1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_heap.h" 33 #include "panthor_mmu.h" 34 #include "panthor_regs.h" 35 #include "panthor_sched.h" 36 37 #define MAX_AS_SLOTS 32 38 39 struct panthor_vm; 40 41 /** 42 * struct panthor_as_slot - Address space slot 43 */ 44 struct panthor_as_slot { 45 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 46 struct panthor_vm *vm; 47 }; 48 49 /** 50 * struct panthor_mmu - MMU related data 51 */ 52 struct panthor_mmu { 53 /** @irq: The MMU irq. */ 54 struct panthor_irq irq; 55 56 /** 57 * @as: Address space related fields. 58 * 59 * The GPU has a limited number of address spaces (AS) slots, forcing 60 * us to re-assign them to re-assign slots on-demand. 61 */ 62 struct { 63 /** @as.slots_lock: Lock protecting access to all other AS fields. */ 64 struct mutex slots_lock; 65 66 /** @as.alloc_mask: Bitmask encoding the allocated slots. */ 67 unsigned long alloc_mask; 68 69 /** @as.faulty_mask: Bitmask encoding the faulty slots. */ 70 unsigned long faulty_mask; 71 72 /** @as.slots: VMs currently bound to the AS slots. */ 73 struct panthor_as_slot slots[MAX_AS_SLOTS]; 74 75 /** 76 * @as.lru_list: List of least recently used VMs. 77 * 78 * We use this list to pick a VM to evict when all slots are 79 * used. 80 * 81 * There should be no more active VMs than there are AS slots, 82 * so this LRU is just here to keep VMs bound until there's 83 * a need to release a slot, thus avoid unnecessary TLB/cache 84 * flushes. 85 */ 86 struct list_head lru_list; 87 } as; 88 89 /** @vm: VMs management fields */ 90 struct { 91 /** @vm.lock: Lock protecting access to list. */ 92 struct mutex lock; 93 94 /** @vm.list: List containing all VMs. */ 95 struct list_head list; 96 97 /** @vm.reset_in_progress: True if a reset is in progress. */ 98 bool reset_in_progress; 99 100 /** @vm.wq: Workqueue used for the VM_BIND queues. */ 101 struct workqueue_struct *wq; 102 } vm; 103 }; 104 105 /** 106 * struct panthor_vm_pool - VM pool object 107 */ 108 struct panthor_vm_pool { 109 /** @xa: Array used for VM handle tracking. */ 110 struct xarray xa; 111 }; 112 113 /** 114 * struct panthor_vma - GPU mapping object 115 * 116 * This is used to track GEM mappings in GPU space. 117 */ 118 struct panthor_vma { 119 /** @base: Inherits from drm_gpuva. */ 120 struct drm_gpuva base; 121 122 /** @node: Used to implement deferred release of VMAs. */ 123 struct list_head node; 124 125 /** 126 * @flags: Combination of drm_panthor_vm_bind_op_flags. 127 * 128 * Only map related flags are accepted. 129 */ 130 u32 flags; 131 }; 132 133 /** 134 * struct panthor_vm_op_ctx - VM operation context 135 * 136 * With VM operations potentially taking place in a dma-signaling path, we 137 * need to make sure everything that might require resource allocation is 138 * pre-allocated upfront. This is what this operation context is far. 139 * 140 * We also collect resources that have been freed, so we can release them 141 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 142 * request. 143 */ 144 struct panthor_vm_op_ctx { 145 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 146 struct { 147 /** @rsvd_page_tables.count: Number of pages reserved. */ 148 u32 count; 149 150 /** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */ 151 u32 ptr; 152 153 /** 154 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update. 155 * 156 * After an VM operation, there might be free pages left in this array. 157 * They should be returned to the pt_cache as part of the op_ctx cleanup. 158 */ 159 void **pages; 160 } rsvd_page_tables; 161 162 /** 163 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 164 * 165 * Partial unmap requests or map requests overlapping existing mappings will 166 * trigger a remap call, which need to register up to three panthor_vma objects 167 * (one for the new mapping, and two for the previous and next mappings). 168 */ 169 struct panthor_vma *preallocated_vmas[3]; 170 171 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 172 u32 flags; 173 174 /** @va: Virtual range targeted by the VM operation. */ 175 struct { 176 /** @va.addr: Start address. */ 177 u64 addr; 178 179 /** @va.range: Range size. */ 180 u64 range; 181 } va; 182 183 /** 184 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 185 * 186 * For unmap operations, this will contain all VMAs that were covered by the 187 * specified VA range. 188 * 189 * For map operations, this will contain all VMAs that previously mapped to 190 * the specified VA range. 191 * 192 * Those VMAs, and the resources they point to will be released as part of 193 * the op_ctx cleanup operation. 194 */ 195 struct list_head returned_vmas; 196 197 /** @map: Fields specific to a map operation. */ 198 struct { 199 /** @map.vm_bo: Buffer object to map. */ 200 struct drm_gpuvm_bo *vm_bo; 201 202 /** @map.bo_offset: Offset in the buffer object. */ 203 u64 bo_offset; 204 205 /** 206 * @map.sgt: sg-table pointing to pages backing the GEM object. 207 * 208 * This is gathered at job creation time, such that we don't have 209 * to allocate in ::run_job(). 210 */ 211 struct sg_table *sgt; 212 213 /** 214 * @map.new_vma: The new VMA object that will be inserted to the VA tree. 215 */ 216 struct panthor_vma *new_vma; 217 } map; 218 }; 219 220 /** 221 * struct panthor_vm - VM object 222 * 223 * A VM is an object representing a GPU (or MCU) virtual address space. 224 * It embeds the MMU page table for this address space, a tree containing 225 * all the virtual mappings of GEM objects, and other things needed to manage 226 * the VM. 227 * 228 * Except for the MCU VM, which is managed by the kernel, all other VMs are 229 * created by userspace and mostly managed by userspace, using the 230 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 231 * 232 * A portion of the virtual address space is reserved for kernel objects, 233 * like heap chunks, and userspace gets to decide how much of the virtual 234 * address space is left to the kernel (half of the virtual address space 235 * by default). 236 */ 237 struct panthor_vm { 238 /** 239 * @base: Inherit from drm_gpuvm. 240 * 241 * We delegate all the VA management to the common drm_gpuvm framework 242 * and only implement hooks to update the MMU page table. 243 */ 244 struct drm_gpuvm base; 245 246 /** 247 * @sched: Scheduler used for asynchronous VM_BIND request. 248 * 249 * We use a 1:1 scheduler here. 250 */ 251 struct drm_gpu_scheduler sched; 252 253 /** 254 * @entity: Scheduling entity representing the VM_BIND queue. 255 * 256 * There's currently one bind queue per VM. It doesn't make sense to 257 * allow more given the VM operations are serialized anyway. 258 */ 259 struct drm_sched_entity entity; 260 261 /** @ptdev: Device. */ 262 struct panthor_device *ptdev; 263 264 /** @memattr: Value to program to the AS_MEMATTR register. */ 265 u64 memattr; 266 267 /** @pgtbl_ops: Page table operations. */ 268 struct io_pgtable_ops *pgtbl_ops; 269 270 /** @root_page_table: Stores the root page table pointer. */ 271 void *root_page_table; 272 273 /** 274 * @op_lock: Lock used to serialize operations on a VM. 275 * 276 * The serialization of jobs queued to the VM_BIND queue is already 277 * taken care of by drm_sched, but we need to serialize synchronous 278 * and asynchronous VM_BIND request. This is what this lock is for. 279 */ 280 struct mutex op_lock; 281 282 /** 283 * @op_ctx: The context attached to the currently executing VM operation. 284 * 285 * NULL when no operation is in progress. 286 */ 287 struct panthor_vm_op_ctx *op_ctx; 288 289 /** 290 * @mm: Memory management object representing the auto-VA/kernel-VA. 291 * 292 * Used to auto-allocate VA space for kernel-managed objects (tiler 293 * heaps, ...). 294 * 295 * For the MCU VM, this is managing the VA range that's used to map 296 * all shared interfaces. 297 * 298 * For user VMs, the range is specified by userspace, and must not 299 * exceed half of the VA space addressable. 300 */ 301 struct drm_mm mm; 302 303 /** @mm_lock: Lock protecting the @mm field. */ 304 struct mutex mm_lock; 305 306 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 307 struct { 308 /** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */ 309 u64 start; 310 311 /** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */ 312 u64 end; 313 } kernel_auto_va; 314 315 /** @as: Address space related fields. */ 316 struct { 317 /** 318 * @as.id: ID of the address space this VM is bound to. 319 * 320 * A value of -1 means the VM is inactive/not bound. 321 */ 322 int id; 323 324 /** @as.active_cnt: Number of active users of this VM. */ 325 refcount_t active_cnt; 326 327 /** 328 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 329 * 330 * Active VMs should not be inserted in the LRU list. 331 */ 332 struct list_head lru_node; 333 } as; 334 335 /** 336 * @heaps: Tiler heap related fields. 337 */ 338 struct { 339 /** 340 * @heaps.pool: The heap pool attached to this VM. 341 * 342 * Will stay NULL until someone creates a heap context on this VM. 343 */ 344 struct panthor_heap_pool *pool; 345 346 /** @heaps.lock: Lock used to protect access to @pool. */ 347 struct mutex lock; 348 } heaps; 349 350 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 351 struct list_head node; 352 353 /** @for_mcu: True if this is the MCU VM. */ 354 bool for_mcu; 355 356 /** 357 * @destroyed: True if the VM was destroyed. 358 * 359 * No further bind requests should be queued to a destroyed VM. 360 */ 361 bool destroyed; 362 363 /** 364 * @unusable: True if the VM has turned unusable because something 365 * bad happened during an asynchronous request. 366 * 367 * We don't try to recover from such failures, because this implies 368 * informing userspace about the specific operation that failed, and 369 * hoping the userspace driver can replay things from there. This all 370 * sounds very complicated for little gain. 371 * 372 * Instead, we should just flag the VM as unusable, and fail any 373 * further request targeting this VM. 374 * 375 * We also provide a way to query a VM state, so userspace can destroy 376 * it and create a new one. 377 * 378 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 379 * situation, where the logical device needs to be re-created. 380 */ 381 bool unusable; 382 383 /** 384 * @unhandled_fault: Unhandled fault happened. 