xref: /linux/drivers/usb/host/xhci.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 
24 #include "xhci.h"
25 #include "xhci-trace.h"
26 #include "xhci-debugfs.h"
27 #include "xhci-dbgcap.h"
28 
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31 
32 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33 
34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35 static int link_quirk;
36 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38 
39 static unsigned long long quirks;
40 module_param(quirks, ullong, S_IRUGO);
41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 {
45 	struct xhci_segment *seg;
46 
47 	if (!td || !td->start_seg)
48 		return false;
49 
50 	xhci_for_each_ring_seg(ring->first_seg, seg) {
51 		if (seg == td->start_seg)
52 			return true;
53 	}
54 
55 	return false;
56 }
57 
58 /*
59  * xhci_handshake - spin reading hc until handshake completes or fails
60  * @ptr: address of hc register to be read
61  * @mask: bits to look at in result of read
62  * @done: value of those bits when handshake succeeds
63  * @usec: timeout in microseconds
64  *
65  * Returns negative errno, or zero on success
66  *
67  * Success happens when the "mask" bits have the specified value (hardware
68  * handshake done).  There are two failure modes:  "usec" have passed (major
69  * hardware flakeout), or the register reads as all-ones (hardware removed).
70  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 {
73 	u32	result;
74 	int	ret;
75 
76 	ret = readl_poll_timeout_atomic(ptr, result,
77 					(result & mask) == done ||
78 					result == U32_MAX,
79 					1, timeout_us);
80 	if (result == U32_MAX)		/* card removed */
81 		return -ENODEV;
82 
83 	return ret;
84 }
85 
86 /*
87  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
88  * exit_state parameter, and bails out with an error immediately when xhc_state
89  * has exit_state flag set.
90  */
xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
92 		u32 mask, u32 done, int usec, unsigned int exit_state)
93 {
94 	u32	result;
95 	int	ret;
96 
97 	ret = readl_poll_timeout_atomic(ptr, result,
98 				(result & mask) == done ||
99 				result == U32_MAX ||
100 				xhci->xhc_state & exit_state,
101 				1, usec);
102 
103 	if (result == U32_MAX || xhci->xhc_state & exit_state)
104 		return -ENODEV;
105 
106 	return ret;
107 }
108 
109 /*
110  * Disable interrupts and begin the xHCI halting process.
111  */
xhci_quiesce(struct xhci_hcd * xhci)112 void xhci_quiesce(struct xhci_hcd *xhci)
113 {
114 	u32 halted;
115 	u32 cmd;
116 	u32 mask;
117 
118 	mask = ~(XHCI_IRQS);
119 	halted = readl(&xhci->op_regs->status) & STS_HALT;
120 	if (!halted)
121 		mask &= ~CMD_RUN;
122 
123 	cmd = readl(&xhci->op_regs->command);
124 	cmd &= mask;
125 	writel(cmd, &xhci->op_regs->command);
126 }
127 
128 /*
129  * Force HC into halt state.
130  *
131  * Disable any IRQs and clear the run/stop bit.
132  * HC will complete any current and actively pipelined transactions, and
133  * should halt within 16 ms of the run/stop bit being cleared.
134  * Read HC Halted bit in the status register to see when the HC is finished.
135  */
xhci_halt(struct xhci_hcd * xhci)136 int xhci_halt(struct xhci_hcd *xhci)
137 {
138 	int ret;
139 
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
141 	xhci_quiesce(xhci);
142 
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
145 	if (ret) {
146 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
147 		return ret;
148 	}
149 
150 	xhci->xhc_state |= XHCI_STATE_HALTED;
151 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
152 
153 	return ret;
154 }
155 
156 /*
157  * Set the run bit and wait for the host to be running.
158  */
xhci_start(struct xhci_hcd * xhci)159 int xhci_start(struct xhci_hcd *xhci)
160 {
161 	u32 temp;
162 	int ret;
163 
164 	temp = readl(&xhci->op_regs->command);
165 	temp |= (CMD_RUN);
166 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
167 			temp);
168 	writel(temp, &xhci->op_regs->command);
169 
170 	/*
171 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
172 	 * running.
173 	 */
174 	ret = xhci_handshake(&xhci->op_regs->status,
175 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
176 	if (ret == -ETIMEDOUT)
177 		xhci_err(xhci, "Host took too long to start, "
178 				"waited %u microseconds.\n",
179 				XHCI_MAX_HALT_USEC);
180 	if (!ret) {
181 		/* clear state flags. Including dying, halted or removing */
182 		xhci->xhc_state = 0;
183 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
184 	}
185 
186 	return ret;
187 }
188 
189 /*
190  * Reset a halted HC.
191  *
192  * This resets pipelines, timers, counters, state machines, etc.
193  * Transactions will be terminated immediately, and operational registers
194  * will be set to their defaults.
195  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
197 {
198 	u32 command;
199 	u32 state;
200 	int ret;
201 
202 	state = readl(&xhci->op_regs->status);
203 
204 	if (state == ~(u32)0) {
205 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
206 		return -ENODEV;
207 	}
208 
209 	if ((state & STS_HALT) == 0) {
210 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
211 		return 0;
212 	}
213 
214 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
215 	command = readl(&xhci->op_regs->command);
216 	command |= CMD_RESET;
217 	writel(command, &xhci->op_regs->command);
218 
219 	/* Existing Intel xHCI controllers require a delay of 1 mS,
220 	 * after setting the CMD_RESET bit, and before accessing any
221 	 * HC registers. This allows the HC to complete the
222 	 * reset operation and be ready for HC register access.
223 	 * Without this delay, the subsequent HC register access,
224 	 * may result in a system hang very rarely.
225 	 */
226 	if (xhci->quirks & XHCI_INTEL_HOST)
227 		udelay(1000);
228 
229 	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
230 				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
231 	if (ret)
232 		return ret;
233 
234 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
235 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
236 
237 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 			 "Wait for controller to be ready for doorbell rings");
239 	/*
240 	 * xHCI cannot write to any doorbells or operational registers other
241 	 * than status until the "Controller Not Ready" flag is cleared.
242 	 */
243 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
244 
245 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
246 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
247 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
248 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
249 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
250 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
251 
252 	return ret;
253 }
254 
xhci_zero_64b_regs(struct xhci_hcd * xhci)255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
256 {
257 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
258 	struct iommu_domain *domain;
259 	int err, i;
260 	u64 val;
261 	u32 intrs;
262 
263 	/*
264 	 * Some Renesas controllers get into a weird state if they are
265 	 * reset while programmed with 64bit addresses (they will preserve
266 	 * the top half of the address in internal, non visible
267 	 * registers). You end up with half the address coming from the
268 	 * kernel, and the other half coming from the firmware. Also,
269 	 * changing the programming leads to extra accesses even if the
270 	 * controller is supposed to be halted. The controller ends up with
271 	 * a fatal fault, and is then ripe for being properly reset.
272 	 *
273 	 * Special care is taken to only apply this if the device is behind
274 	 * an iommu. Doing anything when there is no iommu is definitely
275 	 * unsafe...
276 	 */
277 	domain = iommu_get_domain_for_dev(dev);
278 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
279 	    domain->type == IOMMU_DOMAIN_IDENTITY)
280 		return;
281 
282 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
283 
284 	/* Clear HSEIE so that faults do not get signaled */
285 	val = readl(&xhci->op_regs->command);
286 	val &= ~CMD_HSEIE;
287 	writel(val, &xhci->op_regs->command);
288 
289 	/* Clear HSE (aka FATAL) */
290 	val = readl(&xhci->op_regs->status);
291 	val |= STS_FATAL;
292 	writel(val, &xhci->op_regs->status);
293 
294 	/* Now zero the registers, and brace for impact */
295 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
296 	if (upper_32_bits(val))
297 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
298 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
299 	if (upper_32_bits(val))
300 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
301 
302 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
303 		      ARRAY_SIZE(xhci->run_regs->ir_set));
304 
305 	for (i = 0; i < intrs; i++) {
306 		struct xhci_intr_reg __iomem *ir;
307 
308 		ir = &xhci->run_regs->ir_set[i];
309 		val = xhci_read_64(xhci, &ir->erst_base);
310 		if (upper_32_bits(val))
311 			xhci_write_64(xhci, 0, &ir->erst_base);
312 		val= xhci_read_64(xhci, &ir->erst_dequeue);
313 		if (upper_32_bits(val))
314 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
315 	}
316 
317 	/* Wait for the fault to appear. It will be cleared on reset */
318 	err = xhci_handshake(&xhci->op_regs->status,
319 			     STS_FATAL, STS_FATAL,
320 			     XHCI_MAX_HALT_USEC);
321 	if (!err)
322 		xhci_info(xhci, "Fault detected\n");
323 }
324 
xhci_enable_interrupter(struct xhci_interrupter * ir)325 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
326 {
327 	u32 iman;
328 
329 	if (!ir || !ir->ir_set)
330 		return -EINVAL;
331 
332 	iman = readl(&ir->ir_set->irq_pending);
333 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
334 
335 	return 0;
336 }
337 
xhci_disable_interrupter(struct xhci_interrupter * ir)338 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
339 {
340 	u32 iman;
341 
342 	if (!ir || !ir->ir_set)
343 		return -EINVAL;
344 
345 	iman = readl(&ir->ir_set->irq_pending);
346 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
347 
348 	return 0;
349 }
350 
351 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
353 				    u32 imod_interval)
354 {
355 	u32 imod;
356 
357 	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
358 		return -EINVAL;
359 
360 	imod = readl(&ir->ir_set->irq_control);
361 	imod &= ~ER_IRQ_INTERVAL_MASK;
362 	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
363 	writel(imod, &ir->ir_set->irq_control);
364 
365 	return 0;
366 }
367 
compliance_mode_recovery(struct timer_list * t)368 static void compliance_mode_recovery(struct timer_list *t)
369 {
370 	struct xhci_hcd *xhci;
371 	struct usb_hcd *hcd;
372 	struct xhci_hub *rhub;
373 	u32 temp;
374 	int i;
375 
376 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
377 	rhub = &xhci->usb3_rhub;
378 	hcd = rhub->hcd;
379 
380 	if (!hcd)
381 		return;
382 
383 	for (i = 0; i < rhub->num_ports; i++) {
384 		temp = readl(rhub->ports[i]->addr);
385 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
386 			/*
387 			 * Compliance Mode Detected. Letting USB Core
388 			 * handle the Warm Reset
389 			 */
390 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
391 					"Compliance mode detected->port %d",
392 					i + 1);
393 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
394 					"Attempting compliance mode recovery");
395 
396 			if (hcd->state == HC_STATE_SUSPENDED)
397 				usb_hcd_resume_root_hub(hcd);
398 
399 			usb_hcd_poll_rh_status(hcd);
400 		}
401 	}
402 
403 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
404 		mod_timer(&xhci->comp_mode_recovery_timer,
405 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
406 }
407 
408 /*
409  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
410  * that causes ports behind that hardware to enter compliance mode sometimes.
411  * The quirk creates a timer that polls every 2 seconds the link state of
412  * each host controller's port and recovers it by issuing a Warm reset
413  * if Compliance mode is detected, otherwise the port will become "dead" (no
414  * device connections or disconnections will be detected anymore). Becasue no
415  * status event is generated when entering compliance mode (per xhci spec),
416  * this quirk is needed on systems that have the failing hardware installed.
417  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
419 {
420 	xhci->port_status_u0 = 0;
421 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
422 		    0);
423 	xhci->comp_mode_recovery_timer.expires = jiffies +
424 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
425 
426 	add_timer(&xhci->comp_mode_recovery_timer);
427 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
428 			"Compliance mode recovery timer initialized");
429 }
430 
431 /*
432  * This function identifies the systems that have installed the SN65LVPE502CP
433  * USB3.0 re-driver and that need the Compliance Mode Quirk.
434  * Systems:
435  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
436  */
xhci_compliance_mode_recovery_timer_quirk_check(void)437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
438 {
439 	const char *dmi_product_name, *dmi_sys_vendor;
440 
441 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
442 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
443 	if (!dmi_product_name || !dmi_sys_vendor)
444 		return false;
445 
446 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
447 		return false;
448 
449 	if (strstr(dmi_product_name, "Z420") ||
450 			strstr(dmi_product_name, "Z620") ||
451 			strstr(dmi_product_name, "Z820") ||
452 			strstr(dmi_product_name, "Z1 Workstation"))
453 		return true;
454 
455 	return false;
456 }
457 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
459 {
460 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
461 }
462 
463 
464 /*
465  * Initialize memory for HCD and xHC (one-time init).
466  *
467  * Program the PAGESIZE register, initialize the device context array, create
468  * device contexts (?), set up a command ring segment (or two?), create event
469  * ring (one for now).
470  */
xhci_init(struct usb_hcd * hcd)471 static int xhci_init(struct usb_hcd *hcd)
472 {
473 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
474 	int retval;
475 
476 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
477 	spin_lock_init(&xhci->lock);
478 
479 	retval = xhci_mem_init(xhci, GFP_KERNEL);
480 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
481 
482 	/* Initializing Compliance Mode Recovery Data If Needed */
483 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
484 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
485 		compliance_mode_recovery_timer_init(xhci);
486 	}
487 
488 	return retval;
489 }
490 
491 /*-------------------------------------------------------------------------*/
492 
xhci_run_finished(struct xhci_hcd * xhci)493 static int xhci_run_finished(struct xhci_hcd *xhci)
494 {
495 	struct xhci_interrupter *ir = xhci->interrupters[0];
496 	unsigned long	flags;
497 	u32		temp;
498 
499 	/*
500 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
501 	 * Protect the short window before host is running with a lock
502 	 */
503 	spin_lock_irqsave(&xhci->lock, flags);
504 
505 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
506 	temp = readl(&xhci->op_regs->command);
507 	temp |= (CMD_EIE);
508 	writel(temp, &xhci->op_regs->command);
509 
510 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
511 	xhci_enable_interrupter(ir);
512 
513 	if (xhci_start(xhci)) {
514 		xhci_halt(xhci);
515 		spin_unlock_irqrestore(&xhci->lock, flags);
516 		return -ENODEV;
517 	}
518 
519 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
520 
521 	if (xhci->quirks & XHCI_NEC_HOST)
522 		xhci_ring_cmd_db(xhci);
523 
524 	spin_unlock_irqrestore(&xhci->lock, flags);
525 
526 	return 0;
527 }
528 
529 /*
530  * Start the HC after it was halted.
531  *
532  * This function is called by the USB core when the HC driver is added.
533  * Its opposite is xhci_stop().
534  *
535  * xhci_init() must be called once before this function can be called.
536  * Reset the HC, enable device slot contexts, program DCBAAP, and
537  * set command ring pointer and event ring pointer.
538  *
539  * Setup MSI-X vectors and enable interrupts.
540  */
xhci_run(struct usb_hcd * hcd)541 int xhci_run(struct usb_hcd *hcd)
542 {
543 	u64 temp_64;
544 	int ret;
545 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
546 	struct xhci_interrupter *ir = xhci->interrupters[0];
547 	/* Start the xHCI host controller running only after the USB 2.0 roothub
548 	 * is setup.
549 	 */
550 
551 	hcd->uses_new_polling = 1;
552 	if (hcd->msi_enabled)
553 		ir->ip_autoclear = true;
554 
555 	if (!usb_hcd_is_primary_hcd(hcd))
556 		return xhci_run_finished(xhci);
557 
558 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
559 
560 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
561 	temp_64 &= ERST_PTR_MASK;
562 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
563 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
564 
565 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
566 
567 	if (xhci->quirks & XHCI_NEC_HOST) {
568 		struct xhci_command *command;
569 
570 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
571 		if (!command)
572 			return -ENOMEM;
573 
574 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
575 				TRB_TYPE(TRB_NEC_GET_FW));
576 		if (ret)
577 			xhci_free_command(xhci, command);
578 	}
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 			"Finished %s for main hcd", __func__);
581 
582 	xhci_create_dbc_dev(xhci);
583 
584 	xhci_debugfs_init(xhci);
585 
586 	if (xhci_has_one_roothub(xhci))
587 		return xhci_run_finished(xhci);
588 
589 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
590 
591 	return 0;
592 }
593 EXPORT_SYMBOL_GPL(xhci_run);
594 
595 /*
596  * Stop xHCI driver.
597  *
598  * This function is called by the USB core when the HC driver is removed.
599  * Its opposite is xhci_run().
600  *
601  * Disable device contexts, disable IRQs, and quiesce the HC.
602  * Reset the HC, finish any completed transactions, and cleanup memory.
603  */
xhci_stop(struct usb_hcd * hcd)604 void xhci_stop(struct usb_hcd *hcd)
605 {
606 	u32 temp;
607 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
608 	struct xhci_interrupter *ir = xhci->interrupters[0];
609 
610 	mutex_lock(&xhci->mutex);
611 
612 	/* Only halt host and free memory after both hcds are removed */
613 	if (!usb_hcd_is_primary_hcd(hcd)) {
614 		mutex_unlock(&xhci->mutex);
615 		return;
616 	}
617 
618 	xhci_remove_dbc_dev(xhci);
619 
620 	spin_lock_irq(&xhci->lock);
621 	xhci->xhc_state |= XHCI_STATE_HALTED;
622 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
623 	xhci_halt(xhci);
624 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
625 	spin_unlock_irq(&xhci->lock);
626 
627 	/* Deleting Compliance Mode Recovery Timer */
628 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
629 			(!(xhci_all_ports_seen_u0(xhci)))) {
630 		del_timer_sync(&xhci->comp_mode_recovery_timer);
631 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
632 				"%s: compliance mode recovery timer deleted",
633 				__func__);
634 	}
635 
636 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 		usb_amd_dev_put();
638 
639 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 			"// Disabling event ring interrupts");
641 	temp = readl(&xhci->op_regs->status);
642 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
643 	xhci_disable_interrupter(ir);
644 
645 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
646 	xhci_mem_cleanup(xhci);
647 	xhci_debugfs_exit(xhci);
648 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 			"xhci_stop completed - status = %x",
650 			readl(&xhci->op_regs->status));
651 	mutex_unlock(&xhci->mutex);
652 }
653 EXPORT_SYMBOL_GPL(xhci_stop);
654 
655 /*
656  * Shutdown HC (not bus-specific)
657  *
658  * This is called when the machine is rebooting or halting.  We assume that the
659  * machine will be powered off, and the HC's internal state will be reset.
660  * Don't bother to free memory.
661  *
662  * This will only ever be called with the main usb_hcd (the USB3 roothub).
663  */
xhci_shutdown(struct usb_hcd * hcd)664 void xhci_shutdown(struct usb_hcd *hcd)
665 {
666 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
667 
668 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
669 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
670 
671 	/* Don't poll the roothubs after shutdown. */
672 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
673 			__func__, hcd->self.busnum);
674 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
675 	del_timer_sync(&hcd->rh_timer);
676 
677 	if (xhci->shared_hcd) {
678 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
679 		del_timer_sync(&xhci->shared_hcd->rh_timer);
680 	}
681 
682 	spin_lock_irq(&xhci->lock);
683 	xhci_halt(xhci);
684 
685 	/*
686 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
687 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
688 	 */
689 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
690 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
691 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
692 
693 	spin_unlock_irq(&xhci->lock);
694 
695 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 			"xhci_shutdown completed - status = %x",
697 			readl(&xhci->op_regs->status));
698 }
699 EXPORT_SYMBOL_GPL(xhci_shutdown);
700 
701 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)702 static void xhci_save_registers(struct xhci_hcd *xhci)
703 {
704 	struct xhci_interrupter *ir;
705 	unsigned int i;
706 
707 	xhci->s3.command = readl(&xhci->op_regs->command);
708 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
709 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
710 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
711 
712 	/* save both primary and all secondary interrupters */
713 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
714 	for (i = 0; i < xhci->max_interrupters; i++) {
715 		ir = xhci->interrupters[i];
716 		if (!ir)
717 			continue;
718 
719 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
720 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
721 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
722 		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
723 		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
724 	}
725 }
726 
xhci_restore_registers(struct xhci_hcd * xhci)727 static void xhci_restore_registers(struct xhci_hcd *xhci)
728 {
729 	struct xhci_interrupter *ir;
730 	unsigned int i;
731 
732 	writel(xhci->s3.command, &xhci->op_regs->command);
733 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
734 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
735 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
736 
737 	/* FIXME should we lock to protect against freeing of interrupters */
738 	for (i = 0; i < xhci->max_interrupters; i++) {
739 		ir = xhci->interrupters[i];
740 		if (!ir)
741 			continue;
742 
743 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
744 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
745 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
746 		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
747 		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
748 	}
749 }
750 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
752 {
753 	u64	val_64;
754 
755 	/* step 2: initialize command ring buffer */
756 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
757 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
758 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
759 				      xhci->cmd_ring->dequeue) &
760 		 (u64) ~CMD_RING_RSVD_BITS) |
761 		xhci->cmd_ring->cycle_state;
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"// Setting command ring address to 0x%llx",
764 			(long unsigned long) val_64);
765 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
766 }
767 
768 /*
769  * The whole command ring must be cleared to zero when we suspend the host.
770  *
771  * The host doesn't save the command ring pointer in the suspend well, so we
772  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
773  * aligned, because of the reserved bits in the command ring dequeue pointer
774  * register.  Therefore, we can't just set the dequeue pointer back in the
775  * middle of the ring (TRBs are 16-byte aligned).
