1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3
4 #include <drm/panfrost_drm.h>
5
6 #include <linux/atomic.h>
7 #include <linux/bitfield.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/iopoll.h>
13 #include <linux/io-pgtable.h>
14 #include <linux/iommu.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/sizes.h>
19
20 #include "panfrost_device.h"
21 #include "panfrost_mmu.h"
22 #include "panfrost_gem.h"
23 #include "panfrost_features.h"
24 #include "panfrost_regs.h"
25
26 #define mmu_write(dev, reg, data) writel(data, dev->iomem + reg)
27 #define mmu_read(dev, reg) readl(dev->iomem + reg)
28
wait_ready(struct panfrost_device * pfdev,u32 as_nr)29 static int wait_ready(struct panfrost_device *pfdev, u32 as_nr)
30 {
31 int ret;
32 u32 val;
33
34 /* Wait for the MMU status to indicate there is no active command, in
35 * case one is pending. */
36 ret = readl_relaxed_poll_timeout_atomic(pfdev->iomem + AS_STATUS(as_nr),
37 val, !(val & AS_STATUS_AS_ACTIVE), 10, 100000);
38
39 if (ret) {
40 /* The GPU hung, let's trigger a reset */
41 panfrost_device_schedule_reset(pfdev);
42 dev_err(pfdev->dev, "AS_ACTIVE bit stuck\n");
43 }
44
45 return ret;
46 }
47
write_cmd(struct panfrost_device * pfdev,u32 as_nr,u32 cmd)48 static int write_cmd(struct panfrost_device *pfdev, u32 as_nr, u32 cmd)
49 {
50 int status;
51
52 /* write AS_COMMAND when MMU is ready to accept another command */
53 status = wait_ready(pfdev, as_nr);
54 if (!status)
55 mmu_write(pfdev, AS_COMMAND(as_nr), cmd);
56
57 return status;
58 }
59
lock_region(struct panfrost_device * pfdev,u32 as_nr,u64 region_start,u64 size)60 static void lock_region(struct panfrost_device *pfdev, u32 as_nr,
61 u64 region_start, u64 size)
62 {
63 u8 region_width;
64 u64 region;
65 u64 region_end = region_start + size;
66
67 if (!size)
68 return;
69
70 /*
71 * The locked region is a naturally aligned power of 2 block encoded as
72 * log2 minus(1).
73 * Calculate the desired start/end and look for the highest bit which
74 * differs. The smallest naturally aligned block must include this bit
75 * change, the desired region starts with this bit (and subsequent bits)
76 * zeroed and ends with the bit (and subsequent bits) set to one.
77 */
78 region_width = max(fls64(region_start ^ (region_end - 1)),
79 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
80
81 /*
82 * Mask off the low bits of region_start (which would be ignored by
83 * the hardware anyway)
84 */
85 region_start &= GENMASK_ULL(63, region_width);
86
87 region = region_width | region_start;
88
89 /* Lock the region that needs to be updated */
90 mmu_write(pfdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
91 mmu_write(pfdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
92 write_cmd(pfdev, as_nr, AS_COMMAND_LOCK);
93 }
94
95
mmu_hw_do_operation_locked(struct panfrost_device * pfdev,int as_nr,u64 iova,u64 size,u32 op)96 static int mmu_hw_do_operation_locked(struct panfrost_device *pfdev, int as_nr,
97 u64 iova, u64 size, u32 op)
98 {
99 if (as_nr < 0)
100 return 0;
101
102 if (op != AS_COMMAND_UNLOCK)
103 lock_region(pfdev, as_nr, iova, size);
104
105 /* Run the MMU operation */
106 write_cmd(pfdev, as_nr, op);
107
108 /* Wait for the flush to complete */
109 return wait_ready(pfdev, as_nr);
110 }
111
mmu_hw_do_operation(struct panfrost_device * pfdev,struct panfrost_mmu * mmu,u64 iova,u64 size,u32 op)112 static int mmu_hw_do_operation(struct panfrost_device *pfdev,
113 struct panfrost_mmu *mmu,
114 u64 iova, u64 size, u32 op)
115 {
116 int ret;
117
118 spin_lock(&pfdev->as_lock);
119 ret = mmu_hw_do_operation_locked(pfdev, mmu->as, iova, size, op);
120 spin_unlock(&pfdev->as_lock);
121 return ret;
122 }
123
panfrost_mmu_enable(struct panfrost_device * pfdev,struct panfrost_mmu * mmu)124 static void panfrost_mmu_enable(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
125 {
126 int as_nr = mmu->as;
127 struct io_pgtable_cfg *cfg = &mmu->pgtbl_cfg;
128 u64 transtab = cfg->arm_mali_lpae_cfg.transtab;
129 u64 memattr = cfg->arm_mali_lpae_cfg.memattr;
130
131 mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
132
133 mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
134 mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
135
136 /* Need to revisit mem attrs.