385 * 386 * This should be reported to the scheduler, and the queue/group be 387 * flagged as faulty as a result. 388 */ 389 bool unhandled_fault; 390 }; 391 392 /** 393 * struct panthor_vm_bind_job - VM bind job 394 */ 395 struct panthor_vm_bind_job { 396 /** @base: Inherit from drm_sched_job. */ 397 struct drm_sched_job base; 398 399 /** @refcount: Reference count. */ 400 struct kref refcount; 401 402 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 403 struct work_struct cleanup_op_ctx_work; 404 405 /** @vm: VM targeted by the VM operation. */ 406 struct panthor_vm *vm; 407 408 /** @ctx: Operation context. */ 409 struct panthor_vm_op_ctx ctx; 410 }; 411 412 /* 413 * @pt_cache: Cache used to allocate MMU page tables. 414 * 415 * The pre-allocation pattern forces us to over-allocate to plan for 416 * the worst case scenario, and return the pages we didn't use. 417 * 418 * Having a kmem_cache allows us to speed allocations. 419 */ 420 static struct kmem_cache *pt_cache; 421 422 /** 423 * alloc_pt() - Custom page table allocator 424 * @cookie: Cookie passed at page table allocation time. 425 * @size: Size of the page table. This size should be fixed, 426 * and determined at creation time based on the granule size. 427 * @gfp: GFP flags. 428 * 429 * We want a custom allocator so we can use a cache for page table 430 * allocations and amortize the cost of the over-reservation that's 431 * done to allow asynchronous VM operations. 432 * 433 * Return: non-NULL on success, NULL if the allocation failed for any 434 * reason. 435 */ 436 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 437 { 438 struct panthor_vm *vm = cookie; 439 void *page; 440 441 /* Allocation of the root page table happening during init. */ 442 if (unlikely(!vm->root_page_table)) { 443 struct page *p; 444 445 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 446 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 447 gfp | __GFP_ZERO, get_order(size)); 448 page = p ? page_address(p) : NULL; 449 vm->root_page_table = page; 450 return page; 451 } 452 453 /* We're not supposed to have anything bigger than 4k here, because we picked a 454 * 4k granule size at init time. 455 */ 456 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 457 return NULL; 458 459 /* We must have some op_ctx attached to the VM and it must have at least one 460 * free page. 461 */ 462 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 463 drm_WARN_ON(&vm->ptdev->base, 464 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 465 return NULL; 466 467 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 468 memset(page, 0, SZ_4K); 469 470 /* Page table entries don't use virtual addresses, which trips out 471 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 472 * are mixed with other fields, and I fear kmemleak won't detect that 473 * either. 474 * 475 * Let's just ignore memory passed to the page-table driver for now. 476 */ 477 kmemleak_ignore(page); 478 return page; 479 } 480 481 /** 482 * free_pt() - Custom page table free function 483 * @cookie: Cookie passed at page table allocation time. 484 * @data: Page table to free. 485 * @size: Size of the page table. This size should be fixed, 486 * and determined at creation time based on the granule size. 487 */ 488 static void free_pt(void *cookie, void *data, size_t size) 489 { 490 struct panthor_vm *vm = cookie; 491 492 if (unlikely(vm->root_page_table == data)) { 493 free_pages((unsigned long)data, get_order(size)); 494 vm->root_page_table = NULL; 495 return; 496 } 497 498 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 499 return; 500 501 /* Return the page to the pt_cache. */ 502 kmem_cache_free(pt_cache, data); 503 } 504 505 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 506 { 507 int ret; 508 u32 val; 509 510 /* Wait for the MMU status to indicate there is no active command, in 511 * case one is pending. 512 */ 513 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr), 514 val, !(val & AS_STATUS_AS_ACTIVE), 515 10, 100000); 516 517 if (ret) { 518 panthor_device_schedule_reset(ptdev); 519 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 520 } 521 522 return ret; 523 } 524 525 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 526 { 527 int status; 528 529 /* write AS_COMMAND when MMU is ready to accept another command */ 530 status = wait_ready(ptdev, as_nr); 531 if (!status) 532 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 533 534 return status; 535 } 536 537 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 538 u64 region_start, u64 size) 539 { 540 u8 region_width; 541 u64 region; 542 u64 region_end = region_start + size; 543 544 if (!size) 545 return; 546 547 /* 548 * The locked region is a naturally aligned power of 2 block encoded as 549 * log2 minus(1). 550 * Calculate the desired start/end and look for the highest bit which 551 * differs. The smallest naturally aligned block must include this bit 552 * change, the desired region starts with this bit (and subsequent bits) 553 * zeroed and ends with the bit (and subsequent bits) set to one. 554 */ 555 region_width = max(fls64(region_start ^ (region_end - 1)), 556 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 557 558 /* 559 * Mask off the low bits of region_start (which would be ignored by 560 * the hardware anyway) 561 */ 562 region_start &= GENMASK_ULL(63, region_width); 563 564 region = region_width | region_start; 565 566 /* Lock the region that needs to be updated */ 567 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); 568 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); 569 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 570 } 571 572 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 573 u64 iova, u64 size, u32 op) 574 { 575 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 576 577 if (as_nr < 0) 578 return 0; 579 580 /* 581 * If the AS number is greater than zero, then we can be sure 582 * the device is up and running, so we don't need to explicitly 583 * power it up 584 */ 585 586 if (op != AS_COMMAND_UNLOCK) 587 lock_region(ptdev, as_nr, iova, size); 588 589 /* Run the MMU operation */ 590 write_cmd(ptdev, as_nr, op); 591 592 /* Wait for the flush to complete */ 593 return wait_ready(ptdev, as_nr); 594 } 595 596 static int mmu_hw_do_operation(struct panthor_vm *vm, 597 u64 iova, u64 size, u32 op) 598 { 599 struct panthor_device *ptdev = vm->ptdev; 600 int ret; 601 602 mutex_lock(&ptdev->mmu->as.slots_lock); 603 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 604 mutex_unlock(&ptdev->mmu->as.slots_lock); 605 606 return ret; 607 } 608 609 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 610 u64 transtab, u64 transcfg, u64 memattr) 611 { 612 int ret; 613 614 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 615 if (ret) 616 return ret; 617 618 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); 619 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); 620 621 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); 622 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); 623 624 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); 625 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); 626 627 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 628 } 629 630 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 631 { 632 int ret; 633 634 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 635 if (ret) 636 return ret; 637 638 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0); 639 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0); 640 641 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0); 642 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0); 643 644 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 645 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0); 646 647 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 648 } 649 650 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 651 { 652 /* Bits 16 to 31 mean REQ_COMPLETE. */ 653 return value & GENMASK(15, 0); 654 } 655 656 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 657 { 658 return BIT(as); 659 } 660 661 /** 662 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 663 * @vm: VM to check. 664 * 665 * Return: true if the VM has unhandled faults, false otherwise. 666 */ 667 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 668 { 669 return vm->unhandled_fault; 670 } 671 672 /** 673 * panthor_vm_is_unusable() - Check if the VM is still usable 674 * @vm: VM to check. 675 * 676 * Return: true if the VM is unusable, false otherwise. 677 */ 678 bool panthor_vm_is_unusable(struct panthor_vm *vm) 679 { 680 return vm->unusable; 681 } 682 683 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 684 { 685 struct panthor_device *ptdev = vm->ptdev; 686 687 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 688 689 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 690 return; 691 692 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 693 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 694 refcount_set(&vm->as.active_cnt, 0); 695 list_del_init(&vm->as.lru_node); 696 vm->as.id = -1; 697 } 698 699 /** 700 * panthor_vm_active() - Flag a VM as active 701 * @vm: VM to flag as active. 702 * 703 * Assigns an address space to a VM so it can be used by the GPU/MCU. 704 * 705 * Return: 0 on success, a negative error code otherwise. 706 */ 707 int panthor_vm_active(struct panthor_vm *vm) 708 { 709 struct panthor_device *ptdev = vm->ptdev; 710 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 711 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 712 int ret = 0, as, cookie; 713 u64 transtab, transcfg; 714 715 if (!drm_dev_enter(&ptdev->base, &cookie)) 716 return -ENODEV; 717 718 if (refcount_inc_not_zero(&vm->as.active_cnt)) 719 goto out_dev_exit; 720 721 mutex_lock(&ptdev->mmu->as.slots_lock); 722 723 if (refcount_inc_not_zero(&vm->as.active_cnt)) 724 goto out_unlock; 725 726 as = vm->as.id; 727 if (as >= 0) { 728 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 729 * re-enable the MMU after clearing+unmasking the AS interrupts. 