776  */
xhci_clear_command_ring(struct xhci_hcd * xhci)777 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
778 {
779 	struct xhci_ring *ring;
780 	struct xhci_segment *seg;
781 
782 	ring = xhci->cmd_ring;
783 	xhci_for_each_ring_seg(ring->first_seg, seg) {
784 		/* erase all TRBs before the link */
785 		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
786 		/* clear link cycle bit */
787 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
788 	}
789 
790 	xhci_initialize_ring_info(ring);
791 	/*
792 	 * Reset the hardware dequeue pointer.
793 	 * Yes, this will need to be re-written after resume, but we're paranoid
794 	 * and want to make sure the hardware doesn't access bogus memory
795 	 * because, say, the BIOS or an SMI started the host without changing
796 	 * the command ring pointers.
797 	 */
798 	xhci_set_cmd_ring_deq(xhci);
799 }
800 
801 /*
802  * Disable port wake bits if do_wakeup is not set.
803  *
804  * Also clear a possible internal port wake state left hanging for ports that
805  * detected termination but never successfully enumerated (trained to 0U).
806  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
807  * at enumeration clears this wake, force one here as well for unconnected ports
808  */
809 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
811 				       struct xhci_hub *rhub,
812 				       bool do_wakeup)
813 {
814 	unsigned long flags;
815 	u32 t1, t2, portsc;
816 	int i;
817 
818 	spin_lock_irqsave(&xhci->lock, flags);
819 
820 	for (i = 0; i < rhub->num_ports; i++) {
821 		portsc = readl(rhub->ports[i]->addr);
822 		t1 = xhci_port_state_to_neutral(portsc);
823 		t2 = t1;
824 
825 		/* clear wake bits if do_wake is not set */
826 		if (!do_wakeup)
827 			t2 &= ~PORT_WAKE_BITS;
828 
829 		/* Don't touch csc bit if connected or connect change is set */
830 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
831 			t2 |= PORT_CSC;
832 
833 		if (t1 != t2) {
834 			writel(t2, rhub->ports[i]->addr);
835 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
836 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
837 		}
838 	}
839 	spin_unlock_irqrestore(&xhci->lock, flags);
840 }
841 
xhci_pending_portevent(struct xhci_hcd * xhci)842 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
843 {
844 	struct xhci_port	**ports;
845 	int			port_index;
846 	u32			status;
847 	u32			portsc;
848 
849 	status = readl(&xhci->op_regs->status);
850 	if (status & STS_EINT)
851 		return true;
852 	/*
853 	 * Checking STS_EINT is not enough as there is a lag between a change
854 	 * bit being set and the Port Status Change Event that it generated
855 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
856 	 */
857 
858 	port_index = xhci->usb2_rhub.num_ports;
859 	ports = xhci->usb2_rhub.ports;
860 	while (port_index--) {
861 		portsc = readl(ports[port_index]->addr);
862 		if (portsc & PORT_CHANGE_MASK ||
863 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
864 			return true;
865 	}
866 	port_index = xhci->usb3_rhub.num_ports;
867 	ports = xhci->usb3_rhub.ports;
868 	while (port_index--) {
869 		portsc = readl(ports[port_index]->addr);
870 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
871 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
872 			return true;
873 	}
874 	return false;
875 }
876 
877 /*
878  * Stop HC (not bus-specific)
879  *
880  * This is called when the machine transition into S3/S4 mode.
881  *
882  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
884 {
885 	int			rc = 0;
886 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
887 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
888 	u32			command;
889 	u32			res;
890 
891 	if (!hcd->state)
892 		return 0;
893 
894 	if (hcd->state != HC_STATE_SUSPENDED ||
895 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
896 		return -EINVAL;
897 
898 	/* Clear root port wake on bits if wakeup not allowed. */
899 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
900 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
901 
902 	if (!HCD_HW_ACCESSIBLE(hcd))
903 		return 0;
904 
905 	xhci_dbc_suspend(xhci);
906 
907 	/* Don't poll the roothubs on bus suspend. */
908 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
909 		 __func__, hcd->self.busnum);
910 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
911 	del_timer_sync(&hcd->rh_timer);
912 	if (xhci->shared_hcd) {
913 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
914 		del_timer_sync(&xhci->shared_hcd->rh_timer);
915 	}
916 
917 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
918 		usleep_range(1000, 1500);
919 
920 	spin_lock_irq(&xhci->lock);
921 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
922 	if (xhci->shared_hcd)
923 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924 	/* step 1: stop endpoint */
925 	/* skipped assuming that port suspend has done */
926 
927 	/* step 2: clear Run/Stop bit */
928 	command = readl(&xhci->op_regs->command);
929 	command &= ~CMD_RUN;
930 	writel(command, &xhci->op_regs->command);
931 
932 	/* Some chips from Fresco Logic need an extraordinary delay */
933 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934 
935 	if (xhci_handshake(&xhci->op_regs->status,
936 		      STS_HALT, STS_HALT, delay)) {
937 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938 		spin_unlock_irq(&xhci->lock);
939 		return -ETIMEDOUT;
940 	}
941 	xhci_clear_command_ring(xhci);
942 
943 	/* step 3: save registers */
944 	xhci_save_registers(xhci);
945 
946 	/* step 4: set CSS flag */
947 	command = readl(&xhci->op_regs->command);
948 	command |= CMD_CSS;
949 	writel(command, &xhci->op_regs->command);
950 	xhci->broken_suspend = 0;
951 	if (xhci_handshake(&xhci->op_regs->status,
952 				STS_SAVE, 0, 20 * 1000)) {
953 	/*
954 	 * AMD SNPS xHC 3.0 occasionally does not clear the
955 	 * SSS bit of USBSTS and when driver tries to poll
956 	 * to see if the xHC clears BIT(8) which never happens
957 	 * and driver assumes that controller is not responding
958 	 * and times out. To workaround this, its good to check
959 	 * if SRE and HCE bits are not set (as per xhci
960 	 * Section 5.4.2) and bypass the timeout.
961 	 */
962 		res = readl(&xhci->op_regs->status);
963 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
964 		    (((res & STS_SRE) == 0) &&
965 				((res & STS_HCE) == 0))) {
966 			xhci->broken_suspend = 1;
967 		} else {
968 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
969 			spin_unlock_irq(&xhci->lock);
970 			return -ETIMEDOUT;
971 		}
972 	}
973 	spin_unlock_irq(&xhci->lock);
974 
975 	/*
976 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
977 	 * is about to be suspended.
978 	 */
979 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
980 			(!(xhci_all_ports_seen_u0(xhci)))) {
981 		del_timer_sync(&xhci->comp_mode_recovery_timer);
982 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
983 				"%s: compliance mode recovery timer deleted",
984 				__func__);
985 	}
986 
987 	return rc;
988 }
989 EXPORT_SYMBOL_GPL(xhci_suspend);
990 
991 /*
992  * start xHC (not bus-specific)
993  *
994  * This is called when the machine transition from S3/S4 mode.
995  *
996  */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)997 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
998 {
999 	u32			command, temp = 0;
1000 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1001 	int			retval = 0;
1002 	bool			comp_timer_running = false;
1003 	bool			pending_portevent = false;
1004 	bool			suspended_usb3_devs = false;
1005 
1006 	if (!hcd->state)
1007 		return 0;
1008 
1009 	/* Wait a bit if either of the roothubs need to settle from the
1010 	 * transition into bus suspend.
1011 	 */
1012 
1013 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1014 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1015 		msleep(100);
1016 
1017 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1018 	if (xhci->shared_hcd)
1019 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1020 
1021 	spin_lock_irq(&xhci->lock);
1022 
1023 	if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1024 		power_lost = true;
1025 
1026 	if (!power_lost) {
1027 		/*
1028 		 * Some controllers might lose power during suspend, so wait
1029 		 * for controller not ready bit to clear, just as in xHC init.
1030 		 */
1031 		retval = xhci_handshake(&xhci->op_regs->status,
1032 					STS_CNR, 0, 10 * 1000 * 1000);
1033 		if (retval) {
1034 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1035 				  retval);
1036 			spin_unlock_irq(&xhci->lock);
1037 			return retval;
1038 		}
1039 		/* step 1: restore register */
1040 		xhci_restore_registers(xhci);
1041 		/* step 2: initialize command ring buffer */
1042 		xhci_set_cmd_ring_deq(xhci);
1043 		/* step 3: restore state and start state*/
1044 		/* step 3: set CRS flag */
1045 		command = readl(&xhci->op_regs->command);
1046 		command |= CMD_CRS;
1047 		writel(command, &xhci->op_regs->command);
1048 		/*
1049 		 * Some controllers take up to 55+ ms to complete the controller
1050 		 * restore so setting the timeout to 100ms. Xhci specification
1051 		 * doesn't mention any timeout value.
1052 		 */
1053 		if (xhci_handshake(&xhci->op_regs->status,
1054 			      STS_RESTORE, 0, 100 * 1000)) {
1055 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1056 			spin_unlock_irq(&xhci->lock);
1057 			return -ETIMEDOUT;
1058 		}
1059 	}
1060 
1061 	temp = readl(&xhci->op_regs->status);
1062 
1063 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1064 	if ((temp & (STS_SRE | STS_HCE)) &&
1065 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1066 		if (!power_lost)
1067 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1068 		power_lost = true;
1069 	}
1070 
1071 	if (power_lost) {
1072 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1073 				!(xhci_all_ports_seen_u0(xhci))) {
1074 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1075 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1076 				"Compliance Mode Recovery Timer deleted!");
1077 		}
1078 
1079 		/* Let the USB core know _both_ roothubs lost power. */
1080 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1081 		if (xhci->shared_hcd)
1082 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1083 
1084 		xhci_dbg(xhci, "Stop HCD\n");
1085 		xhci_halt(xhci);
1086 		xhci_zero_64b_regs(xhci);
1087 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1088 		spin_unlock_irq(&xhci->lock);
1089 		if (retval)
1090 			return retval;
1091 
1092 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1093 		temp = readl(&xhci->op_regs->status);
1094 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1095 		xhci_disable_interrupter(xhci->interrupters[0]);
1096 
1097 		xhci_dbg(xhci, "cleaning up memory\n");
1098 		xhci_mem_cleanup(xhci);
1099 		xhci_debugfs_exit(xhci);
1100 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1101 			    readl(&xhci->op_regs->status));
1102 
1103 		/* USB core calls the PCI reinit and start functions twice:
1104 		 * first with the primary HCD, and then with the secondary HCD.
1105 		 * If we don't do the same, the host will never be started.
1106 		 */
1107 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1108 		retval = xhci_init(hcd);
1109 		if (retval)
1110 			return retval;
1111 		comp_timer_running = true;
1112 
1113 		xhci_dbg(xhci, "Start the primary HCD\n");
1114 		retval = xhci_run(hcd);
1115 		if (!retval && xhci->shared_hcd) {
1116 			xhci_dbg(xhci, "Start the secondary HCD\n");
1117 			retval = xhci_run(xhci->shared_hcd);
1118 		}
1119 		if (retval)
1120 			return retval;
1121 		/*
1122 		 * Resume roothubs unconditionally as PORTSC change bits are not
1123 		 * immediately visible after xHC reset
1124 		 */
1125 		hcd->state = HC_STATE_SUSPENDED;
1126 
1127 		if (xhci->shared_hcd) {
1128 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1129 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1130 		}
1131 		usb_hcd_resume_root_hub(hcd);
1132 
1133 		goto done;
1134 	}
1135 
1136 	/* step 4: set Run/Stop bit */
1137 	command = readl(&xhci->op_regs->command);
1138 	command |= CMD_RUN;
1139 	writel(command, &xhci->op_regs->command);
1140 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1141 		  0, 250 * 1000);
1142 
1143 	/* step 5: walk topology and initialize portsc,
1144 	 * portpmsc and portli
1145 	 */
1146 	/* this is done in bus_resume */
1147 
1148 	/* step 6: restart each of the previously
1149 	 * Running endpoints by ringing their doorbells
1150 	 */
1151 
1152 	spin_unlock_irq(&xhci->lock);
1153 
1154 	xhci_dbc_resume(xhci);
1155 
1156 	if (retval == 0) {
1157 		/*
1158 		 * Resume roothubs only if there are pending events.
1159 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160 		 * the first wake signalling failed, give it that chance if
1161 		 * there are suspended USB 3 devices.
1162 		 */
1163 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164 		    xhci->usb3_rhub.bus_state.bus_suspended)
1165 			suspended_usb3_devs = true;
1166 
1167 		pending_portevent = xhci_pending_portevent(xhci);
1168 
1169 		if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1170 			msleep(120);
1171 			pending_portevent = xhci_pending_portevent(xhci);
1172 		}
1173 
1174 		if (pending_portevent) {
1175 			if (xhci->shared_hcd)
1176 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1177 			usb_hcd_resume_root_hub(hcd);
1178 		}
1179 	}
1180 done:
1181 	/*
1182 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183 	 * be re-initialized Always after a system resume. Ports are subject
1184 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1185 	 * ports have entered previously to U0 before system's suspension.
1186 	 */
1187 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188 		compliance_mode_recovery_timer_init(xhci);
1189 
1190 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192 
1193 	/* Re-enable port polling. */
1194 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195 		 __func__, hcd->self.busnum);
1196 	if (xhci->shared_hcd) {
1197 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1199 	}
1200 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201 	usb_hcd_poll_rh_status(hcd);
1202 
1203 	return retval;
1204 }
1205 EXPORT_SYMBOL_GPL(xhci_resume);
1206 #endif	/* CONFIG_PM */
1207 
1208 /*-------------------------------------------------------------------------*/
1209 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1210 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211 {
1212 	void *temp;
1213 	int ret = 0;
1214 	unsigned int buf_len;
1215 	enum dma_data_direction dir;
1216 
1217 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218 	buf_len = urb->transfer_buffer_length;
1219 
1220 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221 			    dev_to_node(hcd->self.sysdev));
1222 	if (!temp)
1223 		return -ENOMEM;
1224 
1225 	if (usb_urb_dir_out(urb))
1226 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227 				   temp, buf_len, 0);
1228 
1229 	urb->transfer_buffer = temp;
1230 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231 					   urb->transfer_buffer,
1232 					   urb->transfer_buffer_length,
1233 					   dir);
1234 
1235 	if (dma_mapping_error(hcd->self.sysdev,
1236 			      urb->transfer_dma)) {
1237 		ret = -EAGAIN;
1238 		kfree(temp);
1239 	} else {
1240 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241 	}
1242 
1243 	return ret;
1244 }
1245 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1246 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247 					  struct urb *urb)
1248 {
1249 	bool ret = false;
1250 	unsigned int i;
1251 	unsigned int len = 0;
1252 	unsigned int trb_size;
1253 	unsigned int max_pkt;
1254 	struct scatterlist *sg;
1255 	struct scatterlist *tail_sg;
1256 
1257 	tail_sg = urb->sg;
1258 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259 
1260 	if (!urb->num_sgs)
1261 		return ret;
1262 
1263 	if (urb->dev->speed >= USB_SPEED_SUPER)
1264 		trb_size = TRB_CACHE_SIZE_SS;
1265 	else
1266 		trb_size = TRB_CACHE_SIZE_HS;
1267 
1268 	if (urb->transfer_buffer_length != 0 &&
1269 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271 			len = len + sg->length;
1272 			if (i > trb_size - 2) {
1273 				len = len - tail_sg->length;
1274 				if (len < max_pkt) {
1275 					ret = true;
1276 					break;
1277 				}
1278 
1279 				tail_sg = sg_next(tail_sg);
1280 			}
1281 		}
1282 	}
1283 	return ret;
1284 }
1285 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1286 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287 {
1288 	unsigned int len;
1289 	unsigned int buf_len;
1290 	enum dma_data_direction dir;
1291 
1292 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293 
1294 	buf_len = urb->transfer_buffer_length;
1295 
1296 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298 		dma_unmap_single(hcd->self.sysdev,
1299 				 urb->transfer_dma,
1300 				 urb->transfer_buffer_length,
1301 				 dir);
1302 
1303 	if (usb_urb_dir_in(urb)) {
1304 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305 					   urb->transfer_buffer,
1306 					   buf_len,
1307 					   0);
1308 		if (len != buf_len) {
1309 			xhci_dbg(hcd_to_xhci(hcd),
1310 				 "Copy from tmp buf to urb sg list failed\n");
1311 			urb->actual_length = len;
1312 		}
1313 	}
1314 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315 	kfree(urb->transfer_buffer);
1316 	urb->transfer_buffer = NULL;
1317 }
1318 
1319 /*
1320  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321  * we'll copy the actual data into the TRB address register. This is limited to
1322  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1325 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326 				gfp_t mem_flags)
1327 {
1328 	struct xhci_hcd *xhci;
1329 
1330 	xhci = hcd_to_xhci(hcd);
1331 
1332 	if (xhci_urb_suitable_for_idt(urb))
1333 		return 0;
1334 
1335 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336 		if (xhci_urb_temp_buffer_required(hcd, urb))
1337 			return xhci_map_temp_buffer(hcd, urb);
1338 	}
1339 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340 }
1341 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1342 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343 {
1344 	struct xhci_hcd *xhci;
1345 	bool unmap_temp_buf = false;
1346 
1347 	xhci = hcd_to_xhci(hcd);
1348 
1349 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350 		unmap_temp_buf = true;
1351 
1352 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353 		xhci_unmap_temp_buf(hcd, urb);
1354 	else
1355 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1356 }
1357 
1358 /**
1359  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1361  * value to right shift 1 for the bitmask.
1362  *
1363  * Index  = (epnum * 2) + direction - 1,
1364  * where direction = 0 for OUT, 1 for IN.
1365  * For control endpoints, the IN index is used (OUT index is unused), so
1366  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1368 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369 {
1370 	unsigned int index;
1371 	if (usb_endpoint_xfer_control(desc))
1372 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1373 	else
1374 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376 	return index;
1377 }
1378 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379 
1380 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381  * address from the XHCI endpoint index.
1382  */
xhci_get_endpoint_address(unsigned int ep_index)1383 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384 {
1385 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387 	return direction | number;
1388 }
1389 
1390 /* Find the flag for this endpoint (for use in the control context).  Use the
1391  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1392  * bit 1, etc.
1393  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1394 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395 {
1396 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1397 }
1398 
1399 /* Compute the last valid endpoint context index.  Basically, this is the
1400  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1401  * we find the most significant bit set in the added contexts flags.
1402  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404  */
xhci_last_valid_endpoint(u32 added_ctxs)1405 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406 {
1407 	return fls(added_ctxs) - 1;
1408 }
1409 
1410 /* Returns 1 if the arguments are OK;
1411  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1413 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415 		const char *func) {
1416 	struct xhci_hcd	*xhci;
1417 	struct xhci_virt_device	*virt_dev;
1418 
1419 	if (!hcd || (check_ep && !ep) || !udev) {
1420 		pr_debug("xHCI %s called with invalid args\n", func);
1421 		return -EINVAL;
1422 	}
1423 	if (!udev->parent) {
1424 		pr_debug("xHCI %s called for root hub\n", func);
1425 		return 0;
1426 	}
1427 
1428 	xhci = hcd_to_xhci(hcd);
1429 	if (check_virt_dev) {
1430 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432 					func);
1433 			return -EINVAL;
1434 		}
1435 
1436 		virt_dev = xhci->devs[udev->slot_id];
1437 		if (virt_dev->udev != udev) {
1438 			xhci_dbg(xhci, "xHCI %s called with udev and "
1439 					  "virt_dev does not match\n", func);
1440 			return -EINVAL;
1441 		}
1442 	}
1443 
1444 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1445 		return -ENODEV;
1446 
1447 	return 1;
1448 }
1449 
1450 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451 		struct usb_device *udev, struct xhci_command *command,
1452 		bool ctx_change, bool must_succeed);
1453 
1454 /*
1455  * Full speed devices may have a max packet size greater than 8 bytes, but the
1456  * USB core doesn't know that until it reads the first 8 bytes of the
1457  * descriptor.  If the usb_device's max packet size changes after that point,
1458  * we need to issue an evaluate context command and wait on it.
