xref: /freebsd/sys/kern/kern_proc.c (revision 9b943425fd90858f9e21cf47009275943a3548a3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_ddb.h"
34 #include "opt_ktrace.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_stack.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/conf.h>
42 #include <sys/elf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/ipc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/loginclass.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/shm.h>
66 #include <sys/smp.h>
67 #include <sys/stack.h>
68 #include <sys/stat.h>
69 #include <sys/dtrace_bsd.h>
70 #include <sys/sysctl.h>
71 #include <sys/filedesc.h>
72 #include <sys/tty.h>
73 #include <sys/signalvar.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/user.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #ifdef KTRACE
80 #include <sys/ktrace.h>
81 #endif
82 
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_radix.h>
96 #include <vm/uma.h>
97 
98 #include <fs/devfs/devfs.h>
99 
100 #ifdef COMPAT_FREEBSD32
101 #include <compat/freebsd32/freebsd32.h>
102 #include <compat/freebsd32/freebsd32_util.h>
103 #endif
104 
105 SDT_PROVIDER_DEFINE(proc);
106 
107 MALLOC_DEFINE(M_SESSION, "session", "session header");
108 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
109 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
110 
111 static void doenterpgrp(struct proc *, struct pgrp *);
112 static void orphanpg(struct pgrp *pg);
113 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
115 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
116     int preferthread);
117 static void pgdelete(struct pgrp *);
118 static int pgrp_init(void *mem, int size, int flags);
119 static int proc_ctor(void *mem, int size, void *arg, int flags);
120 static void proc_dtor(void *mem, int size, void *arg);
121 static int proc_init(void *mem, int size, int flags);
122 static void proc_fini(void *mem, int size);
123 static void pargs_free(struct pargs *pa);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl = NULL;
129 struct sx *pidhashtbl_lock;
130 u_long pidhash;
131 u_long pidhashlock;
132 struct pgrphashhead *pgrphashtbl;
133 u_long pgrphash;
134 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
135 struct sx __exclusive_cache_line allproc_lock;
136 struct sx __exclusive_cache_line proctree_lock;
137 struct mtx __exclusive_cache_line ppeers_lock;
138 struct mtx __exclusive_cache_line procid_lock;
139 uma_zone_t proc_zone;
140 uma_zone_t pgrp_zone;
141 
142 /*
143  * The offset of various fields in struct proc and struct thread.
144  * These are used by kernel debuggers to enumerate kernel threads and
145  * processes.
146  */
147 const int proc_off_p_pid = offsetof(struct proc, p_pid);
148 const int proc_off_p_comm = offsetof(struct proc, p_comm);
149 const int proc_off_p_list = offsetof(struct proc, p_list);
150 const int proc_off_p_hash = offsetof(struct proc, p_hash);
151 const int proc_off_p_threads = offsetof(struct proc, p_threads);
152 const int thread_off_td_tid = offsetof(struct thread, td_tid);
153 const int thread_off_td_name = offsetof(struct thread, td_name);
154 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
155 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
156 const int thread_off_td_plist = offsetof(struct thread, td_plist);
157 
158 EVENTHANDLER_LIST_DEFINE(process_ctor);
159 EVENTHANDLER_LIST_DEFINE(process_dtor);
160 EVENTHANDLER_LIST_DEFINE(process_init);
161 EVENTHANDLER_LIST_DEFINE(process_fini);
162 EVENTHANDLER_LIST_DEFINE(process_exit);
163 EVENTHANDLER_LIST_DEFINE(process_fork);
164 EVENTHANDLER_LIST_DEFINE(process_exec);
165 
166 int kstack_pages = KSTACK_PAGES;
167 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &kstack_pages, 0,
169     "Kernel stack size in pages");
170 static int vmmap_skip_res_cnt = 0;
171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
172     &vmmap_skip_res_cnt, 0,
173     "Skip calculation of the pages resident count in kern.proc.vmmap");
174 
175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
176 #ifdef COMPAT_FREEBSD32
177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
178 #endif
179 
180 /*
181  * Initialize global process hashing structures.
182  */
183 void
procinit(void)184 procinit(void)
185 {
186 	u_long i;
187 
188 	sx_init(&allproc_lock, "allproc");
189 	sx_init(&proctree_lock, "proctree");
190 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
191 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
192 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
193 	pidhashlock = (pidhash + 1) / 64;
194 	if (pidhashlock > 0)
195 		pidhashlock--;
196 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
197 	    M_PROC, M_WAITOK | M_ZERO);
198 	for (i = 0; i < pidhashlock + 1; i++)
199 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
200 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
201 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
202 	    proc_ctor, proc_dtor, proc_init, proc_fini,
203 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 	pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
205 	    pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 	uihashinit();
207 }
208 
209 /*
210  * Prepare a proc for use.
211  */
212 static int
proc_ctor(void * mem,int size,void * arg,int flags)213 proc_ctor(void *mem, int size, void *arg, int flags)
214 {
215 	struct proc *p;
216 	struct thread *td;
217 
218 	p = (struct proc *)mem;
219 #ifdef KDTRACE_HOOKS
220 	kdtrace_proc_ctor(p);
221 #endif
222 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
223 	td = FIRST_THREAD_IN_PROC(p);
224 	if (td != NULL) {
225 		/* Make sure all thread constructors are executed */
226 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
227 	}
228 	return (0);
229 }
230 
231 /*
232  * Reclaim a proc after use.
233  */
234 static void
proc_dtor(void * mem,int size,void * arg)235 proc_dtor(void *mem, int size, void *arg)
236 {
237 	struct proc *p;
238 	struct thread *td;
239 
240 	p = mem;
241 	td = FIRST_THREAD_IN_PROC(p);
242 	if (td != NULL) {
243 		KASSERT(p->p_numthreads == 1,
244 		    ("too many threads in exiting process"));
245 
246 		/* Free all OSD associated to this thread. */
247 		osd_thread_exit(td);
248 		ast_kclear(td);
249 
250 		/* Make sure all thread destructors are executed */
251 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
252 	}
253 	KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
254 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
255 #ifdef KDTRACE_HOOKS
256 	kdtrace_proc_dtor(p);
257 #endif
258 	KASSERT(p->p_ksi == NULL || !KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
259 }
260 
261 /*
262  * Initialize type-stable parts of a proc (when newly created).
263  */
264 static int
proc_init(void * mem,int size,int flags)265 proc_init(void *mem, int size, int flags)
266 {
267 	struct proc *p;
268 
269 	p = (struct proc *)mem;
270 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
271 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
272 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
273 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
274 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
275 	cv_init(&p->p_pwait, "ppwait");
276 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
277 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
278 	p->p_stats = pstats_alloc();
279 	p->p_pgrp = NULL;
280 	TAILQ_INIT(&p->p_kqtim_stop);
281 	STAILQ_INIT(&p->p_ktr);
282 	return (0);
283 }
284 
285 /*
286  * UMA should ensure that this function is never called.
287  * Freeing a proc structure would violate type stability.
288  */
289 static void
proc_fini(void * mem,int size)290 proc_fini(void *mem, int size)
291 {
292 #ifdef notnow
293 	struct proc *p;
294 
295 	p = (struct proc *)mem;
296 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
297 	pstats_free(p->p_stats);
298 	thread_free(FIRST_THREAD_IN_PROC(p));
299 	mtx_destroy(&p->p_mtx);
300 	if (p->p_ksi != NULL)
301 		ksiginfo_free(p->p_ksi);
302 #else
303 	panic("proc reclaimed");
304 #endif
305 }
306 
307 static int
pgrp_init(void * mem,int size,int flags)308 pgrp_init(void *mem, int size, int flags)
309 {
310 	struct pgrp *pg;
311 
312 	pg = mem;
313 	mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
314 	sx_init(&pg->pg_killsx, "killpg racer");
315 	return (0);
316 }
317 
318 /*
319  * PID space management.
320  *
321  * These bitmaps are used by fork_findpid.
322  */
323 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
324 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
325 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
326 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
327 
328 static bitstr_t *proc_id_array[] = {
329 	proc_id_pidmap,
330 	proc_id_grpidmap,
331 	proc_id_sessidmap,
332 	proc_id_reapmap,
333 };
334 
335 void
proc_id_set(int type,pid_t id)336 proc_id_set(int type, pid_t id)
337 {
338 
339 	KASSERT(type >= 0 && type < nitems(proc_id_array),
340 	    ("invalid type %d\n", type));
341 	mtx_lock(&procid_lock);
342 	KASSERT(bit_test(proc_id_array[type], id) == 0,
343 	    ("bit %d already set in %d\n", id, type));
344 	bit_set(proc_id_array[type], id);
345 	mtx_unlock(&procid_lock);
346 }
347 
348 void
proc_id_set_cond(int type,pid_t id)349 proc_id_set_cond(int type, pid_t id)
350 {
351 
352 	KASSERT(type >= 0 && type < nitems(proc_id_array),
353 	    ("invalid type %d\n", type));
354 	if (bit_test(proc_id_array[type], id))
355 		return;
356 	mtx_lock(&procid_lock);
357 	bit_set(proc_id_array[type], id);
358 	mtx_unlock(&procid_lock);
359 }
360 
361 void
proc_id_clear(int type,pid_t id)362 proc_id_clear(int type, pid_t id)
363 {
364 
365 	KASSERT(type >= 0 && type < nitems(proc_id_array),
366 	    ("invalid type %d\n", type));
367 	mtx_lock(&procid_lock);
368 	KASSERT(bit_test(proc_id_array[type], id) != 0,
369 	    ("bit %d not set in %d\n", id, type));
370 	bit_clear(proc_id_array[type], id);
371 	mtx_unlock(&procid_lock);
372 }
373 
374 /*
375  * Is p an inferior of the current process?
376  */
377 int
inferior(struct proc * p)378 inferior(struct proc *p)
379 {
380 
381 	sx_assert(&proctree_lock, SX_LOCKED);
382 	PROC_LOCK_ASSERT(p, MA_OWNED);
383 	for (; p != curproc; p = proc_realparent(p)) {
384 		if (p->p_pid == 0)
385 			return (0);
386 	}
387 	return (1);
388 }
389 
390 /*
391  * Shared lock all the pid hash lists.
392  */
393 void
pidhash_slockall(void)394 pidhash_slockall(void)
395 {
396 	u_long i;
397 
398 	for (i = 0; i < pidhashlock + 1; i++)
399 		sx_slock(&pidhashtbl_lock[i]);
400 }
401 
402 /*
403  * Shared unlock all the pid hash lists.
404  */
405 void
pidhash_sunlockall(void)406 pidhash_sunlockall(void)
407 {
408 	u_long i;
409 
410 	for (i = 0; i < pidhashlock + 1; i++)
411 		sx_sunlock(&pidhashtbl_lock[i]);
412 }
413 
414 /*
415  * Similar to pfind(), this function locate a process by number.
416  */
417 struct proc *
pfind_any_locked(pid_t pid)418 pfind_any_locked(pid_t pid)
419 {
420 	struct proc *p;
421 
422 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
423 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
424 		if (p->p_pid == pid) {
425 			PROC_LOCK(p);
426 			if (p->p_state == PRS_NEW) {
427 				PROC_UNLOCK(p);
428 				p = NULL;
429 			}
430 			break;
431 		}
432 	}
433 	return (p);
434 }
435 
436 /*
437  * Locate a process by number.
438  *
439  * By not returning processes in the PRS_NEW state, we allow callers to avoid
440  * testing for that condition to avoid dereferencing p_ucred, et al.
441  */
442 static __always_inline struct proc *
_pfind(pid_t pid,bool zombie)443 _pfind(pid_t pid, bool zombie)
444 {
445 	struct proc *p;
446 
447 	p = curproc;
448 	if (p->p_pid == pid) {
449 		PROC_LOCK(p);
450 		return (p);
451 	}
452 	sx_slock(PIDHASHLOCK(pid));
453 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
454 		if (p->p_pid == pid) {
455 			PROC_LOCK(p);
456 			if (p->p_state == PRS_NEW ||
457 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
458 				PROC_UNLOCK(p);
459 				p = NULL;
460 			}
461 			break;
462 		}
463 	}
464 	sx_sunlock(PIDHASHLOCK(pid));
465 	return (p);
466 }
467 
468 struct proc *
pfind(pid_t pid)469 pfind(pid_t pid)
470 {
471 
472 	return (_pfind(pid, false));
473 }
474 
475 /*
476  * Same as pfind but allow zombies.
477  */
478 struct proc *
pfind_any(pid_t pid)479 pfind_any(pid_t pid)
480 {
481 
482 	return (_pfind(pid, true));
483 }
484 
485 /*
486  * Locate a process group by number.
487  * The caller must hold proctree_lock.
488  */
489 struct pgrp *
pgfind(pid_t pgid)490 pgfind(pid_t pgid)
491 {
492 	struct pgrp *pgrp;
493 
494 	sx_assert(&proctree_lock, SX_LOCKED);
495 
496 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
497 		if (pgrp->pg_id == pgid) {
498 			PGRP_LOCK(pgrp);
499 			return (pgrp);
500 		}
501 	}
502 	return (NULL);
503 }
504 
505 /*
506  * Locate process and do additional manipulations, depending on flags.
507  */
508 int
pget(pid_t pid,int flags,struct proc ** pp)509 pget(pid_t pid, int flags, struct proc **pp)
510 {
511 	struct proc *p;
512 	struct thread *td1;
513 	int error;
514 
515 	p = curproc;
516 	if (p->p_pid == pid) {
517 		PROC_LOCK(p);
518 	} else {
519 		p = NULL;
520 		if (pid <= PID_MAX) {
521 			if ((flags & PGET_NOTWEXIT) == 0)
522 				p = pfind_any(pid);
523 			else
524 				p = pfind(pid);
525 		} else if ((flags & PGET_NOTID) == 0) {
526 			td1 = tdfind(pid, -1);
527 			if (td1 != NULL)
528 				p = td1->td_proc;
529 		}
530 		if (p == NULL)
531 			return (ESRCH);
532 		if ((flags & PGET_CANSEE) != 0) {
533 			error = p_cansee(curthread, p);
534 			if (error != 0)
535 				goto errout;
536 		}
537 	}
538 	if ((flags & PGET_CANDEBUG) != 0) {
539 		error = p_candebug(curthread, p);
540 		if (error != 0)
541 			goto errout;
542 	}
543 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
544 		error = EPERM;
545 		goto errout;
546 	}
547 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
548 		error = ESRCH;
549 		goto errout;
550 	}
551 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
552 		/*
553 		 * XXXRW: Not clear ESRCH is the right error during proc
554 		 * execve().