137 * NC is the default, Mali driver is inner WT.
138 */
139 mmu_write(pfdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
140 mmu_write(pfdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
141
142 write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE);
143 }
144
panfrost_mmu_disable(struct panfrost_device * pfdev,u32 as_nr)145 static void panfrost_mmu_disable(struct panfrost_device *pfdev, u32 as_nr)
146 {
147 mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
148
149 mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), 0);
150 mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), 0);
151
152 mmu_write(pfdev, AS_MEMATTR_LO(as_nr), 0);
153 mmu_write(pfdev, AS_MEMATTR_HI(as_nr), 0);
154
155 write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE);
156 }
157
panfrost_mmu_as_get(struct panfrost_device * pfdev,struct panfrost_mmu * mmu)158 u32 panfrost_mmu_as_get(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
159 {
160 int as;
161
162 spin_lock(&pfdev->as_lock);
163
164 as = mmu->as;
165 if (as >= 0) {
166 int en = atomic_inc_return(&mmu->as_count);
167 u32 mask = BIT(as) | BIT(16 + as);
168
169 /*
170 * AS can be retained by active jobs or a perfcnt context,
171 * hence the '+ 1' here.
172 */
173 WARN_ON(en >= (NUM_JOB_SLOTS + 1));
174
175 list_move(&mmu->list, &pfdev->as_lru_list);
176
177 if (pfdev->as_faulty_mask & mask) {
178 /* Unhandled pagefault on this AS, the MMU was
179 * disabled. We need to re-enable the MMU after
180 * clearing+unmasking the AS interrupts.
181 */
182 mmu_write(pfdev, MMU_INT_CLEAR, mask);
183 mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask);
184 pfdev->as_faulty_mask &= ~mask;
185 panfrost_mmu_enable(pfdev, mmu);
186 }
187
188 goto out;
189 }
190
191 /* Check for a free AS */
192 as = ffz(pfdev->as_alloc_mask);
193 if (!(BIT(as) & pfdev->features.as_present)) {
194 struct panfrost_mmu *lru_mmu;
195
196 list_for_each_entry_reverse(lru_mmu, &pfdev->as_lru_list, list) {
197 if (!atomic_read(&lru_mmu->as_count))
198 break;
199 }
200 WARN_ON(&lru_mmu->list == &pfdev->as_lru_list);
201
202 list_del_init(&lru_mmu->list);
203 as = lru_mmu->as;
204
205 WARN_ON(as < 0);
206 lru_mmu->as = -1;
207 }
208
209 /* Assign the free or reclaimed AS to the FD */
210 mmu->as = as;
211 set_bit(as, &pfdev->as_alloc_mask);
212 atomic_set(&mmu->as_count, 1);
213 list_add(&mmu->list, &pfdev->as_lru_list);
214
215 dev_dbg(pfdev->dev, "Assigned AS%d to mmu %p, alloc_mask=%lx", as, mmu, pfdev->as_alloc_mask);
216
217 panfrost_mmu_enable(pfdev, mmu);
218
219 out:
220 spin_unlock(&pfdev->as_lock);
221 return as;
222 }
223
panfrost_mmu_as_put(struct panfrost_device * pfdev,struct panfrost_mmu * mmu)224 void panfrost_mmu_as_put(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
225 {
226 atomic_dec(&mmu->as_count);
227 WARN_ON(atomic_read(&mmu->as_count) < 0);
