1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Cadence MACB/GEM Ethernet Controller driver
4 *
5 * Copyright (C) 2004-2006 Atmel Corporation
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_gpio.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/ip.h>
33 #include <linux/udp.h>
34 #include <linux/tcp.h>
35 #include <linux/iopoll.h>
36 #include <linux/phy/phy.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/ptp_classify.h>
39 #include <linux/reset.h>
40 #include <linux/firmware/xlnx-zynqmp.h>
41 #include <linux/inetdevice.h>
42 #include "macb.h"
43
44 /* This structure is only used for MACB on SiFive FU540 devices */
45 struct sifive_fu540_macb_mgmt {
46 void __iomem *reg;
47 unsigned long rate;
48 struct clk_hw hw;
49 };
50
51 #define MACB_RX_BUFFER_SIZE 128
52 #define RX_BUFFER_MULTIPLE 64 /* bytes */
53
54 #define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */
55 #define MIN_RX_RING_SIZE 64
56 #define MAX_RX_RING_SIZE 8192
57 #define RX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \
58 * (bp)->rx_ring_size)
59
60 #define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */
61 #define MIN_TX_RING_SIZE 64
62 #define MAX_TX_RING_SIZE 4096
63 #define TX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \
64 * (bp)->tx_ring_size)
65
66 /* level of occupied TX descriptors under which we wake up TX process */
67 #define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4)
68
69 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
70 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \
71 | MACB_BIT(ISR_RLE) \
72 | MACB_BIT(TXERR))
73 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP) \
74 | MACB_BIT(TXUBR))
75
76 /* Max length of transmit frame must be a multiple of 8 bytes */
77 #define MACB_TX_LEN_ALIGN 8
78 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
80 * false amba_error in TX path from the DMA assuming there is not enough
81 * space in the SRAM (16KB) even when there is.
82 */
83 #define GEM_MAX_TX_LEN (unsigned int)(0x3FC0)
84
85 #define GEM_MTU_MIN_SIZE ETH_MIN_MTU
86 #define MACB_NETIF_LSO NETIF_F_TSO
87
88 #define MACB_WOL_ENABLED BIT(0)
89
90 #define HS_SPEED_10000M 4
91 #define MACB_SERDES_RATE_10G 1
92
93 /* Graceful stop timeouts in us. We should allow up to
94 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
95 */
96 #define MACB_HALT_TIMEOUT 14000
97 #define MACB_PM_TIMEOUT 100 /* ms */
98
99 #define MACB_MDIO_TIMEOUT 1000000 /* in usecs */
100
101 /* DMA buffer descriptor might be different size
102 * depends on hardware configuration:
103 *
104 * 1. dma address width 32 bits:
105 * word 1: 32 bit address of Data Buffer
106 * word 2: control
107 *
108 * 2. dma address width 64 bits:
109 * word 1: 32 bit address of Data Buffer
110 * word 2: control
111 * word 3: upper 32 bit address of Data Buffer
112 * word 4: unused
113 *
114 * 3. dma address width 32 bits with hardware timestamping:
115 * word 1: 32 bit address of Data Buffer
116 * word 2: control
117 * word 3: timestamp word 1
118 * word 4: timestamp word 2
119 *
120 * 4. dma address width 64 bits with hardware timestamping:
121 * word 1: 32 bit address of Data Buffer
122 * word 2: control
123 * word 3: upper 32 bit address of Data Buffer
124 * word 4: unused
125 * word 5: timestamp word 1
126 * word 6: timestamp word 2
127 */
macb_dma_desc_get_size(struct macb * bp)128 static unsigned int macb_dma_desc_get_size(struct macb *bp)
129 {
130 #ifdef MACB_EXT_DESC
131 unsigned int desc_size;
132
133 switch (bp->hw_dma_cap) {
134 case HW_DMA_CAP_64B:
135 desc_size = sizeof(struct macb_dma_desc)
136 + sizeof(struct macb_dma_desc_64);
137 break;
138 case HW_DMA_CAP_PTP:
139 desc_size = sizeof(struct macb_dma_desc)
140 + sizeof(struct macb_dma_desc_ptp);
141 break;
142 case HW_DMA_CAP_64B_PTP:
143 desc_size = sizeof(struct macb_dma_desc)
144 + sizeof(struct macb_dma_desc_64)
145 + sizeof(struct macb_dma_desc_ptp);
146 break;
147 default:
148 desc_size = sizeof(struct macb_dma_desc);
149 }
150 return desc_size;
151 #endif
152 return sizeof(struct macb_dma_desc);
153 }
154
macb_adj_dma_desc_idx(struct macb * bp,unsigned int desc_idx)155 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
156 {
157 #ifdef MACB_EXT_DESC
158 switch (bp->hw_dma_cap) {
159 case HW_DMA_CAP_64B:
160 case HW_DMA_CAP_PTP:
161 desc_idx <<= 1;
162 break;
163 case HW_DMA_CAP_64B_PTP:
164 desc_idx *= 3;
165 break;
166 default:
167 break;
168 }
169 #endif
170 return desc_idx;
171 }
172
173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
macb_64b_desc(struct macb * bp,struct macb_dma_desc * desc)174 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
175 {
176 return (struct macb_dma_desc_64 *)((void *)desc
177 + sizeof(struct macb_dma_desc));
178 }
179 #endif
180
181 /* Ring buffer accessors */
macb_tx_ring_wrap(struct macb * bp,unsigned int index)182 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
183 {
184 return index & (bp->tx_ring_size - 1);
185 }
186
macb_tx_desc(struct macb_queue * queue,unsigned int index)187 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
188 unsigned int index)
189 {
190 index = macb_tx_ring_wrap(queue->bp, index);
191 index = macb_adj_dma_desc_idx(queue->bp, index);
192 return &queue->tx_ring[index];
193 }
194
macb_tx_skb(struct macb_queue * queue,unsigned int index)195 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
196 unsigned int index)
197 {
198 return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
199 }
200
macb_tx_dma(struct macb_queue * queue,unsigned int index)201 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
202 {
203 dma_addr_t offset;
204
205 offset = macb_tx_ring_wrap(queue->bp, index) *
206 macb_dma_desc_get_size(queue->bp);
207
208 return queue->tx_ring_dma + offset;
209 }
210
macb_rx_ring_wrap(struct macb * bp,unsigned int index)211 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
212 {
213 return index & (bp->rx_ring_size - 1);
214 }
215
macb_rx_desc(struct macb_queue * queue,unsigned int index)216 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
217 {
218 index = macb_rx_ring_wrap(queue->bp, index);
219 index = macb_adj_dma_desc_idx(queue->bp, index);
220 return &queue->rx_ring[index];
221 }
222
macb_rx_buffer(struct macb_queue * queue,unsigned int index)223 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
224 {
225 return queue->rx_buffers + queue->bp->rx_buffer_size *
226 macb_rx_ring_wrap(queue->bp, index);
227 }
228
229 /* I/O accessors */
hw_readl_native(struct macb * bp,int offset)230 static u32 hw_readl_native(struct macb *bp, int offset)
231 {
232 return __raw_readl(bp->regs + offset);
233 }
234
hw_writel_native(struct macb * bp,int offset,u32 value)235 static void hw_writel_native(struct macb *bp, int offset, u32 value)
236 {
237 __raw_writel(value, bp->regs + offset);
238 }
239
hw_readl(struct macb * bp,int offset)240 static u32 hw_readl(struct macb *bp, int offset)
241 {
242 return readl_relaxed(bp->regs + offset);
243 }
244
hw_writel(struct macb * bp,int offset,u32 value)245 static void hw_writel(struct macb *bp, int offset, u32 value)
246 {
247 writel_relaxed(value, bp->regs + offset);
248 }
249
250 /* Find the CPU endianness by using the loopback bit of NCR register. When the
251 * CPU is in big endian we need to program swapped mode for management
252 * descriptor access.
253 */
hw_is_native_io(void __iomem * addr)254 static bool hw_is_native_io(void __iomem *addr)
255 {
256 u32 value = MACB_BIT(LLB);
257
258 __raw_writel(value, addr + MACB_NCR);
259 value = __raw_readl(addr + MACB_NCR);
260
261 /* Write 0 back to disable everything */
262 __raw_writel(0, addr + MACB_NCR);
263
264 return value == MACB_BIT(LLB);
265 }
266
hw_is_gem(void __iomem * addr,bool native_io)267 static bool hw_is_gem(void __iomem *addr, bool native_io)
268 {
269 u32 id;
270
271 if (native_io)
272 id = __raw_readl(addr + MACB_MID);
273 else
274 id = readl_relaxed(addr + MACB_MID);
275
276 return MACB_BFEXT(IDNUM, id) >= 0x2;
277 }
278
macb_set_hwaddr(struct macb * bp)279 static void macb_set_hwaddr(struct macb *bp)
280 {
281 u32 bottom;
282 u16 top;
283
284 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
285 macb_or_gem_writel(bp, SA1B, bottom);
286 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
287 macb_or_gem_writel(bp, SA1T, top);
288
289 if (gem_has_ptp(bp)) {
290 gem_writel(bp, RXPTPUNI, bottom);
291 gem_writel(bp, TXPTPUNI, bottom);
292 }
293
294 /* Clear unused address register sets */
295 macb_or_gem_writel(bp, SA2B, 0);
296 macb_or_gem_writel(bp, SA2T, 0);
297 macb_or_gem_writel(bp, SA3B, 0);
298 macb_or_gem_writel(bp, SA3T, 0);
299 macb_or_gem_writel(bp, SA4B, 0);
300 macb_or_gem_writel(bp, SA4T, 0);
301 }
302
macb_get_hwaddr(struct macb * bp)303 static void macb_get_hwaddr(struct macb *bp)
304 {
305 u32 bottom;
306 u16 top;
307 u8 addr[6];
308 int i;
309
310 /* Check all 4 address register for valid address */
311 for (i = 0; i < 4; i++) {
312 bottom = macb_or_gem_readl(bp, SA1B + i * 8);
313 top = macb_or_gem_readl(bp, SA1T + i * 8);
314
315 addr[0] = bottom & 0xff;
316 addr[1] = (bottom >> 8) & 0xff;
317 addr[2] = (bottom >> 16) & 0xff;
318 addr[3] = (bottom >> 24) & 0xff;
319 addr[4] = top & 0xff;
320 addr[5] = (top >> 8) & 0xff;
321
322 if (is_valid_ether_addr(addr)) {
323 eth_hw_addr_set(bp->dev, addr);
324 return;
325 }
326 }
327
328 dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
329 eth_hw_addr_random(bp->dev);
330 }
331
macb_mdio_wait_for_idle(struct macb * bp)332 static int macb_mdio_wait_for_idle(struct macb *bp)
333 {
334 u32 val;
335
336 return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
337 1, MACB_MDIO_TIMEOUT);
338 }
339
macb_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)340 static int macb_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
341 {
342 struct macb *bp = bus->priv;
343 int status;
344
345 status = pm_runtime_resume_and_get(&bp->pdev->dev);
346 if (status < 0)
347 goto mdio_pm_exit;
348
349 status = macb_mdio_wait_for_idle(bp);
350 if (status < 0)
351 goto mdio_read_exit;
352
353 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
354 | MACB_BF(RW, MACB_MAN_C22_READ)
355 | MACB_BF(PHYA, mii_id)
356 | MACB_BF(REGA, regnum)
357 | MACB_BF(CODE, MACB_MAN_C22_CODE)));
358
359 status = macb_mdio_wait_for_idle(bp);
360 if (status < 0)
361 goto mdio_read_exit;
362
363 status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
364
365 mdio_read_exit:
366 pm_runtime_mark_last_busy(&bp->pdev->dev);
367 pm_runtime_put_autosuspend(&bp->pdev->dev);
368 mdio_pm_exit:
369 return status;
370 }
371
macb_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)372 static int macb_mdio_read_c45(struct mii_bus *bus, int mii_id, int devad,
373 int regnum)
374 {
375 struct macb *bp = bus->priv;
376 int status;
377
378 status = pm_runtime_get_sync(&bp->pdev->dev);
379 if (status < 0) {
380 pm_runtime_put_noidle(&bp->pdev->dev);
381 goto mdio_pm_exit;
382 }
383
384 status = macb_mdio_wait_for_idle(bp);
385 if (status < 0)
386 goto mdio_read_exit;
387
388 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
389 | MACB_BF(RW, MACB_MAN_C45_ADDR)
390 | MACB_BF(PHYA, mii_id)
391 | MACB_BF(REGA, devad & 0x1F)
392 | MACB_BF(DATA, regnum & 0xFFFF)
393 | MACB_BF(CODE, MACB_MAN_C45_CODE)));
394
395 status = macb_mdio_wait_for_idle(bp);
396 if (status < 0)
397 goto mdio_read_exit;
398
399 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
400 | MACB_BF(RW, MACB_MAN_C45_READ)
401 | MACB_BF(PHYA, mii_id)
402 | MACB_BF(REGA, devad & 0x1F)
403 | MACB_BF(CODE, MACB_MAN_C45_CODE)));
404
405 status = macb_mdio_wait_for_idle(bp);
406 if (status < 0)
407 goto mdio_read_exit;
408
409 status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
410
411 mdio_read_exit:
412 pm_runtime_mark_last_busy(&bp->pdev->dev);
413 pm_runtime_put_autosuspend(&bp->pdev->dev);
414 mdio_pm_exit:
415 return status;
416 }
417
macb_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)418 static int macb_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
419 u16 value)
420 {
421 struct macb *bp = bus->priv;
422 int status;
423
424 status = pm_runtime_resume_and_get(&bp->pdev->dev);
425 if (status < 0)
426 goto mdio_pm_exit;
427
428 status = macb_mdio_wait_for_idle(bp);
429 if (status < 0)
430 goto mdio_write_exit;
431
432 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
433 | MACB_BF(RW, MACB_MAN_C22_WRITE)
434 | MACB_BF(PHYA, mii_id)
435 | MACB_BF(REGA, regnum)
436 | MACB_BF(CODE, MACB_MAN_C22_CODE)
437 | MACB_BF(DATA, value)));
438
439 status = macb_mdio_wait_for_idle(bp);
440 if (status < 0)
441 goto mdio_write_exit;
442
443 mdio_write_exit:
444 pm_runtime_mark_last_busy(&bp->pdev->dev);
445 pm_runtime_put_autosuspend(&bp->pdev->dev);
446 mdio_pm_exit:
447 return status;
448 }
449
macb_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)450 static int macb_mdio_write_c45(struct mii_bus *bus, int mii_id,
451 int devad, int regnum,
452 u16 value)
453 {
454 struct macb *bp = bus->priv;
455 int status;
456
457 status = pm_runtime_get_sync(&bp->pdev->dev);
458 if (status < 0) {
459 pm_runtime_put_noidle(&bp->pdev->dev);
460 goto mdio_pm_exit;
461 }
462
463 status = macb_mdio_wait_for_idle(bp);
464 if (status < 0)
465 goto mdio_write_exit;
466
467 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
468 | MACB_BF(RW, MACB_MAN_C45_ADDR)
469 | MACB_BF(PHYA, mii_id)
470 | MACB_BF(REGA, devad & 0x1F)
471 | MACB_BF(DATA, regnum & 0xFFFF)
472 | MACB_BF(CODE, MACB_MAN_C45_CODE)));
473
474 status = macb_mdio_wait_for_idle(bp);
475 if (status < 0)
476 goto mdio_write_exit;
477
478 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
479 | MACB_BF(RW, MACB_MAN_C45_WRITE)
480 | MACB_BF(PHYA, mii_id)
481 | MACB_BF(REGA, devad & 0x1F)
482 | MACB_BF(CODE, MACB_MAN_C45_CODE)
483 | MACB_BF(DATA, value)));
484
485 status = macb_mdio_wait_for_idle(bp);
486 if (status < 0)
487 goto mdio_write_exit;
488
489 mdio_write_exit:
490 pm_runtime_mark_last_busy(&bp->pdev->dev);
491 pm_runtime_put_autosuspend(&bp->pdev->dev);
492 mdio_pm_exit:
493 return status;
494 }
495
macb_init_buffers(struct macb * bp)496 static void macb_init_buffers(struct macb *bp)
497 {
498 struct macb_queue *queue;
499 unsigned int q;
500
501 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
502 queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
503 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
504 if (bp->hw_dma_cap & HW_DMA_CAP_64B)
505 queue_writel(queue, RBQPH,
506 upper_32_bits(queue->rx_ring_dma));
507 #endif
508 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
509 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
510 if (bp->hw_dma_cap & HW_DMA_CAP_64B)
511 queue_writel(queue, TBQPH,
512 upper_32_bits(queue->tx_ring_dma));
513 #endif
514 }
515 }
516
517 /**
518 * macb_set_tx_clk() - Set a clock to a new frequency
519 * @bp: pointer to struct macb
520 * @speed: New frequency in Hz
521 */
macb_set_tx_clk(struct macb * bp,int speed)522 static void macb_set_tx_clk(struct macb *bp, int speed)
523 {
524 long ferr, rate, rate_rounded;
525
526 if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
527 return;
528
529 /* In case of MII the PHY is the clock master */
530 if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
531 return;
532
533 rate = rgmii_clock(speed);
534 if (rate < 0)
535 return;
536
537 rate_rounded = clk_round_rate(bp->tx_clk, rate);
538 if (rate_rounded < 0)
539 return;
540
541 /* RGMII allows 50 ppm frequency error. Test and warn if this limit
542 * is not satisfied.