555 		 */
556 		error = ESRCH;
557 		goto errout;
558 	}
559 	if ((flags & PGET_HOLD) != 0) {
560 		_PHOLD(p);
561 		PROC_UNLOCK(p);
562 	}
563 	*pp = p;
564 	return (0);
565 errout:
566 	PROC_UNLOCK(p);
567 	return (error);
568 }
569 
570 /*
571  * Create a new process group.
572  * pgid must be equal to the pid of p.
573  * Begin a new session if required.
574  */
575 int
enterpgrp(struct proc * p,pid_t pgid,struct pgrp * pgrp,struct session * sess)576 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
577 {
578 	struct pgrp *old_pgrp;
579 
580 	sx_assert(&proctree_lock, SX_XLOCKED);
581 
582 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
583 	KASSERT(p->p_pid == pgid,
584 	    ("enterpgrp: new pgrp and pid != pgid"));
585 	KASSERT(pgfind(pgid) == NULL,
586 	    ("enterpgrp: pgrp with pgid exists"));
587 	KASSERT(!SESS_LEADER(p),
588 	    ("enterpgrp: session leader attempted setpgrp"));
589 
590 	old_pgrp = p->p_pgrp;
591 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
592 		sx_xunlock(&proctree_lock);
593 		sx_xlock(&old_pgrp->pg_killsx);
594 		sx_xunlock(&old_pgrp->pg_killsx);
595 		return (ERESTART);
596 	}
597 	MPASS(old_pgrp == p->p_pgrp);
598 
599 	if (sess != NULL) {
600 		/*
601 		 * new session
602 		 */
603 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
604 		PROC_LOCK(p);
605 		p->p_flag &= ~P_CONTROLT;
606 		PROC_UNLOCK(p);
607 		PGRP_LOCK(pgrp);
608 		sess->s_leader = p;
609 		sess->s_sid = p->p_pid;
610 		proc_id_set(PROC_ID_SESSION, p->p_pid);
611 		refcount_init(&sess->s_count, 1);
612 		sess->s_ttyvp = NULL;
613 		sess->s_ttydp = NULL;
614 		sess->s_ttyp = NULL;
615 		bcopy(p->p_session->s_login, sess->s_login,
616 			    sizeof(sess->s_login));
617 		pgrp->pg_session = sess;
618 		KASSERT(p == curproc,
619 		    ("enterpgrp: mksession and p != curproc"));
620 	} else {
621 		pgrp->pg_session = p->p_session;
622 		sess_hold(pgrp->pg_session);
623 		PGRP_LOCK(pgrp);
624 	}
625 	pgrp->pg_id = pgid;
626 	proc_id_set(PROC_ID_GROUP, p->p_pid);
627 	LIST_INIT(&pgrp->pg_members);
628 	pgrp->pg_flags = 0;
629 
630 	/*
631 	 * As we have an exclusive lock of proctree_lock,
632 	 * this should not deadlock.
633 	 */
634 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
635 	SLIST_INIT(&pgrp->pg_sigiolst);
636 	PGRP_UNLOCK(pgrp);
637 
638 	doenterpgrp(p, pgrp);
639 
640 	sx_xunlock(&old_pgrp->pg_killsx);
641 	return (0);
642 }
643 
644 /*
645  * Move p to an existing process group
646  */
647 int
enterthispgrp(struct proc * p,struct pgrp * pgrp)648 enterthispgrp(struct proc *p, struct pgrp *pgrp)
649 {
650 	struct pgrp *old_pgrp;
651 
652 	sx_assert(&proctree_lock, SX_XLOCKED);
653 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
654 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
655 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
656 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
657 	KASSERT(pgrp->pg_session == p->p_session,
658 	    ("%s: pgrp's session %p, p->p_session %p proc %p\n",
659 	    __func__, pgrp->pg_session, p->p_session, p));
660 	KASSERT(pgrp != p->p_pgrp,
661 	    ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
662 
663 	old_pgrp = p->p_pgrp;
664 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
665 		sx_xunlock(&proctree_lock);
666 		sx_xlock(&old_pgrp->pg_killsx);
667 		sx_xunlock(&old_pgrp->pg_killsx);
668 		return (ERESTART);
669 	}
670 	MPASS(old_pgrp == p->p_pgrp);
671 	if (!sx_try_xlock(&pgrp->pg_killsx)) {
672 		sx_xunlock(&old_pgrp->pg_killsx);
673 		sx_xunlock(&proctree_lock);
674 		sx_xlock(&pgrp->pg_killsx);
675 		sx_xunlock(&pgrp->pg_killsx);
676 		return (ERESTART);
677 	}
678 
679 	doenterpgrp(p, pgrp);
680 
681 	sx_xunlock(&pgrp->pg_killsx);
682 	sx_xunlock(&old_pgrp->pg_killsx);
683 	return (0);
684 }
685 
686 /*
687  * If true, any child of q which belongs to group pgrp, qualifies the
688  * process group pgrp as not orphaned.
689  */
690 static bool
isjobproc(struct proc * q,struct pgrp * pgrp)691 isjobproc(struct proc *q, struct pgrp *pgrp)
692 {
693 	sx_assert(&proctree_lock, SX_LOCKED);
694 
695 	return (q->p_pgrp != pgrp &&
696 	    q->p_pgrp->pg_session == pgrp->pg_session);
697 }
698 
699 static struct proc *
jobc_reaper(struct proc * p)700 jobc_reaper(struct proc *p)
701 {
702 	struct proc *pp;
703 
704 	sx_assert(&proctree_lock, SA_LOCKED);
705 
706 	for (pp = p;;) {
707 		pp = pp->p_reaper;
708 		if (pp->p_reaper == pp ||
709 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
710 			return (pp);
711 	}
712 }
713 
714 static struct proc *
jobc_parent(struct proc * p,struct proc * p_exiting)715 jobc_parent(struct proc *p, struct proc *p_exiting)
716 {
717 	struct proc *pp;
718 
719 	sx_assert(&proctree_lock, SA_LOCKED);
720 
721 	pp = proc_realparent(p);
722 	if (pp->p_pptr == NULL || pp == p_exiting ||
723 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
724 		return (pp);
725 	return (jobc_reaper(pp));
726 }
727 
728 int
pgrp_calc_jobc(struct pgrp * pgrp)729 pgrp_calc_jobc(struct pgrp *pgrp)
730 {
731 	struct proc *q;
732 	int cnt;
733 
734 #ifdef INVARIANTS
735 	if (!mtx_owned(&pgrp->pg_mtx))
736 		sx_assert(&proctree_lock, SA_LOCKED);
737 #endif
738 
739 	cnt = 0;
740 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
741 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
742 		    q->p_pptr == NULL)
743 			continue;
744 		if (isjobproc(jobc_parent(q, NULL), pgrp))
745 			cnt++;
746 	}
747 	return (cnt);
748 }
749 
750 /*
751  * Move p to a process group
752  */
753 static void
doenterpgrp(struct proc * p,struct pgrp * pgrp)754 doenterpgrp(struct proc *p, struct pgrp *pgrp)
755 {
756 	struct pgrp *savepgrp;
757 	struct proc *pp;
758 
759 	sx_assert(&proctree_lock, SX_XLOCKED);
760 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
761 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
762 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
763 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
764 
765 	savepgrp = p->p_pgrp;
766 	pp = jobc_parent(p, NULL);
767 
768 	PGRP_LOCK(pgrp);
769 	PGRP_LOCK(savepgrp);
770 	if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
771 		orphanpg(savepgrp);
772 	PROC_LOCK(p);
773 	LIST_REMOVE(p, p_pglist);
774 	p->p_pgrp = pgrp;
775 	PROC_UNLOCK(p);
776 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
777 	if (isjobproc(pp, pgrp))
778 		pgrp->pg_flags &= ~PGRP_ORPHANED;
779 	PGRP_UNLOCK(savepgrp);
780 	PGRP_UNLOCK(pgrp);
781 	if (LIST_EMPTY(&savepgrp->pg_members))
782 		pgdelete(savepgrp);
783 }
784 
785 /*
786  * remove process from process group
787  */
788 int
leavepgrp(struct proc * p)789 leavepgrp(struct proc *p)
790 {
791 	struct pgrp *savepgrp;
792 
793 	sx_assert(&proctree_lock, SX_XLOCKED);
794 	savepgrp = p->p_pgrp;
795 	PGRP_LOCK(savepgrp);
796 	PROC_LOCK(p);
797 	LIST_REMOVE(p, p_pglist);
798 	p->p_pgrp = NULL;
799 	PROC_UNLOCK(p);
800 	PGRP_UNLOCK(savepgrp);
801 	if (LIST_EMPTY(&savepgrp->pg_members))
802 		pgdelete(savepgrp);
803 	return (0);
804 }
805 
806 /*
807  * delete a process group
808  */
809 static void
pgdelete(struct pgrp * pgrp)810 pgdelete(struct pgrp *pgrp)
811 {
812 	struct session *savesess;
813 	struct tty *tp;
814 
815 	sx_assert(&proctree_lock, SX_XLOCKED);
816 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
817 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
818 
819 	/*
820 	 * Reset any sigio structures pointing to us as a result of
821 	 * F_SETOWN with our pgid.  The proctree lock ensures that
822 	 * new sigio structures will not be added after this point.
823 	 */
824 	funsetownlst(&pgrp->pg_sigiolst);
825 
826 	PGRP_LOCK(pgrp);
827 	tp = pgrp->pg_session->s_ttyp;
828 	LIST_REMOVE(pgrp, pg_hash);
829 	savesess = pgrp->pg_session;
830 	PGRP_UNLOCK(pgrp);
831 
832 	/* Remove the reference to the pgrp before deallocating it. */
833 	if (tp != NULL) {
834 		tty_lock(tp);
835 		tty_rel_pgrp(tp, pgrp);
836 	}
837 
838 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
839 	uma_zfree(pgrp_zone, pgrp);
840 	sess_release(savesess);
841 }
842 
843 
844 static void
fixjobc_kill(struct proc * p)845 fixjobc_kill(struct proc *p)
846 {
847 	struct proc *q;
848 	struct pgrp *pgrp;
849 
850 	sx_assert(&proctree_lock, SX_LOCKED);
851 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
852 	pgrp = p->p_pgrp;
853 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
854 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
855 
856 	/*
857 	 * p no longer affects process group orphanage for children.
858 	 * It is marked by the flag because p is only physically
859 	 * removed from its process group on wait(2).
860 	 */
861 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
862 	p->p_treeflag |= P_TREE_GRPEXITED;
863 
864 	/*
865 	 * Check if exiting p orphans its own group.
866 	 */
867 	pgrp = p->p_pgrp;
868 	if (isjobproc(jobc_parent(p, NULL), pgrp)) {
869 		PGRP_LOCK(pgrp);
870 		if (pgrp_calc_jobc(pgrp) == 0)
871 			orphanpg(pgrp);
872 		PGRP_UNLOCK(pgrp);
873 	}
874 
875 	/*
876 	 * Check this process' children to see whether they qualify
877 	 * their process groups after reparenting to reaper.
878 	 */
879 	LIST_FOREACH(q, &p->p_children, p_sibling) {
880 		pgrp = q->p_pgrp;
881 		PGRP_LOCK(pgrp);
882 		if (pgrp_calc_jobc(pgrp) == 0) {
883 			/*
884 			 * We want to handle exactly the children that
885 			 * has p as realparent.  Then, when calculating
886 			 * jobc_parent for children, we should ignore
887 			 * P_TREE_GRPEXITED flag already set on p.
888 			 */
889 			if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
890 				orphanpg(pgrp);
891 		} else
892 			pgrp->pg_flags &= ~PGRP_ORPHANED;
893 		PGRP_UNLOCK(pgrp);
894 	}
895 	LIST_FOREACH(q, &p->p_orphans, p_orphan) {
896 		pgrp = q->p_pgrp;
897 		PGRP_LOCK(pgrp);
898 		if (pgrp_calc_jobc(pgrp) == 0) {
899 			if (isjobproc(p, pgrp))
900 				orphanpg(pgrp);
901 		} else
902 			pgrp->pg_flags &= ~PGRP_ORPHANED;
903 		PGRP_UNLOCK(pgrp);
904 	}
905 }
906 
907 void
killjobc(void)908 killjobc(void)
909 {
910 	struct session *sp;
911 	struct tty *tp;
912 	struct proc *p;
913 	struct vnode *ttyvp;
914 
915 	p = curproc;
916 	MPASS(p->p_flag & P_WEXIT);
917 	sx_assert(&proctree_lock, SX_LOCKED);
918 
919 	if (SESS_LEADER(p)) {
920 		sp = p->p_session;
921 
922 		/*
923 		 * s_ttyp is not zero'd; we use this to indicate that
924 		 * the session once had a controlling terminal. (for
925 		 * logging and informational purposes)
926 		 */
927 		SESS_LOCK(sp);
928 		ttyvp = sp->s_ttyvp;
929 		tp = sp->s_ttyp;
930 		sp->s_ttyvp = NULL;
931 		sp->s_ttydp = NULL;
932 		sp->s_leader = NULL;
933 		SESS_UNLOCK(sp);
934 
935 		/*
936 		 * Signal foreground pgrp and revoke access to
937 		 * controlling terminal if it has not been revoked
938 		 * already.
939 		 *
940 		 * Because the TTY may have been revoked in the mean
941 		 * time and could already have a new session associated
942 		 * with it, make sure we don't send a SIGHUP to a
943 		 * foreground process group that does not belong to this
944 		 * session.
945 		 */
946 
947 		if (tp != NULL) {
948 			tty_lock(tp);
949 			if (tp->t_session == sp)
950 				tty_signal_pgrp(tp, SIGHUP);
951 			tty_unlock(tp);
952 		}
953 
954 		if (ttyvp != NULL) {
955 			sx_xunlock(&proctree_lock);
956 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
957 				VOP_REVOKE(ttyvp, REVOKEALL);
958 				VOP_UNLOCK(ttyvp);
959 			}
960 			devfs_ctty_unref(ttyvp);
961 			sx_xlock(&proctree_lock);
962 		}
963 	}
964 	fixjobc_kill(p);
965 }
966 
967 /*
968  * A process group has become orphaned, mark it as such for signal
969  * delivery code.  If there are any stopped processes in the group,
970  * hang-up all process in that group.