228 }
229
panfrost_mmu_reset(struct panfrost_device * pfdev)230 void panfrost_mmu_reset(struct panfrost_device *pfdev)
231 {
232 struct panfrost_mmu *mmu, *mmu_tmp;
233
234 clear_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended);
235
236 spin_lock(&pfdev->as_lock);
237
238 pfdev->as_alloc_mask = 0;
239 pfdev->as_faulty_mask = 0;
240
241 list_for_each_entry_safe(mmu, mmu_tmp, &pfdev->as_lru_list, list) {
242 mmu->as = -1;
243 atomic_set(&mmu->as_count, 0);
244 list_del_init(&mmu->list);
245 }
246
247 spin_unlock(&pfdev->as_lock);
248
249 mmu_write(pfdev, MMU_INT_CLEAR, ~0);
250 mmu_write(pfdev, MMU_INT_MASK, ~0);
251 }
252
get_pgsize(u64 addr,size_t size,size_t * count)253 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
254 {
255 /*
256 * io-pgtable only operates on multiple pages within a single table
257 * entry, so we need to split at boundaries of the table size, i.e.
258 * the next block size up. The distance from address A to the next
259 * boundary of block size B is logically B - A % B, but in unsigned
260 * two's complement where B is a power of two we get the equivalence
261 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
262 */
263 size_t blk_offset = -addr % SZ_2M;
264
265 if (blk_offset || size < SZ_2M) {
266 *count = min_not_zero(blk_offset, size) / SZ_4K;
267 return SZ_4K;
268 }
269 blk_offset = -addr % SZ_1G ?: SZ_1G;
270 *count = min(blk_offset, size) / SZ_2M;
271 return SZ_2M;
272 }
273
panfrost_mmu_flush_range(struct panfrost_device * pfdev,struct panfrost_mmu * mmu,u64 iova,u64 size)274 static void panfrost_mmu_flush_range(struct panfrost_device *pfdev,
275 struct panfrost_mmu *mmu,
276 u64 iova, u64 size)
277 {
278 if (mmu->as < 0)
279 return;
280
281 pm_runtime_get_noresume(pfdev->dev);
282
283 /* Flush the PTs only if we're already awake */
284 if (pm_runtime_active(pfdev->dev))
285 mmu_hw_do_operation(pfdev, mmu, iova, size, AS_COMMAND_FLUSH_PT);
286
287 pm_runtime_put_autosuspend(pfdev->dev);
288 }
289
mmu_map_sg(struct panfrost_device * pfdev,struct panfrost_mmu * mmu,u64 iova,int prot,struct sg_table * sgt)290 static int mmu_map_sg(struct panfrost_device *pfdev, struct panfrost_mmu *mmu,
291 u64 iova, int prot, struct sg_table *sgt)
292 {
293 unsigned int count;
294 struct scatterlist *sgl;
295 struct io_pgtable_ops *ops = mmu->pgtbl_ops;
296 u64 start_iova = iova;
297
298 for_each_sgtable_dma_sg(sgt, sgl, count) {
299 unsigned long paddr = sg_dma_address(sgl);
300 size_t len = sg_dma_len(sgl);
301
302 dev_dbg(pfdev->dev, "map: as=%d, iova=%llx, paddr=%lx, len=%zx", mmu->as, iova, paddr, len);
303
304 while (len) {
305 size_t pgcount, mapped = 0;
306 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
307
308 ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
309 GFP_KERNEL, &mapped);
310 /* Don't get stuck if things have gone wrong */
