1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_ddb.h"
34 #include "opt_ktrace.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_stack.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/conf.h>
42 #include <sys/elf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/ipc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/loginclass.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/shm.h>
66 #include <sys/smp.h>
67 #include <sys/stack.h>
68 #include <sys/stat.h>
69 #include <sys/dtrace_bsd.h>
70 #include <sys/sysctl.h>
71 #include <sys/filedesc.h>
72 #include <sys/tty.h>
73 #include <sys/signalvar.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/user.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #ifdef KTRACE
80 #include <sys/ktrace.h>
81 #endif
82
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_radix.h>
96 #include <vm/uma.h>
97
98 #include <fs/devfs/devfs.h>
99
100 #ifdef COMPAT_FREEBSD32
101 #include <compat/freebsd32/freebsd32.h>
102 #include <compat/freebsd32/freebsd32_util.h>
103 #endif
104
105 SDT_PROVIDER_DEFINE(proc);
106
107 MALLOC_DEFINE(M_SESSION, "session", "session header");
108 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
109 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
110
111 static void doenterpgrp(struct proc *, struct pgrp *);
112 static void orphanpg(struct pgrp *pg);
113 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
115 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
116 int preferthread);
117 static void pgdelete(struct pgrp *);
118 static int pgrp_init(void *mem, int size, int flags);
119 static int proc_ctor(void *mem, int size, void *arg, int flags);
120 static void proc_dtor(void *mem, int size, void *arg);
121 static int proc_init(void *mem, int size, int flags);
122 static void proc_fini(void *mem, int size);
123 static void pargs_free(struct pargs *pa);
124
125 /*
126 * Other process lists
127 */
128 struct pidhashhead *pidhashtbl = NULL;
129 struct sx *pidhashtbl_lock;
130 u_long pidhash;
131 u_long pidhashlock;
132 struct pgrphashhead *pgrphashtbl;
133 u_long pgrphash;
134 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
135 struct sx __exclusive_cache_line allproc_lock;
136 struct sx __exclusive_cache_line proctree_lock;
137 struct mtx __exclusive_cache_line ppeers_lock;
138 struct mtx __exclusive_cache_line procid_lock;
139 uma_zone_t proc_zone;
140 uma_zone_t pgrp_zone;
141
142 /*
143 * The offset of various fields in struct proc and struct thread.
144 * These are used by kernel debuggers to enumerate kernel threads and
145 * processes.
146 */
147 const int proc_off_p_pid = offsetof(struct proc, p_pid);
148 const int proc_off_p_comm = offsetof(struct proc, p_comm);
149 const int proc_off_p_list = offsetof(struct proc, p_list);
150 const int proc_off_p_hash = offsetof(struct proc, p_hash);
151 const int proc_off_p_threads = offsetof(struct proc, p_threads);
152 const int thread_off_td_tid = offsetof(struct thread, td_tid);
153 const int thread_off_td_name = offsetof(struct thread, td_name);
154 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
155 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
156 const int thread_off_td_plist = offsetof(struct thread, td_plist);
157
158 EVENTHANDLER_LIST_DEFINE(process_ctor);
159 EVENTHANDLER_LIST_DEFINE(process_dtor);
160 EVENTHANDLER_LIST_DEFINE(process_init);
161 EVENTHANDLER_LIST_DEFINE(process_fini);
162 EVENTHANDLER_LIST_DEFINE(process_exit);
163 EVENTHANDLER_LIST_DEFINE(process_fork);
164 EVENTHANDLER_LIST_DEFINE(process_exec);
165
166 int kstack_pages = KSTACK_PAGES;
167 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168 &kstack_pages, 0,
169 "Kernel stack size in pages");
170 static int vmmap_skip_res_cnt = 0;
171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
172 &vmmap_skip_res_cnt, 0,
173 "Skip calculation of the pages resident count in kern.proc.vmmap");
174
175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
176 #ifdef COMPAT_FREEBSD32
177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
178 #endif
179
180 /*
181 * Initialize global process hashing structures.
182 */
183 void
procinit(void)184 procinit(void)
185 {
186 u_long i;
187
188 sx_init(&allproc_lock, "allproc");
189 sx_init(&proctree_lock, "proctree");
190 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
191 mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
192 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
193 pidhashlock = (pidhash + 1) / 64;
194 if (pidhashlock > 0)
195 pidhashlock--;
196 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
197 M_PROC, M_WAITOK | M_ZERO);
198 for (i = 0; i < pidhashlock + 1; i++)
199 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
200 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
201 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
202 proc_ctor, proc_dtor, proc_init, proc_fini,
203 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
205 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 uihashinit();
207 }
208
209 /*
210 * Prepare a proc for use.
211 */
212 static int
proc_ctor(void * mem,int size,void * arg,int flags)213 proc_ctor(void *mem, int size, void *arg, int flags)
214 {
215 struct proc *p;
216 struct thread *td;
217
218 p = (struct proc *)mem;
219 #ifdef KDTRACE_HOOKS
220 kdtrace_proc_ctor(p);
221 #endif
222 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
223 td = FIRST_THREAD_IN_PROC(p);
224 if (td != NULL) {
225 /* Make sure all thread constructors are executed */
226 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
227 }
228 return (0);
229 }
230
231 /*
232 * Reclaim a proc after use.
233 */
234 static void
proc_dtor(void * mem,int size,void * arg)235 proc_dtor(void *mem, int size, void *arg)
236 {
237 struct proc *p;
238 struct thread *td;
239
240 p = mem;
241 td = FIRST_THREAD_IN_PROC(p);
242 if (td != NULL) {
243 KASSERT(p->p_numthreads == 1,
244 ("too many threads in exiting process"));
245
246 /* Free all OSD associated to this thread. */
247 osd_thread_exit(td);
248 ast_kclear(td);
249
250 /* Make sure all thread destructors are executed */
251 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
252 }
253 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
254 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
255 #ifdef KDTRACE_HOOKS
256 kdtrace_proc_dtor(p);
257 #endif
258 KASSERT(p->p_ksi == NULL || !KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
259 }
260
261 /*
262 * Initialize type-stable parts of a proc (when newly created).
263 */
264 static int
proc_init(void * mem,int size,int flags)265 proc_init(void *mem, int size, int flags)
266 {
267 struct proc *p;
268
269 p = (struct proc *)mem;
270 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
271 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
272 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
273 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
274 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
275 cv_init(&p->p_pwait, "ppwait");
276 TAILQ_INIT(&p->p_threads); /* all threads in proc */
277 EVENTHANDLER_DIRECT_INVOKE(process_init, p);
278 p->p_stats = pstats_alloc();
279 p->p_pgrp = NULL;
280 TAILQ_INIT(&p->p_kqtim_stop);
281 STAILQ_INIT(&p->p_ktr);
282 return (0);
283 }
284
285 /*
286 * UMA should ensure that this function is never called.
287 * Freeing a proc structure would violate type stability.
288 */
289 static void
proc_fini(void * mem,int size)290 proc_fini(void *mem, int size)
291 {
292 #ifdef notnow
293 struct proc *p;
294
295 p = (struct proc *)mem;
296 EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
297 pstats_free(p->p_stats);
298 thread_free(FIRST_THREAD_IN_PROC(p));
299 mtx_destroy(&p->p_mtx);
300 if (p->p_ksi != NULL)
301 ksiginfo_free(p->p_ksi);
302 #else
303 panic("proc reclaimed");
304 #endif
305 }
306
307 static int
pgrp_init(void * mem,int size,int flags)308 pgrp_init(void *mem, int size, int flags)
309 {
310 struct pgrp *pg;
311
312 pg = mem;
313 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
314 sx_init(&pg->pg_killsx, "killpg racer");
315 return (0);
316 }
317
318 /*
319 * PID space management.
320 *
321 * These bitmaps are used by fork_findpid.
322 */
323 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
324 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
325 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
326 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
327
328 static bitstr_t *proc_id_array[] = {
329 proc_id_pidmap,
330 proc_id_grpidmap,
331 proc_id_sessidmap,
332 proc_id_reapmap,
333 };
334
335 void
proc_id_set(int type,pid_t id)336 proc_id_set(int type, pid_t id)
337 {
338
339 KASSERT(type >= 0 && type < nitems(proc_id_array),
340 ("invalid type %d\n", type));
341 mtx_lock(&procid_lock);
342 KASSERT(bit_test(proc_id_array[type], id) == 0,
343 ("bit %d already set in %d\n", id, type));
344 bit_set(proc_id_array[type], id);
345 mtx_unlock(&procid_lock);
346 }
347
348 void
proc_id_set_cond(int type,pid_t id)349 proc_id_set_cond(int type, pid_t id)
350 {
351
352 KASSERT(type >= 0 && type < nitems(proc_id_array),
353 ("invalid type %d\n", type));
354 if (bit_test(proc_id_array[type], id))
355 return;
356 mtx_lock(&procid_lock);
357 bit_set(proc_id_array[type], id);
358 mtx_unlock(&procid_lock);
359 }
360
361 void
proc_id_clear(int type,pid_t id)362 proc_id_clear(int type, pid_t id)
363 {
364
365 KASSERT(type >= 0 && type < nitems(proc_id_array),
366 ("invalid type %d\n", type));
367 mtx_lock(&procid_lock);
368 KASSERT(bit_test(proc_id_array[type], id) != 0,
369 ("bit %d not set in %d\n", id, type));
370 bit_clear(proc_id_array[type], id);
371 mtx_unlock(&procid_lock);
372 }
373
374 /*
375 * Is p an inferior of the current process?
376 */
377 int
inferior(struct proc * p)378 inferior(struct proc *p)
379 {
380
381 sx_assert(&proctree_lock, SX_LOCKED);
382 PROC_LOCK_ASSERT(p, MA_OWNED);
383 for (; p != curproc; p = proc_realparent(p)) {
384 if (p->p_pid == 0)
385 return (0);
386 }
387 return (1);
388 }
389
390 /*
391 * Shared lock all the pid hash lists.
392 */
393 void
pidhash_slockall(void)394 pidhash_slockall(void)
395 {
396 u_long i;
397
398 for (i = 0; i < pidhashlock + 1; i++)
399 sx_slock(&pidhashtbl_lock[i]);
400 }
401
402 /*
403 * Shared unlock all the pid hash lists.
404 */
405 void
pidhash_sunlockall(void)406 pidhash_sunlockall(void)
407 {
408 u_long i;
409
410 for (i = 0; i < pidhashlock + 1; i++)
411 sx_sunlock(&pidhashtbl_lock[i]);
412 }
413
414 /*
415 * Similar to pfind(), this function locate a process by number.
416 */
417 struct proc *
pfind_any_locked(pid_t pid)418 pfind_any_locked(pid_t pid)
419 {
420 struct proc *p;
421
422 sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
423 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
424 if (p->p_pid == pid) {
425 PROC_LOCK(p);
426 if (p->p_state == PRS_NEW) {
427 PROC_UNLOCK(p);
428 p = NULL;
429 }
430 break;
431 }
432 }
433 return (p);
434 }
435
436 /*
437 * Locate a process by number.
438 *
439 * By not returning processes in the PRS_NEW state, we allow callers to avoid
440 * testing for that condition to avoid dereferencing p_ucred, et al.
441 */
442 static __always_inline struct proc *
_pfind(pid_t pid,bool zombie)443 _pfind(pid_t pid, bool zombie)
444 {
445 struct proc *p;
446
447 p = curproc;
448 if (p->p_pid == pid) {
449 PROC_LOCK(p);
450 return (p);
451 }
452 sx_slock(PIDHASHLOCK(pid));
453 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
454 if (p->p_pid == pid) {
455 PROC_LOCK(p);
456 if (p->p_state == PRS_NEW ||
457 (!zombie && p->p_state == PRS_ZOMBIE)) {
458 PROC_UNLOCK(p);
459 p = NULL;
460 }
461 break;
462 }
463 }
464 sx_sunlock(PIDHASHLOCK(pid));
465 return (p);
466 }
467
468 struct proc *
pfind(pid_t pid)469 pfind(pid_t pid)
470 {
471
472 return (_pfind(pid, false));
473 }
474
475 /*
476 * Same as pfind but allow zombies.
477 */
478 struct proc *
pfind_any(pid_t pid)479 pfind_any(pid_t pid)
480 {
481
482 return (_pfind(pid, true));
483 }
484
485 /*
486 * Locate a process group by number.
487 * The caller must hold proctree_lock.
488 */
489 struct pgrp *
pgfind(pid_t pgid)490 pgfind(pid_t pgid)
491 {
492 struct pgrp *pgrp;
493
494 sx_assert(&proctree_lock, SX_LOCKED);
495
496 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
497 if (pgrp->pg_id == pgid) {
498 PGRP_LOCK(pgrp);
499 return (pgrp);
500 }
501 }
502 return (NULL);
503 }
504
505 /*
506 * Locate process and do additional manipulations, depending on flags.
507 */
508 int
pget(pid_t pid,int flags,struct proc ** pp)509 pget(pid_t pid, int flags, struct proc **pp)
510 {
511 struct proc *p;
512 struct thread *td1;
513 int error;
514
515 p = curproc;
516 if (p->p_pid == pid) {
517 PROC_LOCK(p);
518 } else {
519 p = NULL;
520 if (pid <= PID_MAX) {
521 if ((flags & PGET_NOTWEXIT) == 0)
522 p = pfind_any(pid);
523 else
524 p = pfind(pid);
525 } else if ((flags & PGET_NOTID) == 0) {
526 td1 = tdfind(pid, -1);
527 if (td1 != NULL)
528 p = td1->td_proc;
529 }
530 if (p == NULL)
531 return (ESRCH);
532 if ((flags & PGET_CANSEE) != 0) {
533 error = p_cansee(curthread, p);
534 if (error != 0)
535 goto errout;
536 }
537 }
538 if ((flags & PGET_CANDEBUG) != 0) {
539 error = p_candebug(curthread, p);
540 if (error != 0)
541 goto errout;
542 }
543 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
544 error = EPERM;
545 goto errout;
546 }
547 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
548 error = ESRCH;
549 goto errout;
550 }
551 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
552 /*
553 * XXXRW: Not clear ESRCH is the right error during proc
554 * execve().