971  */
972 static void
orphanpg(struct pgrp * pg)973 orphanpg(struct pgrp *pg)
974 {
975 	struct proc *p;
976 
977 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
978 
979 	pg->pg_flags |= PGRP_ORPHANED;
980 
981 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
982 		PROC_LOCK(p);
983 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
984 			PROC_UNLOCK(p);
985 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
986 				PROC_LOCK(p);
987 				kern_psignal(p, SIGHUP);
988 				kern_psignal(p, SIGCONT);
989 				PROC_UNLOCK(p);
990 			}
991 			return;
992 		}
993 		PROC_UNLOCK(p);
994 	}
995 }
996 
997 void
sess_hold(struct session * s)998 sess_hold(struct session *s)
999 {
1000 
1001 	refcount_acquire(&s->s_count);
1002 }
1003 
1004 void
sess_release(struct session * s)1005 sess_release(struct session *s)
1006 {
1007 
1008 	if (refcount_release(&s->s_count)) {
1009 		if (s->s_ttyp != NULL) {
1010 			tty_lock(s->s_ttyp);
1011 			tty_rel_sess(s->s_ttyp, s);
1012 		}
1013 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
1014 		mtx_destroy(&s->s_mtx);
1015 		free(s, M_SESSION);
1016 	}
1017 }
1018 
1019 #ifdef DDB
1020 
1021 static void
db_print_pgrp_one(struct pgrp * pgrp,struct proc * p)1022 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1023 {
1024 	db_printf(
1025 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
1026 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1027 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1028 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1029 }
1030 
DB_SHOW_COMMAND_FLAGS(pgrpdump,pgrpdump,DB_CMD_MEMSAFE)1031 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1032 {
1033 	struct pgrp *pgrp;
1034 	struct proc *p;
1035 	int i;
1036 
1037 	for (i = 0; i <= pgrphash; i++) {
1038 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
1039 			db_printf("indx %d\n", i);
1040 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1041 				db_printf(
1042 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1043 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1044 				    pgrp->pg_session->s_count,
1045 				    LIST_FIRST(&pgrp->pg_members));
1046 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1047 					db_print_pgrp_one(pgrp, p);
1048 			}
1049 		}
1050 	}
1051 }
1052 #endif /* DDB */
1053 
1054 /*
1055  * Calculate the kinfo_proc members which contain process-wide
1056  * informations.
1057  * Must be called with the target process locked.
1058  */
1059 static void
fill_kinfo_aggregate(struct proc * p,struct kinfo_proc * kp)1060 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1061 {
1062 	struct thread *td;
1063 
1064 	PROC_LOCK_ASSERT(p, MA_OWNED);
1065 
1066 	kp->ki_estcpu = 0;
1067 	kp->ki_pctcpu = 0;
1068 	FOREACH_THREAD_IN_PROC(p, td) {
1069 		thread_lock(td);
1070 		kp->ki_pctcpu += sched_pctcpu(td);
1071 		kp->ki_estcpu += sched_estcpu(td);
1072 		thread_unlock(td);
1073 	}
1074 }
1075 
1076 /*
1077  * Fill in any information that is common to all threads in the process.
1078  * Must be called with the target process locked.
1079  */
1080 static void
fill_kinfo_proc_only(struct proc * p,struct kinfo_proc * kp)1081 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1082 {
1083 	struct thread *td0;
1084 	struct ucred *cred;
1085 	struct sigacts *ps;
1086 	struct timeval boottime;
1087 
1088 	PROC_LOCK_ASSERT(p, MA_OWNED);
1089 
1090 	kp->ki_structsize = sizeof(*kp);
1091 	kp->ki_paddr = p;
1092 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1093 	kp->ki_args = p->p_args;
1094 	kp->ki_textvp = p->p_textvp;
1095 #ifdef KTRACE
1096 	kp->ki_tracep = ktr_get_tracevp(p, false);
1097 	kp->ki_traceflag = p->p_traceflag;
1098 #endif
1099 	kp->ki_fd = p->p_fd;
1100 	kp->ki_pd = p->p_pd;
1101 	kp->ki_vmspace = p->p_vmspace;
1102 	kp->ki_flag = p->p_flag;
1103 	kp->ki_flag2 = p->p_flag2;
1104 	cred = p->p_ucred;
1105 	if (cred) {
1106 		kp->ki_uid = cred->cr_uid;
1107 		kp->ki_ruid = cred->cr_ruid;
1108 		kp->ki_svuid = cred->cr_svuid;
1109 		kp->ki_cr_flags = 0;
1110 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1111 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1112 		/* XXX bde doesn't like KI_NGROUPS */
1113 		if (1 + cred->cr_ngroups > KI_NGROUPS) {
1114 			kp->ki_ngroups = KI_NGROUPS;
1115 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1116 		} else
1117 			kp->ki_ngroups = 1 + cred->cr_ngroups;
1118 		kp->ki_groups[0] = cred->cr_gid;
1119 		bcopy(cred->cr_groups, kp->ki_groups + 1,
1120 		    (kp->ki_ngroups - 1) * sizeof(gid_t));
1121 		kp->ki_rgid = cred->cr_rgid;
1122 		kp->ki_svgid = cred->cr_svgid;
1123 		/* If jailed(cred), emulate the old P_JAILED flag. */
1124 		if (jailed(cred)) {
1125 			kp->ki_flag |= P_JAILED;
1126 			/* If inside the jail, use 0 as a jail ID. */
1127 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1128 				kp->ki_jid = cred->cr_prison->pr_id;
1129 		}
1130 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1131 		    sizeof(kp->ki_loginclass));
1132 	}
1133 	ps = p->p_sigacts;
1134 	if (ps) {
1135 		mtx_lock(&ps->ps_mtx);
1136 		kp->ki_sigignore = ps->ps_sigignore;
1137 		kp->ki_sigcatch = ps->ps_sigcatch;
1138 		mtx_unlock(&ps->ps_mtx);
1139 	}
1140 	if (p->p_state != PRS_NEW &&
1141 	    p->p_state != PRS_ZOMBIE &&
1142 	    p->p_vmspace != NULL) {
1143 		struct vmspace *vm = p->p_vmspace;
1144 
1145 		kp->ki_size = vm->vm_map.size;
1146 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1147 		FOREACH_THREAD_IN_PROC(p, td0)
1148 			kp->ki_rssize += td0->td_kstack_pages;
1149 		kp->ki_swrss = vm->vm_swrss;
1150 		kp->ki_tsize = vm->vm_tsize;
1151 		kp->ki_dsize = vm->vm_dsize;
1152 		kp->ki_ssize = vm->vm_ssize;
1153 	} else if (p->p_state == PRS_ZOMBIE)
1154 		kp->ki_stat = SZOMB;
1155 	kp->ki_sflag = PS_INMEM;
1156 	/* Calculate legacy swtime as seconds since 'swtick'. */
1157 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1158 	kp->ki_pid = p->p_pid;
1159 	kp->ki_nice = p->p_nice;
1160 	kp->ki_fibnum = p->p_fibnum;
1161 	kp->ki_start = p->p_stats->p_start;
1162 	getboottime(&boottime);
1163 	timevaladd(&kp->ki_start, &boottime);
1164 	PROC_STATLOCK(p);
1165 	rufetch(p, &kp->ki_rusage);
1166 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1167 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1168 	PROC_STATUNLOCK(p);
1169 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1170 	/* Some callers want child times in a single value. */
1171 	kp->ki_childtime = kp->ki_childstime;
1172 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1173 
1174 	FOREACH_THREAD_IN_PROC(p, td0)
1175 		kp->ki_cow += td0->td_cow;
1176 
1177 	if (p->p_comm[0] != '\0')
1178 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1179 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1180 	    p->p_sysent->sv_name[0] != '\0')
1181 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1182 	kp->ki_siglist = p->p_siglist;
1183 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1184 	kp->ki_acflag = p->p_acflag;
1185 	kp->ki_lock = p->p_lock;
1186 	if (p->p_pptr) {
1187 		kp->ki_ppid = p->p_oppid;
1188 		if (p->p_flag & P_TRACED)
1189 			kp->ki_tracer = p->p_pptr->p_pid;
1190 	}
1191 }
1192 
1193 /*
1194  * Fill job-related process information.
1195  */
1196 static void
fill_kinfo_proc_pgrp(struct proc * p,struct kinfo_proc * kp)1197 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1198 {
1199 	struct tty *tp;
1200 	struct session *sp;
1201 	struct pgrp *pgrp;
1202 
1203 	sx_assert(&proctree_lock, SA_LOCKED);
1204 	PROC_LOCK_ASSERT(p, MA_OWNED);
1205 
1206 	pgrp = p->p_pgrp;
1207 	if (pgrp == NULL)
1208 		return;
1209 
1210 	kp->ki_pgid = pgrp->pg_id;
1211 	kp->ki_jobc = pgrp_calc_jobc(pgrp);
1212 
1213 	sp = pgrp->pg_session;
1214 	tp = NULL;
1215 
1216 	if (sp != NULL) {
1217 		kp->ki_sid = sp->s_sid;
1218 		SESS_LOCK(sp);
1219 		strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1220 		if (sp->s_ttyvp)
1221 			kp->ki_kiflag |= KI_CTTY;
1222 		if (SESS_LEADER(p))
1223 			kp->ki_kiflag |= KI_SLEADER;
1224 		tp = sp->s_ttyp;
1225 		SESS_UNLOCK(sp);
1226 	}
1227 
1228 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1229 		kp->ki_tdev = tty_udev(tp);
1230 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1231 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1232 		if (tp->t_session)
1233 			kp->ki_tsid = tp->t_session->s_sid;
1234 	} else {
1235 		kp->ki_tdev = NODEV;
1236 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1237 	}
1238 }
1239 
1240 /*
1241  * Fill in information that is thread specific.  Must be called with
1242  * target process locked.  If 'preferthread' is set, overwrite certain
1243  * process-related fields that are maintained for both threads and
1244  * processes.
1245  */
1246 static void
fill_kinfo_thread(struct thread * td,struct kinfo_proc * kp,int preferthread)1247 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1248 {
1249 	struct proc *p;
1250 
1251 	p = td->td_proc;
1252 	kp->ki_tdaddr = td;
1253 	PROC_LOCK_ASSERT(p, MA_OWNED);
1254 
1255 	if (preferthread)
1256 		PROC_STATLOCK(p);
1257 	thread_lock(td);
1258 	if (td->td_wmesg != NULL)
1259 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1260 	else
1261 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1262 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1263 	    sizeof(kp->ki_tdname)) {
1264 		strlcpy(kp->ki_moretdname,
1265 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1266 		    sizeof(kp->ki_moretdname));
1267 	} else {
1268 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1269 	}
1270 	if (TD_ON_LOCK(td)) {
1271 		kp->ki_kiflag |= KI_LOCKBLOCK;
1272 		strlcpy(kp->ki_lockname, td->td_lockname,
1273 		    sizeof(kp->ki_lockname));
1274 	} else {
1275 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1276 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1277 	}
1278 
1279 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1280 		if (TD_ON_RUNQ(td) ||
1281 		    TD_CAN_RUN(td) ||
1282 		    TD_IS_RUNNING(td)) {
1283 			kp->ki_stat = SRUN;
1284 		} else if (P_SHOULDSTOP(p)) {
1285 			kp->ki_stat = SSTOP;
1286 		} else if (TD_IS_SLEEPING(td)) {
1287 			kp->ki_stat = SSLEEP;
1288 		} else if (TD_ON_LOCK(td)) {
1289 			kp->ki_stat = SLOCK;
1290 		} else {
1291 			kp->ki_stat = SWAIT;
1292 		}
1293 	} else if (p->p_state == PRS_ZOMBIE) {
1294 		kp->ki_stat = SZOMB;
1295 	} else {
1296 		kp->ki_stat = SIDL;
1297 	}
1298 
1299 	/* Things in the thread */
1300 	kp->ki_wchan = td->td_wchan;
1301 	kp->ki_pri.pri_level = td->td_priority;
1302 	kp->ki_pri.pri_native = td->td_base_pri;
1303 
1304 	/*
1305 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1306 	 * the maximum u_char CPU value.
1307 	 */
1308 	if (td->td_lastcpu == NOCPU)
1309 		kp->ki_lastcpu_old = NOCPU_OLD;
1310 	else if (td->td_lastcpu > MAXCPU_OLD)
1311 		kp->ki_lastcpu_old = MAXCPU_OLD;
1312 	else
1313 		kp->ki_lastcpu_old = td->td_lastcpu;
1314 
1315 	if (td->td_oncpu == NOCPU)
1316 		kp->ki_oncpu_old = NOCPU_OLD;
1317 	else if (td->td_oncpu > MAXCPU_OLD)
1318 		kp->ki_oncpu_old = MAXCPU_OLD;
1319 	else
1320 		kp->ki_oncpu_old = td->td_oncpu;
1321 
1322 	kp->ki_lastcpu = td->td_lastcpu;
1323 	kp->ki_oncpu = td->td_oncpu;
1324 	kp->ki_tdflags = td->td_flags;
1325 	kp->ki_tid = td->td_tid;
1326 	kp->ki_numthreads = p->p_numthreads;
1327 	kp->ki_pcb = td->td_pcb;
1328 	kp->ki_kstack = (void *)td->td_kstack;
1329 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1330 	kp->ki_pri.pri_class = td->td_pri_class;
1331 	kp->ki_pri.pri_user = td->td_user_pri;
1332 
1333 	if (preferthread) {
1334 		rufetchtd(td, &kp->ki_rusage);
1335 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1336 		kp->ki_pctcpu = sched_pctcpu(td);
1337 		kp->ki_estcpu = sched_estcpu(td);
1338 		kp->ki_cow = td->td_cow;
1339 	}
1340 
1341 	/* We can't get this anymore but ps etc never used it anyway. */
1342 	kp->ki_rqindex = 0;
1343 
1344 	if (preferthread)
1345 		kp->ki_siglist = td->td_siglist;
1346 	kp->ki_sigmask = td->td_sigmask;
1347 	thread_unlock(td);
1348 	if (preferthread)
1349 		PROC_STATUNLOCK(p);
1350 
1351 	if ((td->td_pflags & TDP2_UEXTERR) != 0)
1352 		kp->ki_uerrmsg = td->td_exterr_ptr;
1353 }
1354 
1355 /*
1356  * Fill in a kinfo_proc structure for the specified process.
