1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23
24 #include "xhci.h"
25 #include "xhci-trace.h"
26 #include "xhci-debugfs.h"
27 #include "xhci-dbgcap.h"
28
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31
32 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33
34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35 static int link_quirk;
36 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38
39 static unsigned long long quirks;
40 module_param(quirks, ullong, S_IRUGO);
41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 {
45 struct xhci_segment *seg;
46
47 if (!td || !td->start_seg)
48 return false;
49
50 xhci_for_each_ring_seg(ring->first_seg, seg) {
51 if (seg == td->start_seg)
52 return true;
53 }
54
55 return false;
56 }
57
58 /*
59 * xhci_handshake - spin reading hc until handshake completes or fails
60 * @ptr: address of hc register to be read
61 * @mask: bits to look at in result of read
62 * @done: value of those bits when handshake succeeds
63 * @usec: timeout in microseconds
64 *
65 * Returns negative errno, or zero on success
66 *
67 * Success happens when the "mask" bits have the specified value (hardware
68 * handshake done). There are two failure modes: "usec" have passed (major
69 * hardware flakeout), or the register reads as all-ones (hardware removed).
70 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 {
73 u32 result;
74 int ret;
75
76 ret = readl_poll_timeout_atomic(ptr, result,
77 (result & mask) == done ||
78 result == U32_MAX,
79 1, timeout_us);
80 if (result == U32_MAX) /* card removed */
81 return -ENODEV;
82
83 return ret;
84 }
85
86 /*
87 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
88 * exit_state parameter, and bails out with an error immediately when xhc_state
89 * has exit_state flag set.
90 */
xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
92 u32 mask, u32 done, int usec, unsigned int exit_state)
93 {
94 u32 result;
95 int ret;
96
97 ret = readl_poll_timeout_atomic(ptr, result,
98 (result & mask) == done ||
99 result == U32_MAX ||
100 xhci->xhc_state & exit_state,
101 1, usec);
102
103 if (result == U32_MAX || xhci->xhc_state & exit_state)
104 return -ENODEV;
105
106 return ret;
107 }
108
109 /*
110 * Disable interrupts and begin the xHCI halting process.
111 */
xhci_quiesce(struct xhci_hcd * xhci)112 void xhci_quiesce(struct xhci_hcd *xhci)
113 {
114 u32 halted;
115 u32 cmd;
116 u32 mask;
117
118 mask = ~(XHCI_IRQS);
119 halted = readl(&xhci->op_regs->status) & STS_HALT;
120 if (!halted)
121 mask &= ~CMD_RUN;
122
123 cmd = readl(&xhci->op_regs->command);
124 cmd &= mask;
125 writel(cmd, &xhci->op_regs->command);
126 }
127
128 /*
129 * Force HC into halt state.
130 *
131 * Disable any IRQs and clear the run/stop bit.
132 * HC will complete any current and actively pipelined transactions, and
133 * should halt within 16 ms of the run/stop bit being cleared.
134 * Read HC Halted bit in the status register to see when the HC is finished.
135 */
xhci_halt(struct xhci_hcd * xhci)136 int xhci_halt(struct xhci_hcd *xhci)
137 {
138 int ret;
139
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
141 xhci_quiesce(xhci);
142
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
145 if (ret) {
146 xhci_warn(xhci, "Host halt failed, %d\n", ret);
147 return ret;
148 }
149
150 xhci->xhc_state |= XHCI_STATE_HALTED;
151 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
152
153 return ret;
154 }
155
156 /*
157 * Set the run bit and wait for the host to be running.
158 */
xhci_start(struct xhci_hcd * xhci)159 int xhci_start(struct xhci_hcd *xhci)
160 {
161 u32 temp;
162 int ret;
163
164 temp = readl(&xhci->op_regs->command);
165 temp |= (CMD_RUN);
166 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
167 temp);
168 writel(temp, &xhci->op_regs->command);
169
170 /*
171 * Wait for the HCHalted Status bit to be 0 to indicate the host is
172 * running.
173 */
174 ret = xhci_handshake(&xhci->op_regs->status,
175 STS_HALT, 0, XHCI_MAX_HALT_USEC);
176 if (ret == -ETIMEDOUT)
177 xhci_err(xhci, "Host took too long to start, "
178 "waited %u microseconds.\n",
179 XHCI_MAX_HALT_USEC);
180 if (!ret) {
181 /* clear state flags. Including dying, halted or removing */
182 xhci->xhc_state = 0;
183 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
184 }
185
186 return ret;
187 }
188
189 /*
190 * Reset a halted HC.
191 *
192 * This resets pipelines, timers, counters, state machines, etc.
193 * Transactions will be terminated immediately, and operational registers
194 * will be set to their defaults.
195 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
197 {
198 u32 command;
199 u32 state;
200 int ret;
201
202 state = readl(&xhci->op_regs->status);
203
204 if (state == ~(u32)0) {
205 xhci_warn(xhci, "Host not accessible, reset failed.\n");
206 return -ENODEV;
207 }
208
209 if ((state & STS_HALT) == 0) {
210 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
211 return 0;
212 }
213
214 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
215 command = readl(&xhci->op_regs->command);
216 command |= CMD_RESET;
217 writel(command, &xhci->op_regs->command);
218
219 /* Existing Intel xHCI controllers require a delay of 1 mS,
220 * after setting the CMD_RESET bit, and before accessing any
221 * HC registers. This allows the HC to complete the
222 * reset operation and be ready for HC register access.
223 * Without this delay, the subsequent HC register access,
224 * may result in a system hang very rarely.
225 */
226 if (xhci->quirks & XHCI_INTEL_HOST)
227 udelay(1000);
228
229 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
230 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
231 if (ret)
232 return ret;
233
234 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
235 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
236
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "Wait for controller to be ready for doorbell rings");
239 /*
240 * xHCI cannot write to any doorbells or operational registers other
241 * than status until the "Controller Not Ready" flag is cleared.
242 */
243 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
244
245 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
246 xhci->usb2_rhub.bus_state.suspended_ports = 0;
247 xhci->usb2_rhub.bus_state.resuming_ports = 0;
248 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
249 xhci->usb3_rhub.bus_state.suspended_ports = 0;
250 xhci->usb3_rhub.bus_state.resuming_ports = 0;
251
252 return ret;
253 }
254
xhci_zero_64b_regs(struct xhci_hcd * xhci)255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
256 {
257 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
258 struct iommu_domain *domain;
259 int err, i;
260 u64 val;
261 u32 intrs;
262
263 /*
264 * Some Renesas controllers get into a weird state if they are
265 * reset while programmed with 64bit addresses (they will preserve
266 * the top half of the address in internal, non visible
267 * registers). You end up with half the address coming from the
268 * kernel, and the other half coming from the firmware. Also,
269 * changing the programming leads to extra accesses even if the
270 * controller is supposed to be halted. The controller ends up with
271 * a fatal fault, and is then ripe for being properly reset.
272 *
273 * Special care is taken to only apply this if the device is behind
274 * an iommu. Doing anything when there is no iommu is definitely
275 * unsafe...
276 */
277 domain = iommu_get_domain_for_dev(dev);
278 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
279 domain->type == IOMMU_DOMAIN_IDENTITY)
280 return;
281
282 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
283
284 /* Clear HSEIE so that faults do not get signaled */
285 val = readl(&xhci->op_regs->command);
286 val &= ~CMD_HSEIE;
287 writel(val, &xhci->op_regs->command);
288
289 /* Clear HSE (aka FATAL) */
290 val = readl(&xhci->op_regs->status);
291 val |= STS_FATAL;
292 writel(val, &xhci->op_regs->status);
293
294 /* Now zero the registers, and brace for impact */
295 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
296 if (upper_32_bits(val))
297 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
298 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
299 if (upper_32_bits(val))
300 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
301
302 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
303 ARRAY_SIZE(xhci->run_regs->ir_set));
304
305 for (i = 0; i < intrs; i++) {
306 struct xhci_intr_reg __iomem *ir;
307
308 ir = &xhci->run_regs->ir_set[i];
309 val = xhci_read_64(xhci, &ir->erst_base);
310 if (upper_32_bits(val))
311 xhci_write_64(xhci, 0, &ir->erst_base);
312 val= xhci_read_64(xhci, &ir->erst_dequeue);
313 if (upper_32_bits(val))
314 xhci_write_64(xhci, 0, &ir->erst_dequeue);
315 }
316
317 /* Wait for the fault to appear. It will be cleared on reset */
318 err = xhci_handshake(&xhci->op_regs->status,
319 STS_FATAL, STS_FATAL,
320 XHCI_MAX_HALT_USEC);
321 if (!err)
322 xhci_info(xhci, "Fault detected\n");
323 }
324
xhci_enable_interrupter(struct xhci_interrupter * ir)325 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
326 {
327 u32 iman;
328
329 if (!ir || !ir->ir_set)
330 return -EINVAL;
331
332 iman = readl(&ir->ir_set->irq_pending);
333 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
334
335 return 0;
336 }
337
xhci_disable_interrupter(struct xhci_interrupter * ir)338 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
339 {
340 u32 iman;
341
342 if (!ir || !ir->ir_set)
343 return -EINVAL;
344
345 iman = readl(&ir->ir_set->irq_pending);
346 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
347
348 return 0;
349 }
350
351 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
353 u32 imod_interval)
354 {
355 u32 imod;
356
357 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
358 return -EINVAL;
359
360 imod = readl(&ir->ir_set->irq_control);
361 imod &= ~ER_IRQ_INTERVAL_MASK;
362 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
363 writel(imod, &ir->ir_set->irq_control);
364
365 return 0;
366 }
367
compliance_mode_recovery(struct timer_list * t)368 static void compliance_mode_recovery(struct timer_list *t)
369 {
370 struct xhci_hcd *xhci;
371 struct usb_hcd *hcd;
372 struct xhci_hub *rhub;
373 u32 temp;
374 int i;
375
376 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
377 rhub = &xhci->usb3_rhub;
378 hcd = rhub->hcd;
379
380 if (!hcd)
381 return;
382
383 for (i = 0; i < rhub->num_ports; i++) {
384 temp = readl(rhub->ports[i]->addr);
385 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
386 /*
387 * Compliance Mode Detected. Letting USB Core
388 * handle the Warm Reset
389 */
390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
391 "Compliance mode detected->port %d",
392 i + 1);
393 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
394 "Attempting compliance mode recovery");
395
396 if (hcd->state == HC_STATE_SUSPENDED)
397 usb_hcd_resume_root_hub(hcd);
398
399 usb_hcd_poll_rh_status(hcd);
400 }
401 }
402
403 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
404 mod_timer(&xhci->comp_mode_recovery_timer,
405 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
406 }
407
408 /*
409 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
410 * that causes ports behind that hardware to enter compliance mode sometimes.
411 * The quirk creates a timer that polls every 2 seconds the link state of
412 * each host controller's port and recovers it by issuing a Warm reset
413 * if Compliance mode is detected, otherwise the port will become "dead" (no
414 * device connections or disconnections will be detected anymore). Becasue no
415 * status event is generated when entering compliance mode (per xhci spec),
416 * this quirk is needed on systems that have the failing hardware installed.
417 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
419 {
420 xhci->port_status_u0 = 0;
421 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
422 0);
423 xhci->comp_mode_recovery_timer.expires = jiffies +
424 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
425
426 add_timer(&xhci->comp_mode_recovery_timer);
427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
428 "Compliance mode recovery timer initialized");
429 }
430
431 /*
432 * This function identifies the systems that have installed the SN65LVPE502CP
433 * USB3.0 re-driver and that need the Compliance Mode Quirk.
434 * Systems:
435 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
436 */
xhci_compliance_mode_recovery_timer_quirk_check(void)437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
438 {
439 const char *dmi_product_name, *dmi_sys_vendor;
440
441 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
442 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
443 if (!dmi_product_name || !dmi_sys_vendor)
444 return false;
445
446 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
447 return false;
448
449 if (strstr(dmi_product_name, "Z420") ||
450 strstr(dmi_product_name, "Z620") ||
451 strstr(dmi_product_name, "Z820") ||
452 strstr(dmi_product_name, "Z1 Workstation"))
453 return true;
454
455 return false;
456 }
457
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
459 {
460 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
461 }
462
463
464 /*
465 * Initialize memory for HCD and xHC (one-time init).
466 *
467 * Program the PAGESIZE register, initialize the device context array, create
468 * device contexts (?), set up a command ring segment (or two?), create event
469 * ring (one for now).
470 */
xhci_init(struct usb_hcd * hcd)471 static int xhci_init(struct usb_hcd *hcd)
472 {
473 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
474 int retval;
475
476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
477 spin_lock_init(&xhci->lock);
478
479 retval = xhci_mem_init(xhci, GFP_KERNEL);
480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
481
482 /* Initializing Compliance Mode Recovery Data If Needed */
483 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
484 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
485 compliance_mode_recovery_timer_init(xhci);
486 }
487
488 return retval;
489 }
490
491 /*-------------------------------------------------------------------------*/
492
xhci_run_finished(struct xhci_hcd * xhci)493 static int xhci_run_finished(struct xhci_hcd *xhci)
494 {
495 struct xhci_interrupter *ir = xhci->interrupters[0];
496 unsigned long flags;
497 u32 temp;
498
499 /*
500 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
501 * Protect the short window before host is running with a lock
502 */
503 spin_lock_irqsave(&xhci->lock, flags);
504
505 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
506 temp = readl(&xhci->op_regs->command);
507 temp |= (CMD_EIE);
508 writel(temp, &xhci->op_regs->command);
509
510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
511 xhci_enable_interrupter(ir);
512
513 if (xhci_start(xhci)) {
514 xhci_halt(xhci);
515 spin_unlock_irqrestore(&xhci->lock, flags);
516 return -ENODEV;
517 }
518
519 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
520
521 if (xhci->quirks & XHCI_NEC_HOST)
522 xhci_ring_cmd_db(xhci);
523
524 spin_unlock_irqrestore(&xhci->lock, flags);
525
526 return 0;
527 }
528
529 /*
530 * Start the HC after it was halted.
531 *
532 * This function is called by the USB core when the HC driver is added.
533 * Its opposite is xhci_stop().
534 *
535 * xhci_init() must be called once before this function can be called.
536 * Reset the HC, enable device slot contexts, program DCBAAP, and
537 * set command ring pointer and event ring pointer.
538 *
539 * Setup MSI-X vectors and enable interrupts.
540 */
xhci_run(struct usb_hcd * hcd)541 int xhci_run(struct usb_hcd *hcd)
542 {
543 u64 temp_64;
544 int ret;
545 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
546 struct xhci_interrupter *ir = xhci->interrupters[0];
547 /* Start the xHCI host controller running only after the USB 2.0 roothub
548 * is setup.
549 */
550
551 hcd->uses_new_polling = 1;
552 if (hcd->msi_enabled)
553 ir->ip_autoclear = true;
554
555 if (!usb_hcd_is_primary_hcd(hcd))
556 return xhci_run_finished(xhci);
557
558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
559
560 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
561 temp_64 &= ERST_PTR_MASK;
562 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
563 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
564
565 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
566
567 if (xhci->quirks & XHCI_NEC_HOST) {
568 struct xhci_command *command;
569
570 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
571 if (!command)
572 return -ENOMEM;
573
574 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
575 TRB_TYPE(TRB_NEC_GET_FW));
576 if (ret)
577 xhci_free_command(xhci, command);
578 }
579 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 "Finished %s for main hcd", __func__);
581
582 xhci_create_dbc_dev(xhci);
583
584 xhci_debugfs_init(xhci);
585
586 if (xhci_has_one_roothub(xhci))
587 return xhci_run_finished(xhci);
588
589 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
590
591 return 0;
592 }
593 EXPORT_SYMBOL_GPL(xhci_run);
594
595 /*
596 * Stop xHCI driver.
597 *
598 * This function is called by the USB core when the HC driver is removed.
599 * Its opposite is xhci_run().
600 *
601 * Disable device contexts, disable IRQs, and quiesce the HC.
602 * Reset the HC, finish any completed transactions, and cleanup memory.
603 */
xhci_stop(struct usb_hcd * hcd)604 void xhci_stop(struct usb_hcd *hcd)
605 {
606 u32 temp;
607 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
608 struct xhci_interrupter *ir = xhci->interrupters[0];
609
610 mutex_lock(&xhci->mutex);
611
612 /* Only halt host and free memory after both hcds are removed */
613 if (!usb_hcd_is_primary_hcd(hcd)) {
614 mutex_unlock(&xhci->mutex);
615 return;
616 }
617
618 xhci_remove_dbc_dev(xhci);
619
620 spin_lock_irq(&xhci->lock);
621 xhci->xhc_state |= XHCI_STATE_HALTED;
622 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
623 xhci_halt(xhci);
624 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
625 spin_unlock_irq(&xhci->lock);
626
627 /* Deleting Compliance Mode Recovery Timer */
628 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
629 (!(xhci_all_ports_seen_u0(xhci)))) {
630 del_timer_sync(&xhci->comp_mode_recovery_timer);
631 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
632 "%s: compliance mode recovery timer deleted",
633 __func__);
634 }
635
636 if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 usb_amd_dev_put();
638
639 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 "// Disabling event ring interrupts");
641 temp = readl(&xhci->op_regs->status);
642 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
643 xhci_disable_interrupter(ir);
644
645 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
646 xhci_mem_cleanup(xhci);
647 xhci_debugfs_exit(xhci);
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "xhci_stop completed - status = %x",
650 readl(&xhci->op_regs->status));
651 mutex_unlock(&xhci->mutex);
652 }
653 EXPORT_SYMBOL_GPL(xhci_stop);
654
655 /*
656 * Shutdown HC (not bus-specific)
657 *
658 * This is called when the machine is rebooting or halting. We assume that the
659 * machine will be powered off, and the HC's internal state will be reset.
660 * Don't bother to free memory.
661 *
662 * This will only ever be called with the main usb_hcd (the USB3 roothub).
663 */
xhci_shutdown(struct usb_hcd * hcd)664 void xhci_shutdown(struct usb_hcd *hcd)
665 {
666 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
667
668 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
669 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
670
671 /* Don't poll the roothubs after shutdown. */
672 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
673 __func__, hcd->self.busnum);
674 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
675 del_timer_sync(&hcd->rh_timer);
676
677 if (xhci->shared_hcd) {
678 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
679 del_timer_sync(&xhci->shared_hcd->rh_timer);
680 }
681
682 spin_lock_irq(&xhci->lock);
683 xhci_halt(xhci);
684
685 /*
686 * Workaround for spurious wakeps at shutdown with HSW, and for boot
687 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
688 */
689 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
690 xhci->quirks & XHCI_RESET_TO_DEFAULT)
691 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
692
693 spin_unlock_irq(&xhci->lock);
694
695 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 "xhci_shutdown completed - status = %x",
697 readl(&xhci->op_regs->status));
698 }
699 EXPORT_SYMBOL_GPL(xhci_shutdown);
700
701 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)702 static void xhci_save_registers(struct xhci_hcd *xhci)
703 {
704 struct xhci_interrupter *ir;
705 unsigned int i;
706
707 xhci->s3.command = readl(&xhci->op_regs->command);
708 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
709 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
710 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
711
712 /* save both primary and all secondary interrupters */
713 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
714 for (i = 0; i < xhci->max_interrupters; i++) {
715 ir = xhci->interrupters[i];
716 if (!ir)
717 continue;
718
719 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
720 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
721 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
722 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
723 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
724 }
725 }
726
xhci_restore_registers(struct xhci_hcd * xhci)727 static void xhci_restore_registers(struct xhci_hcd *xhci)
728 {
729 struct xhci_interrupter *ir;
730 unsigned int i;
731
732 writel(xhci->s3.command, &xhci->op_regs->command);
733 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
734 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
735 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
736
737 /* FIXME should we lock to protect against freeing of interrupters */
738 for (i = 0; i < xhci->max_interrupters; i++) {
739 ir = xhci->interrupters[i];
740 if (!ir)
741 continue;
742
743 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
744 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
745 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
746 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
747 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
748 }
749 }
750
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
752 {
753 u64 val_64;
754
755 /* step 2: initialize command ring buffer */
756 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
757 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
758 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
759 xhci->cmd_ring->dequeue) &
760 (u64) ~CMD_RING_RSVD_BITS) |
761 xhci->cmd_ring->cycle_state;
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "// Setting command ring address to 0x%llx",
764 (long unsigned long) val_64);
765 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
766 }
767
768 /*
769 * The whole command ring must be cleared to zero when we suspend the host.
770 *
771 * The host doesn't save the command ring pointer in the suspend well, so we
772 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
773 * aligned, because of the reserved bits in the command ring dequeue pointer
774 * register. Therefore, we can't just set the dequeue pointer back in the
775 * middle of the ring (TRBs are 16-byte aligned).
