1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagemap.h> 124 #include <linux/psi.h> 125 #include <linux/syscalls.h> 126 #include <linux/file.h> 127 #include <linux/mm_inline.h> 128 #include <linux/blk-cgroup.h> 129 #include <linux/fadvise.h> 130 #include <linux/sched/mm.h> 131 132 #include "internal.h" 133 134 /* 135 * Initialise a struct file's readahead state. Assumes that the caller has 136 * memset *ra to zero. 137 */ 138 void 139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 140 { 141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 142 ra->prev_pos = -1; 143 } 144 EXPORT_SYMBOL_GPL(file_ra_state_init); 145 146 static void read_pages(struct readahead_control *rac) 147 { 148 const struct address_space_operations *aops = rac->mapping->a_ops; 149 struct folio *folio; 150 struct blk_plug plug; 151 152 if (!readahead_count(rac)) 153 return; 154 155 if (unlikely(rac->_workingset)) 156 psi_memstall_enter(&rac->_pflags); 157 blk_start_plug(&plug); 158 159 if (aops->readahead) { 160 aops->readahead(rac); 161 /* Clean up the remaining folios. */ 162 while ((folio = readahead_folio(rac)) != NULL) { 163 folio_get(folio); 164 filemap_remove_folio(folio); 165 folio_unlock(folio); 166 folio_put(folio); 167 } 168 } else { 169 while ((folio = readahead_folio(rac)) != NULL) 170 aops->read_folio(rac->file, folio); 171 } 172 173 blk_finish_plug(&plug); 174 if (unlikely(rac->_workingset)) 175 psi_memstall_leave(&rac->_pflags); 176 rac->_workingset = false; 177 178 BUG_ON(readahead_count(rac)); 179 } 180 181 static struct folio *ractl_alloc_folio(struct readahead_control *ractl, 182 gfp_t gfp_mask, unsigned int order) 183 { 184 struct folio *folio; 185 186 folio = filemap_alloc_folio(gfp_mask, order); 187 if (folio && ractl->dropbehind) 188 __folio_set_dropbehind(folio); 189 190 return folio; 191 } 192 193 /** 194 * page_cache_ra_unbounded - Start unchecked readahead. 195 * @ractl: Readahead control. 196 * @nr_to_read: The number of pages to read. 197 * @lookahead_size: Where to start the next readahead. 198 * 199 * This function is for filesystems to call when they want to start 200 * readahead beyond a file's stated i_size. This is almost certainly 201 * not the function you want to call. Use page_cache_async_readahead() 202 * or page_cache_sync_readahead() instead. 203 * 204 * Context: File is referenced by caller. Mutexes may be held by caller. 205 * May sleep, but will not reenter filesystem to reclaim memory. 206 */ 207 void page_cache_ra_unbounded(struct readahead_control *ractl, 208 unsigned long nr_to_read, unsigned long lookahead_size) 209 { 210 struct address_space *mapping = ractl->mapping; 211 unsigned long index = readahead_index(ractl); 212 gfp_t gfp_mask = readahead_gfp_mask(mapping); 213 unsigned long mark = ULONG_MAX, i = 0; 214 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping); 215 216 /* 217 * Partway through the readahead operation, we will have added 218 * locked pages to the page cache, but will not yet have submitted 219 * them for I/O. Adding another page may need to allocate memory, 220 * which can trigger memory reclaim. Telling the VM we're in 221 * the middle of a filesystem operation will cause it to not 222 * touch file-backed pages, preventing a deadlock. Most (all?) 223 * filesystems already specify __GFP_NOFS in their mapping's 224 * gfp_mask, but let's be explicit here. 225 */ 226 unsigned int nofs = memalloc_nofs_save(); 227 228 filemap_invalidate_lock_shared(mapping); 229 index = mapping_align_index(mapping, index); 230 231 /* 232 * As iterator `i` is aligned to min_nrpages, round_up the 233 * difference between nr_to_read and lookahead_size to mark the 234 * index that only has lookahead or "async_region" to set the 235 * readahead flag. 236 */ 237 if (lookahead_size <= nr_to_read) { 238 unsigned long ra_folio_index; 239 240 ra_folio_index = round_up(readahead_index(ractl) + 241 nr_to_read - lookahead_size, 242 min_nrpages); 243 mark = ra_folio_index - index; 244 } 245 nr_to_read += readahead_index(ractl) - index; 246 ractl->_index = index; 247 248 /* 249 * Preallocate as many pages as we will need. 250 */ 251 while (i < nr_to_read) { 252 struct folio *folio = xa_load(&mapping->i_pages, index + i); 253 int ret; 254 255 if (folio && !xa_is_value(folio)) { 256 /* 257 * Page already present? Kick off the current batch 258 * of contiguous pages before continuing with the 259 * next batch. This page may be the one we would 260 * have intended to mark as Readahead, but we don't 261 * have a stable reference to this page, and it's 262 * not worth getting one just for that. 263 */ 264 read_pages(ractl); 265 ractl->_index += min_nrpages; 266 i = ractl->_index + ractl->_nr_pages - index; 267 continue; 268 } 269 270 folio = ractl_alloc_folio(ractl, gfp_mask, 271 mapping_min_folio_order(mapping)); 272 if (!folio) 273 break; 274 275 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask); 276 if (ret < 0) { 277 folio_put(folio); 278 if (ret == -ENOMEM) 279 break; 280 read_pages(ractl); 281 ractl->_index += min_nrpages; 282 i = ractl->_index + ractl->_nr_pages - index; 283 continue; 284 } 285 if (i == mark) 286 folio_set_readahead(folio); 287 ractl->_workingset |= folio_test_workingset(folio); 288 ractl->_nr_pages += min_nrpages; 289 i += min_nrpages; 290 } 291 292 /* 293 * Now start the IO. We ignore I/O errors - if the folio is not 294 * uptodate then the caller will launch read_folio again, and 295 * will then handle the error. 296 */ 297 read_pages(ractl); 298 filemap_invalidate_unlock_shared(mapping); 299 memalloc_nofs_restore(nofs); 300 } 301 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 302 303 /* 304 * do_page_cache_ra() actually reads a chunk of disk. It allocates 305 * the pages first, then submits them for I/O. This avoids the very bad 306 * behaviour which would occur if page allocations are causing VM writeback. 307 * We really don't want to intermingle reads and writes like that. 308 */ 309 static void do_page_cache_ra(struct readahead_control *ractl, 310 unsigned long nr_to_read, unsigned long lookahead_size) 311 { 312 struct inode *inode = ractl->mapping->host; 313 unsigned long index = readahead_index(ractl); 314 loff_t isize = i_size_read(inode); 315 pgoff_t end_index; /* The last page we want to read */ 316 317 if (isize == 0) 318 return; 319 320 end_index = (isize - 1) >> PAGE_SHIFT; 321 if (index > end_index) 322 return; 323 /* Don't read past the page containing the last byte of the file */ 324 if (nr_to_read > end_index - index) 325 nr_to_read = end_index - index + 1; 326 327 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 328 } 329 330 /* 331 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 332 * memory at once. 333 */ 334 void force_page_cache_ra(struct readahead_control *ractl, 335 unsigned long nr_to_read) 336 { 337 struct address_space *mapping = ractl->mapping; 338 struct file_ra_state *ra = ractl->ra; 339 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 340 unsigned long max_pages; 341 342 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 343 return; 344 345 /* 346 * If the request exceeds the readahead window, allow the read to 347 * be up to the optimal hardware IO size 348 */ 349 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 350 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 351 while (nr_to_read) { 352 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 353 354 if (this_chunk > nr_to_read) 355 this_chunk = nr_to_read; 356 do_page_cache_ra(ractl, this_chunk, 0); 357 358 nr_to_read -= this_chunk; 359 } 360 } 361 362 /* 363 * Set the initial window size, round to next power of 2 and square 364 * for small size, x 4 for medium, and x 2 for large 365 * for 128k (32 page) max ra 366 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 367 */ 368 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 369 { 370 unsigned long newsize = roundup_pow_of_two(size); 371 372 if (newsize <= max / 32) 373 newsize = newsize * 4; 374 else if (newsize <= max / 4) 375 newsize = newsize * 2; 376 else 377 newsize = max; 378 379 return newsize; 380 } 381 382 /* 383 * Get the previous window size, ramp it up, and 384 * return it as the new window size. 385 */ 386 static unsigned long get_next_ra_size(struct file_ra_state *ra, 387 unsigned long max) 388 { 389 unsigned long cur = ra->size; 390 391 if (cur < max / 16) 392 return 4 * cur; 393 if (cur <= max / 2) 394 return 2 * cur; 395 return max; 396 } 397 398 /* 399 * On-demand readahead design. 400 * 401 * The fields in struct file_ra_state represent the most-recently-executed 402 * readahead attempt: 403 * 404 * |<----- async_size ---------| 405 * |------------------- size -------------------->| 406 * |==================#===========================| 407 * ^start ^page marked with PG_readahead 408 * 409 * To overlap application thinking time and disk I/O time, we do 410 * `readahead pipelining': Do not wait until the application consumed all 411 * readahead pages and stalled on the missing page at readahead_index; 412 * Instead, submit an asynchronous readahead I/O as soon as there are 413 * only async_size pages left in the readahead window. Normally async_size 414 * will be equal to size, for maximum pipelining. 