311 mapped = max(mapped, pgsize);
312 iova += mapped;
313 paddr += mapped;
314 len -= mapped;
315 }
316 }
317
318 panfrost_mmu_flush_range(pfdev, mmu, start_iova, iova - start_iova);
319
320 return 0;
321 }
322
panfrost_mmu_map(struct panfrost_gem_mapping * mapping)323 int panfrost_mmu_map(struct panfrost_gem_mapping *mapping)
324 {
325 struct panfrost_gem_object *bo = mapping->obj;
326 struct drm_gem_shmem_object *shmem = &bo->base;
327 struct drm_gem_object *obj = &shmem->base;
328 struct panfrost_device *pfdev = to_panfrost_device(obj->dev);
329 struct sg_table *sgt;
330 int prot = IOMMU_READ | IOMMU_WRITE;
331
332 if (WARN_ON(mapping->active))
333 return 0;
334
335 if (bo->noexec)
336 prot |= IOMMU_NOEXEC;
337
338 sgt = drm_gem_shmem_get_pages_sgt(shmem);
339 if (WARN_ON(IS_ERR(sgt)))
340 return PTR_ERR(sgt);
341
342 mmu_map_sg(pfdev, mapping->mmu, mapping->mmnode.start << PAGE_SHIFT,
343 prot, sgt);
344 mapping->active = true;
345
346 return 0;
347 }
348
panfrost_mmu_unmap(struct panfrost_gem_mapping * mapping)349 void panfrost_mmu_unmap(struct panfrost_gem_mapping *mapping)
350 {
351 struct panfrost_gem_object *bo = mapping->obj;
352 struct drm_gem_object *obj = &bo->base.base;
353 struct panfrost_device *pfdev = to_panfrost_device(obj->dev);
354 struct io_pgtable_ops *ops = mapping->mmu->pgtbl_ops;
355 u64 iova = mapping->mmnode.start << PAGE_SHIFT;
356 size_t len = mapping->mmnode.size << PAGE_SHIFT;
357 size_t unmapped_len = 0;
358
359 if (WARN_ON(!mapping->active))
360 return;
361
362 dev_dbg(pfdev->dev, "unmap: as=%d, iova=%llx, len=%zx",
363 mapping->mmu->as, iova, len);
364
365 while (unmapped_len < len) {
366 size_t unmapped_page, pgcount;
367 size_t pgsize = get_pgsize(iova, len - unmapped_len, &pgcount);
368
369 if (bo->is_heap)
370 pgcount = 1;
371 if (!bo->is_heap || ops->iova_to_phys(ops, iova)) {
372 unmapped_page = ops->unmap_pages(ops, iova, pgsize, pgcount, NULL);
373 WARN_ON(unmapped_page != pgsize * pgcount);
374 }
375 iova += pgsize * pgcount;
376 unmapped_len += pgsize * pgcount;
377 }
378
379 panfrost_mmu_flush_range(pfdev, mapping->mmu,
380 mapping->mmnode.start << PAGE_SHIFT, len);
381 mapping->active = false;
382 }
383
mmu_tlb_inv_context_s1(void * cookie)384 static void mmu_tlb_inv_context_s1(void *cookie)
385 {}
386
mmu_tlb_sync_context(void * cookie)387 static void mmu_tlb_sync_context(void *cookie)
388 {
389 //struct panfrost_mmu *mmu = cookie;
390 // TODO: Wait 1000 GPU cycles for HW_ISSUE_6367/T60X
391 }
392
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)393 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule,
394 void *cookie)
395 {
396 mmu_tlb_sync_context(cookie);
397 }
398
399 static const struct iommu_flush_ops mmu_tlb_ops = {
400 .tlb_flush_all = mmu_tlb_inv_context_s1,
401 .tlb_flush_walk = mmu_tlb_flush_walk,
402 };
403
404 static struct panfrost_gem_mapping *