730 */ 731 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 732 goto out_enable_as; 733 734 goto out_make_active; 735 } 736 737 /* Check for a free AS */ 738 if (vm->for_mcu) { 739 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 740 as = 0; 741 } else { 742 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 743 } 744 745 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 746 struct panthor_vm *lru_vm; 747 748 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 749 struct panthor_vm, 750 as.lru_node); 751 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 752 ret = -EBUSY; 753 goto out_unlock; 754 } 755 756 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 757 as = lru_vm->as.id; 758 panthor_vm_release_as_locked(lru_vm); 759 } 760 761 /* Assign the free or reclaimed AS to the FD */ 762 vm->as.id = as; 763 set_bit(as, &ptdev->mmu->as.alloc_mask); 764 ptdev->mmu->as.slots[as].vm = vm; 765 766 out_enable_as: 767 transtab = cfg->arm_lpae_s1_cfg.ttbr; 768 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 769 AS_TRANSCFG_PTW_RA | 770 AS_TRANSCFG_ADRMODE_AARCH64_4K | 771 AS_TRANSCFG_INA_BITS(55 - va_bits); 772 if (ptdev->coherent) 773 transcfg |= AS_TRANSCFG_PTW_SH_OS; 774 775 /* If the VM is re-activated, we clear the fault. */ 776 vm->unhandled_fault = false; 777 778 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 779 * before enabling the AS. 780 */ 781 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 782 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 783 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 784 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 785 } 786 787 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 788 789 out_make_active: 790 if (!ret) { 791 refcount_set(&vm->as.active_cnt, 1); 792 list_del_init(&vm->as.lru_node); 793 } 794 795 out_unlock: 796 mutex_unlock(&ptdev->mmu->as.slots_lock); 797 798 out_dev_exit: 799 drm_dev_exit(cookie); 800 return ret; 801 } 802 803 /** 804 * panthor_vm_idle() - Flag a VM idle 805 * @vm: VM to flag as idle. 806 * 807 * When we know the GPU is done with the VM (no more jobs to process), 808 * we can relinquish the AS slot attached to this VM, if any. 809 * 810 * We don't release the slot immediately, but instead place the VM in 811 * the LRU list, so it can be evicted if another VM needs an AS slot. 812 * This way, VMs keep attached to the AS they were given until we run 813 * out of free slot, limiting the number of MMU operations (TLB flush 814 * and other AS updates). 815 */ 816 void panthor_vm_idle(struct panthor_vm *vm) 817 { 818 struct panthor_device *ptdev = vm->ptdev; 819 820 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 821 return; 822 823 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 824 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 825 826 refcount_set(&vm->as.active_cnt, 0); 827 mutex_unlock(&ptdev->mmu->as.slots_lock); 828 } 829 830 u32 panthor_vm_page_size(struct panthor_vm *vm) 831 { 832 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops); 833 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1; 834 835 return 1u << pg_shift; 836 } 837 838 static void panthor_vm_stop(struct panthor_vm *vm) 839 { 840 drm_sched_stop(&vm->sched, NULL); 841 } 842 843 static void panthor_vm_start(struct panthor_vm *vm) 844 { 845 drm_sched_start(&vm->sched, 0); 846 } 847 848 /** 849 * panthor_vm_as() - Get the AS slot attached to a VM 850 * @vm: VM to get the AS slot of. 851 * 852 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 853 */ 854 int panthor_vm_as(struct panthor_vm *vm) 855 { 856 return vm->as.id; 857 } 858 859 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 860 { 861 /* 862 * io-pgtable only operates on multiple pages within a single table 863 * entry, so we need to split at boundaries of the table size, i.e. 864 * the next block size up. The distance from address A to the next 865 * boundary of block size B is logically B - A % B, but in unsigned 866 * two's complement where B is a power of two we get the equivalence 867 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 868 */ 869 size_t blk_offset = -addr % SZ_2M; 870 871 if (blk_offset || size < SZ_2M) { 872 *count = min_not_zero(blk_offset, size) / SZ_4K; 873 return SZ_4K; 874 } 875 blk_offset = -addr % SZ_1G ?: SZ_1G; 876 *count = min(blk_offset, size) / SZ_2M; 877 return SZ_2M; 878 } 879 880 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 881 { 882 struct panthor_device *ptdev = vm->ptdev; 883 int ret = 0, cookie; 884 885 if (vm->as.id < 0) 886 return 0; 887 888 /* If the device is unplugged, we just silently skip the flush. */ 889 if (!drm_dev_enter(&ptdev->base, &cookie)) 890 return 0; 891 892 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 893 894 drm_dev_exit(cookie); 895 return ret; 896 } 897 898 /** 899 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS 900 * @vm: VM whose cache to flush 901 * 902 * Return: 0 on success, a negative error code if flush failed. 903 */ 904 int panthor_vm_flush_all(struct panthor_vm *vm) 905 { 906 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range); 907 } 908 909 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 910 { 911 struct panthor_device *ptdev = vm->ptdev; 912 struct io_pgtable_ops *ops = vm->pgtbl_ops; 913 u64 offset = 0; 914 915 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 916 917 while (offset < size) { 918 size_t unmapped_sz = 0, pgcount; 919 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 920 921 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 922 923 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 924 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 925 iova + offset + unmapped_sz, 926 iova + offset + pgsize * pgcount, 927 iova, iova + size); 928 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 929 return -EINVAL; 930 } 931 offset += unmapped_sz; 932 } 933 934 return panthor_vm_flush_range(vm, iova, size); 935 } 936 937 static int 938 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 939 struct sg_table *sgt, u64 offset, u64 size) 940 { 941 struct panthor_device *ptdev = vm->ptdev; 942 unsigned int count; 943 struct scatterlist *sgl; 944 struct io_pgtable_ops *ops = vm->pgtbl_ops; 945 u64 start_iova = iova; 946 int ret; 947 948 if (!size) 949 return 0; 950 951 for_each_sgtable_dma_sg(sgt, sgl, count) { 952 dma_addr_t paddr = sg_dma_address(sgl); 953 size_t len = sg_dma_len(sgl); 954 955 if (len <= offset) { 956 offset -= len; 957 continue; 958 } 959 960 paddr += offset; 961 len -= offset; 962 len = min_t(size_t, len, size); 963 size -= len; 964 965 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 966 vm->as.id, iova, &paddr, len); 967 968 while (len) { 969 size_t pgcount, mapped = 0; 970 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 971 972 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 973 GFP_KERNEL, &mapped); 974 iova += mapped; 975 paddr += mapped; 976 len -= mapped; 977 978 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 979 ret = -ENOMEM; 980 981 if (ret) { 982 /* If something failed, unmap what we've already mapped before 983 * returning. The unmap call is not supposed to fail. 984 */ 985 drm_WARN_ON(&ptdev->base, 986 panthor_vm_unmap_pages(vm, start_iova, 987 iova - start_iova)); 988 return ret; 989 } 990 } 991 992 if (!size) 993 break; 994 995 offset = 0; 996 } 997 998 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 999 } 1000 1001 static int flags_to_prot(u32 flags) 1002 { 1003 int prot = 0; 1004 1005 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 1006 prot |= IOMMU_NOEXEC; 1007 1008 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 1009 prot |= IOMMU_CACHE; 1010 1011 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 1012 prot |= IOMMU_READ; 1013 else 1014 prot |= IOMMU_READ | IOMMU_WRITE; 1015 1016 return prot; 1017 } 1018 1019 /** 1020 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 1021 * @vm: VM to allocate a region on. 1022 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 1023 * wants the VA to be automatically allocated from the auto-VA range. 1024 * @size: size of the VA range. 1025 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1026 * 1027 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1028 * need to be mapped to the userspace VM, in the region reserved for kernel 1029 * objects. 1030 * 1031 * This function takes care of allocating a region in the kernel auto-VA space. 1032 * 1033 * Return: 0 on success, an error code otherwise. 1034 */ 1035 int 1036 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1037 struct drm_mm_node *va_node) 1038 { 1039 ssize_t vm_pgsz = panthor_vm_page_size(vm); 1040 int ret; 1041 1042 if (!size || !IS_ALIGNED(size, vm_pgsz)) 1043 return -EINVAL; 1044 1045 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz)) 1046 return -EINVAL; 1047 1048 mutex_lock(&vm->mm_lock); 1049 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1050 va_node->start = va; 1051 va_node->size = size; 1052 ret = drm_mm_reserve_node(&vm->mm, va_node); 1053 } else { 1054 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1055 size >= SZ_2M ? SZ_2M : SZ_4K, 1056 0, vm->kernel_auto_va.start, 1057 vm->kernel_auto_va.end, 1058 DRM_MM_INSERT_BEST); 1059 } 1060 mutex_unlock(&vm->mm_lock); 1061 1062 return ret; 1063 } 1064 1065 /** 1066 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1067 * @vm: VM to free the region on. 1068 * @va_node: Memory node representing the region to free. 1069 */ 1070 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1071 { 1072 mutex_lock(&vm->mm_lock); 1073 drm_mm_remove_node(va_node); 1074 mutex_unlock(&vm->mm_lock); 1075 } 1076 1077 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1078 { 1079 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1080 struct drm_gpuvm *vm = vm_bo->vm; 1081 bool unpin; 1082 1083 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1084 * otherwise the mutex might be destroyed while we hold it. 1085 * Same goes for the VM, since we take the VM resv lock. 1086 */ 1087 drm_gem_object_get(&bo->base.base); 1088 drm_gpuvm_get(vm); 1089 1090 /* We take the resv lock to protect against concurrent accesses to the 1091 * gpuvm evicted/extobj lists that are modified in 1092 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1093 * releases sthe last vm_bo reference. 