1459  */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1460 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1461 {
1462 	struct xhci_input_control_ctx *ctrl_ctx;
1463 	struct xhci_ep_ctx *ep_ctx;
1464 	struct xhci_command *command;
1465 	int max_packet_size;
1466 	int hw_max_packet_size;
1467 	int ret = 0;
1468 
1469 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1470 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472 
1473 	if (hw_max_packet_size == max_packet_size)
1474 		return 0;
1475 
1476 	switch (max_packet_size) {
1477 	case 8: case 16: case 32: case 64: case 9:
1478 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1479 				"Max Packet Size for ep 0 changed.");
1480 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1481 				"Max packet size in usb_device = %d",
1482 				max_packet_size);
1483 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1484 				"Max packet size in xHCI HW = %d",
1485 				hw_max_packet_size);
1486 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1487 				"Issuing evaluate context command.");
1488 
1489 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1490 		if (!command)
1491 			return -ENOMEM;
1492 
1493 		command->in_ctx = vdev->in_ctx;
1494 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495 		if (!ctrl_ctx) {
1496 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497 					__func__);
1498 			ret = -ENOMEM;
1499 			break;
1500 		}
1501 		/* Set up the modified control endpoint 0 */
1502 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1503 
1504 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508 
1509 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510 		ctrl_ctx->drop_flags = 0;
1511 
1512 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513 					      true, false);
1514 		/* Clean up the input context for later use by bandwidth functions */
1515 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516 		break;
1517 	default:
1518 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519 			max_packet_size);
1520 		return -EINVAL;
1521 	}
1522 
1523 	kfree(command->completion);
1524 	kfree(command);
1525 
1526 	return ret;
1527 }
1528 
1529 /*
1530  * non-error returns are a promise to giveback() the urb later
1531  * we drop ownership so next owner (or urb unlink) can get it
1532  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1533 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534 {
1535 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1536 	unsigned long flags;
1537 	int ret = 0;
1538 	unsigned int slot_id, ep_index;
1539 	unsigned int *ep_state;
1540 	struct urb_priv	*urb_priv;
1541 	int num_tds;
1542 
1543 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544 
1545 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546 		num_tds = urb->number_of_packets;
1547 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548 	    urb->transfer_buffer_length > 0 &&
1549 	    urb->transfer_flags & URB_ZERO_PACKET &&
1550 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551 		num_tds = 2;
1552 	else
1553 		num_tds = 1;
1554 
1555 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1556 	if (!urb_priv)
1557 		return -ENOMEM;
1558 
1559 	urb_priv->num_tds = num_tds;
1560 	urb_priv->num_tds_done = 0;
1561 	urb->hcpriv = urb_priv;
1562 
1563 	trace_xhci_urb_enqueue(urb);
1564 
1565 	spin_lock_irqsave(&xhci->lock, flags);
1566 
1567 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568 			      true, true, __func__);
1569 	if (ret <= 0) {
1570 		ret = ret ? ret : -EINVAL;
1571 		goto free_priv;
1572 	}
1573 
1574 	slot_id = urb->dev->slot_id;
1575 
1576 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1577 		ret = -ESHUTDOWN;
1578 		goto free_priv;
1579 	}
1580 
1581 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583 		ret = -ENODEV;
1584 		goto free_priv;
1585 	}
1586 
1587 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1588 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589 			 urb->ep->desc.bEndpointAddress, urb);
1590 		ret = -ESHUTDOWN;
1591 		goto free_priv;
1592 	}
1593 
1594 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595 
1596 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598 			  *ep_state);
1599 		ret = -EINVAL;
1600 		goto free_priv;
1601 	}
1602 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604 		ret = -EINVAL;
1605 		goto free_priv;
1606 	}
1607 
1608 	/* Class driver might not be aware ep halted due to async URB giveback */
1609 	if (*ep_state & EP_STALLED)
1610 		dev_dbg(&urb->dev->dev, "URB %p queued before clearing halt\n",
1611 			urb);
1612 
1613 	switch (usb_endpoint_type(&urb->ep->desc)) {
1614 
1615 	case USB_ENDPOINT_XFER_CONTROL:
1616 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1617 					 slot_id, ep_index);
1618 		break;
1619 	case USB_ENDPOINT_XFER_BULK:
1620 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1621 					 slot_id, ep_index);
1622 		break;
1623 	case USB_ENDPOINT_XFER_INT:
1624 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1625 				slot_id, ep_index);
1626 		break;
1627 	case USB_ENDPOINT_XFER_ISOC:
1628 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1629 				slot_id, ep_index);
1630 	}
1631 
1632 	if (ret) {
1633 free_priv:
1634 		xhci_urb_free_priv(urb_priv);
1635 		urb->hcpriv = NULL;
1636 	}
1637 	spin_unlock_irqrestore(&xhci->lock, flags);
1638 	return ret;
1639 }
1640 
1641 /*
1642  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1643  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1644  * should pick up where it left off in the TD, unless a Set Transfer Ring
1645  * Dequeue Pointer is issued.
1646  *
1647  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1648  * the ring.  Since the ring is a contiguous structure, they can't be physically
1649  * removed.  Instead, there are two options:
1650  *
1651  *  1) If the HC is in the middle of processing the URB to be canceled, we
1652  *     simply move the ring's dequeue pointer past those TRBs using the Set
1653  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1654  *     when drivers timeout on the last submitted URB and attempt to cancel.
1655  *
1656  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1657  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1658  *     HC will need to invalidate the any TRBs it has cached after the stop
1659  *     endpoint command, as noted in the xHCI 0.95 errata.
1660  *
1661  *  3) The TD may have completed by the time the Stop Endpoint Command
1662  *     completes, so software needs to handle that case too.
1663  *
1664  * This function should protect against the TD enqueueing code ringing the
1665  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1666  * It also needs to account for multiple cancellations on happening at the same
1667  * time for the same endpoint.
1668  *
1669  * Note that this function can be called in any context, or so says
1670  * usb_hcd_unlink_urb()
1671  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1672 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1673 {
1674 	unsigned long flags;
1675 	int ret, i;
1676 	u32 temp;
1677 	struct xhci_hcd *xhci;
1678 	struct urb_priv	*urb_priv;
1679 	struct xhci_td *td;
1680 	unsigned int ep_index;
1681 	struct xhci_ring *ep_ring;
1682 	struct xhci_virt_ep *ep;
1683 	struct xhci_command *command;
1684 	struct xhci_virt_device *vdev;
1685 
1686 	xhci = hcd_to_xhci(hcd);
1687 	spin_lock_irqsave(&xhci->lock, flags);
1688 
1689 	trace_xhci_urb_dequeue(urb);
1690 
1691 	/* Make sure the URB hasn't completed or been unlinked already */
1692 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1693 	if (ret)
1694 		goto done;
1695 
1696 	/* give back URB now if we can't queue it for cancel */
1697 	vdev = xhci->devs[urb->dev->slot_id];
1698 	urb_priv = urb->hcpriv;
1699 	if (!vdev || !urb_priv)
1700 		goto err_giveback;
1701 
1702 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1703 	ep = &vdev->eps[ep_index];
1704 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1705 	if (!ep || !ep_ring)
1706 		goto err_giveback;
1707 
1708 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1709 	temp = readl(&xhci->op_regs->status);
1710 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1711 		xhci_hc_died(xhci);
1712 		goto done;
1713 	}
1714 
1715 	/*
1716 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1717 	 * make sure none of the ring related pointers in this URB private data
1718 	 * are touched, such as td_list, otherwise we overwrite freed data
1719 	 */
1720 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1721 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1722 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1723 			td = &urb_priv->td[i];
1724 			if (!list_empty(&td->cancelled_td_list))
1725 				list_del_init(&td->cancelled_td_list);
1726 		}
1727 		goto err_giveback;
1728 	}
1729 
1730 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1731 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1732 				"HC halted, freeing TD manually.");
1733 		for (i = urb_priv->num_tds_done;
1734 		     i < urb_priv->num_tds;
1735 		     i++) {
1736 			td = &urb_priv->td[i];
1737 			if (!list_empty(&td->td_list))
1738 				list_del_init(&td->td_list);
1739 			if (!list_empty(&td->cancelled_td_list))
1740 				list_del_init(&td->cancelled_td_list);
1741 		}
1742 		goto err_giveback;
1743 	}
1744 
1745 	i = urb_priv->num_tds_done;
1746 	if (i < urb_priv->num_tds)
1747 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1748 				"Cancel URB %p, dev %s, ep 0x%x, "
1749 				"starting at offset 0x%llx",
1750 				urb, urb->dev->devpath,
1751 				urb->ep->desc.bEndpointAddress,
1752 				(unsigned long long) xhci_trb_virt_to_dma(
1753 					urb_priv->td[i].start_seg,
1754 					urb_priv->td[i].start_trb));
1755 
1756 	for (; i < urb_priv->num_tds; i++) {
1757 		td = &urb_priv->td[i];
1758 		/* TD can already be on cancelled list if ep halted on it */
1759 		if (list_empty(&td->cancelled_td_list)) {
1760 			td->cancel_status = TD_DIRTY;
1761 			list_add_tail(&td->cancelled_td_list,
1762 				      &ep->cancelled_td_list);
1763 		}
1764 	}
1765 
1766 	/* These completion handlers will sort out cancelled TDs for us */
1767 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1768 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1769 				urb->dev->slot_id, ep_index, ep->ep_state);
1770 		goto done;
1771 	}
1772 
1773 	/* In these cases no commands are pending but the endpoint is stopped */
1774 	if (ep->ep_state & (EP_CLEARING_TT | EP_STALLED)) {
1775 		/* and cancelled TDs can be given back right away */
1776 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1777 				urb->dev->slot_id, ep_index, ep->ep_state);
1778 		xhci_process_cancelled_tds(ep);
1779 	} else {
1780 		/* Otherwise, queue a new Stop Endpoint command */
1781 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1782 		if (!command) {
1783 			ret = -ENOMEM;
1784 			goto done;
1785 		}
1786 		ep->stop_time = jiffies;
1787 		ep->ep_state |= EP_STOP_CMD_PENDING;
1788 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1789 					 ep_index, 0);
1790 		xhci_ring_cmd_db(xhci);
1791 	}
1792 done:
1793 	spin_unlock_irqrestore(&xhci->lock, flags);
1794 	return ret;
1795 
1796 err_giveback:
1797 	if (urb_priv)
1798 		xhci_urb_free_priv(urb_priv);
1799 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1800 	spin_unlock_irqrestore(&xhci->lock, flags);
1801 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1802 	return ret;
1803 }
1804 
1805 /* Drop an endpoint from a new bandwidth configuration for this device.
1806  * Only one call to this function is allowed per endpoint before
1807  * check_bandwidth() or reset_bandwidth() must be called.
1808  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1809  * add the endpoint to the schedule with possibly new parameters denoted by a
1810  * different endpoint descriptor in usb_host_endpoint.
1811  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1812  * not allowed.
1813  *
1814  * The USB core will not allow URBs to be queued to an endpoint that is being
1815  * disabled, so there's no need for mutual exclusion to protect
1816  * the xhci->devs[slot_id] structure.
1817  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1818 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1819 		       struct usb_host_endpoint *ep)
1820 {
1821 	struct xhci_hcd *xhci;
1822 	struct xhci_container_ctx *in_ctx, *out_ctx;
1823 	struct xhci_input_control_ctx *ctrl_ctx;
1824 	unsigned int ep_index;
1825 	struct xhci_ep_ctx *ep_ctx;
1826 	u32 drop_flag;
1827 	u32 new_add_flags, new_drop_flags;
1828 	int ret;
1829 
1830 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831 	if (ret <= 0)
1832 		return ret;
1833 	xhci = hcd_to_xhci(hcd);
1834 	if (xhci->xhc_state & XHCI_STATE_DYING)
1835 		return -ENODEV;
1836 
1837 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1838 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1839 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1840 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1841 				__func__, drop_flag);
1842 		return 0;
1843 	}
1844 
1845 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1846 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1847 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1848 	if (!ctrl_ctx) {
1849 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1850 				__func__);
1851 		return 0;
1852 	}
1853 
1854 	ep_index = xhci_get_endpoint_index(&ep->desc);
1855 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1856 	/* If the HC already knows the endpoint is disabled,
1857 	 * or the HCD has noted it is disabled, ignore this request
1858 	 */
1859 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1860 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1861 	    xhci_get_endpoint_flag(&ep->desc)) {
1862 		/* Do not warn when called after a usb_device_reset */
1863 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1864 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1865 				  __func__, ep);
1866 		return 0;
1867 	}
1868 
1869 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1870 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1871 
1872 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1873 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1874 
1875 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1876 
1877 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1878 
1879 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1880 			(unsigned int) ep->desc.bEndpointAddress,
1881 			udev->slot_id,
1882 			(unsigned int) new_drop_flags,
1883 			(unsigned int) new_add_flags);
1884 	return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1887 
1888 /* Add an endpoint to a new possible bandwidth configuration for this device.
1889  * Only one call to this function is allowed per endpoint before
1890  * check_bandwidth() or reset_bandwidth() must be called.
1891  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1892  * add the endpoint to the schedule with possibly new parameters denoted by a
1893  * different endpoint descriptor in usb_host_endpoint.
1894  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1895  * not allowed.
1896  *
1897  * The USB core will not allow URBs to be queued to an endpoint until the
1898  * configuration or alt setting is installed in the device, so there's no need
1899  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1900  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1901 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1902 		      struct usb_host_endpoint *ep)
1903 {
1904 	struct xhci_hcd *xhci;
1905 	struct xhci_container_ctx *in_ctx;
1906 	unsigned int ep_index;
1907 	struct xhci_input_control_ctx *ctrl_ctx;
1908 	struct xhci_ep_ctx *ep_ctx;
1909 	u32 added_ctxs;
1910 	u32 new_add_flags, new_drop_flags;
1911 	struct xhci_virt_device *virt_dev;
1912 	int ret = 0;
1913 
1914 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1915 	if (ret <= 0) {
1916 		/* So we won't queue a reset ep command for a root hub */
1917 		ep->hcpriv = NULL;
1918 		return ret;
1919 	}
1920 	xhci = hcd_to_xhci(hcd);
1921 	if (xhci->xhc_state & XHCI_STATE_DYING)
1922 		return -ENODEV;
1923 
1924 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1925 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1926 		/* FIXME when we have to issue an evaluate endpoint command to
1927 		 * deal with ep0 max packet size changing once we get the
1928 		 * descriptors
1929 		 */
1930 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1931 				__func__, added_ctxs);
1932 		return 0;
1933 	}
1934 
1935 	virt_dev = xhci->devs[udev->slot_id];
1936 	in_ctx = virt_dev->in_ctx;
1937 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1938 	if (!ctrl_ctx) {
1939 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1940 				__func__);
1941 		return 0;
1942 	}
1943 
1944 	ep_index = xhci_get_endpoint_index(&ep->desc);
1945 	/* If this endpoint is already in use, and the upper layers are trying
1946 	 * to add it again without dropping it, reject the addition.
1947 	 */
1948 	if (virt_dev->eps[ep_index].ring &&
1949 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1950 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1951 				"without dropping it.\n",
1952 				(unsigned int) ep->desc.bEndpointAddress);
1953 		return -EINVAL;
1954 	}
1955 
1956 	/* If the HCD has already noted the endpoint is enabled,
1957 	 * ignore this request.
1958 	 */
1959 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1960 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1961 				__func__, ep);
1962 		return 0;
1963 	}
1964 
1965 	/*
1966 	 * Configuration and alternate setting changes must be done in
1967 	 * process context, not interrupt context (or so documenation
1968 	 * for usb_set_interface() and usb_set_configuration() claim).
1969 	 */
1970 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1971 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1972 				__func__, ep->desc.bEndpointAddress);
1973 		return -ENOMEM;
1974 	}
1975 
1976 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1977 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1978 
1979 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1980 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1981 	 * this re-adds a new state for the endpoint from the new endpoint
1982 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1983 	 * drop flags alone.
1984 	 */
1985 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1986 
1987 	/* Store the usb_device pointer for later use */
1988 	ep->hcpriv = udev;
1989 
1990 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1991 	trace_xhci_add_endpoint(ep_ctx);
1992 
1993 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1994 			(unsigned int) ep->desc.bEndpointAddress,
1995 			udev->slot_id,
1996 			(unsigned int) new_drop_flags,
1997 			(unsigned int) new_add_flags);
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2001 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2002 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2003 {
2004 	struct xhci_input_control_ctx *ctrl_ctx;
2005 	struct xhci_ep_ctx *ep_ctx;
2006 	struct xhci_slot_ctx *slot_ctx;
2007 	int i;
2008 
2009 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2010 	if (!ctrl_ctx) {
2011 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2012 				__func__);
2013 		return;
2014 	}
2015 
2016 	/* When a device's add flag and drop flag are zero, any subsequent
2017 	 * configure endpoint command will leave that endpoint's state
2018 	 * untouched.  Make sure we don't leave any old state in the input
2019 	 * endpoint contexts.
2020 	 */
2021 	ctrl_ctx->drop_flags = 0;
2022 	ctrl_ctx->add_flags = 0;
2023 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2024 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2025 	/* Endpoint 0 is always valid */
2026 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2027 	for (i = 1; i < 31; i++) {
2028 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2029 		ep_ctx->ep_info = 0;
2030 		ep_ctx->ep_info2 = 0;
2031 		ep_ctx->deq = 0;
2032 		ep_ctx->tx_info = 0;
2033 	}
2034 }
2035 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2036 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2037 		struct usb_device *udev, u32 *cmd_status)
2038 {
2039 	int ret;
2040 
2041 	switch (*cmd_status) {
2042 	case COMP_COMMAND_ABORTED:
2043 	case COMP_COMMAND_RING_STOPPED:
2044 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2045 		ret = -ETIME;
2046 		break;
2047 	case COMP_RESOURCE_ERROR:
2048 		dev_warn(&udev->dev,
2049 			 "Not enough host controller resources for new device state.\n");
2050 		ret = -ENOMEM;
2051 		/* FIXME: can we allocate more resources for the HC? */
2052 		break;
2053 	case COMP_BANDWIDTH_ERROR:
2054 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2055 		dev_warn(&udev->dev,
2056 			 "Not enough bandwidth for new device state.\n");
2057 		ret = -ENOSPC;
2058 		/* FIXME: can we go back to the old state? */
2059 		break;
2060 	case COMP_TRB_ERROR:
2061 		/* the HCD set up something wrong */
2062 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2063 				"add flag = 1, "
2064 				"and endpoint is not disabled.\n");
2065 		ret = -EINVAL;
2066 		break;
2067 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2068 		dev_warn(&udev->dev,
2069 			 "ERROR: Incompatible device for endpoint configure command.\n");
2070 		ret = -ENODEV;
2071 		break;
2072 	case COMP_SUCCESS:
2073 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2074 				"Successful Endpoint Configure command");
2075 		ret = 0;
2076 		break;
2077 	default:
2078 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2079 				*cmd_status);
2080 		ret = -EINVAL;
2081 		break;
2082 	}
2083 	return ret;
2084 }
2085 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2086 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2087 		struct usb_device *udev, u32 *cmd_status)
2088 {
2089 	int ret;
2090 
2091 	switch (*cmd_status) {
2092 	case COMP_COMMAND_ABORTED:
2093 	case COMP_COMMAND_RING_STOPPED:
2094 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2095 		ret = -ETIME;
2096 		break;
2097 	case COMP_PARAMETER_ERROR:
2098 		dev_warn(&udev->dev,
2099 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2100 		ret = -EINVAL;
2101 		break;
2102 	case COMP_SLOT_NOT_ENABLED_ERROR:
2103 		dev_warn(&udev->dev,
2104 			"WARN: slot not enabled for evaluate context command.\n");
2105 		ret = -EINVAL;
2106 		break;
2107 	case COMP_CONTEXT_STATE_ERROR:
2108 		dev_warn(&udev->dev,
2109 			"WARN: invalid context state for evaluate context command.\n");
2110 		ret = -EINVAL;
2111 		break;
2112 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2113 		dev_warn(&udev->dev,
2114 			"ERROR: Incompatible device for evaluate context command.\n");
2115 		ret = -ENODEV;
2116 		break;
2117 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2118 		/* Max Exit Latency too large error */
2119 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2120 		ret = -EINVAL;
2121 		break;
2122 	case COMP_SUCCESS:
2123 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2124 				"Successful evaluate context command");
2125 		ret = 0;
2126 		break;
2127 	default:
2128 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2129 			*cmd_status);
2130 		ret = -EINVAL;
2131 		break;
2132 	}
2133 	return ret;
2134 }
2135 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2136 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2137 		struct xhci_input_control_ctx *ctrl_ctx)
2138 {
2139 	u32 valid_add_flags;
2140 	u32 valid_drop_flags;
2141 
2142 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2143 	 * (bit 1).  The default control endpoint is added during the Address
2144 	 * Device command and is never removed until the slot is disabled.
2145 	 */
2146 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2147 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2148 
2149 	/* Use hweight32 to count the number of ones in the add flags, or
2150 	 * number of endpoints added.  Don't count endpoints that are changed
2151 	 * (both added and dropped).
2152 	 */
2153 	return hweight32(valid_add_flags) -
2154 		hweight32(valid_add_flags & valid_drop_flags);
2155 }
2156 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2157 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2158 		struct xhci_input_control_ctx *ctrl_ctx)
2159 {
2160 	u32 valid_add_flags;
2161 	u32 valid_drop_flags;
2162 
2163 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2164 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2165 
2166 	return hweight32(valid_drop_flags) -
2167 		hweight32(valid_add_flags & valid_drop_flags);
2168 }
2169 
2170 /*
2171  * We need to reserve the new number of endpoints before the configure endpoint
2172  * command completes.  We can't subtract the dropped endpoints from the number
2173  * of active endpoints until the command completes because we can oversubscribe
2174  * the host in this case:
2175  *
2176  *  - the first configure endpoint command drops more endpoints than it adds
2177  *  - a second configure endpoint command that adds more endpoints is queued
2178  *  - the first configure endpoint command fails, so the config is unchanged
2179  *  - the second command may succeed, even though there isn't enough resources
2180  *
2181  * Must be called with xhci->lock held.