1357  * Must be called with the target process locked.
1358  */
1359 void
fill_kinfo_proc(struct proc * p,struct kinfo_proc * kp)1360 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1361 {
1362 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1363 
1364 	bzero(kp, sizeof(*kp));
1365 
1366 	fill_kinfo_proc_pgrp(p,kp);
1367 	fill_kinfo_proc_only(p, kp);
1368 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1369 	fill_kinfo_aggregate(p, kp);
1370 }
1371 
1372 struct pstats *
pstats_alloc(void)1373 pstats_alloc(void)
1374 {
1375 
1376 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1377 }
1378 
1379 /*
1380  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1381  */
1382 void
pstats_fork(struct pstats * src,struct pstats * dst)1383 pstats_fork(struct pstats *src, struct pstats *dst)
1384 {
1385 
1386 	bzero(&dst->pstat_startzero,
1387 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1388 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1389 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1390 }
1391 
1392 void
pstats_free(struct pstats * ps)1393 pstats_free(struct pstats *ps)
1394 {
1395 
1396 	free(ps, M_SUBPROC);
1397 }
1398 
1399 #ifdef COMPAT_FREEBSD32
1400 
1401 /*
1402  * This function is typically used to copy out the kernel address, so
1403  * it can be replaced by assignment of zero.
1404  */
1405 static inline uint32_t
ptr32_trim(const void * ptr)1406 ptr32_trim(const void *ptr)
1407 {
1408 	uintptr_t uptr;
1409 
1410 	uptr = (uintptr_t)ptr;
1411 	return ((uptr > UINT_MAX) ? 0 : uptr);
1412 }
1413 
1414 #define PTRTRIM_CP(src,dst,fld) \
1415 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1416 
1417 static void
freebsd32_kinfo_proc_out(const struct kinfo_proc * ki,struct kinfo_proc32 * ki32)1418 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1419 {
1420 	int i;
1421 
1422 	bzero(ki32, sizeof(struct kinfo_proc32));
1423 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1424 	CP(*ki, *ki32, ki_layout);
1425 	PTRTRIM_CP(*ki, *ki32, ki_args);
1426 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1427 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1428 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1429 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1430 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1431 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1432 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1433 	CP(*ki, *ki32, ki_pid);
1434 	CP(*ki, *ki32, ki_ppid);
1435 	CP(*ki, *ki32, ki_pgid);
1436 	CP(*ki, *ki32, ki_tpgid);
1437 	CP(*ki, *ki32, ki_sid);
1438 	CP(*ki, *ki32, ki_tsid);
1439 	CP(*ki, *ki32, ki_jobc);
1440 	CP(*ki, *ki32, ki_tdev);
1441 	CP(*ki, *ki32, ki_tdev_freebsd11);
1442 	CP(*ki, *ki32, ki_siglist);
1443 	CP(*ki, *ki32, ki_sigmask);
1444 	CP(*ki, *ki32, ki_sigignore);
1445 	CP(*ki, *ki32, ki_sigcatch);
1446 	CP(*ki, *ki32, ki_uid);
1447 	CP(*ki, *ki32, ki_ruid);
1448 	CP(*ki, *ki32, ki_svuid);
1449 	CP(*ki, *ki32, ki_rgid);
1450 	CP(*ki, *ki32, ki_svgid);
1451 	CP(*ki, *ki32, ki_ngroups);
1452 	for (i = 0; i < KI_NGROUPS; i++)
1453 		CP(*ki, *ki32, ki_groups[i]);
1454 	CP(*ki, *ki32, ki_size);
1455 	CP(*ki, *ki32, ki_rssize);
1456 	CP(*ki, *ki32, ki_swrss);
1457 	CP(*ki, *ki32, ki_tsize);
1458 	CP(*ki, *ki32, ki_dsize);
1459 	CP(*ki, *ki32, ki_ssize);
1460 	CP(*ki, *ki32, ki_xstat);
1461 	CP(*ki, *ki32, ki_acflag);
1462 	CP(*ki, *ki32, ki_pctcpu);
1463 	CP(*ki, *ki32, ki_estcpu);
1464 	CP(*ki, *ki32, ki_slptime);
1465 	CP(*ki, *ki32, ki_swtime);
1466 	CP(*ki, *ki32, ki_cow);
1467 	CP(*ki, *ki32, ki_runtime);
1468 	TV_CP(*ki, *ki32, ki_start);
1469 	TV_CP(*ki, *ki32, ki_childtime);
1470 	CP(*ki, *ki32, ki_flag);
1471 	CP(*ki, *ki32, ki_kiflag);
1472 	CP(*ki, *ki32, ki_traceflag);
1473 	CP(*ki, *ki32, ki_stat);
1474 	CP(*ki, *ki32, ki_nice);
1475 	CP(*ki, *ki32, ki_lock);
1476 	CP(*ki, *ki32, ki_rqindex);
1477 	CP(*ki, *ki32, ki_oncpu);
1478 	CP(*ki, *ki32, ki_lastcpu);
1479 
1480 	/* XXX TODO: wrap cpu value as appropriate */
1481 	CP(*ki, *ki32, ki_oncpu_old);
1482 	CP(*ki, *ki32, ki_lastcpu_old);
1483 
1484 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1485 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1486 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1487 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1488 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1489 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1490 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1491 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1492 	CP(*ki, *ki32, ki_tracer);
1493 	CP(*ki, *ki32, ki_flag2);
1494 	CP(*ki, *ki32, ki_fibnum);
1495 	CP(*ki, *ki32, ki_cr_flags);
1496 	CP(*ki, *ki32, ki_jid);
1497 	CP(*ki, *ki32, ki_numthreads);
1498 	CP(*ki, *ki32, ki_tid);
1499 	CP(*ki, *ki32, ki_pri);
1500 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1501 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1502 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1503 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1504 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1505 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1506 	CP(*ki, *ki32, ki_sflag);
1507 	CP(*ki, *ki32, ki_tdflags);
1508 	PTRTRIM_CP(*ki, *ki32, ki_uerrmsg);
1509 }
1510 #endif
1511 
1512 static ssize_t
kern_proc_out_size(struct proc * p,int flags)1513 kern_proc_out_size(struct proc *p, int flags)
1514 {
1515 	ssize_t size = 0;
1516 
1517 	PROC_LOCK_ASSERT(p, MA_OWNED);
1518 
1519 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1520 #ifdef COMPAT_FREEBSD32
1521 		if ((flags & KERN_PROC_MASK32) != 0) {
1522 			size += sizeof(struct kinfo_proc32);
1523 		} else
1524 #endif
1525 			size += sizeof(struct kinfo_proc);
1526 	} else {
1527 #ifdef COMPAT_FREEBSD32
1528 		if ((flags & KERN_PROC_MASK32) != 0)
1529 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1530 		else
1531 #endif
1532 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1533 	}
1534 	PROC_UNLOCK(p);
1535 	return (size);
1536 }
1537 
1538 int
kern_proc_out(struct proc * p,struct sbuf * sb,int flags)1539 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1540 {
1541 	struct thread *td;
1542 	struct kinfo_proc ki;
1543 #ifdef COMPAT_FREEBSD32
1544 	struct kinfo_proc32 ki32;
1545 #endif
1546 	int error;
1547 
1548 	PROC_LOCK_ASSERT(p, MA_OWNED);
1549 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1550 
1551 	error = 0;
1552 	fill_kinfo_proc(p, &ki);
1553 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1554 #ifdef COMPAT_FREEBSD32
1555 		if ((flags & KERN_PROC_MASK32) != 0) {
1556 			freebsd32_kinfo_proc_out(&ki, &ki32);
1557 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1558 				error = ENOMEM;
1559 		} else
1560 #endif
1561 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1562 				error = ENOMEM;
1563 	} else {
1564 		FOREACH_THREAD_IN_PROC(p, td) {
1565 			fill_kinfo_thread(td, &ki, 1);
1566 #ifdef COMPAT_FREEBSD32
1567 			if ((flags & KERN_PROC_MASK32) != 0) {
1568 				freebsd32_kinfo_proc_out(&ki, &ki32);
1569 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1570 					error = ENOMEM;
1571 			} else
1572 #endif
1573 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1574 					error = ENOMEM;
1575 			if (error != 0)
1576 				break;
1577 		}
1578 	}
1579 	PROC_UNLOCK(p);
1580 	return (error);
1581 }
1582 
1583 static int
sysctl_out_proc(struct proc * p,struct sysctl_req * req,int flags)1584 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1585 {
1586 	struct sbuf sb;
1587 	struct kinfo_proc ki;
1588 	int error, error2;
1589 
1590 	if (req->oldptr == NULL)
1591 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1592 
1593 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1594 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1595 	error = kern_proc_out(p, &sb, flags);
1596 	error2 = sbuf_finish(&sb);
1597 	sbuf_delete(&sb);
1598 	if (error != 0)
1599 		return (error);
1600 	else if (error2 != 0)
1601 		return (error2);
1602 	return (0);
1603 }
1604 
1605 int
proc_iterate(int (* cb)(struct proc *,void *),void * cbarg)1606 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1607 {
1608 	struct proc *p;
1609 	int error, i, j;
1610 
1611 	for (i = 0; i < pidhashlock + 1; i++) {
1612 		sx_slock(&proctree_lock);
1613 		sx_slock(&pidhashtbl_lock[i]);
1614 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1615 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1616 				if (p->p_state == PRS_NEW)
1617 					continue;
1618 				error = cb(p, cbarg);
1619 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1620 				if (error != 0) {
1621 					sx_sunlock(&pidhashtbl_lock[i]);
1622 					sx_sunlock(&proctree_lock);
1623 					return (error);
1624 				}
1625 			}
1626 		}
1627 		sx_sunlock(&pidhashtbl_lock[i]);
1628 		sx_sunlock(&proctree_lock);
1629 	}
1630 	return (0);
1631 }
1632 
1633 struct kern_proc_out_args {
1634 	struct sysctl_req *req;
1635 	int flags;
1636 	int oid_number;
1637 	int *name;
1638 };
1639 
1640 static int
sysctl_kern_proc_iterate(struct proc * p,void * origarg)1641 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1642 {
1643 	struct kern_proc_out_args *arg = origarg;
1644 	int *name = arg->name;
1645 	int oid_number = arg->oid_number;
1646 	int flags = arg->flags;
1647 	struct sysctl_req *req = arg->req;
1648 	int error = 0;
1649 
1650 	PROC_LOCK(p);
1651 
1652 	KASSERT(p->p_ucred != NULL,
1653 	    ("process credential is NULL for non-NEW proc"));
1654 	/*
1655 	 * Show a user only appropriate processes.
1656 	 */
1657 	if (p_cansee(curthread, p))
1658 		goto skip;
1659 	/*
1660 	 * TODO - make more efficient (see notes below).
1661 	 * do by session.
1662 	 */
1663 	switch (oid_number) {
1664 	case KERN_PROC_GID:
1665 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1666 			goto skip;
1667 		break;
1668 
1669 	case KERN_PROC_PGRP:
1670 		/* could do this by traversing pgrp */
1671 		if (p->p_pgrp == NULL ||
1672 		    p->p_pgrp->pg_id != (pid_t)name[0])
1673 			goto skip;
1674 		break;
1675 
1676 	case KERN_PROC_RGID:
1677 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1678 			goto skip;
1679 		break;
1680 
1681 	case KERN_PROC_SESSION:
1682 		if (p->p_session == NULL ||
1683 		    p->p_session->s_sid != (pid_t)name[0])
1684 			goto skip;
1685 		break;
1686 
1687 	case KERN_PROC_TTY:
1688 		if ((p->p_flag & P_CONTROLT) == 0 ||
1689 		    p->p_session == NULL)
1690 			goto skip;
1691 		/* XXX proctree_lock */
1692 		SESS_LOCK(p->p_session);
1693 		if (p->p_session->s_ttyp == NULL ||
1694 		    tty_udev(p->p_session->s_ttyp) !=
1695 		    (dev_t)name[0]) {
1696 			SESS_UNLOCK(p->p_session);
1697 			goto skip;
1698 		}
1699 		SESS_UNLOCK(p->p_session);
1700 		break;
1701 
1702 	case KERN_PROC_UID:
1703 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1704 			goto skip;
1705 		break;
1706 
1707 	case KERN_PROC_RUID:
1708 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1709 			goto skip;
1710 		break;
1711 
1712 	case KERN_PROC_PROC:
1713 		break;
1714 
1715 	default:
1716 		break;
1717 	}
1718 	error = sysctl_out_proc(p, req, flags);
1719 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1720 	return (error);
1721 skip:
1722 	PROC_UNLOCK(p);
1723 	return (0);
1724 }
1725 
1726 static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)1727 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1728 {
1729 	struct kern_proc_out_args iterarg;
1730 	int *name = (int *)arg1;
1731 	u_int namelen = arg2;
1732 	struct proc *p;
1733 	int flags, oid_number;
1734 	int error = 0;
1735 
1736 	oid_number = oidp->oid_number;
1737 	if (oid_number != KERN_PROC_ALL &&
1738 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1739 		flags = KERN_PROC_NOTHREADS;
1740 	else {
1741 		flags = 0;
1742 		oid_number &= ~KERN_PROC_INC_THREAD;
1743 	}
1744 #ifdef COMPAT_FREEBSD32
1745 	if (req->flags & SCTL_MASK32)
1746 		flags |= KERN_PROC_MASK32;
1747 #endif
1748 	if (oid_number == KERN_PROC_PID) {
1749 		if (namelen != 1)
1750 			return (EINVAL);
1751 		error = sysctl_wire_old_buffer(req, 0);
1752 		if (error)
1753 			return (error);
1754 		sx_slock(&proctree_lock);
1755 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1756 		if (error == 0)
1757 			error = sysctl_out_proc(p, req, flags);
1758 		sx_sunlock(&proctree_lock);
1759 		return (error);
1760 	}
1761 
1762 	switch (oid_number) {
1763 	case KERN_PROC_ALL:
1764 		if (namelen != 0)
1765 			return (EINVAL);
1766 		break;
1767 	case KERN_PROC_PROC:
1768 		if (namelen != 0 && namelen != 1)
1769 			return (EINVAL);
1770 		break;
1771 	default:
1772 		if (namelen != 1)
1773 			return (EINVAL);
1774 		break;
1775 	}
1776 
1777 	if (req->oldptr == NULL) {
1778 		/* overestimate by 5 procs */
1779 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1780 		if (error)
1781 			return (error);
1782 	} else {
1783 		error = sysctl_wire_old_buffer(req, 0);
1784 		if (error != 0)
1785 			return (error);
1786 	}
1787 	iterarg.flags = flags;
1788 	iterarg.oid_number = oid_number;
1789 	iterarg.req = req;
1790 	iterarg.name = name;
1791 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1792 	return (error);
1793 }
1794 
1795 struct pargs *
pargs_alloc(int len)1796 pargs_alloc(int len)
1797 {
1798 	struct pargs *pa;
1799 
1800 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1801 		M_WAITOK);
1802 	refcount_init(&pa->ar_ref, 1);
1803 	pa->ar_length = len;
1804 	return (pa);
1805 }
1806 
1807 static void
pargs_free(struct pargs * pa)1808 pargs_free(struct pargs *pa)
1809 {
1810 
1811 	free(pa, M_PARGS);
1812 }
1813 
1814 void
pargs_hold(struct pargs * pa)1815 pargs_hold(struct pargs *pa)
1816 {
1817 
1818 	if (pa == NULL)
1819 		return;
1820 	refcount_acquire(&pa->ar_ref);
1821 }
1822 
1823 void
pargs_drop(struct pargs * pa)1824 pargs_drop(struct pargs *pa)
1825 {
1826 
1827 	if (pa == NULL)
1828 		return;
1829 	if (refcount_release(&pa->ar_ref))
1830 		pargs_free(pa);
1831 }
1832 
1833 static int
proc_read_string(struct thread * td,struct proc * p,const char * sptr,char * buf,size_t len)1834 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1835     size_t len)
1836 {
1837 	ssize_t n;
1838 
1839 	/*
1840 	 * This may return a short read if the string is shorter than the chunk
1841 	 * and is aligned at the end of the page, and the following page is not
1842 	 * mapped.
