1 /*-
2 * Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/kernel.h>
30 #include <sys/module.h>
31 #include <sys/malloc.h>
32 #include <sys/libkern.h>
33 #include <sys/endian.h>
34 #include <sys/pcpu.h>
35 #if defined(__amd64__) || defined(__i386__)
36 #include <machine/cpufunc.h>
37 #include <machine/cputypes.h>
38 #include <machine/fpu.h>
39 #include <machine/md_var.h>
40 #include <machine/specialreg.h>
41 #endif
42 #include <machine/pcb.h>
43
44 #include <opencrypto/cryptodev.h>
45 #include <opencrypto/xform.h>
46
47 #include <crypto/via/padlock.h>
48
49 /*
50 * Implementation notes.
51 *
52 * Some VIA CPUs provides SHA1 and SHA256 acceleration.
53 * We implement all HMAC algorithms provided by crypto(9) framework, but we do
54 * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and
55 * our CPU can accelerate it.
56 *
57 * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot
58 * functions - we have only one chance to give the data, CPU itself will add
59 * the padding and calculate hash automatically.
60 * This means, it is not possible to implement common init(), update(), final()
61 * methods.
62 * The way I've choosen is to keep adding data to the buffer on update()
63 * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on
64 * final().
65 */
66
67 struct padlock_sha_ctx {
68 uint8_t *psc_buf;
69 int psc_offset;
70 int psc_size;
71 };
72 CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx));
73
74 static void padlock_sha_init(void *vctx);
75 static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize);
76 static void padlock_sha1_final(uint8_t *hash, void *vctx);
77 static void padlock_sha256_final(uint8_t *hash, void *vctx);
78
79 static const struct auth_hash padlock_hmac_sha1 = {
80 .type = CRYPTO_SHA1_HMAC,
81 .name = "HMAC-SHA1",
82 .keysize = SHA1_BLOCK_LEN,
83 .hashsize = SHA1_HASH_LEN,
84 .ctxsize = sizeof(struct padlock_sha_ctx),
85 .blocksize = SHA1_BLOCK_LEN,
86 .Init = padlock_sha_init,
87 .Update = padlock_sha_update,
88 .Final = padlock_sha1_final,
89 };
90
91 static const struct auth_hash padlock_hmac_sha256 = {
92 .type = CRYPTO_SHA2_256_HMAC,
93 .name = "HMAC-SHA2-256",
94 .keysize = SHA2_256_BLOCK_LEN,
95 .hashsize = SHA2_256_HASH_LEN,
96 .ctxsize = sizeof(struct padlock_sha_ctx),
97 .blocksize = SHA2_256_BLOCK_LEN,
98 .Init = padlock_sha_init,
99 .Update = padlock_sha_update,
100 .Final = padlock_sha256_final,
101 };
102
103 MALLOC_DECLARE(M_PADLOCK);
104
105 static __inline void
padlock_output_block(uint32_t * src,uint32_t * dst,size_t count)106 padlock_output_block(uint32_t *src, uint32_t *dst, size_t count)
107 {
108
109 while (count-- > 0)
110 *dst++ = bswap32(*src++);
111 }
112
113 static void
padlock_do_sha1(const u_char * in,u_char * out,int count)114 padlock_do_sha1(const u_char *in, u_char *out, int count)
115 {
116 u_char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */
117 u_char *result = PADLOCK_ALIGN(buf);
118
119 ((uint32_t *)result)[0] = 0x67452301;
120 ((uint32_t *)result)[1] = 0xEFCDAB89;
121 ((uint32_t *)result)[2] = 0x98BADCFE;
122 ((uint32_t *)result)[3] = 0x10325476;
123 ((uint32_t *)result)[4] = 0xC3D2E1F0;
124
125 __asm __volatile(
126 ".byte 0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */
127 : "+S"(in), "+D"(result)
128 : "c"(count), "a"(0)
129 );
130
131 padlock_output_block((uint32_t *)result, (uint32_t *)out,
132 SHA1_HASH_LEN / sizeof(uint32_t));
133 }
134
135 static void
padlock_do_sha256(const char * in,char * out,int count)136 padlock_do_sha256(const char *in, char *out, int count)
137 {
138 char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */
139 char *result = PADLOCK_ALIGN(buf);
140
141 ((uint32_t *)result)[0] = 0x6A09E667;
142 ((uint32_t *)result)[1] = 0xBB67AE85;
143 ((uint32_t *)result)[2] = 0x3C6EF372;
