1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS("DMA_BUF");
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162 }
163
164 /**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, 0);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270 }
271
272 /**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293 {
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298 uint32_t copy_flags = 0;
299 struct amdgpu_bo *abo_src, *abo_dst;
300
301 if (!adev->mman.buffer_funcs_enabled) {
302 DRM_ERROR("Trying to move memory with ring turned off.\n");
303 return -EINVAL;
304 }
305
306 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308
309 mutex_lock(&adev->mman.gtt_window_lock);
310 while (src_mm.remaining) {
311 uint64_t from, to, cur_size, tiling_flags;
312 uint32_t num_type, data_format, max_com, write_compress_disable;
313 struct dma_fence *next;
314
315 /* Never copy more than 256MiB at once to avoid a timeout */
316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317
318 /* Map src to window 0 and dst to window 1. */
319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
320 0, ring, tmz, &cur_size, &from);
321 if (r)
322 goto error;
323
324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
325 1, ring, tmz, &cur_size, &to);
326 if (r)
327 goto error;
328
329 abo_src = ttm_to_amdgpu_bo(src->bo);
330 abo_dst = ttm_to_amdgpu_bo(dst->bo);
331 if (tmz)
332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 (dst->mem->mem_type == TTM_PL_VRAM)) {
338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
343 write_compress_disable =
344 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
345 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
346 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
347 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
348 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
349 write_compress_disable));
350 }
351
352 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
353 &next, false, true, copy_flags);
354 if (r)
355 goto error;
356
357 dma_fence_put(fence);
358 fence = next;
359
360 amdgpu_res_next(&src_mm, cur_size);
361 amdgpu_res_next(&dst_mm, cur_size);
362 }
363 error:
364 mutex_unlock(&adev->mman.gtt_window_lock);
365 if (f)
366 *f = dma_fence_get(fence);
367 dma_fence_put(fence);
368 return r;
369 }
370
371 /*
372 * amdgpu_move_blit - Copy an entire buffer to another buffer
373 *
374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
375 * help move buffers to and from VRAM.
376 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)377 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
378 bool evict,
379 struct ttm_resource *new_mem,
380 struct ttm_resource *old_mem)
381 {
382 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
383 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
384 struct amdgpu_copy_mem src, dst;
385 struct dma_fence *fence = NULL;
386 int r;
387
388 src.bo = bo;
389 dst.bo = bo;
390 src.mem = old_mem;
391 dst.mem = new_mem;
392 src.offset = 0;
393 dst.offset = 0;
394
395 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
396 new_mem->size,
397 amdgpu_bo_encrypted(abo),
398 bo->base.resv, &fence);
399 if (r)
400 goto error;
401
402 /* clear the space being freed */
403 if (old_mem->mem_type == TTM_PL_VRAM &&
404 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
405 struct dma_fence *wipe_fence = NULL;
406
407 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
408 false);
409 if (r) {
410 goto error;
411 } else if (wipe_fence) {
412 amdgpu_vram_mgr_set_cleared(bo->resource);
413 dma_fence_put(fence);
414 fence = wipe_fence;
415 }
416 }
417
418 /* Always block for VM page tables before committing the new location */
419 if (bo->type == ttm_bo_type_kernel)
420 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
421 else
422 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
423 dma_fence_put(fence);
424 return r;
425
426 error:
427 if (fence)
428 dma_fence_wait(fence, false);
429 dma_fence_put(fence);
430 return r;
431 }
432
433 /**
434 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
435 * @adev: amdgpu device
436 * @res: the resource to check
437 *
438 * Returns: true if the full resource is CPU visible, false otherwise.
439 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)440 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
441 struct ttm_resource *res)
442 {
443 struct amdgpu_res_cursor cursor;
444
445 if (!res)
446 return false;
447
448 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
449 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
450 return true;
451
452 if (res->mem_type != TTM_PL_VRAM)
453 return false;
454
455 amdgpu_res_first(res, 0, res->size, &cursor);
456 while (cursor.remaining) {
457 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
458 return false;
459 amdgpu_res_next(&cursor, cursor.size);
460 }
461
462 return true;
463 }
464
465 /*
466 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
467 *
468 * Called by amdgpu_bo_move()
469 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)470 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
471 struct ttm_resource *mem)
472 {
473 if (!amdgpu_res_cpu_visible(adev, mem))
474 return false;
475
476 /* ttm_resource_ioremap only supports contiguous memory */
477 if (mem->mem_type == TTM_PL_VRAM &&
478 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
479 return false;
480
481 return true;
482 }
483
484 /*
485 * amdgpu_bo_move - Move a buffer object to a new memory location
486 *
487 * Called by ttm_bo_handle_move_mem()
488 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)489 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
490 struct ttm_operation_ctx *ctx,
491 struct ttm_resource *new_mem,
492 struct ttm_place *hop)
493 {
494 struct amdgpu_device *adev;
495 struct amdgpu_bo *abo;
496 struct ttm_resource *old_mem = bo->resource;
497 int r;
498
499 if (new_mem->mem_type == TTM_PL_TT ||
500 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
501 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
502 if (r)
503 return r;
504 }
505
506 abo = ttm_to_amdgpu_bo(bo);
507 adev = amdgpu_ttm_adev(bo->bdev);
508
509 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
510 bo->ttm == NULL)) {
511 amdgpu_bo_move_notify(bo, evict, new_mem);
512 ttm_bo_move_null(bo, new_mem);
513 return 0;
514 }
515 if (old_mem->mem_type == TTM_PL_SYSTEM &&
516 (new_mem->mem_type == TTM_PL_TT ||
517 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
518 amdgpu_bo_move_notify(bo, evict, new_mem);
519 ttm_bo_move_null(bo, new_mem);
520 return 0;
521 }
522 if ((old_mem->mem_type == TTM_PL_TT ||
523 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
524 new_mem->mem_type == TTM_PL_SYSTEM) {
525 r = ttm_bo_wait_ctx(bo, ctx);
526 if (r)
527 return r;
528
529 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
530 amdgpu_bo_move_notify(bo, evict, new_mem);
531 ttm_resource_free(bo, &bo->resource);
532 ttm_bo_assign_mem(bo, new_mem);
533 return 0;
534 }
535
536 if (old_mem->mem_type == AMDGPU_PL_GDS ||
537 old_mem->mem_type == AMDGPU_PL_GWS ||
538 old_mem->mem_type == AMDGPU_PL_OA ||
539 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
540 new_mem->mem_type == AMDGPU_PL_GDS ||
541 new_mem->mem_type == AMDGPU_PL_GWS ||
542 new_mem->mem_type == AMDGPU_PL_OA ||
543 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
544 /* Nothing to save here */
545 amdgpu_bo_move_notify(bo, evict, new_mem);
546 ttm_bo_move_null(bo, new_mem);
547 return 0;
548 }
549
550 if (bo->type == ttm_bo_type_device &&
551 new_mem->mem_type == TTM_PL_VRAM &&
552 old_mem->mem_type != TTM_PL_VRAM) {
553 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
554 * accesses the BO after it's moved.