415 * 416 * In interleaved sequential reads, concurrent streams on the same fd can 417 * be invalidating each other's readahead state. So we flag the new readahead 418 * page at (start+size-async_size) with PG_readahead, and use it as readahead 419 * indicator. The flag won't be set on already cached pages, to avoid the 420 * readahead-for-nothing fuss, saving pointless page cache lookups. 421 * 422 * prev_pos tracks the last visited byte in the _previous_ read request. 423 * It should be maintained by the caller, and will be used for detecting 424 * small random reads. Note that the readahead algorithm checks loosely 425 * for sequential patterns. Hence interleaved reads might be served as 426 * sequential ones. 427 * 428 * There is a special-case: if the first page which the application tries to 429 * read happens to be the first page of the file, it is assumed that a linear 430 * read is about to happen and the window is immediately set to the initial size 431 * based on I/O request size and the max_readahead. 432 * 433 * The code ramps up the readahead size aggressively at first, but slow down as 434 * it approaches max_readhead. 435 */ 436 437 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 438 pgoff_t mark, unsigned int order, gfp_t gfp) 439 { 440 int err; 441 struct folio *folio = ractl_alloc_folio(ractl, gfp, order); 442 443 if (!folio) 444 return -ENOMEM; 445 mark = round_down(mark, 1UL << order); 446 if (index == mark) 447 folio_set_readahead(folio); 448 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 449 if (err) { 450 folio_put(folio); 451 return err; 452 } 453 454 ractl->_nr_pages += 1UL << order; 455 ractl->_workingset |= folio_test_workingset(folio); 456 return 0; 457 } 458 459 void page_cache_ra_order(struct readahead_control *ractl, 460 struct file_ra_state *ra, unsigned int new_order) 461 { 462 struct address_space *mapping = ractl->mapping; 463 pgoff_t start = readahead_index(ractl); 464 pgoff_t index = start; 465 unsigned int min_order = mapping_min_folio_order(mapping); 466 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 467 pgoff_t mark = index + ra->size - ra->async_size; 468 unsigned int nofs; 469 int err = 0; 470 gfp_t gfp = readahead_gfp_mask(mapping); 471 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping)); 472 473 /* 474 * Fallback when size < min_nrpages as each folio should be 475 * at least min_nrpages anyway. 476 */ 477 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size) 478 goto fallback; 479 480 limit = min(limit, index + ra->size - 1); 481 482 if (new_order < mapping_max_folio_order(mapping)) 483 new_order += 2; 484 485 new_order = min(mapping_max_folio_order(mapping), new_order); 486 new_order = min_t(unsigned int, new_order, ilog2(ra->size)); 487 new_order = max(new_order, min_order); 488 489 /* See comment in page_cache_ra_unbounded() */ 490 nofs = memalloc_nofs_save(); 491 filemap_invalidate_lock_shared(mapping); 492 /* 493 * If the new_order is greater than min_order and index is 494 * already aligned to new_order, then this will be noop as index 495 * aligned to new_order should also be aligned to min_order. 496 */ 497 ractl->_index = mapping_align_index(mapping, index); 498 index = readahead_index(ractl); 499 500 while (index <= limit) { 501 unsigned int order = new_order; 502 503 /* Align with smaller pages if needed */ 504 if (index & ((1UL << order) - 1)) 505 order = __ffs(index); 506 /* Don't allocate pages past EOF */ 507 while (order > min_order && index + (1UL << order) - 1 > limit) 508 order--; 509 err = ra_alloc_folio(ractl, index, mark, order, gfp); 510 if (err) 511 break; 512 index += 1UL << order; 513 } 514 515 read_pages(ractl); 516 filemap_invalidate_unlock_shared(mapping); 517 memalloc_nofs_restore(nofs); 518 519 /* 520 * If there were already pages in the page cache, then we may have 521 * left some gaps. Let the regular readahead code take care of this 522 * situation below. 