543 */
544 ferr = abs(rate_rounded - rate);
545 ferr = DIV_ROUND_UP(ferr, rate / 100000);
546 if (ferr > 5)
547 netdev_warn(bp->dev,
548 "unable to generate target frequency: %ld Hz\n",
549 rate);
550
551 if (clk_set_rate(bp->tx_clk, rate_rounded))
552 netdev_err(bp->dev, "adjusting tx_clk failed.\n");
553 }
554
macb_usx_pcs_link_up(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,int speed,int duplex)555 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int neg_mode,
556 phy_interface_t interface, int speed,
557 int duplex)
558 {
559 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
560 u32 config;
561
562 config = gem_readl(bp, USX_CONTROL);
563 config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
564 config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
565 config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
566 config |= GEM_BIT(TX_EN);
567 gem_writel(bp, USX_CONTROL, config);
568 }
569
macb_usx_pcs_get_state(struct phylink_pcs * pcs,unsigned int neg_mode,struct phylink_link_state * state)570 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
571 unsigned int neg_mode,
572 struct phylink_link_state *state)
573 {
574 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
575 u32 val;
576
577 state->speed = SPEED_10000;
578 state->duplex = 1;
579 state->an_complete = 1;
580
581 val = gem_readl(bp, USX_STATUS);
582 state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
583 val = gem_readl(bp, NCFGR);
584 if (val & GEM_BIT(PAE))
585 state->pause = MLO_PAUSE_RX;
586 }
587
macb_usx_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)588 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
589 unsigned int neg_mode,
590 phy_interface_t interface,
591 const unsigned long *advertising,
592 bool permit_pause_to_mac)
593 {
594 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
595
596 gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
597 GEM_BIT(SIGNAL_OK));
598
599 return 0;
600 }
601
macb_pcs_get_state(struct phylink_pcs * pcs,unsigned int neg_mode,struct phylink_link_state * state)602 static void macb_pcs_get_state(struct phylink_pcs *pcs, unsigned int neg_mode,
603 struct phylink_link_state *state)
604 {
605 state->link = 0;
606 }
607
macb_pcs_an_restart(struct phylink_pcs * pcs)608 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
609 {
610 /* Not supported */
611 }
612
macb_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)613 static int macb_pcs_config(struct phylink_pcs *pcs,
614 unsigned int neg_mode,
615 phy_interface_t interface,
616 const unsigned long *advertising,
617 bool permit_pause_to_mac)
618 {
619 return 0;
620 }
621
622 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
623 .pcs_get_state = macb_usx_pcs_get_state,
624 .pcs_config = macb_usx_pcs_config,
625 .pcs_link_up = macb_usx_pcs_link_up,
626 };
627
628 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
629 .pcs_get_state = macb_pcs_get_state,
630 .pcs_an_restart = macb_pcs_an_restart,
631 .pcs_config = macb_pcs_config,
632 };
633
macb_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)634 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
635 const struct phylink_link_state *state)
636 {
637 struct net_device *ndev = to_net_dev(config->dev);
638 struct macb *bp = netdev_priv(ndev);
639 unsigned long flags;
640 u32 old_ctrl, ctrl;
641 u32 old_ncr, ncr;
642
643 spin_lock_irqsave(&bp->lock, flags);
644
645 old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
646 old_ncr = ncr = macb_or_gem_readl(bp, NCR);
647
648 if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
649 if (state->interface == PHY_INTERFACE_MODE_RMII)
650 ctrl |= MACB_BIT(RM9200_RMII);
651 } else if (macb_is_gem(bp)) {
652 ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
653 ncr &= ~GEM_BIT(ENABLE_HS_MAC);
654
655 if (state->interface == PHY_INTERFACE_MODE_SGMII) {
656 ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
657 } else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
658 ctrl |= GEM_BIT(PCSSEL);
659 ncr |= GEM_BIT(ENABLE_HS_MAC);
660 } else if (bp->caps & MACB_CAPS_MIIONRGMII &&
661 bp->phy_interface == PHY_INTERFACE_MODE_MII) {
662 ncr |= MACB_BIT(MIIONRGMII);
663 }
664 }
665
666 /* Apply the new configuration, if any */
667 if (old_ctrl ^ ctrl)
668 macb_or_gem_writel(bp, NCFGR, ctrl);
669
670 if (old_ncr ^ ncr)
671 macb_or_gem_writel(bp, NCR, ncr);
672
673 /* Disable AN for SGMII fixed link configuration, enable otherwise.
674 * Must be written after PCSSEL is set in NCFGR,
675 * otherwise writes will not take effect.
676 */
677 if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
678 u32 pcsctrl, old_pcsctrl;
679
680 old_pcsctrl = gem_readl(bp, PCSCNTRL);
681 if (mode == MLO_AN_FIXED)
682 pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
683 else
684 pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
685 if (old_pcsctrl != pcsctrl)
686 gem_writel(bp, PCSCNTRL, pcsctrl);
687 }
688
689 spin_unlock_irqrestore(&bp->lock, flags);
690 }
691
macb_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)692 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
693 phy_interface_t interface)
694 {
695 struct net_device *ndev = to_net_dev(config->dev);
696 struct macb *bp = netdev_priv(ndev);
697 struct macb_queue *queue;
698 unsigned int q;
699 u32 ctrl;
700
701 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
702 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
703 queue_writel(queue, IDR,
704 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
705
706 /* Disable Rx and Tx */
707 ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
708 macb_writel(bp, NCR, ctrl);
709
710 netif_tx_stop_all_queues(ndev);
711 }
712
macb_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)713 static void macb_mac_link_up(struct phylink_config *config,
714 struct phy_device *phy,
715 unsigned int mode, phy_interface_t interface,
716 int speed, int duplex,
717 bool tx_pause, bool rx_pause)
718 {
719 struct net_device *ndev = to_net_dev(config->dev);
720 struct macb *bp = netdev_priv(ndev);
721 struct macb_queue *queue;
722 unsigned long flags;
723 unsigned int q;
724 u32 ctrl;
725
726 spin_lock_irqsave(&bp->lock, flags);
727
728 ctrl = macb_or_gem_readl(bp, NCFGR);
729
730 ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
731
732 if (speed == SPEED_100)
733 ctrl |= MACB_BIT(SPD);
734
735 if (duplex)
736 ctrl |= MACB_BIT(FD);
737
738 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
739 ctrl &= ~MACB_BIT(PAE);
740 if (macb_is_gem(bp)) {
741 ctrl &= ~GEM_BIT(GBE);
742
743 if (speed == SPEED_1000)
744 ctrl |= GEM_BIT(GBE);
745 }
746
747 if (rx_pause)
748 ctrl |= MACB_BIT(PAE);
749
750 /* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
751 * cleared the pipeline and control registers.
752 */
753 bp->macbgem_ops.mog_init_rings(bp);
754 macb_init_buffers(bp);
755
756 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
757 queue_writel(queue, IER,
758 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
759 }
760
761 macb_or_gem_writel(bp, NCFGR, ctrl);
762
763 if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
764 gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
765 gem_readl(bp, HS_MAC_CONFIG)));
766
767 spin_unlock_irqrestore(&bp->lock, flags);
768
769 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
770 macb_set_tx_clk(bp, speed);
771
772 /* Enable Rx and Tx; Enable PTP unicast */
773 ctrl = macb_readl(bp, NCR);
774 if (gem_has_ptp(bp))
775 ctrl |= MACB_BIT(PTPUNI);
776
777 macb_writel(bp, NCR, ctrl | MACB_BIT(RE) | MACB_BIT(TE));
778
779 netif_tx_wake_all_queues(ndev);
780 }
781
macb_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)782 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
783 phy_interface_t interface)
784 {
785 struct net_device *ndev = to_net_dev(config->dev);
786 struct macb *bp = netdev_priv(ndev);
787
788 if (interface == PHY_INTERFACE_MODE_10GBASER)
789 return &bp->phylink_usx_pcs;
790 else if (interface == PHY_INTERFACE_MODE_SGMII)
791 return &bp->phylink_sgmii_pcs;
792 else
793 return NULL;
794 }
795
796 static const struct phylink_mac_ops macb_phylink_ops = {
797 .mac_select_pcs = macb_mac_select_pcs,
798 .mac_config = macb_mac_config,
799 .mac_link_down = macb_mac_link_down,
800 .mac_link_up = macb_mac_link_up,
801 };
802
macb_phy_handle_exists(struct device_node * dn)803 static bool macb_phy_handle_exists(struct device_node *dn)
804 {
805 dn = of_parse_phandle(dn, "phy-handle", 0);
806 of_node_put(dn);
807 return dn != NULL;
808 }
809
macb_phylink_connect(struct macb * bp)810 static int macb_phylink_connect(struct macb *bp)
811 {
812 struct device_node *dn = bp->pdev->dev.of_node;
813 struct net_device *dev = bp->dev;
814 struct phy_device *phydev;
815 int ret;
816
817 if (dn)
818 ret = phylink_of_phy_connect(bp->phylink, dn, 0);
819
820 if (!dn || (ret && !macb_phy_handle_exists(dn))) {
821 phydev = phy_find_first(bp->mii_bus);
822 if (!phydev) {
823 netdev_err(dev, "no PHY found\n");
824 return -ENXIO;
825 }
826
827 /* attach the mac to the phy */
828 ret = phylink_connect_phy(bp->phylink, phydev);
829 }
830
831 if (ret) {
832 netdev_err(dev, "Could not attach PHY (%d)\n", ret);
833 return ret;
834 }
835
836 phylink_start(bp->phylink);
837
838 return 0;
839 }
840
macb_get_pcs_fixed_state(struct phylink_config * config,struct phylink_link_state * state)841 static void macb_get_pcs_fixed_state(struct phylink_config *config,
842 struct phylink_link_state *state)
843 {
844 struct net_device *ndev = to_net_dev(config->dev);
845 struct macb *bp = netdev_priv(ndev);
846
847 state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
848 }
849
850 /* based on au1000_eth. c*/
macb_mii_probe(struct net_device * dev)851 static int macb_mii_probe(struct net_device *dev)
852 {
853 struct macb *bp = netdev_priv(dev);
854
855 bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
856 bp->phylink_sgmii_pcs.neg_mode = true;
857 bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
858 bp->phylink_usx_pcs.neg_mode = true;
859
860 bp->phylink_config.dev = &dev->dev;
861 bp->phylink_config.type = PHYLINK_NETDEV;
862 bp->phylink_config.mac_managed_pm = true;
863
864 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
865 bp->phylink_config.poll_fixed_state = true;
866 bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
867 }
868
869 bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
870 MAC_10 | MAC_100;
871
872 __set_bit(PHY_INTERFACE_MODE_MII,
873 bp->phylink_config.supported_interfaces);
874 __set_bit(PHY_INTERFACE_MODE_RMII,
875 bp->phylink_config.supported_interfaces);
876
877 /* Determine what modes are supported */
878 if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
879 bp->phylink_config.mac_capabilities |= MAC_1000FD;
880 if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
881 bp->phylink_config.mac_capabilities |= MAC_1000HD;
882
883 __set_bit(PHY_INTERFACE_MODE_GMII,
884 bp->phylink_config.supported_interfaces);
885 phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
886
887 if (bp->caps & MACB_CAPS_PCS)
888 __set_bit(PHY_INTERFACE_MODE_SGMII,
889 bp->phylink_config.supported_interfaces);
890
891 if (bp->caps & MACB_CAPS_HIGH_SPEED) {
892 __set_bit(PHY_INTERFACE_MODE_10GBASER,
893 bp->phylink_config.supported_interfaces);
894 bp->phylink_config.mac_capabilities |= MAC_10000FD;
895 }
896 }
897
898 bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
899 bp->phy_interface, &macb_phylink_ops);
900 if (IS_ERR(bp->phylink)) {
901 netdev_err(dev, "Could not create a phylink instance (%ld)\n",
902 PTR_ERR(bp->phylink));
903 return PTR_ERR(bp->phylink);
904 }
905
906 return 0;
907 }
908
macb_mdiobus_register(struct macb * bp,struct device_node * mdio_np)909 static int macb_mdiobus_register(struct macb *bp, struct device_node *mdio_np)
910 {
911 struct device_node *child, *np = bp->pdev->dev.of_node;
912
913 /* If we have a child named mdio, probe it instead of looking for PHYs
914 * directly under the MAC node
915 */
916 if (mdio_np)
917 return of_mdiobus_register(bp->mii_bus, mdio_np);
918
919 /* Only create the PHY from the device tree if at least one PHY is
920 * described. Otherwise scan the entire MDIO bus. We do this to support
921 * old device tree that did not follow the best practices and did not
922 * describe their network PHYs.