2182  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2183 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2184 		struct xhci_input_control_ctx *ctrl_ctx)
2185 {
2186 	u32 added_eps;
2187 
2188 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2189 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2190 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2191 				"Not enough ep ctxs: "
2192 				"%u active, need to add %u, limit is %u.",
2193 				xhci->num_active_eps, added_eps,
2194 				xhci->limit_active_eps);
2195 		return -ENOMEM;
2196 	}
2197 	xhci->num_active_eps += added_eps;
2198 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2199 			"Adding %u ep ctxs, %u now active.", added_eps,
2200 			xhci->num_active_eps);
2201 	return 0;
2202 }
2203 
2204 /*
2205  * The configure endpoint was failed by the xHC for some other reason, so we
2206  * need to revert the resources that failed configuration would have used.
2207  *
2208  * Must be called with xhci->lock held.
2209  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2210 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2211 		struct xhci_input_control_ctx *ctrl_ctx)
2212 {
2213 	u32 num_failed_eps;
2214 
2215 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2216 	xhci->num_active_eps -= num_failed_eps;
2217 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2218 			"Removing %u failed ep ctxs, %u now active.",
2219 			num_failed_eps,
2220 			xhci->num_active_eps);
2221 }
2222 
2223 /*
2224  * Now that the command has completed, clean up the active endpoint count by
2225  * subtracting out the endpoints that were dropped (but not changed).
2226  *
2227  * Must be called with xhci->lock held.
2228  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2229 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2230 		struct xhci_input_control_ctx *ctrl_ctx)
2231 {
2232 	u32 num_dropped_eps;
2233 
2234 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2235 	xhci->num_active_eps -= num_dropped_eps;
2236 	if (num_dropped_eps)
2237 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238 				"Removing %u dropped ep ctxs, %u now active.",
2239 				num_dropped_eps,
2240 				xhci->num_active_eps);
2241 }
2242 
xhci_get_block_size(struct usb_device * udev)2243 static unsigned int xhci_get_block_size(struct usb_device *udev)
2244 {
2245 	switch (udev->speed) {
2246 	case USB_SPEED_LOW:
2247 	case USB_SPEED_FULL:
2248 		return FS_BLOCK;
2249 	case USB_SPEED_HIGH:
2250 		return HS_BLOCK;
2251 	case USB_SPEED_SUPER:
2252 	case USB_SPEED_SUPER_PLUS:
2253 		return SS_BLOCK;
2254 	case USB_SPEED_UNKNOWN:
2255 	default:
2256 		/* Should never happen */
2257 		return 1;
2258 	}
2259 }
2260 
2261 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2262 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2263 {
2264 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2265 		return LS_OVERHEAD;
2266 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2267 		return FS_OVERHEAD;
2268 	return HS_OVERHEAD;
2269 }
2270 
2271 /* If we are changing a LS/FS device under a HS hub,
2272  * make sure (if we are activating a new TT) that the HS bus has enough
2273  * bandwidth for this new TT.
2274  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2275 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2276 		struct xhci_virt_device *virt_dev,
2277 		int old_active_eps)
2278 {
2279 	struct xhci_interval_bw_table *bw_table;
2280 	struct xhci_tt_bw_info *tt_info;
2281 
2282 	/* Find the bandwidth table for the root port this TT is attached to. */
2283 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2284 	tt_info = virt_dev->tt_info;
2285 	/* If this TT already had active endpoints, the bandwidth for this TT
2286 	 * has already been added.  Removing all periodic endpoints (and thus
2287 	 * making the TT enactive) will only decrease the bandwidth used.
2288 	 */
2289 	if (old_active_eps)
2290 		return 0;
2291 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2292 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2293 			return -ENOMEM;
2294 		return 0;
2295 	}
2296 	/* Not sure why we would have no new active endpoints...
2297 	 *
2298 	 * Maybe because of an Evaluate Context change for a hub update or a
2299 	 * control endpoint 0 max packet size change?
2300 	 * FIXME: skip the bandwidth calculation in that case.
2301 	 */
2302 	return 0;
2303 }
2304 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2305 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2306 		struct xhci_virt_device *virt_dev)
2307 {
2308 	unsigned int bw_reserved;
2309 
2310 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2311 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2312 		return -ENOMEM;
2313 
2314 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2315 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2316 		return -ENOMEM;
2317 
2318 	return 0;
2319 }
2320 
2321 /*
2322  * This algorithm is a very conservative estimate of the worst-case scheduling
2323  * scenario for any one interval.  The hardware dynamically schedules the
2324  * packets, so we can't tell which microframe could be the limiting factor in
2325  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2326  *
2327  * Obviously, we can't solve an NP complete problem to find the minimum worst
2328  * case scenario.  Instead, we come up with an estimate that is no less than
2329  * the worst case bandwidth used for any one microframe, but may be an
2330  * over-estimate.
2331  *
2332  * We walk the requirements for each endpoint by interval, starting with the
2333  * smallest interval, and place packets in the schedule where there is only one
2334  * possible way to schedule packets for that interval.  In order to simplify
2335  * this algorithm, we record the largest max packet size for each interval, and
2336  * assume all packets will be that size.
2337  *
2338  * For interval 0, we obviously must schedule all packets for each interval.
2339  * The bandwidth for interval 0 is just the amount of data to be transmitted
2340  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2341  * the number of packets).
2342  *
2343  * For interval 1, we have two possible microframes to schedule those packets
2344  * in.  For this algorithm, if we can schedule the same number of packets for
2345  * each possible scheduling opportunity (each microframe), we will do so.  The
2346  * remaining number of packets will be saved to be transmitted in the gaps in
2347  * the next interval's scheduling sequence.
2348  *
2349  * As we move those remaining packets to be scheduled with interval 2 packets,
2350  * we have to double the number of remaining packets to transmit.  This is
2351  * because the intervals are actually powers of 2, and we would be transmitting
2352  * the previous interval's packets twice in this interval.  We also have to be
2353  * sure that when we look at the largest max packet size for this interval, we
2354  * also look at the largest max packet size for the remaining packets and take
2355  * the greater of the two.
2356  *
2357  * The algorithm continues to evenly distribute packets in each scheduling
2358  * opportunity, and push the remaining packets out, until we get to the last
2359  * interval.  Then those packets and their associated overhead are just added
2360  * to the bandwidth used.
2361  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2362 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2363 		struct xhci_virt_device *virt_dev,
2364 		int old_active_eps)
2365 {
2366 	unsigned int bw_reserved;
2367 	unsigned int max_bandwidth;
2368 	unsigned int bw_used;
2369 	unsigned int block_size;
2370 	struct xhci_interval_bw_table *bw_table;
2371 	unsigned int packet_size = 0;
2372 	unsigned int overhead = 0;
2373 	unsigned int packets_transmitted = 0;
2374 	unsigned int packets_remaining = 0;
2375 	unsigned int i;
2376 
2377 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2378 		return xhci_check_ss_bw(xhci, virt_dev);
2379 
2380 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2381 		max_bandwidth = HS_BW_LIMIT;
2382 		/* Convert percent of bus BW reserved to blocks reserved */
2383 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2384 	} else {
2385 		max_bandwidth = FS_BW_LIMIT;
2386 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2387 	}
2388 
2389 	bw_table = virt_dev->bw_table;
2390 	/* We need to translate the max packet size and max ESIT payloads into
2391 	 * the units the hardware uses.
2392 	 */
2393 	block_size = xhci_get_block_size(virt_dev->udev);
2394 
2395 	/* If we are manipulating a LS/FS device under a HS hub, double check
2396 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2397 	 */
2398 	if (virt_dev->tt_info) {
2399 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2400 				"Recalculating BW for rootport %u",
2401 				virt_dev->rhub_port->hw_portnum + 1);
2402 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2403 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2404 					"newly activated TT.\n");
2405 			return -ENOMEM;
2406 		}
2407 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2408 				"Recalculating BW for TT slot %u port %u",
2409 				virt_dev->tt_info->slot_id,
2410 				virt_dev->tt_info->ttport);
2411 	} else {
2412 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2413 				"Recalculating BW for rootport %u",
2414 				virt_dev->rhub_port->hw_portnum + 1);
2415 	}
2416 
2417 	/* Add in how much bandwidth will be used for interval zero, or the
2418 	 * rounded max ESIT payload + number of packets * largest overhead.
2419 	 */
2420 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2421 		bw_table->interval_bw[0].num_packets *
2422 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2423 
2424 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2425 		unsigned int bw_added;
2426 		unsigned int largest_mps;
2427 		unsigned int interval_overhead;
2428 
2429 		/*
2430 		 * How many packets could we transmit in this interval?
2431 		 * If packets didn't fit in the previous interval, we will need
2432 		 * to transmit that many packets twice within this interval.
2433 		 */
2434 		packets_remaining = 2 * packets_remaining +
2435 			bw_table->interval_bw[i].num_packets;
2436 
2437 		/* Find the largest max packet size of this or the previous
2438 		 * interval.
2439 		 */
2440 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2441 			largest_mps = 0;
2442 		else {
2443 			struct xhci_virt_ep *virt_ep;
2444 			struct list_head *ep_entry;
2445 
2446 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2447 			virt_ep = list_entry(ep_entry,
2448 					struct xhci_virt_ep, bw_endpoint_list);
2449 			/* Convert to blocks, rounding up */
2450 			largest_mps = DIV_ROUND_UP(
2451 					virt_ep->bw_info.max_packet_size,
2452 					block_size);
2453 		}
2454 		if (largest_mps > packet_size)
2455 			packet_size = largest_mps;
2456 
2457 		/* Use the larger overhead of this or the previous interval. */
2458 		interval_overhead = xhci_get_largest_overhead(
2459 				&bw_table->interval_bw[i]);
2460 		if (interval_overhead > overhead)
2461 			overhead = interval_overhead;
2462 
2463 		/* How many packets can we evenly distribute across
2464 		 * (1 << (i + 1)) possible scheduling opportunities?
2465 		 */
2466 		packets_transmitted = packets_remaining >> (i + 1);
2467 
2468 		/* Add in the bandwidth used for those scheduled packets */
2469 		bw_added = packets_transmitted * (overhead + packet_size);
2470 
2471 		/* How many packets do we have remaining to transmit? */
2472 		packets_remaining = packets_remaining % (1 << (i + 1));
2473 
2474 		/* What largest max packet size should those packets have? */
2475 		/* If we've transmitted all packets, don't carry over the
2476 		 * largest packet size.
2477 		 */
2478 		if (packets_remaining == 0) {
2479 			packet_size = 0;
2480 			overhead = 0;
2481 		} else if (packets_transmitted > 0) {
2482 			/* Otherwise if we do have remaining packets, and we've
2483 			 * scheduled some packets in this interval, take the
2484 			 * largest max packet size from endpoints with this
2485 			 * interval.
2486 			 */
2487 			packet_size = largest_mps;
2488 			overhead = interval_overhead;
2489 		}
2490 		/* Otherwise carry over packet_size and overhead from the last
2491 		 * time we had a remainder.
2492 		 */
2493 		bw_used += bw_added;
2494 		if (bw_used > max_bandwidth) {
2495 			xhci_warn(xhci, "Not enough bandwidth. "
2496 					"Proposed: %u, Max: %u\n",
2497 				bw_used, max_bandwidth);
2498 			return -ENOMEM;
2499 		}
2500 	}
2501 	/*
2502 	 * Ok, we know we have some packets left over after even-handedly
2503 	 * scheduling interval 15.  We don't know which microframes they will
2504 	 * fit into, so we over-schedule and say they will be scheduled every
2505 	 * microframe.
2506 	 */
2507 	if (packets_remaining > 0)
2508 		bw_used += overhead + packet_size;
2509 
2510 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2511 		/* OK, we're manipulating a HS device attached to a
2512 		 * root port bandwidth domain.  Include the number of active TTs
2513 		 * in the bandwidth used.
2514 		 */
2515 		bw_used += TT_HS_OVERHEAD *
2516 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2517 	}
2518 
2519 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2520 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2521 		"Available: %u " "percent",
2522 		bw_used, max_bandwidth, bw_reserved,
2523 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2524 		max_bandwidth);
2525 
2526 	bw_used += bw_reserved;
2527 	if (bw_used > max_bandwidth) {
2528 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2529 				bw_used, max_bandwidth);
2530 		return -ENOMEM;
2531 	}
2532 
2533 	bw_table->bw_used = bw_used;
2534 	return 0;
2535 }
2536 
xhci_is_async_ep(unsigned int ep_type)2537 static bool xhci_is_async_ep(unsigned int ep_type)
2538 {
2539 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2540 					ep_type != ISOC_IN_EP &&
2541 					ep_type != INT_IN_EP);
2542 }
2543 
xhci_is_sync_in_ep(unsigned int ep_type)2544 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2545 {
2546 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2547 }
2548 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2549 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2550 {
2551 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2552 
2553 	if (ep_bw->ep_interval == 0)
2554 		return SS_OVERHEAD_BURST +
2555 			(ep_bw->mult * ep_bw->num_packets *
2556 					(SS_OVERHEAD + mps));
2557 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2558 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2559 				1 << ep_bw->ep_interval);
2560 
2561 }
2562 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2563 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2564 		struct xhci_bw_info *ep_bw,
2565 		struct xhci_interval_bw_table *bw_table,
2566 		struct usb_device *udev,
2567 		struct xhci_virt_ep *virt_ep,
2568 		struct xhci_tt_bw_info *tt_info)
2569 {
2570 	struct xhci_interval_bw	*interval_bw;
2571 	int normalized_interval;
2572 
2573 	if (xhci_is_async_ep(ep_bw->type))
2574 		return;
2575 
2576 	if (udev->speed >= USB_SPEED_SUPER) {
2577 		if (xhci_is_sync_in_ep(ep_bw->type))
2578 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2579 				xhci_get_ss_bw_consumed(ep_bw);
2580 		else
2581 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2582 				xhci_get_ss_bw_consumed(ep_bw);
2583 		return;
2584 	}
2585 
2586 	/* SuperSpeed endpoints never get added to intervals in the table, so
2587 	 * this check is only valid for HS/FS/LS devices.
2588 	 */
2589 	if (list_empty(&virt_ep->bw_endpoint_list))
2590 		return;
2591 	/* For LS/FS devices, we need to translate the interval expressed in
2592 	 * microframes to frames.
2593 	 */
2594 	if (udev->speed == USB_SPEED_HIGH)
2595 		normalized_interval = ep_bw->ep_interval;
2596 	else
2597 		normalized_interval = ep_bw->ep_interval - 3;
2598 
2599 	if (normalized_interval == 0)
2600 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2601 	interval_bw = &bw_table->interval_bw[normalized_interval];
2602 	interval_bw->num_packets -= ep_bw->num_packets;
2603 	switch (udev->speed) {
2604 	case USB_SPEED_LOW:
2605 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2606 		break;
2607 	case USB_SPEED_FULL:
2608 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2609 		break;
2610 	case USB_SPEED_HIGH:
2611 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2612 		break;
2613 	default:
2614 		/* Should never happen because only LS/FS/HS endpoints will get
2615 		 * added to the endpoint list.
2616 		 */
2617 		return;
2618 	}
2619 	if (tt_info)
2620 		tt_info->active_eps -= 1;
2621 	list_del_init(&virt_ep->bw_endpoint_list);
2622 }
2623 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2624 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2625 		struct xhci_bw_info *ep_bw,
2626 		struct xhci_interval_bw_table *bw_table,
2627 		struct usb_device *udev,
2628 		struct xhci_virt_ep *virt_ep,
2629 		struct xhci_tt_bw_info *tt_info)
2630 {
2631 	struct xhci_interval_bw	*interval_bw;
2632 	struct xhci_virt_ep *smaller_ep;
2633 	int normalized_interval;
2634 
2635 	if (xhci_is_async_ep(ep_bw->type))
2636 		return;
2637 
2638 	if (udev->speed == USB_SPEED_SUPER) {
2639 		if (xhci_is_sync_in_ep(ep_bw->type))
2640 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2641 				xhci_get_ss_bw_consumed(ep_bw);
2642 		else
2643 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2644 				xhci_get_ss_bw_consumed(ep_bw);
2645 		return;
2646 	}
2647 
2648 	/* For LS/FS devices, we need to translate the interval expressed in
2649 	 * microframes to frames.
2650 	 */
2651 	if (udev->speed == USB_SPEED_HIGH)
2652 		normalized_interval = ep_bw->ep_interval;
2653 	else
2654 		normalized_interval = ep_bw->ep_interval - 3;
2655 
2656 	if (normalized_interval == 0)
2657 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2658 	interval_bw = &bw_table->interval_bw[normalized_interval];
2659 	interval_bw->num_packets += ep_bw->num_packets;
2660 	switch (udev->speed) {
2661 	case USB_SPEED_LOW:
2662 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2663 		break;
2664 	case USB_SPEED_FULL:
2665 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2666 		break;
2667 	case USB_SPEED_HIGH:
2668 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2669 		break;
2670 	default:
2671 		/* Should never happen because only LS/FS/HS endpoints will get
2672 		 * added to the endpoint list.
2673 		 */
2674 		return;
2675 	}
2676 
2677 	if (tt_info)
2678 		tt_info->active_eps += 1;
2679 	/* Insert the endpoint into the list, largest max packet size first. */
2680 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2681 			bw_endpoint_list) {
2682 		if (ep_bw->max_packet_size >=
2683 				smaller_ep->bw_info.max_packet_size) {
2684 			/* Add the new ep before the smaller endpoint */
2685 			list_add_tail(&virt_ep->bw_endpoint_list,
2686 					&smaller_ep->bw_endpoint_list);
2687 			return;
2688 		}
2689 	}
2690 	/* Add the new endpoint at the end of the list. */
2691 	list_add_tail(&virt_ep->bw_endpoint_list,
2692 			&interval_bw->endpoints);
2693 }
2694 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2695 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2696 		struct xhci_virt_device *virt_dev,
2697 		int old_active_eps)
2698 {
2699 	struct xhci_root_port_bw_info *rh_bw_info;
2700 	if (!virt_dev->tt_info)
2701 		return;
2702 
2703 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2704 	if (old_active_eps == 0 &&
2705 				virt_dev->tt_info->active_eps != 0) {
2706 		rh_bw_info->num_active_tts += 1;
2707 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2708 	} else if (old_active_eps != 0 &&
2709 				virt_dev->tt_info->active_eps == 0) {
2710 		rh_bw_info->num_active_tts -= 1;
2711 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2712 	}
2713 }
2714 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2715 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2716 		struct xhci_virt_device *virt_dev,
2717 		struct xhci_container_ctx *in_ctx)
2718 {
2719 	struct xhci_bw_info ep_bw_info[31];
2720 	int i;
2721 	struct xhci_input_control_ctx *ctrl_ctx;
2722 	int old_active_eps = 0;
2723 
2724 	if (virt_dev->tt_info)
2725 		old_active_eps = virt_dev->tt_info->active_eps;
2726 
2727 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2728 	if (!ctrl_ctx) {
2729 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2730 				__func__);
2731 		return -ENOMEM;
2732 	}
2733 
2734 	for (i = 0; i < 31; i++) {
2735 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2736 			continue;
2737 
2738 		/* Make a copy of the BW info in case we need to revert this */
2739 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2740 				sizeof(ep_bw_info[i]));
2741 		/* Drop the endpoint from the interval table if the endpoint is
2742 		 * being dropped or changed.
2743 		 */
2744 		if (EP_IS_DROPPED(ctrl_ctx, i))
2745 			xhci_drop_ep_from_interval_table(xhci,
2746 					&virt_dev->eps[i].bw_info,
2747 					virt_dev->bw_table,
2748 					virt_dev->udev,
2749 					&virt_dev->eps[i],
2750 					virt_dev->tt_info);
2751 	}
2752 	/* Overwrite the information stored in the endpoints' bw_info */
2753 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2754 	for (i = 0; i < 31; i++) {
2755 		/* Add any changed or added endpoints to the interval table */
2756 		if (EP_IS_ADDED(ctrl_ctx, i))
2757 			xhci_add_ep_to_interval_table(xhci,
2758 					&virt_dev->eps[i].bw_info,
2759 					virt_dev->bw_table,
2760 					virt_dev->udev,
2761 					&virt_dev->eps[i],
2762 					virt_dev->tt_info);
2763 	}
2764 
2765 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2766 		/* Ok, this fits in the bandwidth we have.
2767 		 * Update the number of active TTs.
2768 		 */
2769 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2770 		return 0;
2771 	}
2772 
2773 	/* We don't have enough bandwidth for this, revert the stored info. */
2774 	for (i = 0; i < 31; i++) {
2775 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2776 			continue;
2777 
2778 		/* Drop the new copies of any added or changed endpoints from
2779 		 * the interval table.
2780 		 */
2781 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2782 			xhci_drop_ep_from_interval_table(xhci,
2783 					&virt_dev->eps[i].bw_info,
2784 					virt_dev->bw_table,
2785 					virt_dev->udev,
2786 					&virt_dev->eps[i],
2787 					virt_dev->tt_info);
2788 		}
2789 		/* Revert the endpoint back to its old information */
2790 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2791 				sizeof(ep_bw_info[i]));
2792 		/* Add any changed or dropped endpoints back into the table */
2793 		if (EP_IS_DROPPED(ctrl_ctx, i))
2794 			xhci_add_ep_to_interval_table(xhci,
2795 					&virt_dev->eps[i].bw_info,
2796 					virt_dev->bw_table,
2797 					virt_dev->udev,
2798 					&virt_dev->eps[i],
2799 					virt_dev->tt_info);
2800 	}
2801 	return -ENOMEM;
2802 }
2803 
2804 /*
2805  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2806  * waits for the command completion before returning.  This does not call
2807  * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2808  * cases, along with transfer ring cleanup.
