (non-debug-intrinsic) case.
6295 // We can make this the only check when we begin supporting all "llvm.dbg"
6296 // intrinsics in the new debug info format.
6297 if (!Name.starts_with("llvm.dbg."))
6298 return false;
6299 Intrinsic::ID FnID = Function::lookupIntrinsicID(Name);
6300 return FnID == Intrinsic::dbg_declare || FnID == Intrinsic::dbg_value ||
6301 FnID == Intrinsic::dbg_assign;
6302 }
6303
6304 /// FunctionHeader
6305 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
6306 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
6307 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
6308 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
parseFunctionHeader(Function * & Fn,bool IsDefine,unsigned & FunctionNumber,SmallVectorImpl<unsigned> & UnnamedArgNums)6309 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine,
6310 unsigned &FunctionNumber,
6311 SmallVectorImpl<unsigned> &UnnamedArgNums) {
6312 // parse the linkage.
6313 LocTy LinkageLoc = Lex.getLoc();
6314 unsigned Linkage;
6315 unsigned Visibility;
6316 unsigned DLLStorageClass;
6317 bool DSOLocal;
6318 AttrBuilder RetAttrs(M->getContext());
6319 unsigned CC;
6320 bool HasLinkage;
6321 Type *RetType = nullptr;
6322 LocTy RetTypeLoc = Lex.getLoc();
6323 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
6324 DSOLocal) ||
6325 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6326 parseType(RetType, RetTypeLoc, true /*void allowed*/))
6327 return true;
6328
6329 // Verify that the linkage is ok.
6330 switch ((GlobalValue::LinkageTypes)Linkage) {
6331 case GlobalValue::ExternalLinkage:
6332 break; // always ok.
6333 case GlobalValue::ExternalWeakLinkage:
6334 if (IsDefine)
6335 return error(LinkageLoc, "invalid linkage for function definition");
6336 break;
6337 case GlobalValue::PrivateLinkage:
6338 case GlobalValue::InternalLinkage:
6339 case GlobalValue::AvailableExternallyLinkage:
6340 case GlobalValue::LinkOnceAnyLinkage:
6341 case GlobalValue::LinkOnceODRLinkage:
6342 case GlobalValue::WeakAnyLinkage:
6343 case GlobalValue::WeakODRLinkage:
6344 if (!IsDefine)
6345 return error(LinkageLoc, "invalid linkage for function declaration");
6346 break;
6347 case GlobalValue::AppendingLinkage:
6348 case GlobalValue::CommonLinkage:
6349 return error(LinkageLoc, "invalid function linkage type");
6350 }
6351
6352 if (!isValidVisibilityForLinkage(Visibility, Linkage))
6353 return error(LinkageLoc,
6354 "symbol with local linkage must have default visibility");
6355
6356 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
6357 return error(LinkageLoc,
6358 "symbol with local linkage cannot have a DLL storage class");
6359
6360 if (!FunctionType::isValidReturnType(RetType))
6361 return error(RetTypeLoc, "invalid function return type");
6362
6363 LocTy NameLoc = Lex.getLoc();
6364
6365 std::string FunctionName;
6366 if (Lex.getKind() == lltok::GlobalVar) {
6367 FunctionName = Lex.getStrVal();
6368 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
6369 FunctionNumber = Lex.getUIntVal();
6370 if (checkValueID(NameLoc, "function", "@", NumberedVals.getNext(),
6371 FunctionNumber))
6372 return true;
6373 } else {
6374 return tokError("expected function name");
6375 }
6376
6377 Lex.Lex();
6378
6379 if (Lex.getKind() != lltok::lparen)
6380 return tokError("expected '(' in function argument list");
6381
6382 SmallVector<ArgInfo, 8> ArgList;
6383 bool IsVarArg;
6384 AttrBuilder FuncAttrs(M->getContext());
6385 std::vector<unsigned> FwdRefAttrGrps;
6386 LocTy BuiltinLoc;
6387 std::string Section;
6388 std::string Partition;
6389 MaybeAlign Alignment;
6390 std::string GC;
6391 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
6392 unsigned AddrSpace = 0;
6393 Constant *Prefix = nullptr;
6394 Constant *Prologue = nullptr;
6395 Constant *PersonalityFn = nullptr;
6396 Comdat *C;
6397
6398 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) ||
6399 parseOptionalUnnamedAddr(UnnamedAddr) ||
6400 parseOptionalProgramAddrSpace(AddrSpace) ||
6401 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
6402 BuiltinLoc) ||
6403 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
6404 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
6405 parseOptionalComdat(FunctionName, C) ||
6406 parseOptionalAlignment(Alignment) ||
6407 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
6408 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
6409 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
6410 (EatIfPresent(lltok::kw_personality) &&
6411 parseGlobalTypeAndValue(PersonalityFn)))
6412 return true;
6413
6414 if (FuncAttrs.contains(Attribute::Builtin))
6415 return error(BuiltinLoc, "'builtin' attribute not valid on function");
6416
6417 // If the alignment was parsed as an attribute, move to the alignment field.
6418 if (MaybeAlign A = FuncAttrs.getAlignment()) {
6419 Alignment = A;
6420 FuncAttrs.removeAttribute(Attribute::Alignment);
6421 }
6422
6423 // Okay, if we got here, the function is syntactically valid. Convert types
6424 // and do semantic checks.
6425 std::vector<Type*> ParamTypeList;
6426 SmallVector<AttributeSet, 8> Attrs;
6427
6428 for (const ArgInfo &Arg : ArgList) {
6429 ParamTypeList.push_back(Arg.Ty);
6430 Attrs.push_back(Arg.Attrs);
6431 }
6432
6433 AttributeList PAL =
6434 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
6435 AttributeSet::get(Context, RetAttrs), Attrs);
6436
6437 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
6438 return error(RetTypeLoc, "functions with 'sret' argument must return void");
6439
6440 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
6441 PointerType *PFT = PointerType::get(FT, AddrSpace);
6442
6443 Fn = nullptr;
6444 GlobalValue *FwdFn = nullptr;
6445 if (!FunctionName.empty()) {
6446 // If this was a definition of a forward reference, remove the definition
6447 // from the forward reference table and fill in the forward ref.
6448 auto FRVI = ForwardRefVals.find(FunctionName);
6449 if (FRVI != ForwardRefVals.end()) {
6450 FwdFn = FRVI->second.first;
6451 if (FwdFn->getType() != PFT)
6452 return error(FRVI->second.second,
6453 "invalid forward reference to "
6454 "function '" +
6455 FunctionName +
6456 "' with wrong type: "
6457 "expected '" +
6458 getTypeString(PFT) + "' but was '" +
6459 getTypeString(FwdFn->getType()) + "'");
6460 ForwardRefVals.erase(FRVI);
6461 } else if ((Fn = M->getFunction(FunctionName))) {
6462 // Reject redefinitions.
6463 return error(NameLoc,
6464 "invalid redefinition of function '" + FunctionName + "'");
6465 } else if (M->getNamedValue(FunctionName)) {
6466 return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
6467 }
6468
6469 } else {
6470 // Handle @"", where a name is syntactically specified, but semantically
6471 // missing.
6472 if (FunctionNumber == (unsigned)-1)
6473 FunctionNumber = NumberedVals.getNext();
6474
6475 // If this is a definition of a forward referenced function, make sure the
6476 // types agree.
6477 auto I = ForwardRefValIDs.find(FunctionNumber);
6478 if (I != ForwardRefValIDs.end()) {
6479 FwdFn = I->second.first;
6480 if (FwdFn->getType() != PFT)
6481 return error(NameLoc, "type of definition and forward reference of '@" +
6482 Twine(FunctionNumber) +
6483 "' disagree: "
6484 "expected '" +
6485 getTypeString(PFT) + "' but was '" +
6486 getTypeString(FwdFn->getType()) + "'");
6487 ForwardRefValIDs.erase(I);
6488 }
6489 }
6490
6491 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
6492 FunctionName, M);
6493
6494 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6495
6496 if (FunctionName.empty())
6497 NumberedVals.add(FunctionNumber, Fn);
6498
6499 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6500 maybeSetDSOLocal(DSOLocal, *Fn);
6501 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6502 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6503 Fn->setCallingConv(CC);
6504 Fn->setAttributes(PAL);
6505 Fn->setUnnamedAddr(UnnamedAddr);
6506 if (Alignment)
6507 Fn->setAlignment(*Alignment);
6508 Fn->setSection(Section);
6509 Fn->setPartition(Partition);
6510 Fn->setComdat(C);
6511 Fn->setPersonalityFn(PersonalityFn);
6512 if (!GC.empty()) Fn->setGC(GC);
6513 Fn->setPrefixData(Prefix);
6514 Fn->setPrologueData(Prologue);
6515 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6516
6517 // Add all of the arguments we parsed to the function.
6518 Function::arg_iterator ArgIt = Fn->arg_begin();
6519 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6520 // If the argument has a name, insert it into the argument symbol table.
6521 if (ArgList[i].Name.empty()) continue;
6522
6523 // Set the name, if it conflicted, it will be auto-renamed.
6524 ArgIt->setName(ArgList[i].Name);
6525
6526 if (ArgIt->getName() != ArgList[i].Name)
6527 return error(ArgList[i].Loc,
6528 "redefinition of argument '%" + ArgList[i].Name + "'");
6529 }
6530
6531 if (FwdFn) {
6532 FwdFn->replaceAllUsesWith(Fn);
6533 FwdFn->eraseFromParent();
6534 }
6535
6536 if (IsDefine)
6537 return false;
6538
6539 // Check the declaration has no block address forward references.
6540 ValID ID;
6541 if (FunctionName.empty()) {
6542 ID.Kind = ValID::t_GlobalID;
6543 ID.UIntVal = FunctionNumber;
6544 } else {
6545 ID.Kind = ValID::t_GlobalName;
6546 ID.StrVal = FunctionName;
6547 }
6548 auto Blocks = ForwardRefBlockAddresses.find(ID);
6549 if (Blocks != ForwardRefBlockAddresses.end())
6550 return error(Blocks->first.Loc,
6551 "cannot take blockaddress inside a declaration");
6552 return false;
6553 }
6554
resolveForwardRefBlockAddresses()6555 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6556 ValID ID;
6557 if (FunctionNumber == -1) {
6558 ID.Kind = ValID::t_GlobalName;
6559 ID.StrVal = std::string(F.getName());
6560 } else {
6561 ID.Kind = ValID::t_GlobalID;
6562 ID.UIntVal = FunctionNumber;
6563 }
6564
6565 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6566 if (Blocks == P.ForwardRefBlockAddresses.end())
6567 return false;
6568
6569 for (const auto &I : Blocks->second) {
6570 const ValID &BBID = I.first;
6571 GlobalValue *GV = I.second;
6572
6573 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6574 "Expected local id or name");
6575 BasicBlock *BB;
6576 if (BBID.Kind == ValID::t_LocalName)
6577 BB = getBB(BBID.StrVal, BBID.Loc);
6578 else
6579 BB = getBB(BBID.UIntVal, BBID.Loc);
6580 if (!BB)
6581 return P.error(BBID.Loc, "referenced value is not a basic block");
6582
6583 Value *ResolvedVal = BlockAddress::get(&F, BB);
6584 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6585 ResolvedVal);
6586 if (!ResolvedVal)
6587 return true;
6588 GV->replaceAllUsesWith(ResolvedVal);
6589 GV->eraseFromParent();
6590 }
6591
6592 P.ForwardRefBlockAddresses.erase(Blocks);
6593 return false;
6594 }
6595
6596 /// parseFunctionBody
6597 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
parseFunctionBody(Function & Fn,unsigned FunctionNumber,ArrayRef<unsigned> UnnamedArgNums)6598 bool LLParser::parseFunctionBody(Function &Fn, unsigned FunctionNumber,
6599 ArrayRef<unsigned> UnnamedArgNums) {
6600 if (Lex.getKind() != lltok::lbrace)
6601 return tokError("expected '{' in function body");
6602 Lex.Lex(); // eat the {.
6603
6604 PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums);
6605
6606 // Resolve block addresses and allow basic blocks to be forward-declared
6607 // within this function.
6608 if (PFS.resolveForwardRefBlockAddresses())
6609 return true;
6610 SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6611
6612 // We need at least one basic block.
6613 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6614 return tokError("function body requires at least one basic block");
6615
6616 while (Lex.getKind() != lltok::rbrace &&
6617 Lex.getKind() != lltok::kw_uselistorder)
6618 if (parseBasicBlock(PFS))
6619 return true;
6620
6621 while (Lex.getKind() != lltok::rbrace)
6622 if (parseUseListOrder(&PFS))
6623 return true;
6624
6625 // Eat the }.
6626 Lex.Lex();
6627
6628 // Verify function is ok.
6629 return PFS.finishFunction();
6630 }
6631
6632 /// parseBasicBlock
6633 /// ::= (LabelStr|LabelID)? Instruction*
parseBasicBlock(PerFunctionState & PFS)6634 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6635 // If this basic block starts out with a name, remember it.
6636 std::string Name;
6637 int NameID = -1;
6638 LocTy NameLoc = Lex.getLoc();
6639 if (Lex.getKind() == lltok::LabelStr) {
6640 Name = Lex.getStrVal();
6641 Lex.Lex();
6642 } else if (Lex.getKind() == lltok::LabelID) {
6643 NameID = Lex.getUIntVal();
6644 Lex.Lex();
6645 }
6646
6647 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6648 if (!BB)
6649 return true;
6650
6651 std::string NameStr;
6652
6653 // Parse the instructions and debug values in this block until we get a
6654 // terminator.
6655 Instruction *Inst;
6656 auto DeleteDbgRecord = [](DbgRecord *DR) { DR->deleteRecord(); };
6657 using DbgRecordPtr = std::unique_ptr<DbgRecord, decltype(DeleteDbgRecord)>;
6658 SmallVector<DbgRecordPtr> TrailingDbgRecord;
6659 do {
6660 // Handle debug records first - there should always be an instruction
6661 // following the debug records, i.e. they cannot appear after the block
6662 // terminator.
6663 while (Lex.getKind() == lltok::hash) {
6664 if (SeenOldDbgInfoFormat)
6665 return error(Lex.getLoc(), "debug record should not appear in a module "
6666 "containing debug info intrinsics");
6667 if (!SeenNewDbgInfoFormat)
6668 M->setNewDbgInfoFormatFlag(true);
6669 SeenNewDbgInfoFormat = true;
6670 Lex.Lex();
6671
6672 DbgRecord *DR;
6673 if (parseDebugRecord(DR, PFS))
6674 return true;
6675 TrailingDbgRecord.emplace_back(DR, DeleteDbgRecord);
6676 }
6677
6678 // This instruction may have three possibilities for a name: a) none
6679 // specified, b) name specified "%foo =", c) number specified: "%4 =".
6680 LocTy NameLoc = Lex.getLoc();
6681 int NameID = -1;
6682 NameStr = "";
6683
6684 if (Lex.getKind() == lltok::LocalVarID) {
6685 NameID = Lex.getUIntVal();
6686 Lex.Lex();
6687 if (parseToken(lltok::equal, "expected '=' after instruction id"))
6688 return true;
6689 } else if (Lex.getKind() == lltok::LocalVar) {
6690 NameStr = Lex.getStrVal();
6691 Lex.Lex();
6692 if (parseToken(lltok::equal, "expected '=' after instruction name"))
6693 return true;
6694 }
6695
6696 switch (parseInstruction(Inst, BB, PFS)) {
6697 default:
6698 llvm_unreachable("Unknown parseInstruction result!");
6699 case InstError: return true;
6700 case InstNormal:
6701 Inst->insertInto(BB, BB->end());
6702
6703 // With a normal result, we check to see if the instruction is followed by
6704 // a comma and metadata.
6705 if (EatIfPresent(lltok::comma))
6706 if (parseInstructionMetadata(*Inst))
6707 return true;
6708 break;
6709 case InstExtraComma:
6710 Inst->insertInto(BB, BB->end());
6711
6712 // If the instruction parser ate an extra comma at the end of it, it
6713 // *must* be followed by metadata.
6714 if (parseInstructionMetadata(*Inst))
6715 return true;
6716 break;
6717 }
6718
6719 // Set the name on the instruction.
6720 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6721 return true;
6722
6723 // Attach any preceding debug values to this instruction.
6724 for (DbgRecordPtr &DR : TrailingDbgRecord)
6725 BB->insertDbgRecordBefore(DR.release(), Inst->getIterator());
6726 TrailingDbgRecord.clear();
6727 } while (!Inst->isTerminator());
6728
6729 assert(TrailingDbgRecord.empty() &&
6730 "All debug values should have been attached to an instruction.");
6731
6732 return false;
6733 }
6734
6735 /// parseDebugRecord
6736 /// ::= #dbg_label '(' MDNode ')'
6737 /// ::= #dbg_type '(' Metadata ',' MDNode ',' Metadata ','
6738 /// (MDNode ',' Metadata ',' Metadata ',')? MDNode ')'
parseDebugRecord(DbgRecord * & DR,PerFunctionState & PFS)6739 bool LLParser::parseDebugRecord(DbgRecord *&DR, PerFunctionState &PFS) {
6740 using RecordKind = DbgRecord::Kind;
6741 using LocType = DbgVariableRecord::LocationType;
6742 LocTy DVRLoc = Lex.getLoc();
6743 if (Lex.getKind() != lltok::DbgRecordType)
6744 return error(DVRLoc, "expected debug record type here");
6745 RecordKind RecordType = StringSwitch<RecordKind>(Lex.getStrVal())
6746 .Case("declare", RecordKind::ValueKind)
6747 .Case("value", RecordKind::ValueKind)
6748 .Case("assign", RecordKind::ValueKind)
6749 .Case("label", RecordKind::LabelKind);
6750
6751 // Parsing labels is trivial; parse here and early exit, otherwise go into the
6752 // full DbgVariableRecord processing stage.
6753 if (RecordType == RecordKind::LabelKind) {
6754 Lex.Lex();
6755 if (parseToken(lltok::lparen, "Expected '(' here"))
6756 return true;
6757 MDNode *Label;
6758 if (parseMDNode(Label))
6759 return true;
6760 if (parseToken(lltok::comma, "Expected ',' here"))
6761 return true;
6762 MDNode *DbgLoc;
6763 if (parseMDNode(DbgLoc))
6764 return true;
6765 if (parseToken(lltok::rparen, "Expected ')' here"))
6766 return true;
6767 DR = DbgLabelRecord::createUnresolvedDbgLabelRecord(Label, DbgLoc);
6768 return false;
6769 }
6770
6771 LocType ValueType = StringSwitch<LocType>(Lex.getStrVal())
6772 .Case("declare", LocType::Declare)
6773 .Case("value", LocType::Value)
6774 .Case("assign", LocType::Assign);
6775
6776 Lex.Lex();
6777 if (parseToken(lltok::lparen, "Expected '(' here"))
6778 return true;
6779
6780 // Parse Value field.
6781 Metadata *ValLocMD;
6782 if (parseMetadata(ValLocMD, &PFS))
6783 return true;
6784 if (parseToken(lltok::comma, "Expected ',' here"))
6785 return true;
6786
6787 // Parse Variable field.