776 */
xhci_clear_command_ring(struct xhci_hcd * xhci)777 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
778 {
779 struct xhci_ring *ring;
780 struct xhci_segment *seg;
781
782 ring = xhci->cmd_ring;
783 xhci_for_each_ring_seg(ring->first_seg, seg) {
784 /* erase all TRBs before the link */
785 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
786 /* clear link cycle bit */
787 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
788 }
789
790 xhci_initialize_ring_info(ring);
791 /*
792 * Reset the hardware dequeue pointer.
793 * Yes, this will need to be re-written after resume, but we're paranoid
794 * and want to make sure the hardware doesn't access bogus memory
795 * because, say, the BIOS or an SMI started the host without changing
796 * the command ring pointers.
797 */
798 xhci_set_cmd_ring_deq(xhci);
799 }
800
801 /*
802 * Disable port wake bits if do_wakeup is not set.
803 *
804 * Also clear a possible internal port wake state left hanging for ports that
805 * detected termination but never successfully enumerated (trained to 0U).
806 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
807 * at enumeration clears this wake, force one here as well for unconnected ports
808 */
809
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
811 struct xhci_hub *rhub,
812 bool do_wakeup)
813 {
814 unsigned long flags;
815 u32 t1, t2, portsc;
816 int i;
817
818 spin_lock_irqsave(&xhci->lock, flags);
819
820 for (i = 0; i < rhub->num_ports; i++) {
821 portsc = readl(rhub->ports[i]->addr);
822 t1 = xhci_port_state_to_neutral(portsc);
823 t2 = t1;
824
825 /* clear wake bits if do_wake is not set */
826 if (!do_wakeup)
827 t2 &= ~PORT_WAKE_BITS;
828
829 /* Don't touch csc bit if connected or connect change is set */
830 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
831 t2 |= PORT_CSC;
832
833 if (t1 != t2) {
834 writel(t2, rhub->ports[i]->addr);
835 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
836 rhub->hcd->self.busnum, i + 1, portsc, t2);
837 }
838 }
839 spin_unlock_irqrestore(&xhci->lock, flags);
840 }
841
xhci_pending_portevent(struct xhci_hcd * xhci)842 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
843 {
844 struct xhci_port **ports;
845 int port_index;
846 u32 status;
847 u32 portsc;
848
849 status = readl(&xhci->op_regs->status);
850 if (status & STS_EINT)
851 return true;
852 /*
853 * Checking STS_EINT is not enough as there is a lag between a change
854 * bit being set and the Port Status Change Event that it generated
855 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
856 */
857
858 port_index = xhci->usb2_rhub.num_ports;
859 ports = xhci->usb2_rhub.ports;
860 while (port_index--) {
861 portsc = readl(ports[port_index]->addr);
862 if (portsc & PORT_CHANGE_MASK ||
863 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
864 return true;
865 }
866 port_index = xhci->usb3_rhub.num_ports;
867 ports = xhci->usb3_rhub.ports;
868 while (port_index--) {
869 portsc = readl(ports[port_index]->addr);
870 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
871 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
872 return true;
873 }
874 return false;
875 }
876
877 /*
878 * Stop HC (not bus-specific)
879 *
880 * This is called when the machine transition into S3/S4 mode.
881 *
882 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
884 {
885 int rc = 0;
886 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
887 struct usb_hcd *hcd = xhci_to_hcd(xhci);
888 u32 command;
889 u32 res;
890
891 if (!hcd->state)
892 return 0;
893
894 if (hcd->state != HC_STATE_SUSPENDED ||
895 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
896 return -EINVAL;
897
898 /* Clear root port wake on bits if wakeup not allowed. */
899 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
900 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
901
902 if (!HCD_HW_ACCESSIBLE(hcd))
903 return 0;
904
905 xhci_dbc_suspend(xhci);
906
907 /* Don't poll the roothubs on bus suspend. */
908 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
909 __func__, hcd->self.busnum);
910 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
911 del_timer_sync(&hcd->rh_timer);
912 if (xhci->shared_hcd) {
913 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
914 del_timer_sync(&xhci->shared_hcd->rh_timer);
915 }
916
917 if (xhci->quirks & XHCI_SUSPEND_DELAY)
918 usleep_range(1000, 1500);
919
920 spin_lock_irq(&xhci->lock);
921 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
922 if (xhci->shared_hcd)
923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924 /* step 1: stop endpoint */
925 /* skipped assuming that port suspend has done */
926
927 /* step 2: clear Run/Stop bit */
928 command = readl(&xhci->op_regs->command);
929 command &= ~CMD_RUN;
930 writel(command, &xhci->op_regs->command);
931
932 /* Some chips from Fresco Logic need an extraordinary delay */
933 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934
935 if (xhci_handshake(&xhci->op_regs->status,
936 STS_HALT, STS_HALT, delay)) {
937 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938 spin_unlock_irq(&xhci->lock);
939 return -ETIMEDOUT;
940 }
941 xhci_clear_command_ring(xhci);
942
943 /* step 3: save registers */
944 xhci_save_registers(xhci);
945
946 /* step 4: set CSS flag */
947 command = readl(&xhci->op_regs->command);
948 command |= CMD_CSS;
949 writel(command, &xhci->op_regs->command);
950 xhci->broken_suspend = 0;
951 if (xhci_handshake(&xhci->op_regs->status,
952 STS_SAVE, 0, 20 * 1000)) {
953 /*
954 * AMD SNPS xHC 3.0 occasionally does not clear the
955 * SSS bit of USBSTS and when driver tries to poll
956 * to see if the xHC clears BIT(8) which never happens
957 * and driver assumes that controller is not responding
958 * and times out. To workaround this, its good to check
959 * if SRE and HCE bits are not set (as per xhci
960 * Section 5.4.2) and bypass the timeout.
961 */
962 res = readl(&xhci->op_regs->status);
963 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
964 (((res & STS_SRE) == 0) &&
965 ((res & STS_HCE) == 0))) {
966 xhci->broken_suspend = 1;
967 } else {
968 xhci_warn(xhci, "WARN: xHC save state timeout\n");
969 spin_unlock_irq(&xhci->lock);
970 return -ETIMEDOUT;
971 }
972 }
973 spin_unlock_irq(&xhci->lock);
974
975 /*
976 * Deleting Compliance Mode Recovery Timer because the xHCI Host
977 * is about to be suspended.
978 */
979 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
980 (!(xhci_all_ports_seen_u0(xhci)))) {
981 del_timer_sync(&xhci->comp_mode_recovery_timer);
982 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
983 "%s: compliance mode recovery timer deleted",
984 __func__);
985 }
986
987 return rc;
988 }
989 EXPORT_SYMBOL_GPL(xhci_suspend);
990
991 /*
992 * start xHC (not bus-specific)
993 *
994 * This is called when the machine transition from S3/S4 mode.
995 *
996 */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)997 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
998 {
999 u32 command, temp = 0;
1000 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1001 int retval = 0;
1002 bool comp_timer_running = false;
1003 bool pending_portevent = false;
1004 bool suspended_usb3_devs = false;
1005
1006 if (!hcd->state)
1007 return 0;
1008
1009 /* Wait a bit if either of the roothubs need to settle from the
1010 * transition into bus suspend.
1011 */
1012
1013 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1014 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1015 msleep(100);
1016
1017 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1018 if (xhci->shared_hcd)
1019 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1020
1021 spin_lock_irq(&xhci->lock);
1022
1023 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1024 power_lost = true;
1025
1026 if (!power_lost) {
1027 /*
1028 * Some controllers might lose power during suspend, so wait
1029 * for controller not ready bit to clear, just as in xHC init.
1030 */
1031 retval = xhci_handshake(&xhci->op_regs->status,
1032 STS_CNR, 0, 10 * 1000 * 1000);
1033 if (retval) {
1034 xhci_warn(xhci, "Controller not ready at resume %d\n",
1035 retval);
1036 spin_unlock_irq(&xhci->lock);
1037 return retval;
1038 }
1039 /* step 1: restore register */
1040 xhci_restore_registers(xhci);
1041 /* step 2: initialize command ring buffer */
1042 xhci_set_cmd_ring_deq(xhci);
1043 /* step 3: restore state and start state*/
1044 /* step 3: set CRS flag */
1045 command = readl(&xhci->op_regs->command);
1046 command |= CMD_CRS;
1047 writel(command, &xhci->op_regs->command);
1048 /*
1049 * Some controllers take up to 55+ ms to complete the controller
1050 * restore so setting the timeout to 100ms. Xhci specification
1051 * doesn't mention any timeout value.
1052 */
1053 if (xhci_handshake(&xhci->op_regs->status,
1054 STS_RESTORE, 0, 100 * 1000)) {
1055 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1056 spin_unlock_irq(&xhci->lock);
1057 return -ETIMEDOUT;
1058 }
1059 }
1060
1061 temp = readl(&xhci->op_regs->status);
1062
1063 /* re-initialize the HC on Restore Error, or Host Controller Error */
1064 if ((temp & (STS_SRE | STS_HCE)) &&
1065 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1066 if (!power_lost)
1067 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1068 power_lost = true;
1069 }
1070
1071 if (power_lost) {
1072 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1073 !(xhci_all_ports_seen_u0(xhci))) {
1074 del_timer_sync(&xhci->comp_mode_recovery_timer);
1075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1076 "Compliance Mode Recovery Timer deleted!");
1077 }
1078
1079 /* Let the USB core know _both_ roothubs lost power. */
1080 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1081 if (xhci->shared_hcd)
1082 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1083
1084 xhci_dbg(xhci, "Stop HCD\n");
1085 xhci_halt(xhci);
1086 xhci_zero_64b_regs(xhci);
1087 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1088 spin_unlock_irq(&xhci->lock);
1089 if (retval)
1090 return retval;
1091
1092 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1093 temp = readl(&xhci->op_regs->status);
1094 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1095 xhci_disable_interrupter(xhci->interrupters[0]);
1096
1097 xhci_dbg(xhci, "cleaning up memory\n");
1098 xhci_mem_cleanup(xhci);
1099 xhci_debugfs_exit(xhci);
1100 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1101 readl(&xhci->op_regs->status));
1102
1103 /* USB core calls the PCI reinit and start functions twice:
1104 * first with the primary HCD, and then with the secondary HCD.
1105 * If we don't do the same, the host will never be started.
1106 */
1107 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1108 retval = xhci_init(hcd);
1109 if (retval)
1110 return retval;
1111 comp_timer_running = true;
1112
1113 xhci_dbg(xhci, "Start the primary HCD\n");
1114 retval = xhci_run(hcd);
1115 if (!retval && xhci->shared_hcd) {
1116 xhci_dbg(xhci, "Start the secondary HCD\n");
1117 retval = xhci_run(xhci->shared_hcd);
1118 }
1119 if (retval)
1120 return retval;
1121 /*
1122 * Resume roothubs unconditionally as PORTSC change bits are not
1123 * immediately visible after xHC reset
1124 */
1125 hcd->state = HC_STATE_SUSPENDED;
1126
1127 if (xhci->shared_hcd) {
1128 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1129 usb_hcd_resume_root_hub(xhci->shared_hcd);
1130 }
1131 usb_hcd_resume_root_hub(hcd);
1132
1133 goto done;
1134 }
1135
1136 /* step 4: set Run/Stop bit */
1137 command = readl(&xhci->op_regs->command);
1138 command |= CMD_RUN;
1139 writel(command, &xhci->op_regs->command);
1140 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1141 0, 250 * 1000);
1142
1143 /* step 5: walk topology and initialize portsc,
1144 * portpmsc and portli
1145 */
1146 /* this is done in bus_resume */
1147
1148 /* step 6: restart each of the previously
1149 * Running endpoints by ringing their doorbells
1150 */
1151
1152 spin_unlock_irq(&xhci->lock);
1153
1154 xhci_dbc_resume(xhci);
1155
1156 if (retval == 0) {
1157 /*
1158 * Resume roothubs only if there are pending events.
1159 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160 * the first wake signalling failed, give it that chance if
1161 * there are suspended USB 3 devices.
1162 */
1163 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164 xhci->usb3_rhub.bus_state.bus_suspended)
1165 suspended_usb3_devs = true;
1166
1167 pending_portevent = xhci_pending_portevent(xhci);
1168
1169 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1170 msleep(120);
1171 pending_portevent = xhci_pending_portevent(xhci);
1172 }
1173
1174 if (pending_portevent) {
1175 if (xhci->shared_hcd)
1176 usb_hcd_resume_root_hub(xhci->shared_hcd);
1177 usb_hcd_resume_root_hub(hcd);
1178 }
1179 }
1180 done:
1181 /*
1182 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183 * be re-initialized Always after a system resume. Ports are subject
1184 * to suffer the Compliance Mode issue again. It doesn't matter if
1185 * ports have entered previously to U0 before system's suspension.
1186 */
1187 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188 compliance_mode_recovery_timer_init(xhci);
1189
1190 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192
1193 /* Re-enable port polling. */
1194 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195 __func__, hcd->self.busnum);
1196 if (xhci->shared_hcd) {
1197 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198 usb_hcd_poll_rh_status(xhci->shared_hcd);
1199 }
1200 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201 usb_hcd_poll_rh_status(hcd);
1202
1203 return retval;
1204 }
1205 EXPORT_SYMBOL_GPL(xhci_resume);
1206 #endif /* CONFIG_PM */
1207
1208 /*-------------------------------------------------------------------------*/
1209
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1210 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211 {
1212 void *temp;
1213 int ret = 0;
1214 unsigned int buf_len;
1215 enum dma_data_direction dir;
1216
1217 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218 buf_len = urb->transfer_buffer_length;
1219
1220 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221 dev_to_node(hcd->self.sysdev));
1222 if (!temp)
1223 return -ENOMEM;
1224
1225 if (usb_urb_dir_out(urb))
1226 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227 temp, buf_len, 0);
1228
1229 urb->transfer_buffer = temp;
1230 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231 urb->transfer_buffer,
1232 urb->transfer_buffer_length,
1233 dir);
1234
1235 if (dma_mapping_error(hcd->self.sysdev,
1236 urb->transfer_dma)) {
1237 ret = -EAGAIN;
1238 kfree(temp);
1239 } else {
1240 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241 }
1242
1243 return ret;
1244 }
1245
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1246 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247 struct urb *urb)
1248 {
1249 bool ret = false;
1250 unsigned int i;
1251 unsigned int len = 0;
1252 unsigned int trb_size;
1253 unsigned int max_pkt;
1254 struct scatterlist *sg;
1255 struct scatterlist *tail_sg;
1256
1257 tail_sg = urb->sg;
1258 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259
1260 if (!urb->num_sgs)
1261 return ret;
1262
1263 if (urb->dev->speed >= USB_SPEED_SUPER)
1264 trb_size = TRB_CACHE_SIZE_SS;
1265 else
1266 trb_size = TRB_CACHE_SIZE_HS;
1267
1268 if (urb->transfer_buffer_length != 0 &&
1269 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271 len = len + sg->length;
1272 if (i > trb_size - 2) {
1273 len = len - tail_sg->length;
1274 if (len < max_pkt) {
1275 ret = true;
1276 break;
1277 }
1278
1279 tail_sg = sg_next(tail_sg);
1280 }
1281 }
1282 }
1283 return ret;
1284 }
1285
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1286 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287 {
1288 unsigned int len;
1289 unsigned int buf_len;
1290 enum dma_data_direction dir;
1291
1292 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293
1294 buf_len = urb->transfer_buffer_length;
1295
1296 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298 dma_unmap_single(hcd->self.sysdev,
1299 urb->transfer_dma,
1300 urb->transfer_buffer_length,
1301 dir);
1302
1303 if (usb_urb_dir_in(urb)) {
1304 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305 urb->transfer_buffer,
1306 buf_len,
1307 0);
1308 if (len != buf_len) {
1309 xhci_dbg(hcd_to_xhci(hcd),
1310 "Copy from tmp buf to urb sg list failed\n");
1311 urb->actual_length = len;
1312 }
1313 }
1314 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315 kfree(urb->transfer_buffer);
1316 urb->transfer_buffer = NULL;
1317 }
1318
1319 /*
1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321 * we'll copy the actual data into the TRB address register. This is limited to
1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1325 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326 gfp_t mem_flags)
1327 {
1328 struct xhci_hcd *xhci;
1329
1330 xhci = hcd_to_xhci(hcd);
1331
1332 if (xhci_urb_suitable_for_idt(urb))
1333 return 0;
1334
1335 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336 if (xhci_urb_temp_buffer_required(hcd, urb))
1337 return xhci_map_temp_buffer(hcd, urb);
1338 }
1339 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340 }
1341
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1342 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343 {
1344 struct xhci_hcd *xhci;
1345 bool unmap_temp_buf = false;
1346
1347 xhci = hcd_to_xhci(hcd);
1348
1349 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350 unmap_temp_buf = true;
1351
1352 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353 xhci_unmap_temp_buf(hcd, urb);
1354 else
1355 usb_hcd_unmap_urb_for_dma(hcd, urb);
1356 }
1357
1358 /**
1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1361 * value to right shift 1 for the bitmask.
1362 *
1363 * Index = (epnum * 2) + direction - 1,
1364 * where direction = 0 for OUT, 1 for IN.
1365 * For control endpoints, the IN index is used (OUT index is unused), so
1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1368 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369 {
1370 unsigned int index;
1371 if (usb_endpoint_xfer_control(desc))
1372 index = (unsigned int) (usb_endpoint_num(desc)*2);
1373 else
1374 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376 return index;
1377 }
1378 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379
1380 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381 * address from the XHCI endpoint index.
1382 */
xhci_get_endpoint_address(unsigned int ep_index)1383 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384 {
1385 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387 return direction | number;
1388 }
1389
1390 /* Find the flag for this endpoint (for use in the control context). Use the
1391 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1392 * bit 1, etc.
1393 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1394 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395 {
1396 return 1 << (xhci_get_endpoint_index(desc) + 1);
1397 }
1398
1399 /* Compute the last valid endpoint context index. Basically, this is the
1400 * endpoint index plus one. For slot contexts with more than valid endpoint,
1401 * we find the most significant bit set in the added contexts flags.
1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404 */
xhci_last_valid_endpoint(u32 added_ctxs)1405 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406 {
1407 return fls(added_ctxs) - 1;
1408 }
1409
1410 /* Returns 1 if the arguments are OK;
1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1413 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415 const char *func) {
1416 struct xhci_hcd *xhci;
1417 struct xhci_virt_device *virt_dev;
1418
1419 if (!hcd || (check_ep && !ep) || !udev) {
1420 pr_debug("xHCI %s called with invalid args\n", func);
1421 return -EINVAL;
1422 }
1423 if (!udev->parent) {
1424 pr_debug("xHCI %s called for root hub\n", func);
1425 return 0;
1426 }
1427
1428 xhci = hcd_to_xhci(hcd);
1429 if (check_virt_dev) {
1430 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432 func);
1433 return -EINVAL;
1434 }
1435
1436 virt_dev = xhci->devs[udev->slot_id];
1437 if (virt_dev->udev != udev) {
1438 xhci_dbg(xhci, "xHCI %s called with udev and "
1439 "virt_dev does not match\n", func);
1440 return -EINVAL;
1441 }
1442 }
1443
1444 if (xhci->xhc_state & XHCI_STATE_HALTED)
1445 return -ENODEV;
1446
1447 return 1;
1448 }
1449
1450 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451 struct usb_device *udev, struct xhci_command *command,
1452 bool ctx_change, bool must_succeed);
1453
1454 /*
1455 * Full speed devices may have a max packet size greater than 8 bytes, but the
1456 * USB core doesn't know that until it reads the first 8 bytes of the
1457 * descriptor. If the usb_device's max packet size changes after that point,
1458 * we need to issue an evaluate context command and wait on it.
