xref: /linux/mm/page_counter.c (revision 617a814f14b8914271f7a70366d72c6196d17663)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lockless hierarchical page accounting & limiting
4  *
5  * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/page_counter.h>
9 #include <linux/atomic.h>
10 #include <linux/kernel.h>
11 #include <linux/string.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <asm/page.h>
15 
16 static bool track_protection(struct page_counter *c)
17 {
18 	return c->protection_support;
19 }
20 
21 static void propagate_protected_usage(struct page_counter *c,
22 				      unsigned long usage)
23 {
24 	unsigned long protected, old_protected;
25 	long delta;
26 
27 	if (!c->parent)
28 		return;
29 
30 	protected = min(usage, READ_ONCE(c->min));
31 	old_protected = atomic_long_read(&c->min_usage);
32 	if (protected != old_protected) {
33 		old_protected = atomic_long_xchg(&c->min_usage, protected);
34 		delta = protected - old_protected;
35 		if (delta)
36 			atomic_long_add(delta, &c->parent->children_min_usage);
37 	}
38 
39 	protected = min(usage, READ_ONCE(c->low));
40 	old_protected = atomic_long_read(&c->low_usage);
41 	if (protected != old_protected) {
42 		old_protected = atomic_long_xchg(&c->low_usage, protected);
43 		delta = protected - old_protected;
44 		if (delta)
45 			atomic_long_add(delta, &c->parent->children_low_usage);
46 	}
47 }
48 
49 /**
50  * page_counter_cancel - take pages out of the local counter
51  * @counter: counter
52  * @nr_pages: number of pages to cancel
53  */
54 void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
55 {
56 	long new;
57 
58 	new = atomic_long_sub_return(nr_pages, &counter->usage);
59 	/* More uncharges than charges? */
60 	if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
61 		      new, nr_pages)) {
62 		new = 0;
63 		atomic_long_set(&counter->usage, new);
64 	}
65 	if (track_protection(counter))
66 		propagate_protected_usage(counter, new);
67 }
68 
69 /**
70  * page_counter_charge - hierarchically charge pages
71  * @counter: counter
72  * @nr_pages: number of pages to charge
73  *
74  * NOTE: This does not consider any configured counter limits.
75  */
76 void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
77 {
78 	struct page_counter *c;
79 	bool protection = track_protection(counter);
80 
81 	for (c = counter; c; c = c->parent) {
82 		long new;
83 
84 		new = atomic_long_add_return(nr_pages, &c->usage);
85 		if (protection)
86 			propagate_protected_usage(c, new);
87 		/*
88 		 * This is indeed racy, but we can live with some
89 		 * inaccuracy in the watermark.
90 		 *
91 		 * Notably, we have two watermarks to allow for both a globally
92 		 * visible peak and one that can be reset at a smaller scope.
93 		 *
94 		 * Since we reset both watermarks when the global reset occurs,
95 		 * we can guarantee that watermark >= local_watermark, so we
96 		 * don't need to do both comparisons every time.
97 		 *
98 		 * On systems with branch predictors, the inner condition should
99 		 * be almost free.
100 		 */
101 		if (new > READ_ONCE(c->local_watermark)) {
102 			WRITE_ONCE(c->local_watermark, new);
103 			if (new > READ_ONCE(c->watermark))
104 				WRITE_ONCE(c->watermark, new);
105 		}
106 	}
107 }
108 
109 /**
110  * page_counter_try_charge - try to hierarchically charge pages
111  * @counter: counter
112  * @nr_pages: number of pages to charge
113  * @fail: points first counter to hit its limit, if any
114  *
115  * Returns %true on success, or %false and @fail if the counter or one
116  * of its ancestors has hit its configured limit.