555 */
556 error = ESRCH;
557 goto errout;
558 }
559 if ((flags & PGET_HOLD) != 0) {
560 _PHOLD(p);
561 PROC_UNLOCK(p);
562 }
563 *pp = p;
564 return (0);
565 errout:
566 PROC_UNLOCK(p);
567 return (error);
568 }
569
570 /*
571 * Create a new process group.
572 * pgid must be equal to the pid of p.
573 * Begin a new session if required.
574 */
575 int
enterpgrp(struct proc * p,pid_t pgid,struct pgrp * pgrp,struct session * sess)576 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
577 {
578 struct pgrp *old_pgrp;
579
580 sx_assert(&proctree_lock, SX_XLOCKED);
581
582 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
583 KASSERT(p->p_pid == pgid,
584 ("enterpgrp: new pgrp and pid != pgid"));
585 KASSERT(pgfind(pgid) == NULL,
586 ("enterpgrp: pgrp with pgid exists"));
587 KASSERT(!SESS_LEADER(p),
588 ("enterpgrp: session leader attempted setpgrp"));
589
590 old_pgrp = p->p_pgrp;
591 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
592 sx_xunlock(&proctree_lock);
593 sx_xlock(&old_pgrp->pg_killsx);
594 sx_xunlock(&old_pgrp->pg_killsx);
595 return (ERESTART);
596 }
597 MPASS(old_pgrp == p->p_pgrp);
598
599 if (sess != NULL) {
600 /*
601 * new session
602 */
603 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
604 PROC_LOCK(p);
605 p->p_flag &= ~P_CONTROLT;
606 PROC_UNLOCK(p);
607 PGRP_LOCK(pgrp);
608 sess->s_leader = p;
609 sess->s_sid = p->p_pid;
610 proc_id_set(PROC_ID_SESSION, p->p_pid);
611 refcount_init(&sess->s_count, 1);
612 sess->s_ttyvp = NULL;
613 sess->s_ttydp = NULL;
614 sess->s_ttyp = NULL;
615 bcopy(p->p_session->s_login, sess->s_login,
616 sizeof(sess->s_login));
617 pgrp->pg_session = sess;
618 KASSERT(p == curproc,
619 ("enterpgrp: mksession and p != curproc"));
620 } else {
621 pgrp->pg_session = p->p_session;
622 sess_hold(pgrp->pg_session);
623 PGRP_LOCK(pgrp);
624 }
625 pgrp->pg_id = pgid;
626 proc_id_set(PROC_ID_GROUP, p->p_pid);
627 LIST_INIT(&pgrp->pg_members);
628 pgrp->pg_flags = 0;
629
630 /*
631 * As we have an exclusive lock of proctree_lock,
632 * this should not deadlock.
633 */
634 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
635 SLIST_INIT(&pgrp->pg_sigiolst);
636 PGRP_UNLOCK(pgrp);
637
638 doenterpgrp(p, pgrp);
639
640 sx_xunlock(&old_pgrp->pg_killsx);
641 return (0);
642 }
643
644 /*
645 * Move p to an existing process group
646 */
647 int
enterthispgrp(struct proc * p,struct pgrp * pgrp)648 enterthispgrp(struct proc *p, struct pgrp *pgrp)
649 {
650 struct pgrp *old_pgrp;
651
652 sx_assert(&proctree_lock, SX_XLOCKED);
653 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
654 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
655 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
656 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
657 KASSERT(pgrp->pg_session == p->p_session,
658 ("%s: pgrp's session %p, p->p_session %p proc %p\n",
659 __func__, pgrp->pg_session, p->p_session, p));
660 KASSERT(pgrp != p->p_pgrp,
661 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
662
663 old_pgrp = p->p_pgrp;
664 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
665 sx_xunlock(&proctree_lock);
666 sx_xlock(&old_pgrp->pg_killsx);
667 sx_xunlock(&old_pgrp->pg_killsx);
668 return (ERESTART);
669 }
670 MPASS(old_pgrp == p->p_pgrp);
671 if (!sx_try_xlock(&pgrp->pg_killsx)) {
672 sx_xunlock(&old_pgrp->pg_killsx);
673 sx_xunlock(&proctree_lock);
674 sx_xlock(&pgrp->pg_killsx);
675 sx_xunlock(&pgrp->pg_killsx);
676 return (ERESTART);
677 }
678
679 doenterpgrp(p, pgrp);
680
681 sx_xunlock(&pgrp->pg_killsx);
682 sx_xunlock(&old_pgrp->pg_killsx);
683 return (0);
684 }
685
686 /*
687 * If true, any child of q which belongs to group pgrp, qualifies the
688 * process group pgrp as not orphaned.
689 */
690 static bool
isjobproc(struct proc * q,struct pgrp * pgrp)691 isjobproc(struct proc *q, struct pgrp *pgrp)
692 {
693 sx_assert(&proctree_lock, SX_LOCKED);
694
695 return (q->p_pgrp != pgrp &&
696 q->p_pgrp->pg_session == pgrp->pg_session);
697 }
698
699 static struct proc *
jobc_reaper(struct proc * p)700 jobc_reaper(struct proc *p)
701 {
702 struct proc *pp;
703
704 sx_assert(&proctree_lock, SA_LOCKED);
705
706 for (pp = p;;) {
707 pp = pp->p_reaper;
708 if (pp->p_reaper == pp ||
709 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
710 return (pp);
711 }
712 }
713
714 static struct proc *
jobc_parent(struct proc * p,struct proc * p_exiting)715 jobc_parent(struct proc *p, struct proc *p_exiting)
716 {
717 struct proc *pp;
718
719 sx_assert(&proctree_lock, SA_LOCKED);
720
721 pp = proc_realparent(p);
722 if (pp->p_pptr == NULL || pp == p_exiting ||
723 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
724 return (pp);
725 return (jobc_reaper(pp));
726 }
727
728 int
pgrp_calc_jobc(struct pgrp * pgrp)729 pgrp_calc_jobc(struct pgrp *pgrp)
730 {
731 struct proc *q;
732 int cnt;
733
734 #ifdef INVARIANTS
735 if (!mtx_owned(&pgrp->pg_mtx))
736 sx_assert(&proctree_lock, SA_LOCKED);
737 #endif
738
739 cnt = 0;
740 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
741 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
742 q->p_pptr == NULL)
743 continue;
744 if (isjobproc(jobc_parent(q, NULL), pgrp))
745 cnt++;
746 }
747 return (cnt);
748 }
749
750 /*
751 * Move p to a process group
752 */
753 static void
doenterpgrp(struct proc * p,struct pgrp * pgrp)754 doenterpgrp(struct proc *p, struct pgrp *pgrp)
755 {
756 struct pgrp *savepgrp;
757 struct proc *pp;
758
759 sx_assert(&proctree_lock, SX_XLOCKED);
760 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
761 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
762 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
763 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
764
765 savepgrp = p->p_pgrp;
766 pp = jobc_parent(p, NULL);
767
768 PGRP_LOCK(pgrp);
769 PGRP_LOCK(savepgrp);
770 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
771 orphanpg(savepgrp);
772 PROC_LOCK(p);
773 LIST_REMOVE(p, p_pglist);
774 p->p_pgrp = pgrp;
775 PROC_UNLOCK(p);
776 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
777 if (isjobproc(pp, pgrp))
778 pgrp->pg_flags &= ~PGRP_ORPHANED;
779 PGRP_UNLOCK(savepgrp);
780 PGRP_UNLOCK(pgrp);
781 if (LIST_EMPTY(&savepgrp->pg_members))
782 pgdelete(savepgrp);
783 }
784
785 /*
786 * remove process from process group
787 */
788 int
leavepgrp(struct proc * p)789 leavepgrp(struct proc *p)
790 {
791 struct pgrp *savepgrp;
792
793 sx_assert(&proctree_lock, SX_XLOCKED);
794 savepgrp = p->p_pgrp;
795 PGRP_LOCK(savepgrp);
796 PROC_LOCK(p);
797 LIST_REMOVE(p, p_pglist);
798 p->p_pgrp = NULL;
799 PROC_UNLOCK(p);
800 PGRP_UNLOCK(savepgrp);
801 if (LIST_EMPTY(&savepgrp->pg_members))
802 pgdelete(savepgrp);
803 return (0);
804 }
805
806 /*
807 * delete a process group
808 */
809 static void
pgdelete(struct pgrp * pgrp)810 pgdelete(struct pgrp *pgrp)
811 {
812 struct session *savesess;
813 struct tty *tp;
814
815 sx_assert(&proctree_lock, SX_XLOCKED);
816 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
817 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
818
819 /*
820 * Reset any sigio structures pointing to us as a result of
821 * F_SETOWN with our pgid. The proctree lock ensures that
822 * new sigio structures will not be added after this point.
823 */
824 funsetownlst(&pgrp->pg_sigiolst);
825
826 PGRP_LOCK(pgrp);
827 tp = pgrp->pg_session->s_ttyp;
828 LIST_REMOVE(pgrp, pg_hash);
829 savesess = pgrp->pg_session;
830 PGRP_UNLOCK(pgrp);
831
832 /* Remove the reference to the pgrp before deallocating it. */
833 if (tp != NULL) {
834 tty_lock(tp);
835 tty_rel_pgrp(tp, pgrp);
836 }
837
838 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
839 uma_zfree(pgrp_zone, pgrp);
840 sess_release(savesess);
841 }
842
843
844 static void
fixjobc_kill(struct proc * p)845 fixjobc_kill(struct proc *p)
846 {
847 struct proc *q;
848 struct pgrp *pgrp;
849
850 sx_assert(&proctree_lock, SX_LOCKED);
851 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
852 pgrp = p->p_pgrp;
853 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
854 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
855
856 /*
857 * p no longer affects process group orphanage for children.
858 * It is marked by the flag because p is only physically
859 * removed from its process group on wait(2).
860 */
861 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
862 p->p_treeflag |= P_TREE_GRPEXITED;
863
864 /*
865 * Check if exiting p orphans its own group.
866 */
867 pgrp = p->p_pgrp;
868 if (isjobproc(jobc_parent(p, NULL), pgrp)) {
869 PGRP_LOCK(pgrp);
870 if (pgrp_calc_jobc(pgrp) == 0)
871 orphanpg(pgrp);
872 PGRP_UNLOCK(pgrp);
873 }
874
875 /*
876 * Check this process' children to see whether they qualify
877 * their process groups after reparenting to reaper.
878 */
879 LIST_FOREACH(q, &p->p_children, p_sibling) {
880 pgrp = q->p_pgrp;
881 PGRP_LOCK(pgrp);
882 if (pgrp_calc_jobc(pgrp) == 0) {
883 /*
884 * We want to handle exactly the children that
885 * has p as realparent. Then, when calculating
886 * jobc_parent for children, we should ignore
887 * P_TREE_GRPEXITED flag already set on p.
888 */
889 if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
890 orphanpg(pgrp);
891 } else
892 pgrp->pg_flags &= ~PGRP_ORPHANED;
893 PGRP_UNLOCK(pgrp);
894 }
895 LIST_FOREACH(q, &p->p_orphans, p_orphan) {
896 pgrp = q->p_pgrp;
897 PGRP_LOCK(pgrp);
898 if (pgrp_calc_jobc(pgrp) == 0) {
899 if (isjobproc(p, pgrp))
900 orphanpg(pgrp);
901 } else
902 pgrp->pg_flags &= ~PGRP_ORPHANED;
903 PGRP_UNLOCK(pgrp);
904 }
905 }
906
907 void
killjobc(void)908 killjobc(void)
909 {
910 struct session *sp;
911 struct tty *tp;
912 struct proc *p;
913 struct vnode *ttyvp;
914
915 p = curproc;
916 MPASS(p->p_flag & P_WEXIT);
917 sx_assert(&proctree_lock, SX_LOCKED);
918
919 if (SESS_LEADER(p)) {
920 sp = p->p_session;
921
922 /*
923 * s_ttyp is not zero'd; we use this to indicate that
924 * the session once had a controlling terminal. (for
925 * logging and informational purposes)
926 */
927 SESS_LOCK(sp);
928 ttyvp = sp->s_ttyvp;
929 tp = sp->s_ttyp;
930 sp->s_ttyvp = NULL;
931 sp->s_ttydp = NULL;
932 sp->s_leader = NULL;
933 SESS_UNLOCK(sp);
934
935 /*
936 * Signal foreground pgrp and revoke access to
937 * controlling terminal if it has not been revoked
938 * already.
939 *
940 * Because the TTY may have been revoked in the mean
941 * time and could already have a new session associated
942 * with it, make sure we don't send a SIGHUP to a
943 * foreground process group that does not belong to this
944 * session.
945 */
946
947 if (tp != NULL) {
948 tty_lock(tp);
949 if (tp->t_session == sp)
950 tty_signal_pgrp(tp, SIGHUP);
951 tty_unlock(tp);
952 }
953
954 if (ttyvp != NULL) {
955 sx_xunlock(&proctree_lock);
956 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
957 VOP_REVOKE(ttyvp, REVOKEALL);
958 VOP_UNLOCK(ttyvp);
959 }
960 devfs_ctty_unref(ttyvp);
961 sx_xlock(&proctree_lock);
962 }
963 }
964 fixjobc_kill(p);
965 }
966
967 /*
968 * A process group has become orphaned, mark it as such for signal
969 * delivery code. If there are any stopped processes in the group,
970 * hang-up all process in that group.