1094 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1095 * GEM vm_bo list. 1096 */ 1097 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1098 mutex_lock(&bo->gpuva_list_lock); 1099 unpin = drm_gpuvm_bo_put(vm_bo); 1100 mutex_unlock(&bo->gpuva_list_lock); 1101 dma_resv_unlock(drm_gpuvm_resv(vm)); 1102 1103 /* If the vm_bo object was destroyed, release the pin reference that 1104 * was hold by this object. 1105 */ 1106 if (unpin && !bo->base.base.import_attach) 1107 drm_gem_shmem_unpin(&bo->base); 1108 1109 drm_gpuvm_put(vm); 1110 drm_gem_object_put(&bo->base.base); 1111 } 1112 1113 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1114 struct panthor_vm *vm) 1115 { 1116 struct panthor_vma *vma, *tmp_vma; 1117 1118 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1119 op_ctx->rsvd_page_tables.ptr; 1120 1121 if (remaining_pt_count) { 1122 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1123 op_ctx->rsvd_page_tables.pages + 1124 op_ctx->rsvd_page_tables.ptr); 1125 } 1126 1127 kfree(op_ctx->rsvd_page_tables.pages); 1128 1129 if (op_ctx->map.vm_bo) 1130 panthor_vm_bo_put(op_ctx->map.vm_bo); 1131 1132 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1133 kfree(op_ctx->preallocated_vmas[i]); 1134 1135 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1136 list_del(&vma->node); 1137 panthor_vm_bo_put(vma->base.vm_bo); 1138 kfree(vma); 1139 } 1140 } 1141 1142 static struct panthor_vma * 1143 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1144 { 1145 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1146 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1147 1148 if (vma) { 1149 op_ctx->preallocated_vmas[i] = NULL; 1150 return vma; 1151 } 1152 } 1153 1154 return NULL; 1155 } 1156 1157 static int 1158 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1159 { 1160 u32 vma_count; 1161 1162 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1163 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1164 /* One VMA for the new mapping, and two more VMAs for the remap case 1165 * which might contain both a prev and next VA. 1166 */ 1167 vma_count = 3; 1168 break; 1169 1170 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1171 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1172 * but not both. 1173 */ 1174 vma_count = 1; 1175 break; 1176 1177 default: 1178 return 0; 1179 } 1180 1181 for (u32 i = 0; i < vma_count; i++) { 1182 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1183 1184 if (!vma) 1185 return -ENOMEM; 1186 1187 op_ctx->preallocated_vmas[i] = vma; 1188 } 1189 1190 return 0; 1191 } 1192 1193 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1194 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1195 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1196 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1197 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1198 1199 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1200 struct panthor_vm *vm, 1201 struct panthor_gem_object *bo, 1202 u64 offset, 1203 u64 size, u64 va, 1204 u32 flags) 1205 { 1206 struct drm_gpuvm_bo *preallocated_vm_bo; 1207 struct sg_table *sgt = NULL; 1208 u64 pt_count; 1209 int ret; 1210 1211 if (!bo) 1212 return -EINVAL; 1213 1214 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1215 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1216 return -EINVAL; 1217 1218 /* Make sure the VA and size are aligned and in-bounds. */ 1219 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1220 return -EINVAL; 1221 1222 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1223 if (bo->exclusive_vm_root_gem && 1224 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1225 return -EINVAL; 1226 1227 memset(op_ctx, 0, sizeof(*op_ctx)); 1228 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1229 op_ctx->flags = flags; 1230 op_ctx->va.range = size; 1231 op_ctx->va.addr = va; 1232 1233 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1234 if (ret) 1235 goto err_cleanup; 1236 1237 if (!bo->base.base.import_attach) { 1238 /* Pre-reserve the BO pages, so the map operation doesn't have to 1239 * allocate. 1240 */ 1241 ret = drm_gem_shmem_pin(&bo->base); 1242 if (ret) 1243 goto err_cleanup; 1244 } 1245 1246 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1247 if (IS_ERR(sgt)) { 1248 if (!bo->base.base.import_attach) 1249 drm_gem_shmem_unpin(&bo->base); 1250 1251 ret = PTR_ERR(sgt); 1252 goto err_cleanup; 1253 } 1254 1255 op_ctx->map.sgt = sgt; 1256 1257 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1258 if (!preallocated_vm_bo) { 1259 if (!bo->base.base.import_attach) 1260 drm_gem_shmem_unpin(&bo->base); 1261 1262 ret = -ENOMEM; 1263 goto err_cleanup; 1264 } 1265 1266 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our 1267 * pre-allocated BO if the <BO,VM> association exists. Given we 1268 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will 1269 * be called immediately, and we have to hold the VM resv lock when 1270 * calling this function. 1271 */ 1272 dma_resv_lock(panthor_vm_resv(vm), NULL); 1273 mutex_lock(&bo->gpuva_list_lock); 1274 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1275 mutex_unlock(&bo->gpuva_list_lock); 1276 dma_resv_unlock(panthor_vm_resv(vm)); 1277 1278 /* If the a vm_bo for this <VM,BO> combination exists, it already 1279 * retains a pin ref, and we can release the one we took earlier. 1280 * 1281 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1282 * which will be released in panthor_vm_bo_put(). 1283 */ 1284 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1285 !bo->base.base.import_attach) 1286 drm_gem_shmem_unpin(&bo->base); 1287 1288 op_ctx->map.bo_offset = offset; 1289 1290 /* L1, L2 and L3 page tables. 1291 * We could optimize L3 allocation by iterating over the sgt and merging 1292 * 2M contiguous blocks, but it's simpler to over-provision and return 1293 * the pages if they're not used. 1294 */ 1295 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1296 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1297 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1298 1299 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1300 sizeof(*op_ctx->rsvd_page_tables.pages), 1301 GFP_KERNEL); 1302 if (!op_ctx->rsvd_page_tables.pages) { 1303 ret = -ENOMEM; 1304 goto err_cleanup; 1305 } 1306 1307 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1308 op_ctx->rsvd_page_tables.pages); 1309 op_ctx->rsvd_page_tables.count = ret; 1310 if (ret != pt_count) { 1311 ret = -ENOMEM; 1312 goto err_cleanup; 1313 } 1314 1315 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1316 dma_resv_lock(panthor_vm_resv(vm), NULL); 1317 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1318 dma_resv_unlock(panthor_vm_resv(vm)); 1319 1320 return 0; 1321 1322 err_cleanup: 1323 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1324 return ret; 1325 } 1326 1327 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1328 struct panthor_vm *vm, 1329 u64 va, u64 size) 1330 { 1331 u32 pt_count = 0; 1332 int ret; 1333 1334 memset(op_ctx, 0, sizeof(*op_ctx)); 1335 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1336 op_ctx->va.range = size; 1337 op_ctx->va.addr = va; 1338 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1339 1340 /* Pre-allocate L3 page tables to account for the split-2M-block 1341 * situation on unmap. 1342 */ 1343 if (va != ALIGN(va, SZ_2M)) 1344 pt_count++; 1345 1346 if (va + size != ALIGN(va + size, SZ_2M) && 1347 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1348 pt_count++; 1349 1350 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1351 if (ret) 1352 goto err_cleanup; 1353 1354 if (pt_count) { 1355 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1356 sizeof(*op_ctx->rsvd_page_tables.pages), 1357 GFP_KERNEL); 1358 if (!op_ctx->rsvd_page_tables.pages) { 1359 ret = -ENOMEM; 1360 goto err_cleanup; 1361 } 1362 1363 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1364 op_ctx->rsvd_page_tables.pages); 1365 if (ret != pt_count) { 1366 ret = -ENOMEM; 1367 goto err_cleanup; 1368 } 1369 op_ctx->rsvd_page_tables.count = pt_count; 1370 } 1371 1372 return 0; 1373 1374 err_cleanup: 1375 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1376 return ret; 1377 } 1378 1379 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1380 struct panthor_vm *vm) 1381 { 1382 memset(op_ctx, 0, sizeof(*op_ctx)); 1383 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1384 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1385 } 1386 1387 /** 1388 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1389 * @vm: VM to look into. 1390 * @va: Virtual address to search for. 1391 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1392 * Only valid on success. 1393 * 1394 * The object returned by this function might no longer be mapped when the 1395 * function returns. It's the caller responsibility to ensure there's no 1396 * concurrent map/unmap operations making the returned value invalid, or 1397 * make sure it doesn't matter if the object is no longer mapped. 1398 * 1399 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1400 */ 1401 struct panthor_gem_object * 1402 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1403 { 1404 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1405 struct drm_gpuva *gpuva; 1406 struct panthor_vma *vma; 1407 1408 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1409 mutex_lock(&vm->op_lock); 1410 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1411 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1412 if (vma && vma->base.gem.obj) { 1413 drm_gem_object_get(vma->base.gem.obj); 1414 bo = to_panthor_bo(vma->base.gem.obj); 1415 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1416 } 1417 mutex_unlock(&vm->op_lock); 1418 1419 return bo; 1420 } 1421 1422 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1423 1424 static u64 1425 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1426 u64 full_va_range) 1427 { 1428 u64 user_va_range; 1429 1430 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1431 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1432 return 0; 1433 1434 if (args->user_va_range) { 1435 /* Use the user provided value if != 0. */ 1436 user_va_range = args->user_va_range; 1437 } else if (TASK_SIZE_OF(current) < full_va_range) { 1438 /* If the task VM size is smaller than the GPU VA range, pick this 1439 * as our default user VA range, so userspace can CPU/GPU map buffers 1440 * at the same address. 