1459 */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1460 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1461 {
1462 struct xhci_input_control_ctx *ctrl_ctx;
1463 struct xhci_ep_ctx *ep_ctx;
1464 struct xhci_command *command;
1465 int max_packet_size;
1466 int hw_max_packet_size;
1467 int ret = 0;
1468
1469 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1470 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472
1473 if (hw_max_packet_size == max_packet_size)
1474 return 0;
1475
1476 switch (max_packet_size) {
1477 case 8: case 16: case 32: case 64: case 9:
1478 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1479 "Max Packet Size for ep 0 changed.");
1480 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1481 "Max packet size in usb_device = %d",
1482 max_packet_size);
1483 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1484 "Max packet size in xHCI HW = %d",
1485 hw_max_packet_size);
1486 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1487 "Issuing evaluate context command.");
1488
1489 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1490 if (!command)
1491 return -ENOMEM;
1492
1493 command->in_ctx = vdev->in_ctx;
1494 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495 if (!ctrl_ctx) {
1496 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497 __func__);
1498 ret = -ENOMEM;
1499 break;
1500 }
1501 /* Set up the modified control endpoint 0 */
1502 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1503
1504 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508
1509 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510 ctrl_ctx->drop_flags = 0;
1511
1512 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513 true, false);
1514 /* Clean up the input context for later use by bandwidth functions */
1515 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516 break;
1517 default:
1518 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519 max_packet_size);
1520 return -EINVAL;
1521 }
1522
1523 kfree(command->completion);
1524 kfree(command);
1525
1526 return ret;
1527 }
1528
1529 /*
1530 * non-error returns are a promise to giveback() the urb later
1531 * we drop ownership so next owner (or urb unlink) can get it
1532 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1533 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534 {
1535 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1536 unsigned long flags;
1537 int ret = 0;
1538 unsigned int slot_id, ep_index;
1539 unsigned int *ep_state;
1540 struct urb_priv *urb_priv;
1541 int num_tds;
1542
1543 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544
1545 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546 num_tds = urb->number_of_packets;
1547 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548 urb->transfer_buffer_length > 0 &&
1549 urb->transfer_flags & URB_ZERO_PACKET &&
1550 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551 num_tds = 2;
1552 else
1553 num_tds = 1;
1554
1555 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1556 if (!urb_priv)
1557 return -ENOMEM;
1558
1559 urb_priv->num_tds = num_tds;
1560 urb_priv->num_tds_done = 0;
1561 urb->hcpriv = urb_priv;
1562
1563 trace_xhci_urb_enqueue(urb);
1564
1565 spin_lock_irqsave(&xhci->lock, flags);
1566
1567 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568 true, true, __func__);
1569 if (ret <= 0) {
1570 ret = ret ? ret : -EINVAL;
1571 goto free_priv;
1572 }
1573
1574 slot_id = urb->dev->slot_id;
1575
1576 if (!HCD_HW_ACCESSIBLE(hcd)) {
1577 ret = -ESHUTDOWN;
1578 goto free_priv;
1579 }
1580
1581 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583 ret = -ENODEV;
1584 goto free_priv;
1585 }
1586
1587 if (xhci->xhc_state & XHCI_STATE_DYING) {
1588 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589 urb->ep->desc.bEndpointAddress, urb);
1590 ret = -ESHUTDOWN;
1591 goto free_priv;
1592 }
1593
1594 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595
1596 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598 *ep_state);
1599 ret = -EINVAL;
1600 goto free_priv;
1601 }
1602 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604 ret = -EINVAL;
1605 goto free_priv;
1606 }
1607
1608 /* Class driver might not be aware ep halted due to async URB giveback */
1609 if (*ep_state & EP_STALLED)
1610 dev_dbg(&urb->dev->dev, "URB %p queued before clearing halt\n",
1611 urb);
1612
1613 switch (usb_endpoint_type(&urb->ep->desc)) {
1614
1615 case USB_ENDPOINT_XFER_CONTROL:
1616 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1617 slot_id, ep_index);
1618 break;
1619 case USB_ENDPOINT_XFER_BULK:
1620 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1621 slot_id, ep_index);
1622 break;
1623 case USB_ENDPOINT_XFER_INT:
1624 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1625 slot_id, ep_index);
1626 break;
1627 case USB_ENDPOINT_XFER_ISOC:
1628 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1629 slot_id, ep_index);
1630 }
1631
1632 if (ret) {
1633 free_priv:
1634 xhci_urb_free_priv(urb_priv);
1635 urb->hcpriv = NULL;
1636 }
1637 spin_unlock_irqrestore(&xhci->lock, flags);
1638 return ret;
1639 }
1640
1641 /*
1642 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1643 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1644 * should pick up where it left off in the TD, unless a Set Transfer Ring
1645 * Dequeue Pointer is issued.
1646 *
1647 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1648 * the ring. Since the ring is a contiguous structure, they can't be physically
1649 * removed. Instead, there are two options:
1650 *
1651 * 1) If the HC is in the middle of processing the URB to be canceled, we
1652 * simply move the ring's dequeue pointer past those TRBs using the Set
1653 * Transfer Ring Dequeue Pointer command. This will be the common case,
1654 * when drivers timeout on the last submitted URB and attempt to cancel.
1655 *
1656 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1657 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1658 * HC will need to invalidate the any TRBs it has cached after the stop
1659 * endpoint command, as noted in the xHCI 0.95 errata.
1660 *
1661 * 3) The TD may have completed by the time the Stop Endpoint Command
1662 * completes, so software needs to handle that case too.
1663 *
1664 * This function should protect against the TD enqueueing code ringing the
1665 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1666 * It also needs to account for multiple cancellations on happening at the same
1667 * time for the same endpoint.
1668 *
1669 * Note that this function can be called in any context, or so says
1670 * usb_hcd_unlink_urb()
1671 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1672 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1673 {
1674 unsigned long flags;
1675 int ret, i;
1676 u32 temp;
1677 struct xhci_hcd *xhci;
1678 struct urb_priv *urb_priv;
1679 struct xhci_td *td;
1680 unsigned int ep_index;
1681 struct xhci_ring *ep_ring;
1682 struct xhci_virt_ep *ep;
1683 struct xhci_command *command;
1684 struct xhci_virt_device *vdev;
1685
1686 xhci = hcd_to_xhci(hcd);
1687 spin_lock_irqsave(&xhci->lock, flags);
1688
1689 trace_xhci_urb_dequeue(urb);
1690
1691 /* Make sure the URB hasn't completed or been unlinked already */
1692 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1693 if (ret)
1694 goto done;
1695
1696 /* give back URB now if we can't queue it for cancel */
1697 vdev = xhci->devs[urb->dev->slot_id];
1698 urb_priv = urb->hcpriv;
1699 if (!vdev || !urb_priv)
1700 goto err_giveback;
1701
1702 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1703 ep = &vdev->eps[ep_index];
1704 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1705 if (!ep || !ep_ring)
1706 goto err_giveback;
1707
1708 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1709 temp = readl(&xhci->op_regs->status);
1710 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1711 xhci_hc_died(xhci);
1712 goto done;
1713 }
1714
1715 /*
1716 * check ring is not re-allocated since URB was enqueued. If it is, then
1717 * make sure none of the ring related pointers in this URB private data
1718 * are touched, such as td_list, otherwise we overwrite freed data
1719 */
1720 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1721 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1722 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1723 td = &urb_priv->td[i];
1724 if (!list_empty(&td->cancelled_td_list))
1725 list_del_init(&td->cancelled_td_list);
1726 }
1727 goto err_giveback;
1728 }
1729
1730 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1731 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1732 "HC halted, freeing TD manually.");
1733 for (i = urb_priv->num_tds_done;
1734 i < urb_priv->num_tds;
1735 i++) {
1736 td = &urb_priv->td[i];
1737 if (!list_empty(&td->td_list))
1738 list_del_init(&td->td_list);
1739 if (!list_empty(&td->cancelled_td_list))
1740 list_del_init(&td->cancelled_td_list);
1741 }
1742 goto err_giveback;
1743 }
1744
1745 i = urb_priv->num_tds_done;
1746 if (i < urb_priv->num_tds)
1747 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1748 "Cancel URB %p, dev %s, ep 0x%x, "
1749 "starting at offset 0x%llx",
1750 urb, urb->dev->devpath,
1751 urb->ep->desc.bEndpointAddress,
1752 (unsigned long long) xhci_trb_virt_to_dma(
1753 urb_priv->td[i].start_seg,
1754 urb_priv->td[i].start_trb));
1755
1756 for (; i < urb_priv->num_tds; i++) {
1757 td = &urb_priv->td[i];
1758 /* TD can already be on cancelled list if ep halted on it */
1759 if (list_empty(&td->cancelled_td_list)) {
1760 td->cancel_status = TD_DIRTY;
1761 list_add_tail(&td->cancelled_td_list,
1762 &ep->cancelled_td_list);
1763 }
1764 }
1765
1766 /* These completion handlers will sort out cancelled TDs for us */
1767 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1768 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1769 urb->dev->slot_id, ep_index, ep->ep_state);
1770 goto done;
1771 }
1772
1773 /* In these cases no commands are pending but the endpoint is stopped */
1774 if (ep->ep_state & (EP_CLEARING_TT | EP_STALLED)) {
1775 /* and cancelled TDs can be given back right away */
1776 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1777 urb->dev->slot_id, ep_index, ep->ep_state);
1778 xhci_process_cancelled_tds(ep);
1779 } else {
1780 /* Otherwise, queue a new Stop Endpoint command */
1781 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1782 if (!command) {
1783 ret = -ENOMEM;
1784 goto done;
1785 }
1786 ep->stop_time = jiffies;
1787 ep->ep_state |= EP_STOP_CMD_PENDING;
1788 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1789 ep_index, 0);
1790 xhci_ring_cmd_db(xhci);
1791 }
1792 done:
1793 spin_unlock_irqrestore(&xhci->lock, flags);
1794 return ret;
1795
1796 err_giveback:
1797 if (urb_priv)
1798 xhci_urb_free_priv(urb_priv);
1799 usb_hcd_unlink_urb_from_ep(hcd, urb);
1800 spin_unlock_irqrestore(&xhci->lock, flags);
1801 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1802 return ret;
1803 }
1804
1805 /* Drop an endpoint from a new bandwidth configuration for this device.
1806 * Only one call to this function is allowed per endpoint before
1807 * check_bandwidth() or reset_bandwidth() must be called.
1808 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1809 * add the endpoint to the schedule with possibly new parameters denoted by a
1810 * different endpoint descriptor in usb_host_endpoint.
1811 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1812 * not allowed.
1813 *
1814 * The USB core will not allow URBs to be queued to an endpoint that is being
1815 * disabled, so there's no need for mutual exclusion to protect
1816 * the xhci->devs[slot_id] structure.
1817 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1818 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1819 struct usb_host_endpoint *ep)
1820 {
1821 struct xhci_hcd *xhci;
1822 struct xhci_container_ctx *in_ctx, *out_ctx;
1823 struct xhci_input_control_ctx *ctrl_ctx;
1824 unsigned int ep_index;
1825 struct xhci_ep_ctx *ep_ctx;
1826 u32 drop_flag;
1827 u32 new_add_flags, new_drop_flags;
1828 int ret;
1829
1830 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831 if (ret <= 0)
1832 return ret;
1833 xhci = hcd_to_xhci(hcd);
1834 if (xhci->xhc_state & XHCI_STATE_DYING)
1835 return -ENODEV;
1836
1837 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1838 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1839 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1840 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1841 __func__, drop_flag);
1842 return 0;
1843 }
1844
1845 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1846 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1847 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1848 if (!ctrl_ctx) {
1849 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1850 __func__);
1851 return 0;
1852 }
1853
1854 ep_index = xhci_get_endpoint_index(&ep->desc);
1855 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1856 /* If the HC already knows the endpoint is disabled,
1857 * or the HCD has noted it is disabled, ignore this request
1858 */
1859 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1860 le32_to_cpu(ctrl_ctx->drop_flags) &
1861 xhci_get_endpoint_flag(&ep->desc)) {
1862 /* Do not warn when called after a usb_device_reset */
1863 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1864 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1865 __func__, ep);
1866 return 0;
1867 }
1868
1869 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1870 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1871
1872 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1873 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1874
1875 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1876
1877 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1878
1879 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1880 (unsigned int) ep->desc.bEndpointAddress,
1881 udev->slot_id,
1882 (unsigned int) new_drop_flags,
1883 (unsigned int) new_add_flags);
1884 return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1887
1888 /* Add an endpoint to a new possible bandwidth configuration for this device.
1889 * Only one call to this function is allowed per endpoint before
1890 * check_bandwidth() or reset_bandwidth() must be called.
1891 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1892 * add the endpoint to the schedule with possibly new parameters denoted by a
1893 * different endpoint descriptor in usb_host_endpoint.
1894 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1895 * not allowed.
1896 *
1897 * The USB core will not allow URBs to be queued to an endpoint until the
1898 * configuration or alt setting is installed in the device, so there's no need
1899 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1900 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1901 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1902 struct usb_host_endpoint *ep)
1903 {
1904 struct xhci_hcd *xhci;
1905 struct xhci_container_ctx *in_ctx;
1906 unsigned int ep_index;
1907 struct xhci_input_control_ctx *ctrl_ctx;
1908 struct xhci_ep_ctx *ep_ctx;
1909 u32 added_ctxs;
1910 u32 new_add_flags, new_drop_flags;
1911 struct xhci_virt_device *virt_dev;
1912 int ret = 0;
1913
1914 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1915 if (ret <= 0) {
1916 /* So we won't queue a reset ep command for a root hub */
1917 ep->hcpriv = NULL;
1918 return ret;
1919 }
1920 xhci = hcd_to_xhci(hcd);
1921 if (xhci->xhc_state & XHCI_STATE_DYING)
1922 return -ENODEV;
1923
1924 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1925 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1926 /* FIXME when we have to issue an evaluate endpoint command to
1927 * deal with ep0 max packet size changing once we get the
1928 * descriptors
1929 */
1930 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1931 __func__, added_ctxs);
1932 return 0;
1933 }
1934
1935 virt_dev = xhci->devs[udev->slot_id];
1936 in_ctx = virt_dev->in_ctx;
1937 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1938 if (!ctrl_ctx) {
1939 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1940 __func__);
1941 return 0;
1942 }
1943
1944 ep_index = xhci_get_endpoint_index(&ep->desc);
1945 /* If this endpoint is already in use, and the upper layers are trying
1946 * to add it again without dropping it, reject the addition.
1947 */
1948 if (virt_dev->eps[ep_index].ring &&
1949 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1950 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1951 "without dropping it.\n",
1952 (unsigned int) ep->desc.bEndpointAddress);
1953 return -EINVAL;
1954 }
1955
1956 /* If the HCD has already noted the endpoint is enabled,
1957 * ignore this request.
1958 */
1959 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1960 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1961 __func__, ep);
1962 return 0;
1963 }
1964
1965 /*
1966 * Configuration and alternate setting changes must be done in
1967 * process context, not interrupt context (or so documenation
1968 * for usb_set_interface() and usb_set_configuration() claim).
1969 */
1970 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1971 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1972 __func__, ep->desc.bEndpointAddress);
1973 return -ENOMEM;
1974 }
1975
1976 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1977 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1978
1979 /* If xhci_endpoint_disable() was called for this endpoint, but the
1980 * xHC hasn't been notified yet through the check_bandwidth() call,
1981 * this re-adds a new state for the endpoint from the new endpoint
1982 * descriptors. We must drop and re-add this endpoint, so we leave the
1983 * drop flags alone.
1984 */
1985 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1986
1987 /* Store the usb_device pointer for later use */
1988 ep->hcpriv = udev;
1989
1990 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1991 trace_xhci_add_endpoint(ep_ctx);
1992
1993 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1994 (unsigned int) ep->desc.bEndpointAddress,
1995 udev->slot_id,
1996 (unsigned int) new_drop_flags,
1997 (unsigned int) new_add_flags);
1998 return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2001
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2002 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2003 {
2004 struct xhci_input_control_ctx *ctrl_ctx;
2005 struct xhci_ep_ctx *ep_ctx;
2006 struct xhci_slot_ctx *slot_ctx;
2007 int i;
2008
2009 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2010 if (!ctrl_ctx) {
2011 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2012 __func__);
2013 return;
2014 }
2015
2016 /* When a device's add flag and drop flag are zero, any subsequent
2017 * configure endpoint command will leave that endpoint's state
2018 * untouched. Make sure we don't leave any old state in the input
2019 * endpoint contexts.
2020 */
2021 ctrl_ctx->drop_flags = 0;
2022 ctrl_ctx->add_flags = 0;
2023 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2024 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2025 /* Endpoint 0 is always valid */
2026 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2027 for (i = 1; i < 31; i++) {
2028 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2029 ep_ctx->ep_info = 0;
2030 ep_ctx->ep_info2 = 0;
2031 ep_ctx->deq = 0;
2032 ep_ctx->tx_info = 0;
2033 }
2034 }
2035
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2036 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2037 struct usb_device *udev, u32 *cmd_status)
2038 {
2039 int ret;
2040
2041 switch (*cmd_status) {
2042 case COMP_COMMAND_ABORTED:
2043 case COMP_COMMAND_RING_STOPPED:
2044 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2045 ret = -ETIME;
2046 break;
2047 case COMP_RESOURCE_ERROR:
2048 dev_warn(&udev->dev,
2049 "Not enough host controller resources for new device state.\n");
2050 ret = -ENOMEM;
2051 /* FIXME: can we allocate more resources for the HC? */
2052 break;
2053 case COMP_BANDWIDTH_ERROR:
2054 case COMP_SECONDARY_BANDWIDTH_ERROR:
2055 dev_warn(&udev->dev,
2056 "Not enough bandwidth for new device state.\n");
2057 ret = -ENOSPC;
2058 /* FIXME: can we go back to the old state? */
2059 break;
2060 case COMP_TRB_ERROR:
2061 /* the HCD set up something wrong */
2062 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2063 "add flag = 1, "
2064 "and endpoint is not disabled.\n");
2065 ret = -EINVAL;
2066 break;
2067 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2068 dev_warn(&udev->dev,
2069 "ERROR: Incompatible device for endpoint configure command.\n");
2070 ret = -ENODEV;
2071 break;
2072 case COMP_SUCCESS:
2073 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2074 "Successful Endpoint Configure command");
2075 ret = 0;
2076 break;
2077 default:
2078 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2079 *cmd_status);
2080 ret = -EINVAL;
2081 break;
2082 }
2083 return ret;
2084 }
2085
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2086 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2087 struct usb_device *udev, u32 *cmd_status)
2088 {
2089 int ret;
2090
2091 switch (*cmd_status) {
2092 case COMP_COMMAND_ABORTED:
2093 case COMP_COMMAND_RING_STOPPED:
2094 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2095 ret = -ETIME;
2096 break;
2097 case COMP_PARAMETER_ERROR:
2098 dev_warn(&udev->dev,
2099 "WARN: xHCI driver setup invalid evaluate context command.\n");
2100 ret = -EINVAL;
2101 break;
2102 case COMP_SLOT_NOT_ENABLED_ERROR:
2103 dev_warn(&udev->dev,
2104 "WARN: slot not enabled for evaluate context command.\n");
2105 ret = -EINVAL;
2106 break;
2107 case COMP_CONTEXT_STATE_ERROR:
2108 dev_warn(&udev->dev,
2109 "WARN: invalid context state for evaluate context command.\n");
2110 ret = -EINVAL;
2111 break;
2112 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2113 dev_warn(&udev->dev,
2114 "ERROR: Incompatible device for evaluate context command.\n");
2115 ret = -ENODEV;
2116 break;
2117 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2118 /* Max Exit Latency too large error */
2119 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2120 ret = -EINVAL;
2121 break;
2122 case COMP_SUCCESS:
2123 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2124 "Successful evaluate context command");
2125 ret = 0;
2126 break;
2127 default:
2128 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2129 *cmd_status);
2130 ret = -EINVAL;
2131 break;
2132 }
2133 return ret;
2134 }
2135
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2136 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2137 struct xhci_input_control_ctx *ctrl_ctx)
2138 {
2139 u32 valid_add_flags;
2140 u32 valid_drop_flags;
2141
2142 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2143 * (bit 1). The default control endpoint is added during the Address
2144 * Device command and is never removed until the slot is disabled.
2145 */
2146 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2147 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2148
2149 /* Use hweight32 to count the number of ones in the add flags, or
2150 * number of endpoints added. Don't count endpoints that are changed
2151 * (both added and dropped).
2152 */
2153 return hweight32(valid_add_flags) -
2154 hweight32(valid_add_flags & valid_drop_flags);
2155 }
2156
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2157 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2158 struct xhci_input_control_ctx *ctrl_ctx)
2159 {
2160 u32 valid_add_flags;
2161 u32 valid_drop_flags;
2162
2163 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2164 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2165
2166 return hweight32(valid_drop_flags) -
2167 hweight32(valid_add_flags & valid_drop_flags);
2168 }
2169
2170 /*
2171 * We need to reserve the new number of endpoints before the configure endpoint
2172 * command completes. We can't subtract the dropped endpoints from the number
2173 * of active endpoints until the command completes because we can oversubscribe
2174 * the host in this case:
2175 *
2176 * - the first configure endpoint command drops more endpoints than it adds
2177 * - a second configure endpoint command that adds more endpoints is queued
2178 * - the first configure endpoint command fails, so the config is unchanged
2179 * - the second command may succeed, even though there isn't enough resources
2180 *
2181 * Must be called with xhci->lock held.