117  */
118 bool page_counter_try_charge(struct page_counter *counter,
119 			     unsigned long nr_pages,
120 			     struct page_counter **fail)
121 {
122 	struct page_counter *c;
123 	bool protection = track_protection(counter);
124 
125 	for (c = counter; c; c = c->parent) {
126 		long new;
127 		/*
128 		 * Charge speculatively to avoid an expensive CAS.  If
129 		 * a bigger charge fails, it might falsely lock out a
130 		 * racing smaller charge and send it into reclaim
131 		 * early, but the error is limited to the difference
132 		 * between the two sizes, which is less than 2M/4M in
133 		 * case of a THP locking out a regular page charge.
134 		 *
135 		 * The atomic_long_add_return() implies a full memory
136 		 * barrier between incrementing the count and reading
137 		 * the limit.  When racing with page_counter_set_max(),
138 		 * we either see the new limit or the setter sees the
139 		 * counter has changed and retries.
140 		 */
141 		new = atomic_long_add_return(nr_pages, &c->usage);
142 		if (new > c->max) {
143 			atomic_long_sub(nr_pages, &c->usage);
144 			/*
145 			 * This is racy, but we can live with some
146 			 * inaccuracy in the failcnt which is only used
147 			 * to report stats.
148 			 */
149 			data_race(c->failcnt++);
150 			*fail = c;
151 			goto failed;
152 		}
153 		if (protection)
154 			propagate_protected_usage(c, new);
155 
156 		/* see comment on page_counter_charge */
157 		if (new > READ_ONCE(c->local_watermark)) {
158 			WRITE_ONCE(c->local_watermark, new);
159 			if (new > READ_ONCE(c->watermark))
160 				WRITE_ONCE(c->watermark, new);
161 		}
162 	}
163 	return true;
164 
165 failed:
166 	for (c = counter; c != *fail; c = c->parent)
167 		page_counter_cancel(c, nr_pages);
168 
169 	return false;
170 }
171 
172 /**
173  * page_counter_uncharge - hierarchically uncharge pages
174  * @counter: counter
175  * @nr_pages: number of pages to uncharge
176  */
177 void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
178 {
179 	struct page_counter *c;
180 
181 	for (c = counter; c; c = c->parent)
182 		page_counter_cancel(c, nr_pages);
183 }
184 
185 /**
186  * page_counter_set_max - set the maximum number of pages allowed
187  * @counter: counter
188  * @nr_pages: limit to set
189  *
190  * Returns 0 on success, -EBUSY if the current number of pages on the
191  * counter already exceeds the specified limit.
192  *
193  * The caller must serialize invocations on the same counter.
194  */
195 int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
196 {
197 	for (;;) {
198 		unsigned long old;
199 		long usage;
200 
201 		/*
202 		 * Update the limit while making sure that it's not
203 		 * below the concurrently-changing counter value.
204 		 *
205 		 * The xchg implies two full memory barriers before
206 		 * and after, so the read-swap-read is ordered and
207 		 * ensures coherency with page_counter_try_charge():
208 		 * that function modifies the count before checking
209 		 * the limit, so if it sees the old limit, we see the
210 		 * modified counter and retry.
211 		 */
212 		usage = page_counter_read(counter);
213 
214 		if (usage > nr_pages)
215 			return -EBUSY;
216 
217 		old = xchg(&counter->max, nr_pages);
218 
219 		if (page_counter_read(counter) <= usage || nr_pages >= old)
220 			return 0;
221 
222 		counter->max = old;
223 		cond_resched();
224 	}
225 }
226 
227 /**
228  * page_counter_set_min - set the amount of protected memory
229  * @counter: counter
230  * @nr_pages: value to set
231  *
232  * The caller must serialize invocations on the same counter.
233  */
234 void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages)
235 {
236 	struct page_counter *c;
237 
238 	WRITE_ONCE(counter->min, nr_pages);
239 
240 	for (c = counter; c; c = c->parent)
241 		propagate_protected_usage(c, atomic_long_read(&c->usage));
242 }
243 
244 /**
245  * page_counter_set_low - set the amount of protected memory
246  * @counter: counter
247  * @nr_pages: value to set
248  *
249  * The caller must serialize invocations on the same counter.