1441 */ 1442 user_va_range = TASK_SIZE_OF(current); 1443 } else { 1444 /* If the GPU VA range is smaller than the task VM size, we 1445 * just have to live with the fact we won't be able to map 1446 * all buffers at the same GPU/CPU address. 1447 * 1448 * If the GPU VA range is bigger than 4G (more than 32-bit of 1449 * VA), we split the range in two, and assign half of it to 1450 * the user and the other half to the kernel, if it's not, we 1451 * keep the kernel VA space as small as possible. 1452 */ 1453 user_va_range = full_va_range > SZ_4G ? 1454 full_va_range / 2 : 1455 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1456 } 1457 1458 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1459 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1460 1461 return user_va_range; 1462 } 1463 1464 #define PANTHOR_VM_CREATE_FLAGS 0 1465 1466 static int 1467 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1468 const struct drm_panthor_vm_create *args, 1469 u64 *kernel_va_start, u64 *kernel_va_range) 1470 { 1471 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1472 u64 full_va_range = 1ull << va_bits; 1473 u64 user_va_range; 1474 1475 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1476 return -EINVAL; 1477 1478 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1479 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1480 return -EINVAL; 1481 1482 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1483 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1484 *kernel_va_start = full_va_range - *kernel_va_range; 1485 return 0; 1486 } 1487 1488 /* 1489 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1490 * increase this number. 1491 */ 1492 #define PANTHOR_MAX_VMS_PER_FILE 32 1493 1494 /** 1495 * panthor_vm_pool_create_vm() - Create a VM 1496 * @ptdev: The panthor device 1497 * @pool: The VM to create this VM on. 1498 * @args: VM creation args. 1499 * 1500 * Return: a positive VM ID on success, a negative error code otherwise. 1501 */ 1502 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1503 struct panthor_vm_pool *pool, 1504 struct drm_panthor_vm_create *args) 1505 { 1506 u64 kernel_va_start, kernel_va_range; 1507 struct panthor_vm *vm; 1508 int ret; 1509 u32 id; 1510 1511 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1512 if (ret) 1513 return ret; 1514 1515 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1516 kernel_va_start, kernel_va_range); 1517 if (IS_ERR(vm)) 1518 return PTR_ERR(vm); 1519 1520 ret = xa_alloc(&pool->xa, &id, vm, 1521 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1522 1523 if (ret) { 1524 panthor_vm_put(vm); 1525 return ret; 1526 } 1527 1528 args->user_va_range = kernel_va_start; 1529 return id; 1530 } 1531 1532 static void panthor_vm_destroy(struct panthor_vm *vm) 1533 { 1534 if (!vm) 1535 return; 1536 1537 vm->destroyed = true; 1538 1539 mutex_lock(&vm->heaps.lock); 1540 panthor_heap_pool_destroy(vm->heaps.pool); 1541 vm->heaps.pool = NULL; 1542 mutex_unlock(&vm->heaps.lock); 1543 1544 drm_WARN_ON(&vm->ptdev->base, 1545 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1546 panthor_vm_put(vm); 1547 } 1548 1549 /** 1550 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1551 * @pool: VM pool. 1552 * @handle: VM handle. 1553 * 1554 * This function doesn't free the VM object or its resources, it just kills 1555 * all mappings, and makes sure nothing can be mapped after that point. 1556 * 1557 * If there was any active jobs at the time this function is called, these 1558 * jobs should experience page faults and be killed as a result. 1559 * 1560 * The VM resources are freed when the last reference on the VM object is 1561 * dropped. 1562 * 1563 * Return: %0 for success, negative errno value for failure 1564 */ 1565 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1566 { 1567 struct panthor_vm *vm; 1568 1569 vm = xa_erase(&pool->xa, handle); 1570 1571 panthor_vm_destroy(vm); 1572 1573 return vm ? 0 : -EINVAL; 1574 } 1575 1576 /** 1577 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1578 * @pool: VM pool to check. 1579 * @handle: Handle of the VM to retrieve. 1580 * 1581 * Return: A valid pointer if the VM exists, NULL otherwise. 1582 */ 1583 struct panthor_vm * 1584 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1585 { 1586 struct panthor_vm *vm; 1587 1588 xa_lock(&pool->xa); 1589 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1590 xa_unlock(&pool->xa); 1591 1592 return vm; 1593 } 1594 1595 /** 1596 * panthor_vm_pool_destroy() - Destroy a VM pool. 1597 * @pfile: File. 1598 * 1599 * Destroy all VMs in the pool, and release the pool resources. 1600 * 1601 * Note that VMs can outlive the pool they were created from if other 1602 * objects hold a reference to there VMs. 1603 */ 1604 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1605 { 1606 struct panthor_vm *vm; 1607 unsigned long i; 1608 1609 if (!pfile->vms) 1610 return; 1611 1612 xa_for_each(&pfile->vms->xa, i, vm) 1613 panthor_vm_destroy(vm); 1614 1615 xa_destroy(&pfile->vms->xa); 1616 kfree(pfile->vms); 1617 } 1618 1619 /** 1620 * panthor_vm_pool_create() - Create a VM pool 1621 * @pfile: File. 1622 * 1623 * Return: 0 on success, a negative error code otherwise. 1624 */ 1625 int panthor_vm_pool_create(struct panthor_file *pfile) 1626 { 1627 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1628 if (!pfile->vms) 1629 return -ENOMEM; 1630 1631 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1632 return 0; 1633 } 1634 1635 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1636 static void mmu_tlb_flush_all(void *cookie) 1637 { 1638 } 1639 1640 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1641 { 1642 } 1643 1644 static const struct iommu_flush_ops mmu_tlb_ops = { 1645 .tlb_flush_all = mmu_tlb_flush_all, 1646 .tlb_flush_walk = mmu_tlb_flush_walk, 1647 }; 1648 1649 static const char *access_type_name(struct panthor_device *ptdev, 1650 u32 fault_status) 1651 { 1652 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1653 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1654 return "ATOMIC"; 1655 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1656 return "READ"; 1657 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1658 return "WRITE"; 1659 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1660 return "EXECUTE"; 1661 default: 1662 drm_WARN_ON(&ptdev->base, 1); 1663 return NULL; 1664 } 1665 } 1666 1667 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1668 { 1669 bool has_unhandled_faults = false; 1670 1671 status = panthor_mmu_fault_mask(ptdev, status); 1672 while (status) { 1673 u32 as = ffs(status | (status >> 16)) - 1; 1674 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1675 u32 new_int_mask; 1676 u64 addr; 1677 u32 fault_status; 1678 u32 exception_type; 1679 u32 access_type; 1680 u32 source_id; 1681 1682 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1683 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as)); 1684 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32; 1685 1686 /* decode the fault status */ 1687 exception_type = fault_status & 0xFF; 1688 access_type = (fault_status >> 8) & 0x3; 1689 source_id = (fault_status >> 16); 1690 1691 mutex_lock(&ptdev->mmu->as.slots_lock); 1692 1693 ptdev->mmu->as.faulty_mask |= mask; 1694 new_int_mask = 1695 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1696 1697 /* terminal fault, print info about the fault */ 1698 drm_err(&ptdev->base, 1699 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1700 "raw fault status: 0x%X\n" 1701 "decoded fault status: %s\n" 1702 "exception type 0x%X: %s\n" 1703 "access type 0x%X: %s\n" 1704 "source id 0x%X\n", 1705 as, addr, 1706 fault_status, 1707 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1708 exception_type, panthor_exception_name(ptdev, exception_type), 1709 access_type, access_type_name(ptdev, fault_status), 1710 source_id); 1711 1712 /* Ignore MMU interrupts on this AS until it's been 1713 * re-enabled. 1714 */ 1715 ptdev->mmu->irq.mask = new_int_mask; 1716 gpu_write(ptdev, MMU_INT_MASK, new_int_mask); 1717 1718 if (ptdev->mmu->as.slots[as].vm) 1719 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1720 1721 /* Disable the MMU to kill jobs on this AS. */ 1722 panthor_mmu_as_disable(ptdev, as); 1723 mutex_unlock(&ptdev->mmu->as.slots_lock); 1724 1725 status &= ~mask; 1726 has_unhandled_faults = true; 1727 } 1728 1729 if (has_unhandled_faults) 1730 panthor_sched_report_mmu_fault(ptdev); 1731 } 1732 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1733 1734 /** 1735 * panthor_mmu_suspend() - Suspend the MMU logic 1736 * @ptdev: Device. 1737 * 1738 * All we do here is de-assign the AS slots on all active VMs, so things 1739 * get flushed to the main memory, and no further access to these VMs are 1740 * possible. 1741 * 1742 * We also suspend the MMU IRQ. 1743 */ 1744 void panthor_mmu_suspend(struct panthor_device *ptdev) 1745 { 1746 mutex_lock(&ptdev->mmu->as.slots_lock); 1747 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1748 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1749 1750 if (vm) { 1751 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1752 panthor_vm_release_as_locked(vm); 1753 } 1754 } 1755 mutex_unlock(&ptdev->mmu->as.slots_lock); 1756 1757 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1758 } 1759 1760 /** 1761 * panthor_mmu_resume() - Resume the MMU logic 1762 * @ptdev: Device. 1763 * 1764 * Resume the IRQ. 1765 * 1766 * We don't re-enable previously active VMs. We assume other parts of the 1767 * driver will call panthor_vm_active() on the VMs they intend to use. 1768 */ 1769 void panthor_mmu_resume(struct panthor_device *ptdev) 1770 { 1771 mutex_lock(&ptdev->mmu->as.slots_lock); 1772 ptdev->mmu->as.alloc_mask = 0; 1773 ptdev->mmu->as.faulty_mask = 0; 1774 mutex_unlock(&ptdev->mmu->as.slots_lock); 1775 1776 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1777 } 1778 1779 /** 1780 * panthor_mmu_pre_reset() - Prepare for a reset 1781 * @ptdev: Device. 1782 * 1783 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1784 * don't get asked to do a VM operation while the GPU is down. 1785 * 1786 * We don't cleanly shutdown the AS slots here, because the reset might 1787 * come from an AS_ACTIVE_BIT stuck situation. 