555 */
556 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
557 }
558
559 if (adev->mman.buffer_funcs_enabled &&
560 ((old_mem->mem_type == TTM_PL_SYSTEM &&
561 new_mem->mem_type == TTM_PL_VRAM) ||
562 (old_mem->mem_type == TTM_PL_VRAM &&
563 new_mem->mem_type == TTM_PL_SYSTEM))) {
564 hop->fpfn = 0;
565 hop->lpfn = 0;
566 hop->mem_type = TTM_PL_TT;
567 hop->flags = TTM_PL_FLAG_TEMPORARY;
568 return -EMULTIHOP;
569 }
570
571 amdgpu_bo_move_notify(bo, evict, new_mem);
572 if (adev->mman.buffer_funcs_enabled)
573 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
574 else
575 r = -ENODEV;
576
577 if (r) {
578 /* Check that all memory is CPU accessible */
579 if (!amdgpu_res_copyable(adev, old_mem) ||
580 !amdgpu_res_copyable(adev, new_mem)) {
581 pr_err("Move buffer fallback to memcpy unavailable\n");
582 return r;
583 }
584
585 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
586 if (r)
587 return r;
588 }
589
590 /* update statistics after the move */
591 if (evict)
592 atomic64_inc(&adev->num_evictions);
593 atomic64_add(bo->base.size, &adev->num_bytes_moved);
594 return 0;
595 }
596
597 /*
598 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
599 *
600 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
601 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)602 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
603 struct ttm_resource *mem)
604 {
605 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
606
607 switch (mem->mem_type) {
608 case TTM_PL_SYSTEM:
609 /* system memory */
610 return 0;
611 case TTM_PL_TT:
612 case AMDGPU_PL_PREEMPT:
613 break;
614 case TTM_PL_VRAM:
615 mem->bus.offset = mem->start << PAGE_SHIFT;
616
617 if (adev->mman.aper_base_kaddr &&
618 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
619 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
620 mem->bus.offset;
621
622 mem->bus.offset += adev->gmc.aper_base;
623 mem->bus.is_iomem = true;
624 break;
625 case AMDGPU_PL_DOORBELL:
626 mem->bus.offset = mem->start << PAGE_SHIFT;
627 mem->bus.offset += adev->doorbell.base;
628 mem->bus.is_iomem = true;
629 mem->bus.caching = ttm_uncached;
630 break;
631 default:
632 return -EINVAL;
633 }
634 return 0;
635 }
636
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)637 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
638 unsigned long page_offset)
639 {
640 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
641 struct amdgpu_res_cursor cursor;
642
643 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
644 &cursor);
645
646 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
647 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
648
649 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
650 }
651
652 /**
653 * amdgpu_ttm_domain_start - Returns GPU start address
654 * @adev: amdgpu device object
655 * @type: type of the memory
656 *
657 * Returns:
658 * GPU start address of a memory domain
659 */
660
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)661 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
662 {
663 switch (type) {
664 case TTM_PL_TT:
665 return adev->gmc.gart_start;
666 case TTM_PL_VRAM:
667 return adev->gmc.vram_start;
668 }
669
670 return 0;
671 }
672
673 /*
674 * TTM backend functions.
675 */
676 struct amdgpu_ttm_tt {
677 struct ttm_tt ttm;
678 struct drm_gem_object *gobj;
679 u64 offset;
680 uint64_t userptr;
681 struct task_struct *usertask;
682 uint32_t userflags;
683 bool bound;
684 int32_t pool_id;
685 };
686
687 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
688
689 #ifdef CONFIG_DRM_AMDGPU_USERPTR
690 /*
691 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
692 * memory and start HMM tracking CPU page table update
693 *
694 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
695 * once afterwards to stop HMM tracking
696 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)697 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
698 struct hmm_range **range)
699 {
700 struct ttm_tt *ttm = bo->tbo.ttm;
701 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
702 unsigned long start = gtt->userptr;
703 struct vm_area_struct *vma;
704 struct mm_struct *mm;
705 bool readonly;
706 int r = 0;
707
708 /* Make sure get_user_pages_done() can cleanup gracefully */
709 *range = NULL;
710
711 mm = bo->notifier.mm;
712 if (unlikely(!mm)) {
713 DRM_DEBUG_DRIVER("BO is not registered?\n");
714 return -EFAULT;
715 }
716
717 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
718 return -ESRCH;
719
720 mmap_read_lock(mm);
721 vma = vma_lookup(mm, start);
722 if (unlikely(!vma)) {
723 r = -EFAULT;
724 goto out_unlock;
725 }
726 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
727 vma->vm_file)) {
728 r = -EPERM;
729 goto out_unlock;
730 }
731
732 readonly = amdgpu_ttm_tt_is_readonly(ttm);
733 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
734 readonly, NULL, pages, range);
735 out_unlock:
736 mmap_read_unlock(mm);
737 if (r)
738 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
739
740 mmput(mm);
741
742 return r;
743 }
744
745 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
746 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)747 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
748 struct hmm_range *range)
749 {
750 struct amdgpu_ttm_tt *gtt = (void *)ttm;
751
752 if (gtt && gtt->userptr && range)
753 amdgpu_hmm_range_get_pages_done(range);
754 }
755
756 /*
757 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
758 * Check if the pages backing this ttm range have been invalidated
759 *
760 * Returns: true if pages are still valid
761 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)762 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
763 struct hmm_range *range)
764 {
765 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
766
767 if (!gtt || !gtt->userptr || !range)
768 return false;
769
770 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
771 gtt->userptr, ttm->num_pages);
772
773 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
774
775 return !amdgpu_hmm_range_get_pages_done(range);
776 }
777 #endif
778
779 /*
780 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
781 *
782 * Called by amdgpu_cs_list_validate(). This creates the page list
783 * that backs user memory and will ultimately be mapped into the device
784 * address space.
785 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)786 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
787 {
788 unsigned long i;
789
790 for (i = 0; i < ttm->num_pages; ++i)
791 ttm->pages[i] = pages ? pages[i] : NULL;
792 }
793
794 /*
795 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
796 *
797 * Called by amdgpu_ttm_backend_bind()
798 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)799 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
800 struct ttm_tt *ttm)
801 {
802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805 enum dma_data_direction direction = write ?
806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807 int r;
808
809 /* Allocate an SG array and squash pages into it */
810 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
811 (u64)ttm->num_pages << PAGE_SHIFT,
812 GFP_KERNEL);
813 if (r)
814 goto release_sg;
815
816 /* Map SG to device */
817 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
818 if (r)
819 goto release_sg_table;
820
821 /* convert SG to linear array of pages and dma addresses */
822 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
823 ttm->num_pages);
824
825 return 0;
826
827 release_sg_table:
828 sg_free_table(ttm->sg);
829 release_sg:
830 kfree(ttm->sg);
831 ttm->sg = NULL;
832 return r;
833 }
834
835 /*
836 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
837 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)838 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
839 struct ttm_tt *ttm)
840 {
841 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
842 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
843 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
844 enum dma_data_direction direction = write ?
845 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
846
847 /* double check that we don't free the table twice */
848 if (!ttm->sg || !ttm->sg->sgl)
849 return;
850
851 /* unmap the pages mapped to the device */
852 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
853 sg_free_table(ttm->sg);
854 }
855
856 /*
857 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
858 * MQDn+CtrlStackn where n is the number of XCCs per partition.
859 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
860 * and uses memory type default, UC. The rest of pages_per_xcc are
861 * Ctrl stack and modify their memory type to NC.
862 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)863 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
864 struct ttm_tt *ttm, uint64_t flags)
865 {
866 struct amdgpu_ttm_tt *gtt = (void *)ttm;
867 uint64_t total_pages = ttm->num_pages;
868 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
869 uint64_t page_idx, pages_per_xcc;
870 int i;
871 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
872
873 pages_per_xcc = total_pages;
874 do_div(pages_per_xcc, num_xcc);
875
876 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
877 /* MQD page: use default flags */
878 amdgpu_gart_bind(adev,
879 gtt->offset + (page_idx << PAGE_SHIFT),
880 1, >t->ttm.dma_address[page_idx], flags);
881 /*
882 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
883 * the second page of the BO onward.