250  */
251 void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
252 {
253 	struct page_counter *c;
254 
255 	WRITE_ONCE(counter->low, nr_pages);
256 
257 	for (c = counter; c; c = c->parent)
258 		propagate_protected_usage(c, atomic_long_read(&c->usage));
259 }
260 
261 /**
262  * page_counter_memparse - memparse() for page counter limits
263  * @buf: string to parse
264  * @max: string meaning maximum possible value
265  * @nr_pages: returns the result in number of pages
266  *
267  * Returns -EINVAL, or 0 and @nr_pages on success.  @nr_pages will be
268  * limited to %PAGE_COUNTER_MAX.
269  */
270 int page_counter_memparse(const char *buf, const char *max,
271 			  unsigned long *nr_pages)
272 {
273 	char *end;
274 	u64 bytes;
275 
276 	if (!strcmp(buf, max)) {
277 		*nr_pages = PAGE_COUNTER_MAX;
278 		return 0;
279 	}
280 
281 	bytes = memparse(buf, &end);
282 	if (*end != '\0')
283 		return -EINVAL;
284 
285 	*nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
286 
287 	return 0;
288 }
289 
290 
291 #ifdef CONFIG_MEMCG
292 /*
293  * This function calculates an individual page counter's effective
294  * protection which is derived from its own memory.min/low, its
295  * parent's and siblings' settings, as well as the actual memory
296  * distribution in the tree.
297  *
298  * The following rules apply to the effective protection values:
299  *
300  * 1. At the first level of reclaim, effective protection is equal to
301  *    the declared protection in memory.min and memory.low.
302  *
303  * 2. To enable safe delegation of the protection configuration, at
304  *    subsequent levels the effective protection is capped to the
305  *    parent's effective protection.
306  *
307  * 3. To make complex and dynamic subtrees easier to configure, the
308  *    user is allowed to overcommit the declared protection at a given
309  *    level. If that is the case, the parent's effective protection is
310  *    distributed to the children in proportion to how much protection
311  *    they have declared and how much of it they are utilizing.
312  *
313  *    This makes distribution proportional, but also work-conserving:
314  *    if one counter claims much more protection than it uses memory,
315  *    the unused remainder is available to its siblings.
316  *
317  * 4. Conversely, when the declared protection is undercommitted at a
318  *    given level, the distribution of the larger parental protection
319  *    budget is NOT proportional. A counter's protection from a sibling
320  *    is capped to its own memory.min/low setting.
321  *
322  * 5. However, to allow protecting recursive subtrees from each other
323  *    without having to declare each individual counter's fixed share
324  *    of the ancestor's claim to protection, any unutilized -
325  *    "floating" - protection from up the tree is distributed in
326  *    proportion to each counter's *usage*. This makes the protection
327  *    neutral wrt sibling cgroups and lets them compete freely over
328  *    the shared parental protection budget, but it protects the
329  *    subtree as a whole from neighboring subtrees.
330  *
331  * Note that 4. and 5. are not in conflict: 4. is about protecting
332  * against immediate siblings whereas 5. is about protecting against
333  * neighboring subtrees.
334  */
335 static unsigned long effective_protection(unsigned long usage,
336 					  unsigned long parent_usage,
337 					  unsigned long setting,
338 					  unsigned long parent_effective,
339 					  unsigned long siblings_protected,
340 					  bool recursive_protection)
341 {
342 	unsigned long protected;
343 	unsigned long ep;
344 
345 	protected = min(usage, setting);
346 	/*
347 	 * If all cgroups at this level combined claim and use more
348 	 * protection than what the parent affords them, distribute
349 	 * shares in proportion to utilization.
350 	 *
351 	 * We are using actual utilization rather than the statically
352 	 * claimed protection in order to be work-conserving: claimed
353 	 * but unused protection is available to siblings that would
354 	 * otherwise get a smaller chunk than what they claimed.