1843 	 */
1844 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1845 	if (n <= 0)
1846 		return (ENOMEM);
1847 	return (0);
1848 }
1849 
1850 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1851 
1852 enum proc_vector_type {
1853 	PROC_ARG,
1854 	PROC_ENV,
1855 	PROC_AUX,
1856 };
1857 
1858 #ifdef COMPAT_FREEBSD32
1859 static int
get_proc_vector32(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1860 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1861     size_t *vsizep, enum proc_vector_type type)
1862 {
1863 	struct freebsd32_ps_strings pss;
1864 	Elf32_Auxinfo aux;
1865 	vm_offset_t vptr, ptr;
1866 	uint32_t *proc_vector32;
1867 	char **proc_vector;
1868 	size_t vsize, size;
1869 	int i, error;
1870 
1871 	error = 0;
1872 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1873 	    sizeof(pss))
1874 		return (ENOMEM);
1875 	switch (type) {
1876 	case PROC_ARG:
1877 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1878 		vsize = pss.ps_nargvstr;
1879 		if (vsize > ARG_MAX)
1880 			return (ENOEXEC);
1881 		size = vsize * sizeof(int32_t);
1882 		break;
1883 	case PROC_ENV:
1884 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1885 		vsize = pss.ps_nenvstr;
1886 		if (vsize > ARG_MAX)
1887 			return (ENOEXEC);
1888 		size = vsize * sizeof(int32_t);
1889 		break;
1890 	case PROC_AUX:
1891 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1892 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1893 		if (vptr % 4 != 0)
1894 			return (ENOEXEC);
1895 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1896 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1897 			    sizeof(aux))
1898 				return (ENOMEM);
1899 			if (aux.a_type == AT_NULL)
1900 				break;
1901 			ptr += sizeof(aux);
1902 		}
1903 		if (aux.a_type != AT_NULL)
1904 			return (ENOEXEC);
1905 		vsize = i + 1;
1906 		size = vsize * sizeof(aux);
1907 		break;
1908 	default:
1909 		KASSERT(0, ("Wrong proc vector type: %d", type));
1910 		return (EINVAL);
1911 	}
1912 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1913 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1914 		error = ENOMEM;
1915 		goto done;
1916 	}
1917 	if (type == PROC_AUX) {
1918 		*proc_vectorp = (char **)proc_vector32;
1919 		*vsizep = vsize;
1920 		return (0);
1921 	}
1922 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1923 	for (i = 0; i < (int)vsize; i++)
1924 		proc_vector[i] = PTRIN(proc_vector32[i]);
1925 	*proc_vectorp = proc_vector;
1926 	*vsizep = vsize;
1927 done:
1928 	free(proc_vector32, M_TEMP);
1929 	return (error);
1930 }
1931 #endif
1932 
1933 static int
get_proc_vector(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1934 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1935     size_t *vsizep, enum proc_vector_type type)
1936 {
1937 	struct ps_strings pss;
1938 	Elf_Auxinfo aux;
1939 	vm_offset_t vptr, ptr;
1940 	char **proc_vector;
1941 	size_t vsize, size;
1942 	int i;
1943 
1944 #ifdef COMPAT_FREEBSD32
1945 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1946 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1947 #endif
1948 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1949 	    sizeof(pss))
1950 		return (ENOMEM);
1951 	switch (type) {
1952 	case PROC_ARG:
1953 		vptr = (vm_offset_t)pss.ps_argvstr;
1954 		vsize = pss.ps_nargvstr;
1955 		if (vsize > ARG_MAX)
1956 			return (ENOEXEC);
1957 		size = vsize * sizeof(char *);
1958 		break;
1959 	case PROC_ENV:
1960 		vptr = (vm_offset_t)pss.ps_envstr;
1961 		vsize = pss.ps_nenvstr;
1962 		if (vsize > ARG_MAX)
1963 			return (ENOEXEC);
1964 		size = vsize * sizeof(char *);
1965 		break;
1966 	case PROC_AUX:
1967 		/*
1968 		 * The aux array is just above env array on the stack. Check
1969 		 * that the address is naturally aligned.
1970 		 */
1971 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1972 		    * sizeof(char *);
1973 #if __ELF_WORD_SIZE == 64
1974 		if (vptr % sizeof(uint64_t) != 0)
1975 #else
1976 		if (vptr % sizeof(uint32_t) != 0)
1977 #endif
1978 			return (ENOEXEC);
1979 		/*
1980 		 * We count the array size reading the aux vectors from the
1981 		 * stack until AT_NULL vector is returned.  So (to keep the code
1982 		 * simple) we read the process stack twice: the first time here
1983 		 * to find the size and the second time when copying the vectors
1984 		 * to the allocated proc_vector.
1985 		 */
1986 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1987 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1988 			    sizeof(aux))
1989 				return (ENOMEM);
1990 			if (aux.a_type == AT_NULL)
1991 				break;
1992 			ptr += sizeof(aux);
1993 		}
1994 		/*
1995 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1996 		 * not reached AT_NULL, it is most likely we are reading wrong
1997 		 * data: either the process doesn't have auxv array or data has
1998 		 * been modified. Return the error in this case.
1999 		 */
2000 		if (aux.a_type != AT_NULL)
2001 			return (ENOEXEC);
2002 		vsize = i + 1;
2003 		size = vsize * sizeof(aux);
2004 		break;
2005 	default:
2006 		KASSERT(0, ("Wrong proc vector type: %d", type));
2007 		return (EINVAL); /* In case we are built without INVARIANTS. */
2008 	}
2009 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
2010 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2011 		free(proc_vector, M_TEMP);
2012 		return (ENOMEM);
2013 	}
2014 	*proc_vectorp = proc_vector;
2015 	*vsizep = vsize;
2016 
2017 	return (0);
2018 }
2019 
2020 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
2021 
2022 static int
get_ps_strings(struct thread * td,struct proc * p,struct sbuf * sb,enum proc_vector_type type)2023 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2024     enum proc_vector_type type)
2025 {
2026 	size_t done, len, nchr, vsize;
2027 	int error, i;
2028 	char **proc_vector, *sptr;
2029 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2030 
2031 	PROC_ASSERT_HELD(p);
2032 
2033 	/*
2034 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2035 	 */
2036 	nchr = 2 * (PATH_MAX + ARG_MAX);
2037 
2038 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2039 	if (error != 0)
2040 		return (error);
2041 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2042 		/*
2043 		 * The program may have scribbled into its argv array, e.g. to
2044 		 * remove some arguments.  If that has happened, break out
2045 		 * before trying to read from NULL.
2046 		 */
2047 		if (proc_vector[i] == NULL)
2048 			break;
2049 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2050 			error = proc_read_string(td, p, sptr, pss_string,
2051 			    sizeof(pss_string));
2052 			if (error != 0)
2053 				goto done;
2054 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2055 			if (done + len >= nchr)
2056 				len = nchr - done - 1;
2057 			sbuf_bcat(sb, pss_string, len);
2058 			if (len != GET_PS_STRINGS_CHUNK_SZ)
2059 				break;
2060 			done += GET_PS_STRINGS_CHUNK_SZ;
2061 		}
2062 		sbuf_bcat(sb, "", 1);
2063 		done += len + 1;
2064 	}
2065 done:
2066 	free(proc_vector, M_TEMP);
2067 	return (error);
2068 }
2069 
2070 int
proc_getargv(struct thread * td,struct proc * p,struct sbuf * sb)2071 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2072 {
2073 
2074 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
2075 }
2076 
2077 int
proc_getenvv(struct thread * td,struct proc * p,struct sbuf * sb)2078 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2079 {
2080 
2081 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
2082 }
2083 
2084 int
proc_getauxv(struct thread * td,struct proc * p,struct sbuf * sb)2085 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2086 {
2087 	size_t vsize, size;
2088 	char **auxv;
2089 	int error;
2090 
2091 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2092 	if (error == 0) {
2093 #ifdef COMPAT_FREEBSD32
2094 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2095 			size = vsize * sizeof(Elf32_Auxinfo);
2096 		else
2097 #endif
2098 			size = vsize * sizeof(Elf_Auxinfo);
2099 		if (sbuf_bcat(sb, auxv, size) != 0)
2100 			error = ENOMEM;
2101 		free(auxv, M_TEMP);
2102 	}
2103 	return (error);
2104 }
2105 
2106 /*
2107  * This sysctl allows a process to retrieve the argument list or process
2108  * title for another process without groping around in the address space
2109  * of the other process.  It also allow a process to set its own "process
2110  * title to a string of its own choice.
2111  */
2112 static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)2113 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2114 {
2115 	int *name = (int *)arg1;
2116 	u_int namelen = arg2;
2117 	struct pargs *newpa, *pa;
2118 	struct proc *p;
2119 	struct sbuf sb;
2120 	int flags, error = 0, error2;
2121 	pid_t pid;
2122 
2123 	if (namelen != 1)
2124 		return (EINVAL);
2125 
2126 	p = curproc;
2127 	pid = (pid_t)name[0];
2128 	if (pid == -1) {
2129 		pid = p->p_pid;
2130 	}
2131 
2132 	/*
2133 	 * If the query is for this process and it is single-threaded, there
2134 	 * is nobody to modify pargs, thus we can just read.
2135 	 */
2136 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2137 	    (pa = p->p_args) != NULL)
2138 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2139 
2140 	flags = PGET_CANSEE;
2141 	if (req->newptr != NULL)
2142 		flags |= PGET_ISCURRENT;
2143 	error = pget(pid, flags, &p);
2144 	if (error)
2145 		return (error);
2146 
2147 	pa = p->p_args;
2148 	if (pa != NULL) {
2149 		pargs_hold(pa);
2150 		PROC_UNLOCK(p);
2151 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2152 		pargs_drop(pa);
2153 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2154 		_PHOLD(p);
2155 		PROC_UNLOCK(p);
2156 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2157 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2158 		error = proc_getargv(curthread, p, &sb);
2159 		error2 = sbuf_finish(&sb);
2160 		PRELE(p);
2161 		sbuf_delete(&sb);
2162 		if (error == 0 && error2 != 0)
2163 			error = error2;
2164 	} else {
2165 		PROC_UNLOCK(p);
2166 	}
2167 	if (error != 0 || req->newptr == NULL)
2168 		return (error);
2169 
2170 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2171 		return (ENOMEM);
2172 
2173 	if (req->newlen == 0) {
2174 		/*
2175 		 * Clear the argument pointer, so that we'll fetch arguments
2176 		 * with proc_getargv() until further notice.
2177 		 */
2178 		newpa = NULL;
2179 	} else {
2180 		newpa = pargs_alloc(req->newlen);
2181 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2182 		if (error != 0) {
2183 			pargs_free(newpa);
2184 			return (error);
2185 		}
2186 	}
2187 	PROC_LOCK(p);
2188 	pa = p->p_args;
2189 	p->p_args = newpa;
2190 	PROC_UNLOCK(p);
2191 	pargs_drop(pa);
2192 	return (0);
2193 }
2194 
2195 /*
2196  * This sysctl allows a process to retrieve environment of another process.
2197  */
2198 static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)2199 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2200 {
2201 	int *name = (int *)arg1;
2202 	u_int namelen = arg2;
2203 	struct proc *p;
2204 	struct sbuf sb;
2205 	int error, error2;
2206 
2207 	if (namelen != 1)
2208 		return (EINVAL);
2209 
2210 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2211 	if (error != 0)
2212 		return (error);
2213 	if ((p->p_flag & P_SYSTEM) != 0) {
2214 		PRELE(p);
2215 		return (0);
2216 	}
2217 
2218 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2219 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2220 	error = proc_getenvv(curthread, p, &sb);
2221 	error2 = sbuf_finish(&sb);
2222 	PRELE(p);
2223 	sbuf_delete(&sb);
2224 	return (error != 0 ? error : error2);
2225 }
2226 
2227 /*
2228  * This sysctl allows a process to retrieve ELF auxiliary vector of
2229  * another process.