884 */
885 amdgpu_gart_bind(adev,
886 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
887 pages_per_xcc - 1,
888 >t->ttm.dma_address[page_idx + 1],
889 ctrl_flags);
890 }
891 }
892
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)893 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
894 struct ttm_buffer_object *tbo,
895 uint64_t flags)
896 {
897 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
898 struct ttm_tt *ttm = tbo->ttm;
899 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
900
901 if (amdgpu_bo_encrypted(abo))
902 flags |= AMDGPU_PTE_TMZ;
903
904 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
905 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
906 } else {
907 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
908 gtt->ttm.dma_address, flags);
909 }
910 gtt->bound = true;
911 }
912
913 /*
914 * amdgpu_ttm_backend_bind - Bind GTT memory
915 *
916 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
917 * This handles binding GTT memory to the device address space.
918 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)919 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
920 struct ttm_tt *ttm,
921 struct ttm_resource *bo_mem)
922 {
923 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
924 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
925 uint64_t flags;
926 int r;
927
928 if (!bo_mem)
929 return -EINVAL;
930
931 if (gtt->bound)
932 return 0;
933
934 if (gtt->userptr) {
935 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
936 if (r) {
937 DRM_ERROR("failed to pin userptr\n");
938 return r;
939 }
940 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
941 if (!ttm->sg) {
942 struct dma_buf_attachment *attach;
943 struct sg_table *sgt;
944
945 attach = gtt->gobj->import_attach;
946 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
947 if (IS_ERR(sgt))
948 return PTR_ERR(sgt);
949
950 ttm->sg = sgt;
951 }
952
953 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
954 ttm->num_pages);
955 }
956
957 if (!ttm->num_pages) {
958 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
959 ttm->num_pages, bo_mem, ttm);
960 }
961
962 if (bo_mem->mem_type != TTM_PL_TT ||
963 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
964 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
965 return 0;
966 }
967
968 /* compute PTE flags relevant to this BO memory */
969 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
970
971 /* bind pages into GART page tables */
972 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
973 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
974 gtt->ttm.dma_address, flags);
975 gtt->bound = true;
976 return 0;
977 }
978
979 /*
980 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
981 * through AGP or GART aperture.
982 *
983 * If bo is accessible through AGP aperture, then use AGP aperture
984 * to access bo; otherwise allocate logical space in GART aperture
985 * and map bo to GART aperture.
986 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)987 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
988 {
989 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
990 struct ttm_operation_ctx ctx = { false, false };
991 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
992 struct ttm_placement placement;
993 struct ttm_place placements;
994 struct ttm_resource *tmp;
995 uint64_t addr, flags;
996 int r;
997
998 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
999 return 0;
1000
1001 addr = amdgpu_gmc_agp_addr(bo);
1002 if (addr != AMDGPU_BO_INVALID_OFFSET)
1003 return 0;
1004
1005 /* allocate GART space */
1006 placement.num_placement = 1;
1007 placement.placement = &placements;
1008 placements.fpfn = 0;
1009 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1010 placements.mem_type = TTM_PL_TT;
1011 placements.flags = bo->resource->placement;
1012
1013 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1014 if (unlikely(r))
1015 return r;
1016
1017 /* compute PTE flags for this buffer object */
1018 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1019
1020 /* Bind pages */
1021 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1022 amdgpu_ttm_gart_bind(adev, bo, flags);
1023 amdgpu_gart_invalidate_tlb(adev);
1024 ttm_resource_free(bo, &bo->resource);
1025 ttm_bo_assign_mem(bo, tmp);
1026
1027 return 0;
1028 }
1029
1030 /*
1031 * amdgpu_ttm_recover_gart - Rebind GTT pages
1032 *
1033 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1034 * rebind GTT pages during a GPU reset.
1035 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1036 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1037 {
1038 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1039 uint64_t flags;
1040
1041 if (!tbo->ttm)
1042 return;
1043
1044 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1045 amdgpu_ttm_gart_bind(adev, tbo, flags);
1046 }
1047
1048 /*
1049 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1050 *
1051 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1052 * ttm_tt_destroy().
1053 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1054 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1055 struct ttm_tt *ttm)
1056 {
1057 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1058 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1059
1060 /* if the pages have userptr pinning then clear that first */
1061 if (gtt->userptr) {
1062 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1063 } else if (ttm->sg && gtt->gobj->import_attach) {
1064 struct dma_buf_attachment *attach;
1065
1066 attach = gtt->gobj->import_attach;
1067 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1068 ttm->sg = NULL;
1069 }
1070
1071 if (!gtt->bound)
1072 return;
1073
1074 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1075 return;
1076
1077 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1078 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1079 gtt->bound = false;
1080 }
1081
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1082 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1083 struct ttm_tt *ttm)
1084 {
1085 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1086
1087 if (gtt->usertask)
1088 put_task_struct(gtt->usertask);
1089
1090 ttm_tt_fini(>t->ttm);
1091 kfree(gtt);
1092 }
1093
1094 /**
1095 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1096 *
1097 * @bo: The buffer object to create a GTT ttm_tt object around
1098 * @page_flags: Page flags to be added to the ttm_tt object
1099 *
1100 * Called by ttm_tt_create().
1101 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1102 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1103 uint32_t page_flags)
1104 {
1105 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1106 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1107 struct amdgpu_ttm_tt *gtt;
1108 enum ttm_caching caching;
1109
1110 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1111 if (!gtt)
1112 return NULL;
1113
1114 gtt->gobj = &bo->base;
1115 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1116 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1117 else
1118 gtt->pool_id = abo->xcp_id;
1119
1120 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1121 caching = ttm_write_combined;
1122 else
1123 caching = ttm_cached;
1124
1125 /* allocate space for the uninitialized page entries */
1126 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1127 kfree(gtt);
1128 return NULL;
1129 }
1130 return >t->ttm;
1131 }
1132
1133 /*
1134 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1135 *
1136 * Map the pages of a ttm_tt object to an address space visible
1137 * to the underlying device.
1138 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1139 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1140 struct ttm_tt *ttm,
1141 struct ttm_operation_ctx *ctx)
1142 {
1143 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1144 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1145 struct ttm_pool *pool;
1146 pgoff_t i;
1147 int ret;
1148
1149 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1150 if (gtt->userptr) {
1151 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1152 if (!ttm->sg)
1153 return -ENOMEM;
1154 return 0;
1155 }
1156
1157 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1158 return 0;
1159
1160 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1161 pool = &adev->mman.ttm_pools[gtt->pool_id];
1162 else
1163 pool = &adev->mman.bdev.pool;
1164 ret = ttm_pool_alloc(pool, ttm, ctx);
1165 if (ret)
1166 return ret;
1167
1168 for (i = 0; i < ttm->num_pages; ++i)
1169 ttm->pages[i]->mapping = bdev->dev_mapping;
1170
1171 return 0;
1172 }
1173
1174 /*
1175 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1176 *
1177 * Unmaps pages of a ttm_tt object from the device address space and
1178 * unpopulates the page array backing it.
1179 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1180 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1181 struct ttm_tt *ttm)
1182 {
1183 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1184 struct amdgpu_device *adev;
1185 struct ttm_pool *pool;
1186 pgoff_t i;
1187
1188 amdgpu_ttm_backend_unbind(bdev, ttm);
1189
1190 if (gtt->userptr) {
1191 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1192 kfree(ttm->sg);
1193 ttm->sg = NULL;
1194 return;
1195 }
1196
1197 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1198 return;
1199
1200 for (i = 0; i < ttm->num_pages; ++i)
1201 ttm->pages[i]->mapping = NULL;
1202
1203 adev = amdgpu_ttm_adev(bdev);
1204
1205 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1206 pool = &adev->mman.ttm_pools[gtt->pool_id];
1207 else
1208 pool = &adev->mman.bdev.pool;
1209
1210 return ttm_pool_free(pool, ttm);
1211 }
1212
1213 /**
1214 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1215 * task
1216 *
1217 * @tbo: The ttm_buffer_object that contains the userptr
1218 * @user_addr: The returned value
1219 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1220 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1221 uint64_t *user_addr)
1222 {
1223 struct amdgpu_ttm_tt *gtt;
1224
1225 if (!tbo->ttm)
1226 return -EINVAL;
1227
1228 gtt = (void *)tbo->ttm;
1229 *user_addr = gtt->userptr;
1230 return 0;
1231 }
1232
1233 /**
1234 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235 * task
1236 *
1237 * @bo: The ttm_buffer_object to bind this userptr to
1238 * @addr: The address in the current tasks VM space to use
1239 * @flags: Requirements of userptr object.