923 */
924 for_each_available_child_of_node(np, child)
925 if (of_mdiobus_child_is_phy(child)) {
926 /* The loop increments the child refcount,
927 * decrement it before returning.
928 */
929 of_node_put(child);
930
931 return of_mdiobus_register(bp->mii_bus, np);
932 }
933
934 return mdiobus_register(bp->mii_bus);
935 }
936
macb_mii_init(struct macb * bp)937 static int macb_mii_init(struct macb *bp)
938 {
939 struct device_node *mdio_np, *np = bp->pdev->dev.of_node;
940 int err = -ENXIO;
941
942 /* With fixed-link, we don't need to register the MDIO bus,
943 * except if we have a child named "mdio" in the device tree.
944 * In that case, some devices may be attached to the MACB's MDIO bus.
945 */
946 mdio_np = of_get_child_by_name(np, "mdio");
947 if (!mdio_np && of_phy_is_fixed_link(np))
948 return macb_mii_probe(bp->dev);
949
950 /* Enable management port */
951 macb_writel(bp, NCR, MACB_BIT(MPE));
952
953 bp->mii_bus = mdiobus_alloc();
954 if (!bp->mii_bus) {
955 err = -ENOMEM;
956 goto err_out;
957 }
958
959 bp->mii_bus->name = "MACB_mii_bus";
960 bp->mii_bus->read = &macb_mdio_read_c22;
961 bp->mii_bus->write = &macb_mdio_write_c22;
962 bp->mii_bus->read_c45 = &macb_mdio_read_c45;
963 bp->mii_bus->write_c45 = &macb_mdio_write_c45;
964 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
965 bp->pdev->name, bp->pdev->id);
966 bp->mii_bus->priv = bp;
967 bp->mii_bus->parent = &bp->pdev->dev;
968
969 dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
970
971 err = macb_mdiobus_register(bp, mdio_np);
972 if (err)
973 goto err_out_free_mdiobus;
974
975 err = macb_mii_probe(bp->dev);
976 if (err)
977 goto err_out_unregister_bus;
978
979 return 0;
980
981 err_out_unregister_bus:
982 mdiobus_unregister(bp->mii_bus);
983 err_out_free_mdiobus:
984 mdiobus_free(bp->mii_bus);
985 err_out:
986 of_node_put(mdio_np);
987
988 return err;
989 }
990
macb_update_stats(struct macb * bp)991 static void macb_update_stats(struct macb *bp)
992 {
993 u32 *p = &bp->hw_stats.macb.rx_pause_frames;
994 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
995 int offset = MACB_PFR;
996
997 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
998
999 for (; p < end; p++, offset += 4)
1000 *p += bp->macb_reg_readl(bp, offset);
1001 }
1002
macb_halt_tx(struct macb * bp)1003 static int macb_halt_tx(struct macb *bp)
1004 {
1005 unsigned long halt_time, timeout;
1006 u32 status;
1007
1008 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
1009
1010 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
1011 do {
1012 halt_time = jiffies;
1013 status = macb_readl(bp, TSR);
1014 if (!(status & MACB_BIT(TGO)))
1015 return 0;
1016
1017 udelay(250);
1018 } while (time_before(halt_time, timeout));
1019
1020 return -ETIMEDOUT;
1021 }
1022
macb_tx_unmap(struct macb * bp,struct macb_tx_skb * tx_skb,int budget)1023 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
1024 {
1025 if (tx_skb->mapping) {
1026 if (tx_skb->mapped_as_page)
1027 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
1028 tx_skb->size, DMA_TO_DEVICE);
1029 else
1030 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
1031 tx_skb->size, DMA_TO_DEVICE);
1032 tx_skb->mapping = 0;
1033 }
1034
1035 if (tx_skb->skb) {
1036 napi_consume_skb(tx_skb->skb, budget);
1037 tx_skb->skb = NULL;
1038 }
1039 }
1040
macb_set_addr(struct macb * bp,struct macb_dma_desc * desc,dma_addr_t addr)1041 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
1042 {
1043 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1044 struct macb_dma_desc_64 *desc_64;
1045
1046 if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1047 desc_64 = macb_64b_desc(bp, desc);
1048 desc_64->addrh = upper_32_bits(addr);
1049 /* The low bits of RX address contain the RX_USED bit, clearing
1050 * of which allows packet RX. Make sure the high bits are also
1051 * visible to HW at that point.
1052 */
1053 dma_wmb();
1054 }
1055 #endif
1056 desc->addr = lower_32_bits(addr);
1057 }
1058
macb_get_addr(struct macb * bp,struct macb_dma_desc * desc)1059 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
1060 {
1061 dma_addr_t addr = 0;
1062 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1063 struct macb_dma_desc_64 *desc_64;
1064
1065 if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1066 desc_64 = macb_64b_desc(bp, desc);
1067 addr = ((u64)(desc_64->addrh) << 32);
1068 }
1069 #endif
1070 addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1071 #ifdef CONFIG_MACB_USE_HWSTAMP
1072 if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
1073 addr &= ~GEM_BIT(DMA_RXVALID);
1074 #endif
1075 return addr;
1076 }
1077
macb_tx_error_task(struct work_struct * work)1078 static void macb_tx_error_task(struct work_struct *work)
1079 {
1080 struct macb_queue *queue = container_of(work, struct macb_queue,
1081 tx_error_task);
1082 bool halt_timeout = false;
1083 struct macb *bp = queue->bp;
1084 struct macb_tx_skb *tx_skb;
1085 struct macb_dma_desc *desc;
1086 struct sk_buff *skb;
1087 unsigned int tail;
1088 unsigned long flags;
1089
1090 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1091 (unsigned int)(queue - bp->queues),
1092 queue->tx_tail, queue->tx_head);
1093
1094 /* Prevent the queue NAPI TX poll from running, as it calls
1095 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1096 * As explained below, we have to halt the transmission before updating
1097 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1098 * network engine about the macb/gem being halted.
1099 */
1100 napi_disable(&queue->napi_tx);
1101 spin_lock_irqsave(&bp->lock, flags);
1102
1103 /* Make sure nobody is trying to queue up new packets */
1104 netif_tx_stop_all_queues(bp->dev);
1105
1106 /* Stop transmission now
1107 * (in case we have just queued new packets)
1108 * macb/gem must be halted to write TBQP register
1109 */
1110 if (macb_halt_tx(bp)) {
1111 netdev_err(bp->dev, "BUG: halt tx timed out\n");
1112 macb_writel(bp, NCR, macb_readl(bp, NCR) & (~MACB_BIT(TE)));
1113 halt_timeout = true;
1114 }
1115
1116 /* Treat frames in TX queue including the ones that caused the error.
1117 * Free transmit buffers in upper layer.
1118 */
1119 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1120 u32 ctrl;
1121
1122 desc = macb_tx_desc(queue, tail);
1123 ctrl = desc->ctrl;
1124 tx_skb = macb_tx_skb(queue, tail);
1125 skb = tx_skb->skb;
1126
1127 if (ctrl & MACB_BIT(TX_USED)) {
1128 /* skb is set for the last buffer of the frame */
1129 while (!skb) {
1130 macb_tx_unmap(bp, tx_skb, 0);
1131 tail++;
1132 tx_skb = macb_tx_skb(queue, tail);
1133 skb = tx_skb->skb;
1134 }
1135
1136 /* ctrl still refers to the first buffer descriptor
1137 * since it's the only one written back by the hardware
1138 */
1139 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1140 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1141 macb_tx_ring_wrap(bp, tail),
1142 skb->data);
1143 bp->dev->stats.tx_packets++;
1144 queue->stats.tx_packets++;
1145 bp->dev->stats.tx_bytes += skb->len;
1146 queue->stats.tx_bytes += skb->len;
1147 }
1148 } else {
1149 /* "Buffers exhausted mid-frame" errors may only happen
1150 * if the driver is buggy, so complain loudly about
1151 * those. Statistics are updated by hardware.
1152 */
1153 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1154 netdev_err(bp->dev,
1155 "BUG: TX buffers exhausted mid-frame\n");
1156
1157 desc->ctrl = ctrl | MACB_BIT(TX_USED);
1158 }
1159
1160 macb_tx_unmap(bp, tx_skb, 0);
1161 }
1162
1163 /* Set end of TX queue */
1164 desc = macb_tx_desc(queue, 0);
1165 macb_set_addr(bp, desc, 0);
1166 desc->ctrl = MACB_BIT(TX_USED);
1167
1168 /* Make descriptor updates visible to hardware */
1169 wmb();
1170
1171 /* Reinitialize the TX desc queue */
1172 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1174 if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1175 queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1176 #endif
1177 /* Make TX ring reflect state of hardware */
1178 queue->tx_head = 0;
1179 queue->tx_tail = 0;
1180
1181 /* Housework before enabling TX IRQ */
1182 macb_writel(bp, TSR, macb_readl(bp, TSR));
1183 queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1184
1185 if (halt_timeout)
1186 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TE));
1187
1188 /* Now we are ready to start transmission again */
1189 netif_tx_start_all_queues(bp->dev);
1190 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1191
1192 spin_unlock_irqrestore(&bp->lock, flags);
1193 napi_enable(&queue->napi_tx);
1194 }
1195
ptp_one_step_sync(struct sk_buff * skb)1196 static bool ptp_one_step_sync(struct sk_buff *skb)
1197 {
1198 struct ptp_header *hdr;
1199 unsigned int ptp_class;
1200 u8 msgtype;
1201
1202 /* No need to parse packet if PTP TS is not involved */
1203 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1204 goto not_oss;
1205
1206 /* Identify and return whether PTP one step sync is being processed */
1207 ptp_class = ptp_classify_raw(skb);
1208 if (ptp_class == PTP_CLASS_NONE)
1209 goto not_oss;
1210
1211 hdr = ptp_parse_header(skb, ptp_class);
1212 if (!hdr)
1213 goto not_oss;
1214
1215 if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP)
1216 goto not_oss;
1217
1218 msgtype = ptp_get_msgtype(hdr, ptp_class);
1219 if (msgtype == PTP_MSGTYPE_SYNC)
1220 return true;
1221
1222 not_oss:
1223 return false;
1224 }
1225
macb_tx_complete(struct macb_queue * queue,int budget)1226 static int macb_tx_complete(struct macb_queue *queue, int budget)
1227 {
1228 struct macb *bp = queue->bp;
1229 u16 queue_index = queue - bp->queues;
1230 unsigned int tail;
1231 unsigned int head;
1232 int packets = 0;
1233
1234 spin_lock(&queue->tx_ptr_lock);
1235 head = queue->tx_head;
1236 for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1237 struct macb_tx_skb *tx_skb;
1238 struct sk_buff *skb;
1239 struct macb_dma_desc *desc;
1240 u32 ctrl;
1241
1242 desc = macb_tx_desc(queue, tail);
1243
1244 /* Make hw descriptor updates visible to CPU */
1245 rmb();
1246
1247 ctrl = desc->ctrl;
1248
1249 /* TX_USED bit is only set by hardware on the very first buffer
1250 * descriptor of the transmitted frame.
1251 */
1252 if (!(ctrl & MACB_BIT(TX_USED)))
1253 break;
1254
1255 /* Process all buffers of the current transmitted frame */
1256 for (;; tail++) {
1257 tx_skb = macb_tx_skb(queue, tail);
1258 skb = tx_skb->skb;
1259
1260 /* First, update TX stats if needed */
1261 if (skb) {
1262 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1263 !ptp_one_step_sync(skb))
1264 gem_ptp_do_txstamp(bp, skb, desc);
1265
1266 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1267 macb_tx_ring_wrap(bp, tail),
1268 skb->data);
1269 bp->dev->stats.tx_packets++;
1270 queue->stats.tx_packets++;
1271 bp->dev->stats.tx_bytes += skb->len;
1272 queue->stats.tx_bytes += skb->len;
1273 packets++;
1274 }
1275
1276 /* Now we can safely release resources */
1277 macb_tx_unmap(bp, tx_skb, budget);
1278
1279 /* skb is set only for the last buffer of the frame.
1280 * WARNING: at this point skb has been freed by
1281 * macb_tx_unmap().