addr_to_mapping(struct panfrost_device * pfdev,int as,u64 addr)405 addr_to_mapping(struct panfrost_device *pfdev, int as, u64 addr)
406 {
407 struct panfrost_gem_mapping *mapping = NULL;
408 struct drm_mm_node *node;
409 u64 offset = addr >> PAGE_SHIFT;
410 struct panfrost_mmu *mmu;
411
412 spin_lock(&pfdev->as_lock);
413 list_for_each_entry(mmu, &pfdev->as_lru_list, list) {
414 if (as == mmu->as)
415 goto found_mmu;
416 }
417 goto out;
418
419 found_mmu:
420
421 spin_lock(&mmu->mm_lock);
422
423 drm_mm_for_each_node(node, &mmu->mm) {
424 if (offset >= node->start &&
425 offset < (node->start + node->size)) {
426 mapping = drm_mm_node_to_panfrost_mapping(node);
427
428 kref_get(&mapping->refcount);
429 break;
430 }
431 }
432
433 spin_unlock(&mmu->mm_lock);
434 out:
435 spin_unlock(&pfdev->as_lock);
436 return mapping;
437 }
438
439 #define NUM_FAULT_PAGES (SZ_2M / PAGE_SIZE)
440
panfrost_mmu_map_fault_addr(struct panfrost_device * pfdev,int as,u64 addr)441 static int panfrost_mmu_map_fault_addr(struct panfrost_device *pfdev, int as,
442 u64 addr)
443 {
444 int ret, i;
445 struct panfrost_gem_mapping *bomapping;
446 struct panfrost_gem_object *bo;
447 struct address_space *mapping;
448 struct drm_gem_object *obj;
449 pgoff_t page_offset;
450 struct sg_table *sgt;
451 struct page **pages;
452
453 bomapping = addr_to_mapping(pfdev, as, addr);
454 if (!bomapping)
455 return -ENOENT;
456
457 bo = bomapping->obj;
458 if (!bo->is_heap) {
459 dev_WARN(pfdev->dev, "matching BO is not heap type (GPU VA = %llx)",
460 bomapping->mmnode.start << PAGE_SHIFT);
461 ret = -EINVAL;
462 goto err_bo;
463 }
464 WARN_ON(bomapping->mmu->as != as);
465
466 /* Assume 2MB alignment and size multiple */
467 addr &= ~((u64)SZ_2M - 1);
468 page_offset = addr >> PAGE_SHIFT;
469 page_offset -= bomapping->mmnode.start;
470
471 obj = &bo->base.base;
472
473 dma_resv_lock(obj->resv, NULL);
474
475 if (!bo->base.pages) {
476 bo->sgts = kvmalloc_array(bo->base.base.size / SZ_2M,
477 sizeof(struct sg_table), GFP_KERNEL | __GFP_ZERO);
478 if (!bo->sgts) {
479 ret = -ENOMEM;
480 goto err_unlock;
481 }
482
483 pages = kvmalloc_array(bo->base.base.size >> PAGE_SHIFT,
484 sizeof(struct page *), GFP_KERNEL | __GFP_ZERO);
485 if (!pages) {
486 kvfree(bo->sgts);
487 bo->sgts = NULL;
488 ret = -ENOMEM;
489 goto err_unlock;
490 }
491 bo->base.pages = pages;
492 bo->base.pages_use_count = 1;
493 } else {
494 pages = bo->base.pages;
495 if (pages[page_offset]) {
496 /* Pages are already mapped, bail out. */
497 goto out;
498 }
499 }
500
501 mapping = bo->base.base.filp->f_mapping;
502 mapping_set_unevictable(mapping);
503
504 for (i = page_offset; i < page_offset + NUM_FAULT_PAGES; i++) {
505 /* Can happen if the last fault only partially filled this
506 * section of the pages array before failing. In that case
507 * we skip already filled pages.