971 */
972 static void
orphanpg(struct pgrp * pg)973 orphanpg(struct pgrp *pg)
974 {
975 struct proc *p;
976
977 PGRP_LOCK_ASSERT(pg, MA_OWNED);
978
979 pg->pg_flags |= PGRP_ORPHANED;
980
981 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
982 PROC_LOCK(p);
983 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
984 PROC_UNLOCK(p);
985 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
986 PROC_LOCK(p);
987 kern_psignal(p, SIGHUP);
988 kern_psignal(p, SIGCONT);
989 PROC_UNLOCK(p);
990 }
991 return;
992 }
993 PROC_UNLOCK(p);
994 }
995 }
996
997 void
sess_hold(struct session * s)998 sess_hold(struct session *s)
999 {
1000
1001 refcount_acquire(&s->s_count);
1002 }
1003
1004 void
sess_release(struct session * s)1005 sess_release(struct session *s)
1006 {
1007
1008 if (refcount_release(&s->s_count)) {
1009 if (s->s_ttyp != NULL) {
1010 tty_lock(s->s_ttyp);
1011 tty_rel_sess(s->s_ttyp, s);
1012 }
1013 proc_id_clear(PROC_ID_SESSION, s->s_sid);
1014 mtx_destroy(&s->s_mtx);
1015 free(s, M_SESSION);
1016 }
1017 }
1018
1019 #ifdef DDB
1020
1021 static void
db_print_pgrp_one(struct pgrp * pgrp,struct proc * p)1022 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1023 {
1024 db_printf(
1025 " pid %d at %p pr %d pgrp %p e %d jc %d\n",
1026 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1027 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1028 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1029 }
1030
DB_SHOW_COMMAND_FLAGS(pgrpdump,pgrpdump,DB_CMD_MEMSAFE)1031 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1032 {
1033 struct pgrp *pgrp;
1034 struct proc *p;
1035 int i;
1036
1037 for (i = 0; i <= pgrphash; i++) {
1038 if (!LIST_EMPTY(&pgrphashtbl[i])) {
1039 db_printf("indx %d\n", i);
1040 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1041 db_printf(
1042 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1043 pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1044 pgrp->pg_session->s_count,
1045 LIST_FIRST(&pgrp->pg_members));
1046 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1047 db_print_pgrp_one(pgrp, p);
1048 }
1049 }
1050 }
1051 }
1052 #endif /* DDB */
1053
1054 /*
1055 * Calculate the kinfo_proc members which contain process-wide
1056 * informations.
1057 * Must be called with the target process locked.
1058 */
1059 static void
fill_kinfo_aggregate(struct proc * p,struct kinfo_proc * kp)1060 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1061 {
1062 struct thread *td;
1063
1064 PROC_LOCK_ASSERT(p, MA_OWNED);
1065
1066 kp->ki_estcpu = 0;
1067 kp->ki_pctcpu = 0;
1068 FOREACH_THREAD_IN_PROC(p, td) {
1069 thread_lock(td);
1070 kp->ki_pctcpu += sched_pctcpu(td);
1071 kp->ki_estcpu += sched_estcpu(td);
1072 thread_unlock(td);
1073 }
1074 }
1075
1076 /*
1077 * Fill in any information that is common to all threads in the process.
1078 * Must be called with the target process locked.
1079 */
1080 static void
fill_kinfo_proc_only(struct proc * p,struct kinfo_proc * kp)1081 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1082 {
1083 struct thread *td0;
1084 struct ucred *cred;
1085 struct sigacts *ps;
1086 struct timeval boottime;
1087
1088 PROC_LOCK_ASSERT(p, MA_OWNED);
1089
1090 kp->ki_structsize = sizeof(*kp);
1091 kp->ki_paddr = p;
1092 kp->ki_addr =/* p->p_addr; */0; /* XXX */
1093 kp->ki_args = p->p_args;
1094 kp->ki_textvp = p->p_textvp;
1095 #ifdef KTRACE
1096 kp->ki_tracep = ktr_get_tracevp(p, false);
1097 kp->ki_traceflag = p->p_traceflag;
1098 #endif
1099 kp->ki_fd = p->p_fd;
1100 kp->ki_pd = p->p_pd;
1101 kp->ki_vmspace = p->p_vmspace;
1102 kp->ki_flag = p->p_flag;
1103 kp->ki_flag2 = p->p_flag2;
1104 cred = p->p_ucred;
1105 if (cred) {
1106 kp->ki_uid = cred->cr_uid;
1107 kp->ki_ruid = cred->cr_ruid;
1108 kp->ki_svuid = cred->cr_svuid;
1109 kp->ki_cr_flags = 0;
1110 if (cred->cr_flags & CRED_FLAG_CAPMODE)
1111 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1112 /* XXX bde doesn't like KI_NGROUPS */
1113 if (1 + cred->cr_ngroups > KI_NGROUPS) {
1114 kp->ki_ngroups = KI_NGROUPS;
1115 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1116 } else
1117 kp->ki_ngroups = 1 + cred->cr_ngroups;
1118 kp->ki_groups[0] = cred->cr_gid;
1119 bcopy(cred->cr_groups, kp->ki_groups + 1,
1120 (kp->ki_ngroups - 1) * sizeof(gid_t));
1121 kp->ki_rgid = cred->cr_rgid;
1122 kp->ki_svgid = cred->cr_svgid;
1123 /* If jailed(cred), emulate the old P_JAILED flag. */
1124 if (jailed(cred)) {
1125 kp->ki_flag |= P_JAILED;
1126 /* If inside the jail, use 0 as a jail ID. */
1127 if (cred->cr_prison != curthread->td_ucred->cr_prison)
1128 kp->ki_jid = cred->cr_prison->pr_id;
1129 }
1130 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1131 sizeof(kp->ki_loginclass));
1132 }
1133 ps = p->p_sigacts;
1134 if (ps) {
1135 mtx_lock(&ps->ps_mtx);
1136 kp->ki_sigignore = ps->ps_sigignore;
1137 kp->ki_sigcatch = ps->ps_sigcatch;
1138 mtx_unlock(&ps->ps_mtx);
1139 }
1140 if (p->p_state != PRS_NEW &&
1141 p->p_state != PRS_ZOMBIE &&
1142 p->p_vmspace != NULL) {
1143 struct vmspace *vm = p->p_vmspace;
1144
1145 kp->ki_size = vm->vm_map.size;
1146 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1147 FOREACH_THREAD_IN_PROC(p, td0)
1148 kp->ki_rssize += td0->td_kstack_pages;
1149 kp->ki_swrss = vm->vm_swrss;
1150 kp->ki_tsize = vm->vm_tsize;
1151 kp->ki_dsize = vm->vm_dsize;
1152 kp->ki_ssize = vm->vm_ssize;
1153 } else if (p->p_state == PRS_ZOMBIE)
1154 kp->ki_stat = SZOMB;
1155 kp->ki_sflag = PS_INMEM;
1156 /* Calculate legacy swtime as seconds since 'swtick'. */
1157 kp->ki_swtime = (ticks - p->p_swtick) / hz;
1158 kp->ki_pid = p->p_pid;
1159 kp->ki_nice = p->p_nice;
1160 kp->ki_fibnum = p->p_fibnum;
1161 kp->ki_start = p->p_stats->p_start;
1162 getboottime(&boottime);
1163 timevaladd(&kp->ki_start, &boottime);
1164 PROC_STATLOCK(p);
1165 rufetch(p, &kp->ki_rusage);
1166 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1167 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1168 PROC_STATUNLOCK(p);
1169 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1170 /* Some callers want child times in a single value. */
1171 kp->ki_childtime = kp->ki_childstime;
1172 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1173
1174 FOREACH_THREAD_IN_PROC(p, td0)
1175 kp->ki_cow += td0->td_cow;
1176
1177 if (p->p_comm[0] != '\0')
1178 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1179 if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1180 p->p_sysent->sv_name[0] != '\0')
1181 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1182 kp->ki_siglist = p->p_siglist;
1183 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1184 kp->ki_acflag = p->p_acflag;
1185 kp->ki_lock = p->p_lock;
1186 if (p->p_pptr) {
1187 kp->ki_ppid = p->p_oppid;
1188 if (p->p_flag & P_TRACED)
1189 kp->ki_tracer = p->p_pptr->p_pid;
1190 }
1191 }
1192
1193 /*
1194 * Fill job-related process information.
1195 */
1196 static void
fill_kinfo_proc_pgrp(struct proc * p,struct kinfo_proc * kp)1197 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1198 {
1199 struct tty *tp;
1200 struct session *sp;
1201 struct pgrp *pgrp;
1202
1203 sx_assert(&proctree_lock, SA_LOCKED);
1204 PROC_LOCK_ASSERT(p, MA_OWNED);
1205
1206 pgrp = p->p_pgrp;
1207 if (pgrp == NULL)
1208 return;
1209
1210 kp->ki_pgid = pgrp->pg_id;
1211 kp->ki_jobc = pgrp_calc_jobc(pgrp);
1212
1213 sp = pgrp->pg_session;
1214 tp = NULL;
1215
1216 if (sp != NULL) {
1217 kp->ki_sid = sp->s_sid;
1218 SESS_LOCK(sp);
1219 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1220 if (sp->s_ttyvp)
1221 kp->ki_kiflag |= KI_CTTY;
1222 if (SESS_LEADER(p))
1223 kp->ki_kiflag |= KI_SLEADER;
1224 tp = sp->s_ttyp;
1225 SESS_UNLOCK(sp);
1226 }
1227
1228 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1229 kp->ki_tdev = tty_udev(tp);
1230 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1231 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1232 if (tp->t_session)
1233 kp->ki_tsid = tp->t_session->s_sid;
1234 } else {
1235 kp->ki_tdev = NODEV;
1236 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1237 }
1238 }
1239
1240 /*
1241 * Fill in information that is thread specific. Must be called with
1242 * target process locked. If 'preferthread' is set, overwrite certain
1243 * process-related fields that are maintained for both threads and
1244 * processes.
1245 */
1246 static void
fill_kinfo_thread(struct thread * td,struct kinfo_proc * kp,int preferthread)1247 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1248 {
1249 struct proc *p;
1250
1251 p = td->td_proc;
1252 kp->ki_tdaddr = td;
1253 PROC_LOCK_ASSERT(p, MA_OWNED);
1254
1255 if (preferthread)
1256 PROC_STATLOCK(p);
1257 thread_lock(td);
1258 if (td->td_wmesg != NULL)
1259 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1260 else
1261 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1262 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1263 sizeof(kp->ki_tdname)) {
1264 strlcpy(kp->ki_moretdname,
1265 td->td_name + sizeof(kp->ki_tdname) - 1,
1266 sizeof(kp->ki_moretdname));
1267 } else {
1268 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1269 }
1270 if (TD_ON_LOCK(td)) {
1271 kp->ki_kiflag |= KI_LOCKBLOCK;
1272 strlcpy(kp->ki_lockname, td->td_lockname,
1273 sizeof(kp->ki_lockname));
1274 } else {
1275 kp->ki_kiflag &= ~KI_LOCKBLOCK;
1276 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1277 }
1278
1279 if (p->p_state == PRS_NORMAL) { /* approximate. */
1280 if (TD_ON_RUNQ(td) ||
1281 TD_CAN_RUN(td) ||
1282 TD_IS_RUNNING(td)) {
1283 kp->ki_stat = SRUN;
1284 } else if (P_SHOULDSTOP(p)) {
1285 kp->ki_stat = SSTOP;
1286 } else if (TD_IS_SLEEPING(td)) {
1287 kp->ki_stat = SSLEEP;
1288 } else if (TD_ON_LOCK(td)) {
1289 kp->ki_stat = SLOCK;
1290 } else {
1291 kp->ki_stat = SWAIT;
1292 }
1293 } else if (p->p_state == PRS_ZOMBIE) {
1294 kp->ki_stat = SZOMB;
1295 } else {
1296 kp->ki_stat = SIDL;
1297 }
1298
1299 /* Things in the thread */
1300 kp->ki_wchan = td->td_wchan;
1301 kp->ki_pri.pri_level = td->td_priority;
1302 kp->ki_pri.pri_native = td->td_base_pri;
1303
1304 /*
1305 * Note: legacy fields; clamp at the old NOCPU value and/or
1306 * the maximum u_char CPU value.
1307 */
1308 if (td->td_lastcpu == NOCPU)
1309 kp->ki_lastcpu_old = NOCPU_OLD;
1310 else if (td->td_lastcpu > MAXCPU_OLD)
1311 kp->ki_lastcpu_old = MAXCPU_OLD;
1312 else
1313 kp->ki_lastcpu_old = td->td_lastcpu;
1314
1315 if (td->td_oncpu == NOCPU)
1316 kp->ki_oncpu_old = NOCPU_OLD;
1317 else if (td->td_oncpu > MAXCPU_OLD)
1318 kp->ki_oncpu_old = MAXCPU_OLD;
1319 else
1320 kp->ki_oncpu_old = td->td_oncpu;
1321
1322 kp->ki_lastcpu = td->td_lastcpu;
1323 kp->ki_oncpu = td->td_oncpu;
1324 kp->ki_tdflags = td->td_flags;
1325 kp->ki_tid = td->td_tid;
1326 kp->ki_numthreads = p->p_numthreads;
1327 kp->ki_pcb = td->td_pcb;
1328 kp->ki_kstack = (void *)td->td_kstack;
1329 kp->ki_slptime = (ticks - td->td_slptick) / hz;
1330 kp->ki_pri.pri_class = td->td_pri_class;
1331 kp->ki_pri.pri_user = td->td_user_pri;
1332
1333 if (preferthread) {
1334 rufetchtd(td, &kp->ki_rusage);
1335 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1336 kp->ki_pctcpu = sched_pctcpu(td);
1337 kp->ki_estcpu = sched_estcpu(td);
1338 kp->ki_cow = td->td_cow;
1339 }
1340
1341 /* We can't get this anymore but ps etc never used it anyway. */
1342 kp->ki_rqindex = 0;
1343
1344 if (preferthread)
1345 kp->ki_siglist = td->td_siglist;
1346 kp->ki_sigmask = td->td_sigmask;
1347 thread_unlock(td);
1348 if (preferthread)
1349 PROC_STATUNLOCK(p);
1350
1351 if ((td->td_pflags & TDP2_UEXTERR) != 0)
1352 kp->ki_uerrmsg = td->td_exterr_ptr;
1353 }
1354
1355 /*
1356 * Fill in a kinfo_proc structure for the specified process.