144 ((uint32_t *)result)[3] = 0xA54FF53A;
145 ((uint32_t *)result)[4] = 0x510E527F;
146 ((uint32_t *)result)[5] = 0x9B05688C;
147 ((uint32_t *)result)[6] = 0x1F83D9AB;
148 ((uint32_t *)result)[7] = 0x5BE0CD19;
149
150 __asm __volatile(
151 ".byte 0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */
152 : "+S"(in), "+D"(result)
153 : "c"(count), "a"(0)
154 );
155
156 padlock_output_block((uint32_t *)result, (uint32_t *)out,
157 SHA2_256_HASH_LEN / sizeof(uint32_t));
158 }
159
160 static void
padlock_sha_init(void * vctx)161 padlock_sha_init(void *vctx)
162 {
163 struct padlock_sha_ctx *ctx;
164
165 ctx = vctx;
166 ctx->psc_buf = NULL;
167 ctx->psc_offset = 0;
168 ctx->psc_size = 0;
169 }
170
171 static int
padlock_sha_update(void * vctx,const void * buf,u_int bufsize)172 padlock_sha_update(void *vctx, const void *buf, u_int bufsize)
173 {
174 struct padlock_sha_ctx *ctx;
175
176 ctx = vctx;
177 if (ctx->psc_size - ctx->psc_offset < bufsize) {
178 ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize);
179 ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK,
180 M_NOWAIT);
181 if(ctx->psc_buf == NULL)
182 return (ENOMEM);
183 }
184 bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize);
185 ctx->psc_offset += bufsize;
186 return (0);
187 }
188
189 static void
padlock_sha_free(void * vctx)190 padlock_sha_free(void *vctx)
191 {
192 struct padlock_sha_ctx *ctx;
193
194 ctx = vctx;
195 if (ctx->psc_buf != NULL) {
196 zfree(ctx->psc_buf, M_PADLOCK);
197 ctx->psc_buf = NULL;
198 ctx->psc_offset = 0;
199 ctx->psc_size = 0;
200 }
201 }
202
203 static void
padlock_sha1_final(uint8_t * hash,void * vctx)204 padlock_sha1_final(uint8_t *hash, void *vctx)
205 {
206 struct padlock_sha_ctx *ctx;
207
208 ctx = vctx;
209 padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset);
210 padlock_sha_free(ctx);
211 }
212
213 static void
padlock_sha256_final(uint8_t * hash,void * vctx)214 padlock_sha256_final(uint8_t *hash, void *vctx)
215 {
216 struct padlock_sha_ctx *ctx;
217
218 ctx = vctx;
219 padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset);
220 padlock_sha_free(ctx);
221 }
222
223 static void
padlock_copy_ctx(const struct auth_hash * axf,void * sctx,void * dctx)224 padlock_copy_ctx(const struct auth_hash *axf, void *sctx, void *dctx)
225 {
226
227 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
228 (axf->type == CRYPTO_SHA1_HMAC ||
229 axf->type == CRYPTO_SHA2_256_HMAC)) {
230 struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx;
231
232 dpctx->psc_offset = spctx->psc_offset;
233 dpctx->psc_size = spctx->psc_size;
234 dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK);
235 bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size);
236 } else {
237 bcopy(sctx, dctx, axf->ctxsize);
238 }
239 }
240
241 static void
padlock_free_ctx(const struct auth_hash * axf,void * ctx)242 padlock_free_ctx(const struct auth_hash *axf, void *ctx)
243 {
244
245 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
246 (axf->type == CRYPTO_SHA1_HMAC ||
247 axf->type == CRYPTO_SHA2_256_HMAC)) {
248 padlock_sha_free(ctx);
249 }
250 }
251
252 static void
padlock_hash_key_setup(struct padlock_session * ses,const uint8_t * key,int klen)253 padlock_hash_key_setup(struct padlock_session *ses, const uint8_t *key,
254 int klen)
255 {
256 const struct auth_hash *axf;
257
258 axf = ses->ses_axf;
259
260 /*
261 * Try to free contexts before using them, because
262 * padlock_hash_key_setup() can be called twice - once from
263 * padlock_newsession() and again from padlock_process().
264 */
265 padlock_free_ctx(axf, ses->ses_ictx);
266 padlock_free_ctx(axf, ses->ses_octx);
267
268 hmac_init_ipad(axf, key, klen, ses->ses_ictx);
269 hmac_init_opad(axf, key, klen, ses->ses_octx);
270 }
271
272 /*
273 * Compute keyed-hash authenticator.