2809  *
2810  * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2811  * their own transfer ring, such as offload situations.
2812  */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2813 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2814 			    gfp_t gfp_flags)
2815 {
2816 	struct xhci_command *command;
2817 	unsigned long flags;
2818 	int ret;
2819 
2820 	command = xhci_alloc_command(xhci, true, gfp_flags);
2821 	if (!command)
2822 		return -ENOMEM;
2823 
2824 	spin_lock_irqsave(&xhci->lock, flags);
2825 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2826 				       ep->ep_index, suspend);
2827 	if (ret < 0) {
2828 		spin_unlock_irqrestore(&xhci->lock, flags);
2829 		goto out;
2830 	}
2831 
2832 	xhci_ring_cmd_db(xhci);
2833 	spin_unlock_irqrestore(&xhci->lock, flags);
2834 
2835 	wait_for_completion(command->completion);
2836 
2837 	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2838 	if (command->status == COMP_COMMAND_ABORTED ||
2839 	    command->status == COMP_COMMAND_RING_STOPPED) {
2840 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2841 		ret = -ETIME;
2842 	}
2843 out:
2844 	xhci_free_command(xhci, command);
2845 
2846 	return ret;
2847 }
2848 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2849 
2850 /* Issue a configure endpoint command or evaluate context command
2851  * and wait for it to finish.
2852  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2853 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2854 		struct usb_device *udev,
2855 		struct xhci_command *command,
2856 		bool ctx_change, bool must_succeed)
2857 {
2858 	int ret;
2859 	unsigned long flags;
2860 	struct xhci_input_control_ctx *ctrl_ctx;
2861 	struct xhci_virt_device *virt_dev;
2862 	struct xhci_slot_ctx *slot_ctx;
2863 
2864 	if (!command)
2865 		return -EINVAL;
2866 
2867 	spin_lock_irqsave(&xhci->lock, flags);
2868 
2869 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2870 		spin_unlock_irqrestore(&xhci->lock, flags);
2871 		return -ESHUTDOWN;
2872 	}
2873 
2874 	virt_dev = xhci->devs[udev->slot_id];
2875 
2876 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2877 	if (!ctrl_ctx) {
2878 		spin_unlock_irqrestore(&xhci->lock, flags);
2879 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2880 				__func__);
2881 		return -ENOMEM;
2882 	}
2883 
2884 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2885 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2886 		spin_unlock_irqrestore(&xhci->lock, flags);
2887 		xhci_warn(xhci, "Not enough host resources, "
2888 				"active endpoint contexts = %u\n",
2889 				xhci->num_active_eps);
2890 		return -ENOMEM;
2891 	}
2892 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2893 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2894 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2895 			xhci_free_host_resources(xhci, ctrl_ctx);
2896 		spin_unlock_irqrestore(&xhci->lock, flags);
2897 		xhci_warn(xhci, "Not enough bandwidth\n");
2898 		return -ENOMEM;
2899 	}
2900 
2901 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2902 
2903 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2904 	trace_xhci_configure_endpoint(slot_ctx);
2905 
2906 	if (!ctx_change)
2907 		ret = xhci_queue_configure_endpoint(xhci, command,
2908 				command->in_ctx->dma,
2909 				udev->slot_id, must_succeed);
2910 	else
2911 		ret = xhci_queue_evaluate_context(xhci, command,
2912 				command->in_ctx->dma,
2913 				udev->slot_id, must_succeed);
2914 	if (ret < 0) {
2915 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2916 			xhci_free_host_resources(xhci, ctrl_ctx);
2917 		spin_unlock_irqrestore(&xhci->lock, flags);
2918 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2919 				"FIXME allocate a new ring segment");
2920 		return -ENOMEM;
2921 	}
2922 	xhci_ring_cmd_db(xhci);
2923 	spin_unlock_irqrestore(&xhci->lock, flags);
2924 
2925 	/* Wait for the configure endpoint command to complete */
2926 	wait_for_completion(command->completion);
2927 
2928 	if (!ctx_change)
2929 		ret = xhci_configure_endpoint_result(xhci, udev,
2930 						     &command->status);
2931 	else
2932 		ret = xhci_evaluate_context_result(xhci, udev,
2933 						   &command->status);
2934 
2935 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2936 		spin_lock_irqsave(&xhci->lock, flags);
2937 		/* If the command failed, remove the reserved resources.
2938 		 * Otherwise, clean up the estimate to include dropped eps.
2939 		 */
2940 		if (ret)
2941 			xhci_free_host_resources(xhci, ctrl_ctx);
2942 		else
2943 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2944 		spin_unlock_irqrestore(&xhci->lock, flags);
2945 	}
2946 	return ret;
2947 }
2948 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2949 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2950 	struct xhci_virt_device *vdev, int i)
2951 {
2952 	struct xhci_virt_ep *ep = &vdev->eps[i];
2953 
2954 	if (ep->ep_state & EP_HAS_STREAMS) {
2955 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2956 				xhci_get_endpoint_address(i));
2957 		xhci_free_stream_info(xhci, ep->stream_info);
2958 		ep->stream_info = NULL;
2959 		ep->ep_state &= ~EP_HAS_STREAMS;
2960 	}
2961 }
2962 
2963 /* Called after one or more calls to xhci_add_endpoint() or
2964  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2965  * to call xhci_reset_bandwidth().
2966  *
2967  * Since we are in the middle of changing either configuration or
2968  * installing a new alt setting, the USB core won't allow URBs to be
2969  * enqueued for any endpoint on the old config or interface.  Nothing
2970  * else should be touching the xhci->devs[slot_id] structure, so we
2971  * don't need to take the xhci->lock for manipulating that.
2972  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2973 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2974 {
2975 	int i;
2976 	int ret = 0;
2977 	struct xhci_hcd *xhci;
2978 	struct xhci_virt_device	*virt_dev;
2979 	struct xhci_input_control_ctx *ctrl_ctx;
2980 	struct xhci_slot_ctx *slot_ctx;
2981 	struct xhci_command *command;
2982 
2983 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2984 	if (ret <= 0)
2985 		return ret;
2986 	xhci = hcd_to_xhci(hcd);
2987 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2988 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2989 		return -ENODEV;
2990 
2991 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2992 	virt_dev = xhci->devs[udev->slot_id];
2993 
2994 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2995 	if (!command)
2996 		return -ENOMEM;
2997 
2998 	command->in_ctx = virt_dev->in_ctx;
2999 
3000 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3001 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3002 	if (!ctrl_ctx) {
3003 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3004 				__func__);
3005 		ret = -ENOMEM;
3006 		goto command_cleanup;
3007 	}
3008 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3009 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3010 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3011 
3012 	/* Don't issue the command if there's no endpoints to update. */
3013 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3014 	    ctrl_ctx->drop_flags == 0) {
3015 		ret = 0;
3016 		goto command_cleanup;
3017 	}
3018 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3019 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3020 	for (i = 31; i >= 1; i--) {
3021 		__le32 le32 = cpu_to_le32(BIT(i));
3022 
3023 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3024 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3025 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3026 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3027 			break;
3028 		}
3029 	}
3030 
3031 	ret = xhci_configure_endpoint(xhci, udev, command,
3032 			false, false);
3033 	if (ret)
3034 		/* Callee should call reset_bandwidth() */
3035 		goto command_cleanup;
3036 
3037 	/* Free any rings that were dropped, but not changed. */
3038 	for (i = 1; i < 31; i++) {
3039 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3040 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3041 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3042 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3043 		}
3044 	}
3045 	xhci_zero_in_ctx(xhci, virt_dev);
3046 	/*
3047 	 * Install any rings for completely new endpoints or changed endpoints,
3048 	 * and free any old rings from changed endpoints.
3049 	 */
3050 	for (i = 1; i < 31; i++) {
3051 		if (!virt_dev->eps[i].new_ring)
3052 			continue;
3053 		/* Only free the old ring if it exists.
3054 		 * It may not if this is the first add of an endpoint.
3055 		 */
3056 		if (virt_dev->eps[i].ring) {
3057 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3058 		}
3059 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3060 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3061 		virt_dev->eps[i].new_ring = NULL;
3062 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3063 	}
3064 command_cleanup:
3065 	kfree(command->completion);
3066 	kfree(command);
3067 
3068 	return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3071 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3072 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3073 {
3074 	struct xhci_hcd *xhci;
3075 	struct xhci_virt_device	*virt_dev;
3076 	int i, ret;
3077 
3078 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3079 	if (ret <= 0)
3080 		return;
3081 	xhci = hcd_to_xhci(hcd);
3082 
3083 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3084 	virt_dev = xhci->devs[udev->slot_id];
3085 	/* Free any rings allocated for added endpoints */
3086 	for (i = 0; i < 31; i++) {
3087 		if (virt_dev->eps[i].new_ring) {
3088 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3089 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3090 			virt_dev->eps[i].new_ring = NULL;
3091 		}
3092 	}
3093 	xhci_zero_in_ctx(xhci, virt_dev);
3094 }
3095 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3096 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3097 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3098 		struct xhci_container_ctx *in_ctx,
3099 		struct xhci_container_ctx *out_ctx,
3100 		struct xhci_input_control_ctx *ctrl_ctx,
3101 		u32 add_flags, u32 drop_flags)
3102 {
3103 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3104 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3105 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3106 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3107 }
3108 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3109 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3110 				  struct usb_host_endpoint *host_ep)
3111 {
3112 	struct xhci_hcd		*xhci;
3113 	struct xhci_virt_device	*vdev;
3114 	struct xhci_virt_ep	*ep;
3115 	struct usb_device	*udev;
3116 	unsigned long		flags;
3117 	unsigned int		ep_index;
3118 
3119 	xhci = hcd_to_xhci(hcd);
3120 rescan:
3121 	spin_lock_irqsave(&xhci->lock, flags);
3122 
3123 	udev = (struct usb_device *)host_ep->hcpriv;
3124 	if (!udev || !udev->slot_id)
3125 		goto done;
3126 
3127 	vdev = xhci->devs[udev->slot_id];
3128 	if (!vdev)
3129 		goto done;
3130 
3131 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3132 	ep = &vdev->eps[ep_index];
3133 
3134 	/* wait for hub_tt_work to finish clearing hub TT */
3135 	if (ep->ep_state & EP_CLEARING_TT) {
3136 		spin_unlock_irqrestore(&xhci->lock, flags);
3137 		schedule_timeout_uninterruptible(1);
3138 		goto rescan;
3139 	}
3140 
3141 	if (ep->ep_state)
3142 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3143 			 ep->ep_state);
3144 done:
3145 	host_ep->hcpriv = NULL;
3146 	spin_unlock_irqrestore(&xhci->lock, flags);
3147 }
3148 
3149 /*
3150  * Called after usb core issues a clear halt control message.
3151  * The host side of the halt should already be cleared by a reset endpoint
3152  * command issued when the STALL event was received.
3153  *
3154  * The reset endpoint command may only be issued to endpoints in the halted
3155  * state. For software that wishes to reset the data toggle or sequence number
3156  * of an endpoint that isn't in the halted state this function will issue a
3157  * configure endpoint command with the Drop and Add bits set for the target
3158  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3159  *
3160  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3161  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3162  */
3163 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3164 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3165 		struct usb_host_endpoint *host_ep)
3166 {
3167 	struct xhci_hcd *xhci;
3168 	struct usb_device *udev;
3169 	struct xhci_virt_device *vdev;
3170 	struct xhci_virt_ep *ep;
3171 	struct xhci_input_control_ctx *ctrl_ctx;
3172 	struct xhci_command *stop_cmd, *cfg_cmd;
3173 	unsigned int ep_index;
3174 	unsigned long flags;
3175 	u32 ep_flag;
3176 	int err;
3177 
3178 	xhci = hcd_to_xhci(hcd);
3179 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3180 
3181 	/*
3182 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3183 	 * real value is read from the descriptor. Core resets Ep0 if values
3184 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3185 	 */
3186 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3187 
3188 		udev = container_of(host_ep, struct usb_device, ep0);
3189 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3190 			return;
3191 
3192 		vdev = xhci->devs[udev->slot_id];
3193 		if (!vdev || vdev->udev != udev)
3194 			return;
3195 
3196 		xhci_check_ep0_maxpacket(xhci, vdev);
3197 
3198 		/* Nothing else should be done here for ep0 during ep reset */
3199 		return;
3200 	}
3201 
3202 	if (!host_ep->hcpriv)
3203 		return;
3204 	udev = (struct usb_device *) host_ep->hcpriv;
3205 	vdev = xhci->devs[udev->slot_id];
3206 
3207 	if (!udev->slot_id || !vdev)
3208 		return;
3209 
3210 	ep = &vdev->eps[ep_index];
3211 
3212 	spin_lock_irqsave(&xhci->lock, flags);
3213 
3214 	ep->ep_state &= ~EP_STALLED;
3215 
3216 	/* Bail out if toggle is already being cleared by a endpoint reset */
3217 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3218 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3219 		spin_unlock_irqrestore(&xhci->lock, flags);
3220 		return;
3221 	}
3222 	spin_unlock_irqrestore(&xhci->lock, flags);
3223 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3224 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3225 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3226 		return;
3227 
3228 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3229 
3230 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3231 		return;
3232 
3233 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3234 	if (!stop_cmd)
3235 		return;
3236 
3237 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3238 	if (!cfg_cmd)
3239 		goto cleanup;
3240 
3241 	spin_lock_irqsave(&xhci->lock, flags);
3242 
3243 	/* block queuing new trbs and ringing ep doorbell */
3244 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3245 
3246 	/*
3247 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3248 	 * Driver is required to synchronously cancel all transfer request.
3249 	 * Stop the endpoint to force xHC to update the output context
3250 	 */
3251 
3252 	if (!list_empty(&ep->ring->td_list)) {
3253 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3254 		spin_unlock_irqrestore(&xhci->lock, flags);
3255 		xhci_free_command(xhci, cfg_cmd);
3256 		goto cleanup;
3257 	}
3258 
3259 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3260 					ep_index, 0);
3261 	if (err < 0) {
3262 		spin_unlock_irqrestore(&xhci->lock, flags);
3263 		xhci_free_command(xhci, cfg_cmd);
3264 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3265 				__func__, err);
3266 		goto cleanup;
3267 	}
3268 
3269 	xhci_ring_cmd_db(xhci);
3270 	spin_unlock_irqrestore(&xhci->lock, flags);
3271 
3272 	wait_for_completion(stop_cmd->completion);
3273 
3274 	spin_lock_irqsave(&xhci->lock, flags);
3275 
3276 	/* config ep command clears toggle if add and drop ep flags are set */
3277 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3278 	if (!ctrl_ctx) {
3279 		spin_unlock_irqrestore(&xhci->lock, flags);
3280 		xhci_free_command(xhci, cfg_cmd);
3281 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3282 				__func__);
3283 		goto cleanup;
3284 	}
3285 
3286 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3287 					   ctrl_ctx, ep_flag, ep_flag);
3288 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3289 
3290 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3291 				      udev->slot_id, false);
3292 	if (err < 0) {
3293 		spin_unlock_irqrestore(&xhci->lock, flags);
3294 		xhci_free_command(xhci, cfg_cmd);
3295 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3296 				__func__, err);
3297 		goto cleanup;
3298 	}
3299 
3300 	xhci_ring_cmd_db(xhci);
3301 	spin_unlock_irqrestore(&xhci->lock, flags);
3302 
3303 	wait_for_completion(cfg_cmd->completion);
3304 
3305 	xhci_free_command(xhci, cfg_cmd);
3306 cleanup:
3307 	xhci_free_command(xhci, stop_cmd);
3308 	spin_lock_irqsave(&xhci->lock, flags);
3309 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3310 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3311 	spin_unlock_irqrestore(&xhci->lock, flags);
3312 }
3313 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3314 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3315 		struct usb_device *udev, struct usb_host_endpoint *ep,
3316 		unsigned int slot_id)
3317 {
3318 	int ret;
3319 	unsigned int ep_index;
3320 	unsigned int ep_state;
3321 
3322 	if (!ep)
3323 		return -EINVAL;
3324 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3325 	if (ret <= 0)
3326 		return ret ? ret : -EINVAL;
3327 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3328 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3329 				" descriptor for ep 0x%x does not support streams\n",
3330 				ep->desc.bEndpointAddress);
3331 		return -EINVAL;
3332 	}
3333 
3334 	ep_index = xhci_get_endpoint_index(&ep->desc);
3335 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3336 	if (ep_state & EP_HAS_STREAMS ||
3337 			ep_state & EP_GETTING_STREAMS) {
3338 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3339 				"already has streams set up.\n",
3340 				ep->desc.bEndpointAddress);
3341 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3342 				"dynamic stream context array reallocation.\n");
3343 		return -EINVAL;
3344 	}
3345 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3346 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3347 				"endpoint 0x%x; URBs are pending.\n",
3348 				ep->desc.bEndpointAddress);
3349 		return -EINVAL;
3350 	}
3351 	return 0;
3352 }
3353 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3354 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3355 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3356 {
3357 	unsigned int max_streams;
3358 
3359 	/* The stream context array size must be a power of two */
3360 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3361 	/*
3362 	 * Find out how many primary stream array entries the host controller
3363 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3364 	 * level page entries), but that's an optional feature for xHCI host
3365 	 * controllers. xHCs must support at least 4 stream IDs.
3366 	 */
3367 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3368 	if (*num_stream_ctxs > max_streams) {
3369 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3370 				max_streams);
3371 		*num_stream_ctxs = max_streams;
3372 		*num_streams = max_streams;
3373 	}
3374 }
3375 
3376 /* Returns an error code if one of the endpoint already has streams.
3377  * This does not change any data structures, it only checks and gathers
3378  * information.
3379  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3380 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3381 		struct usb_device *udev,
3382 		struct usb_host_endpoint **eps, unsigned int num_eps,
3383 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3384 {
3385 	unsigned int max_streams;
3386 	unsigned int endpoint_flag;
3387 	int i;
3388 	int ret;
3389 
3390 	for (i = 0; i < num_eps; i++) {
3391 		ret = xhci_check_streams_endpoint(xhci, udev,
3392 				eps[i], udev->slot_id);
3393 		if (ret < 0)
3394 			return ret;
3395 
3396 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3397 		if (max_streams < (*num_streams - 1)) {
3398 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3399 					eps[i]->desc.bEndpointAddress,
3400 					max_streams);
3401 			*num_streams = max_streams+1;
3402 		}
3403 
3404 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3405 		if (*changed_ep_bitmask & endpoint_flag)
3406 			return -EINVAL;
3407 		*changed_ep_bitmask |= endpoint_flag;
3408 	}
3409 	return 0;
3410 }
3411 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3412 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3413 		struct usb_device *udev,
3414 		struct usb_host_endpoint **eps, unsigned int num_eps)
3415 {
3416 	u32 changed_ep_bitmask = 0;
3417 	unsigned int slot_id;
3418 	unsigned int ep_index;
3419 	unsigned int ep_state;
3420 	int i;
3421 
3422 	slot_id = udev->slot_id;
3423 	if (!xhci->devs[slot_id])
3424 		return 0;
3425 
3426 	for (i = 0; i < num_eps; i++) {
3427 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3428 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3429 		/* Are streams already being freed for the endpoint? */
3430 		if (ep_state & EP_GETTING_NO_STREAMS) {
3431 			xhci_warn(xhci, "WARN Can't disable streams for "
3432 					"endpoint 0x%x, "
3433 					"streams are being disabled already\n",
3434 					eps[i]->desc.bEndpointAddress);
3435 			return 0;
3436 		}
3437 		/* Are there actually any streams to free? */
3438 		if (!(ep_state & EP_HAS_STREAMS) &&
3439 				!(ep_state & EP_GETTING_STREAMS)) {
3440 			xhci_warn(xhci, "WARN Can't disable streams for "
3441 					"endpoint 0x%x, "
3442 					"streams are already disabled!\n",
3443 					eps[i]->desc.bEndpointAddress);
3444 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3445 					"with non-streams endpoint\n");
3446 			return 0;
3447 		}
3448 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3449 	}
3450 	return changed_ep_bitmask;
3451 }
3452 
3453 /*
3454  * The USB device drivers use this function (through the HCD interface in USB
3455  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3456  * coordinate mass storage command queueing across multiple endpoints (basically
3457  * a stream ID == a task ID).
3458  *
3459  * Setting up streams involves allocating the same size stream context array
3460  * for each endpoint and issuing a configure endpoint command for all endpoints.
3461  *
3462  * Don't allow the call to succeed if one endpoint only supports one stream
3463  * (which means it doesn't support streams at all).
3464  *
3465  * Drivers may get less stream IDs than they asked for, if the host controller
3466  * hardware or endpoints claim they can't support the number of requested
3467  * stream IDs.
3468  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3469 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3470 		struct usb_host_endpoint **eps, unsigned int num_eps,
3471 		unsigned int num_streams, gfp_t mem_flags)
3472 {
3473 	int i, ret;
3474 	struct xhci_hcd *xhci;
3475 	struct xhci_virt_device *vdev;
3476 	struct xhci_command *config_cmd;
3477 	struct xhci_input_control_ctx *ctrl_ctx;
3478 	unsigned int ep_index;
3479 	unsigned int num_stream_ctxs;
3480 	unsigned int max_packet;
3481 	unsigned long flags;
3482 	u32 changed_ep_bitmask = 0;
3483 
3484 	if (!eps)
3485 		return -EINVAL;
3486 
3487 	/* Add one to the number of streams requested to account for
3488 	 * stream 0 that is reserved for xHCI usage.