1240 *
1241 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1242 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1243 * initialize GPU VM for a KFD process.
1244 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1245 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1246 uint64_t addr, uint32_t flags)
1247 {
1248 struct amdgpu_ttm_tt *gtt;
1249
1250 if (!bo->ttm) {
1251 /* TODO: We want a separate TTM object type for userptrs */
1252 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1253 if (bo->ttm == NULL)
1254 return -ENOMEM;
1255 }
1256
1257 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1258 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1259
1260 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1261 gtt->userptr = addr;
1262 gtt->userflags = flags;
1263
1264 if (gtt->usertask)
1265 put_task_struct(gtt->usertask);
1266 gtt->usertask = current->group_leader;
1267 get_task_struct(gtt->usertask);
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1274 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1275 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1276 {
1277 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1278
1279 if (gtt == NULL)
1280 return NULL;
1281
1282 if (gtt->usertask == NULL)
1283 return NULL;
1284
1285 return gtt->usertask->mm;
1286 }
1287
1288 /*
1289 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1290 * address range for the current task.
1291 *
1292 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1293 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1294 unsigned long end, unsigned long *userptr)
1295 {
1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297 unsigned long size;
1298
1299 if (gtt == NULL || !gtt->userptr)
1300 return false;
1301
1302 /* Return false if no part of the ttm_tt object lies within
1303 * the range
1304 */
1305 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1306 if (gtt->userptr > end || gtt->userptr + size <= start)
1307 return false;
1308
1309 if (userptr)
1310 *userptr = gtt->userptr;
1311 return true;
1312 }
1313
1314 /*
1315 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1316 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1317 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1318 {
1319 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1320
1321 if (gtt == NULL || !gtt->userptr)
1322 return false;
1323
1324 return true;
1325 }
1326
1327 /*
1328 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1329 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1330 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1331 {
1332 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333
1334 if (gtt == NULL)
1335 return false;
1336
1337 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1338 }
1339
1340 /**
1341 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1342 *
1343 * @ttm: The ttm_tt object to compute the flags for
1344 * @mem: The memory registry backing this ttm_tt object
1345 *
1346 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1347 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1348 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1349 {
1350 uint64_t flags = 0;
1351
1352 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1353 flags |= AMDGPU_PTE_VALID;
1354
1355 if (mem && (mem->mem_type == TTM_PL_TT ||
1356 mem->mem_type == AMDGPU_PL_DOORBELL ||
1357 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1358 flags |= AMDGPU_PTE_SYSTEM;
1359
1360 if (ttm->caching == ttm_cached)
1361 flags |= AMDGPU_PTE_SNOOPED;
1362 }
1363
1364 if (mem && mem->mem_type == TTM_PL_VRAM &&
1365 mem->bus.caching == ttm_cached)
1366 flags |= AMDGPU_PTE_SNOOPED;
1367
1368 return flags;
1369 }
1370
1371 /**
1372 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1373 *
1374 * @adev: amdgpu_device pointer
1375 * @ttm: The ttm_tt object to compute the flags for
1376 * @mem: The memory registry backing this ttm_tt object
1377 *
1378 * Figure out the flags to use for a VM PTE (Page Table Entry).
1379 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1380 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1381 struct ttm_resource *mem)
1382 {
1383 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1384
1385 flags |= adev->gart.gart_pte_flags;
1386 flags |= AMDGPU_PTE_READABLE;
1387
1388 if (!amdgpu_ttm_tt_is_readonly(ttm))
1389 flags |= AMDGPU_PTE_WRITEABLE;
1390
1391 return flags;
1392 }
1393
1394 /*
1395 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1396 * object.
1397 *
1398 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1399 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1400 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1401 * used to clean out a memory space.
1402 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1403 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1404 const struct ttm_place *place)
1405 {
1406 struct dma_resv_iter resv_cursor;
1407 struct dma_fence *f;
1408
1409 if (!amdgpu_bo_is_amdgpu_bo(bo))
1410 return ttm_bo_eviction_valuable(bo, place);
1411
1412 /* Swapout? */
1413 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1414 return true;
1415
1416 if (bo->type == ttm_bo_type_kernel &&
1417 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1418 return false;
1419
1420 /* If bo is a KFD BO, check if the bo belongs to the current process.
1421 * If true, then return false as any KFD process needs all its BOs to
1422 * be resident to run successfully
1423 */
1424 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1425 DMA_RESV_USAGE_BOOKKEEP, f) {
1426 if (amdkfd_fence_check_mm(f, current->mm) &&
1427 !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1428 return false;
1429 }
1430
1431 /* Preemptible BOs don't own system resources managed by the
1432 * driver (pages, VRAM, GART space). They point to resources
1433 * owned by someone else (e.g. pageable memory in user mode
1434 * or a DMABuf). They are used in a preemptible context so we
1435 * can guarantee no deadlocks and good QoS in case of MMU
1436 * notifiers or DMABuf move notifiers from the resource owner.
1437 */
1438 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1439 return false;
1440
1441 if (bo->resource->mem_type == TTM_PL_TT &&
1442 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1443 return false;
1444
1445 return ttm_bo_eviction_valuable(bo, place);
1446 }
1447
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1448 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1449 void *buf, size_t size, bool write)
1450 {
1451 while (size) {
1452 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1453 uint64_t bytes = 4 - (pos & 0x3);
1454 uint32_t shift = (pos & 0x3) * 8;
1455 uint32_t mask = 0xffffffff << shift;
1456 uint32_t value = 0;
1457
1458 if (size < bytes) {
1459 mask &= 0xffffffff >> (bytes - size) * 8;
1460 bytes = size;
1461 }
1462
1463 if (mask != 0xffffffff) {
1464 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1465 if (write) {
1466 value &= ~mask;
1467 value |= (*(uint32_t *)buf << shift) & mask;
1468 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1469 } else {
1470 value = (value & mask) >> shift;
1471 memcpy(buf, &value, bytes);
1472 }
1473 } else {
1474 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1475 }
1476
1477 pos += bytes;
1478 buf += bytes;
1479 size -= bytes;
1480 }
1481 }
1482
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1483 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1484 unsigned long offset, void *buf,
1485 int len, int write)
1486 {
1487 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1488 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1489 struct amdgpu_res_cursor src_mm;
1490 struct amdgpu_job *job;
1491 struct dma_fence *fence;
1492 uint64_t src_addr, dst_addr;
1493 unsigned int num_dw;
1494 int r, idx;
1495
1496 if (len != PAGE_SIZE)
1497 return -EINVAL;
1498
1499 if (!adev->mman.sdma_access_ptr)
1500 return -EACCES;
1501
1502 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1503 return -ENODEV;
1504
1505 if (write)
1506 memcpy(adev->mman.sdma_access_ptr, buf, len);
1507
1508 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1509 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1510 AMDGPU_FENCE_OWNER_UNDEFINED,
1511 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1512 &job);
1513 if (r)
1514 goto out;
1515
1516 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1517 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1518 src_mm.start;
1519 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1520 if (write)
1521 swap(src_addr, dst_addr);
1522
1523 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1524 PAGE_SIZE, 0);
1525
1526 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1527 WARN_ON(job->ibs[0].length_dw > num_dw);
1528
1529 fence = amdgpu_job_submit(job);
1530
1531 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1532 r = -ETIMEDOUT;
1533 dma_fence_put(fence);
1534
1535 if (!(r || write))
1536 memcpy(buf, adev->mman.sdma_access_ptr, len);
1537 out:
1538 drm_dev_exit(idx);
1539 return r;
1540 }
1541
1542 /**
1543 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1544 *
1545 * @bo: The buffer object to read/write
1546 * @offset: Offset into buffer object
1547 * @buf: Secondary buffer to write/read from
1548 * @len: Length in bytes of access
1549 * @write: true if writing
1550 *
1551 * This is used to access VRAM that backs a buffer object via MMIO
1552 * access for debugging purposes.