1357 * Must be called with the target process locked.
1358 */
1359 void
fill_kinfo_proc(struct proc * p,struct kinfo_proc * kp)1360 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1361 {
1362 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1363
1364 bzero(kp, sizeof(*kp));
1365
1366 fill_kinfo_proc_pgrp(p,kp);
1367 fill_kinfo_proc_only(p, kp);
1368 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1369 fill_kinfo_aggregate(p, kp);
1370 }
1371
1372 struct pstats *
pstats_alloc(void)1373 pstats_alloc(void)
1374 {
1375
1376 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1377 }
1378
1379 /*
1380 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1381 */
1382 void
pstats_fork(struct pstats * src,struct pstats * dst)1383 pstats_fork(struct pstats *src, struct pstats *dst)
1384 {
1385
1386 bzero(&dst->pstat_startzero,
1387 __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1388 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1389 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1390 }
1391
1392 void
pstats_free(struct pstats * ps)1393 pstats_free(struct pstats *ps)
1394 {
1395
1396 free(ps, M_SUBPROC);
1397 }
1398
1399 #ifdef COMPAT_FREEBSD32
1400
1401 /*
1402 * This function is typically used to copy out the kernel address, so
1403 * it can be replaced by assignment of zero.
1404 */
1405 static inline uint32_t
ptr32_trim(const void * ptr)1406 ptr32_trim(const void *ptr)
1407 {
1408 uintptr_t uptr;
1409
1410 uptr = (uintptr_t)ptr;
1411 return ((uptr > UINT_MAX) ? 0 : uptr);
1412 }
1413
1414 #define PTRTRIM_CP(src,dst,fld) \
1415 do { (dst).fld = ptr32_trim((src).fld); } while (0)
1416
1417 static void
freebsd32_kinfo_proc_out(const struct kinfo_proc * ki,struct kinfo_proc32 * ki32)1418 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1419 {
1420 int i;
1421
1422 bzero(ki32, sizeof(struct kinfo_proc32));
1423 ki32->ki_structsize = sizeof(struct kinfo_proc32);
1424 CP(*ki, *ki32, ki_layout);
1425 PTRTRIM_CP(*ki, *ki32, ki_args);
1426 PTRTRIM_CP(*ki, *ki32, ki_paddr);
1427 PTRTRIM_CP(*ki, *ki32, ki_addr);
1428 PTRTRIM_CP(*ki, *ki32, ki_tracep);
1429 PTRTRIM_CP(*ki, *ki32, ki_textvp);
1430 PTRTRIM_CP(*ki, *ki32, ki_fd);
1431 PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1432 PTRTRIM_CP(*ki, *ki32, ki_wchan);
1433 CP(*ki, *ki32, ki_pid);
1434 CP(*ki, *ki32, ki_ppid);
1435 CP(*ki, *ki32, ki_pgid);
1436 CP(*ki, *ki32, ki_tpgid);
1437 CP(*ki, *ki32, ki_sid);
1438 CP(*ki, *ki32, ki_tsid);
1439 CP(*ki, *ki32, ki_jobc);
1440 CP(*ki, *ki32, ki_tdev);
1441 CP(*ki, *ki32, ki_tdev_freebsd11);
1442 CP(*ki, *ki32, ki_siglist);
1443 CP(*ki, *ki32, ki_sigmask);
1444 CP(*ki, *ki32, ki_sigignore);
1445 CP(*ki, *ki32, ki_sigcatch);
1446 CP(*ki, *ki32, ki_uid);
1447 CP(*ki, *ki32, ki_ruid);
1448 CP(*ki, *ki32, ki_svuid);
1449 CP(*ki, *ki32, ki_rgid);
1450 CP(*ki, *ki32, ki_svgid);
1451 CP(*ki, *ki32, ki_ngroups);
1452 for (i = 0; i < KI_NGROUPS; i++)
1453 CP(*ki, *ki32, ki_groups[i]);
1454 CP(*ki, *ki32, ki_size);
1455 CP(*ki, *ki32, ki_rssize);
1456 CP(*ki, *ki32, ki_swrss);
1457 CP(*ki, *ki32, ki_tsize);
1458 CP(*ki, *ki32, ki_dsize);
1459 CP(*ki, *ki32, ki_ssize);
1460 CP(*ki, *ki32, ki_xstat);
1461 CP(*ki, *ki32, ki_acflag);
1462 CP(*ki, *ki32, ki_pctcpu);
1463 CP(*ki, *ki32, ki_estcpu);
1464 CP(*ki, *ki32, ki_slptime);
1465 CP(*ki, *ki32, ki_swtime);
1466 CP(*ki, *ki32, ki_cow);
1467 CP(*ki, *ki32, ki_runtime);
1468 TV_CP(*ki, *ki32, ki_start);
1469 TV_CP(*ki, *ki32, ki_childtime);
1470 CP(*ki, *ki32, ki_flag);
1471 CP(*ki, *ki32, ki_kiflag);
1472 CP(*ki, *ki32, ki_traceflag);
1473 CP(*ki, *ki32, ki_stat);
1474 CP(*ki, *ki32, ki_nice);
1475 CP(*ki, *ki32, ki_lock);
1476 CP(*ki, *ki32, ki_rqindex);
1477 CP(*ki, *ki32, ki_oncpu);
1478 CP(*ki, *ki32, ki_lastcpu);
1479
1480 /* XXX TODO: wrap cpu value as appropriate */
1481 CP(*ki, *ki32, ki_oncpu_old);
1482 CP(*ki, *ki32, ki_lastcpu_old);
1483
1484 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1485 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1486 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1487 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1488 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1489 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1490 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1491 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1492 CP(*ki, *ki32, ki_tracer);
1493 CP(*ki, *ki32, ki_flag2);
1494 CP(*ki, *ki32, ki_fibnum);
1495 CP(*ki, *ki32, ki_cr_flags);
1496 CP(*ki, *ki32, ki_jid);
1497 CP(*ki, *ki32, ki_numthreads);
1498 CP(*ki, *ki32, ki_tid);
1499 CP(*ki, *ki32, ki_pri);
1500 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1501 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1502 PTRTRIM_CP(*ki, *ki32, ki_pcb);
1503 PTRTRIM_CP(*ki, *ki32, ki_kstack);
1504 PTRTRIM_CP(*ki, *ki32, ki_udata);
1505 PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1506 CP(*ki, *ki32, ki_sflag);
1507 CP(*ki, *ki32, ki_tdflags);
1508 PTRTRIM_CP(*ki, *ki32, ki_uerrmsg);
1509 }
1510 #endif
1511
1512 static ssize_t
kern_proc_out_size(struct proc * p,int flags)1513 kern_proc_out_size(struct proc *p, int flags)
1514 {
1515 ssize_t size = 0;
1516
1517 PROC_LOCK_ASSERT(p, MA_OWNED);
1518
1519 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1520 #ifdef COMPAT_FREEBSD32
1521 if ((flags & KERN_PROC_MASK32) != 0) {
1522 size += sizeof(struct kinfo_proc32);
1523 } else
1524 #endif
1525 size += sizeof(struct kinfo_proc);
1526 } else {
1527 #ifdef COMPAT_FREEBSD32
1528 if ((flags & KERN_PROC_MASK32) != 0)
1529 size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1530 else
1531 #endif
1532 size += sizeof(struct kinfo_proc) * p->p_numthreads;
1533 }
1534 PROC_UNLOCK(p);
1535 return (size);
1536 }
1537
1538 int
kern_proc_out(struct proc * p,struct sbuf * sb,int flags)1539 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1540 {
1541 struct thread *td;
1542 struct kinfo_proc ki;
1543 #ifdef COMPAT_FREEBSD32
1544 struct kinfo_proc32 ki32;
1545 #endif
1546 int error;
1547
1548 PROC_LOCK_ASSERT(p, MA_OWNED);
1549 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1550
1551 error = 0;
1552 fill_kinfo_proc(p, &ki);
1553 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1554 #ifdef COMPAT_FREEBSD32
1555 if ((flags & KERN_PROC_MASK32) != 0) {
1556 freebsd32_kinfo_proc_out(&ki, &ki32);
1557 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1558 error = ENOMEM;
1559 } else
1560 #endif
1561 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1562 error = ENOMEM;
1563 } else {
1564 FOREACH_THREAD_IN_PROC(p, td) {
1565 fill_kinfo_thread(td, &ki, 1);
1566 #ifdef COMPAT_FREEBSD32
1567 if ((flags & KERN_PROC_MASK32) != 0) {
1568 freebsd32_kinfo_proc_out(&ki, &ki32);
1569 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1570 error = ENOMEM;
1571 } else
1572 #endif
1573 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1574 error = ENOMEM;
1575 if (error != 0)
1576 break;
1577 }
1578 }
1579 PROC_UNLOCK(p);
1580 return (error);
1581 }
1582
1583 static int
sysctl_out_proc(struct proc * p,struct sysctl_req * req,int flags)1584 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1585 {
1586 struct sbuf sb;
1587 struct kinfo_proc ki;
1588 int error, error2;
1589
1590 if (req->oldptr == NULL)
1591 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1592
1593 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1594 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1595 error = kern_proc_out(p, &sb, flags);
1596 error2 = sbuf_finish(&sb);
1597 sbuf_delete(&sb);
1598 if (error != 0)
1599 return (error);
1600 else if (error2 != 0)
1601 return (error2);
1602 return (0);
1603 }
1604
1605 int
proc_iterate(int (* cb)(struct proc *,void *),void * cbarg)1606 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1607 {
1608 struct proc *p;
1609 int error, i, j;
1610
1611 for (i = 0; i < pidhashlock + 1; i++) {
1612 sx_slock(&proctree_lock);
1613 sx_slock(&pidhashtbl_lock[i]);
1614 for (j = i; j <= pidhash; j += pidhashlock + 1) {
1615 LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1616 if (p->p_state == PRS_NEW)
1617 continue;
1618 error = cb(p, cbarg);
1619 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1620 if (error != 0) {
1621 sx_sunlock(&pidhashtbl_lock[i]);
1622 sx_sunlock(&proctree_lock);
1623 return (error);
1624 }
1625 }
1626 }
1627 sx_sunlock(&pidhashtbl_lock[i]);
1628 sx_sunlock(&proctree_lock);
1629 }
1630 return (0);
1631 }
1632
1633 struct kern_proc_out_args {
1634 struct sysctl_req *req;
1635 int flags;
1636 int oid_number;
1637 int *name;
1638 };
1639
1640 static int
sysctl_kern_proc_iterate(struct proc * p,void * origarg)1641 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1642 {
1643 struct kern_proc_out_args *arg = origarg;
1644 int *name = arg->name;
1645 int oid_number = arg->oid_number;
1646 int flags = arg->flags;
1647 struct sysctl_req *req = arg->req;
1648 int error = 0;
1649
1650 PROC_LOCK(p);
1651
1652 KASSERT(p->p_ucred != NULL,
1653 ("process credential is NULL for non-NEW proc"));
1654 /*
1655 * Show a user only appropriate processes.
1656 */
1657 if (p_cansee(curthread, p))
1658 goto skip;
1659 /*
1660 * TODO - make more efficient (see notes below).
1661 * do by session.
1662 */
1663 switch (oid_number) {
1664 case KERN_PROC_GID:
1665 if (p->p_ucred->cr_gid != (gid_t)name[0])
1666 goto skip;
1667 break;
1668
1669 case KERN_PROC_PGRP:
1670 /* could do this by traversing pgrp */
1671 if (p->p_pgrp == NULL ||
1672 p->p_pgrp->pg_id != (pid_t)name[0])
1673 goto skip;
1674 break;
1675
1676 case KERN_PROC_RGID:
1677 if (p->p_ucred->cr_rgid != (gid_t)name[0])
1678 goto skip;
1679 break;
1680
1681 case KERN_PROC_SESSION:
1682 if (p->p_session == NULL ||
1683 p->p_session->s_sid != (pid_t)name[0])
1684 goto skip;
1685 break;
1686
1687 case KERN_PROC_TTY:
1688 if ((p->p_flag & P_CONTROLT) == 0 ||
1689 p->p_session == NULL)
1690 goto skip;
1691 /* XXX proctree_lock */
1692 SESS_LOCK(p->p_session);
1693 if (p->p_session->s_ttyp == NULL ||
1694 tty_udev(p->p_session->s_ttyp) !=
1695 (dev_t)name[0]) {
1696 SESS_UNLOCK(p->p_session);
1697 goto skip;
1698 }
1699 SESS_UNLOCK(p->p_session);
1700 break;
1701
1702 case KERN_PROC_UID:
1703 if (p->p_ucred->cr_uid != (uid_t)name[0])
1704 goto skip;
1705 break;
1706
1707 case KERN_PROC_RUID:
1708 if (p->p_ucred->cr_ruid != (uid_t)name[0])
1709 goto skip;
1710 break;
1711
1712 case KERN_PROC_PROC:
1713 break;
1714
1715 default:
1716 break;
1717 }
1718 error = sysctl_out_proc(p, req, flags);
1719 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1720 return (error);
1721 skip:
1722 PROC_UNLOCK(p);
1723 return (0);
1724 }
1725
1726 static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)1727 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1728 {
1729 struct kern_proc_out_args iterarg;
1730 int *name = (int *)arg1;
1731 u_int namelen = arg2;
1732 struct proc *p;
1733 int flags, oid_number;
1734 int error = 0;
1735
1736 oid_number = oidp->oid_number;
1737 if (oid_number != KERN_PROC_ALL &&
1738 (oid_number & KERN_PROC_INC_THREAD) == 0)
1739 flags = KERN_PROC_NOTHREADS;
1740 else {
1741 flags = 0;
1742 oid_number &= ~KERN_PROC_INC_THREAD;
1743 }
1744 #ifdef COMPAT_FREEBSD32
1745 if (req->flags & SCTL_MASK32)
1746 flags |= KERN_PROC_MASK32;
1747 #endif
1748 if (oid_number == KERN_PROC_PID) {
1749 if (namelen != 1)
1750 return (EINVAL);
1751 error = sysctl_wire_old_buffer(req, 0);
1752 if (error)
1753 return (error);
1754 sx_slock(&proctree_lock);
1755 error = pget((pid_t)name[0], PGET_CANSEE, &p);
1756 if (error == 0)
1757 error = sysctl_out_proc(p, req, flags);
1758 sx_sunlock(&proctree_lock);
1759 return (error);
1760 }
1761
1762 switch (oid_number) {
1763 case KERN_PROC_ALL:
1764 if (namelen != 0)
1765 return (EINVAL);
1766 break;
1767 case KERN_PROC_PROC:
1768 if (namelen != 0 && namelen != 1)
1769 return (EINVAL);
1770 break;
1771 default:
1772 if (namelen != 1)
1773 return (EINVAL);
1774 break;
1775 }
1776
1777 if (req->oldptr == NULL) {
1778 /* overestimate by 5 procs */
1779 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1780 if (error)
1781 return (error);
1782 } else {
1783 error = sysctl_wire_old_buffer(req, 0);
1784 if (error != 0)
1785 return (error);
1786 }
1787 iterarg.flags = flags;
1788 iterarg.oid_number = oid_number;
1789 iterarg.req = req;
1790 iterarg.name = name;
1791 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1792 return (error);
1793 }
1794
1795 struct pargs *
pargs_alloc(int len)1796 pargs_alloc(int len)
1797 {
1798 struct pargs *pa;
1799
1800 pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1801 M_WAITOK);
1802 refcount_init(&pa->ar_ref, 1);
1803 pa->ar_length = len;
1804 return (pa);
1805 }
1806
1807 static void
pargs_free(struct pargs * pa)1808 pargs_free(struct pargs *pa)
1809 {
1810
1811 free(pa, M_PARGS);
1812 }
1813
1814 void
pargs_hold(struct pargs * pa)1815 pargs_hold(struct pargs *pa)
1816 {
1817
1818 if (pa == NULL)
1819 return;
1820 refcount_acquire(&pa->ar_ref);
1821 }
1822
1823 void
pargs_drop(struct pargs * pa)1824 pargs_drop(struct pargs *pa)
1825 {
1826
1827 if (pa == NULL)
1828 return;
1829 if (refcount_release(&pa->ar_ref))
1830 pargs_free(pa);
1831 }
1832
1833 static int
proc_read_string(struct thread * td,struct proc * p,const char * sptr,char * buf,size_t len)1834 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1835 size_t len)
1836 {
1837 ssize_t n;
1838
1839 /*
1840 * This may return a short read if the string is shorter than the chunk
1841 * and is aligned at the end of the page, and the following page is not
1842 * mapped.