274 */
275 static int
padlock_authcompute(struct padlock_session * ses,struct cryptop * crp)276 padlock_authcompute(struct padlock_session *ses, struct cryptop *crp)
277 {
278 u_char hash[HASH_MAX_LEN], hash2[HASH_MAX_LEN];
279 const struct auth_hash *axf;
280 union authctx ctx;
281 int error;
282
283 axf = ses->ses_axf;
284
285 padlock_copy_ctx(axf, ses->ses_ictx, &ctx);
286 error = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length,
287 axf->Update, &ctx);
288 if (error != 0) {
289 padlock_free_ctx(axf, &ctx);
290 return (error);
291 }
292 error = crypto_apply(crp, crp->crp_payload_start,
293 crp->crp_payload_length, axf->Update, &ctx);
294 if (error != 0) {
295 padlock_free_ctx(axf, &ctx);
296 return (error);
297 }
298 axf->Final(hash, &ctx);
299
300 padlock_copy_ctx(axf, ses->ses_octx, &ctx);
301 axf->Update(&ctx, hash, axf->hashsize);
302 axf->Final(hash, &ctx);
303
304 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
305 crypto_copydata(crp, crp->crp_digest_start, ses->ses_mlen,
306 hash2);
307 if (timingsafe_bcmp(hash, hash2, ses->ses_mlen) != 0)
308 return (EBADMSG);
309 } else
310 crypto_copyback(crp, crp->crp_digest_start, ses->ses_mlen,
311 hash);
312 return (0);
313 }
314
315 /* Find software structure which describes HMAC algorithm. */
316 static const struct auth_hash *
padlock_hash_lookup(int alg)317 padlock_hash_lookup(int alg)
318 {
319 const struct auth_hash *axf;
320
321 switch (alg) {
322 case CRYPTO_NULL_HMAC:
323 axf = &auth_hash_null;
324 break;
325 case CRYPTO_SHA1_HMAC:
326 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
327 axf = &padlock_hmac_sha1;
328 else
329 axf = &auth_hash_hmac_sha1;
330 break;
331 case CRYPTO_RIPEMD160_HMAC:
332 axf = &auth_hash_hmac_ripemd_160;
333 break;
334 case CRYPTO_SHA2_256_HMAC:
335 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
336 axf = &padlock_hmac_sha256;
337 else
338 axf = &auth_hash_hmac_sha2_256;
339 break;
340 case CRYPTO_SHA2_384_HMAC:
341 axf = &auth_hash_hmac_sha2_384;
342 break;
343 case CRYPTO_SHA2_512_HMAC:
344 axf = &auth_hash_hmac_sha2_512;
345 break;
346 default:
347 axf = NULL;
348 break;
349 }
350 return (axf);
351 }
352
353 bool
padlock_hash_check(const struct crypto_session_params * csp)354 padlock_hash_check(const struct crypto_session_params *csp)
355 {
356
357 return (padlock_hash_lookup(csp->csp_auth_alg) != NULL);
358 }
359
360 int
padlock_hash_setup(struct padlock_session * ses,const struct crypto_session_params * csp)361 padlock_hash_setup(struct padlock_session *ses,
362 const struct crypto_session_params *csp)
363 {
364
365 ses->ses_axf = padlock_hash_lookup(csp->csp_auth_alg);
366 if (csp->csp_auth_mlen == 0)
367 ses->ses_mlen = ses->ses_axf->hashsize;
368 else
369 ses->ses_mlen = csp->csp_auth_mlen;
370
371 /* Allocate memory for HMAC inner and outer contexts. */
372 ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
373 M_ZERO | M_NOWAIT);
374 ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
375 M_ZERO | M_NOWAIT);
376 if (ses->ses_ictx == NULL || ses->ses_octx == NULL)
377 return (ENOMEM);
378
379 /* Setup key if given. */
380 if (csp->csp_auth_key != NULL) {
381 padlock_hash_key_setup(ses, csp->csp_auth_key,
382 csp->csp_auth_klen);
383 }
384 return (0);
385 }
386
387 int
padlock_hash_process(struct padlock_session * ses,struct cryptop * crp,const struct crypto_session_params * csp)388 padlock_hash_process(struct padlock_session *ses, struct cryptop *crp,
389 const struct crypto_session_params *csp)
390 {
391 struct thread *td;
392 int error;
393
394 td = curthread;
395 fpu_kern_enter(td, NULL, FPU_KERN_NORMAL | FPU_KERN_NOCTX);
396 if (crp->crp_auth_key != NULL)
397 padlock_hash_key_setup(ses, crp->crp_auth_key,
398 csp->csp_auth_klen);
399
400 error = padlock_authcompute(ses, crp);
401 fpu_kern_leave(td, NULL);
402 return (error);
403 }
404
405 void
padlock_hash_free(struct padlock_session * ses)406 padlock_hash_free(struct padlock_session *ses)
407 {
408
409 if (ses->ses_ictx != NULL) {
410 padlock_free_ctx(ses->ses_axf, ses->ses_ictx);
411 zfree(ses->ses_ictx, M_PADLOCK);
412 ses->ses_ictx = NULL;
413 }
414 if (ses->ses_octx != NULL) {
415 padlock_free_ctx(ses->ses_axf, ses->ses_octx);
416 zfree(ses->ses_octx, M_PADLOCK);
417 ses->ses_octx = NULL;
418 }
419 }
420