6788 MDNode *Variable;
6789 if (parseMDNode(Variable))
6790 return true;
6791 if (parseToken(lltok::comma, "Expected ',' here"))
6792 return true;
6793
6794 // Parse Expression field.
6795 MDNode *Expression;
6796 if (parseMDNode(Expression))
6797 return true;
6798 if (parseToken(lltok::comma, "Expected ',' here"))
6799 return true;
6800
6801 // Parse additional fields for #dbg_assign.
6802 MDNode *AssignID = nullptr;
6803 Metadata *AddressLocation = nullptr;
6804 MDNode *AddressExpression = nullptr;
6805 if (ValueType == LocType::Assign) {
6806 // Parse DIAssignID.
6807 if (parseMDNode(AssignID))
6808 return true;
6809 if (parseToken(lltok::comma, "Expected ',' here"))
6810 return true;
6811
6812 // Parse address ValueAsMetadata.
6813 if (parseMetadata(AddressLocation, &PFS))
6814 return true;
6815 if (parseToken(lltok::comma, "Expected ',' here"))
6816 return true;
6817
6818 // Parse address DIExpression.
6819 if (parseMDNode(AddressExpression))
6820 return true;
6821 if (parseToken(lltok::comma, "Expected ',' here"))
6822 return true;
6823 }
6824
6825 /// Parse DILocation.
6826 MDNode *DebugLoc;
6827 if (parseMDNode(DebugLoc))
6828 return true;
6829
6830 if (parseToken(lltok::rparen, "Expected ')' here"))
6831 return true;
6832 DR = DbgVariableRecord::createUnresolvedDbgVariableRecord(
6833 ValueType, ValLocMD, Variable, Expression, AssignID, AddressLocation,
6834 AddressExpression, DebugLoc);
6835 return false;
6836 }
6837 //===----------------------------------------------------------------------===//
6838 // Instruction Parsing.
6839 //===----------------------------------------------------------------------===//
6840
6841 /// parseInstruction - parse one of the many different instructions.
6842 ///
parseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)6843 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6844 PerFunctionState &PFS) {
6845 lltok::Kind Token = Lex.getKind();
6846 if (Token == lltok::Eof)
6847 return tokError("found end of file when expecting more instructions");
6848 LocTy Loc = Lex.getLoc();
6849 unsigned KeywordVal = Lex.getUIntVal();
6850 Lex.Lex(); // Eat the keyword.
6851
6852 switch (Token) {
6853 default:
6854 return error(Loc, "expected instruction opcode");
6855 // Terminator Instructions.
6856 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6857 case lltok::kw_ret:
6858 return parseRet(Inst, BB, PFS);
6859 case lltok::kw_br:
6860 return parseBr(Inst, PFS);
6861 case lltok::kw_switch:
6862 return parseSwitch(Inst, PFS);
6863 case lltok::kw_indirectbr:
6864 return parseIndirectBr(Inst, PFS);
6865 case lltok::kw_invoke:
6866 return parseInvoke(Inst, PFS);
6867 case lltok::kw_resume:
6868 return parseResume(Inst, PFS);
6869 case lltok::kw_cleanupret:
6870 return parseCleanupRet(Inst, PFS);
6871 case lltok::kw_catchret:
6872 return parseCatchRet(Inst, PFS);
6873 case lltok::kw_catchswitch:
6874 return parseCatchSwitch(Inst, PFS);
6875 case lltok::kw_catchpad:
6876 return parseCatchPad(Inst, PFS);
6877 case lltok::kw_cleanuppad:
6878 return parseCleanupPad(Inst, PFS);
6879 case lltok::kw_callbr:
6880 return parseCallBr(Inst, PFS);
6881 // Unary Operators.
6882 case lltok::kw_fneg: {
6883 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6884 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6885 if (Res != 0)
6886 return Res;
6887 if (FMF.any())
6888 Inst->setFastMathFlags(FMF);
6889 return false;
6890 }
6891 // Binary Operators.
6892 case lltok::kw_add:
6893 case lltok::kw_sub:
6894 case lltok::kw_mul:
6895 case lltok::kw_shl: {
6896 bool NUW = EatIfPresent(lltok::kw_nuw);
6897 bool NSW = EatIfPresent(lltok::kw_nsw);
6898 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6899
6900 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6901 return true;
6902
6903 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6904 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6905 return false;
6906 }
6907 case lltok::kw_fadd:
6908 case lltok::kw_fsub:
6909 case lltok::kw_fmul:
6910 case lltok::kw_fdiv:
6911 case lltok::kw_frem: {
6912 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6913 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6914 if (Res != 0)
6915 return Res;
6916 if (FMF.any())
6917 Inst->setFastMathFlags(FMF);
6918 return 0;
6919 }
6920
6921 case lltok::kw_sdiv:
6922 case lltok::kw_udiv:
6923 case lltok::kw_lshr:
6924 case lltok::kw_ashr: {
6925 bool Exact = EatIfPresent(lltok::kw_exact);
6926
6927 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6928 return true;
6929 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6930 return false;
6931 }
6932
6933 case lltok::kw_urem:
6934 case lltok::kw_srem:
6935 return parseArithmetic(Inst, PFS, KeywordVal,
6936 /*IsFP*/ false);
6937 case lltok::kw_or: {
6938 bool Disjoint = EatIfPresent(lltok::kw_disjoint);
6939 if (parseLogical(Inst, PFS, KeywordVal))
6940 return true;
6941 if (Disjoint)
6942 cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true);
6943 return false;
6944 }
6945 case lltok::kw_and:
6946 case lltok::kw_xor:
6947 return parseLogical(Inst, PFS, KeywordVal);
6948 case lltok::kw_icmp:
6949 return parseCompare(Inst, PFS, KeywordVal);
6950 case lltok::kw_fcmp: {
6951 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6952 int Res = parseCompare(Inst, PFS, KeywordVal);
6953 if (Res != 0)
6954 return Res;
6955 if (FMF.any())
6956 Inst->setFastMathFlags(FMF);
6957 return 0;
6958 }
6959
6960 // Casts.
6961 case lltok::kw_uitofp:
6962 case lltok::kw_zext: {
6963 bool NonNeg = EatIfPresent(lltok::kw_nneg);
6964 bool Res = parseCast(Inst, PFS, KeywordVal);
6965 if (Res != 0)
6966 return Res;
6967 if (NonNeg)
6968 Inst->setNonNeg();
6969 return 0;
6970 }
6971 case lltok::kw_trunc: {
6972 bool NUW = EatIfPresent(lltok::kw_nuw);
6973 bool NSW = EatIfPresent(lltok::kw_nsw);
6974 if (!NUW)
6975 NUW = EatIfPresent(lltok::kw_nuw);
6976 if (parseCast(Inst, PFS, KeywordVal))
6977 return true;
6978 if (NUW)
6979 cast<TruncInst>(Inst)->setHasNoUnsignedWrap(true);
6980 if (NSW)
6981 cast<TruncInst>(Inst)->setHasNoSignedWrap(true);
6982 return false;
6983 }
6984 case lltok::kw_sext:
6985 case lltok::kw_fptrunc:
6986 case lltok::kw_fpext:
6987 case lltok::kw_bitcast:
6988 case lltok::kw_addrspacecast:
6989 case lltok::kw_sitofp:
6990 case lltok::kw_fptoui:
6991 case lltok::kw_fptosi:
6992 case lltok::kw_inttoptr:
6993 case lltok::kw_ptrtoint:
6994 return parseCast(Inst, PFS, KeywordVal);
6995 // Other.
6996 case lltok::kw_select: {
6997 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6998 int Res = parseSelect(Inst, PFS);
6999 if (Res != 0)
7000 return Res;
7001 if (FMF.any()) {
7002 if (!isa<FPMathOperator>(Inst))
7003 return error(Loc, "fast-math-flags specified for select without "
7004 "floating-point scalar or vector return type");
7005 Inst->setFastMathFlags(FMF);
7006 }
7007 return 0;
7008 }
7009 case lltok::kw_va_arg:
7010 return parseVAArg(Inst, PFS);
7011 case lltok::kw_extractelement:
7012 return parseExtractElement(Inst, PFS);
7013 case lltok::kw_insertelement:
7014 return parseInsertElement(Inst, PFS);
7015 case lltok::kw_shufflevector:
7016 return parseShuffleVector(Inst, PFS);
7017 case lltok::kw_phi: {
7018 FastMathFlags FMF = EatFastMathFlagsIfPresent();
7019 int Res = parsePHI(Inst, PFS);
7020 if (Res != 0)
7021 return Res;
7022 if (FMF.any()) {
7023 if (!isa<FPMathOperator>(Inst))
7024 return error(Loc, "fast-math-flags specified for phi without "
7025 "floating-point scalar or vector return type");
7026 Inst->setFastMathFlags(FMF);
7027 }
7028 return 0;
7029 }
7030 case lltok::kw_landingpad:
7031 return parseLandingPad(Inst, PFS);
7032 case lltok::kw_freeze:
7033 return parseFreeze(Inst, PFS);
7034 // Call.
7035 case lltok::kw_call:
7036 return parseCall(Inst, PFS, CallInst::TCK_None);
7037 case lltok::kw_tail:
7038 return parseCall(Inst, PFS, CallInst::TCK_Tail);
7039 case lltok::kw_musttail:
7040 return parseCall(Inst, PFS, CallInst::TCK_MustTail);
7041 case lltok::kw_notail:
7042 return parseCall(Inst, PFS, CallInst::TCK_NoTail);
7043 // Memory.
7044 case lltok::kw_alloca:
7045 return parseAlloc(Inst, PFS);
7046 case lltok::kw_load:
7047 return parseLoad(Inst, PFS);
7048 case lltok::kw_store:
7049 return parseStore(Inst, PFS);
7050 case lltok::kw_cmpxchg:
7051 return parseCmpXchg(Inst, PFS);
7052 case lltok::kw_atomicrmw:
7053 return parseAtomicRMW(Inst, PFS);
7054 case lltok::kw_fence:
7055 return parseFence(Inst, PFS);
7056 case lltok::kw_getelementptr:
7057 return parseGetElementPtr(Inst, PFS);
7058 case lltok::kw_extractvalue:
7059 return parseExtractValue(Inst, PFS);
7060 case lltok::kw_insertvalue:
7061 return parseInsertValue(Inst, PFS);
7062 }
7063 }
7064
7065 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
parseCmpPredicate(unsigned & P,unsigned Opc)7066 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
7067 if (Opc == Instruction::FCmp) {
7068 switch (Lex.getKind()) {
7069 default:
7070 return tokError("expected fcmp predicate (e.g. 'oeq')");
7071 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
7072 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
7073 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
7074 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
7075 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
7076 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
7077 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
7078 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
7079 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
7080 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
7081 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
7082 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
7083 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
7084 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
7085 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
7086 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
7087 }
7088 } else {
7089 switch (Lex.getKind()) {
7090 default:
7091 return tokError("expected icmp predicate (e.g. 'eq')");
7092 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
7093 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
7094 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
7095 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
7096 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
7097 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
7098 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
7099 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
7100 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
7101 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
7102 }
7103 }
7104 Lex.Lex();
7105 return false;
7106 }
7107
7108 //===----------------------------------------------------------------------===//
7109 // Terminator Instructions.
7110 //===----------------------------------------------------------------------===//
7111
7112 /// parseRet - parse a return instruction.
7113 /// ::= 'ret' void (',' !dbg, !1)*
7114 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
parseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)7115 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
7116 PerFunctionState &PFS) {
7117 SMLoc TypeLoc = Lex.getLoc();
7118 Type *Ty = nullptr;
7119 if (parseType(Ty, true /*void allowed*/))
7120 return true;
7121
7122 Type *ResType = PFS.getFunction().getReturnType();
7123
7124 if (Ty->isVoidTy()) {
7125 if (!ResType->isVoidTy())
7126 return error(TypeLoc, "value doesn't match function result type '" +
7127 getTypeString(ResType) + "'");
7128
7129 Inst = ReturnInst::Create(Context);
7130 return false;
7131 }
7132
7133 Value *RV;
7134 if (parseValue(Ty, RV, PFS))
7135 return true;
7136
7137 if (ResType != RV->getType())
7138 return error(TypeLoc, "value doesn't match function result type '" +
7139 getTypeString(ResType) + "'");
7140
7141 Inst = ReturnInst::Create(Context, RV);
7142 return false;
7143 }
7144
7145 /// parseBr
7146 /// ::= 'br' TypeAndValue
7147 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseBr(Instruction * & Inst,PerFunctionState & PFS)7148 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
7149 LocTy Loc, Loc2;
7150 Value *Op0;
7151 BasicBlock *Op1, *Op2;
7152 if (parseTypeAndValue(Op0, Loc, PFS))
7153 return true;
7154
7155 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
7156 Inst = BranchInst::Create(BB);
7157 return false;
7158 }
7159
7160 if (Op0->getType() != Type::getInt1Ty(Context))
7161 return error(Loc, "branch condition must have 'i1' type");
7162
7163 if (parseToken(lltok::comma, "expected ',' after branch condition") ||
7164 parseTypeAndBasicBlock(Op1, Loc, PFS) ||
7165 parseToken(lltok::comma, "expected ',' after true destination") ||
7166 parseTypeAndBasicBlock(Op2, Loc2, PFS))
7167 return true;
7168
7169 Inst = BranchInst::Create(Op1, Op2, Op0);
7170 return false;
7171 }
7172
7173 /// parseSwitch
7174 /// Instruction
7175 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
7176 /// JumpTable
7177 /// ::= (TypeAndValue ',' TypeAndValue)*
parseSwitch(Instruction * & Inst,PerFunctionState & PFS)7178 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7179 LocTy CondLoc, BBLoc;
7180 Value *Cond;
7181 BasicBlock *DefaultBB;
7182 if (parseTypeAndValue(Cond, CondLoc, PFS) ||
7183 parseToken(lltok::comma, "expected ',' after switch condition") ||
7184 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
7185 parseToken(lltok::lsquare, "expected '[' with switch table"))
7186 return true;
7187
7188 if (!Cond->getType()->isIntegerTy())
7189 return error(CondLoc, "switch condition must have integer type");
7190
7191 // parse the jump table pairs.
7192 SmallPtrSet<Value*, 32> SeenCases;
7193 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
7194 while (Lex.getKind() != lltok::rsquare) {
7195 Value *Constant;
7196 BasicBlock *DestBB;
7197
7198 if (parseTypeAndValue(Constant, CondLoc, PFS) ||
7199 parseToken(lltok::comma, "expected ',' after case value") ||
7200 parseTypeAndBasicBlock(DestBB, PFS))
7201 return true;
7202
7203 if (!SeenCases.insert(Constant).second)
7204 return error(CondLoc, "duplicate case value in switch");
7205 if (!isa<ConstantInt>(Constant))
7206 return error(CondLoc, "case value is not a constant integer");
7207
7208 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
7209 }
7210
7211 Lex.Lex(); // Eat the ']'.
7212
7213 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
7214 for (unsigned i = 0, e = Table.size(); i != e; ++i)
7215 SI->addCase(Table[i].first, Table[i].second);
7216 Inst = SI;
7217 return false;
7218 }
7219
7220 /// parseIndirectBr
7221 /// Instruction
7222 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
parseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)7223 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
7224 LocTy AddrLoc;
7225 Value *Address;
7226 if (parseTypeAndValue(Address, AddrLoc, PFS) ||
7227 parseToken(lltok::comma, "expected ',' after indirectbr address") ||
7228 parseToken(lltok::lsquare, "expected '[' with indirectbr"))
7229 return true;
7230
7231 if (!Address->getType()->isPointerTy())
7232 return error(AddrLoc, "indirectbr address must have pointer type");
7233
7234 // parse the destination list.
7235 SmallVector<BasicBlock*, 16> DestList;
7236
7237 if (Lex.getKind() != lltok::rsquare) {
7238 BasicBlock *DestBB;
7239 if (parseTypeAndBasicBlock(DestBB, PFS))
7240 return true;
7241 DestList.push_back(DestBB);
7242
7243 while (EatIfPresent(lltok::comma)) {
7244 if (parseTypeAndBasicBlock(DestBB, PFS))
7245 return true;
7246 DestList.push_back(DestBB);
7247 }
7248 }
7249
7250 if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7251 return true;
7252
7253 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
7254 for (BasicBlock *Dest : DestList)
7255 IBI->addDestination(Dest);
7256 Inst = IBI;
7257 return false;
7258 }
7259
7260 // If RetType is a non-function pointer type, then this is the short syntax
7261 // for the call, which means that RetType is just the return type. Infer the
7262 // rest of the function argument types from the arguments that are present.
resolveFunctionType(Type * RetType,const SmallVector<ParamInfo,16> & ArgList,FunctionType * & FuncTy)7263 bool LLParser::resolveFunctionType(Type *RetType,
7264 const SmallVector<ParamInfo, 16> &ArgList,
7265 FunctionType *&FuncTy) {
7266 FuncTy = dyn_cast<FunctionType>(RetType);
7267 if (!FuncTy) {
7268 // Pull out the types of all of the arguments...
7269 std::vector<Type*> ParamTypes;
7270 for (const ParamInfo &Arg : ArgList)
7271 ParamTypes.push_back(Arg.V->getType());
7272
7273 if (!FunctionType::isValidReturnType(RetType))
7274 return true;
7275
7276 FuncTy = FunctionType::get(RetType, ParamTypes, false);
7277 }
7278 return false;
7279 }
7280
7281 /// parseInvoke
7282 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
7283 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
parseInvoke(Instruction * & Inst,PerFunctionState & PFS)7284 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
7285 LocTy CallLoc = Lex.getLoc();
7286 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7287 std::vector<unsigned> FwdRefAttrGrps;
7288 LocTy NoBuiltinLoc;
7289 unsigned CC;
7290 unsigned InvokeAddrSpace;
7291 Type *RetType = nullptr;
7292 LocTy RetTypeLoc;
7293 ValID CalleeID;
7294 SmallVector<ParamInfo, 16> ArgList;
7295 SmallVector<OperandBundleDef, 2> BundleList;
7296
7297 BasicBlock *NormalBB, *UnwindBB;
7298 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7299 parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
7300 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7301 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7302 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7303 NoBuiltinLoc) ||
7304 parseOptionalOperandBundles(BundleList, PFS) ||
7305 parseToken(lltok::kw_to, "expected 'to' in invoke") ||
7306 parseTypeAndBasicBlock(NormalBB, PFS) ||
7307 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
7308 parseTypeAndBasicBlock(UnwindBB, PFS))
7309 return true;
7310
7311 // If RetType is a non-function pointer type, then this is the short syntax
7312 // for the call, which means that RetType is just the return type. Infer the
7313 // rest of the function argument types from the arguments that are present.
7314 FunctionType *Ty;
7315 if (resolveFunctionType(RetType, ArgList, Ty))
7316 return error(RetTypeLoc, "Invalid result type for LLVM function");
7317
7318 CalleeID.FTy = Ty;
7319
7320 // Look up the callee.
7321 Value *Callee;
7322 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
7323 Callee, &PFS))
7324 return true;
7325
7326 // Set up the Attribute for the function.