1553 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1554 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1555 unsigned long offset, void *buf, int len,
1556 int write)
1557 {
1558 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1559 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1560 struct amdgpu_res_cursor cursor;
1561 int ret = 0;
1562
1563 if (bo->resource->mem_type != TTM_PL_VRAM)
1564 return -EIO;
1565
1566 if (amdgpu_device_has_timeouts_enabled(adev) &&
1567 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1568 return len;
1569
1570 amdgpu_res_first(bo->resource, offset, len, &cursor);
1571 while (cursor.remaining) {
1572 size_t count, size = cursor.size;
1573 loff_t pos = cursor.start;
1574
1575 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1576 size -= count;
1577 if (size) {
1578 /* using MM to access rest vram and handle un-aligned address */
1579 pos += count;
1580 buf += count;
1581 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1582 }
1583
1584 ret += cursor.size;
1585 buf += cursor.size;
1586 amdgpu_res_next(&cursor, cursor.size);
1587 }
1588
1589 return ret;
1590 }
1591
1592 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1593 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1594 {
1595 amdgpu_bo_move_notify(bo, false, NULL);
1596 }
1597
1598 static struct ttm_device_funcs amdgpu_bo_driver = {
1599 .ttm_tt_create = &amdgpu_ttm_tt_create,
1600 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1601 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1602 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1603 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1604 .evict_flags = &amdgpu_evict_flags,
1605 .move = &amdgpu_bo_move,
1606 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1607 .release_notify = &amdgpu_bo_release_notify,
1608 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1609 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1610 .access_memory = &amdgpu_ttm_access_memory,
1611 };
1612
1613 /*
1614 * Firmware Reservation functions
1615 */
1616 /**
1617 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1618 *
1619 * @adev: amdgpu_device pointer
1620 *
1621 * free fw reserved vram if it has been reserved.
1622 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1623 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1624 {
1625 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1626 NULL, &adev->mman.fw_vram_usage_va);
1627 }
1628
1629 /*
1630 * Driver Reservation functions
1631 */
1632 /**
1633 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1634 *
1635 * @adev: amdgpu_device pointer
1636 *
1637 * free drv reserved vram if it has been reserved.
1638 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1639 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1640 {
1641 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1642 NULL,
1643 &adev->mman.drv_vram_usage_va);
1644 }
1645
1646 /**
1647 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1648 *
1649 * @adev: amdgpu_device pointer
1650 *
1651 * create bo vram reservation from fw.
1652 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1653 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1654 {
1655 uint64_t vram_size = adev->gmc.visible_vram_size;
1656
1657 adev->mman.fw_vram_usage_va = NULL;
1658 adev->mman.fw_vram_usage_reserved_bo = NULL;
1659
1660 if (adev->mman.fw_vram_usage_size == 0 ||
1661 adev->mman.fw_vram_usage_size > vram_size)
1662 return 0;
1663
1664 return amdgpu_bo_create_kernel_at(adev,
1665 adev->mman.fw_vram_usage_start_offset,
1666 adev->mman.fw_vram_usage_size,
1667 &adev->mman.fw_vram_usage_reserved_bo,
1668 &adev->mman.fw_vram_usage_va);
1669 }
1670
1671 /**
1672 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1673 *
1674 * @adev: amdgpu_device pointer
1675 *
1676 * create bo vram reservation from drv.
1677 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1678 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1679 {
1680 u64 vram_size = adev->gmc.visible_vram_size;
1681
1682 adev->mman.drv_vram_usage_va = NULL;
1683 adev->mman.drv_vram_usage_reserved_bo = NULL;
1684
1685 if (adev->mman.drv_vram_usage_size == 0 ||
1686 adev->mman.drv_vram_usage_size > vram_size)
1687 return 0;
1688
1689 return amdgpu_bo_create_kernel_at(adev,
1690 adev->mman.drv_vram_usage_start_offset,
1691 adev->mman.drv_vram_usage_size,
1692 &adev->mman.drv_vram_usage_reserved_bo,
1693 &adev->mman.drv_vram_usage_va);
1694 }
1695
1696 /*
1697 * Memoy training reservation functions
1698 */
1699
1700 /**
1701 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1702 *
1703 * @adev: amdgpu_device pointer
1704 *
1705 * free memory training reserved vram if it has been reserved.
1706 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1707 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1708 {
1709 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1710
1711 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1712 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1713 ctx->c2p_bo = NULL;
1714
1715 return 0;
1716 }
1717
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1718 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1719 uint32_t reserve_size)
1720 {
1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1722
1723 memset(ctx, 0, sizeof(*ctx));
1724
1725 ctx->c2p_train_data_offset =
1726 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1727 ctx->p2c_train_data_offset =
1728 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1729 ctx->train_data_size =
1730 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1731
1732 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1733 ctx->train_data_size,
1734 ctx->p2c_train_data_offset,
1735 ctx->c2p_train_data_offset);
1736 }
1737
1738 /*
1739 * reserve TMR memory at the top of VRAM which holds
1740 * IP Discovery data and is protected by PSP.
1741 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1742 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1743 {
1744 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1745 bool mem_train_support = false;
1746 uint32_t reserve_size = 0;
1747 int ret;
1748
1749 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1750 if (amdgpu_atomfirmware_mem_training_supported(adev))
1751 mem_train_support = true;
1752 else
1753 DRM_DEBUG("memory training does not support!\n");
1754 }
1755
1756 /*
1757 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1758 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1759 *
1760 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1761 * discovery data and G6 memory training data respectively
1762 */
1763 if (adev->bios)
1764 reserve_size =
1765 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1766
1767 if (!adev->bios &&
1768 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1769 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) ||
1770 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0)))
1771 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1772 else if (!reserve_size)
1773 reserve_size = DISCOVERY_TMR_OFFSET;
1774
1775 if (mem_train_support) {
1776 /* reserve vram for mem train according to TMR location */
1777 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1778 ret = amdgpu_bo_create_kernel_at(adev,
1779 ctx->c2p_train_data_offset,
1780 ctx->train_data_size,
1781 &ctx->c2p_bo,
1782 NULL);
1783 if (ret) {
1784 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1785 amdgpu_ttm_training_reserve_vram_fini(adev);
1786 return ret;
1787 }
1788 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1789 }
1790
1791 if (!adev->gmc.is_app_apu) {
1792 ret = amdgpu_bo_create_kernel_at(
1793 adev, adev->gmc.real_vram_size - reserve_size,
1794 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1795 if (ret) {
1796 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1797 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1798 NULL, NULL);
1799 return ret;
1800 }
1801 } else {
1802 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1803 }
1804
1805 return 0;
1806 }
1807
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1808 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1809 {
1810 int i;
1811
1812 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1813 return 0;
1814
1815 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1816 sizeof(*adev->mman.ttm_pools),
1817 GFP_KERNEL);
1818 if (!adev->mman.ttm_pools)
1819 return -ENOMEM;
1820
1821 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1822 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1823 adev->gmc.mem_partitions[i].numa.node,
1824 false, false);
1825 }
1826 return 0;
1827 }
1828
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1829 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1830 {
1831 int i;
1832
1833 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1834 return;
1835
1836 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1837 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1838
1839 kfree(adev->mman.ttm_pools);
1840 adev->mman.ttm_pools = NULL;
1841 }
1842
1843 /*
1844 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1845 * gtt/vram related fields.