355 	 */
356 	if (siblings_protected > parent_effective)
357 		return protected * parent_effective / siblings_protected;
358 
359 	/*
360 	 * Ok, utilized protection of all children is within what the
361 	 * parent affords them, so we know whatever this child claims
362 	 * and utilizes is effectively protected.
363 	 *
364 	 * If there is unprotected usage beyond this value, reclaim
365 	 * will apply pressure in proportion to that amount.
366 	 *
367 	 * If there is unutilized protection, the cgroup will be fully
368 	 * shielded from reclaim, but we do return a smaller value for
369 	 * protection than what the group could enjoy in theory. This
370 	 * is okay. With the overcommit distribution above, effective
371 	 * protection is always dependent on how memory is actually
372 	 * consumed among the siblings anyway.
373 	 */
374 	ep = protected;
375 
376 	/*
377 	 * If the children aren't claiming (all of) the protection
378 	 * afforded to them by the parent, distribute the remainder in
379 	 * proportion to the (unprotected) memory of each cgroup. That
380 	 * way, cgroups that aren't explicitly prioritized wrt each
381 	 * other compete freely over the allowance, but they are
382 	 * collectively protected from neighboring trees.
383 	 *
384 	 * We're using unprotected memory for the weight so that if
385 	 * some cgroups DO claim explicit protection, we don't protect
386 	 * the same bytes twice.
387 	 *
388 	 * Check both usage and parent_usage against the respective
389 	 * protected values. One should imply the other, but they
390 	 * aren't read atomically - make sure the division is sane.
391 	 */
392 	if (!recursive_protection)
393 		return ep;
394 
395 	if (parent_effective > siblings_protected &&
396 	    parent_usage > siblings_protected &&
397 	    usage > protected) {
398 		unsigned long unclaimed;
399 
400 		unclaimed = parent_effective - siblings_protected;
401 		unclaimed *= usage - protected;
402 		unclaimed /= parent_usage - siblings_protected;
403 
404 		ep += unclaimed;
405 	}
406 
407 	return ep;
408 }
409 
410 
411 /**
412  * page_counter_calculate_protection - check if memory consumption is in the normal range
413  * @root: the top ancestor of the sub-tree being checked
414  * @counter: the page_counter the counter to update
415  * @recursive_protection: Whether to use memory_recursiveprot behavior.
416  *
417  * Calculates elow/emin thresholds for given page_counter.
418  *
419  * WARNING: This function is not stateless! It can only be used as part
420  *          of a top-down tree iteration, not for isolated queries.
421  */
422 void page_counter_calculate_protection(struct page_counter *root,
423 				       struct page_counter *counter,
424 				       bool recursive_protection)
425 {
426 	unsigned long usage, parent_usage;
427 	struct page_counter *parent = counter->parent;
428 
429 	/*
430 	 * Effective values of the reclaim targets are ignored so they
431 	 * can be stale. Have a look at mem_cgroup_protection for more
432 	 * details.
433 	 * TODO: calculation should be more robust so that we do not need
434 	 * that special casing.
435 	 */
436 	if (root == counter)
437 		return;
438 
439 	usage = page_counter_read(counter);
440 	if (!usage)
441 		return;
442 
443 	if (parent == root) {
444 		counter->emin = READ_ONCE(counter->min);
445 		counter->elow = READ_ONCE(counter->low);
446 		return;
447 	}
448 
449 	parent_usage = page_counter_read(parent);
450 
451 	WRITE_ONCE(counter->emin, effective_protection(usage, parent_usage,
452 			READ_ONCE(counter->min),
453 			READ_ONCE(parent->emin),
454 			atomic_long_read(&parent->children_min_usage),
455 			recursive_protection));
456 
457 	WRITE_ONCE(counter->elow, effective_protection(usage, parent_usage,
458 			READ_ONCE(counter->low),
459 			READ_ONCE(parent->elow),
460 			atomic_long_read(&parent->children_low_usage),
461 			recursive_protection));
462 }
463 #endif /* CONFIG_MEMCG */
464