2230  */
2231 static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)2232 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2233 {
2234 	int *name = (int *)arg1;
2235 	u_int namelen = arg2;
2236 	struct proc *p;
2237 	struct sbuf sb;
2238 	int error, error2;
2239 
2240 	if (namelen != 1)
2241 		return (EINVAL);
2242 
2243 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2244 	if (error != 0)
2245 		return (error);
2246 	if ((p->p_flag & P_SYSTEM) != 0) {
2247 		PRELE(p);
2248 		return (0);
2249 	}
2250 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2251 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2252 	error = proc_getauxv(curthread, p, &sb);
2253 	error2 = sbuf_finish(&sb);
2254 	PRELE(p);
2255 	sbuf_delete(&sb);
2256 	return (error != 0 ? error : error2);
2257 }
2258 
2259 /*
2260  * Look up the canonical executable path running in the specified process.
2261  * It tries to return the same hardlink name as was used for execve(2).
2262  * This allows the programs that modify their behavior based on their progname,
2263  * to operate correctly.
2264  *
2265  * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2266  *   calling conventions.
2267  * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2268  *   allocated and freed by caller.
2269  * freebuf should be freed by caller, from the M_TEMP malloc type.
2270  */
2271 int
proc_get_binpath(struct proc * p,char * binname,char ** retbuf,char ** freebuf)2272 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2273     char **freebuf)
2274 {
2275 	struct nameidata nd;
2276 	struct vnode *vp, *dvp;
2277 	size_t freepath_size;
2278 	int error;
2279 	bool do_fullpath;
2280 
2281 	PROC_LOCK_ASSERT(p, MA_OWNED);
2282 
2283 	vp = p->p_textvp;
2284 	if (vp == NULL) {
2285 		PROC_UNLOCK(p);
2286 		*retbuf = "";
2287 		*freebuf = NULL;
2288 		return (0);
2289 	}
2290 	vref(vp);
2291 	dvp = p->p_textdvp;
2292 	if (dvp != NULL)
2293 		vref(dvp);
2294 	if (p->p_binname != NULL)
2295 		strlcpy(binname, p->p_binname, MAXPATHLEN);
2296 	PROC_UNLOCK(p);
2297 
2298 	do_fullpath = true;
2299 	*freebuf = NULL;
2300 	if (dvp != NULL && binname[0] != '\0') {
2301 		freepath_size = MAXPATHLEN;
2302 		if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2303 		    retbuf, freebuf, &freepath_size) == 0) {
2304 			/*
2305 			 * Recheck the looked up path.  The binary
2306 			 * might have been renamed or replaced, in
2307 			 * which case we should not report old name.
2308 			 */
2309 			NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2310 			error = namei(&nd);
2311 			if (error == 0) {
2312 				if (nd.ni_vp == vp)
2313 					do_fullpath = false;
2314 				vrele(nd.ni_vp);
2315 				NDFREE_PNBUF(&nd);
2316 			}
2317 		}
2318 	}
2319 	if (do_fullpath) {
2320 		free(*freebuf, M_TEMP);
2321 		*freebuf = NULL;
2322 		error = vn_fullpath(vp, retbuf, freebuf);
2323 	}
2324 	vrele(vp);
2325 	if (dvp != NULL)
2326 		vrele(dvp);
2327 	return (error);
2328 }
2329 
2330 /*
2331  * This sysctl allows a process to retrieve the path of the executable for
2332  * itself or another process.
2333  */
2334 static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)2335 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2336 {
2337 	pid_t *pidp = (pid_t *)arg1;
2338 	unsigned int arglen = arg2;
2339 	struct proc *p;
2340 	char *retbuf, *freebuf, *binname;
2341 	int error;
2342 
2343 	if (arglen != 1)
2344 		return (EINVAL);
2345 	binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2346 	binname[0] = '\0';
2347 	if (*pidp == -1) {	/* -1 means this process */
2348 		error = 0;
2349 		p = req->td->td_proc;
2350 		PROC_LOCK(p);
2351 	} else {
2352 		error = pget(*pidp, PGET_CANSEE, &p);
2353 	}
2354 
2355 	if (error == 0)
2356 		error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2357 	free(binname, M_TEMP);
2358 	if (error != 0)
2359 		return (error);
2360 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2361 	free(freebuf, M_TEMP);
2362 	return (error);
2363 }
2364 
2365 static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)2366 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2367 {
2368 	struct proc *p;
2369 	char *sv_name;
2370 	int *name;
2371 	int namelen;
2372 	int error;
2373 
2374 	namelen = arg2;
2375 	if (namelen != 1)
2376 		return (EINVAL);
2377 
2378 	name = (int *)arg1;
2379 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2380 	if (error != 0)
2381 		return (error);
2382 	sv_name = p->p_sysent->sv_name;
2383 	PROC_UNLOCK(p);
2384 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2385 }
2386 
2387 #ifdef KINFO_OVMENTRY_SIZE
2388 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2389 #endif
2390 
2391 #ifdef COMPAT_FREEBSD7
2392 static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)2393 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2394 {
2395 	vm_map_entry_t entry, tmp_entry;
2396 	unsigned int last_timestamp, namelen;
2397 	char *fullpath, *freepath;
2398 	struct kinfo_ovmentry *kve;
2399 	struct vattr va;
2400 	struct ucred *cred;
2401 	int error, *name;
2402 	struct vnode *vp;
2403 	struct proc *p;
2404 	vm_map_t map;
2405 	struct vmspace *vm;
2406 
2407 	namelen = arg2;
2408 	if (namelen != 1)
2409 		return (EINVAL);
2410 
2411 	name = (int *)arg1;
2412 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2413 	if (error != 0)
2414 		return (error);
2415 	vm = vmspace_acquire_ref(p);
2416 	if (vm == NULL) {
2417 		PRELE(p);
2418 		return (ESRCH);
2419 	}
2420 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2421 
2422 	map = &vm->vm_map;
2423 	vm_map_lock_read(map);
2424 	VM_MAP_ENTRY_FOREACH(entry, map) {
2425 		vm_object_t obj, tobj, lobj;
2426 		vm_offset_t addr;
2427 
2428 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2429 			continue;
2430 
2431 		bzero(kve, sizeof(*kve));
2432 		kve->kve_structsize = sizeof(*kve);
2433 
2434 		kve->kve_private_resident = 0;
2435 		obj = entry->object.vm_object;
2436 		if (obj != NULL) {
2437 			VM_OBJECT_RLOCK(obj);
2438 			if (obj->shadow_count == 1)
2439 				kve->kve_private_resident =
2440 				    obj->resident_page_count;
2441 		}
2442 		kve->kve_resident = 0;
2443 		addr = entry->start;
2444 		while (addr < entry->end) {
2445 			if (pmap_extract(map->pmap, addr))
2446 				kve->kve_resident++;
2447 			addr += PAGE_SIZE;
2448 		}
2449 
2450 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2451 			if (tobj != obj) {
2452 				VM_OBJECT_RLOCK(tobj);
2453 				kve->kve_offset += tobj->backing_object_offset;
2454 			}
2455 			if (lobj != obj)
2456 				VM_OBJECT_RUNLOCK(lobj);
2457 			lobj = tobj;
2458 		}
2459 
2460 		kve->kve_start = (void*)entry->start;
2461 		kve->kve_end = (void*)entry->end;
2462 		kve->kve_offset += (off_t)entry->offset;
2463 
2464 		if (entry->protection & VM_PROT_READ)
2465 			kve->kve_protection |= KVME_PROT_READ;
2466 		if (entry->protection & VM_PROT_WRITE)
2467 			kve->kve_protection |= KVME_PROT_WRITE;
2468 		if (entry->protection & VM_PROT_EXECUTE)
2469 			kve->kve_protection |= KVME_PROT_EXEC;
2470 
2471 		if (entry->eflags & MAP_ENTRY_COW)
2472 			kve->kve_flags |= KVME_FLAG_COW;
2473 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2474 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2475 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2476 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2477 
2478 		last_timestamp = map->timestamp;
2479 		vm_map_unlock_read(map);
2480 
2481 		kve->kve_fileid = 0;
2482 		kve->kve_fsid = 0;
2483 		freepath = NULL;
2484 		fullpath = "";
2485 		if (lobj) {
2486 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2487 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2488 				kve->kve_type = KVME_TYPE_UNKNOWN;
2489 			if (vp != NULL)
2490 				vref(vp);
2491 			if (lobj != obj)
2492 				VM_OBJECT_RUNLOCK(lobj);
2493 
2494 			kve->kve_ref_count = obj->ref_count;
2495 			kve->kve_shadow_count = obj->shadow_count;
2496 			VM_OBJECT_RUNLOCK(obj);
2497 			if (vp != NULL) {
2498 				vn_fullpath(vp, &fullpath, &freepath);
2499 				cred = curthread->td_ucred;
2500 				vn_lock(vp, LK_SHARED | LK_RETRY);
2501 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2502 					kve->kve_fileid = va.va_fileid;
2503 					/* truncate */
2504 					kve->kve_fsid = va.va_fsid;
2505 				}
2506 				vput(vp);
2507 			}
2508 		} else {
2509 			kve->kve_type = KVME_TYPE_NONE;
2510 			kve->kve_ref_count = 0;
2511 			kve->kve_shadow_count = 0;
2512 		}
2513 
2514 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2515 		if (freepath != NULL)
2516 			free(freepath, M_TEMP);
2517 
2518 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2519 		vm_map_lock_read(map);
2520 		if (error)
2521 			break;
2522 		if (last_timestamp != map->timestamp) {
2523 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2524 			entry = tmp_entry;
2525 		}
2526 	}
2527 	vm_map_unlock_read(map);
2528 	vmspace_free(vm);
2529 	PRELE(p);
2530 	free(kve, M_TEMP);
2531 	return (error);
2532 }
2533 #endif	/* COMPAT_FREEBSD7 */
2534 
2535 #ifdef KINFO_VMENTRY_SIZE
2536 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2537 #endif
2538 
2539 void
kern_proc_vmmap_resident(vm_map_t map,vm_map_entry_t entry,int * resident_count,bool * super)2540 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2541     int *resident_count, bool *super)
2542 {
2543 	vm_object_t obj, tobj;
2544 	vm_page_t m, m_adv;
2545 	vm_offset_t addr;
2546 	vm_paddr_t pa;
2547 	vm_pindex_t pi, pi_adv, pindex;
2548 	int incore;
2549 
2550 	*super = false;
2551 	*resident_count = 0;
2552 	if (vmmap_skip_res_cnt)
2553 		return;
2554 
2555 	pa = 0;
2556 	obj = entry->object.vm_object;
2557 	addr = entry->start;
2558 	m_adv = NULL;
2559 	pi = OFF_TO_IDX(entry->offset);
2560 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2561 		if (m_adv != NULL) {
2562 			m = m_adv;
2563 		} else {
2564 			pi_adv = atop(entry->end - addr);
2565 			pindex = pi;
2566 			for (tobj = obj;; tobj = tobj->backing_object) {
2567 				m = vm_radix_lookup_ge(&tobj->rtree, pindex);
2568 				if (m != NULL) {
2569 					if (m->pindex == pindex)
2570 						break;
2571 					if (pi_adv > m->pindex - pindex) {
2572 						pi_adv = m->pindex - pindex;
2573 						m_adv = m;
2574 					}
2575 				}
2576 				if (tobj->backing_object == NULL)
2577 					goto next;
2578 				pindex += OFF_TO_IDX(tobj->
2579 				    backing_object_offset);
2580 			}
2581 		}
2582 		m_adv = NULL;
2583 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2584 		    (addr & (pagesizes[1] - 1)) == 0 && (incore =
2585 		    pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2586 			*super = true;
2587 			/*
2588 			 * The virtual page might be smaller than the physical
2589 			 * page, so we use the page size reported by the pmap
2590 			 * rather than m->psind.
2591 			 */
2592 			pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
2593 		} else {
2594 			/*
2595 			 * We do not test the found page on validity.
2596 			 * Either the page is busy and being paged in,
2597 			 * or it was invalidated.  The first case
2598 			 * should be counted as resident, the second
2599 			 * is not so clear; we do account both.
2600 			 */
2601 			pi_adv = 1;
2602 		}
2603 		*resident_count += pi_adv;
2604 next:;
2605 	}
2606 }
2607 
2608 /*
2609  * Must be called with the process locked and will return unlocked.