1843 */
1844 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1845 if (n <= 0)
1846 return (ENOMEM);
1847 return (0);
1848 }
1849
1850 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
1851
1852 enum proc_vector_type {
1853 PROC_ARG,
1854 PROC_ENV,
1855 PROC_AUX,
1856 };
1857
1858 #ifdef COMPAT_FREEBSD32
1859 static int
get_proc_vector32(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1860 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1861 size_t *vsizep, enum proc_vector_type type)
1862 {
1863 struct freebsd32_ps_strings pss;
1864 Elf32_Auxinfo aux;
1865 vm_offset_t vptr, ptr;
1866 uint32_t *proc_vector32;
1867 char **proc_vector;
1868 size_t vsize, size;
1869 int i, error;
1870
1871 error = 0;
1872 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1873 sizeof(pss))
1874 return (ENOMEM);
1875 switch (type) {
1876 case PROC_ARG:
1877 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1878 vsize = pss.ps_nargvstr;
1879 if (vsize > ARG_MAX)
1880 return (ENOEXEC);
1881 size = vsize * sizeof(int32_t);
1882 break;
1883 case PROC_ENV:
1884 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1885 vsize = pss.ps_nenvstr;
1886 if (vsize > ARG_MAX)
1887 return (ENOEXEC);
1888 size = vsize * sizeof(int32_t);
1889 break;
1890 case PROC_AUX:
1891 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1892 (pss.ps_nenvstr + 1) * sizeof(int32_t);
1893 if (vptr % 4 != 0)
1894 return (ENOEXEC);
1895 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1896 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1897 sizeof(aux))
1898 return (ENOMEM);
1899 if (aux.a_type == AT_NULL)
1900 break;
1901 ptr += sizeof(aux);
1902 }
1903 if (aux.a_type != AT_NULL)
1904 return (ENOEXEC);
1905 vsize = i + 1;
1906 size = vsize * sizeof(aux);
1907 break;
1908 default:
1909 KASSERT(0, ("Wrong proc vector type: %d", type));
1910 return (EINVAL);
1911 }
1912 proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1913 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1914 error = ENOMEM;
1915 goto done;
1916 }
1917 if (type == PROC_AUX) {
1918 *proc_vectorp = (char **)proc_vector32;
1919 *vsizep = vsize;
1920 return (0);
1921 }
1922 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1923 for (i = 0; i < (int)vsize; i++)
1924 proc_vector[i] = PTRIN(proc_vector32[i]);
1925 *proc_vectorp = proc_vector;
1926 *vsizep = vsize;
1927 done:
1928 free(proc_vector32, M_TEMP);
1929 return (error);
1930 }
1931 #endif
1932
1933 static int
get_proc_vector(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1934 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1935 size_t *vsizep, enum proc_vector_type type)
1936 {
1937 struct ps_strings pss;
1938 Elf_Auxinfo aux;
1939 vm_offset_t vptr, ptr;
1940 char **proc_vector;
1941 size_t vsize, size;
1942 int i;
1943
1944 #ifdef COMPAT_FREEBSD32
1945 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1946 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1947 #endif
1948 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1949 sizeof(pss))
1950 return (ENOMEM);
1951 switch (type) {
1952 case PROC_ARG:
1953 vptr = (vm_offset_t)pss.ps_argvstr;
1954 vsize = pss.ps_nargvstr;
1955 if (vsize > ARG_MAX)
1956 return (ENOEXEC);
1957 size = vsize * sizeof(char *);
1958 break;
1959 case PROC_ENV:
1960 vptr = (vm_offset_t)pss.ps_envstr;
1961 vsize = pss.ps_nenvstr;
1962 if (vsize > ARG_MAX)
1963 return (ENOEXEC);
1964 size = vsize * sizeof(char *);
1965 break;
1966 case PROC_AUX:
1967 /*
1968 * The aux array is just above env array on the stack. Check
1969 * that the address is naturally aligned.
1970 */
1971 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1972 * sizeof(char *);
1973 #if __ELF_WORD_SIZE == 64
1974 if (vptr % sizeof(uint64_t) != 0)
1975 #else
1976 if (vptr % sizeof(uint32_t) != 0)
1977 #endif
1978 return (ENOEXEC);
1979 /*
1980 * We count the array size reading the aux vectors from the
1981 * stack until AT_NULL vector is returned. So (to keep the code
1982 * simple) we read the process stack twice: the first time here
1983 * to find the size and the second time when copying the vectors
1984 * to the allocated proc_vector.
1985 */
1986 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1987 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1988 sizeof(aux))
1989 return (ENOMEM);
1990 if (aux.a_type == AT_NULL)
1991 break;
1992 ptr += sizeof(aux);
1993 }
1994 /*
1995 * If the PROC_AUXV_MAX entries are iterated over, and we have
1996 * not reached AT_NULL, it is most likely we are reading wrong
1997 * data: either the process doesn't have auxv array or data has
1998 * been modified. Return the error in this case.
1999 */
2000 if (aux.a_type != AT_NULL)
2001 return (ENOEXEC);
2002 vsize = i + 1;
2003 size = vsize * sizeof(aux);
2004 break;
2005 default:
2006 KASSERT(0, ("Wrong proc vector type: %d", type));
2007 return (EINVAL); /* In case we are built without INVARIANTS. */
2008 }
2009 proc_vector = malloc(size, M_TEMP, M_WAITOK);
2010 if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2011 free(proc_vector, M_TEMP);
2012 return (ENOMEM);
2013 }
2014 *proc_vectorp = proc_vector;
2015 *vsizep = vsize;
2016
2017 return (0);
2018 }
2019
2020 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
2021
2022 static int
get_ps_strings(struct thread * td,struct proc * p,struct sbuf * sb,enum proc_vector_type type)2023 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2024 enum proc_vector_type type)
2025 {
2026 size_t done, len, nchr, vsize;
2027 int error, i;
2028 char **proc_vector, *sptr;
2029 char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2030
2031 PROC_ASSERT_HELD(p);
2032
2033 /*
2034 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2035 */
2036 nchr = 2 * (PATH_MAX + ARG_MAX);
2037
2038 error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2039 if (error != 0)
2040 return (error);
2041 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2042 /*
2043 * The program may have scribbled into its argv array, e.g. to
2044 * remove some arguments. If that has happened, break out
2045 * before trying to read from NULL.
2046 */
2047 if (proc_vector[i] == NULL)
2048 break;
2049 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2050 error = proc_read_string(td, p, sptr, pss_string,
2051 sizeof(pss_string));
2052 if (error != 0)
2053 goto done;
2054 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2055 if (done + len >= nchr)
2056 len = nchr - done - 1;
2057 sbuf_bcat(sb, pss_string, len);
2058 if (len != GET_PS_STRINGS_CHUNK_SZ)
2059 break;
2060 done += GET_PS_STRINGS_CHUNK_SZ;
2061 }
2062 sbuf_bcat(sb, "", 1);
2063 done += len + 1;
2064 }
2065 done:
2066 free(proc_vector, M_TEMP);
2067 return (error);
2068 }
2069
2070 int
proc_getargv(struct thread * td,struct proc * p,struct sbuf * sb)2071 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2072 {
2073
2074 return (get_ps_strings(curthread, p, sb, PROC_ARG));
2075 }
2076
2077 int
proc_getenvv(struct thread * td,struct proc * p,struct sbuf * sb)2078 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2079 {
2080
2081 return (get_ps_strings(curthread, p, sb, PROC_ENV));
2082 }
2083
2084 int
proc_getauxv(struct thread * td,struct proc * p,struct sbuf * sb)2085 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2086 {
2087 size_t vsize, size;
2088 char **auxv;
2089 int error;
2090
2091 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2092 if (error == 0) {
2093 #ifdef COMPAT_FREEBSD32
2094 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2095 size = vsize * sizeof(Elf32_Auxinfo);
2096 else
2097 #endif
2098 size = vsize * sizeof(Elf_Auxinfo);
2099 if (sbuf_bcat(sb, auxv, size) != 0)
2100 error = ENOMEM;
2101 free(auxv, M_TEMP);
2102 }
2103 return (error);
2104 }
2105
2106 /*
2107 * This sysctl allows a process to retrieve the argument list or process
2108 * title for another process without groping around in the address space
2109 * of the other process. It also allow a process to set its own "process
2110 * title to a string of its own choice.
2111 */
2112 static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)2113 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2114 {
2115 int *name = (int *)arg1;
2116 u_int namelen = arg2;
2117 struct pargs *newpa, *pa;
2118 struct proc *p;
2119 struct sbuf sb;
2120 int flags, error = 0, error2;
2121 pid_t pid;
2122
2123 if (namelen != 1)
2124 return (EINVAL);
2125
2126 p = curproc;
2127 pid = (pid_t)name[0];
2128 if (pid == -1) {
2129 pid = p->p_pid;
2130 }
2131
2132 /*
2133 * If the query is for this process and it is single-threaded, there
2134 * is nobody to modify pargs, thus we can just read.
2135 */
2136 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2137 (pa = p->p_args) != NULL)
2138 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2139
2140 flags = PGET_CANSEE;
2141 if (req->newptr != NULL)
2142 flags |= PGET_ISCURRENT;
2143 error = pget(pid, flags, &p);
2144 if (error)
2145 return (error);
2146
2147 pa = p->p_args;
2148 if (pa != NULL) {
2149 pargs_hold(pa);
2150 PROC_UNLOCK(p);
2151 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2152 pargs_drop(pa);
2153 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2154 _PHOLD(p);
2155 PROC_UNLOCK(p);
2156 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2157 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2158 error = proc_getargv(curthread, p, &sb);
2159 error2 = sbuf_finish(&sb);
2160 PRELE(p);
2161 sbuf_delete(&sb);
2162 if (error == 0 && error2 != 0)
2163 error = error2;
2164 } else {
2165 PROC_UNLOCK(p);
2166 }
2167 if (error != 0 || req->newptr == NULL)
2168 return (error);
2169
2170 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2171 return (ENOMEM);
2172
2173 if (req->newlen == 0) {
2174 /*
2175 * Clear the argument pointer, so that we'll fetch arguments
2176 * with proc_getargv() until further notice.
2177 */
2178 newpa = NULL;
2179 } else {
2180 newpa = pargs_alloc(req->newlen);
2181 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2182 if (error != 0) {
2183 pargs_free(newpa);
2184 return (error);
2185 }
2186 }
2187 PROC_LOCK(p);
2188 pa = p->p_args;
2189 p->p_args = newpa;
2190 PROC_UNLOCK(p);
2191 pargs_drop(pa);
2192 return (0);
2193 }
2194
2195 /*
2196 * This sysctl allows a process to retrieve environment of another process.
2197 */
2198 static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)2199 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2200 {
2201 int *name = (int *)arg1;
2202 u_int namelen = arg2;
2203 struct proc *p;
2204 struct sbuf sb;
2205 int error, error2;
2206
2207 if (namelen != 1)
2208 return (EINVAL);
2209
2210 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2211 if (error != 0)
2212 return (error);
2213 if ((p->p_flag & P_SYSTEM) != 0) {
2214 PRELE(p);
2215 return (0);
2216 }
2217
2218 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2219 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2220 error = proc_getenvv(curthread, p, &sb);
2221 error2 = sbuf_finish(&sb);
2222 PRELE(p);
2223 sbuf_delete(&sb);
2224 return (error != 0 ? error : error2);
2225 }
2226
2227 /*
2228 * This sysctl allows a process to retrieve ELF auxiliary vector of
2229 * another process.