1846 *
1847 * This initializes all of the memory space pools that the TTM layer
1848 * will need such as the GTT space (system memory mapped to the device),
1849 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1850 * can be mapped per VMID.
1851 */
amdgpu_ttm_init(struct amdgpu_device * adev)1852 int amdgpu_ttm_init(struct amdgpu_device *adev)
1853 {
1854 uint64_t gtt_size;
1855 int r;
1856
1857 mutex_init(&adev->mman.gtt_window_lock);
1858
1859 dma_set_max_seg_size(adev->dev, UINT_MAX);
1860 /* No others user of address space so set it to 0 */
1861 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1862 adev_to_drm(adev)->anon_inode->i_mapping,
1863 adev_to_drm(adev)->vma_offset_manager,
1864 adev->need_swiotlb,
1865 dma_addressing_limited(adev->dev));
1866 if (r) {
1867 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1868 return r;
1869 }
1870
1871 r = amdgpu_ttm_pools_init(adev);
1872 if (r) {
1873 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1874 return r;
1875 }
1876 adev->mman.initialized = true;
1877
1878 /* Initialize VRAM pool with all of VRAM divided into pages */
1879 r = amdgpu_vram_mgr_init(adev);
1880 if (r) {
1881 DRM_ERROR("Failed initializing VRAM heap.\n");
1882 return r;
1883 }
1884
1885 /* Change the size here instead of the init above so only lpfn is affected */
1886 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1887 #ifdef CONFIG_64BIT
1888 #ifdef CONFIG_X86
1889 if (adev->gmc.xgmi.connected_to_cpu)
1890 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1891 adev->gmc.visible_vram_size);
1892
1893 else if (adev->gmc.is_app_apu)
1894 DRM_DEBUG_DRIVER(
1895 "No need to ioremap when real vram size is 0\n");
1896 else
1897 #endif
1898 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1899 adev->gmc.visible_vram_size);
1900 #endif
1901
1902 /*
1903 *The reserved vram for firmware must be pinned to the specified
1904 *place on the VRAM, so reserve it early.
1905 */
1906 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1907 if (r)
1908 return r;
1909
1910 /*
1911 *The reserved vram for driver must be pinned to the specified
1912 *place on the VRAM, so reserve it early.
1913 */
1914 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1915 if (r)
1916 return r;
1917
1918 /*
1919 * only NAVI10 and onwards ASIC support for IP discovery.
1920 * If IP discovery enabled, a block of memory should be
1921 * reserved for IP discovey.
1922 */
1923 if (adev->mman.discovery_bin) {
1924 r = amdgpu_ttm_reserve_tmr(adev);
1925 if (r)
1926 return r;
1927 }
1928
1929 /* allocate memory as required for VGA
1930 * This is used for VGA emulation and pre-OS scanout buffers to
1931 * avoid display artifacts while transitioning between pre-OS
1932 * and driver.
1933 */
1934 if (!adev->gmc.is_app_apu) {
1935 r = amdgpu_bo_create_kernel_at(adev, 0,
1936 adev->mman.stolen_vga_size,
1937 &adev->mman.stolen_vga_memory,
1938 NULL);
1939 if (r)
1940 return r;
1941
1942 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1943 adev->mman.stolen_extended_size,
1944 &adev->mman.stolen_extended_memory,
1945 NULL);
1946
1947 if (r)
1948 return r;
1949
1950 r = amdgpu_bo_create_kernel_at(adev,
1951 adev->mman.stolen_reserved_offset,
1952 adev->mman.stolen_reserved_size,
1953 &adev->mman.stolen_reserved_memory,
1954 NULL);
1955 if (r)
1956 return r;
1957 } else {
1958 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1959 }
1960
1961 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1962 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1963
1964 /* Compute GTT size, either based on TTM limit
1965 * or whatever the user passed on module init.
1966 */
1967 if (amdgpu_gtt_size == -1)
1968 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1969 else
1970 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1971
1972 /* Initialize GTT memory pool */
1973 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1974 if (r) {
1975 DRM_ERROR("Failed initializing GTT heap.\n");
1976 return r;
1977 }
1978 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1979 (unsigned int)(gtt_size / (1024 * 1024)));
1980
1981 /* Initialize doorbell pool on PCI BAR */
1982 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1983 if (r) {
1984 DRM_ERROR("Failed initializing doorbell heap.\n");
1985 return r;
1986 }
1987
1988 /* Create a boorbell page for kernel usages */
1989 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1990 if (r) {
1991 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1992 return r;
1993 }
1994
1995 /* Initialize preemptible memory pool */
1996 r = amdgpu_preempt_mgr_init(adev);
1997 if (r) {
1998 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1999 return r;
2000 }
2001
2002 /* Initialize various on-chip memory pools */
2003 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2004 if (r) {
2005 DRM_ERROR("Failed initializing GDS heap.\n");
2006 return r;
2007 }
2008
2009 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2010 if (r) {
2011 DRM_ERROR("Failed initializing gws heap.\n");
2012 return r;
2013 }
2014
2015 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2016 if (r) {
2017 DRM_ERROR("Failed initializing oa heap.\n");
2018 return r;
2019 }
2020 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2021 AMDGPU_GEM_DOMAIN_GTT,
2022 &adev->mman.sdma_access_bo, NULL,
2023 &adev->mman.sdma_access_ptr))
2024 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2025
2026 return 0;
2027 }
2028
2029 /*
2030 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2031 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2032 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2033 {
2034 int idx;
2035
2036 if (!adev->mman.initialized)
2037 return;
2038
2039 amdgpu_ttm_pools_fini(adev);
2040
2041 amdgpu_ttm_training_reserve_vram_fini(adev);
2042 /* return the stolen vga memory back to VRAM */
2043 if (!adev->gmc.is_app_apu) {
2044 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2045 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2046 /* return the FW reserved memory back to VRAM */
2047 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2048 NULL);
2049 if (adev->mman.stolen_reserved_size)
2050 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2051 NULL, NULL);
2052 }
2053 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2054 &adev->mman.sdma_access_ptr);
2055 amdgpu_ttm_fw_reserve_vram_fini(adev);
2056 amdgpu_ttm_drv_reserve_vram_fini(adev);
2057
2058 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2059
2060 if (adev->mman.aper_base_kaddr)
2061 iounmap(adev->mman.aper_base_kaddr);
2062 adev->mman.aper_base_kaddr = NULL;
2063
2064 drm_dev_exit(idx);
2065 }
2066
2067 amdgpu_vram_mgr_fini(adev);
2068 amdgpu_gtt_mgr_fini(adev);
2069 amdgpu_preempt_mgr_fini(adev);
2070 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2071 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2072 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2073 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2074 ttm_device_fini(&adev->mman.bdev);
2075 adev->mman.initialized = false;
2076 DRM_INFO("amdgpu: ttm finalized\n");
2077 }
2078
2079 /**
2080 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2081 *
2082 * @adev: amdgpu_device pointer
2083 * @enable: true when we can use buffer functions.
2084 *
2085 * Enable/disable use of buffer functions during suspend/resume. This should
2086 * only be called at bootup or when userspace isn't running.