523 */ 524 if (!err) 525 return; 526 fallback: 527 /* 528 * ->readahead() may have updated readahead window size so we have to 529 * check there's still something to read. 530 */ 531 if (ra->size > index - start) 532 do_page_cache_ra(ractl, ra->size - (index - start), 533 ra->async_size); 534 } 535 536 static unsigned long ractl_max_pages(struct readahead_control *ractl, 537 unsigned long req_size) 538 { 539 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 540 unsigned long max_pages = ractl->ra->ra_pages; 541 542 /* 543 * If the request exceeds the readahead window, allow the read to 544 * be up to the optimal hardware IO size 545 */ 546 if (req_size > max_pages && bdi->io_pages > max_pages) 547 max_pages = min(req_size, bdi->io_pages); 548 return max_pages; 549 } 550 551 void page_cache_sync_ra(struct readahead_control *ractl, 552 unsigned long req_count) 553 { 554 pgoff_t index = readahead_index(ractl); 555 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 556 struct file_ra_state *ra = ractl->ra; 557 unsigned long max_pages, contig_count; 558 pgoff_t prev_index, miss; 559 560 /* 561 * Even if readahead is disabled, issue this request as readahead 562 * as we'll need it to satisfy the requested range. The forced 563 * readahead will do the right thing and limit the read to just the 564 * requested range, which we'll set to 1 page for this case. 565 */ 566 if (!ra->ra_pages || blk_cgroup_congested()) { 567 if (!ractl->file) 568 return; 569 req_count = 1; 570 do_forced_ra = true; 571 } 572 573 /* be dumb */ 574 if (do_forced_ra) { 575 force_page_cache_ra(ractl, req_count); 576 return; 577 } 578 579 max_pages = ractl_max_pages(ractl, req_count); 580 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 581 /* 582 * A start of file, oversized read, or sequential cache miss: 583 * trivial case: (index - prev_index) == 1 584 * unaligned reads: (index - prev_index) == 0 585 */ 586 if (!index || req_count > max_pages || index - prev_index <= 1UL) { 587 ra->start = index; 588 ra->size = get_init_ra_size(req_count, max_pages); 589 ra->async_size = ra->size > req_count ? ra->size - req_count : 590 ra->size >> 1; 591 goto readit; 592 } 593 594 /* 595 * Query the page cache and look for the traces(cached history pages) 596 * that a sequential stream would leave behind. 597 */ 598 rcu_read_lock(); 599 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages); 600 rcu_read_unlock(); 601 contig_count = index - miss - 1; 602 /* 603 * Standalone, small random read. Read as is, and do not pollute the 604 * readahead state. 605 */ 606 if (contig_count <= req_count) { 607 do_page_cache_ra(ractl, req_count, 0); 608 return; 609 } 610 /* 611 * File cached from the beginning: 612 * it is a strong indication of long-run stream (or whole-file-read) 613 */ 614 if (miss == ULONG_MAX) 615 contig_count *= 2; 616 ra->start = index; 617 ra->size = min(contig_count + req_count, max_pages); 618 ra->async_size = 1; 619 readit: 620 ractl->_index = ra->start; 621 page_cache_ra_order(ractl, ra, 0); 622 } 623 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 624 625 void page_cache_async_ra(struct readahead_control *ractl, 626 struct folio *folio, unsigned long req_count) 627 { 628 unsigned long max_pages; 629 struct file_ra_state *ra = ractl->ra; 630 pgoff_t index = readahead_index(ractl); 631 pgoff_t expected, start; 632 unsigned int order = folio_order(folio); 633 634 /* no readahead */ 635 if (!ra->ra_pages) 636 return; 637 638 /* 639 * Same bit is used for PG_readahead and PG_reclaim. 640 */ 641 if (folio_test_writeback(folio)) 642 return; 643 644 folio_clear_readahead(folio); 645 646 if (blk_cgroup_congested()) 647 return; 648 649 max_pages = ractl_max_pages(ractl, req_count); 650 /* 651 * It's the expected callback index, assume sequential access. 652 * Ramp up sizes, and push forward the readahead window. 653 */ 654 expected = round_down(ra->start + ra->size - ra->async_size, 655 1UL << order); 656 if (index == expected) { 657 ra->start += ra->size; 658 /* 659 * In the case of MADV_HUGEPAGE, the actual size might exceed 660 * the readahead window. 661 */ 662 ra->size = max(ra->size, get_next_ra_size(ra, max_pages)); 663 ra->async_size = ra->size; 664 goto readit; 665 } 666 667 /* 668 * Hit a marked folio without valid readahead state. 669 * E.g. interleaved reads. 