2230 */
2231 static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)2232 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2233 {
2234 int *name = (int *)arg1;
2235 u_int namelen = arg2;
2236 struct proc *p;
2237 struct sbuf sb;
2238 int error, error2;
2239
2240 if (namelen != 1)
2241 return (EINVAL);
2242
2243 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2244 if (error != 0)
2245 return (error);
2246 if ((p->p_flag & P_SYSTEM) != 0) {
2247 PRELE(p);
2248 return (0);
2249 }
2250 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2251 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2252 error = proc_getauxv(curthread, p, &sb);
2253 error2 = sbuf_finish(&sb);
2254 PRELE(p);
2255 sbuf_delete(&sb);
2256 return (error != 0 ? error : error2);
2257 }
2258
2259 /*
2260 * Look up the canonical executable path running in the specified process.
2261 * It tries to return the same hardlink name as was used for execve(2).
2262 * This allows the programs that modify their behavior based on their progname,
2263 * to operate correctly.
2264 *
2265 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2266 * calling conventions.
2267 * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2268 * allocated and freed by caller.
2269 * freebuf should be freed by caller, from the M_TEMP malloc type.
2270 */
2271 int
proc_get_binpath(struct proc * p,char * binname,char ** retbuf,char ** freebuf)2272 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2273 char **freebuf)
2274 {
2275 struct nameidata nd;
2276 struct vnode *vp, *dvp;
2277 size_t freepath_size;
2278 int error;
2279 bool do_fullpath;
2280
2281 PROC_LOCK_ASSERT(p, MA_OWNED);
2282
2283 vp = p->p_textvp;
2284 if (vp == NULL) {
2285 PROC_UNLOCK(p);
2286 *retbuf = "";
2287 *freebuf = NULL;
2288 return (0);
2289 }
2290 vref(vp);
2291 dvp = p->p_textdvp;
2292 if (dvp != NULL)
2293 vref(dvp);
2294 if (p->p_binname != NULL)
2295 strlcpy(binname, p->p_binname, MAXPATHLEN);
2296 PROC_UNLOCK(p);
2297
2298 do_fullpath = true;
2299 *freebuf = NULL;
2300 if (dvp != NULL && binname[0] != '\0') {
2301 freepath_size = MAXPATHLEN;
2302 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2303 retbuf, freebuf, &freepath_size) == 0) {
2304 /*
2305 * Recheck the looked up path. The binary
2306 * might have been renamed or replaced, in
2307 * which case we should not report old name.
2308 */
2309 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2310 error = namei(&nd);
2311 if (error == 0) {
2312 if (nd.ni_vp == vp)
2313 do_fullpath = false;
2314 vrele(nd.ni_vp);
2315 NDFREE_PNBUF(&nd);
2316 }
2317 }
2318 }
2319 if (do_fullpath) {
2320 free(*freebuf, M_TEMP);
2321 *freebuf = NULL;
2322 error = vn_fullpath(vp, retbuf, freebuf);
2323 }
2324 vrele(vp);
2325 if (dvp != NULL)
2326 vrele(dvp);
2327 return (error);
2328 }
2329
2330 /*
2331 * This sysctl allows a process to retrieve the path of the executable for
2332 * itself or another process.
2333 */
2334 static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)2335 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2336 {
2337 pid_t *pidp = (pid_t *)arg1;
2338 unsigned int arglen = arg2;
2339 struct proc *p;
2340 char *retbuf, *freebuf, *binname;
2341 int error;
2342
2343 if (arglen != 1)
2344 return (EINVAL);
2345 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2346 binname[0] = '\0';
2347 if (*pidp == -1) { /* -1 means this process */
2348 error = 0;
2349 p = req->td->td_proc;
2350 PROC_LOCK(p);
2351 } else {
2352 error = pget(*pidp, PGET_CANSEE, &p);
2353 }
2354
2355 if (error == 0)
2356 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2357 free(binname, M_TEMP);
2358 if (error != 0)
2359 return (error);
2360 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2361 free(freebuf, M_TEMP);
2362 return (error);
2363 }
2364
2365 static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)2366 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2367 {
2368 struct proc *p;
2369 char *sv_name;
2370 int *name;
2371 int namelen;
2372 int error;
2373
2374 namelen = arg2;
2375 if (namelen != 1)
2376 return (EINVAL);
2377
2378 name = (int *)arg1;
2379 error = pget((pid_t)name[0], PGET_CANSEE, &p);
2380 if (error != 0)
2381 return (error);
2382 sv_name = p->p_sysent->sv_name;
2383 PROC_UNLOCK(p);
2384 return (sysctl_handle_string(oidp, sv_name, 0, req));
2385 }
2386
2387 #ifdef KINFO_OVMENTRY_SIZE
2388 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2389 #endif
2390
2391 #ifdef COMPAT_FREEBSD7
2392 static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)2393 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2394 {
2395 vm_map_entry_t entry, tmp_entry;
2396 unsigned int last_timestamp, namelen;
2397 char *fullpath, *freepath;
2398 struct kinfo_ovmentry *kve;
2399 struct vattr va;
2400 struct ucred *cred;
2401 int error, *name;
2402 struct vnode *vp;
2403 struct proc *p;
2404 vm_map_t map;
2405 struct vmspace *vm;
2406
2407 namelen = arg2;
2408 if (namelen != 1)
2409 return (EINVAL);
2410
2411 name = (int *)arg1;
2412 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2413 if (error != 0)
2414 return (error);
2415 vm = vmspace_acquire_ref(p);
2416 if (vm == NULL) {
2417 PRELE(p);
2418 return (ESRCH);
2419 }
2420 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2421
2422 map = &vm->vm_map;
2423 vm_map_lock_read(map);
2424 VM_MAP_ENTRY_FOREACH(entry, map) {
2425 vm_object_t obj, tobj, lobj;
2426 vm_offset_t addr;
2427
2428 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2429 continue;
2430
2431 bzero(kve, sizeof(*kve));
2432 kve->kve_structsize = sizeof(*kve);
2433
2434 kve->kve_private_resident = 0;
2435 obj = entry->object.vm_object;
2436 if (obj != NULL) {
2437 VM_OBJECT_RLOCK(obj);
2438 if (obj->shadow_count == 1)
2439 kve->kve_private_resident =
2440 obj->resident_page_count;
2441 }
2442 kve->kve_resident = 0;
2443 addr = entry->start;
2444 while (addr < entry->end) {
2445 if (pmap_extract(map->pmap, addr))
2446 kve->kve_resident++;
2447 addr += PAGE_SIZE;
2448 }
2449
2450 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2451 if (tobj != obj) {
2452 VM_OBJECT_RLOCK(tobj);
2453 kve->kve_offset += tobj->backing_object_offset;
2454 }
2455 if (lobj != obj)
2456 VM_OBJECT_RUNLOCK(lobj);
2457 lobj = tobj;
2458 }
2459
2460 kve->kve_start = (void*)entry->start;
2461 kve->kve_end = (void*)entry->end;
2462 kve->kve_offset += (off_t)entry->offset;
2463
2464 if (entry->protection & VM_PROT_READ)
2465 kve->kve_protection |= KVME_PROT_READ;
2466 if (entry->protection & VM_PROT_WRITE)
2467 kve->kve_protection |= KVME_PROT_WRITE;
2468 if (entry->protection & VM_PROT_EXECUTE)
2469 kve->kve_protection |= KVME_PROT_EXEC;
2470
2471 if (entry->eflags & MAP_ENTRY_COW)
2472 kve->kve_flags |= KVME_FLAG_COW;
2473 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2474 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2475 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2476 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2477
2478 last_timestamp = map->timestamp;
2479 vm_map_unlock_read(map);
2480
2481 kve->kve_fileid = 0;
2482 kve->kve_fsid = 0;
2483 freepath = NULL;
2484 fullpath = "";
2485 if (lobj) {
2486 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2487 if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2488 kve->kve_type = KVME_TYPE_UNKNOWN;
2489 if (vp != NULL)
2490 vref(vp);
2491 if (lobj != obj)
2492 VM_OBJECT_RUNLOCK(lobj);
2493
2494 kve->kve_ref_count = obj->ref_count;
2495 kve->kve_shadow_count = obj->shadow_count;
2496 VM_OBJECT_RUNLOCK(obj);
2497 if (vp != NULL) {
2498 vn_fullpath(vp, &fullpath, &freepath);
2499 cred = curthread->td_ucred;
2500 vn_lock(vp, LK_SHARED | LK_RETRY);
2501 if (VOP_GETATTR(vp, &va, cred) == 0) {
2502 kve->kve_fileid = va.va_fileid;
2503 /* truncate */
2504 kve->kve_fsid = va.va_fsid;
2505 }
2506 vput(vp);
2507 }
2508 } else {
2509 kve->kve_type = KVME_TYPE_NONE;
2510 kve->kve_ref_count = 0;
2511 kve->kve_shadow_count = 0;
2512 }
2513
2514 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2515 if (freepath != NULL)
2516 free(freepath, M_TEMP);
2517
2518 error = SYSCTL_OUT(req, kve, sizeof(*kve));
2519 vm_map_lock_read(map);
2520 if (error)
2521 break;
2522 if (last_timestamp != map->timestamp) {
2523 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2524 entry = tmp_entry;
2525 }
2526 }
2527 vm_map_unlock_read(map);
2528 vmspace_free(vm);
2529 PRELE(p);
2530 free(kve, M_TEMP);
2531 return (error);
2532 }
2533 #endif /* COMPAT_FREEBSD7 */
2534
2535 #ifdef KINFO_VMENTRY_SIZE
2536 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2537 #endif
2538
2539 void
kern_proc_vmmap_resident(vm_map_t map,vm_map_entry_t entry,int * resident_count,bool * super)2540 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2541 int *resident_count, bool *super)
2542 {
2543 vm_object_t obj, tobj;
2544 vm_page_t m, m_adv;
2545 vm_offset_t addr;
2546 vm_paddr_t pa;
2547 vm_pindex_t pi, pi_adv, pindex;
2548 int incore;
2549
2550 *super = false;
2551 *resident_count = 0;
2552 if (vmmap_skip_res_cnt)
2553 return;
2554
2555 pa = 0;
2556 obj = entry->object.vm_object;
2557 addr = entry->start;
2558 m_adv = NULL;
2559 pi = OFF_TO_IDX(entry->offset);
2560 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2561 if (m_adv != NULL) {
2562 m = m_adv;
2563 } else {
2564 pi_adv = atop(entry->end - addr);
2565 pindex = pi;
2566 for (tobj = obj;; tobj = tobj->backing_object) {
2567 m = vm_radix_lookup_ge(&tobj->rtree, pindex);
2568 if (m != NULL) {
2569 if (m->pindex == pindex)
2570 break;
2571 if (pi_adv > m->pindex - pindex) {
2572 pi_adv = m->pindex - pindex;
2573 m_adv = m;
2574 }
2575 }
2576 if (tobj->backing_object == NULL)
2577 goto next;
2578 pindex += OFF_TO_IDX(tobj->
2579 backing_object_offset);
2580 }
2581 }
2582 m_adv = NULL;
2583 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2584 (addr & (pagesizes[1] - 1)) == 0 && (incore =
2585 pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2586 *super = true;
2587 /*
2588 * The virtual page might be smaller than the physical
2589 * page, so we use the page size reported by the pmap
2590 * rather than m->psind.
2591 */
2592 pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
2593 } else {
2594 /*
2595 * We do not test the found page on validity.
2596 * Either the page is busy and being paged in,
2597 * or it was invalidated. The first case
2598 * should be counted as resident, the second
2599 * is not so clear; we do account both.
2600 */
2601 pi_adv = 1;
2602 }
2603 *resident_count += pi_adv;
2604 next:;
2605 }
2606 }
2607
2608 /*
2609 * Must be called with the process locked and will return unlocked.