3489 	 */
3490 	num_streams += 1;
3491 	xhci = hcd_to_xhci(hcd);
3492 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3493 			num_streams);
3494 
3495 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3496 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3497 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3498 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3499 		return -ENOSYS;
3500 	}
3501 
3502 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3503 	if (!config_cmd)
3504 		return -ENOMEM;
3505 
3506 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3507 	if (!ctrl_ctx) {
3508 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3509 				__func__);
3510 		xhci_free_command(xhci, config_cmd);
3511 		return -ENOMEM;
3512 	}
3513 
3514 	/* Check to make sure all endpoints are not already configured for
3515 	 * streams.  While we're at it, find the maximum number of streams that
3516 	 * all the endpoints will support and check for duplicate endpoints.
3517 	 */
3518 	spin_lock_irqsave(&xhci->lock, flags);
3519 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3520 			num_eps, &num_streams, &changed_ep_bitmask);
3521 	if (ret < 0) {
3522 		xhci_free_command(xhci, config_cmd);
3523 		spin_unlock_irqrestore(&xhci->lock, flags);
3524 		return ret;
3525 	}
3526 	if (num_streams <= 1) {
3527 		xhci_warn(xhci, "WARN: endpoints can't handle "
3528 				"more than one stream.\n");
3529 		xhci_free_command(xhci, config_cmd);
3530 		spin_unlock_irqrestore(&xhci->lock, flags);
3531 		return -EINVAL;
3532 	}
3533 	vdev = xhci->devs[udev->slot_id];
3534 	/* Mark each endpoint as being in transition, so
3535 	 * xhci_urb_enqueue() will reject all URBs.
3536 	 */
3537 	for (i = 0; i < num_eps; i++) {
3538 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3539 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3540 	}
3541 	spin_unlock_irqrestore(&xhci->lock, flags);
3542 
3543 	/* Setup internal data structures and allocate HW data structures for
3544 	 * streams (but don't install the HW structures in the input context
3545 	 * until we're sure all memory allocation succeeded).
3546 	 */
3547 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3548 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3549 			num_stream_ctxs, num_streams);
3550 
3551 	for (i = 0; i < num_eps; i++) {
3552 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3553 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3554 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3555 				num_stream_ctxs,
3556 				num_streams,
3557 				max_packet, mem_flags);
3558 		if (!vdev->eps[ep_index].stream_info)
3559 			goto cleanup;
3560 		/* Set maxPstreams in endpoint context and update deq ptr to
3561 		 * point to stream context array. FIXME
3562 		 */
3563 	}
3564 
3565 	/* Set up the input context for a configure endpoint command. */
3566 	for (i = 0; i < num_eps; i++) {
3567 		struct xhci_ep_ctx *ep_ctx;
3568 
3569 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3570 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3571 
3572 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3573 				vdev->out_ctx, ep_index);
3574 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3575 				vdev->eps[ep_index].stream_info);
3576 	}
3577 	/* Tell the HW to drop its old copy of the endpoint context info
3578 	 * and add the updated copy from the input context.
3579 	 */
3580 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3581 			vdev->out_ctx, ctrl_ctx,
3582 			changed_ep_bitmask, changed_ep_bitmask);
3583 
3584 	/* Issue and wait for the configure endpoint command */
3585 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3586 			false, false);
3587 
3588 	/* xHC rejected the configure endpoint command for some reason, so we
3589 	 * leave the old ring intact and free our internal streams data
3590 	 * structure.
3591 	 */
3592 	if (ret < 0)
3593 		goto cleanup;
3594 
3595 	spin_lock_irqsave(&xhci->lock, flags);
3596 	for (i = 0; i < num_eps; i++) {
3597 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3598 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3599 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3600 			 udev->slot_id, ep_index);
3601 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3602 	}
3603 	xhci_free_command(xhci, config_cmd);
3604 	spin_unlock_irqrestore(&xhci->lock, flags);
3605 
3606 	for (i = 0; i < num_eps; i++) {
3607 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3608 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3609 	}
3610 	/* Subtract 1 for stream 0, which drivers can't use */
3611 	return num_streams - 1;
3612 
3613 cleanup:
3614 	/* If it didn't work, free the streams! */
3615 	for (i = 0; i < num_eps; i++) {
3616 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3617 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3618 		vdev->eps[ep_index].stream_info = NULL;
3619 		/* FIXME Unset maxPstreams in endpoint context and
3620 		 * update deq ptr to point to normal string ring.
3621 		 */
3622 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3623 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3624 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3625 	}
3626 	xhci_free_command(xhci, config_cmd);
3627 	return -ENOMEM;
3628 }
3629 
3630 /* Transition the endpoint from using streams to being a "normal" endpoint
3631  * without streams.
3632  *
3633  * Modify the endpoint context state, submit a configure endpoint command,
3634  * and free all endpoint rings for streams if that completes successfully.
3635  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3636 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3637 		struct usb_host_endpoint **eps, unsigned int num_eps,
3638 		gfp_t mem_flags)
3639 {
3640 	int i, ret;
3641 	struct xhci_hcd *xhci;
3642 	struct xhci_virt_device *vdev;
3643 	struct xhci_command *command;
3644 	struct xhci_input_control_ctx *ctrl_ctx;
3645 	unsigned int ep_index;
3646 	unsigned long flags;
3647 	u32 changed_ep_bitmask;
3648 
3649 	xhci = hcd_to_xhci(hcd);
3650 	vdev = xhci->devs[udev->slot_id];
3651 
3652 	/* Set up a configure endpoint command to remove the streams rings */
3653 	spin_lock_irqsave(&xhci->lock, flags);
3654 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3655 			udev, eps, num_eps);
3656 	if (changed_ep_bitmask == 0) {
3657 		spin_unlock_irqrestore(&xhci->lock, flags);
3658 		return -EINVAL;
3659 	}
3660 
3661 	/* Use the xhci_command structure from the first endpoint.  We may have
3662 	 * allocated too many, but the driver may call xhci_free_streams() for
3663 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3664 	 */
3665 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3666 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3667 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3668 	if (!ctrl_ctx) {
3669 		spin_unlock_irqrestore(&xhci->lock, flags);
3670 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3671 				__func__);
3672 		return -EINVAL;
3673 	}
3674 
3675 	for (i = 0; i < num_eps; i++) {
3676 		struct xhci_ep_ctx *ep_ctx;
3677 
3678 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3679 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3680 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3681 			EP_GETTING_NO_STREAMS;
3682 
3683 		xhci_endpoint_copy(xhci, command->in_ctx,
3684 				vdev->out_ctx, ep_index);
3685 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3686 				&vdev->eps[ep_index]);
3687 	}
3688 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3689 			vdev->out_ctx, ctrl_ctx,
3690 			changed_ep_bitmask, changed_ep_bitmask);
3691 	spin_unlock_irqrestore(&xhci->lock, flags);
3692 
3693 	/* Issue and wait for the configure endpoint command,
3694 	 * which must succeed.
3695 	 */
3696 	ret = xhci_configure_endpoint(xhci, udev, command,
3697 			false, true);
3698 
3699 	/* xHC rejected the configure endpoint command for some reason, so we
3700 	 * leave the streams rings intact.
3701 	 */
3702 	if (ret < 0)
3703 		return ret;
3704 
3705 	spin_lock_irqsave(&xhci->lock, flags);
3706 	for (i = 0; i < num_eps; i++) {
3707 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3708 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3709 		vdev->eps[ep_index].stream_info = NULL;
3710 		/* FIXME Unset maxPstreams in endpoint context and
3711 		 * update deq ptr to point to normal string ring.
3712 		 */
3713 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3714 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3715 	}
3716 	spin_unlock_irqrestore(&xhci->lock, flags);
3717 
3718 	return 0;
3719 }
3720 
3721 /*
3722  * Deletes endpoint resources for endpoints that were active before a Reset
3723  * Device command, or a Disable Slot command.  The Reset Device command leaves
3724  * the control endpoint intact, whereas the Disable Slot command deletes it.
3725  *
3726  * Must be called with xhci->lock held.
3727  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3728 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3729 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3730 {
3731 	int i;
3732 	unsigned int num_dropped_eps = 0;
3733 	unsigned int drop_flags = 0;
3734 
3735 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3736 		if (virt_dev->eps[i].ring) {
3737 			drop_flags |= 1 << i;
3738 			num_dropped_eps++;
3739 		}
3740 	}
3741 	xhci->num_active_eps -= num_dropped_eps;
3742 	if (num_dropped_eps)
3743 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3744 				"Dropped %u ep ctxs, flags = 0x%x, "
3745 				"%u now active.",
3746 				num_dropped_eps, drop_flags,
3747 				xhci->num_active_eps);
3748 }
3749 
3750 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3751 
3752 /*
3753  * This submits a Reset Device Command, which will set the device state to 0,
3754  * set the device address to 0, and disable all the endpoints except the default
3755  * control endpoint.  The USB core should come back and call
3756  * xhci_address_device(), and then re-set up the configuration.  If this is
3757  * called because of a usb_reset_and_verify_device(), then the old alternate
3758  * settings will be re-installed through the normal bandwidth allocation
3759  * functions.
3760  *
3761  * Wait for the Reset Device command to finish.  Remove all structures
3762  * associated with the endpoints that were disabled.  Clear the input device
3763  * structure? Reset the control endpoint 0 max packet size?
3764  *
3765  * If the virt_dev to be reset does not exist or does not match the udev,
3766  * it means the device is lost, possibly due to the xHC restore error and
3767  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3768  * re-allocate the device.
3769  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3770 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3771 		struct usb_device *udev)
3772 {
3773 	int ret, i;
3774 	unsigned long flags;
3775 	struct xhci_hcd *xhci;
3776 	unsigned int slot_id;
3777 	struct xhci_virt_device *virt_dev;
3778 	struct xhci_command *reset_device_cmd;
3779 	struct xhci_slot_ctx *slot_ctx;
3780 	int old_active_eps = 0;
3781 
3782 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3783 	if (ret <= 0)
3784 		return ret;
3785 	xhci = hcd_to_xhci(hcd);
3786 	slot_id = udev->slot_id;
3787 	virt_dev = xhci->devs[slot_id];
3788 	if (!virt_dev) {
3789 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3790 				"not exist. Re-allocate the device\n", slot_id);
3791 		ret = xhci_alloc_dev(hcd, udev);
3792 		if (ret == 1)
3793 			return 0;
3794 		else
3795 			return -EINVAL;
3796 	}
3797 
3798 	if (virt_dev->tt_info)
3799 		old_active_eps = virt_dev->tt_info->active_eps;
3800 
3801 	if (virt_dev->udev != udev) {
3802 		/* If the virt_dev and the udev does not match, this virt_dev
3803 		 * may belong to another udev.
3804 		 * Re-allocate the device.
3805 		 */
3806 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3807 				"not match the udev. Re-allocate the device\n",
3808 				slot_id);
3809 		ret = xhci_alloc_dev(hcd, udev);
3810 		if (ret == 1)
3811 			return 0;
3812 		else
3813 			return -EINVAL;
3814 	}
3815 
3816 	/* If device is not setup, there is no point in resetting it */
3817 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3818 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3819 						SLOT_STATE_DISABLED)
3820 		return 0;
3821 
3822 	if (xhci->quirks & XHCI_ETRON_HOST) {
3823 		/*
3824 		 * Obtaining a new device slot to inform the xHCI host that
3825 		 * the USB device has been reset.
3826 		 */
3827 		ret = xhci_disable_slot(xhci, udev->slot_id);
3828 		xhci_free_virt_device(xhci, udev->slot_id);
3829 		if (!ret) {
3830 			ret = xhci_alloc_dev(hcd, udev);
3831 			if (ret == 1)
3832 				ret = 0;
3833 			else
3834 				ret = -EINVAL;
3835 		}
3836 		return ret;
3837 	}
3838 
3839 	trace_xhci_discover_or_reset_device(slot_ctx);
3840 
3841 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3842 	/* Allocate the command structure that holds the struct completion.
3843 	 * Assume we're in process context, since the normal device reset
3844 	 * process has to wait for the device anyway.  Storage devices are
3845 	 * reset as part of error handling, so use GFP_NOIO instead of
3846 	 * GFP_KERNEL.
3847 	 */
3848 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3849 	if (!reset_device_cmd) {
3850 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3851 		return -ENOMEM;
3852 	}
3853 
3854 	/* Attempt to submit the Reset Device command to the command ring */
3855 	spin_lock_irqsave(&xhci->lock, flags);
3856 
3857 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3858 	if (ret) {
3859 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3860 		spin_unlock_irqrestore(&xhci->lock, flags);
3861 		goto command_cleanup;
3862 	}
3863 	xhci_ring_cmd_db(xhci);
3864 	spin_unlock_irqrestore(&xhci->lock, flags);
3865 
3866 	/* Wait for the Reset Device command to finish */
3867 	wait_for_completion(reset_device_cmd->completion);
3868 
3869 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3870 	 * unless we tried to reset a slot ID that wasn't enabled,
3871 	 * or the device wasn't in the addressed or configured state.
3872 	 */
3873 	ret = reset_device_cmd->status;
3874 	switch (ret) {
3875 	case COMP_COMMAND_ABORTED:
3876 	case COMP_COMMAND_RING_STOPPED:
3877 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3878 		ret = -ETIME;
3879 		goto command_cleanup;
3880 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3881 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3882 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3883 				slot_id,
3884 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3885 		xhci_dbg(xhci, "Not freeing device rings.\n");
3886 		/* Don't treat this as an error.  May change my mind later. */
3887 		ret = 0;
3888 		goto command_cleanup;
3889 	case COMP_SUCCESS:
3890 		xhci_dbg(xhci, "Successful reset device command.\n");
3891 		break;
3892 	default:
3893 		if (xhci_is_vendor_info_code(xhci, ret))
3894 			break;
3895 		xhci_warn(xhci, "Unknown completion code %u for "
3896 				"reset device command.\n", ret);
3897 		ret = -EINVAL;
3898 		goto command_cleanup;
3899 	}
3900 
3901 	/* Free up host controller endpoint resources */
3902 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3903 		spin_lock_irqsave(&xhci->lock, flags);
3904 		/* Don't delete the default control endpoint resources */
3905 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3906 		spin_unlock_irqrestore(&xhci->lock, flags);
3907 	}
3908 
3909 	/* Everything but endpoint 0 is disabled, so free the rings. */
3910 	for (i = 1; i < 31; i++) {
3911 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3912 
3913 		if (ep->ep_state & EP_HAS_STREAMS) {
3914 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3915 					xhci_get_endpoint_address(i));
3916 			xhci_free_stream_info(xhci, ep->stream_info);
3917 			ep->stream_info = NULL;
3918 			ep->ep_state &= ~EP_HAS_STREAMS;
3919 		}
3920 
3921 		if (ep->ring) {
3922 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3923 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3924 		}
3925 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3926 			xhci_drop_ep_from_interval_table(xhci,
3927 					&virt_dev->eps[i].bw_info,
3928 					virt_dev->bw_table,
3929 					udev,
3930 					&virt_dev->eps[i],
3931 					virt_dev->tt_info);
3932 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3933 	}
3934 	/* If necessary, update the number of active TTs on this root port */
3935 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3936 	virt_dev->flags = 0;
3937 	ret = 0;
3938 
3939 command_cleanup:
3940 	xhci_free_command(xhci, reset_device_cmd);
3941 	return ret;
3942 }
3943 
3944 /*
3945  * At this point, the struct usb_device is about to go away, the device has
3946  * disconnected, and all traffic has been stopped and the endpoints have been
3947  * disabled.  Free any HC data structures associated with that device.
3948  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3949 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3950 {
3951 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3952 	struct xhci_virt_device *virt_dev;
3953 	struct xhci_slot_ctx *slot_ctx;
3954 	unsigned long flags;
3955 	int i, ret;
3956 
3957 	/*
3958 	 * We called pm_runtime_get_noresume when the device was attached.
3959 	 * Decrement the counter here to allow controller to runtime suspend
3960 	 * if no devices remain.
3961 	 */
3962 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3963 		pm_runtime_put_noidle(hcd->self.controller);
3964 
3965 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3966 	/* If the host is halted due to driver unload, we still need to free the
3967 	 * device.
3968 	 */
3969 	if (ret <= 0 && ret != -ENODEV)
3970 		return;
3971 
3972 	virt_dev = xhci->devs[udev->slot_id];
3973 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3974 	trace_xhci_free_dev(slot_ctx);
3975 
3976 	/* Stop any wayward timer functions (which may grab the lock) */
3977 	for (i = 0; i < 31; i++)
3978 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3979 	virt_dev->udev = NULL;
3980 	xhci_disable_slot(xhci, udev->slot_id);
3981 
3982 	spin_lock_irqsave(&xhci->lock, flags);
3983 	xhci_free_virt_device(xhci, udev->slot_id);
3984 	spin_unlock_irqrestore(&xhci->lock, flags);
3985 
3986 }
3987 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3988 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3989 {
3990 	struct xhci_command *command;
3991 	unsigned long flags;
3992 	u32 state;
3993 	int ret;
3994 
3995 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3996 	if (!command)
3997 		return -ENOMEM;
3998 
3999 	xhci_debugfs_remove_slot(xhci, slot_id);
4000 
4001 	spin_lock_irqsave(&xhci->lock, flags);
4002 	/* Don't disable the slot if the host controller is dead. */
4003 	state = readl(&xhci->op_regs->status);
4004 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4005 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4006 		spin_unlock_irqrestore(&xhci->lock, flags);
4007 		kfree(command);
4008 		return -ENODEV;
4009 	}
4010 
4011 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4012 				slot_id);
4013 	if (ret) {
4014 		spin_unlock_irqrestore(&xhci->lock, flags);
4015 		kfree(command);
4016 		return ret;
4017 	}
4018 	xhci_ring_cmd_db(xhci);
4019 	spin_unlock_irqrestore(&xhci->lock, flags);
4020 
4021 	wait_for_completion(command->completion);
4022 
4023 	if (command->status != COMP_SUCCESS)
4024 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4025 			  slot_id, command->status);
4026 
4027 	xhci_free_command(xhci, command);
4028 
4029 	return 0;
4030 }
4031 
4032 /*
4033  * Checks if we have enough host controller resources for the default control
4034  * endpoint.
4035  *
4036  * Must be called with xhci->lock held.
4037  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4038 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4039 {
4040 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4041 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4042 				"Not enough ep ctxs: "
4043 				"%u active, need to add 1, limit is %u.",
4044 				xhci->num_active_eps, xhci->limit_active_eps);
4045 		return -ENOMEM;
4046 	}
4047 	xhci->num_active_eps += 1;
4048 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4049 			"Adding 1 ep ctx, %u now active.",
4050 			xhci->num_active_eps);
4051 	return 0;
4052 }
4053 
4054 
4055 /*
4056  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4057  * timed out, or allocating memory failed.  Returns 1 on success.
4058  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4059 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4060 {
4061 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4062 	struct xhci_virt_device *vdev;
4063 	struct xhci_slot_ctx *slot_ctx;
4064 	unsigned long flags;
4065 	int ret, slot_id;
4066 	struct xhci_command *command;
4067 
4068 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4069 	if (!command)
4070 		return 0;
4071 
4072 	spin_lock_irqsave(&xhci->lock, flags);
4073 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4074 	if (ret) {
4075 		spin_unlock_irqrestore(&xhci->lock, flags);
4076 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4077 		xhci_free_command(xhci, command);
4078 		return 0;
4079 	}
4080 	xhci_ring_cmd_db(xhci);
4081 	spin_unlock_irqrestore(&xhci->lock, flags);
4082 
4083 	wait_for_completion(command->completion);
4084 	slot_id = command->slot_id;
4085 
4086 	if (!slot_id || command->status != COMP_SUCCESS) {
4087 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4088 			 xhci_trb_comp_code_string(command->status));
4089 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4090 				HCS_MAX_SLOTS(
4091 					readl(&xhci->cap_regs->hcs_params1)));
4092 		xhci_free_command(xhci, command);
4093 		return 0;
4094 	}
4095 
4096 	xhci_free_command(xhci, command);
4097 
4098 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4099 		spin_lock_irqsave(&xhci->lock, flags);
4100 		ret = xhci_reserve_host_control_ep_resources(xhci);
4101 		if (ret) {
4102 			spin_unlock_irqrestore(&xhci->lock, flags);
4103 			xhci_warn(xhci, "Not enough host resources, "
4104 					"active endpoint contexts = %u\n",
4105 					xhci->num_active_eps);
4106 			goto disable_slot;
4107 		}
4108 		spin_unlock_irqrestore(&xhci->lock, flags);
4109 	}
4110 	/* Use GFP_NOIO, since this function can be called from
4111 	 * xhci_discover_or_reset_device(), which may be called as part of
4112 	 * mass storage driver error handling.