1282 */
1283 if (skb)
1284 break;
1285 }
1286 }
1287
1288 queue->tx_tail = tail;
1289 if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1290 CIRC_CNT(queue->tx_head, queue->tx_tail,
1291 bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1292 netif_wake_subqueue(bp->dev, queue_index);
1293 spin_unlock(&queue->tx_ptr_lock);
1294
1295 return packets;
1296 }
1297
gem_rx_refill(struct macb_queue * queue)1298 static void gem_rx_refill(struct macb_queue *queue)
1299 {
1300 unsigned int entry;
1301 struct sk_buff *skb;
1302 dma_addr_t paddr;
1303 struct macb *bp = queue->bp;
1304 struct macb_dma_desc *desc;
1305
1306 while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1307 bp->rx_ring_size) > 0) {
1308 entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1309
1310 /* Make hw descriptor updates visible to CPU */
1311 rmb();
1312
1313 desc = macb_rx_desc(queue, entry);
1314
1315 if (!queue->rx_skbuff[entry]) {
1316 /* allocate sk_buff for this free entry in ring */
1317 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1318 if (unlikely(!skb)) {
1319 netdev_err(bp->dev,
1320 "Unable to allocate sk_buff\n");
1321 break;
1322 }
1323
1324 /* now fill corresponding descriptor entry */
1325 paddr = dma_map_single(&bp->pdev->dev, skb->data,
1326 bp->rx_buffer_size,
1327 DMA_FROM_DEVICE);
1328 if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1329 dev_kfree_skb(skb);
1330 break;
1331 }
1332
1333 queue->rx_skbuff[entry] = skb;
1334
1335 if (entry == bp->rx_ring_size - 1)
1336 paddr |= MACB_BIT(RX_WRAP);
1337 desc->ctrl = 0;
1338 /* Setting addr clears RX_USED and allows reception,
1339 * make sure ctrl is cleared first to avoid a race.
1340 */
1341 dma_wmb();
1342 macb_set_addr(bp, desc, paddr);
1343
1344 /* properly align Ethernet header */
1345 skb_reserve(skb, NET_IP_ALIGN);
1346 } else {
1347 desc->ctrl = 0;
1348 dma_wmb();
1349 desc->addr &= ~MACB_BIT(RX_USED);
1350 }
1351 queue->rx_prepared_head++;
1352 }
1353
1354 /* Make descriptor updates visible to hardware */
1355 wmb();
1356
1357 netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1358 queue, queue->rx_prepared_head, queue->rx_tail);
1359 }
1360
1361 /* Mark DMA descriptors from begin up to and not including end as unused */
discard_partial_frame(struct macb_queue * queue,unsigned int begin,unsigned int end)1362 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1363 unsigned int end)
1364 {
1365 unsigned int frag;
1366
1367 for (frag = begin; frag != end; frag++) {
1368 struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1369
1370 desc->addr &= ~MACB_BIT(RX_USED);
1371 }
1372
1373 /* Make descriptor updates visible to hardware */
1374 wmb();
1375
1376 /* When this happens, the hardware stats registers for
1377 * whatever caused this is updated, so we don't have to record
1378 * anything.
1379 */
1380 }
1381
gem_rx(struct macb_queue * queue,struct napi_struct * napi,int budget)1382 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1383 int budget)
1384 {
1385 struct macb *bp = queue->bp;
1386 unsigned int len;
1387 unsigned int entry;
1388 struct sk_buff *skb;
1389 struct macb_dma_desc *desc;
1390 int count = 0;
1391
1392 while (count < budget) {
1393 u32 ctrl;
1394 dma_addr_t addr;
1395 bool rxused;
1396
1397 entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1398 desc = macb_rx_desc(queue, entry);
1399
1400 /* Make hw descriptor updates visible to CPU */
1401 rmb();
1402
1403 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1404 addr = macb_get_addr(bp, desc);
1405
1406 if (!rxused)
1407 break;
1408
1409 /* Ensure ctrl is at least as up-to-date as rxused */
1410 dma_rmb();
1411
1412 ctrl = desc->ctrl;
1413
1414 queue->rx_tail++;
1415 count++;
1416
1417 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1418 netdev_err(bp->dev,
1419 "not whole frame pointed by descriptor\n");
1420 bp->dev->stats.rx_dropped++;
1421 queue->stats.rx_dropped++;
1422 break;
1423 }
1424 skb = queue->rx_skbuff[entry];
1425 if (unlikely(!skb)) {
1426 netdev_err(bp->dev,
1427 "inconsistent Rx descriptor chain\n");
1428 bp->dev->stats.rx_dropped++;
1429 queue->stats.rx_dropped++;
1430 break;
1431 }
1432 /* now everything is ready for receiving packet */
1433 queue->rx_skbuff[entry] = NULL;
1434 len = ctrl & bp->rx_frm_len_mask;
1435
1436 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1437
1438 skb_put(skb, len);
1439 dma_unmap_single(&bp->pdev->dev, addr,
1440 bp->rx_buffer_size, DMA_FROM_DEVICE);
1441
1442 skb->protocol = eth_type_trans(skb, bp->dev);
1443 skb_checksum_none_assert(skb);
1444 if (bp->dev->features & NETIF_F_RXCSUM &&
1445 !(bp->dev->flags & IFF_PROMISC) &&
1446 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1447 skb->ip_summed = CHECKSUM_UNNECESSARY;
1448
1449 bp->dev->stats.rx_packets++;
1450 queue->stats.rx_packets++;
1451 bp->dev->stats.rx_bytes += skb->len;
1452 queue->stats.rx_bytes += skb->len;
1453
1454 gem_ptp_do_rxstamp(bp, skb, desc);
1455
1456 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1457 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1458 skb->len, skb->csum);
1459 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1460 skb_mac_header(skb), 16, true);
1461 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1462 skb->data, 32, true);
1463 #endif
1464
1465 napi_gro_receive(napi, skb);
1466 }
1467
1468 gem_rx_refill(queue);
1469
1470 return count;
1471 }
1472
macb_rx_frame(struct macb_queue * queue,struct napi_struct * napi,unsigned int first_frag,unsigned int last_frag)1473 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1474 unsigned int first_frag, unsigned int last_frag)
1475 {
1476 unsigned int len;
1477 unsigned int frag;
1478 unsigned int offset;
1479 struct sk_buff *skb;
1480 struct macb_dma_desc *desc;
1481 struct macb *bp = queue->bp;
1482
1483 desc = macb_rx_desc(queue, last_frag);
1484 len = desc->ctrl & bp->rx_frm_len_mask;
1485
1486 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1487 macb_rx_ring_wrap(bp, first_frag),
1488 macb_rx_ring_wrap(bp, last_frag), len);
1489
1490 /* The ethernet header starts NET_IP_ALIGN bytes into the
1491 * first buffer. Since the header is 14 bytes, this makes the
1492 * payload word-aligned.
1493 *
1494 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1495 * the two padding bytes into the skb so that we avoid hitting
1496 * the slowpath in memcpy(), and pull them off afterwards.
1497 */
1498 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1499 if (!skb) {
1500 bp->dev->stats.rx_dropped++;
1501 for (frag = first_frag; ; frag++) {
1502 desc = macb_rx_desc(queue, frag);
1503 desc->addr &= ~MACB_BIT(RX_USED);
1504 if (frag == last_frag)
1505 break;
1506 }
1507
1508 /* Make descriptor updates visible to hardware */
1509 wmb();
1510
1511 return 1;
1512 }
1513
1514 offset = 0;
1515 len += NET_IP_ALIGN;
1516 skb_checksum_none_assert(skb);
1517 skb_put(skb, len);
1518
1519 for (frag = first_frag; ; frag++) {
1520 unsigned int frag_len = bp->rx_buffer_size;
1521
1522 if (offset + frag_len > len) {
1523 if (unlikely(frag != last_frag)) {
1524 dev_kfree_skb_any(skb);
1525 return -1;
1526 }
1527 frag_len = len - offset;
1528 }
1529 skb_copy_to_linear_data_offset(skb, offset,
1530 macb_rx_buffer(queue, frag),
1531 frag_len);
1532 offset += bp->rx_buffer_size;
1533 desc = macb_rx_desc(queue, frag);
1534 desc->addr &= ~MACB_BIT(RX_USED);
1535
1536 if (frag == last_frag)
1537 break;
1538 }
1539
1540 /* Make descriptor updates visible to hardware */
1541 wmb();
1542
1543 __skb_pull(skb, NET_IP_ALIGN);
1544 skb->protocol = eth_type_trans(skb, bp->dev);
1545
1546 bp->dev->stats.rx_packets++;
1547 bp->dev->stats.rx_bytes += skb->len;
1548 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1549 skb->len, skb->csum);
1550 napi_gro_receive(napi, skb);
1551
1552 return 0;
1553 }
1554
macb_init_rx_ring(struct macb_queue * queue)1555 static inline void macb_init_rx_ring(struct macb_queue *queue)
1556 {
1557 struct macb *bp = queue->bp;
1558 dma_addr_t addr;
1559 struct macb_dma_desc *desc = NULL;
1560 int i;
1561
1562 addr = queue->rx_buffers_dma;
1563 for (i = 0; i < bp->rx_ring_size; i++) {
1564 desc = macb_rx_desc(queue, i);
1565 macb_set_addr(bp, desc, addr);
1566 desc->ctrl = 0;
1567 addr += bp->rx_buffer_size;
1568 }
1569 desc->addr |= MACB_BIT(RX_WRAP);
1570 queue->rx_tail = 0;
1571 }
1572
macb_rx(struct macb_queue * queue,struct napi_struct * napi,int budget)1573 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1574 int budget)
1575 {
1576 struct macb *bp = queue->bp;
1577 bool reset_rx_queue = false;
1578 int received = 0;
1579 unsigned int tail;
1580 int first_frag = -1;
1581
1582 for (tail = queue->rx_tail; budget > 0; tail++) {
1583 struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1584 u32 ctrl;
1585
1586 /* Make hw descriptor updates visible to CPU */
1587 rmb();
1588
1589 if (!(desc->addr & MACB_BIT(RX_USED)))
1590 break;
1591
1592 /* Ensure ctrl is at least as up-to-date as addr */
1593 dma_rmb();
1594
1595 ctrl = desc->ctrl;
1596
1597 if (ctrl & MACB_BIT(RX_SOF)) {
1598 if (first_frag != -1)
1599 discard_partial_frame(queue, first_frag, tail);
1600 first_frag = tail;
1601 }
1602
1603 if (ctrl & MACB_BIT(RX_EOF)) {
1604 int dropped;
1605
1606 if (unlikely(first_frag == -1)) {
1607 reset_rx_queue = true;
1608 continue;
1609 }
1610
1611 dropped = macb_rx_frame(queue, napi, first_frag, tail);
1612 first_frag = -1;
1613 if (unlikely(dropped < 0)) {
1614 reset_rx_queue = true;
1615 continue;
1616 }
1617 if (!dropped) {
1618 received++;
1619 budget--;
1620 }
1621 }
1622 }
1623
1624 if (unlikely(reset_rx_queue)) {
1625 unsigned long flags;
1626 u32 ctrl;
1627
1628 netdev_err(bp->dev, "RX queue corruption: reset it\n");
1629
1630 spin_lock_irqsave(&bp->lock, flags);
1631
1632 ctrl = macb_readl(bp, NCR);
1633 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1634
1635 macb_init_rx_ring(queue);
1636 queue_writel(queue, RBQP, queue->rx_ring_dma);
1637
1638 macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1639
1640 spin_unlock_irqrestore(&bp->lock, flags);
1641 return received;
1642 }
1643
1644 if (first_frag != -1)
1645 queue->rx_tail = first_frag;
1646 else
1647 queue->rx_tail = tail;
1648
1649 return received;
1650 }
1651
macb_rx_pending(struct macb_queue * queue)1652 static bool macb_rx_pending(struct macb_queue *queue)
1653 {
1654 struct macb *bp = queue->bp;
1655 unsigned int entry;
1656 struct macb_dma_desc *desc;
1657
1658 entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1659 desc = macb_rx_desc(queue, entry);
1660
1661 /* Make hw descriptor updates visible to CPU */
1662 rmb();
1663
1664 return (desc->addr & MACB_BIT(RX_USED)) != 0;
1665 }
1666
macb_rx_poll(struct napi_struct * napi,int budget)1667 static int macb_rx_poll(struct napi_struct *napi, int budget)
1668 {
1669 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1670 struct macb *bp = queue->bp;
1671 int work_done;
1672
1673 work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1674
1675 netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1676 (unsigned int)(queue - bp->queues), work_done, budget);
1677
1678 if (work_done < budget && napi_complete_done(napi, work_done)) {
1679 queue_writel(queue, IER, bp->rx_intr_mask);
1680
1681 /* Packet completions only seem to propagate to raise
1682 * interrupts when interrupts are enabled at the time, so if
1683 * packets were received while interrupts were disabled,
1684 * they will not cause another interrupt to be generated when
1685 * interrupts are re-enabled.
1686 * Check for this case here to avoid losing a wakeup. This can
1687 * potentially race with the interrupt handler doing the same
1688 * actions if an interrupt is raised just after enabling them,
1689 * but this should be harmless.