2610 */
2611 int
kern_proc_vmmap_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)2612 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2613 {
2614 vm_map_entry_t entry, tmp_entry;
2615 struct vattr va;
2616 vm_map_t map;
2617 vm_object_t lobj, nobj, obj, tobj;
2618 char *fullpath, *freepath;
2619 struct kinfo_vmentry *kve;
2620 struct ucred *cred;
2621 struct vnode *vp;
2622 struct vmspace *vm;
2623 vm_offset_t addr;
2624 unsigned int last_timestamp;
2625 int error;
2626 key_t key;
2627 unsigned short seq;
2628 bool guard, super;
2629
2630 PROC_LOCK_ASSERT(p, MA_OWNED);
2631
2632 _PHOLD(p);
2633 PROC_UNLOCK(p);
2634 vm = vmspace_acquire_ref(p);
2635 if (vm == NULL) {
2636 PRELE(p);
2637 return (ESRCH);
2638 }
2639 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2640
2641 error = 0;
2642 map = &vm->vm_map;
2643 vm_map_lock_read(map);
2644 VM_MAP_ENTRY_FOREACH(entry, map) {
2645 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2646 continue;
2647
2648 addr = entry->end;
2649 bzero(kve, sizeof(*kve));
2650 obj = entry->object.vm_object;
2651 if (obj != NULL) {
2652 if ((obj->flags & OBJ_ANON) != 0)
2653 kve->kve_obj = (uintptr_t)obj;
2654
2655 for (tobj = obj; tobj != NULL;
2656 tobj = tobj->backing_object) {
2657 VM_OBJECT_RLOCK(tobj);
2658 kve->kve_offset += tobj->backing_object_offset;
2659 lobj = tobj;
2660 }
2661 if (obj->backing_object == NULL)
2662 kve->kve_private_resident =
2663 obj->resident_page_count;
2664 kern_proc_vmmap_resident(map, entry,
2665 &kve->kve_resident, &super);
2666 if (super)
2667 kve->kve_flags |= KVME_FLAG_SUPER;
2668 for (tobj = obj; tobj != NULL; tobj = nobj) {
2669 nobj = tobj->backing_object;
2670 if (tobj != obj && tobj != lobj)
2671 VM_OBJECT_RUNLOCK(tobj);
2672 }
2673 } else {
2674 lobj = NULL;
2675 }
2676
2677 kve->kve_start = entry->start;
2678 kve->kve_end = entry->end;
2679 kve->kve_offset += entry->offset;
2680
2681 if (entry->protection & VM_PROT_READ)
2682 kve->kve_protection |= KVME_PROT_READ;
2683 if (entry->protection & VM_PROT_WRITE)
2684 kve->kve_protection |= KVME_PROT_WRITE;
2685 if (entry->protection & VM_PROT_EXECUTE)
2686 kve->kve_protection |= KVME_PROT_EXEC;
2687 if (entry->max_protection & VM_PROT_READ)
2688 kve->kve_protection |= KVME_MAX_PROT_READ;
2689 if (entry->max_protection & VM_PROT_WRITE)
2690 kve->kve_protection |= KVME_MAX_PROT_WRITE;
2691 if (entry->max_protection & VM_PROT_EXECUTE)
2692 kve->kve_protection |= KVME_MAX_PROT_EXEC;
2693
2694 if (entry->eflags & MAP_ENTRY_COW)
2695 kve->kve_flags |= KVME_FLAG_COW;
2696 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2697 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2698 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2699 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2700 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2701 kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2702 if (entry->eflags & MAP_ENTRY_USER_WIRED)
2703 kve->kve_flags |= KVME_FLAG_USER_WIRED;
2704
2705 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2706
2707 last_timestamp = map->timestamp;
2708 vm_map_unlock_read(map);
2709
2710 freepath = NULL;
2711 fullpath = "";
2712 if (lobj != NULL) {
2713 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2714 if (vp != NULL)
2715 vref(vp);
2716 if (lobj != obj)
2717 VM_OBJECT_RUNLOCK(lobj);
2718
2719 kve->kve_ref_count = obj->ref_count;
2720 kve->kve_shadow_count = obj->shadow_count;
2721 if (obj->type == OBJT_DEVICE ||
2722 obj->type == OBJT_MGTDEVICE) {
2723 cdev_pager_get_path(obj, kve->kve_path,
2724 sizeof(kve->kve_path));
2725 }
2726 VM_OBJECT_RUNLOCK(obj);
2727 if ((lobj->flags & OBJ_SYSVSHM) != 0) {
2728 kve->kve_flags |= KVME_FLAG_SYSVSHM;
2729 shmobjinfo(lobj, &key, &seq);
2730 kve->kve_vn_fileid = key;
2731 kve->kve_vn_fsid_freebsd11 = seq;
2732 }
2733 if ((lobj->flags & OBJ_POSIXSHM) != 0) {
2734 kve->kve_flags |= KVME_FLAG_POSIXSHM;
2735 shm_get_path(lobj, kve->kve_path,
2736 sizeof(kve->kve_path));
2737 }
2738 if (vp != NULL) {
2739 vn_fullpath(vp, &fullpath, &freepath);
2740 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2741 cred = curthread->td_ucred;
2742 vn_lock(vp, LK_SHARED | LK_RETRY);
2743 if (VOP_GETATTR(vp, &va, cred) == 0) {
2744 kve->kve_vn_fileid = va.va_fileid;
2745 kve->kve_vn_fsid = va.va_fsid;
2746 kve->kve_vn_fsid_freebsd11 =
2747 kve->kve_vn_fsid; /* truncate */
2748 kve->kve_vn_mode =
2749 MAKEIMODE(va.va_type, va.va_mode);
2750 kve->kve_vn_size = va.va_size;
2751 kve->kve_vn_rdev = va.va_rdev;
2752 kve->kve_vn_rdev_freebsd11 =
2753 kve->kve_vn_rdev; /* truncate */
2754 kve->kve_status = KF_ATTR_VALID;
2755 }
2756 vput(vp);
2757 strlcpy(kve->kve_path, fullpath, sizeof(
2758 kve->kve_path));
2759 free(freepath, M_TEMP);
2760 }
2761 } else {
2762 kve->kve_type = guard ? KVME_TYPE_GUARD :
2763 KVME_TYPE_NONE;
2764 kve->kve_ref_count = 0;
2765 kve->kve_shadow_count = 0;
2766 }
2767
2768 /* Pack record size down */
2769 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2770 kve->kve_structsize =
2771 offsetof(struct kinfo_vmentry, kve_path) +
2772 strlen(kve->kve_path) + 1;
2773 else
2774 kve->kve_structsize = sizeof(*kve);
2775 kve->kve_structsize = roundup(kve->kve_structsize,
2776 sizeof(uint64_t));
2777
2778 /* Halt filling and truncate rather than exceeding maxlen */
2779 if (maxlen != -1 && maxlen < kve->kve_structsize) {
2780 error = 0;
2781 vm_map_lock_read(map);
2782 break;
2783 } else if (maxlen != -1)
2784 maxlen -= kve->kve_structsize;
2785
2786 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2787 error = ENOMEM;
2788 vm_map_lock_read(map);
2789 if (error != 0)
2790 break;
2791 if (last_timestamp != map->timestamp) {
2792 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2793 entry = tmp_entry;
2794 }
2795 }
2796 vm_map_unlock_read(map);
2797 vmspace_free(vm);
2798 PRELE(p);
2799 free(kve, M_TEMP);
2800 return (error);
2801 }
2802
2803 static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)2804 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2805 {
2806 struct proc *p;
2807 struct sbuf sb;
2808 u_int namelen;
2809 int error, error2, *name;
2810
2811 namelen = arg2;
2812 if (namelen != 1)
2813 return (EINVAL);
2814
2815 name = (int *)arg1;
2816 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2817 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2818 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2819 if (error != 0) {
2820 sbuf_delete(&sb);
2821 return (error);
2822 }
2823 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2824 error2 = sbuf_finish(&sb);
2825 sbuf_delete(&sb);
2826 return (error != 0 ? error : error2);
2827 }
2828
2829 #if defined(STACK) || defined(DDB)
2830 static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)2831 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2832 {
2833 struct kinfo_kstack *kkstp;
2834 int error, i, *name, numthreads;
2835 lwpid_t *lwpidarray;
2836 struct thread *td;
2837 struct stack *st;
2838 struct sbuf sb;
2839 struct proc *p;
2840 u_int namelen;
2841
2842 namelen = arg2;
2843 if (namelen != 1)
2844 return (EINVAL);
2845
2846 name = (int *)arg1;
2847 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2848 if (error != 0)
2849 return (error);
2850
2851 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2852 st = stack_create(M_WAITOK);
2853
2854 lwpidarray = NULL;
2855 PROC_LOCK(p);
2856 do {
2857 if (lwpidarray != NULL) {
2858 free(lwpidarray, M_TEMP);
2859 lwpidarray = NULL;
2860 }
2861 numthreads = p->p_numthreads;
2862 PROC_UNLOCK(p);
2863 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2864 M_WAITOK | M_ZERO);
2865 PROC_LOCK(p);
2866 } while (numthreads < p->p_numthreads);
2867
2868 /*
2869 * XXXRW: During the below loop, execve(2) and countless other sorts
2870 * of changes could have taken place. Should we check to see if the
2871 * vmspace has been replaced, or the like, in order to prevent
2872 * giving a snapshot that spans, say, execve(2), with some threads
2873 * before and some after? Among other things, the credentials could
2874 * have changed, in which case the right to extract debug info might
2875 * no longer be assured.
2876 */
2877 i = 0;
2878 FOREACH_THREAD_IN_PROC(p, td) {
2879 KASSERT(i < numthreads,
2880 ("sysctl_kern_proc_kstack: numthreads"));
2881 lwpidarray[i] = td->td_tid;
2882 i++;
2883 }
2884 PROC_UNLOCK(p);
2885 numthreads = i;
2886 for (i = 0; i < numthreads; i++) {
2887 td = tdfind(lwpidarray[i], p->p_pid);
2888 if (td == NULL) {
2889 continue;
2890 }
2891 bzero(kkstp, sizeof(*kkstp));
2892 (void)sbuf_new(&sb, kkstp->kkst_trace,
2893 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2894 thread_lock(td);
2895 kkstp->kkst_tid = td->td_tid;
2896 if (stack_save_td(st, td) == 0)
2897 kkstp->kkst_state = KKST_STATE_STACKOK;
2898 else
2899 kkstp->kkst_state = KKST_STATE_RUNNING;
2900 thread_unlock(td);
2901 PROC_UNLOCK(p);
2902 stack_sbuf_print(&sb, st);
2903 sbuf_finish(&sb);
2904 sbuf_delete(&sb);
2905 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2906 if (error)
2907 break;
2908 }
2909 PRELE(p);
2910 if (lwpidarray != NULL)
2911 free(lwpidarray, M_TEMP);
2912 stack_destroy(st);
2913 free(kkstp, M_TEMP);
2914 return (error);
2915 }
2916 #endif
2917
2918 /*
2919 * This sysctl allows a process to retrieve the full list of groups from
2920 * itself or another process.
2921 */
2922 static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)2923 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2924 {
2925 pid_t *pidp = (pid_t *)arg1;
2926 unsigned int arglen = arg2;
2927 struct proc *p;
2928 struct ucred *cred;
2929 int error;
2930
2931 if (arglen != 1)
2932 return (EINVAL);
2933 if (*pidp == -1) { /* -1 means this process */
2934 p = req->td->td_proc;
2935 PROC_LOCK(p);
2936 } else {
2937 error = pget(*pidp, PGET_CANSEE, &p);
2938 if (error != 0)
2939 return (error);
2940 }
2941
2942 cred = crhold(p->p_ucred);
2943 PROC_UNLOCK(p);
2944
2945 error = SYSCTL_OUT(req, &cred->cr_gid, sizeof(gid_t));
2946 if (error == 0)
2947 error = SYSCTL_OUT(req, cred->cr_groups,
2948 cred->cr_ngroups * sizeof(gid_t));
2949
2950 crfree(cred);
2951 return (error);
2952 }
2953
2954 /*
2955 * This sysctl allows a process to retrieve or/and set the resource limit for
2956 * another process.
2957 */
2958 static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)2959 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2960 {
2961 int *name = (int *)arg1;
2962 u_int namelen = arg2;
2963 struct rlimit rlim;
2964 struct proc *p;
2965 u_int which;
2966 int flags, error;
2967
2968 if (namelen != 2)
2969 return (EINVAL);
2970
2971 which = (u_int)name[1];
2972 if (which >= RLIM_NLIMITS)
2973 return (EINVAL);
2974
2975 if (req->newptr != NULL && req->newlen != sizeof(rlim))
2976 return (EINVAL);
2977
2978 flags = PGET_HOLD | PGET_NOTWEXIT;
2979 if (req->newptr != NULL)
2980 flags |= PGET_CANDEBUG;
2981 else
2982 flags |= PGET_CANSEE;
2983 error = pget((pid_t)name[0], flags, &p);
2984 if (error != 0)
2985 return (error);
2986
2987 /*
2988 * Retrieve limit.
2989 */
2990 if (req->oldptr != NULL) {
2991 PROC_LOCK(p);
2992 lim_rlimit_proc(p, which, &rlim);
2993 PROC_UNLOCK(p);
2994 }
2995 error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2996 if (error != 0)
2997 goto errout;
2998
2999 /*
3000 * Set limit.
3001 */
3002 if (req->newptr != NULL) {
3003 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
3004 if (error == 0)
3005 error = kern_proc_setrlimit(curthread, p, which, &rlim);
3006 }
3007
3008 errout:
3009 PRELE(p);
3010 return (error);
3011 }
3012
3013 /*
3014 * This sysctl allows a process to retrieve ps_strings structure location of
3015 * another process.
3016 */
3017 static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)3018 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
3019 {
3020 int *name = (int *)arg1;
3021 u_int namelen = arg2;
3022 struct proc *p;
3023 vm_offset_t ps_strings;
3024 int error;
3025 #ifdef COMPAT_FREEBSD32
3026 uint32_t ps_strings32;
3027 #endif
3028
3029 if (namelen != 1)
3030 return (EINVAL);
3031
3032 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3033 if (error != 0)
3034 return (error);
3035 #ifdef COMPAT_FREEBSD32
3036 if ((req->flags & SCTL_MASK32) != 0) {
3037 /*
3038 * We return 0 if the 32 bit emulation request is for a 64 bit
3039 * process.
3040 */
3041 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3042 PTROUT(PROC_PS_STRINGS(p)) : 0;
3043 PROC_UNLOCK(p);
3044 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3045 return (error);
3046 }
3047 #endif
3048 ps_strings = PROC_PS_STRINGS(p);
3049 PROC_UNLOCK(p);
3050 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3051 return (error);
3052 }
3053
3054 /*
3055 * This sysctl allows a process to retrieve umask of another process.
3056 */
3057 static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)3058 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3059 {
3060 int *name = (int *)arg1;
3061 u_int namelen = arg2;
3062 struct proc *p;
3063 int error;
3064 u_short cmask;
3065 pid_t pid;
3066
3067 if (namelen != 1)
3068 return (EINVAL);
3069
3070 pid = (pid_t)name[0];
3071 p = curproc;
3072 if (pid == p->p_pid || pid == 0) {
3073 cmask = p->p_pd->pd_cmask;
3074 goto out;
3075 }
3076
3077 error = pget(pid, PGET_WANTREAD, &p);
3078 if (error != 0)
3079 return (error);
3080
3081 cmask = p->p_pd->pd_cmask;
3082 PRELE(p);
3083 out:
3084 error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3085 return (error);
3086 }
3087
3088 /*
3089 * This sysctl allows a process to set and retrieve binary osreldate of
3090 * another process.