1788 */ 1789 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1790 { 1791 struct panthor_vm *vm; 1792 1793 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1794 1795 mutex_lock(&ptdev->mmu->vm.lock); 1796 ptdev->mmu->vm.reset_in_progress = true; 1797 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1798 panthor_vm_stop(vm); 1799 mutex_unlock(&ptdev->mmu->vm.lock); 1800 } 1801 1802 /** 1803 * panthor_mmu_post_reset() - Restore things after a reset 1804 * @ptdev: Device. 1805 * 1806 * Put the MMU logic back in action after a reset. That implies resuming the 1807 * IRQ and re-enabling the VM_BIND queues. 1808 */ 1809 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1810 { 1811 struct panthor_vm *vm; 1812 1813 mutex_lock(&ptdev->mmu->as.slots_lock); 1814 1815 /* Now that the reset is effective, we can assume that none of the 1816 * AS slots are setup, and clear the faulty flags too. 1817 */ 1818 ptdev->mmu->as.alloc_mask = 0; 1819 ptdev->mmu->as.faulty_mask = 0; 1820 1821 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1822 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1823 1824 if (vm) 1825 panthor_vm_release_as_locked(vm); 1826 } 1827 1828 mutex_unlock(&ptdev->mmu->as.slots_lock); 1829 1830 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1831 1832 /* Restart the VM_BIND queues. */ 1833 mutex_lock(&ptdev->mmu->vm.lock); 1834 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1835 panthor_vm_start(vm); 1836 } 1837 ptdev->mmu->vm.reset_in_progress = false; 1838 mutex_unlock(&ptdev->mmu->vm.lock); 1839 } 1840 1841 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1842 { 1843 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1844 struct panthor_device *ptdev = vm->ptdev; 1845 1846 mutex_lock(&vm->heaps.lock); 1847 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1848 panthor_heap_pool_destroy(vm->heaps.pool); 1849 mutex_unlock(&vm->heaps.lock); 1850 mutex_destroy(&vm->heaps.lock); 1851 1852 mutex_lock(&ptdev->mmu->vm.lock); 1853 list_del(&vm->node); 1854 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1855 * and drm_sched_fini(). If get there, that means we have no job left 1856 * and no new jobs can be queued, so we can start the scheduler without 1857 * risking interfering with the reset. 1858 */ 1859 if (ptdev->mmu->vm.reset_in_progress) 1860 panthor_vm_start(vm); 1861 mutex_unlock(&ptdev->mmu->vm.lock); 1862 1863 drm_sched_entity_destroy(&vm->entity); 1864 drm_sched_fini(&vm->sched); 1865 1866 mutex_lock(&ptdev->mmu->as.slots_lock); 1867 if (vm->as.id >= 0) { 1868 int cookie; 1869 1870 if (drm_dev_enter(&ptdev->base, &cookie)) { 1871 panthor_mmu_as_disable(ptdev, vm->as.id); 1872 drm_dev_exit(cookie); 1873 } 1874 1875 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1876 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1877 list_del(&vm->as.lru_node); 1878 } 1879 mutex_unlock(&ptdev->mmu->as.slots_lock); 1880 1881 free_io_pgtable_ops(vm->pgtbl_ops); 1882 1883 drm_mm_takedown(&vm->mm); 1884 kfree(vm); 1885 } 1886 1887 /** 1888 * panthor_vm_put() - Release a reference on a VM 1889 * @vm: VM to release the reference on. Can be NULL. 1890 */ 1891 void panthor_vm_put(struct panthor_vm *vm) 1892 { 1893 drm_gpuvm_put(vm ? &vm->base : NULL); 1894 } 1895 1896 /** 1897 * panthor_vm_get() - Get a VM reference 1898 * @vm: VM to get the reference on. Can be NULL. 1899 * 1900 * Return: @vm value. 1901 */ 1902 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1903 { 1904 if (vm) 1905 drm_gpuvm_get(&vm->base); 1906 1907 return vm; 1908 } 1909 1910 /** 1911 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1912 * @vm: VM to query the heap pool on. 1913 * @create: True if the heap pool should be created when it doesn't exist. 1914 * 1915 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1916 * attached to a VM. 1917 * 1918 * If no heap pool exists yet, and @create is true, we create one. 1919 * 1920 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1921 * 1922 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1923 */ 1924 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1925 { 1926 struct panthor_heap_pool *pool; 1927 1928 mutex_lock(&vm->heaps.lock); 1929 if (!vm->heaps.pool && create) { 1930 if (vm->destroyed) 1931 pool = ERR_PTR(-EINVAL); 1932 else 1933 pool = panthor_heap_pool_create(vm->ptdev, vm); 1934 1935 if (!IS_ERR(pool)) 1936 vm->heaps.pool = panthor_heap_pool_get(pool); 1937 } else { 1938 pool = panthor_heap_pool_get(vm->heaps.pool); 1939 if (!pool) 1940 pool = ERR_PTR(-ENOENT); 1941 } 1942 mutex_unlock(&vm->heaps.lock); 1943 1944 return pool; 1945 } 1946 1947 /** 1948 * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all 1949 * heaps over all the heap pools in a VM 1950 * @pfile: File. 1951 * @stats: Memory stats to be updated. 1952 * 1953 * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM 1954 * is active, record the size as active as well. 1955 */ 1956 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats) 1957 { 1958 struct panthor_vm *vm; 1959 unsigned long i; 1960 1961 if (!pfile->vms) 1962 return; 1963 1964 xa_lock(&pfile->vms->xa); 1965 xa_for_each(&pfile->vms->xa, i, vm) { 1966 size_t size = panthor_heap_pool_size(vm->heaps.pool); 1967 stats->resident += size; 1968 if (vm->as.id >= 0) 1969 stats->active += size; 1970 } 1971 xa_unlock(&pfile->vms->xa); 1972 } 1973 1974 static u64 mair_to_memattr(u64 mair, bool coherent) 1975 { 1976 u64 memattr = 0; 1977 u32 i; 1978 1979 for (i = 0; i < 8; i++) { 1980 u8 in_attr = mair >> (8 * i), out_attr; 1981 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1982 1983 /* For caching to be enabled, inner and outer caching policy 1984 * have to be both write-back, if one of them is write-through 1985 * or non-cacheable, we just choose non-cacheable. Device 1986 * memory is also translated to non-cacheable. 1987 */ 1988 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 1989 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 1990 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 1991 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 1992 } else { 1993 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 1994 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 1995 /* Use SH_MIDGARD_INNER mode when device isn't coherent, 1996 * so SH_IS, which is used when IOMMU_CACHE is set, maps 1997 * to Mali's internal-shareable mode. As per the Mali 1998 * Spec, inner and outer-shareable modes aren't allowed 1999 * for WB memory when coherency is disabled. 2000 * Use SH_CPU_INNER mode when coherency is enabled, so 2001 * that SH_IS actually maps to the standard definition of 2002 * inner-shareable. 2003 */ 2004 if (!coherent) 2005 out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER; 2006 else 2007 out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER; 2008 } 2009 2010 memattr |= (u64)out_attr << (8 * i); 2011 } 2012 2013 return memattr; 2014 } 2015 2016 static void panthor_vma_link(struct panthor_vm *vm, 2017 struct panthor_vma *vma, 2018 struct drm_gpuvm_bo *vm_bo) 2019 { 2020 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 2021 2022 mutex_lock(&bo->gpuva_list_lock); 2023 drm_gpuva_link(&vma->base, vm_bo); 2024 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 2025 mutex_unlock(&bo->gpuva_list_lock); 2026 } 2027 2028 static void panthor_vma_unlink(struct panthor_vm *vm, 2029 struct panthor_vma *vma) 2030 { 2031 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 2032 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 2033 2034 mutex_lock(&bo->gpuva_list_lock); 2035 drm_gpuva_unlink(&vma->base); 2036 mutex_unlock(&bo->gpuva_list_lock); 2037 2038 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 2039 * when entering this function, so we can implement deferred VMA 2040 * destruction. Re-assign it here. 2041 */ 2042 vma->base.vm_bo = vm_bo; 2043 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 2044 } 2045 2046 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 2047 { 2048 INIT_LIST_HEAD(&vma->node); 2049 vma->flags = flags; 2050 } 2051 2052 #define PANTHOR_VM_MAP_FLAGS \ 2053 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 2054 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 2055 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 2056 2057 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 2058 { 2059 struct panthor_vm *vm = priv; 2060 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2061 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 2062 int ret; 2063 2064 if (!vma) 2065 return -EINVAL; 2066 2067 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 2068 2069 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 2070 op_ctx->map.sgt, op->map.gem.offset, 2071 op->map.va.range); 2072 if (ret) 2073 return ret; 2074 2075 /* Ref owned by the mapping now, clear the obj field so we don't release the 2076 * pinning/obj ref behind GPUVA's back. 2077 */ 2078 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2079 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2080 op_ctx->map.vm_bo = NULL; 2081 return 0; 2082 } 2083 2084 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2085 void *priv) 2086 { 2087 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2088 struct panthor_vm *vm = priv; 2089 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2090 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2091 u64 unmap_start, unmap_range; 2092 int ret; 2093 2094 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2095 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2096 if (ret) 2097 return ret; 2098 2099 if (op->remap.prev) { 2100 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2101 panthor_vma_init(prev_vma, unmap_vma->flags); 2102 } 2103 2104 if (op->remap.next) { 2105 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2106 panthor_vma_init(next_vma, unmap_vma->flags); 2107 } 2108 2109 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2110 next_vma ? &next_vma->base : NULL, 2111 &op->remap); 2112 2113 if (prev_vma) { 2114 /* panthor_vma_link() transfers the vm_bo ownership to 2115 * the VMA object. Since the vm_bo we're passing is still 2116 * owned by the old mapping which will be released when this 2117 * mapping is destroyed, we need to grab a ref here. 2118 */ 2119 panthor_vma_link(vm, prev_vma, 2120 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2121 } 2122 2123 if (next_vma) { 2124 panthor_vma_link(vm, next_vma, 2125 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2126 } 2127 2128 panthor_vma_unlink(vm, unmap_vma); 2129 return 0; 2130 } 2131 2132 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2133 void *priv) 2134 { 2135 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2136 struct panthor_vm *vm = priv; 2137 int ret; 2138 2139 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2140 unmap_vma->base.va.range); 2141 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2142 return ret; 2143 2144 drm_gpuva_unmap(&op->unmap); 2145 panthor_vma_unlink(vm, unmap_vma); 2146 return 0; 2147 } 2148 2149 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2150 .vm_free = panthor_vm_free, 2151 .sm_step_map = panthor_gpuva_sm_step_map, 2152 .sm_step_remap = panthor_gpuva_sm_step_remap, 2153 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2154 }; 2155 2156 /** 2157 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2158 * @vm: VM to get the dma_resv of. 2159 * 2160 * Return: A dma_resv object. 