7327 SmallVector<Value *, 8> Args;
7328 SmallVector<AttributeSet, 8> ArgAttrs;
7329
7330 // Loop through FunctionType's arguments and ensure they are specified
7331 // correctly. Also, gather any parameter attributes.
7332 FunctionType::param_iterator I = Ty->param_begin();
7333 FunctionType::param_iterator E = Ty->param_end();
7334 for (const ParamInfo &Arg : ArgList) {
7335 Type *ExpectedTy = nullptr;
7336 if (I != E) {
7337 ExpectedTy = *I++;
7338 } else if (!Ty->isVarArg()) {
7339 return error(Arg.Loc, "too many arguments specified");
7340 }
7341
7342 if (ExpectedTy && ExpectedTy != Arg.V->getType())
7343 return error(Arg.Loc, "argument is not of expected type '" +
7344 getTypeString(ExpectedTy) + "'");
7345 Args.push_back(Arg.V);
7346 ArgAttrs.push_back(Arg.Attrs);
7347 }
7348
7349 if (I != E)
7350 return error(CallLoc, "not enough parameters specified for call");
7351
7352 // Finish off the Attribute and check them
7353 AttributeList PAL =
7354 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7355 AttributeSet::get(Context, RetAttrs), ArgAttrs);
7356
7357 InvokeInst *II =
7358 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
7359 II->setCallingConv(CC);
7360 II->setAttributes(PAL);
7361 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
7362 Inst = II;
7363 return false;
7364 }
7365
7366 /// parseResume
7367 /// ::= 'resume' TypeAndValue
parseResume(Instruction * & Inst,PerFunctionState & PFS)7368 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
7369 Value *Exn; LocTy ExnLoc;
7370 if (parseTypeAndValue(Exn, ExnLoc, PFS))
7371 return true;
7372
7373 ResumeInst *RI = ResumeInst::Create(Exn);
7374 Inst = RI;
7375 return false;
7376 }
7377
parseExceptionArgs(SmallVectorImpl<Value * > & Args,PerFunctionState & PFS)7378 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
7379 PerFunctionState &PFS) {
7380 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
7381 return true;
7382
7383 while (Lex.getKind() != lltok::rsquare) {
7384 // If this isn't the first argument, we need a comma.
7385 if (!Args.empty() &&
7386 parseToken(lltok::comma, "expected ',' in argument list"))
7387 return true;
7388
7389 // parse the argument.
7390 LocTy ArgLoc;
7391 Type *ArgTy = nullptr;
7392 if (parseType(ArgTy, ArgLoc))
7393 return true;
7394
7395 Value *V;
7396 if (ArgTy->isMetadataTy()) {
7397 if (parseMetadataAsValue(V, PFS))
7398 return true;
7399 } else {
7400 if (parseValue(ArgTy, V, PFS))
7401 return true;
7402 }
7403 Args.push_back(V);
7404 }
7405
7406 Lex.Lex(); // Lex the ']'.
7407 return false;
7408 }
7409
7410 /// parseCleanupRet
7411 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
parseCleanupRet(Instruction * & Inst,PerFunctionState & PFS)7412 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
7413 Value *CleanupPad = nullptr;
7414
7415 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
7416 return true;
7417
7418 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
7419 return true;
7420
7421 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
7422 return true;
7423
7424 BasicBlock *UnwindBB = nullptr;
7425 if (Lex.getKind() == lltok::kw_to) {
7426 Lex.Lex();
7427 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
7428 return true;
7429 } else {
7430 if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
7431 return true;
7432 }
7433 }
7434
7435 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
7436 return false;
7437 }
7438
7439 /// parseCatchRet
7440 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
parseCatchRet(Instruction * & Inst,PerFunctionState & PFS)7441 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
7442 Value *CatchPad = nullptr;
7443
7444 if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
7445 return true;
7446
7447 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
7448 return true;
7449
7450 BasicBlock *BB;
7451 if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
7452 parseTypeAndBasicBlock(BB, PFS))
7453 return true;
7454
7455 Inst = CatchReturnInst::Create(CatchPad, BB);
7456 return false;
7457 }
7458
7459 /// parseCatchSwitch
7460 /// ::= 'catchswitch' within Parent
parseCatchSwitch(Instruction * & Inst,PerFunctionState & PFS)7461 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7462 Value *ParentPad;
7463
7464 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
7465 return true;
7466
7467 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7468 Lex.getKind() != lltok::LocalVarID)
7469 return tokError("expected scope value for catchswitch");
7470
7471 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7472 return true;
7473
7474 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
7475 return true;
7476
7477 SmallVector<BasicBlock *, 32> Table;
7478 do {
7479 BasicBlock *DestBB;
7480 if (parseTypeAndBasicBlock(DestBB, PFS))
7481 return true;
7482 Table.push_back(DestBB);
7483 } while (EatIfPresent(lltok::comma));
7484
7485 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
7486 return true;
7487
7488 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
7489 return true;
7490
7491 BasicBlock *UnwindBB = nullptr;
7492 if (EatIfPresent(lltok::kw_to)) {
7493 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
7494 return true;
7495 } else {
7496 if (parseTypeAndBasicBlock(UnwindBB, PFS))
7497 return true;
7498 }
7499
7500 auto *CatchSwitch =
7501 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
7502 for (BasicBlock *DestBB : Table)
7503 CatchSwitch->addHandler(DestBB);
7504 Inst = CatchSwitch;
7505 return false;
7506 }
7507
7508 /// parseCatchPad
7509 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
parseCatchPad(Instruction * & Inst,PerFunctionState & PFS)7510 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
7511 Value *CatchSwitch = nullptr;
7512
7513 if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
7514 return true;
7515
7516 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
7517 return tokError("expected scope value for catchpad");
7518
7519 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
7520 return true;
7521
7522 SmallVector<Value *, 8> Args;
7523 if (parseExceptionArgs(Args, PFS))
7524 return true;
7525
7526 Inst = CatchPadInst::Create(CatchSwitch, Args);
7527 return false;
7528 }
7529
7530 /// parseCleanupPad
7531 /// ::= 'cleanuppad' within Parent ParamList
parseCleanupPad(Instruction * & Inst,PerFunctionState & PFS)7532 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
7533 Value *ParentPad = nullptr;
7534
7535 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
7536 return true;
7537
7538 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7539 Lex.getKind() != lltok::LocalVarID)
7540 return tokError("expected scope value for cleanuppad");
7541
7542 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7543 return true;
7544
7545 SmallVector<Value *, 8> Args;
7546 if (parseExceptionArgs(Args, PFS))
7547 return true;
7548
7549 Inst = CleanupPadInst::Create(ParentPad, Args);
7550 return false;
7551 }
7552
7553 //===----------------------------------------------------------------------===//
7554 // Unary Operators.
7555 //===----------------------------------------------------------------------===//
7556
7557 /// parseUnaryOp
7558 /// ::= UnaryOp TypeAndValue ',' Value
7559 ///
7560 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7561 /// operand is allowed.
parseUnaryOp(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)7562 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
7563 unsigned Opc, bool IsFP) {
7564 LocTy Loc; Value *LHS;
7565 if (parseTypeAndValue(LHS, Loc, PFS))
7566 return true;
7567
7568 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7569 : LHS->getType()->isIntOrIntVectorTy();
7570
7571 if (!Valid)
7572 return error(Loc, "invalid operand type for instruction");
7573
7574 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
7575 return false;
7576 }
7577
7578 /// parseCallBr
7579 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
7580 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
7581 /// '[' LabelList ']'
parseCallBr(Instruction * & Inst,PerFunctionState & PFS)7582 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
7583 LocTy CallLoc = Lex.getLoc();
7584 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7585 std::vector<unsigned> FwdRefAttrGrps;
7586 LocTy NoBuiltinLoc;
7587 unsigned CC;
7588 Type *RetType = nullptr;
7589 LocTy RetTypeLoc;
7590 ValID CalleeID;
7591 SmallVector<ParamInfo, 16> ArgList;
7592 SmallVector<OperandBundleDef, 2> BundleList;
7593
7594 BasicBlock *DefaultDest;
7595 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7596 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7597 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7598 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7599 NoBuiltinLoc) ||
7600 parseOptionalOperandBundles(BundleList, PFS) ||
7601 parseToken(lltok::kw_to, "expected 'to' in callbr") ||
7602 parseTypeAndBasicBlock(DefaultDest, PFS) ||
7603 parseToken(lltok::lsquare, "expected '[' in callbr"))
7604 return true;
7605
7606 // parse the destination list.
7607 SmallVector<BasicBlock *, 16> IndirectDests;
7608
7609 if (Lex.getKind() != lltok::rsquare) {
7610 BasicBlock *DestBB;
7611 if (parseTypeAndBasicBlock(DestBB, PFS))
7612 return true;
7613 IndirectDests.push_back(DestBB);
7614
7615 while (EatIfPresent(lltok::comma)) {
7616 if (parseTypeAndBasicBlock(DestBB, PFS))
7617 return true;
7618 IndirectDests.push_back(DestBB);
7619 }
7620 }
7621
7622 if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7623 return true;
7624
7625 // If RetType is a non-function pointer type, then this is the short syntax
7626 // for the call, which means that RetType is just the return type. Infer the
7627 // rest of the function argument types from the arguments that are present.
7628 FunctionType *Ty;
7629 if (resolveFunctionType(RetType, ArgList, Ty))
7630 return error(RetTypeLoc, "Invalid result type for LLVM function");
7631
7632 CalleeID.FTy = Ty;
7633
7634 // Look up the callee.
7635 Value *Callee;
7636 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
7637 return true;
7638
7639 // Set up the Attribute for the function.
7640 SmallVector<Value *, 8> Args;
7641 SmallVector<AttributeSet, 8> ArgAttrs;
7642
7643 // Loop through FunctionType's arguments and ensure they are specified
7644 // correctly. Also, gather any parameter attributes.
7645 FunctionType::param_iterator I = Ty->param_begin();
7646 FunctionType::param_iterator E = Ty->param_end();
7647 for (const ParamInfo &Arg : ArgList) {
7648 Type *ExpectedTy = nullptr;
7649 if (I != E) {
7650 ExpectedTy = *I++;
7651 } else if (!Ty->isVarArg()) {
7652 return error(Arg.Loc, "too many arguments specified");
7653 }
7654
7655 if (ExpectedTy && ExpectedTy != Arg.V->getType())
7656 return error(Arg.Loc, "argument is not of expected type '" +
7657 getTypeString(ExpectedTy) + "'");
7658 Args.push_back(Arg.V);
7659 ArgAttrs.push_back(Arg.Attrs);
7660 }
7661
7662 if (I != E)
7663 return error(CallLoc, "not enough parameters specified for call");
7664
7665 // Finish off the Attribute and check them
7666 AttributeList PAL =
7667 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7668 AttributeSet::get(Context, RetAttrs), ArgAttrs);
7669
7670 CallBrInst *CBI =
7671 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
7672 BundleList);
7673 CBI->setCallingConv(CC);
7674 CBI->setAttributes(PAL);
7675 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7676 Inst = CBI;
7677 return false;
7678 }
7679
7680 //===----------------------------------------------------------------------===//
7681 // Binary Operators.
7682 //===----------------------------------------------------------------------===//
7683
7684 /// parseArithmetic
7685 /// ::= ArithmeticOps TypeAndValue ',' Value
7686 ///
7687 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7688 /// operand is allowed.
parseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)7689 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7690 unsigned Opc, bool IsFP) {
7691 LocTy Loc; Value *LHS, *RHS;
7692 if (parseTypeAndValue(LHS, Loc, PFS) ||
7693 parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7694 parseValue(LHS->getType(), RHS, PFS))
7695 return true;
7696
7697 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7698 : LHS->getType()->isIntOrIntVectorTy();
7699
7700 if (!Valid)
7701 return error(Loc, "invalid operand type for instruction");
7702
7703 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7704 return false;
7705 }
7706
7707 /// parseLogical
7708 /// ::= ArithmeticOps TypeAndValue ',' Value {
parseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7709 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7710 unsigned Opc) {
7711 LocTy Loc; Value *LHS, *RHS;
7712 if (parseTypeAndValue(LHS, Loc, PFS) ||
7713 parseToken(lltok::comma, "expected ',' in logical operation") ||
7714 parseValue(LHS->getType(), RHS, PFS))
7715 return true;
7716
7717 if (!LHS->getType()->isIntOrIntVectorTy())
7718 return error(Loc,
7719 "instruction requires integer or integer vector operands");
7720
7721 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7722 return false;
7723 }
7724
7725 /// parseCompare
7726 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
7727 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
parseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7728 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7729 unsigned Opc) {
7730 // parse the integer/fp comparison predicate.
7731 LocTy Loc;
7732 unsigned Pred;
7733 Value *LHS, *RHS;
7734 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7735 parseToken(lltok::comma, "expected ',' after compare value") ||
7736 parseValue(LHS->getType(), RHS, PFS))
7737 return true;
7738
7739 if (Opc == Instruction::FCmp) {
7740 if (!LHS->getType()->isFPOrFPVectorTy())
7741 return error(Loc, "fcmp requires floating point operands");
7742 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7743 } else {
7744 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7745 if (!LHS->getType()->isIntOrIntVectorTy() &&
7746 !LHS->getType()->isPtrOrPtrVectorTy())
7747 return error(Loc, "icmp requires integer operands");
7748 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7749 }
7750 return false;
7751 }
7752
7753 //===----------------------------------------------------------------------===//
7754 // Other Instructions.
7755 //===----------------------------------------------------------------------===//
7756
7757 /// parseCast
7758 /// ::= CastOpc TypeAndValue 'to' Type
parseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7759 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7760 unsigned Opc) {
7761 LocTy Loc;
7762 Value *Op;
7763 Type *DestTy = nullptr;
7764 if (parseTypeAndValue(Op, Loc, PFS) ||
7765 parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7766 parseType(DestTy))
7767 return true;
7768
7769 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7770 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7771 return error(Loc, "invalid cast opcode for cast from '" +
7772 getTypeString(Op->getType()) + "' to '" +
7773 getTypeString(DestTy) + "'");
7774 }
7775 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7776 return false;
7777 }
7778
7779 /// parseSelect
7780 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseSelect(Instruction * & Inst,PerFunctionState & PFS)7781 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7782 LocTy Loc;
7783 Value *Op0, *Op1, *Op2;
7784 if (parseTypeAndValue(Op0, Loc, PFS) ||
7785 parseToken(lltok::comma, "expected ',' after select condition") ||
7786 parseTypeAndValue(Op1, PFS) ||
7787 parseToken(lltok::comma, "expected ',' after select value") ||
7788 parseTypeAndValue(Op2, PFS))
7789 return true;
7790
7791 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7792 return error(Loc, Reason);
7793
7794 Inst = SelectInst::Create(Op0, Op1, Op2);
7795 return false;
7796 }
7797
7798 /// parseVAArg
7799 /// ::= 'va_arg' TypeAndValue ',' Type
parseVAArg(Instruction * & Inst,PerFunctionState & PFS)7800 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7801 Value *Op;
7802 Type *EltTy = nullptr;
7803 LocTy TypeLoc;
7804 if (parseTypeAndValue(Op, PFS) ||
7805 parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7806 parseType(EltTy, TypeLoc))
7807 return true;
7808
7809 if (!EltTy->isFirstClassType())
7810 return error(TypeLoc, "va_arg requires operand with first class type");
7811
7812 Inst = new VAArgInst(Op, EltTy);
7813 return false;
7814 }
7815
7816 /// parseExtractElement
7817 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
parseExtractElement(Instruction * & Inst,PerFunctionState & PFS)7818 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7819 LocTy Loc;
7820 Value *Op0, *Op1;
7821 if (parseTypeAndValue(Op0, Loc, PFS) ||
7822 parseToken(lltok::comma, "expected ',' after extract value") ||
7823 parseTypeAndValue(Op1, PFS))
7824 return true;
7825
7826 if (!ExtractElementInst::isValidOperands(Op0, Op1))
7827 return error(Loc, "invalid extractelement operands");
7828
7829 Inst = ExtractElementInst::Create(Op0, Op1);
7830 return false;
7831 }
7832
7833 /// parseInsertElement
7834 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseInsertElement(Instruction * & Inst,PerFunctionState & PFS)7835 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7836 LocTy Loc;
7837 Value *Op0, *Op1, *Op2;
7838 if (parseTypeAndValue(Op0, Loc, PFS) ||
7839 parseToken(lltok::comma, "expected ',' after insertelement value") ||
7840 parseTypeAndValue(Op1, PFS) ||
7841 parseToken(lltok::comma, "expected ',' after insertelement value") ||
7842 parseTypeAndValue(Op2, PFS))
7843 return true;
7844
7845 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7846 return error(Loc, "invalid insertelement operands");
7847
7848 Inst = InsertElementInst::Create(Op0, Op1, Op2);
7849 return false;
7850 }
7851
7852 /// parseShuffleVector
7853 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)7854 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7855 LocTy Loc;
7856 Value *Op0, *Op1, *Op2;
7857 if (parseTypeAndValue(Op0, Loc, PFS) ||
7858 parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7859 parseTypeAndValue(Op1, PFS) ||
7860 parseToken(lltok::comma, "expected ',' after shuffle value") ||
7861 parseTypeAndValue(Op2, PFS))
7862 return true;
7863
7864 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7865 return error(Loc, "invalid shufflevector operands");
7866
7867 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7868 return false;
7869 }
7870
7871 /// parsePHI
7872 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
parsePHI(Instruction * & Inst,PerFunctionState & PFS)7873 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7874 Type *Ty = nullptr; LocTy TypeLoc;
7875 Value *Op0, *Op1;
7876
7877 if (parseType(Ty, TypeLoc))
7878 return true;
7879
7880 if (!Ty->isFirstClassType())
7881 return error(TypeLoc, "phi node must have first class type");
7882
7883 bool First = true;
7884 bool AteExtraComma = false;
7885 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7886
7887 while (true) {
7888 if (First) {
7889 if (Lex.getKind() != lltok::lsquare)
7890 break;
7891 First = false;
7892 } else if (!EatIfPresent(lltok::comma))
7893 break;
7894
7895 if (Lex.getKind() == lltok::MetadataVar) {
7896 AteExtraComma = true;
7897 break;
7898 }
7899
7900 if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7901 parseValue(Ty, Op0, PFS) ||
7902 parseToken(lltok::comma, "expected ',' after insertelement value") ||
7903 parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7904 parseToken(lltok::rsquare, "expected ']' in phi value list"))
7905 return true;
7906
7907 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7908 }
7909
7910 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7911 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7912 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7913 Inst = PN;
7914 return AteExtraComma ? InstExtraComma : InstNormal;
7915 }
7916
7917 /// parseLandingPad
7918 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7919 /// Clause
7920 /// ::= 'catch' TypeAndValue
7921 /// ::= 'filter'
7922 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
parseLandingPad(Instruction * & Inst,PerFunctionState & PFS)7923 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7924 Type *Ty = nullptr; LocTy TyLoc;
7925
7926 if (parseType(Ty, TyLoc))
7927 return true;
7928
7929 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7930 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7931
7932 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7933 LandingPadInst::ClauseType CT;
7934 if (EatIfPresent(lltok::kw_catch))
7935 CT = LandingPadInst::Catch;
7936 else if (EatIfPresent(lltok::kw_filter))
7937 CT = LandingPadInst::Filter;
7938 else
7939 return tokError("expected 'catch' or 'filter' clause type");
7940
7941 Value *V;
7942 LocTy VLoc;
7943 if (parseTypeAndValue(V, VLoc, PFS))
7944 return true;
7945
7946 // A 'catch' type expects a non-array constant. A filter clause expects an
7947 // array constant.