3091 */
3092 static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)3093 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3094 {
3095 int *name = (int *)arg1;
3096 u_int namelen = arg2;
3097 struct proc *p;
3098 int flags, error, osrel;
3099
3100 if (namelen != 1)
3101 return (EINVAL);
3102
3103 if (req->newptr != NULL && req->newlen != sizeof(osrel))
3104 return (EINVAL);
3105
3106 flags = PGET_HOLD | PGET_NOTWEXIT;
3107 if (req->newptr != NULL)
3108 flags |= PGET_CANDEBUG;
3109 else
3110 flags |= PGET_CANSEE;
3111 error = pget((pid_t)name[0], flags, &p);
3112 if (error != 0)
3113 return (error);
3114
3115 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3116 if (error != 0)
3117 goto errout;
3118
3119 if (req->newptr != NULL) {
3120 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3121 if (error != 0)
3122 goto errout;
3123 if (osrel < 0) {
3124 error = EINVAL;
3125 goto errout;
3126 }
3127 p->p_osrel = osrel;
3128 }
3129 errout:
3130 PRELE(p);
3131 return (error);
3132 }
3133
3134 static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)3135 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3136 {
3137 int *name = (int *)arg1;
3138 u_int namelen = arg2;
3139 struct proc *p;
3140 struct kinfo_sigtramp kst;
3141 const struct sysentvec *sv;
3142 int error;
3143 #ifdef COMPAT_FREEBSD32
3144 struct kinfo_sigtramp32 kst32;
3145 #endif
3146
3147 if (namelen != 1)
3148 return (EINVAL);
3149
3150 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3151 if (error != 0)
3152 return (error);
3153 sv = p->p_sysent;
3154 #ifdef COMPAT_FREEBSD32
3155 if ((req->flags & SCTL_MASK32) != 0) {
3156 bzero(&kst32, sizeof(kst32));
3157 if (SV_PROC_FLAG(p, SV_ILP32)) {
3158 if (PROC_HAS_SHP(p)) {
3159 kst32.ksigtramp_start = PROC_SIGCODE(p);
3160 kst32.ksigtramp_end = kst32.ksigtramp_start +
3161 ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3162 *sv->sv_szsigcode :
3163 (uintptr_t)sv->sv_szsigcode);
3164 } else {
3165 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3166 *sv->sv_szsigcode;
3167 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3168 }
3169 }
3170 PROC_UNLOCK(p);
3171 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3172 return (error);
3173 }
3174 #endif
3175 bzero(&kst, sizeof(kst));
3176 if (PROC_HAS_SHP(p)) {
3177 kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3178 kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3179 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3180 (uintptr_t)sv->sv_szsigcode);
3181 } else {
3182 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3183 *sv->sv_szsigcode;
3184 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3185 }
3186 PROC_UNLOCK(p);
3187 error = SYSCTL_OUT(req, &kst, sizeof(kst));
3188 return (error);
3189 }
3190
3191 static int
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)3192 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3193 {
3194 int *name = (int *)arg1;
3195 u_int namelen = arg2;
3196 pid_t pid;
3197 struct proc *p;
3198 struct thread *td1;
3199 uintptr_t addr;
3200 #ifdef COMPAT_FREEBSD32
3201 uint32_t addr32;
3202 #endif
3203 int error;
3204
3205 if (namelen != 1 || req->newptr != NULL)
3206 return (EINVAL);
3207
3208 pid = (pid_t)name[0];
3209 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3210 if (error != 0)
3211 return (error);
3212
3213 PROC_LOCK(p);
3214 #ifdef COMPAT_FREEBSD32
3215 if (SV_CURPROC_FLAG(SV_ILP32)) {
3216 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3217 error = EINVAL;
3218 goto errlocked;
3219 }
3220 }
3221 #endif
3222 if (pid <= PID_MAX) {
3223 td1 = FIRST_THREAD_IN_PROC(p);
3224 } else {
3225 FOREACH_THREAD_IN_PROC(p, td1) {
3226 if (td1->td_tid == pid)
3227 break;
3228 }
3229 }
3230 if (td1 == NULL) {
3231 error = ESRCH;
3232 goto errlocked;
3233 }
3234 /*
3235 * The access to the private thread flags. It is fine as far
3236 * as no out-of-thin-air values are read from td_pflags, and
3237 * usermode read of the td_sigblock_ptr is racy inherently,
3238 * since target process might have already changed it
3239 * meantime.
3240 */
3241 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3242 addr = (uintptr_t)td1->td_sigblock_ptr;
3243 else
3244 error = ENOTTY;
3245
3246 errlocked:
3247 _PRELE(p);
3248 PROC_UNLOCK(p);
3249 if (error != 0)
3250 return (error);
3251
3252 #ifdef COMPAT_FREEBSD32
3253 if (SV_CURPROC_FLAG(SV_ILP32)) {
3254 addr32 = addr;
3255 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3256 } else
3257 #endif
3258 error = SYSCTL_OUT(req, &addr, sizeof(addr));
3259 return (error);
3260 }
3261
3262 static int
sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)3263 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3264 {
3265 struct kinfo_vm_layout kvm;
3266 struct proc *p;
3267 struct vmspace *vmspace;
3268 int error, *name;
3269
3270 name = (int *)arg1;
3271 if ((u_int)arg2 != 1)
3272 return (EINVAL);
3273
3274 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3275 if (error != 0)
3276 return (error);
3277 #ifdef COMPAT_FREEBSD32
3278 if (SV_CURPROC_FLAG(SV_ILP32)) {
3279 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3280 PROC_UNLOCK(p);
3281 return (EINVAL);
3282 }
3283 }
3284 #endif
3285 vmspace = vmspace_acquire_ref(p);
3286 PROC_UNLOCK(p);
3287
3288 memset(&kvm, 0, sizeof(kvm));
3289 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3290 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3291 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3292 kvm.kvm_text_size = vmspace->vm_tsize;
3293 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3294 kvm.kvm_data_size = vmspace->vm_dsize;
3295 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3296 kvm.kvm_stack_size = vmspace->vm_ssize;
3297 kvm.kvm_shp_addr = vmspace->vm_shp_base;
3298 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3299 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3300 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3301 if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3302 kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3303 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3304 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3305 if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3306 kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3307 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3308 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3309 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3310 PROC_HAS_SHP(p))
3311 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3312
3313 #ifdef COMPAT_FREEBSD32
3314 if (SV_CURPROC_FLAG(SV_ILP32)) {
3315 struct kinfo_vm_layout32 kvm32;
3316
3317 memset(&kvm32, 0, sizeof(kvm32));
3318 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3319 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3320 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3321 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3322 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3323 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3324 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3325 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3326 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3327 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3328 kvm32.kvm_map_flags = kvm.kvm_map_flags;
3329 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3330 goto out;
3331 }
3332 #endif
3333
3334 error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3335 #ifdef COMPAT_FREEBSD32
3336 out:
3337 #endif
3338 vmspace_free(vmspace);
3339 return (error);
3340 }
3341
3342 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3343 "Process table");
3344
3345 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3346 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3347 "Return entire process table");
3348
3349 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3350 sysctl_kern_proc, "Process table");
3351
3352 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3353 sysctl_kern_proc, "Process table");
3354
3355 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3356 sysctl_kern_proc, "Process table");
3357
3358 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3359 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3360
3361 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3362 sysctl_kern_proc, "Process table");
3363
3364 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3365 sysctl_kern_proc, "Process table");
3366
3367 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3368 sysctl_kern_proc, "Process table");
3369
3370 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3371 sysctl_kern_proc, "Process table");
3372
3373 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3374 sysctl_kern_proc, "Return process table, no threads");
3375
3376 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3377 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3378 sysctl_kern_proc_args, "Process argument list");
3379
3380 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3381 sysctl_kern_proc_env, "Process environment");
3382
3383 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3384 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3385
3386 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3387 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3388
3389 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3390 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3391 "Process syscall vector name (ABI type)");
3392
3393 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3394 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3395
3396 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3397 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3398
3399 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3400 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3401
3402 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3403 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3404
3405 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3406 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3407
3408 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3409 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3410
3411 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3412 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3413
3414 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3415 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3416
3417 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3418 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3419 "Return process table, including threads");
3420
3421 #ifdef COMPAT_FREEBSD7
3422 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3423 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3424 #endif
3425
3426 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3427 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3428
3429 #if defined(STACK) || defined(DDB)
3430 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3431 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3432 #endif
3433
3434 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3435 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3436
3437 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3438 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3439 "Process resource limits");
3440
3441 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3442 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3443 "Process ps_strings location");
3444
3445 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3446 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3447
3448 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3449 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3450 "Process binary osreldate");
3451
3452 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3453 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3454 "Process signal trampoline location");
3455
3456 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3457 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3458 "Thread sigfastblock address");
3459
3460 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3461 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3462 "Process virtual address space layout info");
3463
3464 static struct sx stop_all_proc_blocker;
3465 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3466
3467 bool
stop_all_proc_block(void)3468 stop_all_proc_block(void)
3469 {
3470 return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3471 }
3472
3473 void
stop_all_proc_unblock(void)3474 stop_all_proc_unblock(void)
3475 {
3476 sx_xunlock(&stop_all_proc_blocker);
3477 }
3478
3479 int allproc_gen;
3480
3481 /*
3482 * stop_all_proc() purpose is to stop all process which have usermode,
3483 * except current process for obvious reasons. This makes it somewhat
3484 * unreliable when invoked from multithreaded process. The service
3485 * must not be user-callable anyway.
3486 */
3487 void
stop_all_proc(void)3488 stop_all_proc(void)
3489 {
3490 struct proc *cp, *p;
3491 int r, gen;
3492 bool restart, seen_stopped, seen_exiting, stopped_some;
3493
3494 if (!stop_all_proc_block())
3495 return;
3496
3497 cp = curproc;
3498 allproc_loop:
3499 sx_xlock(&allproc_lock);
3500 gen = allproc_gen;
3501 seen_exiting = seen_stopped = stopped_some = restart = false;
3502 LIST_REMOVE(cp, p_list);
3503 LIST_INSERT_HEAD(&allproc, cp, p_list);
3504 for (;;) {
3505 p = LIST_NEXT(cp, p_list);
3506 if (p == NULL)
3507 break;
3508 LIST_REMOVE(cp, p_list);
3509 LIST_INSERT_AFTER(p, cp, p_list);
3510 PROC_LOCK(p);
3511 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
3512 P_STOPPED_SIG)) != 0) {
3513 PROC_UNLOCK(p);
3514 continue;
3515 }
3516 if ((p->p_flag2 & P2_WEXIT) != 0) {
3517 seen_exiting = true;
3518 PROC_UNLOCK(p);
3519 continue;
3520 }
3521 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3522 /*
3523 * Stopped processes are tolerated when there
3524 * are no other processes which might continue
3525 * them. P_STOPPED_SINGLE but not
3526 * P_TOTAL_STOP process still has at least one
3527 * thread running.
3528 */
3529 seen_stopped = true;
3530 PROC_UNLOCK(p);
3531 continue;
3532 }
3533 if ((p->p_flag & P_TRACED) != 0) {
3534 /*
3535 * thread_single() below cannot stop traced p,
3536 * so skip it. OTOH, we cannot require
3537 * restart because debugger might be either
3538 * already stopped or traced as well.
3539 */
3540 PROC_UNLOCK(p);
3541 continue;
3542 }
3543 sx_xunlock(&allproc_lock);
3544 _PHOLD(p);
3545 r = thread_single(p, SINGLE_ALLPROC);
3546 if (r != 0)
3547 restart = true;
3548 else
3549 stopped_some = true;
3550 _PRELE(p);
3551 PROC_UNLOCK(p);
3552 sx_xlock(&allproc_lock);
3553 }
3554 /* Catch forked children we did not see in iteration. */
3555 if (gen != allproc_gen)
3556 restart = true;
3557 sx_xunlock(&allproc_lock);
3558 if (restart || stopped_some || seen_exiting || seen_stopped) {
3559 kern_yield(PRI_USER);
3560 goto allproc_loop;
3561 }
3562 }
3563
3564 void
resume_all_proc(void)3565 resume_all_proc(void)
3566 {
3567 struct proc *cp, *p;
3568
3569 cp = curproc;
3570 sx_xlock(&allproc_lock);
3571 again:
3572 LIST_REMOVE(cp, p_list);
3573 LIST_INSERT_HEAD(&allproc, cp, p_list);
3574 for (;;) {
3575 p = LIST_NEXT(cp, p_list);
3576 if (p == NULL)
3577 break;
3578 LIST_REMOVE(cp, p_list);
3579 LIST_INSERT_AFTER(p, cp, p_list);
3580 PROC_LOCK(p);
3581 if ((p->p_flag & P_TOTAL_STOP) != 0) {
3582 sx_xunlock(&allproc_lock);
3583 _PHOLD(p);
3584 thread_single_end(p, SINGLE_ALLPROC);
3585 _PRELE(p);
3586 PROC_UNLOCK(p);
3587 sx_xlock(&allproc_lock);
3588 } else {
3589 PROC_UNLOCK(p);
3590 }
3591 }
3592 /* Did the loop above missed any stopped process ? */
3593 FOREACH_PROC_IN_SYSTEM(p) {
3594 /* No need for proc lock. */
3595 if ((p->p_flag & P_TOTAL_STOP) != 0)
3596 goto again;
3597 }
3598 sx_xunlock(&allproc_lock);
3599
3600 stop_all_proc_unblock();
3601 }
3602
3603 /* #define TOTAL_STOP_DEBUG 1 */
3604 #ifdef TOTAL_STOP_DEBUG
3605 volatile static int ap_resume;
3606 #include <sys/mount.h>
3607
3608 static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)3609 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3610 {
3611 int error, val;
3612
3613 val = 0;
3614 ap_resume = 0;
3615 error = sysctl_handle_int(oidp, &val, 0, req);
3616 if (error != 0 || req->newptr == NULL)
3617 return (error);
3618 if (val != 0) {
3619 stop_all_proc();
3620 syncer_suspend();
3621 while (ap_resume == 0)
3622 ;
3623 syncer_resume();
3624 resume_all_proc();
3625 }
3626 return (0);
3627 }
3628
3629 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3630 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3631 sysctl_debug_stop_all_proc, "I",
3632 "");
3633 #endif
3634