2161 */ 2162 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2163 { 2164 return drm_gpuvm_resv(&vm->base); 2165 } 2166 2167 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2168 { 2169 if (!vm) 2170 return NULL; 2171 2172 return vm->base.r_obj; 2173 } 2174 2175 static int 2176 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2177 bool flag_vm_unusable_on_failure) 2178 { 2179 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2180 int ret; 2181 2182 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2183 return 0; 2184 2185 mutex_lock(&vm->op_lock); 2186 vm->op_ctx = op; 2187 switch (op_type) { 2188 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2189 if (vm->unusable) { 2190 ret = -EINVAL; 2191 break; 2192 } 2193 2194 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, 2195 op->map.vm_bo->obj, op->map.bo_offset); 2196 break; 2197 2198 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2199 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2200 break; 2201 2202 default: 2203 ret = -EINVAL; 2204 break; 2205 } 2206 2207 if (ret && flag_vm_unusable_on_failure) 2208 vm->unusable = true; 2209 2210 vm->op_ctx = NULL; 2211 mutex_unlock(&vm->op_lock); 2212 2213 return ret; 2214 } 2215 2216 static struct dma_fence * 2217 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2218 { 2219 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2220 bool cookie; 2221 int ret; 2222 2223 /* Not only we report an error whose result is propagated to the 2224 * drm_sched finished fence, but we also flag the VM as unusable, because 2225 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2226 * to be destroyed and recreated. 2227 */ 2228 cookie = dma_fence_begin_signalling(); 2229 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2230 dma_fence_end_signalling(cookie); 2231 2232 return ret ? ERR_PTR(ret) : NULL; 2233 } 2234 2235 static void panthor_vm_bind_job_release(struct kref *kref) 2236 { 2237 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2238 2239 if (job->base.s_fence) 2240 drm_sched_job_cleanup(&job->base); 2241 2242 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2243 panthor_vm_put(job->vm); 2244 kfree(job); 2245 } 2246 2247 /** 2248 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2249 * @sched_job: Job to release the reference on. 2250 */ 2251 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2252 { 2253 struct panthor_vm_bind_job *job = 2254 container_of(sched_job, struct panthor_vm_bind_job, base); 2255 2256 if (sched_job) 2257 kref_put(&job->refcount, panthor_vm_bind_job_release); 2258 } 2259 2260 static void 2261 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2262 { 2263 struct panthor_vm_bind_job *job = 2264 container_of(sched_job, struct panthor_vm_bind_job, base); 2265 2266 drm_sched_job_cleanup(sched_job); 2267 2268 /* Do the heavy cleanups asynchronously, so we're out of the 2269 * dma-signaling path and can acquire dma-resv locks safely. 2270 */ 2271 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2272 } 2273 2274 static enum drm_gpu_sched_stat 2275 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2276 { 2277 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2278 return DRM_GPU_SCHED_STAT_NOMINAL; 2279 } 2280 2281 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2282 .run_job = panthor_vm_bind_run_job, 2283 .free_job = panthor_vm_bind_free_job, 2284 .timedout_job = panthor_vm_bind_timedout_job, 2285 }; 2286 2287 /** 2288 * panthor_vm_create() - Create a VM 2289 * @ptdev: Device. 2290 * @for_mcu: True if this is the FW MCU VM. 2291 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2292 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2293 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2294 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2295 * 2296 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2297 */ 2298 struct panthor_vm * 2299 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2300 u64 kernel_va_start, u64 kernel_va_size, 2301 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2302 { 2303 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2304 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2305 u64 full_va_range = 1ull << va_bits; 2306 struct drm_gem_object *dummy_gem; 2307 struct drm_gpu_scheduler *sched; 2308 const struct drm_sched_init_args sched_args = { 2309 .ops = &panthor_vm_bind_ops, 2310 .submit_wq = ptdev->mmu->vm.wq, 2311 .num_rqs = 1, 2312 .credit_limit = 1, 2313 /* Bind operations are synchronous for now, no timeout needed. */ 2314 .timeout = MAX_SCHEDULE_TIMEOUT, 2315 .name = "panthor-vm-bind", 2316 .dev = ptdev->base.dev, 2317 }; 2318 struct io_pgtable_cfg pgtbl_cfg; 2319 u64 mair, min_va, va_range; 2320 struct panthor_vm *vm; 2321 int ret; 2322 2323 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2324 if (!vm) 2325 return ERR_PTR(-ENOMEM); 2326 2327 /* We allocate a dummy GEM for the VM. */ 2328 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2329 if (!dummy_gem) { 2330 ret = -ENOMEM; 2331 goto err_free_vm; 2332 } 2333 2334 mutex_init(&vm->heaps.lock); 2335 vm->for_mcu = for_mcu; 2336 vm->ptdev = ptdev; 2337 mutex_init(&vm->op_lock); 2338 2339 if (for_mcu) { 2340 /* CSF MCU is a cortex M7, and can only address 4G */ 2341 min_va = 0; 2342 va_range = SZ_4G; 2343 } else { 2344 min_va = 0; 2345 va_range = full_va_range; 2346 } 2347 2348 mutex_init(&vm->mm_lock); 2349 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2350 vm->kernel_auto_va.start = auto_kernel_va_start; 2351 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2352 2353 INIT_LIST_HEAD(&vm->node); 2354 INIT_LIST_HEAD(&vm->as.lru_node); 2355 vm->as.id = -1; 2356 refcount_set(&vm->as.active_cnt, 0); 2357 2358 pgtbl_cfg = (struct io_pgtable_cfg) { 2359 .pgsize_bitmap = SZ_4K | SZ_2M, 2360 .ias = va_bits, 2361 .oas = pa_bits, 2362 .coherent_walk = ptdev->coherent, 2363 .tlb = &mmu_tlb_ops, 2364 .iommu_dev = ptdev->base.dev, 2365 .alloc = alloc_pt, 2366 .free = free_pt, 2367 }; 2368 2369 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2370 if (!vm->pgtbl_ops) { 2371 ret = -EINVAL; 2372 goto err_mm_takedown; 2373 } 2374 2375 ret = drm_sched_init(&vm->sched, &sched_args); 2376 if (ret) 2377 goto err_free_io_pgtable; 2378 2379 sched = &vm->sched; 2380 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2381 if (ret) 2382 goto err_sched_fini; 2383 2384 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2385 vm->memattr = mair_to_memattr(mair, ptdev->coherent); 2386 2387 mutex_lock(&ptdev->mmu->vm.lock); 2388 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2389 2390 /* If a reset is in progress, stop the scheduler. */ 2391 if (ptdev->mmu->vm.reset_in_progress) 2392 panthor_vm_stop(vm); 2393 mutex_unlock(&ptdev->mmu->vm.lock); 2394 2395 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2396 * to be handled the same way user VMAs are. 2397 */ 2398 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2399 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, 2400 min_va, va_range, 0, 0, &panthor_gpuvm_ops); 2401 drm_gem_object_put(dummy_gem); 2402 return vm; 2403 2404 err_sched_fini: 2405 drm_sched_fini(&vm->sched); 2406 2407 err_free_io_pgtable: 2408 free_io_pgtable_ops(vm->pgtbl_ops); 2409 2410 err_mm_takedown: 2411 drm_mm_takedown(&vm->mm); 2412 drm_gem_object_put(dummy_gem); 2413 2414 err_free_vm: 2415 kfree(vm); 2416 return ERR_PTR(ret); 2417 } 2418 2419 static int 2420 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2421 struct panthor_vm *vm, 2422 const struct drm_panthor_vm_bind_op *op, 2423 struct panthor_vm_op_ctx *op_ctx) 2424 { 2425 ssize_t vm_pgsz = panthor_vm_page_size(vm); 2426 struct drm_gem_object *gem; 2427 int ret; 2428 2429 /* Aligned on page size. */ 2430 if (!IS_ALIGNED(op->va | op->size, vm_pgsz)) 2431 return -EINVAL; 2432 2433 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2434 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2435 gem = drm_gem_object_lookup(file, op->bo_handle); 2436 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2437 gem ? to_panthor_bo(gem) : NULL, 2438 op->bo_offset, 2439 op->size, 2440 op->va, 2441 op->flags); 2442 drm_gem_object_put(gem); 2443 return ret; 2444 2445 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2446 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2447 return -EINVAL; 2448 2449 if (op->bo_handle || op->bo_offset) 2450 return -EINVAL; 2451 2452 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2453 2454 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2455 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2456 return -EINVAL; 2457 2458 if (op->bo_handle || op->bo_offset) 2459 return -EINVAL; 2460 2461 if (op->va || op->size) 2462 return -EINVAL; 2463 2464 if (!op->syncs.count) 2465 return -EINVAL; 2466 2467 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2468 return 0; 2469 2470 default: 2471 return -EINVAL; 2472 } 2473 } 2474 2475 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2476 { 2477 struct panthor_vm_bind_job *job = 2478 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2479 2480 panthor_vm_bind_job_put(&job->base); 2481 } 2482 2483 /** 2484 * panthor_vm_bind_job_create() - Create a VM_BIND job 2485 * @file: File. 2486 * @vm: VM targeted by the VM_BIND job. 2487 * @op: VM operation data. 2488 * 2489 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2490 */ 2491 struct drm_sched_job * 2492 panthor_vm_bind_job_create(struct drm_file *file, 2493 struct panthor_vm *vm, 2494 const struct drm_panthor_vm_bind_op *op) 2495 { 2496 struct panthor_vm_bind_job *job; 2497 int ret; 2498 2499 if (!vm) 2500 return ERR_PTR(-EINVAL); 2501 2502 if (vm->destroyed || vm->unusable) 2503 return ERR_PTR(-EINVAL); 2504 2505 job = kzalloc(sizeof(*job), GFP_KERNEL); 2506 if (!job) 2507 return ERR_PTR(-ENOMEM); 2508 2509 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2510 if (ret) { 2511 kfree(job); 2512 return ERR_PTR(ret); 2513 } 2514 2515 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2516 kref_init(&job->refcount); 2517 job->vm = panthor_vm_get(vm); 2518 2519 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm); 2520 if (ret) 2521 goto err_put_job; 2522 2523 return &job->base; 2524 2525 err_put_job: 2526 panthor_vm_bind_job_put(&job->base); 2527 return ERR_PTR(ret); 2528 } 2529 2530 /** 2531 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2532 * @exec: The locking/preparation context. 