7948 if (CT == LandingPadInst::Catch) {
7949 if (isa<ArrayType>(V->getType()))
7950 error(VLoc, "'catch' clause has an invalid type");
7951 } else {
7952 if (!isa<ArrayType>(V->getType()))
7953 error(VLoc, "'filter' clause has an invalid type");
7954 }
7955
7956 Constant *CV = dyn_cast<Constant>(V);
7957 if (!CV)
7958 return error(VLoc, "clause argument must be a constant");
7959 LP->addClause(CV);
7960 }
7961
7962 Inst = LP.release();
7963 return false;
7964 }
7965
7966 /// parseFreeze
7967 /// ::= 'freeze' Type Value
parseFreeze(Instruction * & Inst,PerFunctionState & PFS)7968 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7969 LocTy Loc;
7970 Value *Op;
7971 if (parseTypeAndValue(Op, Loc, PFS))
7972 return true;
7973
7974 Inst = new FreezeInst(Op);
7975 return false;
7976 }
7977
7978 /// parseCall
7979 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
7980 /// OptionalAttrs Type Value ParameterList OptionalAttrs
7981 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7982 /// OptionalAttrs Type Value ParameterList OptionalAttrs
7983 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7984 /// OptionalAttrs Type Value ParameterList OptionalAttrs
7985 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
7986 /// OptionalAttrs Type Value ParameterList OptionalAttrs
parseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)7987 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7988 CallInst::TailCallKind TCK) {
7989 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7990 std::vector<unsigned> FwdRefAttrGrps;
7991 LocTy BuiltinLoc;
7992 unsigned CallAddrSpace;
7993 unsigned CC;
7994 Type *RetType = nullptr;
7995 LocTy RetTypeLoc;
7996 ValID CalleeID;
7997 SmallVector<ParamInfo, 16> ArgList;
7998 SmallVector<OperandBundleDef, 2> BundleList;
7999 LocTy CallLoc = Lex.getLoc();
8000
8001 if (TCK != CallInst::TCK_None &&
8002 parseToken(lltok::kw_call,
8003 "expected 'tail call', 'musttail call', or 'notail call'"))
8004 return true;
8005
8006 FastMathFlags FMF = EatFastMathFlagsIfPresent();
8007
8008 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
8009 parseOptionalProgramAddrSpace(CallAddrSpace) ||
8010 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
8011 parseValID(CalleeID, &PFS) ||
8012 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
8013 PFS.getFunction().isVarArg()) ||
8014 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
8015 parseOptionalOperandBundles(BundleList, PFS))
8016 return true;
8017
8018 // If RetType is a non-function pointer type, then this is the short syntax
8019 // for the call, which means that RetType is just the return type. Infer the
8020 // rest of the function argument types from the arguments that are present.
8021 FunctionType *Ty;
8022 if (resolveFunctionType(RetType, ArgList, Ty))
8023 return error(RetTypeLoc, "Invalid result type for LLVM function");
8024
8025 CalleeID.FTy = Ty;
8026
8027 // Look up the callee.
8028 Value *Callee;
8029 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
8030 &PFS))
8031 return true;
8032
8033 // Set up the Attribute for the function.
8034 SmallVector<AttributeSet, 8> Attrs;
8035
8036 SmallVector<Value*, 8> Args;
8037
8038 // Loop through FunctionType's arguments and ensure they are specified
8039 // correctly. Also, gather any parameter attributes.
8040 FunctionType::param_iterator I = Ty->param_begin();
8041 FunctionType::param_iterator E = Ty->param_end();
8042 for (const ParamInfo &Arg : ArgList) {
8043 Type *ExpectedTy = nullptr;
8044 if (I != E) {
8045 ExpectedTy = *I++;
8046 } else if (!Ty->isVarArg()) {
8047 return error(Arg.Loc, "too many arguments specified");
8048 }
8049
8050 if (ExpectedTy && ExpectedTy != Arg.V->getType())
8051 return error(Arg.Loc, "argument is not of expected type '" +
8052 getTypeString(ExpectedTy) + "'");
8053 Args.push_back(Arg.V);
8054 Attrs.push_back(Arg.Attrs);
8055 }
8056
8057 if (I != E)
8058 return error(CallLoc, "not enough parameters specified for call");
8059
8060 // Finish off the Attribute and check them
8061 AttributeList PAL =
8062 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
8063 AttributeSet::get(Context, RetAttrs), Attrs);
8064
8065 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
8066 CI->setTailCallKind(TCK);
8067 CI->setCallingConv(CC);
8068 if (FMF.any()) {
8069 if (!isa<FPMathOperator>(CI)) {
8070 CI->deleteValue();
8071 return error(CallLoc, "fast-math-flags specified for call without "
8072 "floating-point scalar or vector return type");
8073 }
8074 CI->setFastMathFlags(FMF);
8075 }
8076
8077 if (CalleeID.Kind == ValID::t_GlobalName &&
8078 isOldDbgFormatIntrinsic(CalleeID.StrVal)) {
8079 if (SeenNewDbgInfoFormat) {
8080 CI->deleteValue();
8081 return error(CallLoc, "llvm.dbg intrinsic should not appear in a module "
8082 "using non-intrinsic debug info");
8083 }
8084 if (!SeenOldDbgInfoFormat)
8085 M->setNewDbgInfoFormatFlag(false);
8086 SeenOldDbgInfoFormat = true;
8087 }
8088 CI->setAttributes(PAL);
8089 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
8090 Inst = CI;
8091 return false;
8092 }
8093
8094 //===----------------------------------------------------------------------===//
8095 // Memory Instructions.
8096 //===----------------------------------------------------------------------===//
8097
8098 /// parseAlloc
8099 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
8100 /// (',' 'align' i32)? (',', 'addrspace(n))?
parseAlloc(Instruction * & Inst,PerFunctionState & PFS)8101 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
8102 Value *Size = nullptr;
8103 LocTy SizeLoc, TyLoc, ASLoc;
8104 MaybeAlign Alignment;
8105 unsigned AddrSpace = 0;
8106 Type *Ty = nullptr;
8107
8108 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
8109 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
8110
8111 if (parseType(Ty, TyLoc))
8112 return true;
8113
8114 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
8115 return error(TyLoc, "invalid type for alloca");
8116
8117 bool AteExtraComma = false;
8118 if (EatIfPresent(lltok::comma)) {
8119 if (Lex.getKind() == lltok::kw_align) {
8120 if (parseOptionalAlignment(Alignment))
8121 return true;
8122 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8123 return true;
8124 } else if (Lex.getKind() == lltok::kw_addrspace) {
8125 ASLoc = Lex.getLoc();
8126 if (parseOptionalAddrSpace(AddrSpace))
8127 return true;
8128 } else if (Lex.getKind() == lltok::MetadataVar) {
8129 AteExtraComma = true;
8130 } else {
8131 if (parseTypeAndValue(Size, SizeLoc, PFS))
8132 return true;
8133 if (EatIfPresent(lltok::comma)) {
8134 if (Lex.getKind() == lltok::kw_align) {
8135 if (parseOptionalAlignment(Alignment))
8136 return true;
8137 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8138 return true;
8139 } else if (Lex.getKind() == lltok::kw_addrspace) {
8140 ASLoc = Lex.getLoc();
8141 if (parseOptionalAddrSpace(AddrSpace))
8142 return true;
8143 } else if (Lex.getKind() == lltok::MetadataVar) {
8144 AteExtraComma = true;
8145 }
8146 }
8147 }
8148 }
8149
8150 if (Size && !Size->getType()->isIntegerTy())
8151 return error(SizeLoc, "element count must have integer type");
8152
8153 SmallPtrSet<Type *, 4> Visited;
8154 if (!Alignment && !Ty->isSized(&Visited))
8155 return error(TyLoc, "Cannot allocate unsized type");
8156 if (!Alignment)
8157 Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
8158 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
8159 AI->setUsedWithInAlloca(IsInAlloca);
8160 AI->setSwiftError(IsSwiftError);
8161 Inst = AI;
8162 return AteExtraComma ? InstExtraComma : InstNormal;
8163 }
8164
8165 /// parseLoad
8166 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
8167 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
8168 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
parseLoad(Instruction * & Inst,PerFunctionState & PFS)8169 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
8170 Value *Val; LocTy Loc;
8171 MaybeAlign Alignment;
8172 bool AteExtraComma = false;
8173 bool isAtomic = false;
8174 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8175 SyncScope::ID SSID = SyncScope::System;
8176
8177 if (Lex.getKind() == lltok::kw_atomic) {
8178 isAtomic = true;
8179 Lex.Lex();
8180 }
8181
8182 bool isVolatile = false;
8183 if (Lex.getKind() == lltok::kw_volatile) {
8184 isVolatile = true;
8185 Lex.Lex();
8186 }
8187
8188 Type *Ty;
8189 LocTy ExplicitTypeLoc = Lex.getLoc();
8190 if (parseType(Ty) ||
8191 parseToken(lltok::comma, "expected comma after load's type") ||
8192 parseTypeAndValue(Val, Loc, PFS) ||
8193 parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8194 parseOptionalCommaAlign(Alignment, AteExtraComma))
8195 return true;
8196
8197 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
8198 return error(Loc, "load operand must be a pointer to a first class type");
8199 if (isAtomic && !Alignment)
8200 return error(Loc, "atomic load must have explicit non-zero alignment");
8201 if (Ordering == AtomicOrdering::Release ||
8202 Ordering == AtomicOrdering::AcquireRelease)
8203 return error(Loc, "atomic load cannot use Release ordering");
8204
8205 SmallPtrSet<Type *, 4> Visited;
8206 if (!Alignment && !Ty->isSized(&Visited))
8207 return error(ExplicitTypeLoc, "loading unsized types is not allowed");
8208 if (!Alignment)
8209 Alignment = M->getDataLayout().getABITypeAlign(Ty);
8210 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
8211 return AteExtraComma ? InstExtraComma : InstNormal;
8212 }
8213
8214 /// parseStore
8215
8216 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
8217 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
8218 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
parseStore(Instruction * & Inst,PerFunctionState & PFS)8219 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
8220 Value *Val, *Ptr; LocTy Loc, PtrLoc;
8221 MaybeAlign Alignment;
8222 bool AteExtraComma = false;
8223 bool isAtomic = false;
8224 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8225 SyncScope::ID SSID = SyncScope::System;
8226
8227 if (Lex.getKind() == lltok::kw_atomic) {
8228 isAtomic = true;
8229 Lex.Lex();
8230 }
8231
8232 bool isVolatile = false;
8233 if (Lex.getKind() == lltok::kw_volatile) {
8234 isVolatile = true;
8235 Lex.Lex();
8236 }
8237
8238 if (parseTypeAndValue(Val, Loc, PFS) ||
8239 parseToken(lltok::comma, "expected ',' after store operand") ||
8240 parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8241 parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8242 parseOptionalCommaAlign(Alignment, AteExtraComma))
8243 return true;
8244
8245 if (!Ptr->getType()->isPointerTy())
8246 return error(PtrLoc, "store operand must be a pointer");
8247 if (!Val->getType()->isFirstClassType())
8248 return error(Loc, "store operand must be a first class value");
8249 if (isAtomic && !Alignment)
8250 return error(Loc, "atomic store must have explicit non-zero alignment");
8251 if (Ordering == AtomicOrdering::Acquire ||
8252 Ordering == AtomicOrdering::AcquireRelease)
8253 return error(Loc, "atomic store cannot use Acquire ordering");
8254 SmallPtrSet<Type *, 4> Visited;
8255 if (!Alignment && !Val->getType()->isSized(&Visited))
8256 return error(Loc, "storing unsized types is not allowed");
8257 if (!Alignment)
8258 Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
8259
8260 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
8261 return AteExtraComma ? InstExtraComma : InstNormal;
8262 }
8263
8264 /// parseCmpXchg
8265 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
8266 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
8267 /// 'Align'?
parseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)8268 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
8269 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
8270 bool AteExtraComma = false;
8271 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
8272 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
8273 SyncScope::ID SSID = SyncScope::System;
8274 bool isVolatile = false;
8275 bool isWeak = false;
8276 MaybeAlign Alignment;
8277
8278 if (EatIfPresent(lltok::kw_weak))
8279 isWeak = true;
8280
8281 if (EatIfPresent(lltok::kw_volatile))
8282 isVolatile = true;
8283
8284 if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8285 parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
8286 parseTypeAndValue(Cmp, CmpLoc, PFS) ||
8287 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
8288 parseTypeAndValue(New, NewLoc, PFS) ||
8289 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
8290 parseOrdering(FailureOrdering) ||
8291 parseOptionalCommaAlign(Alignment, AteExtraComma))
8292 return true;
8293
8294 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
8295 return tokError("invalid cmpxchg success ordering");
8296 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
8297 return tokError("invalid cmpxchg failure ordering");
8298 if (!Ptr->getType()->isPointerTy())
8299 return error(PtrLoc, "cmpxchg operand must be a pointer");
8300 if (Cmp->getType() != New->getType())
8301 return error(NewLoc, "compare value and new value type do not match");
8302 if (!New->getType()->isFirstClassType())
8303 return error(NewLoc, "cmpxchg operand must be a first class value");
8304
8305 const Align DefaultAlignment(
8306 PFS.getFunction().getDataLayout().getTypeStoreSize(
8307 Cmp->getType()));
8308
8309 AtomicCmpXchgInst *CXI =
8310 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
8311 SuccessOrdering, FailureOrdering, SSID);
8312 CXI->setVolatile(isVolatile);
8313 CXI->setWeak(isWeak);
8314
8315 Inst = CXI;
8316 return AteExtraComma ? InstExtraComma : InstNormal;
8317 }
8318
8319 /// parseAtomicRMW
8320 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
8321 /// 'singlethread'? AtomicOrdering
parseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)8322 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
8323 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
8324 bool AteExtraComma = false;
8325 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8326 SyncScope::ID SSID = SyncScope::System;
8327 bool isVolatile = false;
8328 bool IsFP = false;
8329 AtomicRMWInst::BinOp Operation;
8330 MaybeAlign Alignment;
8331
8332 if (EatIfPresent(lltok::kw_volatile))
8333 isVolatile = true;
8334
8335 switch (Lex.getKind()) {
8336 default:
8337 return tokError("expected binary operation in atomicrmw");
8338 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
8339 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
8340 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
8341 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
8342 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
8343 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
8344 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
8345 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
8346 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
8347 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
8348 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
8349 case lltok::kw_uinc_wrap:
8350 Operation = AtomicRMWInst::UIncWrap;
8351 break;
8352 case lltok::kw_udec_wrap:
8353 Operation = AtomicRMWInst::UDecWrap;
8354 break;
8355 case lltok::kw_fadd:
8356 Operation = AtomicRMWInst::FAdd;
8357 IsFP = true;
8358 break;
8359 case lltok::kw_fsub:
8360 Operation = AtomicRMWInst::FSub;
8361 IsFP = true;
8362 break;
8363 case lltok::kw_fmax:
8364 Operation = AtomicRMWInst::FMax;
8365 IsFP = true;
8366 break;
8367 case lltok::kw_fmin:
8368 Operation = AtomicRMWInst::FMin;
8369 IsFP = true;
8370 break;
8371 }
8372 Lex.Lex(); // Eat the operation.
8373
8374 if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8375 parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
8376 parseTypeAndValue(Val, ValLoc, PFS) ||
8377 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
8378 parseOptionalCommaAlign(Alignment, AteExtraComma))
8379 return true;
8380
8381 if (Ordering == AtomicOrdering::Unordered)
8382 return tokError("atomicrmw cannot be unordered");
8383 if (!Ptr->getType()->isPointerTy())
8384 return error(PtrLoc, "atomicrmw operand must be a pointer");
8385 if (Val->getType()->isScalableTy())
8386 return error(ValLoc, "atomicrmw operand may not be scalable");
8387
8388 if (Operation == AtomicRMWInst::Xchg) {
8389 if (!Val->getType()->isIntegerTy() &&
8390 !Val->getType()->isFloatingPointTy() &&
8391 !Val->getType()->isPointerTy()) {
8392 return error(
8393 ValLoc,
8394 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
8395 " operand must be an integer, floating point, or pointer type");
8396 }
8397 } else if (IsFP) {
8398 if (!Val->getType()->isFPOrFPVectorTy()) {
8399 return error(ValLoc, "atomicrmw " +
8400 AtomicRMWInst::getOperationName(Operation) +
8401 " operand must be a floating point type");
8402 }
8403 } else {
8404 if (!Val->getType()->isIntegerTy()) {
8405 return error(ValLoc, "atomicrmw " +
8406 AtomicRMWInst::getOperationName(Operation) +
8407 " operand must be an integer");
8408 }
8409 }
8410
8411 unsigned Size =
8412 PFS.getFunction().getDataLayout().getTypeStoreSizeInBits(
8413 Val->getType());
8414 if (Size < 8 || (Size & (Size - 1)))
8415 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
8416 " integer");
8417 const Align DefaultAlignment(
8418 PFS.getFunction().getDataLayout().getTypeStoreSize(
8419 Val->getType()));
8420 AtomicRMWInst *RMWI =
8421 new AtomicRMWInst(Operation, Ptr, Val,
8422 Alignment.value_or(DefaultAlignment), Ordering, SSID);
8423 RMWI->setVolatile(isVolatile);
8424 Inst = RMWI;
8425 return AteExtraComma ? InstExtraComma : InstNormal;
8426 }
8427
8428 /// parseFence
8429 /// ::= 'fence' 'singlethread'? AtomicOrdering
parseFence(Instruction * & Inst,PerFunctionState & PFS)8430 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
8431 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8432 SyncScope::ID SSID = SyncScope::System;
8433 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
8434 return true;
8435
8436 if (Ordering == AtomicOrdering::Unordered)
8437 return tokError("fence cannot be unordered");
8438 if (Ordering == AtomicOrdering::Monotonic)
8439 return tokError("fence cannot be monotonic");
8440
8441 Inst = new FenceInst(Context, Ordering, SSID);
8442 return InstNormal;
8443 }
8444
8445 /// parseGetElementPtr
8446 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
parseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)8447 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
8448 Value *Ptr = nullptr;
8449 Value *Val = nullptr;
8450 LocTy Loc, EltLoc;
8451 GEPNoWrapFlags NW;
8452
8453 while (true) {
8454 if (EatIfPresent(lltok::kw_inbounds))
8455 NW |= GEPNoWrapFlags::inBounds();
8456 else if (EatIfPresent(lltok::kw_nusw))
8457 NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
8458 else if (EatIfPresent(lltok::kw_nuw))
8459 NW |= GEPNoWrapFlags::noUnsignedWrap();
8460 else
8461 break;
8462 }
8463
8464 Type *Ty = nullptr;
8465 if (parseType(Ty) ||
8466 parseToken(lltok::comma, "expected comma after getelementptr's type") ||
8467 parseTypeAndValue(Ptr, Loc, PFS))
8468 return true;
8469
8470 Type *BaseType = Ptr->getType();
8471 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
8472 if (!BasePointerType)
8473 return error(Loc, "base of getelementptr must be a pointer");
8474
8475 SmallVector<Value*, 16> Indices;
8476 bool AteExtraComma = false;
8477 // GEP returns a vector of pointers if at least one of parameters is a vector.