2610  */
2611 int
kern_proc_vmmap_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)2612 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2613 {
2614 	vm_map_entry_t entry, tmp_entry;
2615 	struct vattr va;
2616 	vm_map_t map;
2617 	vm_object_t lobj, nobj, obj, tobj;
2618 	char *fullpath, *freepath;
2619 	struct kinfo_vmentry *kve;
2620 	struct ucred *cred;
2621 	struct vnode *vp;
2622 	struct vmspace *vm;
2623 	vm_offset_t addr;
2624 	unsigned int last_timestamp;
2625 	int error;
2626 	key_t key;
2627 	unsigned short seq;
2628 	bool guard, super;
2629 
2630 	PROC_LOCK_ASSERT(p, MA_OWNED);
2631 
2632 	_PHOLD(p);
2633 	PROC_UNLOCK(p);
2634 	vm = vmspace_acquire_ref(p);
2635 	if (vm == NULL) {
2636 		PRELE(p);
2637 		return (ESRCH);
2638 	}
2639 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2640 
2641 	error = 0;
2642 	map = &vm->vm_map;
2643 	vm_map_lock_read(map);
2644 	VM_MAP_ENTRY_FOREACH(entry, map) {
2645 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2646 			continue;
2647 
2648 		addr = entry->end;
2649 		bzero(kve, sizeof(*kve));
2650 		obj = entry->object.vm_object;
2651 		if (obj != NULL) {
2652 			if ((obj->flags & OBJ_ANON) != 0)
2653 				kve->kve_obj = (uintptr_t)obj;
2654 
2655 			for (tobj = obj; tobj != NULL;
2656 			    tobj = tobj->backing_object) {
2657 				VM_OBJECT_RLOCK(tobj);
2658 				kve->kve_offset += tobj->backing_object_offset;
2659 				lobj = tobj;
2660 			}
2661 			if (obj->backing_object == NULL)
2662 				kve->kve_private_resident =
2663 				    obj->resident_page_count;
2664 			kern_proc_vmmap_resident(map, entry,
2665 			    &kve->kve_resident, &super);
2666 			if (super)
2667 				kve->kve_flags |= KVME_FLAG_SUPER;
2668 			for (tobj = obj; tobj != NULL; tobj = nobj) {
2669 				nobj = tobj->backing_object;
2670 				if (tobj != obj && tobj != lobj)
2671 					VM_OBJECT_RUNLOCK(tobj);
2672 			}
2673 		} else {
2674 			lobj = NULL;
2675 		}
2676 
2677 		kve->kve_start = entry->start;
2678 		kve->kve_end = entry->end;
2679 		kve->kve_offset += entry->offset;
2680 
2681 		if (entry->protection & VM_PROT_READ)
2682 			kve->kve_protection |= KVME_PROT_READ;
2683 		if (entry->protection & VM_PROT_WRITE)
2684 			kve->kve_protection |= KVME_PROT_WRITE;
2685 		if (entry->protection & VM_PROT_EXECUTE)
2686 			kve->kve_protection |= KVME_PROT_EXEC;
2687 		if (entry->max_protection & VM_PROT_READ)
2688 			kve->kve_protection |= KVME_MAX_PROT_READ;
2689 		if (entry->max_protection & VM_PROT_WRITE)
2690 			kve->kve_protection |= KVME_MAX_PROT_WRITE;
2691 		if (entry->max_protection & VM_PROT_EXECUTE)
2692 			kve->kve_protection |= KVME_MAX_PROT_EXEC;
2693 
2694 		if (entry->eflags & MAP_ENTRY_COW)
2695 			kve->kve_flags |= KVME_FLAG_COW;
2696 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2697 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2698 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2699 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2700 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2701 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2702 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2703 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2704 
2705 		guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2706 
2707 		last_timestamp = map->timestamp;
2708 		vm_map_unlock_read(map);
2709 
2710 		freepath = NULL;
2711 		fullpath = "";
2712 		if (lobj != NULL) {
2713 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2714 			if (vp != NULL)
2715 				vref(vp);
2716 			if (lobj != obj)
2717 				VM_OBJECT_RUNLOCK(lobj);
2718 
2719 			kve->kve_ref_count = obj->ref_count;
2720 			kve->kve_shadow_count = obj->shadow_count;
2721 			if (obj->type == OBJT_DEVICE ||
2722 			    obj->type == OBJT_MGTDEVICE) {
2723 				cdev_pager_get_path(obj, kve->kve_path,
2724 				    sizeof(kve->kve_path));
2725 			}
2726 			VM_OBJECT_RUNLOCK(obj);
2727 			if ((lobj->flags & OBJ_SYSVSHM) != 0) {
2728 				kve->kve_flags |= KVME_FLAG_SYSVSHM;
2729 				shmobjinfo(lobj, &key, &seq);
2730 				kve->kve_vn_fileid = key;
2731 				kve->kve_vn_fsid_freebsd11 = seq;
2732 			}
2733 			if ((lobj->flags & OBJ_POSIXSHM) != 0) {
2734 				kve->kve_flags |= KVME_FLAG_POSIXSHM;
2735 				shm_get_path(lobj, kve->kve_path,
2736 				    sizeof(kve->kve_path));
2737 			}
2738 			if (vp != NULL) {
2739 				vn_fullpath(vp, &fullpath, &freepath);
2740 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2741 				cred = curthread->td_ucred;
2742 				vn_lock(vp, LK_SHARED | LK_RETRY);
2743 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2744 					kve->kve_vn_fileid = va.va_fileid;
2745 					kve->kve_vn_fsid = va.va_fsid;
2746 					kve->kve_vn_fsid_freebsd11 =
2747 					    kve->kve_vn_fsid; /* truncate */
2748 					kve->kve_vn_mode =
2749 					    MAKEIMODE(va.va_type, va.va_mode);
2750 					kve->kve_vn_size = va.va_size;
2751 					kve->kve_vn_rdev = va.va_rdev;
2752 					kve->kve_vn_rdev_freebsd11 =
2753 					    kve->kve_vn_rdev; /* truncate */
2754 					kve->kve_status = KF_ATTR_VALID;
2755 				}
2756 				vput(vp);
2757 				strlcpy(kve->kve_path, fullpath, sizeof(
2758 				    kve->kve_path));
2759 				free(freepath, M_TEMP);
2760 			}
2761 		} else {
2762 			kve->kve_type = guard ? KVME_TYPE_GUARD :
2763 			    KVME_TYPE_NONE;
2764 			kve->kve_ref_count = 0;
2765 			kve->kve_shadow_count = 0;
2766 		}
2767 
2768 		/* Pack record size down */
2769 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2770 			kve->kve_structsize =
2771 			    offsetof(struct kinfo_vmentry, kve_path) +
2772 			    strlen(kve->kve_path) + 1;
2773 		else
2774 			kve->kve_structsize = sizeof(*kve);
2775 		kve->kve_structsize = roundup(kve->kve_structsize,
2776 		    sizeof(uint64_t));
2777 
2778 		/* Halt filling and truncate rather than exceeding maxlen */
2779 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2780 			error = 0;
2781 			vm_map_lock_read(map);
2782 			break;
2783 		} else if (maxlen != -1)
2784 			maxlen -= kve->kve_structsize;
2785 
2786 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2787 			error = ENOMEM;
2788 		vm_map_lock_read(map);
2789 		if (error != 0)
2790 			break;
2791 		if (last_timestamp != map->timestamp) {
2792 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2793 			entry = tmp_entry;
2794 		}
2795 	}
2796 	vm_map_unlock_read(map);
2797 	vmspace_free(vm);
2798 	PRELE(p);
2799 	free(kve, M_TEMP);
2800 	return (error);
2801 }
2802 
2803 static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)2804 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2805 {
2806 	struct proc *p;
2807 	struct sbuf sb;
2808 	u_int namelen;
2809 	int error, error2, *name;
2810 
2811 	namelen = arg2;
2812 	if (namelen != 1)
2813 		return (EINVAL);
2814 
2815 	name = (int *)arg1;
2816 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2817 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2818 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2819 	if (error != 0) {
2820 		sbuf_delete(&sb);
2821 		return (error);
2822 	}
2823 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2824 	error2 = sbuf_finish(&sb);
2825 	sbuf_delete(&sb);
2826 	return (error != 0 ? error : error2);
2827 }
2828 
2829 #if defined(STACK) || defined(DDB)
2830 static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)2831 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2832 {
2833 	struct kinfo_kstack *kkstp;
2834 	int error, i, *name, numthreads;
2835 	lwpid_t *lwpidarray;
2836 	struct thread *td;
2837 	struct stack *st;
2838 	struct sbuf sb;
2839 	struct proc *p;
2840 	u_int namelen;
2841 
2842 	namelen = arg2;
2843 	if (namelen != 1)
2844 		return (EINVAL);
2845 
2846 	name = (int *)arg1;
2847 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2848 	if (error != 0)
2849 		return (error);
2850 
2851 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2852 	st = stack_create(M_WAITOK);
2853 
2854 	lwpidarray = NULL;
2855 	PROC_LOCK(p);
2856 	do {
2857 		if (lwpidarray != NULL) {
2858 			free(lwpidarray, M_TEMP);
2859 			lwpidarray = NULL;
2860 		}
2861 		numthreads = p->p_numthreads;
2862 		PROC_UNLOCK(p);
2863 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2864 		    M_WAITOK | M_ZERO);
2865 		PROC_LOCK(p);
2866 	} while (numthreads < p->p_numthreads);
2867 
2868 	/*
2869 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2870 	 * of changes could have taken place.  Should we check to see if the
2871 	 * vmspace has been replaced, or the like, in order to prevent
2872 	 * giving a snapshot that spans, say, execve(2), with some threads
2873 	 * before and some after?  Among other things, the credentials could
2874 	 * have changed, in which case the right to extract debug info might
2875 	 * no longer be assured.
2876 	 */
2877 	i = 0;
2878 	FOREACH_THREAD_IN_PROC(p, td) {
2879 		KASSERT(i < numthreads,
2880 		    ("sysctl_kern_proc_kstack: numthreads"));
2881 		lwpidarray[i] = td->td_tid;
2882 		i++;
2883 	}
2884 	PROC_UNLOCK(p);
2885 	numthreads = i;
2886 	for (i = 0; i < numthreads; i++) {
2887 		td = tdfind(lwpidarray[i], p->p_pid);
2888 		if (td == NULL) {
2889 			continue;
2890 		}
2891 		bzero(kkstp, sizeof(*kkstp));
2892 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2893 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2894 		thread_lock(td);
2895 		kkstp->kkst_tid = td->td_tid;
2896 		if (stack_save_td(st, td) == 0)
2897 			kkstp->kkst_state = KKST_STATE_STACKOK;
2898 		else
2899 			kkstp->kkst_state = KKST_STATE_RUNNING;
2900 		thread_unlock(td);
2901 		PROC_UNLOCK(p);
2902 		stack_sbuf_print(&sb, st);
2903 		sbuf_finish(&sb);
2904 		sbuf_delete(&sb);
2905 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2906 		if (error)
2907 			break;
2908 	}
2909 	PRELE(p);
2910 	if (lwpidarray != NULL)
2911 		free(lwpidarray, M_TEMP);
2912 	stack_destroy(st);
2913 	free(kkstp, M_TEMP);
2914 	return (error);
2915 }
2916 #endif
2917 
2918 /*
2919  * This sysctl allows a process to retrieve the full list of groups from
2920  * itself or another process.
2921  */
2922 static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)2923 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2924 {
2925 	pid_t *pidp = (pid_t *)arg1;
2926 	unsigned int arglen = arg2;
2927 	struct proc *p;
2928 	struct ucred *cred;
2929 	int error;
2930 
2931 	if (arglen != 1)
2932 		return (EINVAL);
2933 	if (*pidp == -1) {	/* -1 means this process */
2934 		p = req->td->td_proc;
2935 		PROC_LOCK(p);
2936 	} else {
2937 		error = pget(*pidp, PGET_CANSEE, &p);
2938 		if (error != 0)
2939 			return (error);
2940 	}
2941 
2942 	cred = crhold(p->p_ucred);
2943 	PROC_UNLOCK(p);
2944 
2945 	error = SYSCTL_OUT(req, &cred->cr_gid, sizeof(gid_t));
2946 	if (error == 0)
2947 		error = SYSCTL_OUT(req, cred->cr_groups,
2948 		    cred->cr_ngroups * sizeof(gid_t));
2949 
2950 	crfree(cred);
2951 	return (error);
2952 }
2953 
2954 /*
2955  * This sysctl allows a process to retrieve or/and set the resource limit for
2956  * another process.
2957  */
2958 static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)2959 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2960 {
2961 	int *name = (int *)arg1;
2962 	u_int namelen = arg2;
2963 	struct rlimit rlim;
2964 	struct proc *p;
2965 	u_int which;
2966 	int flags, error;
2967 
2968 	if (namelen != 2)
2969 		return (EINVAL);
2970 
2971 	which = (u_int)name[1];
2972 	if (which >= RLIM_NLIMITS)
2973 		return (EINVAL);
2974 
2975 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2976 		return (EINVAL);
2977 
2978 	flags = PGET_HOLD | PGET_NOTWEXIT;
2979 	if (req->newptr != NULL)
2980 		flags |= PGET_CANDEBUG;
2981 	else
2982 		flags |= PGET_CANSEE;
2983 	error = pget((pid_t)name[0], flags, &p);
2984 	if (error != 0)
2985 		return (error);
2986 
2987 	/*
2988 	 * Retrieve limit.
2989 	 */
2990 	if (req->oldptr != NULL) {
2991 		PROC_LOCK(p);
2992 		lim_rlimit_proc(p, which, &rlim);
2993 		PROC_UNLOCK(p);
2994 	}
2995 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2996 	if (error != 0)
2997 		goto errout;
2998 
2999 	/*
3000 	 * Set limit.
3001 	 */
3002 	if (req->newptr != NULL) {
3003 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
3004 		if (error == 0)
3005 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
3006 	}
3007 
3008 errout:
3009 	PRELE(p);
3010 	return (error);
3011 }
3012 
3013 /*
3014  * This sysctl allows a process to retrieve ps_strings structure location of
3015  * another process.
3016  */
3017 static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)3018 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
3019 {
3020 	int *name = (int *)arg1;
3021 	u_int namelen = arg2;
3022 	struct proc *p;
3023 	vm_offset_t ps_strings;
3024 	int error;
3025 #ifdef COMPAT_FREEBSD32
3026 	uint32_t ps_strings32;
3027 #endif
3028 
3029 	if (namelen != 1)
3030 		return (EINVAL);
3031 
3032 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3033 	if (error != 0)
3034 		return (error);
3035 #ifdef COMPAT_FREEBSD32
3036 	if ((req->flags & SCTL_MASK32) != 0) {
3037 		/*
3038 		 * We return 0 if the 32 bit emulation request is for a 64 bit
3039 		 * process.
3040 		 */
3041 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3042 		    PTROUT(PROC_PS_STRINGS(p)) : 0;
3043 		PROC_UNLOCK(p);
3044 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3045 		return (error);
3046 	}
3047 #endif
3048 	ps_strings = PROC_PS_STRINGS(p);
3049 	PROC_UNLOCK(p);
3050 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3051 	return (error);
3052 }
3053 
3054 /*
3055  * This sysctl allows a process to retrieve umask of another process.
3056  */
3057 static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)3058 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3059 {
3060 	int *name = (int *)arg1;
3061 	u_int namelen = arg2;
3062 	struct proc *p;
3063 	int error;
3064 	u_short cmask;
3065 	pid_t pid;
3066 
3067 	if (namelen != 1)
3068 		return (EINVAL);
3069 
3070 	pid = (pid_t)name[0];
3071 	p = curproc;
3072 	if (pid == p->p_pid || pid == 0) {
3073 		cmask = p->p_pd->pd_cmask;
3074 		goto out;
3075 	}
3076 
3077 	error = pget(pid, PGET_WANTREAD, &p);
3078 	if (error != 0)
3079 		return (error);
3080 
3081 	cmask = p->p_pd->pd_cmask;
3082 	PRELE(p);
3083 out:
3084 	error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3085 	return (error);
3086 }
3087 
3088 /*
3089  * This sysctl allows a process to set and retrieve binary osreldate of
3090  * another process.