2533 * @sched_job: The job to prepare resvs on. 2534 * 2535 * Locks and prepare the VM resv. 2536 * 2537 * If this is a map operation, locks and prepares the GEM resv. 2538 * 2539 * Return: 0 on success, a negative error code otherwise. 2540 */ 2541 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2542 struct drm_sched_job *sched_job) 2543 { 2544 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2545 int ret; 2546 2547 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2548 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2549 if (ret) 2550 return ret; 2551 2552 if (job->ctx.map.vm_bo) { 2553 /* Lock/prepare the GEM being mapped. */ 2554 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2555 if (ret) 2556 return ret; 2557 } 2558 2559 return 0; 2560 } 2561 2562 /** 2563 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2564 * @exec: drm_exec context. 2565 * @sched_job: Job to update the resvs on. 2566 */ 2567 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2568 struct drm_sched_job *sched_job) 2569 { 2570 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2571 2572 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2573 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2574 &sched_job->s_fence->finished, 2575 DMA_RESV_USAGE_BOOKKEEP, 2576 DMA_RESV_USAGE_BOOKKEEP); 2577 } 2578 2579 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2580 struct dma_fence *fence, 2581 enum dma_resv_usage private_usage, 2582 enum dma_resv_usage extobj_usage) 2583 { 2584 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2585 } 2586 2587 /** 2588 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2589 * @file: File. 2590 * @vm: VM targeted by the VM operation. 2591 * @op: Data describing the VM operation. 2592 * 2593 * Return: 0 on success, a negative error code otherwise. 2594 */ 2595 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2596 struct panthor_vm *vm, 2597 struct drm_panthor_vm_bind_op *op) 2598 { 2599 struct panthor_vm_op_ctx op_ctx; 2600 int ret; 2601 2602 /* No sync objects allowed on synchronous operations. */ 2603 if (op->syncs.count) 2604 return -EINVAL; 2605 2606 if (!op->size) 2607 return 0; 2608 2609 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2610 if (ret) 2611 return ret; 2612 2613 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2614 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2615 2616 return ret; 2617 } 2618 2619 /** 2620 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2621 * @vm: VM to map the GEM to. 2622 * @bo: GEM object to map. 2623 * @offset: Offset in the GEM object. 2624 * @size: Size to map. 2625 * @va: Virtual address to map the object to. 2626 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2627 * Only map-related flags are valid. 2628 * 2629 * Internal use only. For userspace requests, use 2630 * panthor_vm_bind_exec_sync_op() instead. 2631 * 2632 * Return: 0 on success, a negative error code otherwise. 2633 */ 2634 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2635 u64 offset, u64 size, u64 va, u32 flags) 2636 { 2637 struct panthor_vm_op_ctx op_ctx; 2638 int ret; 2639 2640 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2641 if (ret) 2642 return ret; 2643 2644 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2645 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2646 2647 return ret; 2648 } 2649 2650 /** 2651 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2652 * @vm: VM to unmap the region from. 2653 * @va: Virtual address to unmap. Must be 4k aligned. 2654 * @size: Size of the region to unmap. Must be 4k aligned. 2655 * 2656 * Internal use only. For userspace requests, use 2657 * panthor_vm_bind_exec_sync_op() instead. 2658 * 2659 * Return: 0 on success, a negative error code otherwise. 2660 */ 2661 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2662 { 2663 struct panthor_vm_op_ctx op_ctx; 2664 int ret; 2665 2666 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2667 if (ret) 2668 return ret; 2669 2670 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2671 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2672 2673 return ret; 2674 } 2675 2676 /** 2677 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2678 * @exec: Locking/preparation context. 2679 * @vm: VM targeted by the GPU job. 2680 * @slot_count: Number of slots to reserve. 2681 * 2682 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2683 * are available when the job is executed. In order to guarantee that, we 2684 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2685 * the job fence after its submission. 2686 * 2687 * Return: 0 on success, a negative error code otherwise. 2688 */ 2689 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2690 u32 slot_count) 2691 { 2692 int ret; 2693 2694 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2695 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2696 if (ret) 2697 return ret; 2698 2699 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2700 } 2701 2702 /** 2703 * panthor_mmu_unplug() - Unplug the MMU logic 2704 * @ptdev: Device. 2705 * 2706 * No access to the MMU regs should be done after this function is called. 2707 * We suspend the IRQ and disable all VMs to guarantee that. 2708 */ 2709 void panthor_mmu_unplug(struct panthor_device *ptdev) 2710 { 2711 if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev)) 2712 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2713 2714 mutex_lock(&ptdev->mmu->as.slots_lock); 2715 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2716 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2717 2718 if (vm) { 2719 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2720 panthor_vm_release_as_locked(vm); 2721 } 2722 } 2723 mutex_unlock(&ptdev->mmu->as.slots_lock); 2724 } 2725 2726 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2727 { 2728 destroy_workqueue(res); 2729 } 2730 2731 /** 2732 * panthor_mmu_init() - Initialize the MMU logic. 2733 * @ptdev: Device. 2734 * 2735 * Return: 0 on success, a negative error code otherwise. 2736 */ 2737 int panthor_mmu_init(struct panthor_device *ptdev) 2738 { 2739 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2740 struct panthor_mmu *mmu; 2741 int ret, irq; 2742 2743 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2744 if (!mmu) 2745 return -ENOMEM; 2746 2747 INIT_LIST_HEAD(&mmu->as.lru_list); 2748 2749 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2750 if (ret) 2751 return ret; 2752 2753 INIT_LIST_HEAD(&mmu->vm.list); 2754 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2755 if (ret) 2756 return ret; 2757 2758 ptdev->mmu = mmu; 2759 2760 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2761 if (irq <= 0) 2762 return -ENODEV; 2763 2764 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2765 panthor_mmu_fault_mask(ptdev, ~0)); 2766 if (ret) 2767 return ret; 2768 2769 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2770 if (!mmu->vm.wq) 2771 return -ENOMEM; 2772 2773 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2774 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2775 * limitation. 2776 */ 2777 if (va_bits > BITS_PER_LONG) { 2778 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2779 ptdev->gpu_info.mmu_features |= BITS_PER_LONG; 2780 } 2781 2782 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2783 } 2784 2785 #ifdef CONFIG_DEBUG_FS 2786 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2787 { 2788 int ret; 2789 2790 mutex_lock(&vm->op_lock); 2791 ret = drm_debugfs_gpuva_info(m, &vm->base); 2792 mutex_unlock(&vm->op_lock); 2793 2794 return ret; 2795 } 2796 2797 static int show_each_vm(struct seq_file *m, void *arg) 2798 { 2799 struct drm_info_node *node = (struct drm_info_node *)m->private; 2800 struct drm_device *ddev = node->minor->dev; 2801 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2802 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2803 struct panthor_vm *vm; 2804 int ret = 0; 2805 2806 mutex_lock(&ptdev->mmu->vm.lock); 2807 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2808 ret = show(vm, m); 2809 if (ret < 0) 2810 break; 2811 2812 seq_puts(m, "\n"); 2813 } 2814 mutex_unlock(&ptdev->mmu->vm.lock); 2815 2816 return ret; 2817 } 2818 2819 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2820 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2821 }; 2822 2823 /** 2824 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2825 * @minor: Minor. 2826 */ 2827 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2828 { 2829 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2830 ARRAY_SIZE(panthor_mmu_debugfs_list), 2831 minor->debugfs_root, minor); 2832 } 2833 #endif /* CONFIG_DEBUG_FS */ 2834 2835 /** 2836 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2837 * 2838 * Return: 0 on success, a negative error code otherwise. 2839 */ 2840 int panthor_mmu_pt_cache_init(void) 2841 { 2842 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2843 if (!pt_cache) 2844 return -ENOMEM; 2845 2846 return 0; 2847 } 2848 2849 /** 2850 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2851 */ 2852 void panthor_mmu_pt_cache_fini(void) 2853 { 2854 kmem_cache_destroy(pt_cache); 2855 } 2856