8478 // All vector parameters should have the same vector width.
8479 ElementCount GEPWidth = BaseType->isVectorTy()
8480 ? cast<VectorType>(BaseType)->getElementCount()
8481 : ElementCount::getFixed(0);
8482
8483 while (EatIfPresent(lltok::comma)) {
8484 if (Lex.getKind() == lltok::MetadataVar) {
8485 AteExtraComma = true;
8486 break;
8487 }
8488 if (parseTypeAndValue(Val, EltLoc, PFS))
8489 return true;
8490 if (!Val->getType()->isIntOrIntVectorTy())
8491 return error(EltLoc, "getelementptr index must be an integer");
8492
8493 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
8494 ElementCount ValNumEl = ValVTy->getElementCount();
8495 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
8496 return error(
8497 EltLoc,
8498 "getelementptr vector index has a wrong number of elements");
8499 GEPWidth = ValNumEl;
8500 }
8501 Indices.push_back(Val);
8502 }
8503
8504 SmallPtrSet<Type*, 4> Visited;
8505 if (!Indices.empty() && !Ty->isSized(&Visited))
8506 return error(Loc, "base element of getelementptr must be sized");
8507
8508 auto *STy = dyn_cast<StructType>(Ty);
8509 if (STy && STy->containsScalableVectorType())
8510 return error(Loc, "getelementptr cannot target structure that contains "
8511 "scalable vector type");
8512
8513 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
8514 return error(Loc, "invalid getelementptr indices");
8515 GetElementPtrInst *GEP = GetElementPtrInst::Create(Ty, Ptr, Indices);
8516 Inst = GEP;
8517 GEP->setNoWrapFlags(NW);
8518 return AteExtraComma ? InstExtraComma : InstNormal;
8519 }
8520
8521 /// parseExtractValue
8522 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
parseExtractValue(Instruction * & Inst,PerFunctionState & PFS)8523 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
8524 Value *Val; LocTy Loc;
8525 SmallVector<unsigned, 4> Indices;
8526 bool AteExtraComma;
8527 if (parseTypeAndValue(Val, Loc, PFS) ||
8528 parseIndexList(Indices, AteExtraComma))
8529 return true;
8530
8531 if (!Val->getType()->isAggregateType())
8532 return error(Loc, "extractvalue operand must be aggregate type");
8533
8534 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
8535 return error(Loc, "invalid indices for extractvalue");
8536 Inst = ExtractValueInst::Create(Val, Indices);
8537 return AteExtraComma ? InstExtraComma : InstNormal;
8538 }
8539
8540 /// parseInsertValue
8541 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
parseInsertValue(Instruction * & Inst,PerFunctionState & PFS)8542 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
8543 Value *Val0, *Val1; LocTy Loc0, Loc1;
8544 SmallVector<unsigned, 4> Indices;
8545 bool AteExtraComma;
8546 if (parseTypeAndValue(Val0, Loc0, PFS) ||
8547 parseToken(lltok::comma, "expected comma after insertvalue operand") ||
8548 parseTypeAndValue(Val1, Loc1, PFS) ||
8549 parseIndexList(Indices, AteExtraComma))
8550 return true;
8551
8552 if (!Val0->getType()->isAggregateType())
8553 return error(Loc0, "insertvalue operand must be aggregate type");
8554
8555 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
8556 if (!IndexedType)
8557 return error(Loc0, "invalid indices for insertvalue");
8558 if (IndexedType != Val1->getType())
8559 return error(Loc1, "insertvalue operand and field disagree in type: '" +
8560 getTypeString(Val1->getType()) + "' instead of '" +
8561 getTypeString(IndexedType) + "'");
8562 Inst = InsertValueInst::Create(Val0, Val1, Indices);
8563 return AteExtraComma ? InstExtraComma : InstNormal;
8564 }
8565
8566 //===----------------------------------------------------------------------===//
8567 // Embedded metadata.
8568 //===----------------------------------------------------------------------===//
8569
8570 /// parseMDNodeVector
8571 /// ::= { Element (',' Element)* }
8572 /// Element
8573 /// ::= 'null' | Metadata
parseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)8574 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
8575 if (parseToken(lltok::lbrace, "expected '{' here"))
8576 return true;
8577
8578 // Check for an empty list.
8579 if (EatIfPresent(lltok::rbrace))
8580 return false;
8581
8582 do {
8583 if (EatIfPresent(lltok::kw_null)) {
8584 Elts.push_back(nullptr);
8585 continue;
8586 }
8587
8588 Metadata *MD;
8589 if (parseMetadata(MD, nullptr))
8590 return true;
8591 Elts.push_back(MD);
8592 } while (EatIfPresent(lltok::comma));
8593
8594 return parseToken(lltok::rbrace, "expected end of metadata node");
8595 }
8596
8597 //===----------------------------------------------------------------------===//
8598 // Use-list order directives.
8599 //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)8600 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
8601 SMLoc Loc) {
8602 if (V->use_empty())
8603 return error(Loc, "value has no uses");
8604
8605 unsigned NumUses = 0;
8606 SmallDenseMap<const Use *, unsigned, 16> Order;
8607 for (const Use &U : V->uses()) {
8608 if (++NumUses > Indexes.size())
8609 break;
8610 Order[&U] = Indexes[NumUses - 1];
8611 }
8612 if (NumUses < 2)
8613 return error(Loc, "value only has one use");
8614 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8615 return error(Loc,
8616 "wrong number of indexes, expected " + Twine(V->getNumUses()));
8617
8618 V->sortUseList([&](const Use &L, const Use &R) {
8619 return Order.lookup(&L) < Order.lookup(&R);
8620 });
8621 return false;
8622 }
8623
8624 /// parseUseListOrderIndexes
8625 /// ::= '{' uint32 (',' uint32)+ '}'
parseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)8626 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8627 SMLoc Loc = Lex.getLoc();
8628 if (parseToken(lltok::lbrace, "expected '{' here"))
8629 return true;
8630 if (Lex.getKind() == lltok::rbrace)
8631 return Lex.Error("expected non-empty list of uselistorder indexes");
8632
8633 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
8634 // indexes should be distinct numbers in the range [0, size-1], and should
8635 // not be in order.
8636 unsigned Offset = 0;
8637 unsigned Max = 0;
8638 bool IsOrdered = true;
8639 assert(Indexes.empty() && "Expected empty order vector");
8640 do {
8641 unsigned Index;
8642 if (parseUInt32(Index))
8643 return true;
8644
8645 // Update consistency checks.
8646 Offset += Index - Indexes.size();
8647 Max = std::max(Max, Index);
8648 IsOrdered &= Index == Indexes.size();
8649
8650 Indexes.push_back(Index);
8651 } while (EatIfPresent(lltok::comma));
8652
8653 if (parseToken(lltok::rbrace, "expected '}' here"))
8654 return true;
8655
8656 if (Indexes.size() < 2)
8657 return error(Loc, "expected >= 2 uselistorder indexes");
8658 if (Offset != 0 || Max >= Indexes.size())
8659 return error(Loc,
8660 "expected distinct uselistorder indexes in range [0, size)");
8661 if (IsOrdered)
8662 return error(Loc, "expected uselistorder indexes to change the order");
8663
8664 return false;
8665 }
8666
8667 /// parseUseListOrder
8668 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
parseUseListOrder(PerFunctionState * PFS)8669 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8670 SMLoc Loc = Lex.getLoc();
8671 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
8672 return true;
8673
8674 Value *V;
8675 SmallVector<unsigned, 16> Indexes;
8676 if (parseTypeAndValue(V, PFS) ||
8677 parseToken(lltok::comma, "expected comma in uselistorder directive") ||
8678 parseUseListOrderIndexes(Indexes))
8679 return true;
8680
8681 return sortUseListOrder(V, Indexes, Loc);
8682 }
8683
8684 /// parseUseListOrderBB
8685 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
parseUseListOrderBB()8686 bool LLParser::parseUseListOrderBB() {
8687 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8688 SMLoc Loc = Lex.getLoc();
8689 Lex.Lex();
8690
8691 ValID Fn, Label;
8692 SmallVector<unsigned, 16> Indexes;
8693 if (parseValID(Fn, /*PFS=*/nullptr) ||
8694 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8695 parseValID(Label, /*PFS=*/nullptr) ||
8696 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8697 parseUseListOrderIndexes(Indexes))
8698 return true;
8699
8700 // Check the function.
8701 GlobalValue *GV;
8702 if (Fn.Kind == ValID::t_GlobalName)
8703 GV = M->getNamedValue(Fn.StrVal);
8704 else if (Fn.Kind == ValID::t_GlobalID)
8705 GV = NumberedVals.get(Fn.UIntVal);
8706 else
8707 return error(Fn.Loc, "expected function name in uselistorder_bb");
8708 if (!GV)
8709 return error(Fn.Loc,
8710 "invalid function forward reference in uselistorder_bb");
8711 auto *F = dyn_cast<Function>(GV);
8712 if (!F)
8713 return error(Fn.Loc, "expected function name in uselistorder_bb");
8714 if (F->isDeclaration())
8715 return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8716
8717 // Check the basic block.
8718 if (Label.Kind == ValID::t_LocalID)
8719 return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8720 if (Label.Kind != ValID::t_LocalName)
8721 return error(Label.Loc, "expected basic block name in uselistorder_bb");
8722 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8723 if (!V)
8724 return error(Label.Loc, "invalid basic block in uselistorder_bb");
8725 if (!isa<BasicBlock>(V))
8726 return error(Label.Loc, "expected basic block in uselistorder_bb");
8727
8728 return sortUseListOrder(V, Indexes, Loc);
8729 }
8730
8731 /// ModuleEntry
8732 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8733 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
parseModuleEntry(unsigned ID)8734 bool LLParser::parseModuleEntry(unsigned ID) {
8735 assert(Lex.getKind() == lltok::kw_module);
8736 Lex.Lex();
8737
8738 std::string Path;
8739 if (parseToken(lltok::colon, "expected ':' here") ||
8740 parseToken(lltok::lparen, "expected '(' here") ||
8741 parseToken(lltok::kw_path, "expected 'path' here") ||
8742 parseToken(lltok::colon, "expected ':' here") ||
8743 parseStringConstant(Path) ||
8744 parseToken(lltok::comma, "expected ',' here") ||
8745 parseToken(lltok::kw_hash, "expected 'hash' here") ||
8746 parseToken(lltok::colon, "expected ':' here") ||
8747 parseToken(lltok::lparen, "expected '(' here"))
8748 return true;
8749
8750 ModuleHash Hash;
8751 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8752 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8753 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8754 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8755 parseUInt32(Hash[4]))
8756 return true;
8757
8758 if (parseToken(lltok::rparen, "expected ')' here") ||
8759 parseToken(lltok::rparen, "expected ')' here"))
8760 return true;
8761
8762 auto ModuleEntry = Index->addModule(Path, Hash);
8763 ModuleIdMap[ID] = ModuleEntry->first();
8764
8765 return false;
8766 }
8767
8768 /// TypeIdEntry
8769 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
parseTypeIdEntry(unsigned ID)8770 bool LLParser::parseTypeIdEntry(unsigned ID) {
8771 assert(Lex.getKind() == lltok::kw_typeid);
8772 Lex.Lex();
8773
8774 std::string Name;
8775 if (parseToken(lltok::colon, "expected ':' here") ||
8776 parseToken(lltok::lparen, "expected '(' here") ||
8777 parseToken(lltok::kw_name, "expected 'name' here") ||
8778 parseToken(lltok::colon, "expected ':' here") ||
8779 parseStringConstant(Name))
8780 return true;
8781
8782 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8783 if (parseToken(lltok::comma, "expected ',' here") ||
8784 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8785 return true;
8786
8787 // Check if this ID was forward referenced, and if so, update the
8788 // corresponding GUIDs.
8789 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8790 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8791 for (auto TIDRef : FwdRefTIDs->second) {
8792 assert(!*TIDRef.first &&
8793 "Forward referenced type id GUID expected to be 0");
8794 *TIDRef.first = GlobalValue::getGUID(Name);
8795 }
8796 ForwardRefTypeIds.erase(FwdRefTIDs);
8797 }
8798
8799 return false;
8800 }
8801
8802 /// TypeIdSummary
8803 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
parseTypeIdSummary(TypeIdSummary & TIS)8804 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8805 if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8806 parseToken(lltok::colon, "expected ':' here") ||
8807 parseToken(lltok::lparen, "expected '(' here") ||
8808 parseTypeTestResolution(TIS.TTRes))
8809 return true;
8810
8811 if (EatIfPresent(lltok::comma)) {
8812 // Expect optional wpdResolutions field
8813 if (parseOptionalWpdResolutions(TIS.WPDRes))
8814 return true;
8815 }
8816
8817 if (parseToken(lltok::rparen, "expected ')' here"))
8818 return true;
8819
8820 return false;
8821 }
8822
8823 static ValueInfo EmptyVI =
8824 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8825
8826 /// TypeIdCompatibleVtableEntry
8827 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8828 /// TypeIdCompatibleVtableInfo
8829 /// ')'
parseTypeIdCompatibleVtableEntry(unsigned ID)8830 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8831 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8832 Lex.Lex();
8833
8834 std::string Name;
8835 if (parseToken(lltok::colon, "expected ':' here") ||
8836 parseToken(lltok::lparen, "expected '(' here") ||
8837 parseToken(lltok::kw_name, "expected 'name' here") ||
8838 parseToken(lltok::colon, "expected ':' here") ||
8839 parseStringConstant(Name))
8840 return true;
8841
8842 TypeIdCompatibleVtableInfo &TI =
8843 Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8844 if (parseToken(lltok::comma, "expected ',' here") ||
8845 parseToken(lltok::kw_summary, "expected 'summary' here") ||
8846 parseToken(lltok::colon, "expected ':' here") ||
8847 parseToken(lltok::lparen, "expected '(' here"))
8848 return true;
8849
8850 IdToIndexMapType IdToIndexMap;
8851 // parse each call edge
8852 do {
8853 uint64_t Offset;
8854 if (parseToken(lltok::lparen, "expected '(' here") ||
8855 parseToken(lltok::kw_offset, "expected 'offset' here") ||
8856 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8857 parseToken(lltok::comma, "expected ',' here"))
8858 return true;
8859
8860 LocTy Loc = Lex.getLoc();
8861 unsigned GVId;
8862 ValueInfo VI;
8863 if (parseGVReference(VI, GVId))
8864 return true;
8865
8866 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8867 // forward reference. We will save the location of the ValueInfo needing an
8868 // update, but can only do so once the std::vector is finalized.
8869 if (VI == EmptyVI)
8870 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8871 TI.push_back({Offset, VI});
8872
8873 if (parseToken(lltok::rparen, "expected ')' in call"))
8874 return true;
8875 } while (EatIfPresent(lltok::comma));
8876
8877 // Now that the TI vector is finalized, it is safe to save the locations
8878 // of any forward GV references that need updating later.
8879 for (auto I : IdToIndexMap) {
8880 auto &Infos = ForwardRefValueInfos[I.first];
8881 for (auto P : I.second) {
8882 assert(TI[P.first].VTableVI == EmptyVI &&
8883 "Forward referenced ValueInfo expected to be empty");
8884 Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8885 }
8886 }
8887
8888 if (parseToken(lltok::rparen, "expected ')' here") ||
8889 parseToken(lltok::rparen, "expected ')' here"))
8890 return true;
8891
8892 // Check if this ID was forward referenced, and if so, update the
8893 // corresponding GUIDs.