508 */
509 if (pages[i])
510 continue;
511
512 pages[i] = shmem_read_mapping_page(mapping, i);
513 if (IS_ERR(pages[i])) {
514 ret = PTR_ERR(pages[i]);
515 pages[i] = NULL;
516 goto err_unlock;
517 }
518 }
519
520 sgt = &bo->sgts[page_offset / (SZ_2M / PAGE_SIZE)];
521 ret = sg_alloc_table_from_pages(sgt, pages + page_offset,
522 NUM_FAULT_PAGES, 0, SZ_2M, GFP_KERNEL);
523 if (ret)
524 goto err_unlock;
525
526 ret = dma_map_sgtable(pfdev->dev, sgt, DMA_BIDIRECTIONAL, 0);
527 if (ret)
528 goto err_map;
529
530 mmu_map_sg(pfdev, bomapping->mmu, addr,
531 IOMMU_WRITE | IOMMU_READ | IOMMU_NOEXEC, sgt);
532
533 bomapping->active = true;
534 bo->heap_rss_size += SZ_2M;
535
536 dev_dbg(pfdev->dev, "mapped page fault @ AS%d %llx", as, addr);
537
538 out:
539 dma_resv_unlock(obj->resv);
540
541 panfrost_gem_mapping_put(bomapping);
542
543 return 0;
544
545 err_map:
546 sg_free_table(sgt);
547 err_unlock:
548 dma_resv_unlock(obj->resv);
549 err_bo:
550 panfrost_gem_mapping_put(bomapping);
551 return ret;
552 }
553
panfrost_mmu_release_ctx(struct kref * kref)554 static void panfrost_mmu_release_ctx(struct kref *kref)
555 {
556 struct panfrost_mmu *mmu = container_of(kref, struct panfrost_mmu,
557 refcount);
558 struct panfrost_device *pfdev = mmu->pfdev;
559
560 spin_lock(&pfdev->as_lock);
561 if (mmu->as >= 0) {
562 pm_runtime_get_noresume(pfdev->dev);
563 if (pm_runtime_active(pfdev->dev))
564 panfrost_mmu_disable(pfdev, mmu->as);
565 pm_runtime_put_autosuspend(pfdev->dev);
566
567 clear_bit(mmu->as, &pfdev->as_alloc_mask);
568 clear_bit(mmu->as, &pfdev->as_in_use_mask);
569 list_del(&mmu->list);
570 }
571 spin_unlock(&pfdev->as_lock);
572
573 free_io_pgtable_ops(mmu->pgtbl_ops);
574 drm_mm_takedown(&mmu->mm);
575 kfree(mmu);
576 }
577
panfrost_mmu_ctx_put(struct panfrost_mmu * mmu)578 void panfrost_mmu_ctx_put(struct panfrost_mmu *mmu)
579 {
580 kref_put(&mmu->refcount, panfrost_mmu_release_ctx);
581 }
582
panfrost_mmu_ctx_get(struct panfrost_mmu * mmu)583 struct panfrost_mmu *panfrost_mmu_ctx_get(struct panfrost_mmu *mmu)
584 {
585 kref_get(&mmu->refcount);
586
587 return mmu;
588 }
589
590 #define PFN_4G (SZ_4G >> PAGE_SHIFT)
591 #define PFN_4G_MASK (PFN_4G - 1)
592 #define PFN_16M (SZ_16M >> PAGE_SHIFT)
593
panfrost_drm_mm_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)594 static void panfrost_drm_mm_color_adjust(const struct drm_mm_node *node,
595 unsigned long color,
596 u64 *start, u64 *end)
597 {
598 /* Executable buffers can't start or end on a 4GB boundary */
599 if (!(color & PANFROST_BO_NOEXEC)) {
600 u64 next_seg;
601
602 if ((*start & PFN_4G_MASK) == 0)
603 (*start)++;
604
605 if ((*end & PFN_4G_MASK) == 0)
606 (*end)--;
607
608 next_seg = ALIGN(*start, PFN_4G);
609 if (next_seg - *start <= PFN_16M)
610 *start = next_seg + 1;
611