1690 */
1691 if (macb_rx_pending(queue)) {
1692 queue_writel(queue, IDR, bp->rx_intr_mask);
1693 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1694 queue_writel(queue, ISR, MACB_BIT(RCOMP));
1695 netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1696 napi_schedule(napi);
1697 }
1698 }
1699
1700 /* TODO: Handle errors */
1701
1702 return work_done;
1703 }
1704
macb_tx_restart(struct macb_queue * queue)1705 static void macb_tx_restart(struct macb_queue *queue)
1706 {
1707 struct macb *bp = queue->bp;
1708 unsigned int head_idx, tbqp;
1709
1710 spin_lock(&queue->tx_ptr_lock);
1711
1712 if (queue->tx_head == queue->tx_tail)
1713 goto out_tx_ptr_unlock;
1714
1715 tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1716 tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1717 head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1718
1719 if (tbqp == head_idx)
1720 goto out_tx_ptr_unlock;
1721
1722 spin_lock_irq(&bp->lock);
1723 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1724 spin_unlock_irq(&bp->lock);
1725
1726 out_tx_ptr_unlock:
1727 spin_unlock(&queue->tx_ptr_lock);
1728 }
1729
macb_tx_complete_pending(struct macb_queue * queue)1730 static bool macb_tx_complete_pending(struct macb_queue *queue)
1731 {
1732 bool retval = false;
1733
1734 spin_lock(&queue->tx_ptr_lock);
1735 if (queue->tx_head != queue->tx_tail) {
1736 /* Make hw descriptor updates visible to CPU */
1737 rmb();
1738
1739 if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1740 retval = true;
1741 }
1742 spin_unlock(&queue->tx_ptr_lock);
1743 return retval;
1744 }
1745
macb_tx_poll(struct napi_struct * napi,int budget)1746 static int macb_tx_poll(struct napi_struct *napi, int budget)
1747 {
1748 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1749 struct macb *bp = queue->bp;
1750 int work_done;
1751
1752 work_done = macb_tx_complete(queue, budget);
1753
1754 rmb(); // ensure txubr_pending is up to date
1755 if (queue->txubr_pending) {
1756 queue->txubr_pending = false;
1757 netdev_vdbg(bp->dev, "poll: tx restart\n");
1758 macb_tx_restart(queue);
1759 }
1760
1761 netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1762 (unsigned int)(queue - bp->queues), work_done, budget);
1763
1764 if (work_done < budget && napi_complete_done(napi, work_done)) {
1765 queue_writel(queue, IER, MACB_BIT(TCOMP));
1766
1767 /* Packet completions only seem to propagate to raise
1768 * interrupts when interrupts are enabled at the time, so if
1769 * packets were sent while interrupts were disabled,
1770 * they will not cause another interrupt to be generated when
1771 * interrupts are re-enabled.
1772 * Check for this case here to avoid losing a wakeup. This can
1773 * potentially race with the interrupt handler doing the same
1774 * actions if an interrupt is raised just after enabling them,
1775 * but this should be harmless.
1776 */
1777 if (macb_tx_complete_pending(queue)) {
1778 queue_writel(queue, IDR, MACB_BIT(TCOMP));
1779 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1780 queue_writel(queue, ISR, MACB_BIT(TCOMP));
1781 netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1782 napi_schedule(napi);
1783 }
1784 }
1785
1786 return work_done;
1787 }
1788
macb_hresp_error_task(struct work_struct * work)1789 static void macb_hresp_error_task(struct work_struct *work)
1790 {
1791 struct macb *bp = from_work(bp, work, hresp_err_bh_work);
1792 struct net_device *dev = bp->dev;
1793 struct macb_queue *queue;
1794 unsigned int q;
1795 u32 ctrl;
1796
1797 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1798 queue_writel(queue, IDR, bp->rx_intr_mask |
1799 MACB_TX_INT_FLAGS |
1800 MACB_BIT(HRESP));
1801 }
1802 ctrl = macb_readl(bp, NCR);
1803 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1804 macb_writel(bp, NCR, ctrl);
1805
1806 netif_tx_stop_all_queues(dev);
1807 netif_carrier_off(dev);
1808
1809 bp->macbgem_ops.mog_init_rings(bp);
1810
1811 /* Initialize TX and RX buffers */
1812 macb_init_buffers(bp);
1813
1814 /* Enable interrupts */
1815 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1816 queue_writel(queue, IER,
1817 bp->rx_intr_mask |
1818 MACB_TX_INT_FLAGS |
1819 MACB_BIT(HRESP));
1820
1821 ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1822 macb_writel(bp, NCR, ctrl);
1823
1824 netif_carrier_on(dev);
1825 netif_tx_start_all_queues(dev);
1826 }
1827
macb_wol_interrupt(int irq,void * dev_id)1828 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1829 {
1830 struct macb_queue *queue = dev_id;
1831 struct macb *bp = queue->bp;
1832 u32 status;
1833
1834 status = queue_readl(queue, ISR);
1835
1836 if (unlikely(!status))
1837 return IRQ_NONE;
1838
1839 spin_lock(&bp->lock);
1840
1841 if (status & MACB_BIT(WOL)) {
1842 queue_writel(queue, IDR, MACB_BIT(WOL));
1843 macb_writel(bp, WOL, 0);
1844 netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1845 (unsigned int)(queue - bp->queues),
1846 (unsigned long)status);
1847 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1848 queue_writel(queue, ISR, MACB_BIT(WOL));
1849 pm_wakeup_event(&bp->pdev->dev, 0);
1850 }
1851
1852 spin_unlock(&bp->lock);
1853
1854 return IRQ_HANDLED;
1855 }
1856
gem_wol_interrupt(int irq,void * dev_id)1857 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1858 {
1859 struct macb_queue *queue = dev_id;
1860 struct macb *bp = queue->bp;
1861 u32 status;
1862
1863 status = queue_readl(queue, ISR);
1864
1865 if (unlikely(!status))
1866 return IRQ_NONE;
1867
1868 spin_lock(&bp->lock);
1869
1870 if (status & GEM_BIT(WOL)) {
1871 queue_writel(queue, IDR, GEM_BIT(WOL));
1872 gem_writel(bp, WOL, 0);
1873 netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1874 (unsigned int)(queue - bp->queues),
1875 (unsigned long)status);
1876 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1877 queue_writel(queue, ISR, GEM_BIT(WOL));
1878 pm_wakeup_event(&bp->pdev->dev, 0);
1879 }
1880
1881 spin_unlock(&bp->lock);
1882
1883 return IRQ_HANDLED;
1884 }
1885
macb_interrupt(int irq,void * dev_id)1886 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1887 {
1888 struct macb_queue *queue = dev_id;
1889 struct macb *bp = queue->bp;
1890 struct net_device *dev = bp->dev;
1891 u32 status, ctrl;
1892
1893 status = queue_readl(queue, ISR);
1894
1895 if (unlikely(!status))
1896 return IRQ_NONE;
1897
1898 spin_lock(&bp->lock);
1899
1900 while (status) {
1901 /* close possible race with dev_close */
1902 if (unlikely(!netif_running(dev))) {
1903 queue_writel(queue, IDR, -1);
1904 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1905 queue_writel(queue, ISR, -1);
1906 break;
1907 }
1908
1909 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1910 (unsigned int)(queue - bp->queues),
1911 (unsigned long)status);
1912
1913 if (status & bp->rx_intr_mask) {
1914 /* There's no point taking any more interrupts
1915 * until we have processed the buffers. The
1916 * scheduling call may fail if the poll routine
1917 * is already scheduled, so disable interrupts
1918 * now.
1919 */
1920 queue_writel(queue, IDR, bp->rx_intr_mask);
1921 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1922 queue_writel(queue, ISR, MACB_BIT(RCOMP));
1923
1924 if (napi_schedule_prep(&queue->napi_rx)) {
1925 netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1926 __napi_schedule(&queue->napi_rx);
1927 }
1928 }
1929
1930 if (status & (MACB_BIT(TCOMP) |
1931 MACB_BIT(TXUBR))) {
1932 queue_writel(queue, IDR, MACB_BIT(TCOMP));
1933 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1934 queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1935 MACB_BIT(TXUBR));
1936
1937 if (status & MACB_BIT(TXUBR)) {
1938 queue->txubr_pending = true;
1939 wmb(); // ensure softirq can see update
1940 }
1941
1942 if (napi_schedule_prep(&queue->napi_tx)) {
1943 netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1944 __napi_schedule(&queue->napi_tx);
1945 }
1946 }
1947
1948 if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1949 queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1950 schedule_work(&queue->tx_error_task);
1951
1952 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1953 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1954
1955 break;
1956 }
1957
1958 /* Link change detection isn't possible with RMII, so we'll
1959 * add that if/when we get our hands on a full-blown MII PHY.
1960 */
1961
1962 /* There is a hardware issue under heavy load where DMA can
1963 * stop, this causes endless "used buffer descriptor read"
1964 * interrupts but it can be cleared by re-enabling RX. See
1965 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1966 * section 16.7.4 for details. RXUBR is only enabled for
1967 * these two versions.
1968 */
1969 if (status & MACB_BIT(RXUBR)) {
1970 ctrl = macb_readl(bp, NCR);
1971 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1972 wmb();
1973 macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1974
1975 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1976 queue_writel(queue, ISR, MACB_BIT(RXUBR));
1977 }
1978
1979 if (status & MACB_BIT(ISR_ROVR)) {
1980 /* We missed at least one packet */
1981 spin_lock(&bp->stats_lock);
1982 if (macb_is_gem(bp))
1983 bp->hw_stats.gem.rx_overruns++;
1984 else
1985 bp->hw_stats.macb.rx_overruns++;
1986 spin_unlock(&bp->stats_lock);
1987
1988 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1989 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1990 }
1991
1992 if (status & MACB_BIT(HRESP)) {
1993 queue_work(system_bh_wq, &bp->hresp_err_bh_work);
1994 netdev_err(dev, "DMA bus error: HRESP not OK\n");
1995
1996 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1997 queue_writel(queue, ISR, MACB_BIT(HRESP));
1998 }
1999 status = queue_readl(queue, ISR);
2000 }
2001
2002 spin_unlock(&bp->lock);
2003
2004 return IRQ_HANDLED;
2005 }
2006
2007 #ifdef CONFIG_NET_POLL_CONTROLLER
2008 /* Polling receive - used by netconsole and other diagnostic tools
2009 * to allow network i/o with interrupts disabled.
2010 */
macb_poll_controller(struct net_device * dev)2011 static void macb_poll_controller(struct net_device *dev)
2012 {
2013 struct macb *bp = netdev_priv(dev);
2014 struct macb_queue *queue;
2015 unsigned long flags;
2016 unsigned int q;
2017
2018 local_irq_save(flags);
2019 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2020 macb_interrupt(dev->irq, queue);
2021 local_irq_restore(flags);
2022 }
2023 #endif
2024
macb_tx_map(struct macb * bp,struct macb_queue * queue,struct sk_buff * skb,unsigned int hdrlen)2025 static unsigned int macb_tx_map(struct macb *bp,
2026 struct macb_queue *queue,
2027 struct sk_buff *skb,
2028 unsigned int hdrlen)
2029 {
2030 dma_addr_t mapping;
2031 unsigned int len, entry, i, tx_head = queue->tx_head;
2032 struct macb_tx_skb *tx_skb = NULL;
2033 struct macb_dma_desc *desc;
2034 unsigned int offset, size, count = 0;
2035 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
2036 unsigned int eof = 1, mss_mfs = 0;
2037 u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
2038
2039 /* LSO */
2040 if (skb_shinfo(skb)->gso_size != 0) {
2041 if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2042 /* UDP - UFO */
2043 lso_ctrl = MACB_LSO_UFO_ENABLE;
2044 else
2045 /* TCP - TSO */
2046 lso_ctrl = MACB_LSO_TSO_ENABLE;
2047 }
2048
2049 /* First, map non-paged data */
2050 len = skb_headlen(skb);
2051
2052 /* first buffer length */
2053 size = hdrlen;
2054
2055 offset = 0;
2056 while (len) {
2057 entry = macb_tx_ring_wrap(bp, tx_head);
2058 tx_skb = &queue->tx_skb[entry];
2059
2060 mapping = dma_map_single(&bp->pdev->dev,
2061 skb->data + offset,
2062 size, DMA_TO_DEVICE);
2063 if (dma_mapping_error(&bp->pdev->dev, mapping))
2064 goto dma_error;
2065
2066 /* Save info to properly release resources */
2067 tx_skb->skb = NULL;
2068 tx_skb->mapping = mapping;
2069 tx_skb->size = size;
2070 tx_skb->mapped_as_page = false;
2071
2072 len -= size;
2073 offset += size;
2074 count++;
2075 tx_head++;
2076
2077 size = min(len, bp->max_tx_length);
2078 }
2079
2080 /* Then, map paged data from fragments */
2081 for (f = 0; f < nr_frags; f++) {
2082 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2083
2084 len = skb_frag_size(frag);
2085 offset = 0;
2086 while (len) {
2087 size = min(len, bp->max_tx_length);
2088 entry = macb_tx_ring_wrap(bp, tx_head);
2089 tx_skb = &queue->tx_skb[entry];
2090
2091 mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
2092 offset, size, DMA_TO_DEVICE);
2093 if (dma_mapping_error(&bp->pdev->dev, mapping))
2094 goto dma_error;
2095
2096 /* Save info to properly release resources */
2097 tx_skb->skb = NULL;
2098 tx_skb->mapping = mapping;
2099 tx_skb->size = size;
2100 tx_skb->mapped_as_page = true;
2101
2102 len -= size;
2103 offset += size;
2104 count++;
2105 tx_head++;
2106 }
2107 }
2108
2109 /* Should never happen */
2110 if (unlikely(!tx_skb)) {
2111 netdev_err(bp->dev, "BUG! empty skb!\n");
2112 return 0;
2113 }
2114
2115 /* This is the last buffer of the frame: save socket buffer */
2116 tx_skb->skb = skb;
2117
2118 /* Update TX ring: update buffer descriptors in reverse order
2119 * to avoid race condition
2120 */
2121
2122 /* Set 'TX_USED' bit in buffer descriptor at tx_head position
2123 * to set the end of TX queue
2124 */
2125 i = tx_head;
2126 entry = macb_tx_ring_wrap(bp, i);
2127 ctrl = MACB_BIT(TX_USED);
2128 desc = macb_tx_desc(queue, entry);
2129 desc->ctrl = ctrl;
2130
2131 if (lso_ctrl) {
2132 if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2133 /* include header and FCS in value given to h/w */
2134 mss_mfs = skb_shinfo(skb)->gso_size +
2135 skb_transport_offset(skb) +
2136 ETH_FCS_LEN;
2137 else /* TSO */ {
2138 mss_mfs = skb_shinfo(skb)->gso_size;
2139 /* TCP Sequence Number Source Select
2140 * can be set only for TSO
2141 */
2142 seq_ctrl = 0;
2143 }
2144 }
2145
2146 do {
2147 i--;
2148 entry = macb_tx_ring_wrap(bp, i);
2149 tx_skb = &queue->tx_skb[entry];
2150 desc = macb_tx_desc(queue, entry);
2151
2152 ctrl = (u32)tx_skb->size;
2153 if (eof) {
2154 ctrl |= MACB_BIT(TX_LAST);
2155 eof = 0;
2156 }
2157 if (unlikely(entry == (bp->tx_ring_size - 1)))
2158 ctrl |= MACB_BIT(TX_WRAP);
2159
2160 /* First descriptor is header descriptor */
2161 if (i == queue->tx_head) {
2162 ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2163 ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2164 if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2165 skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl &&
2166 !ptp_one_step_sync(skb))
2167 ctrl |= MACB_BIT(TX_NOCRC);
2168 } else
2169 /* Only set MSS/MFS on payload descriptors
2170 * (second or later descriptor)
2171 */
2172 ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2173
2174 /* Set TX buffer descriptor */
2175 macb_set_addr(bp, desc, tx_skb->mapping);
2176 /* desc->addr must be visible to hardware before clearing
2177 * 'TX_USED' bit in desc->ctrl.