8894 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8895 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8896 for (auto TIDRef : FwdRefTIDs->second) {
8897 assert(!*TIDRef.first &&
8898 "Forward referenced type id GUID expected to be 0");
8899 *TIDRef.first = GlobalValue::getGUID(Name);
8900 }
8901 ForwardRefTypeIds.erase(FwdRefTIDs);
8902 }
8903
8904 return false;
8905 }
8906
8907 /// TypeTestResolution
8908 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
8909 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8910 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8911 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8912 /// [',' 'inlinesBits' ':' UInt64]? ')'
parseTypeTestResolution(TypeTestResolution & TTRes)8913 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8914 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8915 parseToken(lltok::colon, "expected ':' here") ||
8916 parseToken(lltok::lparen, "expected '(' here") ||
8917 parseToken(lltok::kw_kind, "expected 'kind' here") ||
8918 parseToken(lltok::colon, "expected ':' here"))
8919 return true;
8920
8921 switch (Lex.getKind()) {
8922 case lltok::kw_unknown:
8923 TTRes.TheKind = TypeTestResolution::Unknown;
8924 break;
8925 case lltok::kw_unsat:
8926 TTRes.TheKind = TypeTestResolution::Unsat;
8927 break;
8928 case lltok::kw_byteArray:
8929 TTRes.TheKind = TypeTestResolution::ByteArray;
8930 break;
8931 case lltok::kw_inline:
8932 TTRes.TheKind = TypeTestResolution::Inline;
8933 break;
8934 case lltok::kw_single:
8935 TTRes.TheKind = TypeTestResolution::Single;
8936 break;
8937 case lltok::kw_allOnes:
8938 TTRes.TheKind = TypeTestResolution::AllOnes;
8939 break;
8940 default:
8941 return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8942 }
8943 Lex.Lex();
8944
8945 if (parseToken(lltok::comma, "expected ',' here") ||
8946 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8947 parseToken(lltok::colon, "expected ':' here") ||
8948 parseUInt32(TTRes.SizeM1BitWidth))
8949 return true;
8950
8951 // parse optional fields
8952 while (EatIfPresent(lltok::comma)) {
8953 switch (Lex.getKind()) {
8954 case lltok::kw_alignLog2:
8955 Lex.Lex();
8956 if (parseToken(lltok::colon, "expected ':'") ||
8957 parseUInt64(TTRes.AlignLog2))
8958 return true;
8959 break;
8960 case lltok::kw_sizeM1:
8961 Lex.Lex();
8962 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8963 return true;
8964 break;
8965 case lltok::kw_bitMask: {
8966 unsigned Val;
8967 Lex.Lex();
8968 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8969 return true;
8970 assert(Val <= 0xff);
8971 TTRes.BitMask = (uint8_t)Val;
8972 break;
8973 }
8974 case lltok::kw_inlineBits:
8975 Lex.Lex();
8976 if (parseToken(lltok::colon, "expected ':'") ||
8977 parseUInt64(TTRes.InlineBits))
8978 return true;
8979 break;
8980 default:
8981 return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8982 }
8983 }
8984
8985 if (parseToken(lltok::rparen, "expected ')' here"))
8986 return true;
8987
8988 return false;
8989 }
8990
8991 /// OptionalWpdResolutions
8992 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8993 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
parseOptionalWpdResolutions(std::map<uint64_t,WholeProgramDevirtResolution> & WPDResMap)8994 bool LLParser::parseOptionalWpdResolutions(
8995 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8996 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8997 parseToken(lltok::colon, "expected ':' here") ||
8998 parseToken(lltok::lparen, "expected '(' here"))
8999 return true;
9000
9001 do {
9002 uint64_t Offset;
9003 WholeProgramDevirtResolution WPDRes;
9004 if (parseToken(lltok::lparen, "expected '(' here") ||
9005 parseToken(lltok::kw_offset, "expected 'offset' here") ||
9006 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
9007 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
9008 parseToken(lltok::rparen, "expected ')' here"))
9009 return true;
9010 WPDResMap[Offset] = WPDRes;
9011 } while (EatIfPresent(lltok::comma));
9012
9013 if (parseToken(lltok::rparen, "expected ')' here"))
9014 return true;
9015
9016 return false;
9017 }
9018
9019 /// WpdRes
9020 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
9021 /// [',' OptionalResByArg]? ')'
9022 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
9023 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
9024 /// [',' OptionalResByArg]? ')'
9025 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
9026 /// [',' OptionalResByArg]? ')'
parseWpdRes(WholeProgramDevirtResolution & WPDRes)9027 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
9028 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
9029 parseToken(lltok::colon, "expected ':' here") ||
9030 parseToken(lltok::lparen, "expected '(' here") ||
9031 parseToken(lltok::kw_kind, "expected 'kind' here") ||
9032 parseToken(lltok::colon, "expected ':' here"))
9033 return true;
9034
9035 switch (Lex.getKind()) {
9036 case lltok::kw_indir:
9037 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
9038 break;
9039 case lltok::kw_singleImpl:
9040 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
9041 break;
9042 case lltok::kw_branchFunnel:
9043 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
9044 break;
9045 default:
9046 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
9047 }
9048 Lex.Lex();
9049
9050 // parse optional fields
9051 while (EatIfPresent(lltok::comma)) {
9052 switch (Lex.getKind()) {
9053 case lltok::kw_singleImplName:
9054 Lex.Lex();
9055 if (parseToken(lltok::colon, "expected ':' here") ||
9056 parseStringConstant(WPDRes.SingleImplName))
9057 return true;
9058 break;
9059 case lltok::kw_resByArg:
9060 if (parseOptionalResByArg(WPDRes.ResByArg))
9061 return true;
9062 break;
9063 default:
9064 return error(Lex.getLoc(),
9065 "expected optional WholeProgramDevirtResolution field");
9066 }
9067 }
9068
9069 if (parseToken(lltok::rparen, "expected ')' here"))
9070 return true;
9071
9072 return false;
9073 }
9074
9075 /// OptionalResByArg
9076 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
9077 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
9078 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
9079 /// 'virtualConstProp' )
9080 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
9081 /// [',' 'bit' ':' UInt32]? ')'
parseOptionalResByArg(std::map<std::vector<uint64_t>,WholeProgramDevirtResolution::ByArg> & ResByArg)9082 bool LLParser::parseOptionalResByArg(
9083 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
9084 &ResByArg) {
9085 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
9086 parseToken(lltok::colon, "expected ':' here") ||
9087 parseToken(lltok::lparen, "expected '(' here"))
9088 return true;
9089
9090 do {
9091 std::vector<uint64_t> Args;
9092 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
9093 parseToken(lltok::kw_byArg, "expected 'byArg here") ||
9094 parseToken(lltok::colon, "expected ':' here") ||
9095 parseToken(lltok::lparen, "expected '(' here") ||
9096 parseToken(lltok::kw_kind, "expected 'kind' here") ||
9097 parseToken(lltok::colon, "expected ':' here"))
9098 return true;
9099
9100 WholeProgramDevirtResolution::ByArg ByArg;
9101 switch (Lex.getKind()) {
9102 case lltok::kw_indir:
9103 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
9104 break;
9105 case lltok::kw_uniformRetVal:
9106 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
9107 break;
9108 case lltok::kw_uniqueRetVal:
9109 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
9110 break;
9111 case lltok::kw_virtualConstProp:
9112 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
9113 break;
9114 default:
9115 return error(Lex.getLoc(),
9116 "unexpected WholeProgramDevirtResolution::ByArg kind");
9117 }
9118 Lex.Lex();
9119
9120 // parse optional fields
9121 while (EatIfPresent(lltok::comma)) {
9122 switch (Lex.getKind()) {
9123 case lltok::kw_info:
9124 Lex.Lex();
9125 if (parseToken(lltok::colon, "expected ':' here") ||
9126 parseUInt64(ByArg.Info))
9127 return true;
9128 break;
9129 case lltok::kw_byte:
9130 Lex.Lex();
9131 if (parseToken(lltok::colon, "expected ':' here") ||
9132 parseUInt32(ByArg.Byte))
9133 return true;
9134 break;
9135 case lltok::kw_bit:
9136 Lex.Lex();
9137 if (parseToken(lltok::colon, "expected ':' here") ||
9138 parseUInt32(ByArg.Bit))
9139 return true;
9140 break;
9141 default:
9142 return error(Lex.getLoc(),
9143 "expected optional whole program devirt field");
9144 }
9145 }
9146
9147 if (parseToken(lltok::rparen, "expected ')' here"))
9148 return true;
9149
9150 ResByArg[Args] = ByArg;
9151 } while (EatIfPresent(lltok::comma));
9152
9153 if (parseToken(lltok::rparen, "expected ')' here"))
9154 return true;
9155
9156 return false;
9157 }
9158
9159 /// OptionalResByArg
9160 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
parseArgs(std::vector<uint64_t> & Args)9161 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
9162 if (parseToken(lltok::kw_args, "expected 'args' here") ||
9163 parseToken(lltok::colon, "expected ':' here") ||
9164 parseToken(lltok::lparen, "expected '(' here"))
9165 return true;
9166
9167 do {
9168 uint64_t Val;
9169 if (parseUInt64(Val))
9170 return true;
9171 Args.push_back(Val);
9172 } while (EatIfPresent(lltok::comma));
9173
9174 if (parseToken(lltok::rparen, "expected ')' here"))
9175 return true;
9176
9177 return false;
9178 }
9179
9180 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
9181
resolveFwdRef(ValueInfo * Fwd,ValueInfo & Resolved)9182 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
9183 bool ReadOnly = Fwd->isReadOnly();
9184 bool WriteOnly = Fwd->isWriteOnly();
9185 assert(!(ReadOnly && WriteOnly));
9186 *Fwd = Resolved;
9187 if (ReadOnly)
9188 Fwd->setReadOnly();
9189 if (WriteOnly)
9190 Fwd->setWriteOnly();
9191 }
9192
9193 /// Stores the given Name/GUID and associated summary into the Index.
9194 /// Also updates any forward references to the associated entry ID.
addGlobalValueToIndex(std::string Name,GlobalValue::GUID GUID,GlobalValue::LinkageTypes Linkage,unsigned ID,std::unique_ptr<GlobalValueSummary> Summary,LocTy Loc)9195 bool LLParser::addGlobalValueToIndex(
9196 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
9197 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) {
9198 // First create the ValueInfo utilizing the Name or GUID.
9199 ValueInfo VI;
9200 if (GUID != 0) {
9201 assert(Name.empty());
9202 VI = Index->getOrInsertValueInfo(GUID);
9203 } else {
9204 assert(!Name.empty());
9205 if (M) {
9206 auto *GV = M->getNamedValue(Name);
9207 if (!GV)
9208 return error(Loc, "Reference to undefined global \"" + Name + "\"");
9209
9210 VI = Index->getOrInsertValueInfo(GV);
9211 } else {
9212 assert(
9213 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
9214 "Need a source_filename to compute GUID for local");
9215 GUID = GlobalValue::getGUID(
9216 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
9217 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
9218 }
9219 }
9220
9221 // Resolve forward references from calls/refs
9222 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
9223 if (FwdRefVIs != ForwardRefValueInfos.end()) {
9224 for (auto VIRef : FwdRefVIs->second) {
9225 assert(VIRef.first->getRef() == FwdVIRef &&
9226 "Forward referenced ValueInfo expected to be empty");
9227 resolveFwdRef(VIRef.first, VI);
9228 }
9229 ForwardRefValueInfos.erase(FwdRefVIs);
9230 }
9231
9232 // Resolve forward references from aliases
9233 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
9234 if (FwdRefAliasees != ForwardRefAliasees.end()) {
9235 for (auto AliaseeRef : FwdRefAliasees->second) {
9236 assert(!AliaseeRef.first->hasAliasee() &&
9237 "Forward referencing alias already has aliasee");
9238 assert(Summary && "Aliasee must be a definition");
9239 AliaseeRef.first->setAliasee(VI, Summary.get());
9240 }
9241 ForwardRefAliasees.erase(FwdRefAliasees);
9242 }
9243
9244 // Add the summary if one was provided.
9245 if (Summary)
9246 Index->addGlobalValueSummary(VI, std::move(Summary));
9247
9248 // Save the associated ValueInfo for use in later references by ID.
9249 if (ID == NumberedValueInfos.size())
9250 NumberedValueInfos.push_back(VI);
9251 else {
9252 // Handle non-continuous numbers (to make test simplification easier).
9253 if (ID > NumberedValueInfos.size())
9254 NumberedValueInfos.resize(ID + 1);
9255 NumberedValueInfos[ID] = VI;
9256 }
9257
9258 return false;
9259 }
9260
9261 /// parseSummaryIndexFlags
9262 /// ::= 'flags' ':' UInt64
parseSummaryIndexFlags()9263 bool LLParser::parseSummaryIndexFlags() {
9264 assert(Lex.getKind() == lltok::kw_flags);
9265 Lex.Lex();
9266
9267 if (parseToken(lltok::colon, "expected ':' here"))
9268 return true;
9269 uint64_t Flags;
9270 if (parseUInt64(Flags))
9271 return true;
9272 if (Index)
9273 Index->setFlags(Flags);
9274 return false;
9275 }
9276
9277 /// parseBlockCount
9278 /// ::= 'blockcount' ':' UInt64
parseBlockCount()9279 bool LLParser::parseBlockCount() {
9280 assert(Lex.getKind() == lltok::kw_blockcount);
9281 Lex.Lex();
9282
9283 if (parseToken(lltok::colon, "expected ':' here"))
9284 return true;
9285 uint64_t BlockCount;
9286 if (parseUInt64(BlockCount))
9287 return true;
9288 if (Index)
9289 Index->setBlockCount(BlockCount);
9290 return false;
9291 }
9292
9293 /// parseGVEntry
9294 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
9295 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
9296 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
parseGVEntry(unsigned ID)9297 bool LLParser::parseGVEntry(unsigned ID) {
9298 assert(Lex.getKind() == lltok::kw_gv);
9299 Lex.Lex();
9300
9301 if (parseToken(lltok::colon, "expected ':' here") ||
9302 parseToken(lltok::lparen, "expected '(' here"))
9303 return true;
9304
9305 LocTy Loc = Lex.getLoc();
9306 std::string Name;
9307 GlobalValue::GUID GUID = 0;
9308 switch (Lex.getKind()) {
9309 case lltok::kw_name:
9310 Lex.Lex();
9311 if (parseToken(lltok::colon, "expected ':' here") ||
9312 parseStringConstant(Name))
9313 return true;
9314 // Can't create GUID/ValueInfo until we have the linkage.
9315 break;
9316 case lltok::kw_guid:
9317 Lex.Lex();
9318 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
9319 return true;
9320 break;
9321 default:
9322 return error(Lex.getLoc(), "expected name or guid tag");
9323 }
9324
9325 if (!EatIfPresent(lltok::comma)) {
9326 // No summaries. Wrap up.
9327 if (parseToken(lltok::rparen, "expected ')' here"))
9328 return true;
9329 // This was created for a call to an external or indirect target.
9330 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
9331 // created for indirect calls with VP. A Name with no GUID came from
9332 // an external definition. We pass ExternalLinkage since that is only
9333 // used when the GUID must be computed from Name, and in that case
9334 // the symbol must have external linkage.
9335 return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
9336 nullptr, Loc);
9337 }
9338
9339 // Have a list of summaries
9340 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
9341 parseToken(lltok::colon, "expected ':' here") ||
9342 parseToken(lltok::lparen, "expected '(' here"))
9343 return true;
9344 do {
9345 switch (Lex.getKind()) {
9346 case lltok::kw_function:
9347 if (parseFunctionSummary(Name, GUID, ID))
9348 return true;
9349 break;
9350 case lltok::kw_variable:
9351 if (parseVariableSummary(Name, GUID, ID))
9352 return true;
9353 break;
9354 case lltok::kw_alias:
9355 if (parseAliasSummary(Name, GUID, ID))
9356 return true;
9357 break;
9358 default:
9359 return error(Lex.getLoc(), "expected summary type");
9360 }
9361 } while (EatIfPresent(lltok::comma));
9362
9363 if (parseToken(lltok::rparen, "expected ')' here") ||
9364 parseToken(lltok::rparen, "expected ')' here"))
9365 return true;
9366
9367 return false;
9368 }
9369
9370 /// FunctionSummary
9371 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9372 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
9373 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
9374 /// [',' OptionalRefs]? ')'
parseFunctionSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)9375 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
9376 unsigned ID) {
9377 LocTy Loc = Lex.getLoc();
9378 assert(Lex.getKind() == lltok::kw_function);
9379 Lex.Lex();
9380
9381 StringRef ModulePath;
9382 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9383 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9384 /*NotEligibleToImport=*/false,
9385 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9386 GlobalValueSummary::Definition);
9387 unsigned InstCount;
9388 std::vector<FunctionSummary::EdgeTy> Calls;
9389 FunctionSummary::TypeIdInfo TypeIdInfo;
9390 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
9391 std::vector<ValueInfo> Refs;
9392 std::vector<CallsiteInfo> Callsites;
9393 std::vector<AllocInfo> Allocs;
9394 // Default is all-zeros (conservative values).
9395 FunctionSummary::FFlags FFlags = {};
9396 if (parseToken(lltok::colon, "expected ':' here") ||
9397 parseToken(lltok::lparen, "expected '(' here") ||
9398 parseModuleReference(ModulePath) ||
9399 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9400 parseToken(lltok::comma, "expected ',' here") ||
9401 parseToken(lltok::kw_insts, "expected 'insts' here") ||
9402 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
9403 return true;
9404
9405 // parse optional fields
9406 while (EatIfPresent(lltok::comma)) {
9407 switch (Lex.getKind()) {
9408 case lltok::kw_funcFlags:
9409 if (parseOptionalFFlags(FFlags))
9410 return true;
9411 break;
9412 case lltok::kw_calls:
9413 if (parseOptionalCalls(Calls))
9414 return true;
9415 break;
9416 case lltok::kw_typeIdInfo:
9417 if (parseOptionalTypeIdInfo(TypeIdInfo))
9418 return true;
9419 break;
9420 case lltok::kw_refs:
9421 if (parseOptionalRefs(Refs))
9422 return true;
9423 break;
9424 case lltok::kw_params:
9425 if (parseOptionalParamAccesses(ParamAccesses))
9426 return true;
9427 break;
9428 case lltok::kw_allocs:
9429 if (parseOptionalAllocs(Allocs))
9430 return true;
9431 break;
9432 case lltok::kw_callsites:
9433 if (parseOptionalCallsites(Callsites))
9434 return true;
9435 break;
9436 default:
9437 return error(Lex.getLoc(), "expected optional function summary field");
9438 }
9439 }
9440
9441 if (parseToken(lltok::rparen, "expected ')' here"))
9442 return true;
9443
9444 auto FS = std::make_unique<FunctionSummary>(
9445 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
9446 std::move(Calls), std::move(TypeIdInfo.TypeTests),
9447 std::move(TypeIdInfo.TypeTestAssumeVCalls),
9448 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
9449 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
9450 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
9451 std::move(ParamAccesses), std::move(Callsites), std::move(Allocs));
9452
9453 FS->setModulePath(ModulePath);
9454
9455 return addGlobalValueToIndex(Name, GUID,
9456 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9457 std::move(FS), Loc);
9458 }
9459
9460 /// VariableSummary
9461 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9462 /// [',' OptionalRefs]? ')'
parseVariableSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)9463 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
9464 unsigned ID) {
9465 LocTy Loc = Lex.getLoc();
9466 assert(Lex.getKind() == lltok::kw_variable);
9467 Lex.Lex();
9468
9469 StringRef ModulePath;
9470 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9471 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9472 /*NotEligibleToImport=*/false,
9473 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9474 GlobalValueSummary::Definition);
9475 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
9476 /* WriteOnly */ false,
9477 /* Constant */ false,
9478 GlobalObject::VCallVisibilityPublic);
9479 std::vector<ValueInfo> Refs;
9480 VTableFuncList VTableFuncs;
9481 if (parseToken(lltok::colon, "expected ':' here") ||
9482 parseToken(lltok::lparen, "expected '(' here") ||
9483 parseModuleReference(ModulePath) ||
9484 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9485 parseToken(lltok::comma, "expected ',' here") ||
9486 parseGVarFlags(GVarFlags))
9487 return true;
9488
9489 // parse optional fields
9490 while (EatIfPresent(lltok::comma)) {
9491 switch (Lex.getKind()) {
9492 case lltok::kw_vTableFuncs:
9493 if (parseOptionalVTableFuncs(VTableFuncs))
9494 return true;
9495 break;
9496 case lltok::kw_refs:
9497 if (parseOptionalRefs(Refs))
9498 return true;
9499 break;
9500 default:
9501 return error(Lex.getLoc(), "expected optional variable summary field");
9502 }
9503 }
9504
9505 if (parseToken(lltok::rparen, "expected ')' here"))
9506 return true;
9507
9508 auto GS =
9509 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
9510
9511 GS->setModulePath(ModulePath);
9512 GS->setVTableFuncs(std::move(VTableFuncs));
9513
9514 return addGlobalValueToIndex(Name, GUID,
9515 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9516 std::move(GS), Loc);
9517 }
9518
9519 /// AliasSummary
9520 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
9521 /// 'aliasee' ':' GVReference ')'
parseAliasSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)9522 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
9523 unsigned ID) {
9524 assert(Lex.getKind() == lltok::kw_alias);
9525 LocTy Loc = Lex.getLoc();
9526 Lex.Lex();
9527
9528 StringRef ModulePath;
9529 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9530 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9531 /*NotEligibleToImport=*/false,
9532 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9533 GlobalValueSummary::Definition);
9534 if (parseToken(lltok::colon, "expected ':' here") ||
9535 parseToken(lltok::lparen, "expected '(' here") ||
9536 parseModuleReference(ModulePath) ||
9537 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9538 parseToken(lltok::comma, "expected ',' here") ||
9539 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
9540 parseToken(lltok::colon, "expected ':' here"))
9541 return true;
9542
9543 ValueInfo AliaseeVI;
9544 unsigned GVId;
9545 if (parseGVReference(AliaseeVI, GVId))
9546 return true;
9547
9548 if (parseToken(lltok::rparen, "expected ')' here"))
9549 return true;
9550
9551 auto AS = std::make_unique<AliasSummary>(GVFlags);
9552
9553 AS->setModulePath(ModulePath);
9554
9555 // Record forward reference if the aliasee is not parsed yet.