612 *end = min(*end, ALIGN(*start, PFN_4G) - 1);
613 }
614 }
615
panfrost_mmu_ctx_create(struct panfrost_device * pfdev)616 struct panfrost_mmu *panfrost_mmu_ctx_create(struct panfrost_device *pfdev)
617 {
618 struct panfrost_mmu *mmu;
619
620 mmu = kzalloc(sizeof(*mmu), GFP_KERNEL);
621 if (!mmu)
622 return ERR_PTR(-ENOMEM);
623
624 mmu->pfdev = pfdev;
625 spin_lock_init(&mmu->mm_lock);
626
627 /* 4G enough for now. can be 48-bit */
628 drm_mm_init(&mmu->mm, SZ_32M >> PAGE_SHIFT, (SZ_4G - SZ_32M) >> PAGE_SHIFT);
629 mmu->mm.color_adjust = panfrost_drm_mm_color_adjust;
630
631 INIT_LIST_HEAD(&mmu->list);
632 mmu->as = -1;
633
634 mmu->pgtbl_cfg = (struct io_pgtable_cfg) {
635 .pgsize_bitmap = SZ_4K | SZ_2M,
636 .ias = FIELD_GET(0xff, pfdev->features.mmu_features),
637 .oas = FIELD_GET(0xff00, pfdev->features.mmu_features),
638 .coherent_walk = pfdev->coherent,
639 .tlb = &mmu_tlb_ops,
640 .iommu_dev = pfdev->dev,
641 };
642
643 mmu->pgtbl_ops = alloc_io_pgtable_ops(ARM_MALI_LPAE, &mmu->pgtbl_cfg,
644 mmu);
645 if (!mmu->pgtbl_ops) {
646 kfree(mmu);
647 return ERR_PTR(-EINVAL);
648 }
649
650 kref_init(&mmu->refcount);
651
652 return mmu;
653 }
654
access_type_name(struct panfrost_device * pfdev,u32 fault_status)655 static const char *access_type_name(struct panfrost_device *pfdev,
656 u32 fault_status)
657 {
658 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
659 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
660 if (panfrost_has_hw_feature(pfdev, HW_FEATURE_AARCH64_MMU))
661 return "ATOMIC";
662 else
663 return "UNKNOWN";
664 case AS_FAULTSTATUS_ACCESS_TYPE_READ:
665 return "READ";
666 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
667 return "WRITE";
668 case AS_FAULTSTATUS_ACCESS_TYPE_EX:
669 return "EXECUTE";
670 default:
671 WARN_ON(1);
672 return NULL;
673 }
674 }
675
panfrost_mmu_irq_handler(int irq,void * data)676 static irqreturn_t panfrost_mmu_irq_handler(int irq, void *data)
677 {
678 struct panfrost_device *pfdev = data;
679
680 if (test_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended))
681 return IRQ_NONE;
682
683 if (!mmu_read(pfdev, MMU_INT_STAT))
684 return IRQ_NONE;
685
686 mmu_write(pfdev, MMU_INT_MASK, 0);
687 return IRQ_WAKE_THREAD;
688 }
689
panfrost_mmu_irq_handler_thread(int irq,void * data)690 static irqreturn_t panfrost_mmu_irq_handler_thread(int irq, void *data)
691 {
692 struct panfrost_device *pfdev = data;
693 u32 status = mmu_read(pfdev, MMU_INT_RAWSTAT);
694 int ret;
695
696 while (status) {
697 u32 as = ffs(status | (status >> 16)) - 1;
698 u32 mask = BIT(as) | BIT(as + 16);
699 u64 addr;
700 u32 fault_status;
701 u32 exception_type;
702 u32 access_type;
703 u32 source_id;
704
705 fault_status = mmu_read(pfdev, AS_FAULTSTATUS(as));
706 addr = mmu_read(pfdev, AS_FAULTADDRESS_LO(as));