4113 	 */
4114 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4115 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4116 		goto disable_slot;
4117 	}
4118 	vdev = xhci->devs[slot_id];
4119 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4120 	trace_xhci_alloc_dev(slot_ctx);
4121 
4122 	udev->slot_id = slot_id;
4123 
4124 	xhci_debugfs_create_slot(xhci, slot_id);
4125 
4126 	/*
4127 	 * If resetting upon resume, we can't put the controller into runtime
4128 	 * suspend if there is a device attached.
4129 	 */
4130 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4131 		pm_runtime_get_noresume(hcd->self.controller);
4132 
4133 	/* Is this a LS or FS device under a HS hub? */
4134 	/* Hub or peripherial? */
4135 	return 1;
4136 
4137 disable_slot:
4138 	xhci_disable_slot(xhci, udev->slot_id);
4139 	xhci_free_virt_device(xhci, udev->slot_id);
4140 
4141 	return 0;
4142 }
4143 
4144 /**
4145  * xhci_setup_device - issues an Address Device command to assign a unique
4146  *			USB bus address.
4147  * @hcd: USB host controller data structure.
4148  * @udev: USB dev structure representing the connected device.
4149  * @setup: Enum specifying setup mode: address only or with context.
4150  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4151  *
4152  * Return: 0 if successful; otherwise, negative error code.
4153  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4154 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4155 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4156 {
4157 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4158 	unsigned long flags;
4159 	struct xhci_virt_device *virt_dev;
4160 	int ret = 0;
4161 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4162 	struct xhci_slot_ctx *slot_ctx;
4163 	struct xhci_input_control_ctx *ctrl_ctx;
4164 	u64 temp_64;
4165 	struct xhci_command *command = NULL;
4166 
4167 	mutex_lock(&xhci->mutex);
4168 
4169 	if (xhci->xhc_state) {	/* dying, removing or halted */
4170 		ret = -ESHUTDOWN;
4171 		goto out;
4172 	}
4173 
4174 	if (!udev->slot_id) {
4175 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4176 				"Bad Slot ID %d", udev->slot_id);
4177 		ret = -EINVAL;
4178 		goto out;
4179 	}
4180 
4181 	virt_dev = xhci->devs[udev->slot_id];
4182 
4183 	if (WARN_ON(!virt_dev)) {
4184 		/*
4185 		 * In plug/unplug torture test with an NEC controller,
4186 		 * a zero-dereference was observed once due to virt_dev = 0.
4187 		 * Print useful debug rather than crash if it is observed again!
4188 		 */
4189 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4190 			udev->slot_id);
4191 		ret = -EINVAL;
4192 		goto out;
4193 	}
4194 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4195 	trace_xhci_setup_device_slot(slot_ctx);
4196 
4197 	if (setup == SETUP_CONTEXT_ONLY) {
4198 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4199 		    SLOT_STATE_DEFAULT) {
4200 			xhci_dbg(xhci, "Slot already in default state\n");
4201 			goto out;
4202 		}
4203 	}
4204 
4205 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4206 	if (!command) {
4207 		ret = -ENOMEM;
4208 		goto out;
4209 	}
4210 
4211 	command->in_ctx = virt_dev->in_ctx;
4212 	command->timeout_ms = timeout_ms;
4213 
4214 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4215 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4216 	if (!ctrl_ctx) {
4217 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4218 				__func__);
4219 		ret = -EINVAL;
4220 		goto out;
4221 	}
4222 	/*
4223 	 * If this is the first Set Address since device plug-in or
4224 	 * virt_device realloaction after a resume with an xHCI power loss,
4225 	 * then set up the slot context.
4226 	 */
4227 	if (!slot_ctx->dev_info)
4228 		xhci_setup_addressable_virt_dev(xhci, udev);
4229 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4230 	else
4231 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4232 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4233 	ctrl_ctx->drop_flags = 0;
4234 
4235 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4236 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4237 
4238 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4239 	spin_lock_irqsave(&xhci->lock, flags);
4240 	trace_xhci_setup_device(virt_dev);
4241 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4242 					udev->slot_id, setup);
4243 	if (ret) {
4244 		spin_unlock_irqrestore(&xhci->lock, flags);
4245 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4246 				"FIXME: allocate a command ring segment");
4247 		goto out;
4248 	}
4249 	xhci_ring_cmd_db(xhci);
4250 	spin_unlock_irqrestore(&xhci->lock, flags);
4251 
4252 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4253 	wait_for_completion(command->completion);
4254 
4255 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4256 	 * the SetAddress() "recovery interval" required by USB and aborting the
4257 	 * command on a timeout.
4258 	 */
4259 	switch (command->status) {
4260 	case COMP_COMMAND_ABORTED:
4261 	case COMP_COMMAND_RING_STOPPED:
4262 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4263 		ret = -ETIME;
4264 		break;
4265 	case COMP_CONTEXT_STATE_ERROR:
4266 	case COMP_SLOT_NOT_ENABLED_ERROR:
4267 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4268 			 act, udev->slot_id);
4269 		ret = -EINVAL;
4270 		break;
4271 	case COMP_USB_TRANSACTION_ERROR:
4272 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4273 
4274 		mutex_unlock(&xhci->mutex);
4275 		ret = xhci_disable_slot(xhci, udev->slot_id);
4276 		xhci_free_virt_device(xhci, udev->slot_id);
4277 		if (!ret) {
4278 			if (xhci_alloc_dev(hcd, udev) == 1)
4279 				xhci_setup_addressable_virt_dev(xhci, udev);
4280 		}
4281 		kfree(command->completion);
4282 		kfree(command);
4283 		return -EPROTO;
4284 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4285 		dev_warn(&udev->dev,
4286 			 "ERROR: Incompatible device for setup %s command\n", act);
4287 		ret = -ENODEV;
4288 		break;
4289 	case COMP_SUCCESS:
4290 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4291 			       "Successful setup %s command", act);
4292 		break;
4293 	default:
4294 		xhci_err(xhci,
4295 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4296 			 act, command->status);
4297 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4298 		ret = -EINVAL;
4299 		break;
4300 	}
4301 	if (ret)
4302 		goto out;
4303 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4304 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305 			"Op regs DCBAA ptr = %#016llx", temp_64);
4306 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4307 		"Slot ID %d dcbaa entry @%p = %#016llx",
4308 		udev->slot_id,
4309 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4310 		(unsigned long long)
4311 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4312 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4313 			"Output Context DMA address = %#08llx",
4314 			(unsigned long long)virt_dev->out_ctx->dma);
4315 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4316 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4317 	/*
4318 	 * USB core uses address 1 for the roothubs, so we add one to the
4319 	 * address given back to us by the HC.
4320 	 */
4321 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4322 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4323 	/* Zero the input context control for later use */
4324 	ctrl_ctx->add_flags = 0;
4325 	ctrl_ctx->drop_flags = 0;
4326 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4327 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4328 
4329 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4330 		       "Internal device address = %d",
4331 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4332 out:
4333 	mutex_unlock(&xhci->mutex);
4334 	if (command) {
4335 		kfree(command->completion);
4336 		kfree(command);
4337 	}
4338 	return ret;
4339 }
4340 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4341 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4342 			       unsigned int timeout_ms)
4343 {
4344 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4345 }
4346 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4348 {
4349 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4350 				 XHCI_CMD_DEFAULT_TIMEOUT);
4351 }
4352 
4353 /*
4354  * Transfer the port index into real index in the HW port status
4355  * registers. Caculate offset between the port's PORTSC register
4356  * and port status base. Divide the number of per port register
4357  * to get the real index. The raw port number bases 1.
4358  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4359 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4360 {
4361 	struct xhci_hub *rhub;
4362 
4363 	rhub = xhci_get_rhub(hcd);
4364 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4365 }
4366 
4367 /*
4368  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4369  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4370  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4371 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4372 			struct usb_device *udev, u16 max_exit_latency)
4373 {
4374 	struct xhci_virt_device *virt_dev;
4375 	struct xhci_command *command;
4376 	struct xhci_input_control_ctx *ctrl_ctx;
4377 	struct xhci_slot_ctx *slot_ctx;
4378 	unsigned long flags;
4379 	int ret;
4380 
4381 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4382 	if (!command)
4383 		return -ENOMEM;
4384 
4385 	spin_lock_irqsave(&xhci->lock, flags);
4386 
4387 	virt_dev = xhci->devs[udev->slot_id];
4388 
4389 	/*
4390 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4391 	 * xHC was re-initialized. Exit latency will be set later after
4392 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4393 	 */
4394 
4395 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4396 		spin_unlock_irqrestore(&xhci->lock, flags);
4397 		xhci_free_command(xhci, command);
4398 		return 0;
4399 	}
4400 
4401 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4402 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4403 	if (!ctrl_ctx) {
4404 		spin_unlock_irqrestore(&xhci->lock, flags);
4405 		xhci_free_command(xhci, command);
4406 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4407 				__func__);
4408 		return -ENOMEM;
4409 	}
4410 
4411 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4412 	spin_unlock_irqrestore(&xhci->lock, flags);
4413 
4414 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4415 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4416 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4417 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4418 	slot_ctx->dev_state = 0;
4419 
4420 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4421 			"Set up evaluate context for LPM MEL change.");
4422 
4423 	/* Issue and wait for the evaluate context command. */
4424 	ret = xhci_configure_endpoint(xhci, udev, command,
4425 			true, true);
4426 
4427 	if (!ret) {
4428 		spin_lock_irqsave(&xhci->lock, flags);
4429 		virt_dev->current_mel = max_exit_latency;
4430 		spin_unlock_irqrestore(&xhci->lock, flags);
4431 	}
4432 
4433 	xhci_free_command(xhci, command);
4434 
4435 	return ret;
4436 }
4437 
4438 #ifdef CONFIG_PM
4439 
4440 /* BESL to HIRD Encoding array for USB2 LPM */
4441 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4442 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4443 
4444 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4445 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4446 					struct usb_device *udev)
4447 {
4448 	int u2del, besl, besl_host;
4449 	int besl_device = 0;
4450 	u32 field;
4451 
4452 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4453 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454 
4455 	if (field & USB_BESL_SUPPORT) {
4456 		for (besl_host = 0; besl_host < 16; besl_host++) {
4457 			if (xhci_besl_encoding[besl_host] >= u2del)
4458 				break;
4459 		}
4460 		/* Use baseline BESL value as default */
4461 		if (field & USB_BESL_BASELINE_VALID)
4462 			besl_device = USB_GET_BESL_BASELINE(field);
4463 		else if (field & USB_BESL_DEEP_VALID)
4464 			besl_device = USB_GET_BESL_DEEP(field);
4465 	} else {
4466 		if (u2del <= 50)
4467 			besl_host = 0;
4468 		else
4469 			besl_host = (u2del - 51) / 75 + 1;
4470 	}
4471 
4472 	besl = besl_host + besl_device;
4473 	if (besl > 15)
4474 		besl = 15;
4475 
4476 	return besl;
4477 }
4478 
4479 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4480 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4481 {
4482 	u32 field;
4483 	int l1;
4484 	int besld = 0;
4485 	int hirdm = 0;
4486 
4487 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4488 
4489 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4490 	l1 = udev->l1_params.timeout / 256;
4491 
4492 	/* device has preferred BESLD */
4493 	if (field & USB_BESL_DEEP_VALID) {
4494 		besld = USB_GET_BESL_DEEP(field);
4495 		hirdm = 1;
4496 	}
4497 
4498 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4499 }
4500 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4501 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4502 			struct usb_device *udev, int enable)
4503 {
4504 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4505 	struct xhci_port **ports;
4506 	__le32 __iomem	*pm_addr, *hlpm_addr;
4507 	u32		pm_val, hlpm_val, field;
4508 	unsigned int	port_num;
4509 	unsigned long	flags;
4510 	int		hird, exit_latency;
4511 	int		ret;
4512 
4513 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4514 		return -EPERM;
4515 
4516 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4517 			!udev->lpm_capable)
4518 		return -EPERM;
4519 
4520 	if (!udev->parent || udev->parent->parent ||
4521 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4522 		return -EPERM;
4523 
4524 	if (udev->usb2_hw_lpm_capable != 1)
4525 		return -EPERM;
4526 
4527 	spin_lock_irqsave(&xhci->lock, flags);
4528 
4529 	ports = xhci->usb2_rhub.ports;
4530 	port_num = udev->portnum - 1;
4531 	pm_addr = ports[port_num]->addr + PORTPMSC;
4532 	pm_val = readl(pm_addr);
4533 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4534 
4535 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4536 		 str_enable_disable(enable), port_num + 1);
4537 
4538 	if (enable) {
4539 		/* Host supports BESL timeout instead of HIRD */
4540 		if (udev->usb2_hw_lpm_besl_capable) {
4541 			/* if device doesn't have a preferred BESL value use a
4542 			 * default one which works with mixed HIRD and BESL
4543 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4544 			 */
4545 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4546 			if ((field & USB_BESL_SUPPORT) &&
4547 			    (field & USB_BESL_BASELINE_VALID))
4548 				hird = USB_GET_BESL_BASELINE(field);
4549 			else
4550 				hird = udev->l1_params.besl;
4551 
4552 			exit_latency = xhci_besl_encoding[hird];
4553 			spin_unlock_irqrestore(&xhci->lock, flags);
4554 
4555 			ret = xhci_change_max_exit_latency(xhci, udev,
4556 							   exit_latency);
4557 			if (ret < 0)
4558 				return ret;
4559 			spin_lock_irqsave(&xhci->lock, flags);
4560 
4561 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4562 			writel(hlpm_val, hlpm_addr);
4563 			/* flush write */
4564 			readl(hlpm_addr);
4565 		} else {
4566 			hird = xhci_calculate_hird_besl(xhci, udev);
4567 		}
4568 
4569 		pm_val &= ~PORT_HIRD_MASK;
4570 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4571 		writel(pm_val, pm_addr);
4572 		pm_val = readl(pm_addr);
4573 		pm_val |= PORT_HLE;
4574 		writel(pm_val, pm_addr);
4575 		/* flush write */
4576 		readl(pm_addr);
4577 	} else {
4578 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4579 		writel(pm_val, pm_addr);
4580 		/* flush write */
4581 		readl(pm_addr);
4582 		if (udev->usb2_hw_lpm_besl_capable) {
4583 			spin_unlock_irqrestore(&xhci->lock, flags);
4584 			xhci_change_max_exit_latency(xhci, udev, 0);
4585 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4586 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4587 					   100, 10000);
4588 			return 0;
4589 		}
4590 	}
4591 
4592 	spin_unlock_irqrestore(&xhci->lock, flags);
4593 	return 0;
4594 }
4595 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4596 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4597 {
4598 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4599 	struct xhci_port *port;
4600 	u32 capability;
4601 
4602 	/* Check if USB3 device at root port is tunneled over USB4 */
4603 	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4604 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4605 
4606 		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4607 		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4608 			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4609 		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4610 			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4611 		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4612 			dev_dbg(&udev->dev, "native USB 3.x link\n");
4613 		return 0;
4614 	}
4615 
4616 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4617 		return 0;
4618 
4619 	/* we only support lpm for non-hub device connected to root hub yet */
4620 	if (!udev->parent || udev->parent->parent ||
4621 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4622 		return 0;
4623 
4624 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4625 	capability = port->port_cap->protocol_caps;
4626 
4627 	if (capability & XHCI_HLC) {
4628 		udev->usb2_hw_lpm_capable = 1;
4629 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4630 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4631 		if (capability & XHCI_BLC)
4632 			udev->usb2_hw_lpm_besl_capable = 1;
4633 	}
4634 
4635 	return 0;
4636 }
4637 
4638 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4639 
4640 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4641 static unsigned long long xhci_service_interval_to_ns(
4642 		struct usb_endpoint_descriptor *desc)
4643 {
4644 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4645 }
4646 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4647 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4648 		enum usb3_link_state state)
4649 {
4650 	unsigned long long sel;
4651 	unsigned long long pel;
4652 	unsigned int max_sel_pel;
4653 	char *state_name;
4654 
4655 	switch (state) {
4656 	case USB3_LPM_U1:
4657 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4658 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4659 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4660 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4661 		state_name = "U1";
4662 		break;
4663 	case USB3_LPM_U2:
4664 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4665 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4666 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4667 		state_name = "U2";
4668 		break;
4669 	default:
4670 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4671 				__func__);
4672 		return USB3_LPM_DISABLED;
4673 	}
4674 
4675 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4676 		return USB3_LPM_DEVICE_INITIATED;
4677 
4678 	if (sel > max_sel_pel)
4679 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4680 				"due to long SEL %llu ms\n",
4681 				state_name, sel);
4682 	else
4683 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4684 				"due to long PEL %llu ms\n",
4685 				state_name, pel);
4686 	return USB3_LPM_DISABLED;
4687 }
4688 
4689 /* The U1 timeout should be the maximum of the following values:
4690  *  - For control endpoints, U1 system exit latency (SEL) * 3
4691  *  - For bulk endpoints, U1 SEL * 5
4692  *  - For interrupt endpoints:
4693  *    - Notification EPs, U1 SEL * 3
4694  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4695  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4696  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4697 static unsigned long long xhci_calculate_intel_u1_timeout(
4698 		struct usb_device *udev,
4699 		struct usb_endpoint_descriptor *desc)
4700 {
4701 	unsigned long long timeout_ns;
4702 	int ep_type;
4703 	int intr_type;
4704 
4705 	ep_type = usb_endpoint_type(desc);
4706 	switch (ep_type) {
4707 	case USB_ENDPOINT_XFER_CONTROL:
4708 		timeout_ns = udev->u1_params.sel * 3;
4709 		break;
4710 	case USB_ENDPOINT_XFER_BULK:
4711 		timeout_ns = udev->u1_params.sel * 5;
4712 		break;
4713 	case USB_ENDPOINT_XFER_INT:
4714 		intr_type = usb_endpoint_interrupt_type(desc);
4715 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4716 			timeout_ns = udev->u1_params.sel * 3;
4717 			break;
4718 		}
4719 		/* Otherwise the calculation is the same as isoc eps */
4720 		fallthrough;
4721 	case USB_ENDPOINT_XFER_ISOC:
4722 		timeout_ns = xhci_service_interval_to_ns(desc);
4723 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4724 		if (timeout_ns < udev->u1_params.sel * 2)
4725 			timeout_ns = udev->u1_params.sel * 2;
4726 		break;
4727 	default:
4728 		return 0;
4729 	}
4730 
4731 	return timeout_ns;
4732 }
4733 
4734 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4735 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4736 		struct usb_device *udev,
4737 		struct usb_endpoint_descriptor *desc)
4738 {
4739 	unsigned long long timeout_ns;
4740 
4741 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4742 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4743 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4744 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4745 			return USB3_LPM_DISABLED;
4746 		}
4747 	}
4748 
4749 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4750 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4751 	else
4752 		timeout_ns = udev->u1_params.sel;
4753 
4754 	/* The U1 timeout is encoded in 1us intervals.
4755 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4756 	 */
4757 	if (timeout_ns == USB3_LPM_DISABLED)
4758 		timeout_ns = 1;
4759 	else
4760 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4761 
4762 	/* If the necessary timeout value is bigger than what we can set in the
4763 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4764 	 */
4765 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4766 		return timeout_ns;
4767 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4768 		timeout_ns);
4769 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4770 }
4771 
4772 /* The U2 timeout should be the maximum of:
4773  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4774  *  - largest bInterval of any active periodic endpoint (to avoid going
4775  *    into lower power link states between intervals).
4776  *  - the U2 Exit Latency of the device
4777  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4778 static unsigned long long xhci_calculate_intel_u2_timeout(
4779 		struct usb_device *udev,
4780 		struct usb_endpoint_descriptor *desc)
4781 {
4782 	unsigned long long timeout_ns;
4783 	unsigned long long u2_del_ns;
4784 
4785 	timeout_ns = 10 * 1000 * 1000;
4786 
4787 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4788 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4789 		timeout_ns = xhci_service_interval_to_ns(desc);
4790 
4791 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4792 	if (u2_del_ns > timeout_ns)
4793 		timeout_ns = u2_del_ns;
4794 
4795 	return timeout_ns;
4796 }
4797 
4798 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4799 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4800 		struct usb_device *udev,
4801 		struct usb_endpoint_descriptor *desc)
4802 {
4803 	unsigned long long timeout_ns;
4804 
4805 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4806 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4807 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4808 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4809 			return USB3_LPM_DISABLED;
4810 		}
4811 	}
4812 
4813 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4814 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4815 	else
4816 		timeout_ns = udev->u2_params.sel;
4817 
4818 	/* The U2 timeout is encoded in 256us intervals */
4819 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4820 	/* If the necessary timeout value is bigger than what we can set in the
4821 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4822 	 */
4823 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4824 		return timeout_ns;
4825 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4826 		timeout_ns * 256);
4827 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4828 }
4829 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4830 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4831 		struct usb_device *udev,
4832 		struct usb_endpoint_descriptor *desc,
4833 		enum usb3_link_state state,
4834 		u16 *timeout)
4835 {
4836 	if (state == USB3_LPM_U1)
4837 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4838 	else if (state == USB3_LPM_U2)
4839 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4840 
4841 	return USB3_LPM_DISABLED;
4842 }
4843 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4844 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4845 		struct usb_device *udev,
4846 		struct usb_endpoint_descriptor *desc,
4847 		enum usb3_link_state state,
4848 		u16 *timeout)
4849 {
4850 	u16 alt_timeout;
4851 
4852 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4853 		desc, state, timeout);
4854 
4855 	/* If we found we can't enable hub-initiated LPM, and
4856 	 * the U1 or U2 exit latency was too high to allow
4857 	 * device-initiated LPM as well, then we will disable LPM
4858 	 * for this device, so stop searching any further.