9556 if (AliaseeVI.getRef() == FwdVIRef) {
9557 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
9558 } else {
9559 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
9560 assert(Summary && "Aliasee must be a definition");
9561 AS->setAliasee(AliaseeVI, Summary);
9562 }
9563
9564 return addGlobalValueToIndex(Name, GUID,
9565 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9566 std::move(AS), Loc);
9567 }
9568
9569 /// Flag
9570 /// ::= [0|1]
parseFlag(unsigned & Val)9571 bool LLParser::parseFlag(unsigned &Val) {
9572 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
9573 return tokError("expected integer");
9574 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
9575 Lex.Lex();
9576 return false;
9577 }
9578
9579 /// OptionalFFlags
9580 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
9581 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
9582 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
9583 /// [',' 'noInline' ':' Flag]? ')'
9584 /// [',' 'alwaysInline' ':' Flag]? ')'
9585 /// [',' 'noUnwind' ':' Flag]? ')'
9586 /// [',' 'mayThrow' ':' Flag]? ')'
9587 /// [',' 'hasUnknownCall' ':' Flag]? ')'
9588 /// [',' 'mustBeUnreachable' ':' Flag]? ')'
9589
parseOptionalFFlags(FunctionSummary::FFlags & FFlags)9590 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
9591 assert(Lex.getKind() == lltok::kw_funcFlags);
9592 Lex.Lex();
9593
9594 if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
9595 parseToken(lltok::lparen, "expected '(' in funcFlags"))
9596 return true;
9597
9598 do {
9599 unsigned Val = 0;
9600 switch (Lex.getKind()) {
9601 case lltok::kw_readNone:
9602 Lex.Lex();
9603 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9604 return true;
9605 FFlags.ReadNone = Val;
9606 break;
9607 case lltok::kw_readOnly:
9608 Lex.Lex();
9609 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9610 return true;
9611 FFlags.ReadOnly = Val;
9612 break;
9613 case lltok::kw_noRecurse:
9614 Lex.Lex();
9615 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9616 return true;
9617 FFlags.NoRecurse = Val;
9618 break;
9619 case lltok::kw_returnDoesNotAlias:
9620 Lex.Lex();
9621 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9622 return true;
9623 FFlags.ReturnDoesNotAlias = Val;
9624 break;
9625 case lltok::kw_noInline:
9626 Lex.Lex();
9627 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9628 return true;
9629 FFlags.NoInline = Val;
9630 break;
9631 case lltok::kw_alwaysInline:
9632 Lex.Lex();
9633 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9634 return true;
9635 FFlags.AlwaysInline = Val;
9636 break;
9637 case lltok::kw_noUnwind:
9638 Lex.Lex();
9639 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9640 return true;
9641 FFlags.NoUnwind = Val;
9642 break;
9643 case lltok::kw_mayThrow:
9644 Lex.Lex();
9645 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9646 return true;
9647 FFlags.MayThrow = Val;
9648 break;
9649 case lltok::kw_hasUnknownCall:
9650 Lex.Lex();
9651 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9652 return true;
9653 FFlags.HasUnknownCall = Val;
9654 break;
9655 case lltok::kw_mustBeUnreachable:
9656 Lex.Lex();
9657 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9658 return true;
9659 FFlags.MustBeUnreachable = Val;
9660 break;
9661 default:
9662 return error(Lex.getLoc(), "expected function flag type");
9663 }
9664 } while (EatIfPresent(lltok::comma));
9665
9666 if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
9667 return true;
9668
9669 return false;
9670 }
9671
9672 /// OptionalCalls
9673 /// := 'calls' ':' '(' Call [',' Call]* ')'
9674 /// Call ::= '(' 'callee' ':' GVReference
9675 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]?
9676 /// [ ',' 'tail' ]? ')'
parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> & Calls)9677 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9678 assert(Lex.getKind() == lltok::kw_calls);
9679 Lex.Lex();
9680
9681 if (parseToken(lltok::colon, "expected ':' in calls") ||
9682 parseToken(lltok::lparen, "expected '(' in calls"))
9683 return true;
9684
9685 IdToIndexMapType IdToIndexMap;
9686 // parse each call edge
9687 do {
9688 ValueInfo VI;
9689 if (parseToken(lltok::lparen, "expected '(' in call") ||
9690 parseToken(lltok::kw_callee, "expected 'callee' in call") ||
9691 parseToken(lltok::colon, "expected ':'"))
9692 return true;
9693
9694 LocTy Loc = Lex.getLoc();
9695 unsigned GVId;
9696 if (parseGVReference(VI, GVId))
9697 return true;
9698
9699 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9700 unsigned RelBF = 0;
9701 unsigned HasTailCall = false;
9702
9703 // parse optional fields
9704 while (EatIfPresent(lltok::comma)) {
9705 switch (Lex.getKind()) {
9706 case lltok::kw_hotness:
9707 Lex.Lex();
9708 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
9709 return true;
9710 break;
9711 case lltok::kw_relbf:
9712 Lex.Lex();
9713 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
9714 return true;
9715 break;
9716 case lltok::kw_tail:
9717 Lex.Lex();
9718 if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall))
9719 return true;
9720 break;
9721 default:
9722 return error(Lex.getLoc(), "expected hotness, relbf, or tail");
9723 }
9724 }
9725 if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0)
9726 return tokError("Expected only one of hotness or relbf");
9727 // Keep track of the Call array index needing a forward reference.
9728 // We will save the location of the ValueInfo needing an update, but
9729 // can only do so once the std::vector is finalized.
9730 if (VI.getRef() == FwdVIRef)
9731 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
9732 Calls.push_back(
9733 FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)});
9734
9735 if (parseToken(lltok::rparen, "expected ')' in call"))
9736 return true;
9737 } while (EatIfPresent(lltok::comma));
9738
9739 // Now that the Calls vector is finalized, it is safe to save the locations
9740 // of any forward GV references that need updating later.
9741 for (auto I : IdToIndexMap) {
9742 auto &Infos = ForwardRefValueInfos[I.first];
9743 for (auto P : I.second) {
9744 assert(Calls[P.first].first.getRef() == FwdVIRef &&
9745 "Forward referenced ValueInfo expected to be empty");
9746 Infos.emplace_back(&Calls[P.first].first, P.second);
9747 }
9748 }
9749
9750 if (parseToken(lltok::rparen, "expected ')' in calls"))
9751 return true;
9752
9753 return false;
9754 }
9755
9756 /// Hotness
9757 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
parseHotness(CalleeInfo::HotnessType & Hotness)9758 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9759 switch (Lex.getKind()) {
9760 case lltok::kw_unknown:
9761 Hotness = CalleeInfo::HotnessType::Unknown;
9762 break;
9763 case lltok::kw_cold:
9764 Hotness = CalleeInfo::HotnessType::Cold;
9765 break;
9766 case lltok::kw_none:
9767 Hotness = CalleeInfo::HotnessType::None;
9768 break;
9769 case lltok::kw_hot:
9770 Hotness = CalleeInfo::HotnessType::Hot;
9771 break;
9772 case lltok::kw_critical:
9773 Hotness = CalleeInfo::HotnessType::Critical;
9774 break;
9775 default:
9776 return error(Lex.getLoc(), "invalid call edge hotness");
9777 }
9778 Lex.Lex();
9779 return false;
9780 }
9781
9782 /// OptionalVTableFuncs
9783 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9784 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
parseOptionalVTableFuncs(VTableFuncList & VTableFuncs)9785 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9786 assert(Lex.getKind() == lltok::kw_vTableFuncs);
9787 Lex.Lex();
9788
9789 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
9790 parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9791 return true;
9792
9793 IdToIndexMapType IdToIndexMap;
9794 // parse each virtual function pair
9795 do {
9796 ValueInfo VI;
9797 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9798 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9799 parseToken(lltok::colon, "expected ':'"))
9800 return true;
9801
9802 LocTy Loc = Lex.getLoc();
9803 unsigned GVId;
9804 if (parseGVReference(VI, GVId))
9805 return true;
9806
9807 uint64_t Offset;
9808 if (parseToken(lltok::comma, "expected comma") ||
9809 parseToken(lltok::kw_offset, "expected offset") ||
9810 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9811 return true;
9812
9813 // Keep track of the VTableFuncs array index needing a forward reference.
9814 // We will save the location of the ValueInfo needing an update, but
9815 // can only do so once the std::vector is finalized.
9816 if (VI == EmptyVI)
9817 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9818 VTableFuncs.push_back({VI, Offset});
9819
9820 if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9821 return true;
9822 } while (EatIfPresent(lltok::comma));
9823
9824 // Now that the VTableFuncs vector is finalized, it is safe to save the
9825 // locations of any forward GV references that need updating later.
9826 for (auto I : IdToIndexMap) {
9827 auto &Infos = ForwardRefValueInfos[I.first];
9828 for (auto P : I.second) {
9829 assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9830 "Forward referenced ValueInfo expected to be empty");
9831 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9832 }
9833 }
9834
9835 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9836 return true;
9837
9838 return false;
9839 }
9840
9841 /// ParamNo := 'param' ':' UInt64
parseParamNo(uint64_t & ParamNo)9842 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9843 if (parseToken(lltok::kw_param, "expected 'param' here") ||
9844 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9845 return true;
9846 return false;
9847 }
9848
9849 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
parseParamAccessOffset(ConstantRange & Range)9850 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9851 APSInt Lower;
9852 APSInt Upper;
9853 auto ParseAPSInt = [&](APSInt &Val) {
9854 if (Lex.getKind() != lltok::APSInt)
9855 return tokError("expected integer");
9856 Val = Lex.getAPSIntVal();
9857 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9858 Val.setIsSigned(true);
9859 Lex.Lex();
9860 return false;
9861 };
9862 if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9863 parseToken(lltok::colon, "expected ':' here") ||
9864 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9865 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9866 parseToken(lltok::rsquare, "expected ']' here"))
9867 return true;
9868
9869 ++Upper;
9870 Range =
9871 (Lower == Upper && !Lower.isMaxValue())
9872 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9873 : ConstantRange(Lower, Upper);
9874
9875 return false;
9876 }
9877
9878 /// ParamAccessCall
9879 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
parseParamAccessCall(FunctionSummary::ParamAccess::Call & Call,IdLocListType & IdLocList)9880 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9881 IdLocListType &IdLocList) {
9882 if (parseToken(lltok::lparen, "expected '(' here") ||
9883 parseToken(lltok::kw_callee, "expected 'callee' here") ||
9884 parseToken(lltok::colon, "expected ':' here"))
9885 return true;
9886
9887 unsigned GVId;
9888 ValueInfo VI;
9889 LocTy Loc = Lex.getLoc();
9890 if (parseGVReference(VI, GVId))
9891 return true;
9892
9893 Call.Callee = VI;
9894 IdLocList.emplace_back(GVId, Loc);
9895
9896 if (parseToken(lltok::comma, "expected ',' here") ||
9897 parseParamNo(Call.ParamNo) ||
9898 parseToken(lltok::comma, "expected ',' here") ||
9899 parseParamAccessOffset(Call.Offsets))
9900 return true;
9901
9902 if (parseToken(lltok::rparen, "expected ')' here"))
9903 return true;
9904
9905 return false;
9906 }
9907
9908 /// ParamAccess
9909 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9910 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
parseParamAccess(FunctionSummary::ParamAccess & Param,IdLocListType & IdLocList)9911 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9912 IdLocListType &IdLocList) {
9913 if (parseToken(lltok::lparen, "expected '(' here") ||
9914 parseParamNo(Param.ParamNo) ||
9915 parseToken(lltok::comma, "expected ',' here") ||
9916 parseParamAccessOffset(Param.Use))
9917 return true;
9918
9919 if (EatIfPresent(lltok::comma)) {
9920 if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9921 parseToken(lltok::colon, "expected ':' here") ||
9922 parseToken(lltok::lparen, "expected '(' here"))
9923 return true;
9924 do {
9925 FunctionSummary::ParamAccess::Call Call;
9926 if (parseParamAccessCall(Call, IdLocList))
9927 return true;
9928 Param.Calls.push_back(Call);
9929 } while (EatIfPresent(lltok::comma));
9930
9931 if (parseToken(lltok::rparen, "expected ')' here"))
9932 return true;
9933 }
9934
9935 if (parseToken(lltok::rparen, "expected ')' here"))
9936 return true;
9937
9938 return false;
9939 }
9940
9941 /// OptionalParamAccesses
9942 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
parseOptionalParamAccesses(std::vector<FunctionSummary::ParamAccess> & Params)9943 bool LLParser::parseOptionalParamAccesses(
9944 std::vector<FunctionSummary::ParamAccess> &Params) {
9945 assert(Lex.getKind() == lltok::kw_params);
9946 Lex.Lex();
9947
9948 if (parseToken(lltok::colon, "expected ':' here") ||
9949 parseToken(lltok::lparen, "expected '(' here"))
9950 return true;
9951
9952 IdLocListType VContexts;
9953 size_t CallsNum = 0;
9954 do {
9955 FunctionSummary::ParamAccess ParamAccess;
9956 if (parseParamAccess(ParamAccess, VContexts))
9957 return true;
9958 CallsNum += ParamAccess.Calls.size();
9959 assert(VContexts.size() == CallsNum);
9960 (void)CallsNum;
9961 Params.emplace_back(std::move(ParamAccess));
9962 } while (EatIfPresent(lltok::comma));
9963
9964 if (parseToken(lltok::rparen, "expected ')' here"))
9965 return true;
9966
9967 // Now that the Params is finalized, it is safe to save the locations
9968 // of any forward GV references that need updating later.
9969 IdLocListType::const_iterator ItContext = VContexts.begin();
9970 for (auto &PA : Params) {
9971 for (auto &C : PA.Calls) {
9972 if (C.Callee.getRef() == FwdVIRef)
9973 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9974 ItContext->second);
9975 ++ItContext;
9976 }
9977 }
9978 assert(ItContext == VContexts.end());
9979
9980 return false;
9981 }
9982
9983 /// OptionalRefs
9984 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
parseOptionalRefs(std::vector<ValueInfo> & Refs)9985 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9986 assert(Lex.getKind() == lltok::kw_refs);
9987 Lex.Lex();
9988
9989 if (parseToken(lltok::colon, "expected ':' in refs") ||
9990 parseToken(lltok::lparen, "expected '(' in refs"))
9991 return true;
9992
9993 struct ValueContext {
9994 ValueInfo VI;
9995 unsigned GVId;
9996 LocTy Loc;
9997 };
9998 std::vector<ValueContext> VContexts;
9999 // parse each ref edge
10000 do {
10001 ValueContext VC;
10002 VC.Loc = Lex.getLoc();
10003 if (parseGVReference(VC.VI, VC.GVId))
10004 return true;
10005 VContexts.push_back(VC);
10006 } while (EatIfPresent(lltok::comma));
10007
10008 // Sort value contexts so that ones with writeonly
10009 // and readonly ValueInfo are at the end of VContexts vector.
10010 // See FunctionSummary::specialRefCounts()
10011 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
10012 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
10013 });
10014
10015 IdToIndexMapType IdToIndexMap;
10016 for (auto &VC : VContexts) {
10017 // Keep track of the Refs array index needing a forward reference.
10018 // We will save the location of the ValueInfo needing an update, but
10019 // can only do so once the std::vector is finalized.
10020 if (VC.VI.getRef() == FwdVIRef)
10021 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
10022 Refs.push_back(VC.VI);
10023 }
10024
10025 // Now that the Refs vector is finalized, it is safe to save the locations
10026 // of any forward GV references that need updating later.
10027 for (auto I : IdToIndexMap) {
10028 auto &Infos = ForwardRefValueInfos[I.first];
10029 for (auto P : I.second) {
10030 assert(Refs[P.first].getRef() == FwdVIRef &&
10031 "Forward referenced ValueInfo expected to be empty");
10032 Infos.emplace_back(&Refs[P.first], P.second);
10033 }
10034 }
10035
10036 if (parseToken(lltok::rparen, "expected ')' in refs"))
10037 return true;
10038
10039 return false;
10040 }
10041
10042 /// OptionalTypeIdInfo
10043 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
10044 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
10045 /// [',' TypeCheckedLoadConstVCalls]? ')'
parseOptionalTypeIdInfo(FunctionSummary::TypeIdInfo & TypeIdInfo)10046 bool LLParser::parseOptionalTypeIdInfo(
10047 FunctionSummary::TypeIdInfo &TypeIdInfo) {
10048 assert(Lex.getKind() == lltok::kw_typeIdInfo);
10049 Lex.Lex();
10050
10051 if (parseToken(lltok::colon, "expected ':' here") ||
10052 parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10053 return true;
10054
10055 do {
10056 switch (Lex.getKind()) {
10057 case lltok::kw_typeTests:
10058 if (parseTypeTests(TypeIdInfo.TypeTests))
10059 return true;
10060 break;
10061 case lltok::kw_typeTestAssumeVCalls:
10062 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
10063 TypeIdInfo.TypeTestAssumeVCalls))
10064 return true;
10065 break;
10066 case lltok::kw_typeCheckedLoadVCalls:
10067 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
10068 TypeIdInfo.TypeCheckedLoadVCalls))
10069 return true;
10070 break;
10071 case lltok::kw_typeTestAssumeConstVCalls:
10072 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
10073 TypeIdInfo.TypeTestAssumeConstVCalls))
10074 return true;
10075 break;
10076 case lltok::kw_typeCheckedLoadConstVCalls:
10077 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
10078 TypeIdInfo.TypeCheckedLoadConstVCalls))
10079 return true;
10080 break;
10081 default:
10082 return error(Lex.getLoc(), "invalid typeIdInfo list type");
10083 }
10084 } while (EatIfPresent(lltok::comma));
10085
10086 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10087 return true;
10088
10089 return false;
10090 }
10091
10092 /// TypeTests
10093 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
10094 /// [',' (SummaryID | UInt64)]* ')'
parseTypeTests(std::vector<GlobalValue::GUID> & TypeTests)10095 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
10096 assert(Lex.getKind() == lltok::kw_typeTests);
10097 Lex.Lex();
10098
10099 if (parseToken(lltok::colon, "expected ':' here") ||
10100 parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10101 return true;
10102
10103 IdToIndexMapType IdToIndexMap;
10104 do {
10105 GlobalValue::GUID GUID = 0;
10106 if (Lex.getKind() == lltok::SummaryID) {
10107 unsigned ID = Lex.getUIntVal();
10108 LocTy Loc = Lex.getLoc();
10109 // Keep track of the TypeTests array index needing a forward reference.
10110 // We will save the location of the GUID needing an update, but
10111 // can only do so once the std::vector is finalized.