707 addr |= (u64)mmu_read(pfdev, AS_FAULTADDRESS_HI(as)) << 32;
708
709 /* decode the fault status */
710 exception_type = fault_status & 0xFF;
711 access_type = (fault_status >> 8) & 0x3;
712 source_id = (fault_status >> 16);
713
714 mmu_write(pfdev, MMU_INT_CLEAR, mask);
715
716 /* Page fault only */
717 ret = -1;
718 if ((status & mask) == BIT(as) && (exception_type & 0xF8) == 0xC0)
719 ret = panfrost_mmu_map_fault_addr(pfdev, as, addr);
720
721 if (ret) {
722 /* terminal fault, print info about the fault */
723 dev_err(pfdev->dev,
724 "Unhandled Page fault in AS%d at VA 0x%016llX\n"
725 "Reason: %s\n"
726 "raw fault status: 0x%X\n"
727 "decoded fault status: %s\n"
728 "exception type 0x%X: %s\n"
729 "access type 0x%X: %s\n"
730 "source id 0x%X\n",
731 as, addr,
732 "TODO",
733 fault_status,
734 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
735 exception_type, panfrost_exception_name(exception_type),
736 access_type, access_type_name(pfdev, fault_status),
737 source_id);
738
739 spin_lock(&pfdev->as_lock);
740 /* Ignore MMU interrupts on this AS until it's been
741 * re-enabled.
742 */
743 pfdev->as_faulty_mask |= mask;
744
745 /* Disable the MMU to kill jobs on this AS. */
746 panfrost_mmu_disable(pfdev, as);
747 spin_unlock(&pfdev->as_lock);
748 }
749
750 status &= ~mask;
751
752 /* If we received new MMU interrupts, process them before returning. */
753 if (!status)
754 status = mmu_read(pfdev, MMU_INT_RAWSTAT) & ~pfdev->as_faulty_mask;
755 }
756
757 /* Enable interrupts only if we're not about to get suspended */
758 if (!test_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended)) {
759 spin_lock(&pfdev->as_lock);
760 mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask);
761 spin_unlock(&pfdev->as_lock);
762 }
763
764 return IRQ_HANDLED;
765 };
766
panfrost_mmu_init(struct panfrost_device * pfdev)767 int panfrost_mmu_init(struct panfrost_device *pfdev)
768 {
769 int err;
770
771 pfdev->mmu_irq = platform_get_irq_byname(to_platform_device(pfdev->dev), "mmu");
772 if (pfdev->mmu_irq < 0)
773 return pfdev->mmu_irq;
774
775 err = devm_request_threaded_irq(pfdev->dev, pfdev->mmu_irq,
776 panfrost_mmu_irq_handler,
777 panfrost_mmu_irq_handler_thread,
778 IRQF_SHARED, KBUILD_MODNAME "-mmu",
779 pfdev);
780
781 if (err) {
782 dev_err(pfdev->dev, "failed to request mmu irq");
783 return err;
784 }
785
786 return 0;
787 }
788
panfrost_mmu_fini(struct panfrost_device * pfdev)789 void panfrost_mmu_fini(struct panfrost_device *pfdev)
790 {
791 mmu_write(pfdev, MMU_INT_MASK, 0);
792 }
793
panfrost_mmu_suspend_irq(struct panfrost_device * pfdev)794 void panfrost_mmu_suspend_irq(struct panfrost_device *pfdev)
795 {
796 set_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended);
797
798 mmu_write(pfdev, MMU_INT_MASK, 0);
799 synchronize_irq(pfdev->mmu_irq);
800 }
801