670 * Query the pagecache for async_size, which normally equals to 671 * readahead size. Ramp it up and use it as the new readahead size. 672 */ 673 rcu_read_lock(); 674 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages); 675 rcu_read_unlock(); 676 677 if (!start || start - index > max_pages) 678 return; 679 680 ra->start = start; 681 ra->size = start - index; /* old async_size */ 682 ra->size += req_count; 683 ra->size = get_next_ra_size(ra, max_pages); 684 ra->async_size = ra->size; 685 readit: 686 ractl->_index = ra->start; 687 page_cache_ra_order(ractl, ra, order); 688 } 689 EXPORT_SYMBOL_GPL(page_cache_async_ra); 690 691 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 692 { 693 CLASS(fd, f)(fd); 694 695 if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ)) 696 return -EBADF; 697 698 /* 699 * The readahead() syscall is intended to run only on files 700 * that can execute readahead. If readahead is not possible 701 * on this file, then we must return -EINVAL. 702 */ 703 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops || 704 (!S_ISREG(file_inode(fd_file(f))->i_mode) && 705 !S_ISBLK(file_inode(fd_file(f))->i_mode))) 706 return -EINVAL; 707 708 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED); 709 } 710 711 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 712 { 713 return ksys_readahead(fd, offset, count); 714 } 715 716 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 717 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 718 { 719 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 720 } 721 #endif 722 723 /** 724 * readahead_expand - Expand a readahead request 725 * @ractl: The request to be expanded 726 * @new_start: The revised start 727 * @new_len: The revised size of the request 728 * 729 * Attempt to expand a readahead request outwards from the current size to the 730 * specified size by inserting locked pages before and after the current window 731 * to increase the size to the new window. This may involve the insertion of 732 * THPs, in which case the window may get expanded even beyond what was 733 * requested. 734 * 735 * The algorithm will stop if it encounters a conflicting page already in the 736 * pagecache and leave a smaller expansion than requested. 737 * 738 * The caller must check for this by examining the revised @ractl object for a 739 * different expansion than was requested. 740 */ 741 void readahead_expand(struct readahead_control *ractl, 742 loff_t new_start, size_t new_len) 743 { 744 struct address_space *mapping = ractl->mapping; 745 struct file_ra_state *ra = ractl->ra; 746 pgoff_t new_index, new_nr_pages; 747 gfp_t gfp_mask = readahead_gfp_mask(mapping); 748 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping); 749 unsigned int min_order = mapping_min_folio_order(mapping); 750 751 new_index = new_start / PAGE_SIZE; 752 /* 753 * Readahead code should have aligned the ractl->_index to 754 * min_nrpages before calling readahead aops. 755 */ 756 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages)); 757 758 /* Expand the leading edge downwards */ 759 while (ractl->_index > new_index) { 760 unsigned long index = ractl->_index - 1; 761 struct folio *folio = xa_load(&mapping->i_pages, index); 762 763 if (folio && !xa_is_value(folio)) 764 return; /* Folio apparently present */ 765 766 folio = ractl_alloc_folio(ractl, gfp_mask, min_order); 767 if (!folio) 768 return; 769 770 index = mapping_align_index(mapping, index); 771 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 772 folio_put(folio); 773 return; 774 } 775 if (unlikely(folio_test_workingset(folio)) && 776 !ractl->_workingset) { 777 ractl->_workingset = true; 778 psi_memstall_enter(&ractl->_pflags); 779 } 780 ractl->_nr_pages += min_nrpages; 781 ractl->_index = folio->index; 782 } 783 784 new_len += new_start - readahead_pos(ractl); 785 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 786 787 /* Expand the trailing edge upwards */ 788 while (ractl->_nr_pages < new_nr_pages) { 789 unsigned long index = ractl->_index + ractl->_nr_pages; 790 struct folio *folio = xa_load(&mapping->i_pages, index); 791 792 if (folio && !xa_is_value(folio)) 793 return; /* Folio apparently present */ 794 795 folio = ractl_alloc_folio(ractl, gfp_mask, min_order); 796 if (!folio) 797 return; 798 799 index = mapping_align_index(mapping, index); 800 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) { 801 folio_put(folio); 802 return; 803 } 804 if (unlikely(folio_test_workingset(folio)) && 805 !ractl->_workingset) { 806 ractl->_workingset = true; 807 psi_memstall_enter(&ractl->_pflags); 808 } 809 ractl->_nr_pages += min_nrpages; 810 if (ra) { 811 ra->size += min_nrpages; 812 ra->async_size += min_nrpages; 813 } 814 } 815 } 816 EXPORT_SYMBOL(readahead_expand); 817