10112 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
10113 Lex.Lex();
10114 } else if (parseUInt64(GUID))
10115 return true;
10116 TypeTests.push_back(GUID);
10117 } while (EatIfPresent(lltok::comma));
10118
10119 // Now that the TypeTests vector is finalized, it is safe to save the
10120 // locations of any forward GV references that need updating later.
10121 for (auto I : IdToIndexMap) {
10122 auto &Ids = ForwardRefTypeIds[I.first];
10123 for (auto P : I.second) {
10124 assert(TypeTests[P.first] == 0 &&
10125 "Forward referenced type id GUID expected to be 0");
10126 Ids.emplace_back(&TypeTests[P.first], P.second);
10127 }
10128 }
10129
10130 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10131 return true;
10132
10133 return false;
10134 }
10135
10136 /// VFuncIdList
10137 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
parseVFuncIdList(lltok::Kind Kind,std::vector<FunctionSummary::VFuncId> & VFuncIdList)10138 bool LLParser::parseVFuncIdList(
10139 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
10140 assert(Lex.getKind() == Kind);
10141 Lex.Lex();
10142
10143 if (parseToken(lltok::colon, "expected ':' here") ||
10144 parseToken(lltok::lparen, "expected '(' here"))
10145 return true;
10146
10147 IdToIndexMapType IdToIndexMap;
10148 do {
10149 FunctionSummary::VFuncId VFuncId;
10150 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
10151 return true;
10152 VFuncIdList.push_back(VFuncId);
10153 } while (EatIfPresent(lltok::comma));
10154
10155 if (parseToken(lltok::rparen, "expected ')' here"))
10156 return true;
10157
10158 // Now that the VFuncIdList vector is finalized, it is safe to save the
10159 // locations of any forward GV references that need updating later.
10160 for (auto I : IdToIndexMap) {
10161 auto &Ids = ForwardRefTypeIds[I.first];
10162 for (auto P : I.second) {
10163 assert(VFuncIdList[P.first].GUID == 0 &&
10164 "Forward referenced type id GUID expected to be 0");
10165 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
10166 }
10167 }
10168
10169 return false;
10170 }
10171
10172 /// ConstVCallList
10173 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
parseConstVCallList(lltok::Kind Kind,std::vector<FunctionSummary::ConstVCall> & ConstVCallList)10174 bool LLParser::parseConstVCallList(
10175 lltok::Kind Kind,
10176 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
10177 assert(Lex.getKind() == Kind);
10178 Lex.Lex();
10179
10180 if (parseToken(lltok::colon, "expected ':' here") ||
10181 parseToken(lltok::lparen, "expected '(' here"))
10182 return true;
10183
10184 IdToIndexMapType IdToIndexMap;
10185 do {
10186 FunctionSummary::ConstVCall ConstVCall;
10187 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
10188 return true;
10189 ConstVCallList.push_back(ConstVCall);
10190 } while (EatIfPresent(lltok::comma));
10191
10192 if (parseToken(lltok::rparen, "expected ')' here"))
10193 return true;
10194
10195 // Now that the ConstVCallList vector is finalized, it is safe to save the
10196 // locations of any forward GV references that need updating later.
10197 for (auto I : IdToIndexMap) {
10198 auto &Ids = ForwardRefTypeIds[I.first];
10199 for (auto P : I.second) {
10200 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
10201 "Forward referenced type id GUID expected to be 0");
10202 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
10203 }
10204 }
10205
10206 return false;
10207 }
10208
10209 /// ConstVCall
10210 /// ::= '(' VFuncId ',' Args ')'
parseConstVCall(FunctionSummary::ConstVCall & ConstVCall,IdToIndexMapType & IdToIndexMap,unsigned Index)10211 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
10212 IdToIndexMapType &IdToIndexMap, unsigned Index) {
10213 if (parseToken(lltok::lparen, "expected '(' here") ||
10214 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
10215 return true;
10216
10217 if (EatIfPresent(lltok::comma))
10218 if (parseArgs(ConstVCall.Args))
10219 return true;
10220
10221 if (parseToken(lltok::rparen, "expected ')' here"))
10222 return true;
10223
10224 return false;
10225 }
10226
10227 /// VFuncId
10228 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
10229 /// 'offset' ':' UInt64 ')'
parseVFuncId(FunctionSummary::VFuncId & VFuncId,IdToIndexMapType & IdToIndexMap,unsigned Index)10230 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
10231 IdToIndexMapType &IdToIndexMap, unsigned Index) {
10232 assert(Lex.getKind() == lltok::kw_vFuncId);
10233 Lex.Lex();
10234
10235 if (parseToken(lltok::colon, "expected ':' here") ||
10236 parseToken(lltok::lparen, "expected '(' here"))
10237 return true;
10238
10239 if (Lex.getKind() == lltok::SummaryID) {
10240 VFuncId.GUID = 0;
10241 unsigned ID = Lex.getUIntVal();
10242 LocTy Loc = Lex.getLoc();
10243 // Keep track of the array index needing a forward reference.
10244 // We will save the location of the GUID needing an update, but
10245 // can only do so once the caller's std::vector is finalized.
10246 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
10247 Lex.Lex();
10248 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
10249 parseToken(lltok::colon, "expected ':' here") ||
10250 parseUInt64(VFuncId.GUID))
10251 return true;
10252
10253 if (parseToken(lltok::comma, "expected ',' here") ||
10254 parseToken(lltok::kw_offset, "expected 'offset' here") ||
10255 parseToken(lltok::colon, "expected ':' here") ||
10256 parseUInt64(VFuncId.Offset) ||
10257 parseToken(lltok::rparen, "expected ')' here"))
10258 return true;
10259
10260 return false;
10261 }
10262
10263 /// GVFlags
10264 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
10265 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
10266 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
10267 /// 'canAutoHide' ':' Flag ',' ')'
parseGVFlags(GlobalValueSummary::GVFlags & GVFlags)10268 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
10269 assert(Lex.getKind() == lltok::kw_flags);
10270 Lex.Lex();
10271
10272 if (parseToken(lltok::colon, "expected ':' here") ||
10273 parseToken(lltok::lparen, "expected '(' here"))
10274 return true;
10275
10276 do {
10277 unsigned Flag = 0;
10278 switch (Lex.getKind()) {
10279 case lltok::kw_linkage:
10280 Lex.Lex();
10281 if (parseToken(lltok::colon, "expected ':'"))
10282 return true;
10283 bool HasLinkage;
10284 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
10285 assert(HasLinkage && "Linkage not optional in summary entry");
10286 Lex.Lex();
10287 break;
10288 case lltok::kw_visibility:
10289 Lex.Lex();
10290 if (parseToken(lltok::colon, "expected ':'"))
10291 return true;
10292 parseOptionalVisibility(Flag);
10293 GVFlags.Visibility = Flag;
10294 break;
10295 case lltok::kw_notEligibleToImport:
10296 Lex.Lex();
10297 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10298 return true;
10299 GVFlags.NotEligibleToImport = Flag;
10300 break;
10301 case lltok::kw_live:
10302 Lex.Lex();
10303 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10304 return true;
10305 GVFlags.Live = Flag;
10306 break;
10307 case lltok::kw_dsoLocal:
10308 Lex.Lex();
10309 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10310 return true;
10311 GVFlags.DSOLocal = Flag;
10312 break;
10313 case lltok::kw_canAutoHide:
10314 Lex.Lex();
10315 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10316 return true;
10317 GVFlags.CanAutoHide = Flag;
10318 break;
10319 case lltok::kw_importType:
10320 Lex.Lex();
10321 if (parseToken(lltok::colon, "expected ':'"))
10322 return true;
10323 GlobalValueSummary::ImportKind IK;
10324 if (parseOptionalImportType(Lex.getKind(), IK))
10325 return true;
10326 GVFlags.ImportType = static_cast<unsigned>(IK);
10327 Lex.Lex();
10328 break;
10329 default:
10330 return error(Lex.getLoc(), "expected gv flag type");
10331 }
10332 } while (EatIfPresent(lltok::comma));
10333
10334 if (parseToken(lltok::rparen, "expected ')' here"))
10335 return true;
10336
10337 return false;
10338 }
10339
10340 /// GVarFlags
10341 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
10342 /// ',' 'writeonly' ':' Flag
10343 /// ',' 'constant' ':' Flag ')'
parseGVarFlags(GlobalVarSummary::GVarFlags & GVarFlags)10344 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
10345 assert(Lex.getKind() == lltok::kw_varFlags);
10346 Lex.Lex();
10347
10348 if (parseToken(lltok::colon, "expected ':' here") ||
10349 parseToken(lltok::lparen, "expected '(' here"))
10350 return true;
10351
10352 auto ParseRest = [this](unsigned int &Val) {
10353 Lex.Lex();
10354 if (parseToken(lltok::colon, "expected ':'"))
10355 return true;
10356 return parseFlag(Val);
10357 };
10358
10359 do {
10360 unsigned Flag = 0;
10361 switch (Lex.getKind()) {
10362 case lltok::kw_readonly:
10363 if (ParseRest(Flag))
10364 return true;
10365 GVarFlags.MaybeReadOnly = Flag;
10366 break;
10367 case lltok::kw_writeonly:
10368 if (ParseRest(Flag))
10369 return true;
10370 GVarFlags.MaybeWriteOnly = Flag;
10371 break;
10372 case lltok::kw_constant:
10373 if (ParseRest(Flag))
10374 return true;
10375 GVarFlags.Constant = Flag;
10376 break;
10377 case lltok::kw_vcall_visibility:
10378 if (ParseRest(Flag))
10379 return true;
10380 GVarFlags.VCallVisibility = Flag;
10381 break;
10382 default:
10383 return error(Lex.getLoc(), "expected gvar flag type");
10384 }
10385 } while (EatIfPresent(lltok::comma));
10386 return parseToken(lltok::rparen, "expected ')' here");
10387 }
10388
10389 /// ModuleReference
10390 /// ::= 'module' ':' UInt
parseModuleReference(StringRef & ModulePath)10391 bool LLParser::parseModuleReference(StringRef &ModulePath) {
10392 // parse module id.
10393 if (parseToken(lltok::kw_module, "expected 'module' here") ||
10394 parseToken(lltok::colon, "expected ':' here") ||
10395 parseToken(lltok::SummaryID, "expected module ID"))
10396 return true;
10397
10398 unsigned ModuleID = Lex.getUIntVal();
10399 auto I = ModuleIdMap.find(ModuleID);
10400 // We should have already parsed all module IDs
10401 assert(I != ModuleIdMap.end());
10402 ModulePath = I->second;
10403 return false;
10404 }
10405
10406 /// GVReference
10407 /// ::= SummaryID
parseGVReference(ValueInfo & VI,unsigned & GVId)10408 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
10409 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
10410 if (!ReadOnly)
10411 WriteOnly = EatIfPresent(lltok::kw_writeonly);
10412 if (parseToken(lltok::SummaryID, "expected GV ID"))
10413 return true;
10414
10415 GVId = Lex.getUIntVal();
10416 // Check if we already have a VI for this GV
10417 if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) {
10418 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
10419 VI = NumberedValueInfos[GVId];
10420 } else
10421 // We will create a forward reference to the stored location.
10422 VI = ValueInfo(false, FwdVIRef);
10423
10424 if (ReadOnly)
10425 VI.setReadOnly();
10426 if (WriteOnly)
10427 VI.setWriteOnly();
10428 return false;
10429 }
10430
10431 /// OptionalAllocs
10432 /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
10433 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
10434 /// ',' MemProfs ')'
10435 /// Version ::= UInt32
parseOptionalAllocs(std::vector<AllocInfo> & Allocs)10436 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
10437 assert(Lex.getKind() == lltok::kw_allocs);
10438 Lex.Lex();
10439
10440 if (parseToken(lltok::colon, "expected ':' in allocs") ||
10441 parseToken(lltok::lparen, "expected '(' in allocs"))
10442 return true;
10443
10444 // parse each alloc
10445 do {
10446 if (parseToken(lltok::lparen, "expected '(' in alloc") ||
10447 parseToken(lltok::kw_versions, "expected 'versions' in alloc") ||
10448 parseToken(lltok::colon, "expected ':'") ||
10449 parseToken(lltok::lparen, "expected '(' in versions"))
10450 return true;
10451
10452 SmallVector<uint8_t> Versions;
10453 do {
10454 uint8_t V = 0;
10455 if (parseAllocType(V))
10456 return true;
10457 Versions.push_back(V);
10458 } while (EatIfPresent(lltok::comma));
10459
10460 if (parseToken(lltok::rparen, "expected ')' in versions") ||
10461 parseToken(lltok::comma, "expected ',' in alloc"))
10462 return true;
10463
10464 std::vector<MIBInfo> MIBs;
10465 if (parseMemProfs(MIBs))
10466 return true;
10467
10468 Allocs.push_back({Versions, MIBs});
10469
10470 if (parseToken(lltok::rparen, "expected ')' in alloc"))
10471 return true;
10472 } while (EatIfPresent(lltok::comma));
10473
10474 if (parseToken(lltok::rparen, "expected ')' in allocs"))
10475 return true;
10476
10477 return false;
10478 }
10479
10480 /// MemProfs
10481 /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
10482 /// MemProf ::= '(' 'type' ':' AllocType
10483 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10484 /// StackId ::= UInt64
parseMemProfs(std::vector<MIBInfo> & MIBs)10485 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
10486 assert(Lex.getKind() == lltok::kw_memProf);
10487 Lex.Lex();
10488
10489 if (parseToken(lltok::colon, "expected ':' in memprof") ||
10490 parseToken(lltok::lparen, "expected '(' in memprof"))
10491 return true;
10492
10493 // parse each MIB
10494 do {
10495 if (parseToken(lltok::lparen, "expected '(' in memprof") ||
10496 parseToken(lltok::kw_type, "expected 'type' in memprof") ||
10497 parseToken(lltok::colon, "expected ':'"))
10498 return true;
10499
10500 uint8_t AllocType;
10501 if (parseAllocType(AllocType))
10502 return true;
10503
10504 if (parseToken(lltok::comma, "expected ',' in memprof") ||
10505 parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") ||
10506 parseToken(lltok::colon, "expected ':'") ||
10507 parseToken(lltok::lparen, "expected '(' in stackIds"))
10508 return true;
10509
10510 SmallVector<unsigned> StackIdIndices;
10511 do {
10512 uint64_t StackId = 0;
10513 if (parseUInt64(StackId))
10514 return true;
10515 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10516 } while (EatIfPresent(lltok::comma));
10517
10518 if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10519 return true;
10520
10521 MIBs.push_back({(AllocationType)AllocType, StackIdIndices});
10522
10523 if (parseToken(lltok::rparen, "expected ')' in memprof"))
10524 return true;
10525 } while (EatIfPresent(lltok::comma));
10526
10527 if (parseToken(lltok::rparen, "expected ')' in memprof"))
10528 return true;
10529
10530 return false;
10531 }
10532
10533 /// AllocType
10534 /// := ('none'|'notcold'|'cold'|'hot')
parseAllocType(uint8_t & AllocType)10535 bool LLParser::parseAllocType(uint8_t &AllocType) {
10536 switch (Lex.getKind()) {
10537 case lltok::kw_none:
10538 AllocType = (uint8_t)AllocationType::None;
10539 break;
10540 case lltok::kw_notcold:
10541 AllocType = (uint8_t)AllocationType::NotCold;
10542 break;
10543 case lltok::kw_cold:
10544 AllocType = (uint8_t)AllocationType::Cold;
10545 break;
10546 case lltok::kw_hot:
10547 AllocType = (uint8_t)AllocationType::Hot;
10548 break;
10549 default:
10550 return error(Lex.getLoc(), "invalid alloc type");
10551 }
10552 Lex.Lex();
10553 return false;
10554 }
10555
10556 /// OptionalCallsites
10557 /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
10558 /// Callsite ::= '(' 'callee' ':' GVReference
10559 /// ',' 'clones' ':' '(' Version [',' Version]* ')'
10560 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10561 /// Version ::= UInt32
10562 /// StackId ::= UInt64
parseOptionalCallsites(std::vector<CallsiteInfo> & Callsites)10563 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
10564 assert(Lex.getKind() == lltok::kw_callsites);
10565 Lex.Lex();
10566
10567 if (parseToken(lltok::colon, "expected ':' in callsites") ||
10568 parseToken(lltok::lparen, "expected '(' in callsites"))
10569 return true;
10570
10571 IdToIndexMapType IdToIndexMap;
10572 // parse each callsite
10573 do {
10574 if (parseToken(lltok::lparen, "expected '(' in callsite") ||
10575 parseToken(lltok::kw_callee, "expected 'callee' in callsite") ||
10576 parseToken(lltok::colon, "expected ':'"))
10577 return true;
10578
10579 ValueInfo VI;
10580 unsigned GVId = 0;
10581 LocTy Loc = Lex.getLoc();
10582 if (!EatIfPresent(lltok::kw_null)) {
10583 if (parseGVReference(VI, GVId))
10584 return true;
10585 }
10586
10587 if (parseToken(lltok::comma, "expected ',' in callsite") ||
10588 parseToken(lltok::kw_clones, "expected 'clones' in callsite") ||
10589 parseToken(lltok::colon, "expected ':'") ||
10590 parseToken(lltok::lparen, "expected '(' in clones"))
10591 return true;
10592
10593 SmallVector<unsigned> Clones;
10594 do {
10595 unsigned V = 0;
10596 if (parseUInt32(V))
10597 return true;
10598 Clones.push_back(V);
10599 } while (EatIfPresent(lltok::comma));
10600
10601 if (parseToken(lltok::rparen, "expected ')' in clones") ||
10602 parseToken(lltok::comma, "expected ',' in callsite") ||
10603 parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") ||
10604 parseToken(lltok::colon, "expected ':'") ||
10605 parseToken(lltok::lparen, "expected '(' in stackIds"))
10606 return true;
10607
10608 SmallVector<unsigned> StackIdIndices;
10609 do {
10610 uint64_t StackId = 0;
10611 if (parseUInt64(StackId))
10612 return true;
10613 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10614 } while (EatIfPresent(lltok::comma));
10615
10616 if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10617 return true;
10618
10619 // Keep track of the Callsites array index needing a forward reference.
10620 // We will save the location of the ValueInfo needing an update, but
10621 // can only do so once the SmallVector is finalized.
10622 if (VI.getRef() == FwdVIRef)
10623 IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc));
10624 Callsites.push_back({VI, Clones, StackIdIndices});
10625
10626 if (parseToken(lltok::rparen, "expected ')' in callsite"))
10627 return true;
10628 } while (EatIfPresent(lltok::comma));
10629
10630 // Now that the Callsites vector is finalized, it is safe to save the
10631 // locations of any forward GV references that need updating later.
10632 for (auto I : IdToIndexMap) {
10633 auto &Infos = ForwardRefValueInfos[I.first];
10634 for (auto P : I.second) {
10635 assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
10636 "Forward referenced ValueInfo expected to be empty");
10637 Infos.emplace_back(&Callsites[P.first].Callee, P.second);
10638 }
10639 }
10640
10641 if (parseToken(lltok::rparen, "expected ')' in callsites"))
10642 return true;
10643
10644 return false;
10645 }
10646