2182 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2183 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2184 struct xhci_input_control_ctx *ctrl_ctx)
2185 {
2186 u32 added_eps;
2187
2188 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2189 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2190 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2191 "Not enough ep ctxs: "
2192 "%u active, need to add %u, limit is %u.",
2193 xhci->num_active_eps, added_eps,
2194 xhci->limit_active_eps);
2195 return -ENOMEM;
2196 }
2197 xhci->num_active_eps += added_eps;
2198 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2199 "Adding %u ep ctxs, %u now active.", added_eps,
2200 xhci->num_active_eps);
2201 return 0;
2202 }
2203
2204 /*
2205 * The configure endpoint was failed by the xHC for some other reason, so we
2206 * need to revert the resources that failed configuration would have used.
2207 *
2208 * Must be called with xhci->lock held.
2209 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2210 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2211 struct xhci_input_control_ctx *ctrl_ctx)
2212 {
2213 u32 num_failed_eps;
2214
2215 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2216 xhci->num_active_eps -= num_failed_eps;
2217 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2218 "Removing %u failed ep ctxs, %u now active.",
2219 num_failed_eps,
2220 xhci->num_active_eps);
2221 }
2222
2223 /*
2224 * Now that the command has completed, clean up the active endpoint count by
2225 * subtracting out the endpoints that were dropped (but not changed).
2226 *
2227 * Must be called with xhci->lock held.
2228 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2229 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2230 struct xhci_input_control_ctx *ctrl_ctx)
2231 {
2232 u32 num_dropped_eps;
2233
2234 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2235 xhci->num_active_eps -= num_dropped_eps;
2236 if (num_dropped_eps)
2237 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238 "Removing %u dropped ep ctxs, %u now active.",
2239 num_dropped_eps,
2240 xhci->num_active_eps);
2241 }
2242
xhci_get_block_size(struct usb_device * udev)2243 static unsigned int xhci_get_block_size(struct usb_device *udev)
2244 {
2245 switch (udev->speed) {
2246 case USB_SPEED_LOW:
2247 case USB_SPEED_FULL:
2248 return FS_BLOCK;
2249 case USB_SPEED_HIGH:
2250 return HS_BLOCK;
2251 case USB_SPEED_SUPER:
2252 case USB_SPEED_SUPER_PLUS:
2253 return SS_BLOCK;
2254 case USB_SPEED_UNKNOWN:
2255 default:
2256 /* Should never happen */
2257 return 1;
2258 }
2259 }
2260
2261 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2262 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2263 {
2264 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2265 return LS_OVERHEAD;
2266 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2267 return FS_OVERHEAD;
2268 return HS_OVERHEAD;
2269 }
2270
2271 /* If we are changing a LS/FS device under a HS hub,
2272 * make sure (if we are activating a new TT) that the HS bus has enough
2273 * bandwidth for this new TT.
2274 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2275 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2276 struct xhci_virt_device *virt_dev,
2277 int old_active_eps)
2278 {
2279 struct xhci_interval_bw_table *bw_table;
2280 struct xhci_tt_bw_info *tt_info;
2281
2282 /* Find the bandwidth table for the root port this TT is attached to. */
2283 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2284 tt_info = virt_dev->tt_info;
2285 /* If this TT already had active endpoints, the bandwidth for this TT
2286 * has already been added. Removing all periodic endpoints (and thus
2287 * making the TT enactive) will only decrease the bandwidth used.
2288 */
2289 if (old_active_eps)
2290 return 0;
2291 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2292 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2293 return -ENOMEM;
2294 return 0;
2295 }
2296 /* Not sure why we would have no new active endpoints...
2297 *
2298 * Maybe because of an Evaluate Context change for a hub update or a
2299 * control endpoint 0 max packet size change?
2300 * FIXME: skip the bandwidth calculation in that case.
2301 */
2302 return 0;
2303 }
2304
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2305 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2306 struct xhci_virt_device *virt_dev)
2307 {
2308 unsigned int bw_reserved;
2309
2310 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2311 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2312 return -ENOMEM;
2313
2314 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2315 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2316 return -ENOMEM;
2317
2318 return 0;
2319 }
2320
2321 /*
2322 * This algorithm is a very conservative estimate of the worst-case scheduling
2323 * scenario for any one interval. The hardware dynamically schedules the
2324 * packets, so we can't tell which microframe could be the limiting factor in
2325 * the bandwidth scheduling. This only takes into account periodic endpoints.
2326 *
2327 * Obviously, we can't solve an NP complete problem to find the minimum worst
2328 * case scenario. Instead, we come up with an estimate that is no less than
2329 * the worst case bandwidth used for any one microframe, but may be an
2330 * over-estimate.
2331 *
2332 * We walk the requirements for each endpoint by interval, starting with the
2333 * smallest interval, and place packets in the schedule where there is only one
2334 * possible way to schedule packets for that interval. In order to simplify
2335 * this algorithm, we record the largest max packet size for each interval, and
2336 * assume all packets will be that size.
2337 *
2338 * For interval 0, we obviously must schedule all packets for each interval.
2339 * The bandwidth for interval 0 is just the amount of data to be transmitted
2340 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2341 * the number of packets).
2342 *
2343 * For interval 1, we have two possible microframes to schedule those packets
2344 * in. For this algorithm, if we can schedule the same number of packets for
2345 * each possible scheduling opportunity (each microframe), we will do so. The
2346 * remaining number of packets will be saved to be transmitted in the gaps in
2347 * the next interval's scheduling sequence.
2348 *
2349 * As we move those remaining packets to be scheduled with interval 2 packets,
2350 * we have to double the number of remaining packets to transmit. This is
2351 * because the intervals are actually powers of 2, and we would be transmitting
2352 * the previous interval's packets twice in this interval. We also have to be
2353 * sure that when we look at the largest max packet size for this interval, we
2354 * also look at the largest max packet size for the remaining packets and take
2355 * the greater of the two.
2356 *
2357 * The algorithm continues to evenly distribute packets in each scheduling
2358 * opportunity, and push the remaining packets out, until we get to the last
2359 * interval. Then those packets and their associated overhead are just added
2360 * to the bandwidth used.
2361 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2362 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2363 struct xhci_virt_device *virt_dev,
2364 int old_active_eps)
2365 {
2366 unsigned int bw_reserved;
2367 unsigned int max_bandwidth;
2368 unsigned int bw_used;
2369 unsigned int block_size;
2370 struct xhci_interval_bw_table *bw_table;
2371 unsigned int packet_size = 0;
2372 unsigned int overhead = 0;
2373 unsigned int packets_transmitted = 0;
2374 unsigned int packets_remaining = 0;
2375 unsigned int i;
2376
2377 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2378 return xhci_check_ss_bw(xhci, virt_dev);
2379
2380 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2381 max_bandwidth = HS_BW_LIMIT;
2382 /* Convert percent of bus BW reserved to blocks reserved */
2383 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2384 } else {
2385 max_bandwidth = FS_BW_LIMIT;
2386 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2387 }
2388
2389 bw_table = virt_dev->bw_table;
2390 /* We need to translate the max packet size and max ESIT payloads into
2391 * the units the hardware uses.
2392 */
2393 block_size = xhci_get_block_size(virt_dev->udev);
2394
2395 /* If we are manipulating a LS/FS device under a HS hub, double check
2396 * that the HS bus has enough bandwidth if we are activing a new TT.
2397 */
2398 if (virt_dev->tt_info) {
2399 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2400 "Recalculating BW for rootport %u",
2401 virt_dev->rhub_port->hw_portnum + 1);
2402 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2403 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2404 "newly activated TT.\n");
2405 return -ENOMEM;
2406 }
2407 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2408 "Recalculating BW for TT slot %u port %u",
2409 virt_dev->tt_info->slot_id,
2410 virt_dev->tt_info->ttport);
2411 } else {
2412 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2413 "Recalculating BW for rootport %u",
2414 virt_dev->rhub_port->hw_portnum + 1);
2415 }
2416
2417 /* Add in how much bandwidth will be used for interval zero, or the
2418 * rounded max ESIT payload + number of packets * largest overhead.
2419 */
2420 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2421 bw_table->interval_bw[0].num_packets *
2422 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2423
2424 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2425 unsigned int bw_added;
2426 unsigned int largest_mps;
2427 unsigned int interval_overhead;
2428
2429 /*
2430 * How many packets could we transmit in this interval?
2431 * If packets didn't fit in the previous interval, we will need
2432 * to transmit that many packets twice within this interval.
2433 */
2434 packets_remaining = 2 * packets_remaining +
2435 bw_table->interval_bw[i].num_packets;
2436
2437 /* Find the largest max packet size of this or the previous
2438 * interval.
2439 */
2440 if (list_empty(&bw_table->interval_bw[i].endpoints))
2441 largest_mps = 0;
2442 else {
2443 struct xhci_virt_ep *virt_ep;
2444 struct list_head *ep_entry;
2445
2446 ep_entry = bw_table->interval_bw[i].endpoints.next;
2447 virt_ep = list_entry(ep_entry,
2448 struct xhci_virt_ep, bw_endpoint_list);
2449 /* Convert to blocks, rounding up */
2450 largest_mps = DIV_ROUND_UP(
2451 virt_ep->bw_info.max_packet_size,
2452 block_size);
2453 }
2454 if (largest_mps > packet_size)
2455 packet_size = largest_mps;
2456
2457 /* Use the larger overhead of this or the previous interval. */
2458 interval_overhead = xhci_get_largest_overhead(
2459 &bw_table->interval_bw[i]);
2460 if (interval_overhead > overhead)
2461 overhead = interval_overhead;
2462
2463 /* How many packets can we evenly distribute across
2464 * (1 << (i + 1)) possible scheduling opportunities?
2465 */
2466 packets_transmitted = packets_remaining >> (i + 1);
2467
2468 /* Add in the bandwidth used for those scheduled packets */
2469 bw_added = packets_transmitted * (overhead + packet_size);
2470
2471 /* How many packets do we have remaining to transmit? */
2472 packets_remaining = packets_remaining % (1 << (i + 1));
2473
2474 /* What largest max packet size should those packets have? */
2475 /* If we've transmitted all packets, don't carry over the
2476 * largest packet size.
2477 */
2478 if (packets_remaining == 0) {
2479 packet_size = 0;
2480 overhead = 0;
2481 } else if (packets_transmitted > 0) {
2482 /* Otherwise if we do have remaining packets, and we've
2483 * scheduled some packets in this interval, take the
2484 * largest max packet size from endpoints with this
2485 * interval.
2486 */
2487 packet_size = largest_mps;
2488 overhead = interval_overhead;
2489 }
2490 /* Otherwise carry over packet_size and overhead from the last
2491 * time we had a remainder.
2492 */
2493 bw_used += bw_added;
2494 if (bw_used > max_bandwidth) {
2495 xhci_warn(xhci, "Not enough bandwidth. "
2496 "Proposed: %u, Max: %u\n",
2497 bw_used, max_bandwidth);
2498 return -ENOMEM;
2499 }
2500 }
2501 /*
2502 * Ok, we know we have some packets left over after even-handedly
2503 * scheduling interval 15. We don't know which microframes they will
2504 * fit into, so we over-schedule and say they will be scheduled every
2505 * microframe.
2506 */
2507 if (packets_remaining > 0)
2508 bw_used += overhead + packet_size;
2509
2510 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2511 /* OK, we're manipulating a HS device attached to a
2512 * root port bandwidth domain. Include the number of active TTs
2513 * in the bandwidth used.
2514 */
2515 bw_used += TT_HS_OVERHEAD *
2516 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2517 }
2518
2519 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2520 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2521 "Available: %u " "percent",
2522 bw_used, max_bandwidth, bw_reserved,
2523 (max_bandwidth - bw_used - bw_reserved) * 100 /
2524 max_bandwidth);
2525
2526 bw_used += bw_reserved;
2527 if (bw_used > max_bandwidth) {
2528 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2529 bw_used, max_bandwidth);
2530 return -ENOMEM;
2531 }
2532
2533 bw_table->bw_used = bw_used;
2534 return 0;
2535 }
2536
xhci_is_async_ep(unsigned int ep_type)2537 static bool xhci_is_async_ep(unsigned int ep_type)
2538 {
2539 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2540 ep_type != ISOC_IN_EP &&
2541 ep_type != INT_IN_EP);
2542 }
2543
xhci_is_sync_in_ep(unsigned int ep_type)2544 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2545 {
2546 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2547 }
2548
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2549 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2550 {
2551 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2552
2553 if (ep_bw->ep_interval == 0)
2554 return SS_OVERHEAD_BURST +
2555 (ep_bw->mult * ep_bw->num_packets *
2556 (SS_OVERHEAD + mps));
2557 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2558 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2559 1 << ep_bw->ep_interval);
2560
2561 }
2562
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2563 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2564 struct xhci_bw_info *ep_bw,
2565 struct xhci_interval_bw_table *bw_table,
2566 struct usb_device *udev,
2567 struct xhci_virt_ep *virt_ep,
2568 struct xhci_tt_bw_info *tt_info)
2569 {
2570 struct xhci_interval_bw *interval_bw;
2571 int normalized_interval;
2572
2573 if (xhci_is_async_ep(ep_bw->type))
2574 return;
2575
2576 if (udev->speed >= USB_SPEED_SUPER) {
2577 if (xhci_is_sync_in_ep(ep_bw->type))
2578 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2579 xhci_get_ss_bw_consumed(ep_bw);
2580 else
2581 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2582 xhci_get_ss_bw_consumed(ep_bw);
2583 return;
2584 }
2585
2586 /* SuperSpeed endpoints never get added to intervals in the table, so
2587 * this check is only valid for HS/FS/LS devices.
2588 */
2589 if (list_empty(&virt_ep->bw_endpoint_list))
2590 return;
2591 /* For LS/FS devices, we need to translate the interval expressed in
2592 * microframes to frames.
2593 */
2594 if (udev->speed == USB_SPEED_HIGH)
2595 normalized_interval = ep_bw->ep_interval;
2596 else
2597 normalized_interval = ep_bw->ep_interval - 3;
2598
2599 if (normalized_interval == 0)
2600 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2601 interval_bw = &bw_table->interval_bw[normalized_interval];
2602 interval_bw->num_packets -= ep_bw->num_packets;
2603 switch (udev->speed) {
2604 case USB_SPEED_LOW:
2605 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2606 break;
2607 case USB_SPEED_FULL:
2608 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2609 break;
2610 case USB_SPEED_HIGH:
2611 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2612 break;
2613 default:
2614 /* Should never happen because only LS/FS/HS endpoints will get
2615 * added to the endpoint list.
2616 */
2617 return;
2618 }
2619 if (tt_info)
2620 tt_info->active_eps -= 1;
2621 list_del_init(&virt_ep->bw_endpoint_list);
2622 }
2623
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2624 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2625 struct xhci_bw_info *ep_bw,
2626 struct xhci_interval_bw_table *bw_table,
2627 struct usb_device *udev,
2628 struct xhci_virt_ep *virt_ep,
2629 struct xhci_tt_bw_info *tt_info)
2630 {
2631 struct xhci_interval_bw *interval_bw;
2632 struct xhci_virt_ep *smaller_ep;
2633 int normalized_interval;
2634
2635 if (xhci_is_async_ep(ep_bw->type))
2636 return;
2637
2638 if (udev->speed == USB_SPEED_SUPER) {
2639 if (xhci_is_sync_in_ep(ep_bw->type))
2640 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2641 xhci_get_ss_bw_consumed(ep_bw);
2642 else
2643 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2644 xhci_get_ss_bw_consumed(ep_bw);
2645 return;
2646 }
2647
2648 /* For LS/FS devices, we need to translate the interval expressed in
2649 * microframes to frames.
2650 */
2651 if (udev->speed == USB_SPEED_HIGH)
2652 normalized_interval = ep_bw->ep_interval;
2653 else
2654 normalized_interval = ep_bw->ep_interval - 3;
2655
2656 if (normalized_interval == 0)
2657 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2658 interval_bw = &bw_table->interval_bw[normalized_interval];
2659 interval_bw->num_packets += ep_bw->num_packets;
2660 switch (udev->speed) {
2661 case USB_SPEED_LOW:
2662 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2663 break;
2664 case USB_SPEED_FULL:
2665 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2666 break;
2667 case USB_SPEED_HIGH:
2668 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2669 break;
2670 default:
2671 /* Should never happen because only LS/FS/HS endpoints will get
2672 * added to the endpoint list.
2673 */
2674 return;
2675 }
2676
2677 if (tt_info)
2678 tt_info->active_eps += 1;
2679 /* Insert the endpoint into the list, largest max packet size first. */
2680 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2681 bw_endpoint_list) {
2682 if (ep_bw->max_packet_size >=
2683 smaller_ep->bw_info.max_packet_size) {
2684 /* Add the new ep before the smaller endpoint */
2685 list_add_tail(&virt_ep->bw_endpoint_list,
2686 &smaller_ep->bw_endpoint_list);
2687 return;
2688 }
2689 }
2690 /* Add the new endpoint at the end of the list. */
2691 list_add_tail(&virt_ep->bw_endpoint_list,
2692 &interval_bw->endpoints);
2693 }
2694
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2695 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2696 struct xhci_virt_device *virt_dev,
2697 int old_active_eps)
2698 {
2699 struct xhci_root_port_bw_info *rh_bw_info;
2700 if (!virt_dev->tt_info)
2701 return;
2702
2703 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2704 if (old_active_eps == 0 &&
2705 virt_dev->tt_info->active_eps != 0) {
2706 rh_bw_info->num_active_tts += 1;
2707 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2708 } else if (old_active_eps != 0 &&
2709 virt_dev->tt_info->active_eps == 0) {
2710 rh_bw_info->num_active_tts -= 1;
2711 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2712 }
2713 }
2714
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2715 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2716 struct xhci_virt_device *virt_dev,
2717 struct xhci_container_ctx *in_ctx)
2718 {
2719 struct xhci_bw_info ep_bw_info[31];
2720 int i;
2721 struct xhci_input_control_ctx *ctrl_ctx;
2722 int old_active_eps = 0;
2723
2724 if (virt_dev->tt_info)
2725 old_active_eps = virt_dev->tt_info->active_eps;
2726
2727 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2728 if (!ctrl_ctx) {
2729 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2730 __func__);
2731 return -ENOMEM;
2732 }
2733
2734 for (i = 0; i < 31; i++) {
2735 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2736 continue;
2737
2738 /* Make a copy of the BW info in case we need to revert this */
2739 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2740 sizeof(ep_bw_info[i]));
2741 /* Drop the endpoint from the interval table if the endpoint is
2742 * being dropped or changed.
2743 */
2744 if (EP_IS_DROPPED(ctrl_ctx, i))
2745 xhci_drop_ep_from_interval_table(xhci,
2746 &virt_dev->eps[i].bw_info,
2747 virt_dev->bw_table,
2748 virt_dev->udev,
2749 &virt_dev->eps[i],
2750 virt_dev->tt_info);
2751 }
2752 /* Overwrite the information stored in the endpoints' bw_info */
2753 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2754 for (i = 0; i < 31; i++) {
2755 /* Add any changed or added endpoints to the interval table */
2756 if (EP_IS_ADDED(ctrl_ctx, i))
2757 xhci_add_ep_to_interval_table(xhci,
2758 &virt_dev->eps[i].bw_info,
2759 virt_dev->bw_table,
2760 virt_dev->udev,
2761 &virt_dev->eps[i],
2762 virt_dev->tt_info);
2763 }
2764
2765 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2766 /* Ok, this fits in the bandwidth we have.
2767 * Update the number of active TTs.
2768 */
2769 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2770 return 0;
2771 }
2772
2773 /* We don't have enough bandwidth for this, revert the stored info. */
2774 for (i = 0; i < 31; i++) {
2775 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2776 continue;
2777
2778 /* Drop the new copies of any added or changed endpoints from
2779 * the interval table.
2780 */
2781 if (EP_IS_ADDED(ctrl_ctx, i)) {
2782 xhci_drop_ep_from_interval_table(xhci,
2783 &virt_dev->eps[i].bw_info,
2784 virt_dev->bw_table,
2785 virt_dev->udev,
2786 &virt_dev->eps[i],
2787 virt_dev->tt_info);
2788 }
2789 /* Revert the endpoint back to its old information */
2790 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2791 sizeof(ep_bw_info[i]));
2792 /* Add any changed or dropped endpoints back into the table */
2793 if (EP_IS_DROPPED(ctrl_ctx, i))
2794 xhci_add_ep_to_interval_table(xhci,
2795 &virt_dev->eps[i].bw_info,
2796 virt_dev->bw_table,
2797 virt_dev->udev,
2798 &virt_dev->eps[i],
2799 virt_dev->tt_info);
2800 }
2801 return -ENOMEM;
2802 }
2803
2804 /*
2805 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2806 * waits for the command completion before returning. This does not call
2807 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2808 * cases, along with transfer ring cleanup.