4859 	 */
4860 	if (alt_timeout == USB3_LPM_DISABLED) {
4861 		*timeout = alt_timeout;
4862 		return -E2BIG;
4863 	}
4864 	if (alt_timeout > *timeout)
4865 		*timeout = alt_timeout;
4866 	return 0;
4867 }
4868 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4869 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4870 		struct usb_device *udev,
4871 		struct usb_host_interface *alt,
4872 		enum usb3_link_state state,
4873 		u16 *timeout)
4874 {
4875 	int j;
4876 
4877 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4878 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4879 					&alt->endpoint[j].desc, state, timeout))
4880 			return -E2BIG;
4881 	}
4882 	return 0;
4883 }
4884 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4885 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4886 		struct usb_device *udev,
4887 		enum usb3_link_state state)
4888 {
4889 	struct usb_device *parent = udev->parent;
4890 	int tier = 1; /* roothub is tier1 */
4891 
4892 	while (parent) {
4893 		parent = parent->parent;
4894 		tier++;
4895 	}
4896 
4897 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4898 		goto fail;
4899 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4900 		goto fail;
4901 
4902 	return 0;
4903 fail:
4904 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4905 			tier);
4906 	return -E2BIG;
4907 }
4908 
4909 /* Returns the U1 or U2 timeout that should be enabled.
4910  * If the tier check or timeout setting functions return with a non-zero exit
4911  * code, that means the timeout value has been finalized and we shouldn't look
4912  * at any more endpoints.
4913  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4914 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4915 			struct usb_device *udev, enum usb3_link_state state)
4916 {
4917 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4918 	struct usb_host_config *config;
4919 	char *state_name;
4920 	int i;
4921 	u16 timeout = USB3_LPM_DISABLED;
4922 
4923 	if (state == USB3_LPM_U1)
4924 		state_name = "U1";
4925 	else if (state == USB3_LPM_U2)
4926 		state_name = "U2";
4927 	else {
4928 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4929 				state);
4930 		return timeout;
4931 	}
4932 
4933 	/* Gather some information about the currently installed configuration
4934 	 * and alternate interface settings.
4935 	 */
4936 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4937 			state, &timeout))
4938 		return timeout;
4939 
4940 	config = udev->actconfig;
4941 	if (!config)
4942 		return timeout;
4943 
4944 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4945 		struct usb_driver *driver;
4946 		struct usb_interface *intf = config->interface[i];
4947 
4948 		if (!intf)
4949 			continue;
4950 
4951 		/* Check if any currently bound drivers want hub-initiated LPM
4952 		 * disabled.
4953 		 */
4954 		if (intf->dev.driver) {
4955 			driver = to_usb_driver(intf->dev.driver);
4956 			if (driver && driver->disable_hub_initiated_lpm) {
4957 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4958 					state_name, driver->name);
4959 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4960 								      state);
4961 				if (timeout == USB3_LPM_DISABLED)
4962 					return timeout;
4963 			}
4964 		}
4965 
4966 		/* Not sure how this could happen... */
4967 		if (!intf->cur_altsetting)
4968 			continue;
4969 
4970 		if (xhci_update_timeout_for_interface(xhci, udev,
4971 					intf->cur_altsetting,
4972 					state, &timeout))
4973 			return timeout;
4974 	}
4975 	return timeout;
4976 }
4977 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4978 static int calculate_max_exit_latency(struct usb_device *udev,
4979 		enum usb3_link_state state_changed,
4980 		u16 hub_encoded_timeout)
4981 {
4982 	unsigned long long u1_mel_us = 0;
4983 	unsigned long long u2_mel_us = 0;
4984 	unsigned long long mel_us = 0;
4985 	bool disabling_u1;
4986 	bool disabling_u2;
4987 	bool enabling_u1;
4988 	bool enabling_u2;
4989 
4990 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4991 			hub_encoded_timeout == USB3_LPM_DISABLED);
4992 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4993 			hub_encoded_timeout == USB3_LPM_DISABLED);
4994 
4995 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4996 			hub_encoded_timeout != USB3_LPM_DISABLED);
4997 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4998 			hub_encoded_timeout != USB3_LPM_DISABLED);
4999 
5000 	/* If U1 was already enabled and we're not disabling it,
5001 	 * or we're going to enable U1, account for the U1 max exit latency.
5002 	 */
5003 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5004 			enabling_u1)
5005 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5006 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5007 			enabling_u2)
5008 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5009 
5010 	mel_us = max(u1_mel_us, u2_mel_us);
5011 
5012 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5013 	if (mel_us > MAX_EXIT) {
5014 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5015 				"is too big.\n", mel_us);
5016 		return -E2BIG;
5017 	}
5018 	return mel_us;
5019 }
5020 
5021 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5022 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5023 			struct usb_device *udev, enum usb3_link_state state)
5024 {
5025 	struct xhci_hcd	*xhci;
5026 	struct xhci_port *port;
5027 	u16 hub_encoded_timeout;
5028 	int mel;
5029 	int ret;
5030 
5031 	xhci = hcd_to_xhci(hcd);
5032 	/* The LPM timeout values are pretty host-controller specific, so don't
5033 	 * enable hub-initiated timeouts unless the vendor has provided
5034 	 * information about their timeout algorithm.
5035 	 */
5036 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5037 			!xhci->devs[udev->slot_id])
5038 		return USB3_LPM_DISABLED;
5039 
5040 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5041 		return USB3_LPM_DISABLED;
5042 
5043 	/* If connected to root port then check port can handle lpm */
5044 	if (udev->parent && !udev->parent->parent) {
5045 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5046 		if (port->lpm_incapable)
5047 			return USB3_LPM_DISABLED;
5048 	}
5049 
5050 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5051 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5052 	if (mel < 0) {
5053 		/* Max Exit Latency is too big, disable LPM. */
5054 		hub_encoded_timeout = USB3_LPM_DISABLED;
5055 		mel = 0;
5056 	}
5057 
5058 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5059 	if (ret)
5060 		return ret;
5061 	return hub_encoded_timeout;
5062 }
5063 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5064 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5065 			struct usb_device *udev, enum usb3_link_state state)
5066 {
5067 	struct xhci_hcd	*xhci;
5068 	u16 mel;
5069 
5070 	xhci = hcd_to_xhci(hcd);
5071 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5072 			!xhci->devs[udev->slot_id])
5073 		return 0;
5074 
5075 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5076 	return xhci_change_max_exit_latency(xhci, udev, mel);
5077 }
5078 #else /* CONFIG_PM */
5079 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5080 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5081 				struct usb_device *udev, int enable)
5082 {
5083 	return 0;
5084 }
5085 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5086 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5087 {
5088 	return 0;
5089 }
5090 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5091 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5092 			struct usb_device *udev, enum usb3_link_state state)
5093 {
5094 	return USB3_LPM_DISABLED;
5095 }
5096 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5097 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5098 			struct usb_device *udev, enum usb3_link_state state)
5099 {
5100 	return 0;
5101 }
5102 #endif	/* CONFIG_PM */
5103 
5104 /*-------------------------------------------------------------------------*/
5105 
5106 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5107  * internal data structures for the device.
5108  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5109 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5110 			struct usb_tt *tt, gfp_t mem_flags)
5111 {
5112 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113 	struct xhci_virt_device *vdev;
5114 	struct xhci_command *config_cmd;
5115 	struct xhci_input_control_ctx *ctrl_ctx;
5116 	struct xhci_slot_ctx *slot_ctx;
5117 	unsigned long flags;
5118 	unsigned think_time;
5119 	int ret;
5120 
5121 	/* Ignore root hubs */
5122 	if (!hdev->parent)
5123 		return 0;
5124 
5125 	vdev = xhci->devs[hdev->slot_id];
5126 	if (!vdev) {
5127 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5128 		return -EINVAL;
5129 	}
5130 
5131 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5132 	if (!config_cmd)
5133 		return -ENOMEM;
5134 
5135 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5136 	if (!ctrl_ctx) {
5137 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5138 				__func__);
5139 		xhci_free_command(xhci, config_cmd);
5140 		return -ENOMEM;
5141 	}
5142 
5143 	spin_lock_irqsave(&xhci->lock, flags);
5144 	if (hdev->speed == USB_SPEED_HIGH &&
5145 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5146 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5147 		xhci_free_command(xhci, config_cmd);
5148 		spin_unlock_irqrestore(&xhci->lock, flags);
5149 		return -ENOMEM;
5150 	}
5151 
5152 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5153 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5154 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5155 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5156 	/*
5157 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5158 	 * but it may be already set to 1 when setup an xHCI virtual
5159 	 * device, so clear it anyway.
5160 	 */
5161 	if (tt->multi)
5162 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5163 	else if (hdev->speed == USB_SPEED_FULL)
5164 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5165 
5166 	if (xhci->hci_version > 0x95) {
5167 		xhci_dbg(xhci, "xHCI version %x needs hub "
5168 				"TT think time and number of ports\n",
5169 				(unsigned int) xhci->hci_version);
5170 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5171 		/* Set TT think time - convert from ns to FS bit times.
5172 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5173 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5174 		 *
5175 		 * xHCI 1.0: this field shall be 0 if the device is not a
5176 		 * High-spped hub.
5177 		 */
5178 		think_time = tt->think_time;
5179 		if (think_time != 0)
5180 			think_time = (think_time / 666) - 1;
5181 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5182 			slot_ctx->tt_info |=
5183 				cpu_to_le32(TT_THINK_TIME(think_time));
5184 	} else {
5185 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5186 				"TT think time or number of ports\n",
5187 				(unsigned int) xhci->hci_version);
5188 	}
5189 	slot_ctx->dev_state = 0;
5190 	spin_unlock_irqrestore(&xhci->lock, flags);
5191 
5192 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5193 			(xhci->hci_version > 0x95) ?
5194 			"configure endpoint" : "evaluate context");
5195 
5196 	/* Issue and wait for the configure endpoint or
5197 	 * evaluate context command.
5198 	 */
5199 	if (xhci->hci_version > 0x95)
5200 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5201 				false, false);
5202 	else
5203 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5204 				true, false);
5205 
5206 	xhci_free_command(xhci, config_cmd);
5207 	return ret;
5208 }
5209 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5210 
xhci_get_frame(struct usb_hcd * hcd)5211 static int xhci_get_frame(struct usb_hcd *hcd)
5212 {
5213 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5214 	/* EHCI mods by the periodic size.  Why? */
5215 	return readl(&xhci->run_regs->microframe_index) >> 3;
5216 }
5217 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5218 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5219 {
5220 	xhci->usb2_rhub.hcd = hcd;
5221 	hcd->speed = HCD_USB2;
5222 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5223 	/*
5224 	 * USB 2.0 roothub under xHCI has an integrated TT,
5225 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5226 	 * companion controller.
5227 	 */
5228 	hcd->has_tt = 1;
5229 }
5230 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5231 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5232 {
5233 	unsigned int minor_rev;
5234 
5235 	/*
5236 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5237 	 * should return 0x31 for sbrn, or that the minor revision
5238 	 * is a two digit BCD containig minor and sub-minor numbers.
5239 	 * This was later clarified in xHCI 1.2.
5240 	 *
5241 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5242 	 * minor revision set to 0x1 instead of 0x10.
5243 	 */
5244 	if (xhci->usb3_rhub.min_rev == 0x1)
5245 		minor_rev = 1;
5246 	else
5247 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5248 
5249 	switch (minor_rev) {
5250 	case 2:
5251 		hcd->speed = HCD_USB32;
5252 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5253 		hcd->self.root_hub->rx_lanes = 2;
5254 		hcd->self.root_hub->tx_lanes = 2;
5255 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5256 		break;
5257 	case 1:
5258 		hcd->speed = HCD_USB31;
5259 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5260 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5261 		break;
5262 	}
5263 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5264 		  minor_rev, minor_rev ? "Enhanced " : "");
5265 
5266 	xhci->usb3_rhub.hcd = hcd;
5267 }
5268 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5269 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5270 {
5271 	struct xhci_hcd		*xhci;
5272 	/*
5273 	 * TODO: Check with DWC3 clients for sysdev according to
5274 	 * quirks
5275 	 */
5276 	struct device		*dev = hcd->self.sysdev;
5277 	int			retval;
5278 
5279 	/* Accept arbitrarily long scatter-gather lists */
5280 	hcd->self.sg_tablesize = ~0;
5281 
5282 	/* support to build packet from discontinuous buffers */
5283 	hcd->self.no_sg_constraint = 1;
5284 
5285 	/* XHCI controllers don't stop the ep queue on short packets :| */
5286 	hcd->self.no_stop_on_short = 1;
5287 
5288 	xhci = hcd_to_xhci(hcd);
5289 
5290 	if (!usb_hcd_is_primary_hcd(hcd)) {
5291 		xhci_hcd_init_usb3_data(xhci, hcd);
5292 		return 0;
5293 	}
5294 
5295 	mutex_init(&xhci->mutex);
5296 	xhci->main_hcd = hcd;
5297 	xhci->cap_regs = hcd->regs;
5298 	xhci->op_regs = hcd->regs +
5299 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5300 	xhci->run_regs = hcd->regs +
5301 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5302 	/* Cache read-only capability registers */
5303 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5304 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5305 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5306 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5307 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5308 	if (xhci->hci_version > 0x100)
5309 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5310 
5311 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5312 	if ((!xhci->max_interrupters) ||
5313 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5314 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5315 
5316 	xhci->quirks |= quirks;
5317 
5318 	if (get_quirks)
5319 		get_quirks(dev, xhci);
5320 
5321 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5322 	 * success event after a short transfer. This quirk will ignore such
5323 	 * spurious event.
5324 	 */
5325 	if (xhci->hci_version > 0x96)
5326 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5327 
5328 	if (xhci->hci_version == 0x95 && link_quirk) {
5329 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5330 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5331 	}
5332 
5333 	/* Make sure the HC is halted. */
5334 	retval = xhci_halt(xhci);
5335 	if (retval)
5336 		return retval;
5337 
5338 	xhci_zero_64b_regs(xhci);
5339 
5340 	xhci_dbg(xhci, "Resetting HCD\n");
5341 	/* Reset the internal HC memory state and registers. */
5342 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5343 	if (retval)
5344 		return retval;
5345 	xhci_dbg(xhci, "Reset complete\n");
5346 
5347 	/*
5348 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5349 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5350 	 * address memory pointers actually. So, this driver clears the AC64
5351 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5352 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5353 	 */
5354 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5355 		xhci->hcc_params &= ~BIT(0);
5356 
5357 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5358 	 * if xHC supports 64-bit addressing */
5359 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5360 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5361 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5362 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5363 	} else {
5364 		/*
5365 		 * This is to avoid error in cases where a 32-bit USB
5366 		 * controller is used on a 64-bit capable system.
5367 		 */
5368 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5369 		if (retval)
5370 			return retval;
5371 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5372 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5373 	}
5374 
5375 	xhci_dbg(xhci, "Calling HCD init\n");
5376 	/* Initialize HCD and host controller data structures. */
5377 	retval = xhci_init(hcd);
5378 	if (retval)
5379 		return retval;
5380 	xhci_dbg(xhci, "Called HCD init\n");
5381 
5382 	if (xhci_hcd_is_usb3(hcd))
5383 		xhci_hcd_init_usb3_data(xhci, hcd);
5384 	else
5385 		xhci_hcd_init_usb2_data(xhci, hcd);
5386 
5387 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5388 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5389 
5390 	return 0;
5391 }
5392 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5393 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5394 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5395 		struct usb_host_endpoint *ep)
5396 {
5397 	struct xhci_hcd *xhci;
5398 	struct usb_device *udev;
5399 	unsigned int slot_id;
5400 	unsigned int ep_index;
5401 	unsigned long flags;
5402 
5403 	xhci = hcd_to_xhci(hcd);
5404 
5405 	spin_lock_irqsave(&xhci->lock, flags);
5406 	udev = (struct usb_device *)ep->hcpriv;
5407 	slot_id = udev->slot_id;
5408 	ep_index = xhci_get_endpoint_index(&ep->desc);
5409 
5410 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5411 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5412 	spin_unlock_irqrestore(&xhci->lock, flags);
5413 }
5414 
5415 static const struct hc_driver xhci_hc_driver = {
5416 	.description =		"xhci-hcd",
5417 	.product_desc =		"xHCI Host Controller",
5418 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5419 
5420 	/*
5421 	 * generic hardware linkage
5422 	 */
5423 	.irq =			xhci_irq,
5424 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5425 				HCD_BH,
5426 
5427 	/*
5428 	 * basic lifecycle operations
5429 	 */
5430 	.reset =		NULL, /* set in xhci_init_driver() */
5431 	.start =		xhci_run,
5432 	.stop =			xhci_stop,
5433 	.shutdown =		xhci_shutdown,
5434 
5435 	/*
5436 	 * managing i/o requests and associated device resources
5437 	 */
5438 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5439 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5440 	.urb_enqueue =		xhci_urb_enqueue,
5441 	.urb_dequeue =		xhci_urb_dequeue,
5442 	.alloc_dev =		xhci_alloc_dev,
5443 	.free_dev =		xhci_free_dev,
5444 	.alloc_streams =	xhci_alloc_streams,
5445 	.free_streams =		xhci_free_streams,
5446 	.add_endpoint =		xhci_add_endpoint,
5447 	.drop_endpoint =	xhci_drop_endpoint,
5448 	.endpoint_disable =	xhci_endpoint_disable,
5449 	.endpoint_reset =	xhci_endpoint_reset,
5450 	.check_bandwidth =	xhci_check_bandwidth,
5451 	.reset_bandwidth =	xhci_reset_bandwidth,
5452 	.address_device =	xhci_address_device,
5453 	.enable_device =	xhci_enable_device,
5454 	.update_hub_device =	xhci_update_hub_device,
5455 	.reset_device =		xhci_discover_or_reset_device,
5456 
5457 	/*
5458 	 * scheduling support
5459 	 */
5460 	.get_frame_number =	xhci_get_frame,
5461 
5462 	/*
5463 	 * root hub support
5464 	 */
5465 	.hub_control =		xhci_hub_control,
5466 	.hub_status_data =	xhci_hub_status_data,
5467 	.bus_suspend =		xhci_bus_suspend,
5468 	.bus_resume =		xhci_bus_resume,
5469 	.get_resuming_ports =	xhci_get_resuming_ports,
5470 
5471 	/*
5472 	 * call back when device connected and addressed
5473 	 */
5474 	.update_device =        xhci_update_device,
5475 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5476 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5477 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5478 	.find_raw_port_number =	xhci_find_raw_port_number,
5479 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5480 };
5481 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5482 void xhci_init_driver(struct hc_driver *drv,
5483 		      const struct xhci_driver_overrides *over)
5484 {
5485 	BUG_ON(!over);
5486 
5487 	/* Copy the generic table to drv then apply the overrides */
5488 	*drv = xhci_hc_driver;
5489 
5490 	if (over) {
5491 		drv->hcd_priv_size += over->extra_priv_size;
5492 		if (over->reset)
5493 			drv->reset = over->reset;
5494 		if (over->start)
5495 			drv->start = over->start;
5496 		if (over->add_endpoint)
5497 			drv->add_endpoint = over->add_endpoint;
5498 		if (over->drop_endpoint)
5499 			drv->drop_endpoint = over->drop_endpoint;
5500 		if (over->check_bandwidth)
5501 			drv->check_bandwidth = over->check_bandwidth;
5502 		if (over->reset_bandwidth)
5503 			drv->reset_bandwidth = over->reset_bandwidth;
5504 		if (over->update_hub_device)
5505 			drv->update_hub_device = over->update_hub_device;
5506 		if (over->hub_control)
5507 			drv->hub_control = over->hub_control;
5508 	}
5509 }
5510 EXPORT_SYMBOL_GPL(xhci_init_driver);
5511 
5512 MODULE_DESCRIPTION(DRIVER_DESC);
5513 MODULE_AUTHOR(DRIVER_AUTHOR);
5514 MODULE_LICENSE("GPL");
5515 
xhci_hcd_init(void)5516 static int __init xhci_hcd_init(void)
5517 {
5518 	/*
5519 	 * Check the compiler generated sizes of structures that must be laid
5520 	 * out in specific ways for hardware access.
5521 	 */
5522 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5523 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5524 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5525 	/* xhci_device_control has eight fields, and also
5526 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5527 	 */
5528 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5529 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5530 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5531 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5532 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5533 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5534 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5535 
5536 	if (usb_disabled())
5537 		return -ENODEV;
5538 
5539 	xhci_debugfs_create_root();
5540 	xhci_dbc_init();
5541 
5542 	return 0;
5543 }
5544 
5545 /*
5546  * If an init function is provided, an exit function must also be provided
5547  * to allow module unload.
5548  */
xhci_hcd_fini(void)5549 static void __exit xhci_hcd_fini(void)
5550 {
5551 	xhci_debugfs_remove_root();
5552 	xhci_dbc_exit();
5553 }
5554 
5555 module_init(xhci_hcd_init);
5556 module_exit(xhci_hcd_fini);
5557