2087 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2088 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2089 {
2090 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2091 uint64_t size;
2092 int r;
2093
2094 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2095 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2096 return;
2097
2098 if (enable) {
2099 struct amdgpu_ring *ring;
2100 struct drm_gpu_scheduler *sched;
2101
2102 ring = adev->mman.buffer_funcs_ring;
2103 sched = &ring->sched;
2104 r = drm_sched_entity_init(&adev->mman.high_pr,
2105 DRM_SCHED_PRIORITY_KERNEL, &sched,
2106 1, NULL);
2107 if (r) {
2108 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2109 r);
2110 return;
2111 }
2112
2113 r = drm_sched_entity_init(&adev->mman.low_pr,
2114 DRM_SCHED_PRIORITY_NORMAL, &sched,
2115 1, NULL);
2116 if (r) {
2117 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2118 r);
2119 goto error_free_entity;
2120 }
2121 } else {
2122 drm_sched_entity_destroy(&adev->mman.high_pr);
2123 drm_sched_entity_destroy(&adev->mman.low_pr);
2124 dma_fence_put(man->move);
2125 man->move = NULL;
2126 }
2127
2128 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2129 if (enable)
2130 size = adev->gmc.real_vram_size;
2131 else
2132 size = adev->gmc.visible_vram_size;
2133 man->size = size;
2134 adev->mman.buffer_funcs_enabled = enable;
2135
2136 return;
2137
2138 error_free_entity:
2139 drm_sched_entity_destroy(&adev->mman.high_pr);
2140 }
2141
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2142 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2143 bool direct_submit,
2144 unsigned int num_dw,
2145 struct dma_resv *resv,
2146 bool vm_needs_flush,
2147 struct amdgpu_job **job,
2148 bool delayed)
2149 {
2150 enum amdgpu_ib_pool_type pool = direct_submit ?
2151 AMDGPU_IB_POOL_DIRECT :
2152 AMDGPU_IB_POOL_DELAYED;
2153 int r;
2154 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2155 &adev->mman.high_pr;
2156 r = amdgpu_job_alloc_with_ib(adev, entity,
2157 AMDGPU_FENCE_OWNER_UNDEFINED,
2158 num_dw * 4, pool, job);
2159 if (r)
2160 return r;
2161
2162 if (vm_needs_flush) {
2163 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2164 adev->gmc.pdb0_bo :
2165 adev->gart.bo);
2166 (*job)->vm_needs_flush = true;
2167 }
2168 if (!resv)
2169 return 0;
2170
2171 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2172 DMA_RESV_USAGE_BOOKKEEP);
2173 }
2174
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,uint32_t copy_flags)2175 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2176 uint64_t dst_offset, uint32_t byte_count,
2177 struct dma_resv *resv,
2178 struct dma_fence **fence, bool direct_submit,
2179 bool vm_needs_flush, uint32_t copy_flags)
2180 {
2181 struct amdgpu_device *adev = ring->adev;
2182 unsigned int num_loops, num_dw;
2183 struct amdgpu_job *job;
2184 uint32_t max_bytes;
2185 unsigned int i;
2186 int r;
2187
2188 if (!direct_submit && !ring->sched.ready) {
2189 DRM_ERROR("Trying to move memory with ring turned off.\n");
2190 return -EINVAL;
2191 }
2192
2193 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2194 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2195 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2196 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2197 resv, vm_needs_flush, &job, false);
2198 if (r)
2199 return r;
2200
2201 for (i = 0; i < num_loops; i++) {
2202 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2203
2204 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2205 dst_offset, cur_size_in_bytes, copy_flags);
2206 src_offset += cur_size_in_bytes;
2207 dst_offset += cur_size_in_bytes;
2208 byte_count -= cur_size_in_bytes;
2209 }
2210
2211 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2212 WARN_ON(job->ibs[0].length_dw > num_dw);
2213 if (direct_submit)
2214 r = amdgpu_job_submit_direct(job, ring, fence);
2215 else
2216 *fence = amdgpu_job_submit(job);
2217 if (r)
2218 goto error_free;
2219
2220 return r;
2221
2222 error_free:
2223 amdgpu_job_free(job);
2224 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2225 return r;
2226 }
2227
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2228 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2229 uint64_t dst_addr, uint32_t byte_count,
2230 struct dma_resv *resv,
2231 struct dma_fence **fence,
2232 bool vm_needs_flush, bool delayed)
2233 {
2234 struct amdgpu_device *adev = ring->adev;
2235 unsigned int num_loops, num_dw;
2236 struct amdgpu_job *job;
2237 uint32_t max_bytes;
2238 unsigned int i;
2239 int r;
2240
2241 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2242 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2243 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2244 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2245 &job, delayed);
2246 if (r)
2247 return r;
2248
2249 for (i = 0; i < num_loops; i++) {
2250 uint32_t cur_size = min(byte_count, max_bytes);
2251
2252 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2253 cur_size);
2254
2255 dst_addr += cur_size;
2256 byte_count -= cur_size;
2257 }
2258
2259 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2260 WARN_ON(job->ibs[0].length_dw > num_dw);
2261 *fence = amdgpu_job_submit(job);
2262 return 0;
2263 }
2264
2265 /**
2266 * amdgpu_ttm_clear_buffer - clear memory buffers
2267 * @bo: amdgpu buffer object
2268 * @resv: reservation object
2269 * @fence: dma_fence associated with the operation
2270 *
2271 * Clear the memory buffer resource.
2272 *
2273 * Returns:
2274 * 0 for success or a negative error code on failure.
2275 */
amdgpu_ttm_clear_buffer(struct amdgpu_bo * bo,struct dma_resv * resv,struct dma_fence ** fence)2276 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2277 struct dma_resv *resv,
2278 struct dma_fence **fence)
2279 {
2280 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2281 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2282 struct amdgpu_res_cursor cursor;
2283 u64 addr;
2284 int r = 0;
2285
2286 if (!adev->mman.buffer_funcs_enabled)
2287 return -EINVAL;
2288
2289 if (!fence)
2290 return -EINVAL;
2291
2292 *fence = dma_fence_get_stub();
2293
2294 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2295
2296 mutex_lock(&adev->mman.gtt_window_lock);
2297 while (cursor.remaining) {
2298 struct dma_fence *next = NULL;
2299 u64 size;
2300
2301 if (amdgpu_res_cleared(&cursor)) {
2302 amdgpu_res_next(&cursor, cursor.size);
2303 continue;
2304 }
2305
2306 /* Never clear more than 256MiB at once to avoid timeouts */
2307 size = min(cursor.size, 256ULL << 20);
2308
2309 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2310 1, ring, false, &size, &addr);
2311 if (r)
2312 goto err;
2313
2314 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2315 &next, true, true);
2316 if (r)
2317 goto err;
2318
2319 dma_fence_put(*fence);
2320 *fence = next;
2321
2322 amdgpu_res_next(&cursor, size);
2323 }
2324 err:
2325 mutex_unlock(&adev->mman.gtt_window_lock);
2326
2327 return r;
2328 }
2329
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2330 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2331 uint32_t src_data,
2332 struct dma_resv *resv,
2333 struct dma_fence **f,
2334 bool delayed)
2335 {
2336 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2337 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2338 struct dma_fence *fence = NULL;
2339 struct amdgpu_res_cursor dst;
2340 int r;
2341
2342 if (!adev->mman.buffer_funcs_enabled) {
2343 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2344 return -EINVAL;
2345 }
2346
2347 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2348
2349 mutex_lock(&adev->mman.gtt_window_lock);
2350 while (dst.remaining) {
2351 struct dma_fence *next;
2352 uint64_t cur_size, to;
2353
2354 /* Never fill more than 256MiB at once to avoid timeouts */
2355 cur_size = min(dst.size, 256ULL << 20);
2356
2357 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2358 1, ring, false, &cur_size, &to);
2359 if (r)
2360 goto error;
2361
2362 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2363 &next, true, delayed);
2364 if (r)
2365 goto error;
2366
2367 dma_fence_put(fence);
2368 fence = next;
2369
2370 amdgpu_res_next(&dst, cur_size);
2371 }
2372 error:
2373 mutex_unlock(&adev->mman.gtt_window_lock);
2374 if (f)
2375 *f = dma_fence_get(fence);
2376 dma_fence_put(fence);
2377 return r;
2378 }
2379
2380 /**
2381 * amdgpu_ttm_evict_resources - evict memory buffers
2382 * @adev: amdgpu device object
2383 * @mem_type: evicted BO's memory type
2384 *
2385 * Evicts all @mem_type buffers on the lru list of the memory type.