2178 */
2179 wmb();
2180 desc->ctrl = ctrl;
2181 } while (i != queue->tx_head);
2182
2183 queue->tx_head = tx_head;
2184
2185 return count;
2186
2187 dma_error:
2188 netdev_err(bp->dev, "TX DMA map failed\n");
2189
2190 for (i = queue->tx_head; i != tx_head; i++) {
2191 tx_skb = macb_tx_skb(queue, i);
2192
2193 macb_tx_unmap(bp, tx_skb, 0);
2194 }
2195
2196 return 0;
2197 }
2198
macb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2199 static netdev_features_t macb_features_check(struct sk_buff *skb,
2200 struct net_device *dev,
2201 netdev_features_t features)
2202 {
2203 unsigned int nr_frags, f;
2204 unsigned int hdrlen;
2205
2206 /* Validate LSO compatibility */
2207
2208 /* there is only one buffer or protocol is not UDP */
2209 if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2210 return features;
2211
2212 /* length of header */
2213 hdrlen = skb_transport_offset(skb);
2214
2215 /* For UFO only:
2216 * When software supplies two or more payload buffers all payload buffers
2217 * apart from the last must be a multiple of 8 bytes in size.
2218 */
2219 if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2220 return features & ~MACB_NETIF_LSO;
2221
2222 nr_frags = skb_shinfo(skb)->nr_frags;
2223 /* No need to check last fragment */
2224 nr_frags--;
2225 for (f = 0; f < nr_frags; f++) {
2226 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2227
2228 if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2229 return features & ~MACB_NETIF_LSO;
2230 }
2231 return features;
2232 }
2233
macb_clear_csum(struct sk_buff * skb)2234 static inline int macb_clear_csum(struct sk_buff *skb)
2235 {
2236 /* no change for packets without checksum offloading */
2237 if (skb->ip_summed != CHECKSUM_PARTIAL)
2238 return 0;
2239
2240 /* make sure we can modify the header */
2241 if (unlikely(skb_cow_head(skb, 0)))
2242 return -1;
2243
2244 /* initialize checksum field
2245 * This is required - at least for Zynq, which otherwise calculates
2246 * wrong UDP header checksums for UDP packets with UDP data len <=2
2247 */
2248 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2249 return 0;
2250 }
2251
macb_pad_and_fcs(struct sk_buff ** skb,struct net_device * ndev)2252 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2253 {
2254 bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2255 skb_is_nonlinear(*skb);
2256 int padlen = ETH_ZLEN - (*skb)->len;
2257 int tailroom = skb_tailroom(*skb);
2258 struct sk_buff *nskb;
2259 u32 fcs;
2260
2261 if (!(ndev->features & NETIF_F_HW_CSUM) ||
2262 !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2263 skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb))
2264 return 0;
2265
2266 if (padlen <= 0) {
2267 /* FCS could be appeded to tailroom. */
2268 if (tailroom >= ETH_FCS_LEN)
2269 goto add_fcs;
2270 /* No room for FCS, need to reallocate skb. */
2271 else
2272 padlen = ETH_FCS_LEN;
2273 } else {
2274 /* Add room for FCS. */
2275 padlen += ETH_FCS_LEN;
2276 }
2277
2278 if (cloned || tailroom < padlen) {
2279 nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2280 if (!nskb)
2281 return -ENOMEM;
2282
2283 dev_consume_skb_any(*skb);
2284 *skb = nskb;
2285 }
2286
2287 if (padlen > ETH_FCS_LEN)
2288 skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2289
2290 add_fcs:
2291 /* set FCS to packet */
2292 fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2293 fcs = ~fcs;
2294
2295 skb_put_u8(*skb, fcs & 0xff);
2296 skb_put_u8(*skb, (fcs >> 8) & 0xff);
2297 skb_put_u8(*skb, (fcs >> 16) & 0xff);
2298 skb_put_u8(*skb, (fcs >> 24) & 0xff);
2299
2300 return 0;
2301 }
2302
macb_start_xmit(struct sk_buff * skb,struct net_device * dev)2303 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2304 {
2305 u16 queue_index = skb_get_queue_mapping(skb);
2306 struct macb *bp = netdev_priv(dev);
2307 struct macb_queue *queue = &bp->queues[queue_index];
2308 unsigned int desc_cnt, nr_frags, frag_size, f;
2309 unsigned int hdrlen;
2310 bool is_lso;
2311 netdev_tx_t ret = NETDEV_TX_OK;
2312
2313 if (macb_clear_csum(skb)) {
2314 dev_kfree_skb_any(skb);
2315 return ret;
2316 }
2317
2318 if (macb_pad_and_fcs(&skb, dev)) {
2319 dev_kfree_skb_any(skb);
2320 return ret;
2321 }
2322
2323 #ifdef CONFIG_MACB_USE_HWSTAMP
2324 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2325 (bp->hw_dma_cap & HW_DMA_CAP_PTP))
2326 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2327 #endif
2328
2329 is_lso = (skb_shinfo(skb)->gso_size != 0);
2330
2331 if (is_lso) {
2332 /* length of headers */
2333 if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2334 /* only queue eth + ip headers separately for UDP */
2335 hdrlen = skb_transport_offset(skb);
2336 else
2337 hdrlen = skb_tcp_all_headers(skb);
2338 if (skb_headlen(skb) < hdrlen) {
2339 netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2340 /* if this is required, would need to copy to single buffer */
2341 return NETDEV_TX_BUSY;
2342 }
2343 } else
2344 hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2345
2346 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2347 netdev_vdbg(bp->dev,
2348 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2349 queue_index, skb->len, skb->head, skb->data,
2350 skb_tail_pointer(skb), skb_end_pointer(skb));
2351 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2352 skb->data, 16, true);
2353 #endif
2354
2355 /* Count how many TX buffer descriptors are needed to send this
2356 * socket buffer: skb fragments of jumbo frames may need to be
2357 * split into many buffer descriptors.
2358 */
2359 if (is_lso && (skb_headlen(skb) > hdrlen))
2360 /* extra header descriptor if also payload in first buffer */
2361 desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2362 else
2363 desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2364 nr_frags = skb_shinfo(skb)->nr_frags;
2365 for (f = 0; f < nr_frags; f++) {
2366 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2367 desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2368 }
2369
2370 spin_lock_bh(&queue->tx_ptr_lock);
2371
2372 /* This is a hard error, log it. */
2373 if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2374 bp->tx_ring_size) < desc_cnt) {
2375 netif_stop_subqueue(dev, queue_index);
2376 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2377 queue->tx_head, queue->tx_tail);
2378 ret = NETDEV_TX_BUSY;
2379 goto unlock;
2380 }
2381
2382 /* Map socket buffer for DMA transfer */
2383 if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2384 dev_kfree_skb_any(skb);
2385 goto unlock;
2386 }
2387
2388 /* Make newly initialized descriptor visible to hardware */
2389 wmb();
2390 skb_tx_timestamp(skb);
2391
2392 spin_lock_irq(&bp->lock);
2393 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2394 spin_unlock_irq(&bp->lock);
2395
2396 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2397 netif_stop_subqueue(dev, queue_index);
2398
2399 unlock:
2400 spin_unlock_bh(&queue->tx_ptr_lock);
2401
2402 return ret;
2403 }
2404
macb_init_rx_buffer_size(struct macb * bp,size_t size)2405 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2406 {
2407 if (!macb_is_gem(bp)) {
2408 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2409 } else {
2410 bp->rx_buffer_size = size;
2411
2412 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2413 netdev_dbg(bp->dev,
2414 "RX buffer must be multiple of %d bytes, expanding\n",
2415 RX_BUFFER_MULTIPLE);
2416 bp->rx_buffer_size =
2417 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2418 }
2419 }
2420
2421 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2422 bp->dev->mtu, bp->rx_buffer_size);
2423 }
2424
gem_free_rx_buffers(struct macb * bp)2425 static void gem_free_rx_buffers(struct macb *bp)
2426 {
2427 struct sk_buff *skb;
2428 struct macb_dma_desc *desc;
2429 struct macb_queue *queue;
2430 dma_addr_t addr;
2431 unsigned int q;
2432 int i;
2433
2434 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2435 if (!queue->rx_skbuff)
2436 continue;
2437
2438 for (i = 0; i < bp->rx_ring_size; i++) {
2439 skb = queue->rx_skbuff[i];
2440
2441 if (!skb)
2442 continue;
2443
2444 desc = macb_rx_desc(queue, i);
2445 addr = macb_get_addr(bp, desc);
2446
2447 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2448 DMA_FROM_DEVICE);
2449 dev_kfree_skb_any(skb);
2450 skb = NULL;
2451 }
2452
2453 kfree(queue->rx_skbuff);
2454 queue->rx_skbuff = NULL;
2455 }
2456 }
2457
macb_free_rx_buffers(struct macb * bp)2458 static void macb_free_rx_buffers(struct macb *bp)
2459 {
2460 struct macb_queue *queue = &bp->queues[0];
2461
2462 if (queue->rx_buffers) {
2463 dma_free_coherent(&bp->pdev->dev,
2464 bp->rx_ring_size * bp->rx_buffer_size,
2465 queue->rx_buffers, queue->rx_buffers_dma);
2466 queue->rx_buffers = NULL;
2467 }
2468 }
2469
macb_free_consistent(struct macb * bp)2470 static void macb_free_consistent(struct macb *bp)
2471 {
2472 struct macb_queue *queue;
2473 unsigned int q;
2474 int size;
2475
2476 if (bp->rx_ring_tieoff) {
2477 dma_free_coherent(&bp->pdev->dev, macb_dma_desc_get_size(bp),
2478 bp->rx_ring_tieoff, bp->rx_ring_tieoff_dma);
2479 bp->rx_ring_tieoff = NULL;
2480 }
2481
2482 bp->macbgem_ops.mog_free_rx_buffers(bp);
2483
2484 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2485 kfree(queue->tx_skb);
2486 queue->tx_skb = NULL;
2487 if (queue->tx_ring) {
2488 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2489 dma_free_coherent(&bp->pdev->dev, size,
2490 queue->tx_ring, queue->tx_ring_dma);
2491 queue->tx_ring = NULL;
2492 }
2493 if (queue->rx_ring) {
2494 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2495 dma_free_coherent(&bp->pdev->dev, size,
2496 queue->rx_ring, queue->rx_ring_dma);
2497 queue->rx_ring = NULL;
2498 }
2499 }
2500 }
2501
gem_alloc_rx_buffers(struct macb * bp)2502 static int gem_alloc_rx_buffers(struct macb *bp)
2503 {
2504 struct macb_queue *queue;
2505 unsigned int q;
2506 int size;
2507
2508 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2509 size = bp->rx_ring_size * sizeof(struct sk_buff *);
2510 queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2511 if (!queue->rx_skbuff)
2512 return -ENOMEM;
2513 else
2514 netdev_dbg(bp->dev,
2515 "Allocated %d RX struct sk_buff entries at %p\n",
2516 bp->rx_ring_size, queue->rx_skbuff);
2517 }
2518 return 0;
2519 }
2520
macb_alloc_rx_buffers(struct macb * bp)2521 static int macb_alloc_rx_buffers(struct macb *bp)
2522 {
2523 struct macb_queue *queue = &bp->queues[0];
2524 int size;
2525
2526 size = bp->rx_ring_size * bp->rx_buffer_size;
2527 queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2528 &queue->rx_buffers_dma, GFP_KERNEL);
2529 if (!queue->rx_buffers)
2530 return -ENOMEM;
2531
2532 netdev_dbg(bp->dev,
2533 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2534 size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2535 return 0;
2536 }
2537
macb_alloc_consistent(struct macb * bp)2538 static int macb_alloc_consistent(struct macb *bp)
2539 {
2540 struct macb_queue *queue;
2541 unsigned int q;
2542 int size;
2543
2544 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2545 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2546 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2547 &queue->tx_ring_dma,
2548 GFP_KERNEL);
2549 if (!queue->tx_ring)
2550 goto out_err;
2551 netdev_dbg(bp->dev,
2552 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2553 q, size, (unsigned long)queue->tx_ring_dma,
2554 queue->tx_ring);
2555
2556 size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2557 queue->tx_skb = kmalloc(size, GFP_KERNEL);
2558 if (!queue->tx_skb)
2559 goto out_err;
2560
2561 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2562 queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2563 &queue->rx_ring_dma, GFP_KERNEL);
2564 if (!queue->rx_ring)
2565 goto out_err;
2566 netdev_dbg(bp->dev,
2567 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2568 size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2569 }
2570 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2571 goto out_err;
2572
2573 /* Required for tie off descriptor for PM cases */
2574 if (!(bp->caps & MACB_CAPS_QUEUE_DISABLE)) {
2575 bp->rx_ring_tieoff = dma_alloc_coherent(&bp->pdev->dev,
2576 macb_dma_desc_get_size(bp),
2577 &bp->rx_ring_tieoff_dma,
2578 GFP_KERNEL);
2579 if (!bp->rx_ring_tieoff)
2580 goto out_err;
2581 }
2582
2583 return 0;
2584
2585 out_err:
2586 macb_free_consistent(bp);
2587 return -ENOMEM;
2588 }
2589
macb_init_tieoff(struct macb * bp)2590 static void macb_init_tieoff(struct macb *bp)
2591 {
2592 struct macb_dma_desc *desc = bp->rx_ring_tieoff;
2593
2594 if (bp->caps & MACB_CAPS_QUEUE_DISABLE)
2595 return;
2596 /* Setup a wrapping descriptor with no free slots
2597 * (WRAP and USED) to tie off/disable unused RX queues.