2809 *
2810 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2811 * their own transfer ring, such as offload situations.
2812 */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2813 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2814 gfp_t gfp_flags)
2815 {
2816 struct xhci_command *command;
2817 unsigned long flags;
2818 int ret;
2819
2820 command = xhci_alloc_command(xhci, true, gfp_flags);
2821 if (!command)
2822 return -ENOMEM;
2823
2824 spin_lock_irqsave(&xhci->lock, flags);
2825 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2826 ep->ep_index, suspend);
2827 if (ret < 0) {
2828 spin_unlock_irqrestore(&xhci->lock, flags);
2829 goto out;
2830 }
2831
2832 xhci_ring_cmd_db(xhci);
2833 spin_unlock_irqrestore(&xhci->lock, flags);
2834
2835 wait_for_completion(command->completion);
2836
2837 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2838 if (command->status == COMP_COMMAND_ABORTED ||
2839 command->status == COMP_COMMAND_RING_STOPPED) {
2840 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2841 ret = -ETIME;
2842 }
2843 out:
2844 xhci_free_command(xhci, command);
2845
2846 return ret;
2847 }
2848 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2849
2850 /* Issue a configure endpoint command or evaluate context command
2851 * and wait for it to finish.
2852 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2853 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2854 struct usb_device *udev,
2855 struct xhci_command *command,
2856 bool ctx_change, bool must_succeed)
2857 {
2858 int ret;
2859 unsigned long flags;
2860 struct xhci_input_control_ctx *ctrl_ctx;
2861 struct xhci_virt_device *virt_dev;
2862 struct xhci_slot_ctx *slot_ctx;
2863
2864 if (!command)
2865 return -EINVAL;
2866
2867 spin_lock_irqsave(&xhci->lock, flags);
2868
2869 if (xhci->xhc_state & XHCI_STATE_DYING) {
2870 spin_unlock_irqrestore(&xhci->lock, flags);
2871 return -ESHUTDOWN;
2872 }
2873
2874 virt_dev = xhci->devs[udev->slot_id];
2875
2876 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2877 if (!ctrl_ctx) {
2878 spin_unlock_irqrestore(&xhci->lock, flags);
2879 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2880 __func__);
2881 return -ENOMEM;
2882 }
2883
2884 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2885 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2886 spin_unlock_irqrestore(&xhci->lock, flags);
2887 xhci_warn(xhci, "Not enough host resources, "
2888 "active endpoint contexts = %u\n",
2889 xhci->num_active_eps);
2890 return -ENOMEM;
2891 }
2892 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2893 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2894 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2895 xhci_free_host_resources(xhci, ctrl_ctx);
2896 spin_unlock_irqrestore(&xhci->lock, flags);
2897 xhci_warn(xhci, "Not enough bandwidth\n");
2898 return -ENOMEM;
2899 }
2900
2901 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2902
2903 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2904 trace_xhci_configure_endpoint(slot_ctx);
2905
2906 if (!ctx_change)
2907 ret = xhci_queue_configure_endpoint(xhci, command,
2908 command->in_ctx->dma,
2909 udev->slot_id, must_succeed);
2910 else
2911 ret = xhci_queue_evaluate_context(xhci, command,
2912 command->in_ctx->dma,
2913 udev->slot_id, must_succeed);
2914 if (ret < 0) {
2915 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2916 xhci_free_host_resources(xhci, ctrl_ctx);
2917 spin_unlock_irqrestore(&xhci->lock, flags);
2918 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2919 "FIXME allocate a new ring segment");
2920 return -ENOMEM;
2921 }
2922 xhci_ring_cmd_db(xhci);
2923 spin_unlock_irqrestore(&xhci->lock, flags);
2924
2925 /* Wait for the configure endpoint command to complete */
2926 wait_for_completion(command->completion);
2927
2928 if (!ctx_change)
2929 ret = xhci_configure_endpoint_result(xhci, udev,
2930 &command->status);
2931 else
2932 ret = xhci_evaluate_context_result(xhci, udev,
2933 &command->status);
2934
2935 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2936 spin_lock_irqsave(&xhci->lock, flags);
2937 /* If the command failed, remove the reserved resources.
2938 * Otherwise, clean up the estimate to include dropped eps.
2939 */
2940 if (ret)
2941 xhci_free_host_resources(xhci, ctrl_ctx);
2942 else
2943 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2944 spin_unlock_irqrestore(&xhci->lock, flags);
2945 }
2946 return ret;
2947 }
2948
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2949 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2950 struct xhci_virt_device *vdev, int i)
2951 {
2952 struct xhci_virt_ep *ep = &vdev->eps[i];
2953
2954 if (ep->ep_state & EP_HAS_STREAMS) {
2955 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2956 xhci_get_endpoint_address(i));
2957 xhci_free_stream_info(xhci, ep->stream_info);
2958 ep->stream_info = NULL;
2959 ep->ep_state &= ~EP_HAS_STREAMS;
2960 }
2961 }
2962
2963 /* Called after one or more calls to xhci_add_endpoint() or
2964 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2965 * to call xhci_reset_bandwidth().
2966 *
2967 * Since we are in the middle of changing either configuration or
2968 * installing a new alt setting, the USB core won't allow URBs to be
2969 * enqueued for any endpoint on the old config or interface. Nothing
2970 * else should be touching the xhci->devs[slot_id] structure, so we
2971 * don't need to take the xhci->lock for manipulating that.
2972 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2973 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2974 {
2975 int i;
2976 int ret = 0;
2977 struct xhci_hcd *xhci;
2978 struct xhci_virt_device *virt_dev;
2979 struct xhci_input_control_ctx *ctrl_ctx;
2980 struct xhci_slot_ctx *slot_ctx;
2981 struct xhci_command *command;
2982
2983 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2984 if (ret <= 0)
2985 return ret;
2986 xhci = hcd_to_xhci(hcd);
2987 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2988 (xhci->xhc_state & XHCI_STATE_REMOVING))
2989 return -ENODEV;
2990
2991 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2992 virt_dev = xhci->devs[udev->slot_id];
2993
2994 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2995 if (!command)
2996 return -ENOMEM;
2997
2998 command->in_ctx = virt_dev->in_ctx;
2999
3000 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3001 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3002 if (!ctrl_ctx) {
3003 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3004 __func__);
3005 ret = -ENOMEM;
3006 goto command_cleanup;
3007 }
3008 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3009 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3010 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3011
3012 /* Don't issue the command if there's no endpoints to update. */
3013 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3014 ctrl_ctx->drop_flags == 0) {
3015 ret = 0;
3016 goto command_cleanup;
3017 }
3018 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3019 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3020 for (i = 31; i >= 1; i--) {
3021 __le32 le32 = cpu_to_le32(BIT(i));
3022
3023 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3024 || (ctrl_ctx->add_flags & le32) || i == 1) {
3025 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3026 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3027 break;
3028 }
3029 }
3030
3031 ret = xhci_configure_endpoint(xhci, udev, command,
3032 false, false);
3033 if (ret)
3034 /* Callee should call reset_bandwidth() */
3035 goto command_cleanup;
3036
3037 /* Free any rings that were dropped, but not changed. */
3038 for (i = 1; i < 31; i++) {
3039 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3040 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3041 xhci_free_endpoint_ring(xhci, virt_dev, i);
3042 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3043 }
3044 }
3045 xhci_zero_in_ctx(xhci, virt_dev);
3046 /*
3047 * Install any rings for completely new endpoints or changed endpoints,
3048 * and free any old rings from changed endpoints.
3049 */
3050 for (i = 1; i < 31; i++) {
3051 if (!virt_dev->eps[i].new_ring)
3052 continue;
3053 /* Only free the old ring if it exists.
3054 * It may not if this is the first add of an endpoint.
3055 */
3056 if (virt_dev->eps[i].ring) {
3057 xhci_free_endpoint_ring(xhci, virt_dev, i);
3058 }
3059 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3060 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3061 virt_dev->eps[i].new_ring = NULL;
3062 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3063 }
3064 command_cleanup:
3065 kfree(command->completion);
3066 kfree(command);
3067
3068 return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3071
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3072 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3073 {
3074 struct xhci_hcd *xhci;
3075 struct xhci_virt_device *virt_dev;
3076 int i, ret;
3077
3078 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3079 if (ret <= 0)
3080 return;
3081 xhci = hcd_to_xhci(hcd);
3082
3083 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3084 virt_dev = xhci->devs[udev->slot_id];
3085 /* Free any rings allocated for added endpoints */
3086 for (i = 0; i < 31; i++) {
3087 if (virt_dev->eps[i].new_ring) {
3088 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3089 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3090 virt_dev->eps[i].new_ring = NULL;
3091 }
3092 }
3093 xhci_zero_in_ctx(xhci, virt_dev);
3094 }
3095 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3096
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3097 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3098 struct xhci_container_ctx *in_ctx,
3099 struct xhci_container_ctx *out_ctx,
3100 struct xhci_input_control_ctx *ctrl_ctx,
3101 u32 add_flags, u32 drop_flags)
3102 {
3103 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3104 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3105 xhci_slot_copy(xhci, in_ctx, out_ctx);
3106 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3107 }
3108
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3109 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3110 struct usb_host_endpoint *host_ep)
3111 {
3112 struct xhci_hcd *xhci;
3113 struct xhci_virt_device *vdev;
3114 struct xhci_virt_ep *ep;
3115 struct usb_device *udev;
3116 unsigned long flags;
3117 unsigned int ep_index;
3118
3119 xhci = hcd_to_xhci(hcd);
3120 rescan:
3121 spin_lock_irqsave(&xhci->lock, flags);
3122
3123 udev = (struct usb_device *)host_ep->hcpriv;
3124 if (!udev || !udev->slot_id)
3125 goto done;
3126
3127 vdev = xhci->devs[udev->slot_id];
3128 if (!vdev)
3129 goto done;
3130
3131 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3132 ep = &vdev->eps[ep_index];
3133
3134 /* wait for hub_tt_work to finish clearing hub TT */
3135 if (ep->ep_state & EP_CLEARING_TT) {
3136 spin_unlock_irqrestore(&xhci->lock, flags);
3137 schedule_timeout_uninterruptible(1);
3138 goto rescan;
3139 }
3140
3141 if (ep->ep_state)
3142 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3143 ep->ep_state);
3144 done:
3145 host_ep->hcpriv = NULL;
3146 spin_unlock_irqrestore(&xhci->lock, flags);
3147 }
3148
3149 /*
3150 * Called after usb core issues a clear halt control message.
3151 * The host side of the halt should already be cleared by a reset endpoint
3152 * command issued when the STALL event was received.
3153 *
3154 * The reset endpoint command may only be issued to endpoints in the halted
3155 * state. For software that wishes to reset the data toggle or sequence number
3156 * of an endpoint that isn't in the halted state this function will issue a
3157 * configure endpoint command with the Drop and Add bits set for the target
3158 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3159 *
3160 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3161 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3162 */
3163
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3164 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3165 struct usb_host_endpoint *host_ep)
3166 {
3167 struct xhci_hcd *xhci;
3168 struct usb_device *udev;
3169 struct xhci_virt_device *vdev;
3170 struct xhci_virt_ep *ep;
3171 struct xhci_input_control_ctx *ctrl_ctx;
3172 struct xhci_command *stop_cmd, *cfg_cmd;
3173 unsigned int ep_index;
3174 unsigned long flags;
3175 u32 ep_flag;
3176 int err;
3177
3178 xhci = hcd_to_xhci(hcd);
3179 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3180
3181 /*
3182 * Usb core assumes a max packet value for ep0 on FS devices until the
3183 * real value is read from the descriptor. Core resets Ep0 if values
3184 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3185 */
3186 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3187
3188 udev = container_of(host_ep, struct usb_device, ep0);
3189 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3190 return;
3191
3192 vdev = xhci->devs[udev->slot_id];
3193 if (!vdev || vdev->udev != udev)
3194 return;
3195
3196 xhci_check_ep0_maxpacket(xhci, vdev);
3197
3198 /* Nothing else should be done here for ep0 during ep reset */
3199 return;
3200 }
3201
3202 if (!host_ep->hcpriv)
3203 return;
3204 udev = (struct usb_device *) host_ep->hcpriv;
3205 vdev = xhci->devs[udev->slot_id];
3206
3207 if (!udev->slot_id || !vdev)
3208 return;
3209
3210 ep = &vdev->eps[ep_index];
3211
3212 spin_lock_irqsave(&xhci->lock, flags);
3213
3214 ep->ep_state &= ~EP_STALLED;
3215
3216 /* Bail out if toggle is already being cleared by a endpoint reset */
3217 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3218 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3219 spin_unlock_irqrestore(&xhci->lock, flags);
3220 return;
3221 }
3222 spin_unlock_irqrestore(&xhci->lock, flags);
3223 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3224 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3225 usb_endpoint_xfer_isoc(&host_ep->desc))
3226 return;
3227
3228 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3229
3230 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3231 return;
3232
3233 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3234 if (!stop_cmd)
3235 return;
3236
3237 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3238 if (!cfg_cmd)
3239 goto cleanup;
3240
3241 spin_lock_irqsave(&xhci->lock, flags);
3242
3243 /* block queuing new trbs and ringing ep doorbell */
3244 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3245
3246 /*
3247 * Make sure endpoint ring is empty before resetting the toggle/seq.
3248 * Driver is required to synchronously cancel all transfer request.
3249 * Stop the endpoint to force xHC to update the output context
3250 */
3251
3252 if (!list_empty(&ep->ring->td_list)) {
3253 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3254 spin_unlock_irqrestore(&xhci->lock, flags);
3255 xhci_free_command(xhci, cfg_cmd);
3256 goto cleanup;
3257 }
3258
3259 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3260 ep_index, 0);
3261 if (err < 0) {
3262 spin_unlock_irqrestore(&xhci->lock, flags);
3263 xhci_free_command(xhci, cfg_cmd);
3264 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3265 __func__, err);
3266 goto cleanup;
3267 }
3268
3269 xhci_ring_cmd_db(xhci);
3270 spin_unlock_irqrestore(&xhci->lock, flags);
3271
3272 wait_for_completion(stop_cmd->completion);
3273
3274 spin_lock_irqsave(&xhci->lock, flags);
3275
3276 /* config ep command clears toggle if add and drop ep flags are set */
3277 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3278 if (!ctrl_ctx) {
3279 spin_unlock_irqrestore(&xhci->lock, flags);
3280 xhci_free_command(xhci, cfg_cmd);
3281 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3282 __func__);
3283 goto cleanup;
3284 }
3285
3286 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3287 ctrl_ctx, ep_flag, ep_flag);
3288 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3289
3290 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3291 udev->slot_id, false);
3292 if (err < 0) {
3293 spin_unlock_irqrestore(&xhci->lock, flags);
3294 xhci_free_command(xhci, cfg_cmd);
3295 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3296 __func__, err);
3297 goto cleanup;
3298 }
3299
3300 xhci_ring_cmd_db(xhci);
3301 spin_unlock_irqrestore(&xhci->lock, flags);
3302
3303 wait_for_completion(cfg_cmd->completion);
3304
3305 xhci_free_command(xhci, cfg_cmd);
3306 cleanup:
3307 xhci_free_command(xhci, stop_cmd);
3308 spin_lock_irqsave(&xhci->lock, flags);
3309 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3310 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3311 spin_unlock_irqrestore(&xhci->lock, flags);
3312 }
3313
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3314 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3315 struct usb_device *udev, struct usb_host_endpoint *ep,
3316 unsigned int slot_id)
3317 {
3318 int ret;
3319 unsigned int ep_index;
3320 unsigned int ep_state;
3321
3322 if (!ep)
3323 return -EINVAL;
3324 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3325 if (ret <= 0)
3326 return ret ? ret : -EINVAL;
3327 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3328 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3329 " descriptor for ep 0x%x does not support streams\n",
3330 ep->desc.bEndpointAddress);
3331 return -EINVAL;
3332 }
3333
3334 ep_index = xhci_get_endpoint_index(&ep->desc);
3335 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3336 if (ep_state & EP_HAS_STREAMS ||
3337 ep_state & EP_GETTING_STREAMS) {
3338 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3339 "already has streams set up.\n",
3340 ep->desc.bEndpointAddress);
3341 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3342 "dynamic stream context array reallocation.\n");
3343 return -EINVAL;
3344 }
3345 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3346 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3347 "endpoint 0x%x; URBs are pending.\n",
3348 ep->desc.bEndpointAddress);
3349 return -EINVAL;
3350 }
3351 return 0;
3352 }
3353
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3354 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3355 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3356 {
3357 unsigned int max_streams;
3358
3359 /* The stream context array size must be a power of two */
3360 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3361 /*
3362 * Find out how many primary stream array entries the host controller
3363 * supports. Later we may use secondary stream arrays (similar to 2nd
3364 * level page entries), but that's an optional feature for xHCI host
3365 * controllers. xHCs must support at least 4 stream IDs.
3366 */
3367 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3368 if (*num_stream_ctxs > max_streams) {
3369 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3370 max_streams);
3371 *num_stream_ctxs = max_streams;
3372 *num_streams = max_streams;
3373 }
3374 }
3375
3376 /* Returns an error code if one of the endpoint already has streams.
3377 * This does not change any data structures, it only checks and gathers
3378 * information.
3379 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3380 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3381 struct usb_device *udev,
3382 struct usb_host_endpoint **eps, unsigned int num_eps,
3383 unsigned int *num_streams, u32 *changed_ep_bitmask)
3384 {
3385 unsigned int max_streams;
3386 unsigned int endpoint_flag;
3387 int i;
3388 int ret;
3389
3390 for (i = 0; i < num_eps; i++) {
3391 ret = xhci_check_streams_endpoint(xhci, udev,
3392 eps[i], udev->slot_id);
3393 if (ret < 0)
3394 return ret;
3395
3396 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3397 if (max_streams < (*num_streams - 1)) {
3398 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3399 eps[i]->desc.bEndpointAddress,
3400 max_streams);
3401 *num_streams = max_streams+1;
3402 }
3403
3404 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3405 if (*changed_ep_bitmask & endpoint_flag)
3406 return -EINVAL;
3407 *changed_ep_bitmask |= endpoint_flag;
3408 }
3409 return 0;
3410 }
3411
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3412 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3413 struct usb_device *udev,
3414 struct usb_host_endpoint **eps, unsigned int num_eps)
3415 {
3416 u32 changed_ep_bitmask = 0;
3417 unsigned int slot_id;
3418 unsigned int ep_index;
3419 unsigned int ep_state;
3420 int i;
3421
3422 slot_id = udev->slot_id;
3423 if (!xhci->devs[slot_id])
3424 return 0;
3425
3426 for (i = 0; i < num_eps; i++) {
3427 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3428 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3429 /* Are streams already being freed for the endpoint? */
3430 if (ep_state & EP_GETTING_NO_STREAMS) {
3431 xhci_warn(xhci, "WARN Can't disable streams for "
3432 "endpoint 0x%x, "
3433 "streams are being disabled already\n",
3434 eps[i]->desc.bEndpointAddress);
3435 return 0;
3436 }
3437 /* Are there actually any streams to free? */
3438 if (!(ep_state & EP_HAS_STREAMS) &&
3439 !(ep_state & EP_GETTING_STREAMS)) {
3440 xhci_warn(xhci, "WARN Can't disable streams for "
3441 "endpoint 0x%x, "
3442 "streams are already disabled!\n",
3443 eps[i]->desc.bEndpointAddress);
3444 xhci_warn(xhci, "WARN xhci_free_streams() called "
3445 "with non-streams endpoint\n");
3446 return 0;
3447 }
3448 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3449 }
3450 return changed_ep_bitmask;
3451 }
3452
3453 /*
3454 * The USB device drivers use this function (through the HCD interface in USB
3455 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3456 * coordinate mass storage command queueing across multiple endpoints (basically
3457 * a stream ID == a task ID).
3458 *
3459 * Setting up streams involves allocating the same size stream context array
3460 * for each endpoint and issuing a configure endpoint command for all endpoints.
3461 *
3462 * Don't allow the call to succeed if one endpoint only supports one stream
3463 * (which means it doesn't support streams at all).
3464 *
3465 * Drivers may get less stream IDs than they asked for, if the host controller
3466 * hardware or endpoints claim they can't support the number of requested
3467 * stream IDs.