2386 *
2387 * Returns:
2388 * 0 for success or a negative error code on failure.
2389 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2390 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2391 {
2392 struct ttm_resource_manager *man;
2393
2394 switch (mem_type) {
2395 case TTM_PL_VRAM:
2396 case TTM_PL_TT:
2397 case AMDGPU_PL_GWS:
2398 case AMDGPU_PL_GDS:
2399 case AMDGPU_PL_OA:
2400 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2401 break;
2402 default:
2403 DRM_ERROR("Trying to evict invalid memory type\n");
2404 return -EINVAL;
2405 }
2406
2407 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2408 }
2409
2410 #if defined(CONFIG_DEBUG_FS)
2411
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2412 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2413 {
2414 struct amdgpu_device *adev = m->private;
2415
2416 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2417 }
2418
2419 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2420
2421 /*
2422 * amdgpu_ttm_vram_read - Linear read access to VRAM
2423 *
2424 * Accesses VRAM via MMIO for debugging purposes.
2425 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2426 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2427 size_t size, loff_t *pos)
2428 {
2429 struct amdgpu_device *adev = file_inode(f)->i_private;
2430 ssize_t result = 0;
2431
2432 if (size & 0x3 || *pos & 0x3)
2433 return -EINVAL;
2434
2435 if (*pos >= adev->gmc.mc_vram_size)
2436 return -ENXIO;
2437
2438 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2439 while (size) {
2440 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2441 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2442
2443 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2444 if (copy_to_user(buf, value, bytes))
2445 return -EFAULT;
2446
2447 result += bytes;
2448 buf += bytes;
2449 *pos += bytes;
2450 size -= bytes;
2451 }
2452
2453 return result;
2454 }
2455
2456 /*
2457 * amdgpu_ttm_vram_write - Linear write access to VRAM
2458 *
2459 * Accesses VRAM via MMIO for debugging purposes.
2460 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2461 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2462 size_t size, loff_t *pos)
2463 {
2464 struct amdgpu_device *adev = file_inode(f)->i_private;
2465 ssize_t result = 0;
2466 int r;
2467
2468 if (size & 0x3 || *pos & 0x3)
2469 return -EINVAL;
2470
2471 if (*pos >= adev->gmc.mc_vram_size)
2472 return -ENXIO;
2473
2474 while (size) {
2475 uint32_t value;
2476
2477 if (*pos >= adev->gmc.mc_vram_size)
2478 return result;
2479
2480 r = get_user(value, (uint32_t *)buf);
2481 if (r)
2482 return r;
2483
2484 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2485
2486 result += 4;
2487 buf += 4;
2488 *pos += 4;
2489 size -= 4;
2490 }
2491
2492 return result;
2493 }
2494
2495 static const struct file_operations amdgpu_ttm_vram_fops = {
2496 .owner = THIS_MODULE,
2497 .read = amdgpu_ttm_vram_read,
2498 .write = amdgpu_ttm_vram_write,
2499 .llseek = default_llseek,
2500 };
2501
2502 /*
2503 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2504 *
2505 * This function is used to read memory that has been mapped to the
2506 * GPU and the known addresses are not physical addresses but instead
2507 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2508 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2509 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2510 size_t size, loff_t *pos)
2511 {
2512 struct amdgpu_device *adev = file_inode(f)->i_private;
2513 struct iommu_domain *dom;
2514 ssize_t result = 0;
2515 int r;
2516
2517 /* retrieve the IOMMU domain if any for this device */
2518 dom = iommu_get_domain_for_dev(adev->dev);
2519
2520 while (size) {
2521 phys_addr_t addr = *pos & PAGE_MASK;
2522 loff_t off = *pos & ~PAGE_MASK;
2523 size_t bytes = PAGE_SIZE - off;
2524 unsigned long pfn;
2525 struct page *p;
2526 void *ptr;
2527
2528 bytes = min(bytes, size);
2529
2530 /* Translate the bus address to a physical address. If
2531 * the domain is NULL it means there is no IOMMU active
2532 * and the address translation is the identity
2533 */
2534 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2535
2536 pfn = addr >> PAGE_SHIFT;
2537 if (!pfn_valid(pfn))
2538 return -EPERM;
2539
2540 p = pfn_to_page(pfn);
2541 if (p->mapping != adev->mman.bdev.dev_mapping)
2542 return -EPERM;
2543
2544 ptr = kmap_local_page(p);
2545 r = copy_to_user(buf, ptr + off, bytes);
2546 kunmap_local(ptr);
2547 if (r)
2548 return -EFAULT;
2549
2550 size -= bytes;
2551 *pos += bytes;
2552 result += bytes;
2553 }
2554
2555 return result;
2556 }
2557
2558 /*
2559 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2560 *
2561 * This function is used to write memory that has been mapped to the
2562 * GPU and the known addresses are not physical addresses but instead
2563 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2564 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2565 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2566 size_t size, loff_t *pos)
2567 {
2568 struct amdgpu_device *adev = file_inode(f)->i_private;
2569 struct iommu_domain *dom;
2570 ssize_t result = 0;
2571 int r;
2572
2573 dom = iommu_get_domain_for_dev(adev->dev);
2574
2575 while (size) {
2576 phys_addr_t addr = *pos & PAGE_MASK;
2577 loff_t off = *pos & ~PAGE_MASK;
2578 size_t bytes = PAGE_SIZE - off;
2579 unsigned long pfn;
2580 struct page *p;
2581 void *ptr;
2582
2583 bytes = min(bytes, size);
2584
2585 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2586
2587 pfn = addr >> PAGE_SHIFT;
2588 if (!pfn_valid(pfn))
2589 return -EPERM;
2590
2591 p = pfn_to_page(pfn);
2592 if (p->mapping != adev->mman.bdev.dev_mapping)
2593 return -EPERM;
2594
2595 ptr = kmap_local_page(p);
2596 r = copy_from_user(ptr + off, buf, bytes);
2597 kunmap_local(ptr);
2598 if (r)
2599 return -EFAULT;
2600
2601 size -= bytes;
2602 *pos += bytes;
2603 result += bytes;
2604 }
2605
2606 return result;
2607 }
2608
2609 static const struct file_operations amdgpu_ttm_iomem_fops = {
2610 .owner = THIS_MODULE,
2611 .read = amdgpu_iomem_read,
2612 .write = amdgpu_iomem_write,
2613 .llseek = default_llseek
2614 };
2615
2616 #endif
2617
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2618 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2619 {
2620 #if defined(CONFIG_DEBUG_FS)
2621 struct drm_minor *minor = adev_to_drm(adev)->primary;
2622 struct dentry *root = minor->debugfs_root;
2623
2624 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2625 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2626 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2627 &amdgpu_ttm_iomem_fops);
2628 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2629 &amdgpu_ttm_page_pool_fops);
2630 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2631 TTM_PL_VRAM),
2632 root, "amdgpu_vram_mm");
2633 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2634 TTM_PL_TT),
2635 root, "amdgpu_gtt_mm");
2636 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2637 AMDGPU_PL_GDS),
2638 root, "amdgpu_gds_mm");
2639 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2640 AMDGPU_PL_GWS),
2641 root, "amdgpu_gws_mm");
2642 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2643 AMDGPU_PL_OA),
2644 root, "amdgpu_oa_mm");
2645
2646 #endif
2647 }
2648