2598 */
2599 macb_set_addr(bp, desc, MACB_BIT(RX_WRAP) | MACB_BIT(RX_USED));
2600 desc->ctrl = 0;
2601 }
2602
gem_init_rings(struct macb * bp)2603 static void gem_init_rings(struct macb *bp)
2604 {
2605 struct macb_queue *queue;
2606 struct macb_dma_desc *desc = NULL;
2607 unsigned int q;
2608 int i;
2609
2610 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2611 for (i = 0; i < bp->tx_ring_size; i++) {
2612 desc = macb_tx_desc(queue, i);
2613 macb_set_addr(bp, desc, 0);
2614 desc->ctrl = MACB_BIT(TX_USED);
2615 }
2616 desc->ctrl |= MACB_BIT(TX_WRAP);
2617 queue->tx_head = 0;
2618 queue->tx_tail = 0;
2619
2620 queue->rx_tail = 0;
2621 queue->rx_prepared_head = 0;
2622
2623 gem_rx_refill(queue);
2624 }
2625
2626 macb_init_tieoff(bp);
2627 }
2628
macb_init_rings(struct macb * bp)2629 static void macb_init_rings(struct macb *bp)
2630 {
2631 int i;
2632 struct macb_dma_desc *desc = NULL;
2633
2634 macb_init_rx_ring(&bp->queues[0]);
2635
2636 for (i = 0; i < bp->tx_ring_size; i++) {
2637 desc = macb_tx_desc(&bp->queues[0], i);
2638 macb_set_addr(bp, desc, 0);
2639 desc->ctrl = MACB_BIT(TX_USED);
2640 }
2641 bp->queues[0].tx_head = 0;
2642 bp->queues[0].tx_tail = 0;
2643 desc->ctrl |= MACB_BIT(TX_WRAP);
2644
2645 macb_init_tieoff(bp);
2646 }
2647
macb_reset_hw(struct macb * bp)2648 static void macb_reset_hw(struct macb *bp)
2649 {
2650 struct macb_queue *queue;
2651 unsigned int q;
2652 u32 ctrl = macb_readl(bp, NCR);
2653
2654 /* Disable RX and TX (XXX: Should we halt the transmission
2655 * more gracefully?)
2656 */
2657 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2658
2659 /* Clear the stats registers (XXX: Update stats first?) */
2660 ctrl |= MACB_BIT(CLRSTAT);
2661
2662 macb_writel(bp, NCR, ctrl);
2663
2664 /* Clear all status flags */
2665 macb_writel(bp, TSR, -1);
2666 macb_writel(bp, RSR, -1);
2667
2668 /* Disable RX partial store and forward and reset watermark value */
2669 gem_writel(bp, PBUFRXCUT, 0);
2670
2671 /* Disable all interrupts */
2672 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2673 queue_writel(queue, IDR, -1);
2674 queue_readl(queue, ISR);
2675 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2676 queue_writel(queue, ISR, -1);
2677 }
2678 }
2679
gem_mdc_clk_div(struct macb * bp)2680 static u32 gem_mdc_clk_div(struct macb *bp)
2681 {
2682 u32 config;
2683 unsigned long pclk_hz = clk_get_rate(bp->pclk);
2684
2685 if (pclk_hz <= 20000000)
2686 config = GEM_BF(CLK, GEM_CLK_DIV8);
2687 else if (pclk_hz <= 40000000)
2688 config = GEM_BF(CLK, GEM_CLK_DIV16);
2689 else if (pclk_hz <= 80000000)
2690 config = GEM_BF(CLK, GEM_CLK_DIV32);
2691 else if (pclk_hz <= 120000000)
2692 config = GEM_BF(CLK, GEM_CLK_DIV48);
2693 else if (pclk_hz <= 160000000)
2694 config = GEM_BF(CLK, GEM_CLK_DIV64);
2695 else if (pclk_hz <= 240000000)
2696 config = GEM_BF(CLK, GEM_CLK_DIV96);
2697 else if (pclk_hz <= 320000000)
2698 config = GEM_BF(CLK, GEM_CLK_DIV128);
2699 else
2700 config = GEM_BF(CLK, GEM_CLK_DIV224);
2701
2702 return config;
2703 }
2704
macb_mdc_clk_div(struct macb * bp)2705 static u32 macb_mdc_clk_div(struct macb *bp)
2706 {
2707 u32 config;
2708 unsigned long pclk_hz;
2709
2710 if (macb_is_gem(bp))
2711 return gem_mdc_clk_div(bp);
2712
2713 pclk_hz = clk_get_rate(bp->pclk);
2714 if (pclk_hz <= 20000000)
2715 config = MACB_BF(CLK, MACB_CLK_DIV8);
2716 else if (pclk_hz <= 40000000)
2717 config = MACB_BF(CLK, MACB_CLK_DIV16);
2718 else if (pclk_hz <= 80000000)
2719 config = MACB_BF(CLK, MACB_CLK_DIV32);
2720 else
2721 config = MACB_BF(CLK, MACB_CLK_DIV64);
2722
2723 return config;
2724 }
2725
2726 /* Get the DMA bus width field of the network configuration register that we
2727 * should program. We find the width from decoding the design configuration
2728 * register to find the maximum supported data bus width.
2729 */
macb_dbw(struct macb * bp)2730 static u32 macb_dbw(struct macb *bp)
2731 {
2732 if (!macb_is_gem(bp))
2733 return 0;
2734
2735 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2736 case 4:
2737 return GEM_BF(DBW, GEM_DBW128);
2738 case 2:
2739 return GEM_BF(DBW, GEM_DBW64);
2740 case 1:
2741 default:
2742 return GEM_BF(DBW, GEM_DBW32);
2743 }
2744 }
2745
2746 /* Configure the receive DMA engine
2747 * - use the correct receive buffer size
2748 * - set best burst length for DMA operations
2749 * (if not supported by FIFO, it will fallback to default)
2750 * - set both rx/tx packet buffers to full memory size
2751 * These are configurable parameters for GEM.
2752 */
macb_configure_dma(struct macb * bp)2753 static void macb_configure_dma(struct macb *bp)
2754 {
2755 struct macb_queue *queue;
2756 u32 buffer_size;
2757 unsigned int q;
2758 u32 dmacfg;
2759
2760 buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2761 if (macb_is_gem(bp)) {
2762 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2763 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2764 if (q)
2765 queue_writel(queue, RBQS, buffer_size);
2766 else
2767 dmacfg |= GEM_BF(RXBS, buffer_size);
2768 }
2769 if (bp->dma_burst_length)
2770 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2771 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2772 dmacfg &= ~GEM_BIT(ENDIA_PKT);
2773
2774 if (bp->native_io)
2775 dmacfg &= ~GEM_BIT(ENDIA_DESC);
2776 else
2777 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2778
2779 if (bp->dev->features & NETIF_F_HW_CSUM)
2780 dmacfg |= GEM_BIT(TXCOEN);
2781 else
2782 dmacfg &= ~GEM_BIT(TXCOEN);
2783
2784 dmacfg &= ~GEM_BIT(ADDR64);
2785 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2786 if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2787 dmacfg |= GEM_BIT(ADDR64);
2788 #endif
2789 #ifdef CONFIG_MACB_USE_HWSTAMP
2790 if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2791 dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2792 #endif
2793 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2794 dmacfg);
2795 gem_writel(bp, DMACFG, dmacfg);
2796 }
2797 }
2798
macb_init_hw(struct macb * bp)2799 static void macb_init_hw(struct macb *bp)
2800 {
2801 u32 config;
2802
2803 macb_reset_hw(bp);
2804 macb_set_hwaddr(bp);
2805
2806 config = macb_mdc_clk_div(bp);
2807 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */
2808 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */
2809 if (bp->caps & MACB_CAPS_JUMBO)
2810 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */
2811 else
2812 config |= MACB_BIT(BIG); /* Receive oversized frames */
2813 if (bp->dev->flags & IFF_PROMISC)
2814 config |= MACB_BIT(CAF); /* Copy All Frames */
2815 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2816 config |= GEM_BIT(RXCOEN);
2817 if (!(bp->dev->flags & IFF_BROADCAST))
2818 config |= MACB_BIT(NBC); /* No BroadCast */
2819 config |= macb_dbw(bp);
2820 macb_writel(bp, NCFGR, config);
2821 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2822 gem_writel(bp, JML, bp->jumbo_max_len);
2823 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2824 if (bp->caps & MACB_CAPS_JUMBO)
2825 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2826
2827 macb_configure_dma(bp);
2828
2829 /* Enable RX partial store and forward and set watermark */
2830 if (bp->rx_watermark)
2831 gem_writel(bp, PBUFRXCUT, (bp->rx_watermark | GEM_BIT(ENCUTTHRU)));
2832 }
2833
2834 /* The hash address register is 64 bits long and takes up two
2835 * locations in the memory map. The least significant bits are stored
2836 * in EMAC_HSL and the most significant bits in EMAC_HSH.
2837 *
2838 * The unicast hash enable and the multicast hash enable bits in the
2839 * network configuration register enable the reception of hash matched
2840 * frames. The destination address is reduced to a 6 bit index into
2841 * the 64 bit hash register using the following hash function. The
2842 * hash function is an exclusive or of every sixth bit of the
2843 * destination address.
2844 *
2845 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2846 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2847 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2848 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2849 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2850 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2851 *
2852 * da[0] represents the least significant bit of the first byte
2853 * received, that is, the multicast/unicast indicator, and da[47]
2854 * represents the most significant bit of the last byte received. If
2855 * the hash index, hi[n], points to a bit that is set in the hash
2856 * register then the frame will be matched according to whether the
2857 * frame is multicast or unicast. A multicast match will be signalled
2858 * if the multicast hash enable bit is set, da[0] is 1 and the hash
2859 * index points to a bit set in the hash register. A unicast match
2860 * will be signalled if the unicast hash enable bit is set, da[0] is 0
2861 * and the hash index points to a bit set in the hash register. To
2862 * receive all multicast frames, the hash register should be set with
2863 * all ones and the multicast hash enable bit should be set in the
2864 * network configuration register.