3091  */
3092 static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)3093 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3094 {
3095 	int *name = (int *)arg1;
3096 	u_int namelen = arg2;
3097 	struct proc *p;
3098 	int flags, error, osrel;
3099 
3100 	if (namelen != 1)
3101 		return (EINVAL);
3102 
3103 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
3104 		return (EINVAL);
3105 
3106 	flags = PGET_HOLD | PGET_NOTWEXIT;
3107 	if (req->newptr != NULL)
3108 		flags |= PGET_CANDEBUG;
3109 	else
3110 		flags |= PGET_CANSEE;
3111 	error = pget((pid_t)name[0], flags, &p);
3112 	if (error != 0)
3113 		return (error);
3114 
3115 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3116 	if (error != 0)
3117 		goto errout;
3118 
3119 	if (req->newptr != NULL) {
3120 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3121 		if (error != 0)
3122 			goto errout;
3123 		if (osrel < 0) {
3124 			error = EINVAL;
3125 			goto errout;
3126 		}
3127 		p->p_osrel = osrel;
3128 	}
3129 errout:
3130 	PRELE(p);
3131 	return (error);
3132 }
3133 
3134 static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)3135 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3136 {
3137 	int *name = (int *)arg1;
3138 	u_int namelen = arg2;
3139 	struct proc *p;
3140 	struct kinfo_sigtramp kst;
3141 	const struct sysentvec *sv;
3142 	int error;
3143 #ifdef COMPAT_FREEBSD32
3144 	struct kinfo_sigtramp32 kst32;
3145 #endif
3146 
3147 	if (namelen != 1)
3148 		return (EINVAL);
3149 
3150 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3151 	if (error != 0)
3152 		return (error);
3153 	sv = p->p_sysent;
3154 #ifdef COMPAT_FREEBSD32
3155 	if ((req->flags & SCTL_MASK32) != 0) {
3156 		bzero(&kst32, sizeof(kst32));
3157 		if (SV_PROC_FLAG(p, SV_ILP32)) {
3158 			if (PROC_HAS_SHP(p)) {
3159 				kst32.ksigtramp_start = PROC_SIGCODE(p);
3160 				kst32.ksigtramp_end = kst32.ksigtramp_start +
3161 				    ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3162 				    *sv->sv_szsigcode :
3163 				    (uintptr_t)sv->sv_szsigcode);
3164 			} else {
3165 				kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3166 				    *sv->sv_szsigcode;
3167 				kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3168 			}
3169 		}
3170 		PROC_UNLOCK(p);
3171 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3172 		return (error);
3173 	}
3174 #endif
3175 	bzero(&kst, sizeof(kst));
3176 	if (PROC_HAS_SHP(p)) {
3177 		kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3178 		kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3179 		    ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3180 		    (uintptr_t)sv->sv_szsigcode);
3181 	} else {
3182 		kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3183 		    *sv->sv_szsigcode;
3184 		kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3185 	}
3186 	PROC_UNLOCK(p);
3187 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
3188 	return (error);
3189 }
3190 
3191 static int
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)3192 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3193 {
3194 	int *name = (int *)arg1;
3195 	u_int namelen = arg2;
3196 	pid_t pid;
3197 	struct proc *p;
3198 	struct thread *td1;
3199 	uintptr_t addr;
3200 #ifdef COMPAT_FREEBSD32
3201 	uint32_t addr32;
3202 #endif
3203 	int error;
3204 
3205 	if (namelen != 1 || req->newptr != NULL)
3206 		return (EINVAL);
3207 
3208 	pid = (pid_t)name[0];
3209 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3210 	if (error != 0)
3211 		return (error);
3212 
3213 	PROC_LOCK(p);
3214 #ifdef COMPAT_FREEBSD32
3215 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3216 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3217 			error = EINVAL;
3218 			goto errlocked;
3219 		}
3220 	}
3221 #endif
3222 	if (pid <= PID_MAX) {
3223 		td1 = FIRST_THREAD_IN_PROC(p);
3224 	} else {
3225 		FOREACH_THREAD_IN_PROC(p, td1) {
3226 			if (td1->td_tid == pid)
3227 				break;
3228 		}
3229 	}
3230 	if (td1 == NULL) {
3231 		error = ESRCH;
3232 		goto errlocked;
3233 	}
3234 	/*
3235 	 * The access to the private thread flags.  It is fine as far
3236 	 * as no out-of-thin-air values are read from td_pflags, and
3237 	 * usermode read of the td_sigblock_ptr is racy inherently,
3238 	 * since target process might have already changed it
3239 	 * meantime.
3240 	 */
3241 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3242 		addr = (uintptr_t)td1->td_sigblock_ptr;
3243 	else
3244 		error = ENOTTY;
3245 
3246 errlocked:
3247 	_PRELE(p);
3248 	PROC_UNLOCK(p);
3249 	if (error != 0)
3250 		return (error);
3251 
3252 #ifdef COMPAT_FREEBSD32
3253 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3254 		addr32 = addr;
3255 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3256 	} else
3257 #endif
3258 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
3259 	return (error);
3260 }
3261 
3262 static int
sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)3263 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3264 {
3265 	struct kinfo_vm_layout kvm;
3266 	struct proc *p;
3267 	struct vmspace *vmspace;
3268 	int error, *name;
3269 
3270 	name = (int *)arg1;
3271 	if ((u_int)arg2 != 1)
3272 		return (EINVAL);
3273 
3274 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3275 	if (error != 0)
3276 		return (error);
3277 #ifdef COMPAT_FREEBSD32
3278 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3279 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3280 			PROC_UNLOCK(p);
3281 			return (EINVAL);
3282 		}
3283 	}
3284 #endif
3285 	vmspace = vmspace_acquire_ref(p);
3286 	PROC_UNLOCK(p);
3287 
3288 	memset(&kvm, 0, sizeof(kvm));
3289 	kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3290 	kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3291 	kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3292 	kvm.kvm_text_size = vmspace->vm_tsize;
3293 	kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3294 	kvm.kvm_data_size = vmspace->vm_dsize;
3295 	kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3296 	kvm.kvm_stack_size = vmspace->vm_ssize;
3297 	kvm.kvm_shp_addr = vmspace->vm_shp_base;
3298 	kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3299 	if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3300 		kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3301 	if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3302 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3303 	if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3304 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3305 	if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3306 		kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3307 	if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3308 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3309 	if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3310 	    PROC_HAS_SHP(p))
3311 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3312 
3313 #ifdef COMPAT_FREEBSD32
3314 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3315 		struct kinfo_vm_layout32 kvm32;
3316 
3317 		memset(&kvm32, 0, sizeof(kvm32));
3318 		kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3319 		kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3320 		kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3321 		kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3322 		kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3323 		kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3324 		kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3325 		kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3326 		kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3327 		kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3328 		kvm32.kvm_map_flags = kvm.kvm_map_flags;
3329 		error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3330 		goto out;
3331 	}
3332 #endif
3333 
3334 	error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3335 #ifdef COMPAT_FREEBSD32
3336 out:
3337 #endif
3338 	vmspace_free(vmspace);
3339 	return (error);
3340 }
3341 
3342 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
3343     "Process table");
3344 
3345 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3346 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3347 	"Return entire process table");
3348 
3349 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3350 	sysctl_kern_proc, "Process table");
3351 
3352 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3353 	sysctl_kern_proc, "Process table");
3354 
3355 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3356 	sysctl_kern_proc, "Process table");
3357 
3358 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3359 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3360 
3361 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3362 	sysctl_kern_proc, "Process table");
3363 
3364 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3365 	sysctl_kern_proc, "Process table");
3366 
3367 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3368 	sysctl_kern_proc, "Process table");
3369 
3370 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3371 	sysctl_kern_proc, "Process table");
3372 
3373 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3374 	sysctl_kern_proc, "Return process table, no threads");
3375 
3376 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3377 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3378 	sysctl_kern_proc_args, "Process argument list");
3379 
3380 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3381 	sysctl_kern_proc_env, "Process environment");
3382 
3383 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3384 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3385 
3386 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3387 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3388 
3389 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3390 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3391 	"Process syscall vector name (ABI type)");
3392 
3393 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3394 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3395 
3396 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3397 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3398 
3399 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3400 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3401 
3402 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3403 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3404 
3405 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3406 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3407 
3408 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3409 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3410 
3411 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3412 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3413 
3414 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3415 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3416 
3417 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3418 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3419 	"Return process table, including threads");
3420 
3421 #ifdef COMPAT_FREEBSD7
3422 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3423 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3424 #endif
3425 
3426 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3427 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3428 
3429 #if defined(STACK) || defined(DDB)
3430 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3431 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3432 #endif
3433 
3434 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3435 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3436 
3437 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3438 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3439 	"Process resource limits");
3440 
3441 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3442 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3443 	"Process ps_strings location");
3444 
3445 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3446 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3447 
3448 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3449 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3450 	"Process binary osreldate");
3451 
3452 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3453 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3454 	"Process signal trampoline location");
3455 
3456 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3457 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3458 	"Thread sigfastblock address");
3459 
3460 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3461 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3462 	"Process virtual address space layout info");
3463 
3464 static struct sx stop_all_proc_blocker;
3465 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3466 
3467 bool
stop_all_proc_block(void)3468 stop_all_proc_block(void)
3469 {
3470 	return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3471 }
3472 
3473 void
stop_all_proc_unblock(void)3474 stop_all_proc_unblock(void)
3475 {
3476 	sx_xunlock(&stop_all_proc_blocker);
3477 }
3478 
3479 int allproc_gen;
3480 
3481 /*
3482  * stop_all_proc() purpose is to stop all process which have usermode,
3483  * except current process for obvious reasons.  This makes it somewhat
3484  * unreliable when invoked from multithreaded process.  The service
3485  * must not be user-callable anyway.
3486  */
3487 void
stop_all_proc(void)3488 stop_all_proc(void)
3489 {
3490 	struct proc *cp, *p;
3491 	int r, gen;
3492 	bool restart, seen_stopped, seen_exiting, stopped_some;
3493 
3494 	if (!stop_all_proc_block())
3495 		return;
3496 
3497 	cp = curproc;
3498 allproc_loop:
3499 	sx_xlock(&allproc_lock);
3500 	gen = allproc_gen;
3501 	seen_exiting = seen_stopped = stopped_some = restart = false;
3502 	LIST_REMOVE(cp, p_list);
3503 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3504 	for (;;) {
3505 		p = LIST_NEXT(cp, p_list);
3506 		if (p == NULL)
3507 			break;
3508 		LIST_REMOVE(cp, p_list);
3509 		LIST_INSERT_AFTER(p, cp, p_list);
3510 		PROC_LOCK(p);
3511 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
3512 		    P_STOPPED_SIG)) != 0) {
3513 			PROC_UNLOCK(p);
3514 			continue;
3515 		}
3516 		if ((p->p_flag2 & P2_WEXIT) != 0) {
3517 			seen_exiting = true;
3518 			PROC_UNLOCK(p);
3519 			continue;
3520 		}
3521 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3522 			/*
3523 			 * Stopped processes are tolerated when there
3524 			 * are no other processes which might continue
3525 			 * them.  P_STOPPED_SINGLE but not
3526 			 * P_TOTAL_STOP process still has at least one
3527 			 * thread running.
3528 			 */
3529 			seen_stopped = true;
3530 			PROC_UNLOCK(p);
3531 			continue;
3532 		}
3533 		if ((p->p_flag & P_TRACED) != 0) {
3534 			/*
3535 			 * thread_single() below cannot stop traced p,
3536 			 * so skip it.  OTOH, we cannot require
3537 			 * restart because debugger might be either
3538 			 * already stopped or traced as well.
3539 			 */
3540 			PROC_UNLOCK(p);
3541 			continue;
3542 		}
3543 		sx_xunlock(&allproc_lock);
3544 		_PHOLD(p);
3545 		r = thread_single(p, SINGLE_ALLPROC);
3546 		if (r != 0)
3547 			restart = true;
3548 		else
3549 			stopped_some = true;
3550 		_PRELE(p);
3551 		PROC_UNLOCK(p);
3552 		sx_xlock(&allproc_lock);
3553 	}
3554 	/* Catch forked children we did not see in iteration. */
3555 	if (gen != allproc_gen)
3556 		restart = true;
3557 	sx_xunlock(&allproc_lock);
3558 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3559 		kern_yield(PRI_USER);
3560 		goto allproc_loop;
3561 	}
3562 }
3563 
3564 void
resume_all_proc(void)3565 resume_all_proc(void)
3566 {
3567 	struct proc *cp, *p;
3568 
3569 	cp = curproc;
3570 	sx_xlock(&allproc_lock);
3571 again:
3572 	LIST_REMOVE(cp, p_list);
3573 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3574 	for (;;) {
3575 		p = LIST_NEXT(cp, p_list);
3576 		if (p == NULL)
3577 			break;
3578 		LIST_REMOVE(cp, p_list);
3579 		LIST_INSERT_AFTER(p, cp, p_list);
3580 		PROC_LOCK(p);
3581 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3582 			sx_xunlock(&allproc_lock);
3583 			_PHOLD(p);
3584 			thread_single_end(p, SINGLE_ALLPROC);
3585 			_PRELE(p);
3586 			PROC_UNLOCK(p);
3587 			sx_xlock(&allproc_lock);
3588 		} else {
3589 			PROC_UNLOCK(p);
3590 		}
3591 	}
3592 	/*  Did the loop above missed any stopped process ? */
3593 	FOREACH_PROC_IN_SYSTEM(p) {
3594 		/* No need for proc lock. */
3595 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3596 			goto again;
3597 	}
3598 	sx_xunlock(&allproc_lock);
3599 
3600 	stop_all_proc_unblock();
3601 }
3602 
3603 /* #define	TOTAL_STOP_DEBUG	1 */
3604 #ifdef TOTAL_STOP_DEBUG
3605 volatile static int ap_resume;
3606 #include <sys/mount.h>
3607 
3608 static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)3609 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3610 {
3611 	int error, val;
3612 
3613 	val = 0;
3614 	ap_resume = 0;
3615 	error = sysctl_handle_int(oidp, &val, 0, req);
3616 	if (error != 0 || req->newptr == NULL)
3617 		return (error);
3618 	if (val != 0) {
3619 		stop_all_proc();
3620 		syncer_suspend();
3621 		while (ap_resume == 0)
3622 			;
3623 		syncer_resume();
3624 		resume_all_proc();
3625 	}
3626 	return (0);
3627 }
3628 
3629 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3630     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3631     sysctl_debug_stop_all_proc, "I",
3632     "");
3633 #endif
3634