3468 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3469 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3470 struct usb_host_endpoint **eps, unsigned int num_eps,
3471 unsigned int num_streams, gfp_t mem_flags)
3472 {
3473 int i, ret;
3474 struct xhci_hcd *xhci;
3475 struct xhci_virt_device *vdev;
3476 struct xhci_command *config_cmd;
3477 struct xhci_input_control_ctx *ctrl_ctx;
3478 unsigned int ep_index;
3479 unsigned int num_stream_ctxs;
3480 unsigned int max_packet;
3481 unsigned long flags;
3482 u32 changed_ep_bitmask = 0;
3483
3484 if (!eps)
3485 return -EINVAL;
3486
3487 /* Add one to the number of streams requested to account for
3488 * stream 0 that is reserved for xHCI usage.
3489 */
3490 num_streams += 1;
3491 xhci = hcd_to_xhci(hcd);
3492 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3493 num_streams);
3494
3495 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3496 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3497 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3498 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3499 return -ENOSYS;
3500 }
3501
3502 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3503 if (!config_cmd)
3504 return -ENOMEM;
3505
3506 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3507 if (!ctrl_ctx) {
3508 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3509 __func__);
3510 xhci_free_command(xhci, config_cmd);
3511 return -ENOMEM;
3512 }
3513
3514 /* Check to make sure all endpoints are not already configured for
3515 * streams. While we're at it, find the maximum number of streams that
3516 * all the endpoints will support and check for duplicate endpoints.
3517 */
3518 spin_lock_irqsave(&xhci->lock, flags);
3519 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3520 num_eps, &num_streams, &changed_ep_bitmask);
3521 if (ret < 0) {
3522 xhci_free_command(xhci, config_cmd);
3523 spin_unlock_irqrestore(&xhci->lock, flags);
3524 return ret;
3525 }
3526 if (num_streams <= 1) {
3527 xhci_warn(xhci, "WARN: endpoints can't handle "
3528 "more than one stream.\n");
3529 xhci_free_command(xhci, config_cmd);
3530 spin_unlock_irqrestore(&xhci->lock, flags);
3531 return -EINVAL;
3532 }
3533 vdev = xhci->devs[udev->slot_id];
3534 /* Mark each endpoint as being in transition, so
3535 * xhci_urb_enqueue() will reject all URBs.
3536 */
3537 for (i = 0; i < num_eps; i++) {
3538 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3539 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3540 }
3541 spin_unlock_irqrestore(&xhci->lock, flags);
3542
3543 /* Setup internal data structures and allocate HW data structures for
3544 * streams (but don't install the HW structures in the input context
3545 * until we're sure all memory allocation succeeded).
3546 */
3547 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3548 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3549 num_stream_ctxs, num_streams);
3550
3551 for (i = 0; i < num_eps; i++) {
3552 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3553 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3554 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3555 num_stream_ctxs,
3556 num_streams,
3557 max_packet, mem_flags);
3558 if (!vdev->eps[ep_index].stream_info)
3559 goto cleanup;
3560 /* Set maxPstreams in endpoint context and update deq ptr to
3561 * point to stream context array. FIXME
3562 */
3563 }
3564
3565 /* Set up the input context for a configure endpoint command. */
3566 for (i = 0; i < num_eps; i++) {
3567 struct xhci_ep_ctx *ep_ctx;
3568
3569 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3570 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3571
3572 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3573 vdev->out_ctx, ep_index);
3574 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3575 vdev->eps[ep_index].stream_info);
3576 }
3577 /* Tell the HW to drop its old copy of the endpoint context info
3578 * and add the updated copy from the input context.
3579 */
3580 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3581 vdev->out_ctx, ctrl_ctx,
3582 changed_ep_bitmask, changed_ep_bitmask);
3583
3584 /* Issue and wait for the configure endpoint command */
3585 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3586 false, false);
3587
3588 /* xHC rejected the configure endpoint command for some reason, so we
3589 * leave the old ring intact and free our internal streams data
3590 * structure.
3591 */
3592 if (ret < 0)
3593 goto cleanup;
3594
3595 spin_lock_irqsave(&xhci->lock, flags);
3596 for (i = 0; i < num_eps; i++) {
3597 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3598 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3599 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3600 udev->slot_id, ep_index);
3601 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3602 }
3603 xhci_free_command(xhci, config_cmd);
3604 spin_unlock_irqrestore(&xhci->lock, flags);
3605
3606 for (i = 0; i < num_eps; i++) {
3607 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3608 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3609 }
3610 /* Subtract 1 for stream 0, which drivers can't use */
3611 return num_streams - 1;
3612
3613 cleanup:
3614 /* If it didn't work, free the streams! */
3615 for (i = 0; i < num_eps; i++) {
3616 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3617 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3618 vdev->eps[ep_index].stream_info = NULL;
3619 /* FIXME Unset maxPstreams in endpoint context and
3620 * update deq ptr to point to normal string ring.
3621 */
3622 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3623 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3624 xhci_endpoint_zero(xhci, vdev, eps[i]);
3625 }
3626 xhci_free_command(xhci, config_cmd);
3627 return -ENOMEM;
3628 }
3629
3630 /* Transition the endpoint from using streams to being a "normal" endpoint
3631 * without streams.
3632 *
3633 * Modify the endpoint context state, submit a configure endpoint command,
3634 * and free all endpoint rings for streams if that completes successfully.
3635 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3636 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3637 struct usb_host_endpoint **eps, unsigned int num_eps,
3638 gfp_t mem_flags)
3639 {
3640 int i, ret;
3641 struct xhci_hcd *xhci;
3642 struct xhci_virt_device *vdev;
3643 struct xhci_command *command;
3644 struct xhci_input_control_ctx *ctrl_ctx;
3645 unsigned int ep_index;
3646 unsigned long flags;
3647 u32 changed_ep_bitmask;
3648
3649 xhci = hcd_to_xhci(hcd);
3650 vdev = xhci->devs[udev->slot_id];
3651
3652 /* Set up a configure endpoint command to remove the streams rings */
3653 spin_lock_irqsave(&xhci->lock, flags);
3654 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3655 udev, eps, num_eps);
3656 if (changed_ep_bitmask == 0) {
3657 spin_unlock_irqrestore(&xhci->lock, flags);
3658 return -EINVAL;
3659 }
3660
3661 /* Use the xhci_command structure from the first endpoint. We may have
3662 * allocated too many, but the driver may call xhci_free_streams() for
3663 * each endpoint it grouped into one call to xhci_alloc_streams().
3664 */
3665 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3666 command = vdev->eps[ep_index].stream_info->free_streams_command;
3667 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3668 if (!ctrl_ctx) {
3669 spin_unlock_irqrestore(&xhci->lock, flags);
3670 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3671 __func__);
3672 return -EINVAL;
3673 }
3674
3675 for (i = 0; i < num_eps; i++) {
3676 struct xhci_ep_ctx *ep_ctx;
3677
3678 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3679 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3680 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3681 EP_GETTING_NO_STREAMS;
3682
3683 xhci_endpoint_copy(xhci, command->in_ctx,
3684 vdev->out_ctx, ep_index);
3685 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3686 &vdev->eps[ep_index]);
3687 }
3688 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3689 vdev->out_ctx, ctrl_ctx,
3690 changed_ep_bitmask, changed_ep_bitmask);
3691 spin_unlock_irqrestore(&xhci->lock, flags);
3692
3693 /* Issue and wait for the configure endpoint command,
3694 * which must succeed.
3695 */
3696 ret = xhci_configure_endpoint(xhci, udev, command,
3697 false, true);
3698
3699 /* xHC rejected the configure endpoint command for some reason, so we
3700 * leave the streams rings intact.
3701 */
3702 if (ret < 0)
3703 return ret;
3704
3705 spin_lock_irqsave(&xhci->lock, flags);
3706 for (i = 0; i < num_eps; i++) {
3707 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3708 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3709 vdev->eps[ep_index].stream_info = NULL;
3710 /* FIXME Unset maxPstreams in endpoint context and
3711 * update deq ptr to point to normal string ring.
3712 */
3713 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3714 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3715 }
3716 spin_unlock_irqrestore(&xhci->lock, flags);
3717
3718 return 0;
3719 }
3720
3721 /*
3722 * Deletes endpoint resources for endpoints that were active before a Reset
3723 * Device command, or a Disable Slot command. The Reset Device command leaves
3724 * the control endpoint intact, whereas the Disable Slot command deletes it.
3725 *
3726 * Must be called with xhci->lock held.
3727 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3728 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3729 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3730 {
3731 int i;
3732 unsigned int num_dropped_eps = 0;
3733 unsigned int drop_flags = 0;
3734
3735 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3736 if (virt_dev->eps[i].ring) {
3737 drop_flags |= 1 << i;
3738 num_dropped_eps++;
3739 }
3740 }
3741 xhci->num_active_eps -= num_dropped_eps;
3742 if (num_dropped_eps)
3743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3744 "Dropped %u ep ctxs, flags = 0x%x, "
3745 "%u now active.",
3746 num_dropped_eps, drop_flags,
3747 xhci->num_active_eps);
3748 }
3749
3750 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3751
3752 /*
3753 * This submits a Reset Device Command, which will set the device state to 0,
3754 * set the device address to 0, and disable all the endpoints except the default
3755 * control endpoint. The USB core should come back and call
3756 * xhci_address_device(), and then re-set up the configuration. If this is
3757 * called because of a usb_reset_and_verify_device(), then the old alternate
3758 * settings will be re-installed through the normal bandwidth allocation
3759 * functions.
3760 *
3761 * Wait for the Reset Device command to finish. Remove all structures
3762 * associated with the endpoints that were disabled. Clear the input device
3763 * structure? Reset the control endpoint 0 max packet size?
3764 *
3765 * If the virt_dev to be reset does not exist or does not match the udev,
3766 * it means the device is lost, possibly due to the xHC restore error and
3767 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3768 * re-allocate the device.
3769 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3770 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3771 struct usb_device *udev)
3772 {
3773 int ret, i;
3774 unsigned long flags;
3775 struct xhci_hcd *xhci;
3776 unsigned int slot_id;
3777 struct xhci_virt_device *virt_dev;
3778 struct xhci_command *reset_device_cmd;
3779 struct xhci_slot_ctx *slot_ctx;
3780 int old_active_eps = 0;
3781
3782 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3783 if (ret <= 0)
3784 return ret;
3785 xhci = hcd_to_xhci(hcd);
3786 slot_id = udev->slot_id;
3787 virt_dev = xhci->devs[slot_id];
3788 if (!virt_dev) {
3789 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3790 "not exist. Re-allocate the device\n", slot_id);
3791 ret = xhci_alloc_dev(hcd, udev);
3792 if (ret == 1)
3793 return 0;
3794 else
3795 return -EINVAL;
3796 }
3797
3798 if (virt_dev->tt_info)
3799 old_active_eps = virt_dev->tt_info->active_eps;
3800
3801 if (virt_dev->udev != udev) {
3802 /* If the virt_dev and the udev does not match, this virt_dev
3803 * may belong to another udev.
3804 * Re-allocate the device.
3805 */
3806 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3807 "not match the udev. Re-allocate the device\n",
3808 slot_id);
3809 ret = xhci_alloc_dev(hcd, udev);
3810 if (ret == 1)
3811 return 0;
3812 else
3813 return -EINVAL;
3814 }
3815
3816 /* If device is not setup, there is no point in resetting it */
3817 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3818 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3819 SLOT_STATE_DISABLED)
3820 return 0;
3821
3822 if (xhci->quirks & XHCI_ETRON_HOST) {
3823 /*
3824 * Obtaining a new device slot to inform the xHCI host that
3825 * the USB device has been reset.
3826 */
3827 ret = xhci_disable_slot(xhci, udev->slot_id);
3828 xhci_free_virt_device(xhci, udev->slot_id);
3829 if (!ret) {
3830 ret = xhci_alloc_dev(hcd, udev);
3831 if (ret == 1)
3832 ret = 0;
3833 else
3834 ret = -EINVAL;
3835 }
3836 return ret;
3837 }
3838
3839 trace_xhci_discover_or_reset_device(slot_ctx);
3840
3841 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3842 /* Allocate the command structure that holds the struct completion.
3843 * Assume we're in process context, since the normal device reset
3844 * process has to wait for the device anyway. Storage devices are
3845 * reset as part of error handling, so use GFP_NOIO instead of
3846 * GFP_KERNEL.
3847 */
3848 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3849 if (!reset_device_cmd) {
3850 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3851 return -ENOMEM;
3852 }
3853
3854 /* Attempt to submit the Reset Device command to the command ring */
3855 spin_lock_irqsave(&xhci->lock, flags);
3856
3857 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3858 if (ret) {
3859 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3860 spin_unlock_irqrestore(&xhci->lock, flags);
3861 goto command_cleanup;
3862 }
3863 xhci_ring_cmd_db(xhci);
3864 spin_unlock_irqrestore(&xhci->lock, flags);
3865
3866 /* Wait for the Reset Device command to finish */
3867 wait_for_completion(reset_device_cmd->completion);
3868
3869 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3870 * unless we tried to reset a slot ID that wasn't enabled,
3871 * or the device wasn't in the addressed or configured state.
3872 */
3873 ret = reset_device_cmd->status;
3874 switch (ret) {
3875 case COMP_COMMAND_ABORTED:
3876 case COMP_COMMAND_RING_STOPPED:
3877 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3878 ret = -ETIME;
3879 goto command_cleanup;
3880 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3881 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3882 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3883 slot_id,
3884 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3885 xhci_dbg(xhci, "Not freeing device rings.\n");
3886 /* Don't treat this as an error. May change my mind later. */
3887 ret = 0;
3888 goto command_cleanup;
3889 case COMP_SUCCESS:
3890 xhci_dbg(xhci, "Successful reset device command.\n");
3891 break;
3892 default:
3893 if (xhci_is_vendor_info_code(xhci, ret))
3894 break;
3895 xhci_warn(xhci, "Unknown completion code %u for "
3896 "reset device command.\n", ret);
3897 ret = -EINVAL;
3898 goto command_cleanup;
3899 }
3900
3901 /* Free up host controller endpoint resources */
3902 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3903 spin_lock_irqsave(&xhci->lock, flags);
3904 /* Don't delete the default control endpoint resources */
3905 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3906 spin_unlock_irqrestore(&xhci->lock, flags);
3907 }
3908
3909 /* Everything but endpoint 0 is disabled, so free the rings. */
3910 for (i = 1; i < 31; i++) {
3911 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3912
3913 if (ep->ep_state & EP_HAS_STREAMS) {
3914 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3915 xhci_get_endpoint_address(i));
3916 xhci_free_stream_info(xhci, ep->stream_info);
3917 ep->stream_info = NULL;
3918 ep->ep_state &= ~EP_HAS_STREAMS;
3919 }
3920
3921 if (ep->ring) {
3922 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3923 xhci_free_endpoint_ring(xhci, virt_dev, i);
3924 }
3925 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3926 xhci_drop_ep_from_interval_table(xhci,
3927 &virt_dev->eps[i].bw_info,
3928 virt_dev->bw_table,
3929 udev,
3930 &virt_dev->eps[i],
3931 virt_dev->tt_info);
3932 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3933 }
3934 /* If necessary, update the number of active TTs on this root port */
3935 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3936 virt_dev->flags = 0;
3937 ret = 0;
3938
3939 command_cleanup:
3940 xhci_free_command(xhci, reset_device_cmd);
3941 return ret;
3942 }
3943
3944 /*
3945 * At this point, the struct usb_device is about to go away, the device has
3946 * disconnected, and all traffic has been stopped and the endpoints have been
3947 * disabled. Free any HC data structures associated with that device.
3948 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3949 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3950 {
3951 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3952 struct xhci_virt_device *virt_dev;
3953 struct xhci_slot_ctx *slot_ctx;
3954 unsigned long flags;
3955 int i, ret;
3956
3957 /*
3958 * We called pm_runtime_get_noresume when the device was attached.
3959 * Decrement the counter here to allow controller to runtime suspend
3960 * if no devices remain.
3961 */
3962 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3963 pm_runtime_put_noidle(hcd->self.controller);
3964
3965 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3966 /* If the host is halted due to driver unload, we still need to free the
3967 * device.
3968 */
3969 if (ret <= 0 && ret != -ENODEV)
3970 return;
3971
3972 virt_dev = xhci->devs[udev->slot_id];
3973 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3974 trace_xhci_free_dev(slot_ctx);
3975
3976 /* Stop any wayward timer functions (which may grab the lock) */
3977 for (i = 0; i < 31; i++)
3978 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3979 virt_dev->udev = NULL;
3980 xhci_disable_slot(xhci, udev->slot_id);
3981
3982 spin_lock_irqsave(&xhci->lock, flags);
3983 xhci_free_virt_device(xhci, udev->slot_id);
3984 spin_unlock_irqrestore(&xhci->lock, flags);
3985
3986 }
3987
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3988 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3989 {
3990 struct xhci_command *command;
3991 unsigned long flags;
3992 u32 state;
3993 int ret;
3994
3995 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3996 if (!command)
3997 return -ENOMEM;
3998
3999 xhci_debugfs_remove_slot(xhci, slot_id);
4000
4001 spin_lock_irqsave(&xhci->lock, flags);
4002 /* Don't disable the slot if the host controller is dead. */
4003 state = readl(&xhci->op_regs->status);
4004 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4005 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4006 spin_unlock_irqrestore(&xhci->lock, flags);
4007 kfree(command);
4008 return -ENODEV;
4009 }
4010
4011 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4012 slot_id);
4013 if (ret) {
4014 spin_unlock_irqrestore(&xhci->lock, flags);
4015 kfree(command);
4016 return ret;
4017 }
4018 xhci_ring_cmd_db(xhci);
4019 spin_unlock_irqrestore(&xhci->lock, flags);
4020
4021 wait_for_completion(command->completion);
4022
4023 if (command->status != COMP_SUCCESS)
4024 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4025 slot_id, command->status);
4026
4027 xhci_free_command(xhci, command);
4028
4029 return 0;
4030 }
4031
4032 /*
4033 * Checks if we have enough host controller resources for the default control
4034 * endpoint.
4035 *
4036 * Must be called with xhci->lock held.
4037 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4038 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4039 {
4040 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4042 "Not enough ep ctxs: "
4043 "%u active, need to add 1, limit is %u.",
4044 xhci->num_active_eps, xhci->limit_active_eps);
4045 return -ENOMEM;
4046 }
4047 xhci->num_active_eps += 1;
4048 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4049 "Adding 1 ep ctx, %u now active.",
4050 xhci->num_active_eps);
4051 return 0;
4052 }
4053
4054
4055 /*
4056 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4057 * timed out, or allocating memory failed. Returns 1 on success.
4058 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4059 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4060 {
4061 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4062 struct xhci_virt_device *vdev;
4063 struct xhci_slot_ctx *slot_ctx;
4064 unsigned long flags;
4065 int ret, slot_id;
4066 struct xhci_command *command;
4067
4068 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4069 if (!command)
4070 return 0;
4071
4072 spin_lock_irqsave(&xhci->lock, flags);
4073 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4074 if (ret) {
4075 spin_unlock_irqrestore(&xhci->lock, flags);
4076 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4077 xhci_free_command(xhci, command);
4078 return 0;
4079 }
4080 xhci_ring_cmd_db(xhci);
4081 spin_unlock_irqrestore(&xhci->lock, flags);
4082
4083 wait_for_completion(command->completion);
4084 slot_id = command->slot_id;
4085
4086 if (!slot_id || command->status != COMP_SUCCESS) {
4087 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4088 xhci_trb_comp_code_string(command->status));
4089 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4090 HCS_MAX_SLOTS(
4091 readl(&xhci->cap_regs->hcs_params1)));
4092 xhci_free_command(xhci, command);
4093 return 0;
4094 }
4095
4096 xhci_free_command(xhci, command);
4097
4098 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4099 spin_lock_irqsave(&xhci->lock, flags);
4100 ret = xhci_reserve_host_control_ep_resources(xhci);
4101 if (ret) {
4102 spin_unlock_irqrestore(&xhci->lock, flags);
4103 xhci_warn(xhci, "Not enough host resources, "
4104 "active endpoint contexts = %u\n",
4105 xhci->num_active_eps);
4106 goto disable_slot;
4107 }
4108 spin_unlock_irqrestore(&xhci->lock, flags);
4109 }
4110 /* Use GFP_NOIO, since this function can be called from
4111 * xhci_discover_or_reset_device(), which may be called as part of
4112 * mass storage driver error handling.
4113 */
4114 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4115 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4116 goto disable_slot;
4117 }
4118 vdev = xhci->devs[slot_id];
4119 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4120 trace_xhci_alloc_dev(slot_ctx);
4121
4122 udev->slot_id = slot_id;
4123
4124 xhci_debugfs_create_slot(xhci, slot_id);
4125
4126 /*
4127 * If resetting upon resume, we can't put the controller into runtime
4128 * suspend if there is a device attached.
4129 */
4130 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4131 pm_runtime_get_noresume(hcd->self.controller);
4132
4133 /* Is this a LS or FS device under a HS hub? */
4134 /* Hub or peripherial? */
4135 return 1;
4136
4137 disable_slot:
4138 xhci_disable_slot(xhci, udev->slot_id);
4139 xhci_free_virt_device(xhci, udev->slot_id);
4140
4141 return 0;
4142 }
4143
4144 /**
4145 * xhci_setup_device - issues an Address Device command to assign a unique
4146 * USB bus address.
4147 * @hcd: USB host controller data structure.
4148 * @udev: USB dev structure representing the connected device.
4149 * @setup: Enum specifying setup mode: address only or with context.
4150 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4151 *
4152 * Return: 0 if successful; otherwise, negative error code.
4153 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4154 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4155 enum xhci_setup_dev setup, unsigned int timeout_ms)
4156 {
4157 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4158 unsigned long flags;
4159 struct xhci_virt_device *virt_dev;
4160 int ret = 0;
4161 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4162 struct xhci_slot_ctx *slot_ctx;
4163 struct xhci_input_control_ctx *ctrl_ctx;
4164 u64 temp_64;
4165 struct xhci_command *command = NULL;
4166
4167 mutex_lock(&xhci->mutex);
4168
4169 if (xhci->xhc_state) { /* dying, removing or halted */
4170 ret = -ESHUTDOWN;
4171 goto out;
4172 }
4173
4174 if (!udev->slot_id) {
4175 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4176 "Bad Slot ID %d", udev->slot_id);
4177 ret = -EINVAL;
4178 goto out;
4179 }
4180
4181 virt_dev = xhci->devs[udev->slot_id];
4182
4183 if (WARN_ON(!virt_dev)) {
4184 /*
4185 * In plug/unplug torture test with an NEC controller,
4186 * a zero-dereference was observed once due to virt_dev = 0.
4187 * Print useful debug rather than crash if it is observed again!
4188 */
4189 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4190 udev->slot_id);
4191 ret = -EINVAL;
4192 goto out;
4193 }
4194 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4195 trace_xhci_setup_device_slot(slot_ctx);
4196
4197 if (setup == SETUP_CONTEXT_ONLY) {
4198 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4199 SLOT_STATE_DEFAULT) {
4200 xhci_dbg(xhci, "Slot already in default state\n");
4201 goto out;
4202 }
4203 }
4204
4205 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4206 if (!command) {
4207 ret = -ENOMEM;
4208 goto out;
4209 }
4210
4211 command->in_ctx = virt_dev->in_ctx;
4212 command->timeout_ms = timeout_ms;
4213
4214 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4215 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4216 if (!ctrl_ctx) {
4217 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4218 __func__);
4219 ret = -EINVAL;
4220 goto out;
4221 }
4222 /*
4223 * If this is the first Set Address since device plug-in or
4224 * virt_device realloaction after a resume with an xHCI power loss,
4225 * then set up the slot context.
4226 */
4227 if (!slot_ctx->dev_info)
4228 xhci_setup_addressable_virt_dev(xhci, udev);
4229 /* Otherwise, update the control endpoint ring enqueue pointer. */
4230 else
4231 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4232 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4233 ctrl_ctx->drop_flags = 0;
4234
4235 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4236 le32_to_cpu(slot_ctx->dev_info) >> 27);
4237
4238 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4239 spin_lock_irqsave(&xhci->lock, flags);
4240 trace_xhci_setup_device(virt_dev);
4241 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4242 udev->slot_id, setup);
4243 if (ret) {
4244 spin_unlock_irqrestore(&xhci->lock, flags);
4245 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4246 "FIXME: allocate a command ring segment");
4247 goto out;
4248 }
4249 xhci_ring_cmd_db(xhci);
4250 spin_unlock_irqrestore(&xhci->lock, flags);
4251
4252 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4253 wait_for_completion(command->completion);
4254
4255 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4256 * the SetAddress() "recovery interval" required by USB and aborting the
4257 * command on a timeout.
4258 */
4259 switch (command->status) {
4260 case COMP_COMMAND_ABORTED:
4261 case COMP_COMMAND_RING_STOPPED:
4262 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4263 ret = -ETIME;
4264 break;
4265 case COMP_CONTEXT_STATE_ERROR:
4266 case COMP_SLOT_NOT_ENABLED_ERROR:
4267 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4268 act, udev->slot_id);
4269 ret = -EINVAL;
4270 break;
4271 case COMP_USB_TRANSACTION_ERROR:
4272 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4273
4274 mutex_unlock(&xhci->mutex);
4275 ret = xhci_disable_slot(xhci, udev->slot_id);
4276 xhci_free_virt_device(xhci, udev->slot_id);
4277 if (!ret) {
4278 if (xhci_alloc_dev(hcd, udev) == 1)
4279 xhci_setup_addressable_virt_dev(xhci, udev);
4280 }
4281 kfree(command->completion);
4282 kfree(command);
4283 return -EPROTO;
4284 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4285 dev_warn(&udev->dev,
4286 "ERROR: Incompatible device for setup %s command\n", act);
4287 ret = -ENODEV;
4288 break;
4289 case COMP_SUCCESS:
4290 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4291 "Successful setup %s command", act);
4292 break;
4293 default:
4294 xhci_err(xhci,
4295 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4296 act, command->status);
4297 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4298 ret = -EINVAL;
4299 break;
4300 }
4301 if (ret)
4302 goto out;
4303 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305 "Op regs DCBAA ptr = %#016llx", temp_64);
4306 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4307 "Slot ID %d dcbaa entry @%p = %#016llx",
4308 udev->slot_id,
4309 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4310 (unsigned long long)
4311 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4312 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4313 "Output Context DMA address = %#08llx",
4314 (unsigned long long)virt_dev->out_ctx->dma);
4315 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4316 le32_to_cpu(slot_ctx->dev_info) >> 27);
4317 /*
4318 * USB core uses address 1 for the roothubs, so we add one to the
4319 * address given back to us by the HC.
4320 */
4321 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4322 le32_to_cpu(slot_ctx->dev_info) >> 27);
4323 /* Zero the input context control for later use */
4324 ctrl_ctx->add_flags = 0;
4325 ctrl_ctx->drop_flags = 0;
4326 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4327 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4328
4329 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4330 "Internal device address = %d",
4331 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4332 out:
4333 mutex_unlock(&xhci->mutex);
4334 if (command) {
4335 kfree(command->completion);
4336 kfree(command);
4337 }
4338 return ret;
4339 }
4340
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4341 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4342 unsigned int timeout_ms)
4343 {
4344 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4345 }
4346
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4348 {
4349 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4350 XHCI_CMD_DEFAULT_TIMEOUT);
4351 }
4352
4353 /*
4354 * Transfer the port index into real index in the HW port status
4355 * registers. Caculate offset between the port's PORTSC register
4356 * and port status base. Divide the number of per port register
4357 * to get the real index. The raw port number bases 1.
4358 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4359 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4360 {
4361 struct xhci_hub *rhub;
4362
4363 rhub = xhci_get_rhub(hcd);
4364 return rhub->ports[port1 - 1]->hw_portnum + 1;
4365 }
4366
4367 /*
4368 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4369 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4370 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4371 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4372 struct usb_device *udev, u16 max_exit_latency)
4373 {
4374 struct xhci_virt_device *virt_dev;
4375 struct xhci_command *command;
4376 struct xhci_input_control_ctx *ctrl_ctx;
4377 struct xhci_slot_ctx *slot_ctx;
4378 unsigned long flags;
4379 int ret;
4380
4381 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4382 if (!command)
4383 return -ENOMEM;
4384
4385 spin_lock_irqsave(&xhci->lock, flags);
4386
4387 virt_dev = xhci->devs[udev->slot_id];
4388
4389 /*
4390 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4391 * xHC was re-initialized. Exit latency will be set later after
4392 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4393 */
4394
4395 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4396 spin_unlock_irqrestore(&xhci->lock, flags);
4397 xhci_free_command(xhci, command);
4398 return 0;
4399 }
4400
4401 /* Attempt to issue an Evaluate Context command to change the MEL. */
4402 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4403 if (!ctrl_ctx) {
4404 spin_unlock_irqrestore(&xhci->lock, flags);
4405 xhci_free_command(xhci, command);
4406 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4407 __func__);
4408 return -ENOMEM;
4409 }
4410
4411 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4412 spin_unlock_irqrestore(&xhci->lock, flags);
4413
4414 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4415 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4416 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4417 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4418 slot_ctx->dev_state = 0;
4419
4420 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4421 "Set up evaluate context for LPM MEL change.");
4422
4423 /* Issue and wait for the evaluate context command. */
4424 ret = xhci_configure_endpoint(xhci, udev, command,
4425 true, true);
4426
4427 if (!ret) {
4428 spin_lock_irqsave(&xhci->lock, flags);
4429 virt_dev->current_mel = max_exit_latency;
4430 spin_unlock_irqrestore(&xhci->lock, flags);
4431 }
4432
4433 xhci_free_command(xhci, command);
4434
4435 return ret;
4436 }
4437
4438 #ifdef CONFIG_PM
4439
4440 /* BESL to HIRD Encoding array for USB2 LPM */
4441 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4442 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4443
4444 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4445 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4446 struct usb_device *udev)
4447 {
4448 int u2del, besl, besl_host;
4449 int besl_device = 0;
4450 u32 field;
4451
4452 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4453 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454
4455 if (field & USB_BESL_SUPPORT) {
4456 for (besl_host = 0; besl_host < 16; besl_host++) {
4457 if (xhci_besl_encoding[besl_host] >= u2del)
4458 break;
4459 }
4460 /* Use baseline BESL value as default */
4461 if (field & USB_BESL_BASELINE_VALID)
4462 besl_device = USB_GET_BESL_BASELINE(field);
4463 else if (field & USB_BESL_DEEP_VALID)
4464 besl_device = USB_GET_BESL_DEEP(field);
4465 } else {
4466 if (u2del <= 50)
4467 besl_host = 0;
4468 else
4469 besl_host = (u2del - 51) / 75 + 1;
4470 }
4471
4472 besl = besl_host + besl_device;
4473 if (besl > 15)
4474 besl = 15;
4475
4476 return besl;
4477 }
4478
4479 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4480 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4481 {
4482 u32 field;
4483 int l1;
4484 int besld = 0;
4485 int hirdm = 0;
4486
4487 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4488
4489 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4490 l1 = udev->l1_params.timeout / 256;
4491
4492 /* device has preferred BESLD */
4493 if (field & USB_BESL_DEEP_VALID) {
4494 besld = USB_GET_BESL_DEEP(field);
4495 hirdm = 1;
4496 }
4497
4498 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4499 }
4500
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4501 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4502 struct usb_device *udev, int enable)
4503 {
4504 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4505 struct xhci_port **ports;
4506 __le32 __iomem *pm_addr, *hlpm_addr;
4507 u32 pm_val, hlpm_val, field;
4508 unsigned int port_num;
4509 unsigned long flags;
4510 int hird, exit_latency;
4511 int ret;
4512
4513 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4514 return -EPERM;
4515
4516 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4517 !udev->lpm_capable)
4518 return -EPERM;
4519
4520 if (!udev->parent || udev->parent->parent ||
4521 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4522 return -EPERM;
4523
4524 if (udev->usb2_hw_lpm_capable != 1)
4525 return -EPERM;
4526
4527 spin_lock_irqsave(&xhci->lock, flags);
4528
4529 ports = xhci->usb2_rhub.ports;
4530 port_num = udev->portnum - 1;
4531 pm_addr = ports[port_num]->addr + PORTPMSC;
4532 pm_val = readl(pm_addr);
4533 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4534
4535 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4536 str_enable_disable(enable), port_num + 1);
4537
4538 if (enable) {
4539 /* Host supports BESL timeout instead of HIRD */
4540 if (udev->usb2_hw_lpm_besl_capable) {
4541 /* if device doesn't have a preferred BESL value use a
4542 * default one which works with mixed HIRD and BESL
4543 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4544 */
4545 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4546 if ((field & USB_BESL_SUPPORT) &&
4547 (field & USB_BESL_BASELINE_VALID))
4548 hird = USB_GET_BESL_BASELINE(field);
4549 else
4550 hird = udev->l1_params.besl;
4551
4552 exit_latency = xhci_besl_encoding[hird];
4553 spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555 ret = xhci_change_max_exit_latency(xhci, udev,
4556 exit_latency);
4557 if (ret < 0)
4558 return ret;
4559 spin_lock_irqsave(&xhci->lock, flags);
4560
4561 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4562 writel(hlpm_val, hlpm_addr);
4563 /* flush write */
4564 readl(hlpm_addr);
4565 } else {
4566 hird = xhci_calculate_hird_besl(xhci, udev);
4567 }
4568
4569 pm_val &= ~PORT_HIRD_MASK;
4570 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4571 writel(pm_val, pm_addr);
4572 pm_val = readl(pm_addr);
4573 pm_val |= PORT_HLE;
4574 writel(pm_val, pm_addr);
4575 /* flush write */
4576 readl(pm_addr);
4577 } else {
4578 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4579 writel(pm_val, pm_addr);
4580 /* flush write */
4581 readl(pm_addr);
4582 if (udev->usb2_hw_lpm_besl_capable) {
4583 spin_unlock_irqrestore(&xhci->lock, flags);
4584 xhci_change_max_exit_latency(xhci, udev, 0);
4585 readl_poll_timeout(ports[port_num]->addr, pm_val,
4586 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4587 100, 10000);
4588 return 0;
4589 }
4590 }
4591
4592 spin_unlock_irqrestore(&xhci->lock, flags);
4593 return 0;
4594 }
4595
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4596 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4597 {
4598 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4599 struct xhci_port *port;
4600 u32 capability;
4601
4602 /* Check if USB3 device at root port is tunneled over USB4 */
4603 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4604 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4605
4606 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4607 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4608 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4609 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4610 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4611 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4612 dev_dbg(&udev->dev, "native USB 3.x link\n");
4613 return 0;
4614 }
4615
4616 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4617 return 0;
4618
4619 /* we only support lpm for non-hub device connected to root hub yet */
4620 if (!udev->parent || udev->parent->parent ||
4621 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4622 return 0;
4623
4624 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4625 capability = port->port_cap->protocol_caps;
4626
4627 if (capability & XHCI_HLC) {
4628 udev->usb2_hw_lpm_capable = 1;
4629 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4630 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4631 if (capability & XHCI_BLC)
4632 udev->usb2_hw_lpm_besl_capable = 1;
4633 }
4634
4635 return 0;
4636 }
4637
4638 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4639
4640 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4641 static unsigned long long xhci_service_interval_to_ns(
4642 struct usb_endpoint_descriptor *desc)
4643 {
4644 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4645 }
4646
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4647 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4648 enum usb3_link_state state)
4649 {
4650 unsigned long long sel;
4651 unsigned long long pel;
4652 unsigned int max_sel_pel;
4653 char *state_name;
4654
4655 switch (state) {
4656 case USB3_LPM_U1:
4657 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4658 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4659 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4660 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4661 state_name = "U1";
4662 break;
4663 case USB3_LPM_U2:
4664 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4665 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4666 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4667 state_name = "U2";
4668 break;
4669 default:
4670 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4671 __func__);
4672 return USB3_LPM_DISABLED;
4673 }
4674
4675 if (sel <= max_sel_pel && pel <= max_sel_pel)
4676 return USB3_LPM_DEVICE_INITIATED;
4677
4678 if (sel > max_sel_pel)
4679 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4680 "due to long SEL %llu ms\n",
4681 state_name, sel);
4682 else
4683 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4684 "due to long PEL %llu ms\n",
4685 state_name, pel);
4686 return USB3_LPM_DISABLED;
4687 }
4688
4689 /* The U1 timeout should be the maximum of the following values:
4690 * - For control endpoints, U1 system exit latency (SEL) * 3
4691 * - For bulk endpoints, U1 SEL * 5
4692 * - For interrupt endpoints:
4693 * - Notification EPs, U1 SEL * 3
4694 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4695 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4696 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4697 static unsigned long long xhci_calculate_intel_u1_timeout(
4698 struct usb_device *udev,
4699 struct usb_endpoint_descriptor *desc)
4700 {
4701 unsigned long long timeout_ns;
4702 int ep_type;
4703 int intr_type;
4704
4705 ep_type = usb_endpoint_type(desc);
4706 switch (ep_type) {
4707 case USB_ENDPOINT_XFER_CONTROL:
4708 timeout_ns = udev->u1_params.sel * 3;
4709 break;
4710 case USB_ENDPOINT_XFER_BULK:
4711 timeout_ns = udev->u1_params.sel * 5;
4712 break;
4713 case USB_ENDPOINT_XFER_INT:
4714 intr_type = usb_endpoint_interrupt_type(desc);
4715 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4716 timeout_ns = udev->u1_params.sel * 3;
4717 break;
4718 }
4719 /* Otherwise the calculation is the same as isoc eps */
4720 fallthrough;
4721 case USB_ENDPOINT_XFER_ISOC:
4722 timeout_ns = xhci_service_interval_to_ns(desc);
4723 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4724 if (timeout_ns < udev->u1_params.sel * 2)
4725 timeout_ns = udev->u1_params.sel * 2;
4726 break;
4727 default:
4728 return 0;
4729 }
4730
4731 return timeout_ns;
4732 }
4733
4734 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4735 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4736 struct usb_device *udev,
4737 struct usb_endpoint_descriptor *desc)
4738 {
4739 unsigned long long timeout_ns;
4740
4741 /* Prevent U1 if service interval is shorter than U1 exit latency */
4742 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4743 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4744 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4745 return USB3_LPM_DISABLED;
4746 }
4747 }
4748
4749 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4750 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4751 else
4752 timeout_ns = udev->u1_params.sel;
4753
4754 /* The U1 timeout is encoded in 1us intervals.
4755 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4756 */
4757 if (timeout_ns == USB3_LPM_DISABLED)
4758 timeout_ns = 1;
4759 else
4760 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4761
4762 /* If the necessary timeout value is bigger than what we can set in the
4763 * USB 3.0 hub, we have to disable hub-initiated U1.
4764 */
4765 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4766 return timeout_ns;
4767 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4768 timeout_ns);
4769 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4770 }
4771
4772 /* The U2 timeout should be the maximum of:
4773 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4774 * - largest bInterval of any active periodic endpoint (to avoid going
4775 * into lower power link states between intervals).
4776 * - the U2 Exit Latency of the device
4777 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4778 static unsigned long long xhci_calculate_intel_u2_timeout(
4779 struct usb_device *udev,
4780 struct usb_endpoint_descriptor *desc)
4781 {
4782 unsigned long long timeout_ns;
4783 unsigned long long u2_del_ns;
4784
4785 timeout_ns = 10 * 1000 * 1000;
4786
4787 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4788 (xhci_service_interval_to_ns(desc) > timeout_ns))
4789 timeout_ns = xhci_service_interval_to_ns(desc);
4790
4791 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4792 if (u2_del_ns > timeout_ns)
4793 timeout_ns = u2_del_ns;
4794
4795 return timeout_ns;
4796 }
4797
4798 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4799 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4800 struct usb_device *udev,
4801 struct usb_endpoint_descriptor *desc)
4802 {
4803 unsigned long long timeout_ns;
4804
4805 /* Prevent U2 if service interval is shorter than U2 exit latency */
4806 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4807 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4808 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4809 return USB3_LPM_DISABLED;
4810 }
4811 }
4812
4813 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4814 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4815 else
4816 timeout_ns = udev->u2_params.sel;
4817
4818 /* The U2 timeout is encoded in 256us intervals */
4819 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4820 /* If the necessary timeout value is bigger than what we can set in the
4821 * USB 3.0 hub, we have to disable hub-initiated U2.
4822 */
4823 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4824 return timeout_ns;
4825 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4826 timeout_ns * 256);
4827 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4828 }
4829
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4830 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4831 struct usb_device *udev,
4832 struct usb_endpoint_descriptor *desc,
4833 enum usb3_link_state state,
4834 u16 *timeout)
4835 {
4836 if (state == USB3_LPM_U1)
4837 return xhci_calculate_u1_timeout(xhci, udev, desc);
4838 else if (state == USB3_LPM_U2)
4839 return xhci_calculate_u2_timeout(xhci, udev, desc);
4840
4841 return USB3_LPM_DISABLED;
4842 }
4843
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4844 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4845 struct usb_device *udev,
4846 struct usb_endpoint_descriptor *desc,
4847 enum usb3_link_state state,
4848 u16 *timeout)
4849 {
4850 u16 alt_timeout;
4851
4852 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4853 desc, state, timeout);
4854
4855 /* If we found we can't enable hub-initiated LPM, and
4856 * the U1 or U2 exit latency was too high to allow
4857 * device-initiated LPM as well, then we will disable LPM
4858 * for this device, so stop searching any further.
4859 */
4860 if (alt_timeout == USB3_LPM_DISABLED) {
4861 *timeout = alt_timeout;
4862 return -E2BIG;
4863 }
4864 if (alt_timeout > *timeout)
4865 *timeout = alt_timeout;
4866 return 0;
4867 }
4868
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4869 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4870 struct usb_device *udev,
4871 struct usb_host_interface *alt,
4872 enum usb3_link_state state,
4873 u16 *timeout)
4874 {
4875 int j;
4876
4877 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4878 if (xhci_update_timeout_for_endpoint(xhci, udev,
4879 &alt->endpoint[j].desc, state, timeout))
4880 return -E2BIG;
4881 }
4882 return 0;
4883 }
4884
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4885 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4886 struct usb_device *udev,
4887 enum usb3_link_state state)
4888 {
4889 struct usb_device *parent = udev->parent;
4890 int tier = 1; /* roothub is tier1 */
4891
4892 while (parent) {
4893 parent = parent->parent;
4894 tier++;
4895 }
4896
4897 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4898 goto fail;
4899 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4900 goto fail;
4901
4902 return 0;
4903 fail:
4904 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4905 tier);
4906 return -E2BIG;
4907 }
4908
4909 /* Returns the U1 or U2 timeout that should be enabled.
4910 * If the tier check or timeout setting functions return with a non-zero exit
4911 * code, that means the timeout value has been finalized and we shouldn't look
4912 * at any more endpoints.
4913 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4914 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4915 struct usb_device *udev, enum usb3_link_state state)
4916 {
4917 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4918 struct usb_host_config *config;
4919 char *state_name;
4920 int i;
4921 u16 timeout = USB3_LPM_DISABLED;
4922
4923 if (state == USB3_LPM_U1)
4924 state_name = "U1";
4925 else if (state == USB3_LPM_U2)
4926 state_name = "U2";
4927 else {
4928 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4929 state);
4930 return timeout;
4931 }
4932
4933 /* Gather some information about the currently installed configuration
4934 * and alternate interface settings.
4935 */
4936 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4937 state, &timeout))
4938 return timeout;
4939
4940 config = udev->actconfig;
4941 if (!config)
4942 return timeout;
4943
4944 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4945 struct usb_driver *driver;
4946 struct usb_interface *intf = config->interface[i];
4947
4948 if (!intf)
4949 continue;
4950
4951 /* Check if any currently bound drivers want hub-initiated LPM
4952 * disabled.
4953 */
4954 if (intf->dev.driver) {
4955 driver = to_usb_driver(intf->dev.driver);
4956 if (driver && driver->disable_hub_initiated_lpm) {
4957 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4958 state_name, driver->name);
4959 timeout = xhci_get_timeout_no_hub_lpm(udev,
4960 state);
4961 if (timeout == USB3_LPM_DISABLED)
4962 return timeout;
4963 }
4964 }
4965
4966 /* Not sure how this could happen... */
4967 if (!intf->cur_altsetting)
4968 continue;
4969
4970 if (xhci_update_timeout_for_interface(xhci, udev,
4971 intf->cur_altsetting,
4972 state, &timeout))
4973 return timeout;
4974 }
4975 return timeout;
4976 }
4977
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4978 static int calculate_max_exit_latency(struct usb_device *udev,
4979 enum usb3_link_state state_changed,
4980 u16 hub_encoded_timeout)
4981 {
4982 unsigned long long u1_mel_us = 0;
4983 unsigned long long u2_mel_us = 0;
4984 unsigned long long mel_us = 0;
4985 bool disabling_u1;
4986 bool disabling_u2;
4987 bool enabling_u1;
4988 bool enabling_u2;
4989
4990 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4991 hub_encoded_timeout == USB3_LPM_DISABLED);
4992 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4993 hub_encoded_timeout == USB3_LPM_DISABLED);
4994
4995 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4996 hub_encoded_timeout != USB3_LPM_DISABLED);
4997 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4998 hub_encoded_timeout != USB3_LPM_DISABLED);
4999
5000 /* If U1 was already enabled and we're not disabling it,
5001 * or we're going to enable U1, account for the U1 max exit latency.
5002 */
5003 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5004 enabling_u1)
5005 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5006 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5007 enabling_u2)
5008 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5009
5010 mel_us = max(u1_mel_us, u2_mel_us);
5011
5012 /* xHCI host controller max exit latency field is only 16 bits wide. */
5013 if (mel_us > MAX_EXIT) {
5014 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5015 "is too big.\n", mel_us);
5016 return -E2BIG;
5017 }
5018 return mel_us;
5019 }
5020
5021 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5022 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5023 struct usb_device *udev, enum usb3_link_state state)
5024 {
5025 struct xhci_hcd *xhci;
5026 struct xhci_port *port;
5027 u16 hub_encoded_timeout;
5028 int mel;
5029 int ret;
5030
5031 xhci = hcd_to_xhci(hcd);
5032 /* The LPM timeout values are pretty host-controller specific, so don't
5033 * enable hub-initiated timeouts unless the vendor has provided
5034 * information about their timeout algorithm.
5035 */
5036 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5037 !xhci->devs[udev->slot_id])
5038 return USB3_LPM_DISABLED;
5039
5040 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5041 return USB3_LPM_DISABLED;
5042
5043 /* If connected to root port then check port can handle lpm */
5044 if (udev->parent && !udev->parent->parent) {
5045 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5046 if (port->lpm_incapable)
5047 return USB3_LPM_DISABLED;
5048 }
5049
5050 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5051 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5052 if (mel < 0) {
5053 /* Max Exit Latency is too big, disable LPM. */
5054 hub_encoded_timeout = USB3_LPM_DISABLED;
5055 mel = 0;
5056 }
5057
5058 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5059 if (ret)
5060 return ret;
5061 return hub_encoded_timeout;
5062 }
5063
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5064 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5065 struct usb_device *udev, enum usb3_link_state state)
5066 {
5067 struct xhci_hcd *xhci;
5068 u16 mel;
5069
5070 xhci = hcd_to_xhci(hcd);
5071 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5072 !xhci->devs[udev->slot_id])
5073 return 0;
5074
5075 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5076 return xhci_change_max_exit_latency(xhci, udev, mel);
5077 }
5078 #else /* CONFIG_PM */
5079
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5080 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5081 struct usb_device *udev, int enable)
5082 {
5083 return 0;
5084 }
5085
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5086 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5087 {
5088 return 0;
5089 }
5090
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5091 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5092 struct usb_device *udev, enum usb3_link_state state)
5093 {
5094 return USB3_LPM_DISABLED;
5095 }
5096
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5097 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5098 struct usb_device *udev, enum usb3_link_state state)
5099 {
5100 return 0;
5101 }
5102 #endif /* CONFIG_PM */
5103
5104 /*-------------------------------------------------------------------------*/
5105
5106 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5107 * internal data structures for the device.
5108 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5109 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5110 struct usb_tt *tt, gfp_t mem_flags)
5111 {
5112 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113 struct xhci_virt_device *vdev;
5114 struct xhci_command *config_cmd;
5115 struct xhci_input_control_ctx *ctrl_ctx;
5116 struct xhci_slot_ctx *slot_ctx;
5117 unsigned long flags;
5118 unsigned think_time;
5119 int ret;
5120
5121 /* Ignore root hubs */
5122 if (!hdev->parent)
5123 return 0;
5124
5125 vdev = xhci->devs[hdev->slot_id];
5126 if (!vdev) {
5127 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5128 return -EINVAL;
5129 }
5130
5131 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5132 if (!config_cmd)
5133 return -ENOMEM;
5134
5135 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5136 if (!ctrl_ctx) {
5137 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5138 __func__);
5139 xhci_free_command(xhci, config_cmd);
5140 return -ENOMEM;
5141 }
5142
5143 spin_lock_irqsave(&xhci->lock, flags);
5144 if (hdev->speed == USB_SPEED_HIGH &&
5145 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5146 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5147 xhci_free_command(xhci, config_cmd);
5148 spin_unlock_irqrestore(&xhci->lock, flags);
5149 return -ENOMEM;
5150 }
5151
5152 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5153 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5154 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5155 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5156 /*
5157 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5158 * but it may be already set to 1 when setup an xHCI virtual
5159 * device, so clear it anyway.
5160 */
5161 if (tt->multi)
5162 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5163 else if (hdev->speed == USB_SPEED_FULL)
5164 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5165
5166 if (xhci->hci_version > 0x95) {
5167 xhci_dbg(xhci, "xHCI version %x needs hub "
5168 "TT think time and number of ports\n",
5169 (unsigned int) xhci->hci_version);
5170 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5171 /* Set TT think time - convert from ns to FS bit times.
5172 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5173 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5174 *
5175 * xHCI 1.0: this field shall be 0 if the device is not a
5176 * High-spped hub.
5177 */
5178 think_time = tt->think_time;
5179 if (think_time != 0)
5180 think_time = (think_time / 666) - 1;
5181 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5182 slot_ctx->tt_info |=
5183 cpu_to_le32(TT_THINK_TIME(think_time));
5184 } else {
5185 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5186 "TT think time or number of ports\n",
5187 (unsigned int) xhci->hci_version);
5188 }
5189 slot_ctx->dev_state = 0;
5190 spin_unlock_irqrestore(&xhci->lock, flags);
5191
5192 xhci_dbg(xhci, "Set up %s for hub device.\n",
5193 (xhci->hci_version > 0x95) ?
5194 "configure endpoint" : "evaluate context");
5195
5196 /* Issue and wait for the configure endpoint or
5197 * evaluate context command.
5198 */
5199 if (xhci->hci_version > 0x95)
5200 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5201 false, false);
5202 else
5203 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5204 true, false);
5205
5206 xhci_free_command(xhci, config_cmd);
5207 return ret;
5208 }
5209 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5210
xhci_get_frame(struct usb_hcd * hcd)5211 static int xhci_get_frame(struct usb_hcd *hcd)
5212 {
5213 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5214 /* EHCI mods by the periodic size. Why? */
5215 return readl(&xhci->run_regs->microframe_index) >> 3;
5216 }
5217
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5218 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5219 {
5220 xhci->usb2_rhub.hcd = hcd;
5221 hcd->speed = HCD_USB2;
5222 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5223 /*
5224 * USB 2.0 roothub under xHCI has an integrated TT,
5225 * (rate matching hub) as opposed to having an OHCI/UHCI
5226 * companion controller.
5227 */
5228 hcd->has_tt = 1;
5229 }
5230
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5231 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5232 {
5233 unsigned int minor_rev;
5234
5235 /*
5236 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5237 * should return 0x31 for sbrn, or that the minor revision
5238 * is a two digit BCD containig minor and sub-minor numbers.
5239 * This was later clarified in xHCI 1.2.
5240 *
5241 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5242 * minor revision set to 0x1 instead of 0x10.
5243 */
5244 if (xhci->usb3_rhub.min_rev == 0x1)
5245 minor_rev = 1;
5246 else
5247 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5248
5249 switch (minor_rev) {
5250 case 2:
5251 hcd->speed = HCD_USB32;
5252 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5253 hcd->self.root_hub->rx_lanes = 2;
5254 hcd->self.root_hub->tx_lanes = 2;
5255 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5256 break;
5257 case 1:
5258 hcd->speed = HCD_USB31;
5259 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5260 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5261 break;
5262 }
5263 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5264 minor_rev, minor_rev ? "Enhanced " : "");
5265
5266 xhci->usb3_rhub.hcd = hcd;
5267 }
5268
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5269 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5270 {
5271 struct xhci_hcd *xhci;
5272 /*
5273 * TODO: Check with DWC3 clients for sysdev according to
5274 * quirks
5275 */
5276 struct device *dev = hcd->self.sysdev;
5277 int retval;
5278
5279 /* Accept arbitrarily long scatter-gather lists */
5280 hcd->self.sg_tablesize = ~0;
5281
5282 /* support to build packet from discontinuous buffers */
5283 hcd->self.no_sg_constraint = 1;
5284
5285 /* XHCI controllers don't stop the ep queue on short packets :| */
5286 hcd->self.no_stop_on_short = 1;
5287
5288 xhci = hcd_to_xhci(hcd);
5289
5290 if (!usb_hcd_is_primary_hcd(hcd)) {
5291 xhci_hcd_init_usb3_data(xhci, hcd);
5292 return 0;
5293 }
5294
5295 mutex_init(&xhci->mutex);
5296 xhci->main_hcd = hcd;
5297 xhci->cap_regs = hcd->regs;
5298 xhci->op_regs = hcd->regs +
5299 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5300 xhci->run_regs = hcd->regs +
5301 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5302 /* Cache read-only capability registers */
5303 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5304 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5305 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5306 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5307 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5308 if (xhci->hci_version > 0x100)
5309 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5310
5311 /* xhci-plat or xhci-pci might have set max_interrupters already */
5312 if ((!xhci->max_interrupters) ||
5313 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5314 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5315
5316 xhci->quirks |= quirks;
5317
5318 if (get_quirks)
5319 get_quirks(dev, xhci);
5320
5321 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5322 * success event after a short transfer. This quirk will ignore such
5323 * spurious event.
5324 */
5325 if (xhci->hci_version > 0x96)
5326 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5327
5328 if (xhci->hci_version == 0x95 && link_quirk) {
5329 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5330 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5331 }
5332
5333 /* Make sure the HC is halted. */
5334 retval = xhci_halt(xhci);
5335 if (retval)
5336 return retval;
5337
5338 xhci_zero_64b_regs(xhci);
5339
5340 xhci_dbg(xhci, "Resetting HCD\n");
5341 /* Reset the internal HC memory state and registers. */
5342 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5343 if (retval)
5344 return retval;
5345 xhci_dbg(xhci, "Reset complete\n");
5346
5347 /*
5348 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5349 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5350 * address memory pointers actually. So, this driver clears the AC64
5351 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5352 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5353 */
5354 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5355 xhci->hcc_params &= ~BIT(0);
5356
5357 /* Set dma_mask and coherent_dma_mask to 64-bits,
5358 * if xHC supports 64-bit addressing */
5359 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5360 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5361 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5362 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5363 } else {
5364 /*
5365 * This is to avoid error in cases where a 32-bit USB
5366 * controller is used on a 64-bit capable system.
5367 */
5368 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5369 if (retval)
5370 return retval;
5371 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5372 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5373 }
5374
5375 xhci_dbg(xhci, "Calling HCD init\n");
5376 /* Initialize HCD and host controller data structures. */
5377 retval = xhci_init(hcd);
5378 if (retval)
5379 return retval;
5380 xhci_dbg(xhci, "Called HCD init\n");
5381
5382 if (xhci_hcd_is_usb3(hcd))
5383 xhci_hcd_init_usb3_data(xhci, hcd);
5384 else
5385 xhci_hcd_init_usb2_data(xhci, hcd);
5386
5387 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5388 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5389
5390 return 0;
5391 }
5392 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5393
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5394 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5395 struct usb_host_endpoint *ep)
5396 {
5397 struct xhci_hcd *xhci;
5398 struct usb_device *udev;
5399 unsigned int slot_id;
5400 unsigned int ep_index;
5401 unsigned long flags;
5402
5403 xhci = hcd_to_xhci(hcd);
5404
5405 spin_lock_irqsave(&xhci->lock, flags);
5406 udev = (struct usb_device *)ep->hcpriv;
5407 slot_id = udev->slot_id;
5408 ep_index = xhci_get_endpoint_index(&ep->desc);
5409
5410 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5411 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5412 spin_unlock_irqrestore(&xhci->lock, flags);
5413 }
5414
5415 static const struct hc_driver xhci_hc_driver = {
5416 .description = "xhci-hcd",
5417 .product_desc = "xHCI Host Controller",
5418 .hcd_priv_size = sizeof(struct xhci_hcd),
5419
5420 /*
5421 * generic hardware linkage
5422 */
5423 .irq = xhci_irq,
5424 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5425 HCD_BH,
5426
5427 /*
5428 * basic lifecycle operations
5429 */
5430 .reset = NULL, /* set in xhci_init_driver() */
5431 .start = xhci_run,
5432 .stop = xhci_stop,
5433 .shutdown = xhci_shutdown,
5434
5435 /*
5436 * managing i/o requests and associated device resources
5437 */
5438 .map_urb_for_dma = xhci_map_urb_for_dma,
5439 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5440 .urb_enqueue = xhci_urb_enqueue,
5441 .urb_dequeue = xhci_urb_dequeue,
5442 .alloc_dev = xhci_alloc_dev,
5443 .free_dev = xhci_free_dev,
5444 .alloc_streams = xhci_alloc_streams,
5445 .free_streams = xhci_free_streams,
5446 .add_endpoint = xhci_add_endpoint,
5447 .drop_endpoint = xhci_drop_endpoint,
5448 .endpoint_disable = xhci_endpoint_disable,
5449 .endpoint_reset = xhci_endpoint_reset,
5450 .check_bandwidth = xhci_check_bandwidth,
5451 .reset_bandwidth = xhci_reset_bandwidth,
5452 .address_device = xhci_address_device,
5453 .enable_device = xhci_enable_device,
5454 .update_hub_device = xhci_update_hub_device,
5455 .reset_device = xhci_discover_or_reset_device,
5456
5457 /*
5458 * scheduling support
5459 */
5460 .get_frame_number = xhci_get_frame,
5461
5462 /*
5463 * root hub support
5464 */
5465 .hub_control = xhci_hub_control,
5466 .hub_status_data = xhci_hub_status_data,
5467 .bus_suspend = xhci_bus_suspend,
5468 .bus_resume = xhci_bus_resume,
5469 .get_resuming_ports = xhci_get_resuming_ports,
5470
5471 /*
5472 * call back when device connected and addressed
5473 */
5474 .update_device = xhci_update_device,
5475 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5476 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5477 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5478 .find_raw_port_number = xhci_find_raw_port_number,
5479 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5480 };
5481
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5482 void xhci_init_driver(struct hc_driver *drv,
5483 const struct xhci_driver_overrides *over)
5484 {
5485 BUG_ON(!over);
5486
5487 /* Copy the generic table to drv then apply the overrides */
5488 *drv = xhci_hc_driver;
5489
5490 if (over) {
5491 drv->hcd_priv_size += over->extra_priv_size;
5492 if (over->reset)
5493 drv->reset = over->reset;
5494 if (over->start)
5495 drv->start = over->start;
5496 if (over->add_endpoint)
5497 drv->add_endpoint = over->add_endpoint;
5498 if (over->drop_endpoint)
5499 drv->drop_endpoint = over->drop_endpoint;
5500 if (over->check_bandwidth)
5501 drv->check_bandwidth = over->check_bandwidth;
5502 if (over->reset_bandwidth)
5503 drv->reset_bandwidth = over->reset_bandwidth;
5504 if (over->update_hub_device)
5505 drv->update_hub_device = over->update_hub_device;
5506 if (over->hub_control)
5507 drv->hub_control = over->hub_control;
5508 }
5509 }
5510 EXPORT_SYMBOL_GPL(xhci_init_driver);
5511
5512 MODULE_DESCRIPTION(DRIVER_DESC);
5513 MODULE_AUTHOR(DRIVER_AUTHOR);
5514 MODULE_LICENSE("GPL");
5515
xhci_hcd_init(void)5516 static int __init xhci_hcd_init(void)
5517 {
5518 /*
5519 * Check the compiler generated sizes of structures that must be laid
5520 * out in specific ways for hardware access.
5521 */
5522 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5523 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5524 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5525 /* xhci_device_control has eight fields, and also
5526 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5527 */
5528 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5529 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5530 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5531 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5532 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5533 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5534 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5535
5536 if (usb_disabled())
5537 return -ENODEV;
5538
5539 xhci_debugfs_create_root();
5540 xhci_dbc_init();
5541
5542 return 0;
5543 }
5544
5545 /*
5546 * If an init function is provided, an exit function must also be provided
5547 * to allow module unload.
5548 */
xhci_hcd_fini(void)5549 static void __exit xhci_hcd_fini(void)
5550 {
5551 xhci_debugfs_remove_root();
5552 xhci_dbc_exit();
5553 }
5554
5555 module_init(xhci_hcd_init);
5556 module_exit(xhci_hcd_fini);
5557