2865 */
2866
hash_bit_value(int bitnr,__u8 * addr)2867 static inline int hash_bit_value(int bitnr, __u8 *addr)
2868 {
2869 if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2870 return 1;
2871 return 0;
2872 }
2873
2874 /* Return the hash index value for the specified address. */
hash_get_index(__u8 * addr)2875 static int hash_get_index(__u8 *addr)
2876 {
2877 int i, j, bitval;
2878 int hash_index = 0;
2879
2880 for (j = 0; j < 6; j++) {
2881 for (i = 0, bitval = 0; i < 8; i++)
2882 bitval ^= hash_bit_value(i * 6 + j, addr);
2883
2884 hash_index |= (bitval << j);
2885 }
2886
2887 return hash_index;
2888 }
2889
2890 /* Add multicast addresses to the internal multicast-hash table. */
macb_sethashtable(struct net_device * dev)2891 static void macb_sethashtable(struct net_device *dev)
2892 {
2893 struct netdev_hw_addr *ha;
2894 unsigned long mc_filter[2];
2895 unsigned int bitnr;
2896 struct macb *bp = netdev_priv(dev);
2897
2898 mc_filter[0] = 0;
2899 mc_filter[1] = 0;
2900
2901 netdev_for_each_mc_addr(ha, dev) {
2902 bitnr = hash_get_index(ha->addr);
2903 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2904 }
2905
2906 macb_or_gem_writel(bp, HRB, mc_filter[0]);
2907 macb_or_gem_writel(bp, HRT, mc_filter[1]);
2908 }
2909
2910 /* Enable/Disable promiscuous and multicast modes. */
macb_set_rx_mode(struct net_device * dev)2911 static void macb_set_rx_mode(struct net_device *dev)
2912 {
2913 unsigned long cfg;
2914 struct macb *bp = netdev_priv(dev);
2915
2916 cfg = macb_readl(bp, NCFGR);
2917
2918 if (dev->flags & IFF_PROMISC) {
2919 /* Enable promiscuous mode */
2920 cfg |= MACB_BIT(CAF);
2921
2922 /* Disable RX checksum offload */
2923 if (macb_is_gem(bp))
2924 cfg &= ~GEM_BIT(RXCOEN);
2925 } else {
2926 /* Disable promiscuous mode */
2927 cfg &= ~MACB_BIT(CAF);
2928
2929 /* Enable RX checksum offload only if requested */
2930 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2931 cfg |= GEM_BIT(RXCOEN);
2932 }
2933
2934 if (dev->flags & IFF_ALLMULTI) {
2935 /* Enable all multicast mode */
2936 macb_or_gem_writel(bp, HRB, -1);
2937 macb_or_gem_writel(bp, HRT, -1);
2938 cfg |= MACB_BIT(NCFGR_MTI);
2939 } else if (!netdev_mc_empty(dev)) {
2940 /* Enable specific multicasts */
2941 macb_sethashtable(dev);
2942 cfg |= MACB_BIT(NCFGR_MTI);
2943 } else if (dev->flags & (~IFF_ALLMULTI)) {
2944 /* Disable all multicast mode */
2945 macb_or_gem_writel(bp, HRB, 0);
2946 macb_or_gem_writel(bp, HRT, 0);
2947 cfg &= ~MACB_BIT(NCFGR_MTI);
2948 }
2949
2950 macb_writel(bp, NCFGR, cfg);
2951 }
2952
macb_open(struct net_device * dev)2953 static int macb_open(struct net_device *dev)
2954 {
2955 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2956 struct macb *bp = netdev_priv(dev);
2957 struct macb_queue *queue;
2958 unsigned int q;
2959 int err;
2960
2961 netdev_dbg(bp->dev, "open\n");
2962
2963 err = pm_runtime_resume_and_get(&bp->pdev->dev);
2964 if (err < 0)
2965 return err;
2966
2967 /* RX buffers initialization */
2968 macb_init_rx_buffer_size(bp, bufsz);
2969
2970 err = macb_alloc_consistent(bp);
2971 if (err) {
2972 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2973 err);
2974 goto pm_exit;
2975 }
2976
2977 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2978 napi_enable(&queue->napi_rx);
2979 napi_enable(&queue->napi_tx);
2980 }
2981
2982 macb_init_hw(bp);
2983
2984 err = phy_power_on(bp->sgmii_phy);
2985 if (err)
2986 goto reset_hw;
2987
2988 err = macb_phylink_connect(bp);
2989 if (err)
2990 goto phy_off;
2991
2992 netif_tx_start_all_queues(dev);
2993
2994 if (bp->ptp_info)
2995 bp->ptp_info->ptp_init(dev);
2996
2997 return 0;
2998
2999 phy_off:
3000 phy_power_off(bp->sgmii_phy);
3001
3002 reset_hw:
3003 macb_reset_hw(bp);
3004 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3005 napi_disable(&queue->napi_rx);
3006 napi_disable(&queue->napi_tx);
3007 }
3008 macb_free_consistent(bp);
3009 pm_exit:
3010 pm_runtime_put_sync(&bp->pdev->dev);
3011 return err;
3012 }
3013
macb_close(struct net_device * dev)3014 static int macb_close(struct net_device *dev)
3015 {
3016 struct macb *bp = netdev_priv(dev);
3017 struct macb_queue *queue;
3018 unsigned long flags;
3019 unsigned int q;
3020
3021 netif_tx_stop_all_queues(dev);
3022
3023 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3024 napi_disable(&queue->napi_rx);
3025 napi_disable(&queue->napi_tx);
3026 }
3027
3028 phylink_stop(bp->phylink);
3029 phylink_disconnect_phy(bp->phylink);
3030
3031 phy_power_off(bp->sgmii_phy);
3032
3033 spin_lock_irqsave(&bp->lock, flags);
3034 macb_reset_hw(bp);
3035 netif_carrier_off(dev);
3036 spin_unlock_irqrestore(&bp->lock, flags);
3037
3038 macb_free_consistent(bp);
3039
3040 if (bp->ptp_info)
3041 bp->ptp_info->ptp_remove(dev);
3042
3043 pm_runtime_put(&bp->pdev->dev);
3044
3045 return 0;
3046 }
3047
macb_change_mtu(struct net_device * dev,int new_mtu)3048 static int macb_change_mtu(struct net_device *dev, int new_mtu)
3049 {
3050 if (netif_running(dev))
3051 return -EBUSY;
3052
3053 WRITE_ONCE(dev->mtu, new_mtu);
3054
3055 return 0;
3056 }
3057
macb_set_mac_addr(struct net_device * dev,void * addr)3058 static int macb_set_mac_addr(struct net_device *dev, void *addr)
3059 {
3060 int err;
3061
3062 err = eth_mac_addr(dev, addr);
3063 if (err < 0)
3064 return err;
3065
3066 macb_set_hwaddr(netdev_priv(dev));
3067 return 0;
3068 }
3069
gem_update_stats(struct macb * bp)3070 static void gem_update_stats(struct macb *bp)
3071 {
3072 struct macb_queue *queue;
3073 unsigned int i, q, idx;
3074 unsigned long *stat;
3075
3076 u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
3077
3078 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
3079 u32 offset = gem_statistics[i].offset;
3080 u64 val = bp->macb_reg_readl(bp, offset);
3081
3082 bp->ethtool_stats[i] += val;
3083 *p += val;
3084
3085 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
3086 /* Add GEM_OCTTXH, GEM_OCTRXH */
3087 val = bp->macb_reg_readl(bp, offset + 4);
3088 bp->ethtool_stats[i] += ((u64)val) << 32;
3089 *(++p) += val;
3090 }
3091 }
3092
3093 idx = GEM_STATS_LEN;
3094 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
3095 for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
3096 bp->ethtool_stats[idx++] = *stat;
3097 }
3098
gem_get_stats(struct macb * bp)3099 static struct net_device_stats *gem_get_stats(struct macb *bp)
3100 {
3101 struct gem_stats *hwstat = &bp->hw_stats.gem;
3102 struct net_device_stats *nstat = &bp->dev->stats;
3103
3104 if (!netif_running(bp->dev))
3105 return nstat;
3106
3107 spin_lock_irq(&bp->stats_lock);
3108 gem_update_stats(bp);
3109
3110 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
3111 hwstat->rx_alignment_errors +
3112 hwstat->rx_resource_errors +
3113 hwstat->rx_overruns +
3114 hwstat->rx_oversize_frames +
3115 hwstat->rx_jabbers +
3116 hwstat->rx_undersized_frames +
3117 hwstat->rx_length_field_frame_errors);
3118 nstat->tx_errors = (hwstat->tx_late_collisions +
3119 hwstat->tx_excessive_collisions +
3120 hwstat->tx_underrun +
3121 hwstat->tx_carrier_sense_errors);
3122 nstat->multicast = hwstat->rx_multicast_frames;
3123 nstat->collisions = (hwstat->tx_single_collision_frames +
3124 hwstat->tx_multiple_collision_frames +
3125 hwstat->tx_excessive_collisions);
3126 nstat->rx_length_errors = (hwstat->rx_oversize_frames +
3127 hwstat->rx_jabbers +
3128 hwstat->rx_undersized_frames +
3129 hwstat->rx_length_field_frame_errors);
3130 nstat->rx_over_errors = hwstat->rx_resource_errors;
3131 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
3132 nstat->rx_frame_errors = hwstat->rx_alignment_errors;
3133 nstat->rx_fifo_errors = hwstat->rx_overruns;
3134 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
3135 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
3136 nstat->tx_fifo_errors = hwstat->tx_underrun;
3137 spin_unlock_irq(&bp->stats_lock);
3138
3139 return nstat;
3140 }
3141
gem_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3142 static void gem_get_ethtool_stats(struct net_device *dev,
3143 struct ethtool_stats *stats, u64 *data)
3144 {
3145 struct macb *bp = netdev_priv(dev);
3146
3147 spin_lock_irq(&bp->stats_lock);
3148 gem_update_stats(bp);
3149 memcpy(data, &bp->ethtool_stats, sizeof(u64)
3150 * (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
3151 spin_unlock_irq(&bp->stats_lock);
3152 }
3153
gem_get_sset_count(struct net_device * dev,int sset)3154 static int gem_get_sset_count(struct net_device *dev, int sset)
3155 {
3156 struct macb *bp = netdev_priv(dev);
3157
3158 switch (sset) {
3159 case ETH_SS_STATS:
3160 return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3161 default:
3162 return -EOPNOTSUPP;
3163 }
3164 }
3165
gem_get_ethtool_strings(struct net_device * dev,u32 sset,u8 * p)3166 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3167 {
3168 char stat_string[ETH_GSTRING_LEN];
3169 struct macb *bp = netdev_priv(dev);
3170 struct macb_queue *queue;
3171 unsigned int i;
3172 unsigned int q;
3173
3174 switch (sset) {
3175 case ETH_SS_STATS:
3176 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3177 memcpy(p, gem_statistics[i].stat_string,
3178 ETH_GSTRING_LEN);
3179
3180 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3181 for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3182 snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3183 q, queue_statistics[i].stat_string);
3184 memcpy(p, stat_string, ETH_GSTRING_LEN);
3185 }
3186 }
3187 break;
3188 }
3189 }
3190
macb_get_stats(struct net_device * dev)3191 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3192 {
3193 struct macb *bp = netdev_priv(dev);
3194 struct net_device_stats *nstat = &bp->dev->stats;
3195 struct macb_stats *hwstat = &bp->hw_stats.macb;
3196
3197 if (macb_is_gem(bp))
3198 return gem_get_stats(bp);
3199
3200 /* read stats from hardware */
3201 spin_lock_irq(&bp->stats_lock);
3202 macb_update_stats(bp);
3203
3204 /* Convert HW stats into netdevice stats */
3205 nstat->rx_errors = (hwstat->rx_fcs_errors +
3206 hwstat->rx_align_errors +
3207 hwstat->rx_resource_errors +
3208 hwstat->rx_overruns +
3209 hwstat->rx_oversize_pkts +
3210 hwstat->rx_jabbers +
3211 hwstat->rx_undersize_pkts +
3212 hwstat->rx_length_mismatch);
3213 nstat->tx_errors = (hwstat->tx_late_cols +
3214 hwstat->tx_excessive_cols +
3215 hwstat->tx_underruns +
3216 hwstat->tx_carrier_errors +
3217 hwstat->sqe_test_errors);
3218 nstat->collisions = (hwstat->tx_single_cols +
3219 hwstat->tx_multiple_cols +
3220 hwstat->tx_excessive_cols);
3221 nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3222 hwstat->rx_jabbers +
3223 hwstat->rx_undersize_pkts +
3224 hwstat->rx_length_mismatch);
3225 nstat->rx_over_errors = hwstat->rx_resource_errors +
3226 hwstat->rx_overruns;
3227 nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3228 nstat->rx_frame_errors = hwstat->rx_align_errors;
3229 nstat->rx_fifo_errors = hwstat->rx_overruns;
3230 /* XXX: What does "missed" mean? */
3231 nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3232 nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3233 nstat->tx_fifo_errors = hwstat->tx_underruns;
3234 /* Don't know about heartbeat or window errors... */
3235 spin_unlock_irq(&bp->stats_lock);
3236
3237 return nstat;
3238 }
3239
macb_get_regs_len(struct net_device * netdev)3240 static int macb_get_regs_len(struct net_device *netdev)
3241 {
3242 return MACB_GREGS_NBR * sizeof(u32);
3243 }
3244
macb_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)3245 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3246 void *p)
3247 {
3248 struct macb *bp = netdev_priv(dev);
3249 unsigned int tail, head;
3250 u32 *regs_buff = p;
3251
3252 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3253 | MACB_GREGS_VERSION;
3254
3255 tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3256 head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3257
3258 regs_buff[0] = macb_readl(bp, NCR);
3259 regs_buff[1] = macb_or_gem_readl(bp, NCFGR);
3260 regs_buff[2] = macb_readl(bp, NSR);
3261 regs_buff[3] = macb_readl(bp, TSR);
3262 regs_buff[4] = macb_readl(bp, RBQP);
3263 regs_buff[5] = macb_readl(bp, TBQP);
3264 regs_buff[6] = macb_readl(bp, RSR);
3265 regs_buff[7] = macb_readl(bp, IMR);
3266
3267 regs_buff[8] = tail;
3268 regs_buff[9] = head;
3269 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3270 regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3271
3272 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3273 regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3274 if (macb_is_gem(bp))
3275 regs_buff[13] = gem_readl(bp, DMACFG);
3276 }
3277
macb_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3278 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3279 {
3280 struct macb *bp = netdev_priv(netdev);
3281
3282 phylink_ethtool_get_wol(bp->phylink, wol);
3283 wol->supported |= (WAKE_MAGIC | WAKE_ARP);
3284
3285 /* Add macb wolopts to phy wolopts */
3286 wol->wolopts |= bp->wolopts;
3287 }
3288
macb_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)3289 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3290 {
3291 struct macb *bp = netdev_priv(netdev);
3292 int ret;
3293
3294 /* Pass the order to phylink layer */
3295 ret = phylink_ethtool_set_wol(bp->phylink, wol);
3296 /* Don't manage WoL on MAC, if PHY set_wol() fails */
3297 if (ret && ret != -EOPNOTSUPP)
3298 return ret;
3299
3300 bp->wolopts = (wol->wolopts & WAKE_MAGIC) ? WAKE_MAGIC : 0;
3301 bp->wolopts |= (wol->wolopts & WAKE_ARP) ? WAKE_ARP : 0;
3302 bp->wol = (wol->wolopts) ? MACB_WOL_ENABLED : 0;
3303
3304 device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
3305
3306 return 0;
3307 }
3308
macb_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * kset)3309 static int macb_get_link_ksettings(struct net_device *netdev,
3310 struct ethtool_link_ksettings *kset)
3311 {
3312 struct macb *bp = netdev_priv(netdev);
3313
3314 return phylink_ethtool_ksettings_get(bp->phylink, kset);
3315 }
3316
macb_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * kset)3317 static int macb_set_link_ksettings(struct net_device *netdev,
3318 const struct ethtool_link_ksettings *kset)
3319 {
3320 struct macb *bp = netdev_priv(netdev);
3321
3322 return phylink_ethtool_ksettings_set(bp->phylink, kset);
3323 }
3324
macb_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3325 static void macb_get_ringparam(struct net_device *netdev,
3326 struct ethtool_ringparam *ring,
3327 struct kernel_ethtool_ringparam *kernel_ring,
3328 struct netlink_ext_ack *extack)
3329 {
3330 struct macb *bp = netdev_priv(netdev);
3331
3332 ring->rx_max_pending = MAX_RX_RING_SIZE;
3333 ring->tx_max_pending = MAX_TX_RING_SIZE;
3334
3335 ring->rx_pending = bp->rx_ring_size;
3336 ring->tx_pending = bp->tx_ring_size;
3337 }
3338
macb_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3339 static int macb_set_ringparam(struct net_device *netdev,
3340 struct ethtool_ringparam *ring,
3341 struct kernel_ethtool_ringparam *kernel_ring,
3342 struct netlink_ext_ack *extack)
3343 {
3344 struct macb *bp = netdev_priv(netdev);
3345 u32 new_rx_size, new_tx_size;
3346 unsigned int reset = 0;
3347
3348 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3349 return -EINVAL;
3350
3351 new_rx_size = clamp_t(u32, ring->rx_pending,
3352 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3353 new_rx_size = roundup_pow_of_two(new_rx_size);
3354
3355 new_tx_size = clamp_t(u32, ring->tx_pending,
3356 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3357 new_tx_size = roundup_pow_of_two(new_tx_size);
3358
3359 if ((new_tx_size == bp->tx_ring_size) &&
3360 (new_rx_size == bp->rx_ring_size)) {
3361 /* nothing to do */
3362 return 0;
3363 }
3364
3365 if (netif_running(bp->dev)) {
3366 reset = 1;
3367 macb_close(bp->dev);
3368 }
3369
3370 bp->rx_ring_size = new_rx_size;
3371 bp->tx_ring_size = new_tx_size;
3372
3373 if (reset)
3374 macb_open(bp->dev);
3375
3376 return 0;
3377 }
3378
3379 #ifdef CONFIG_MACB_USE_HWSTAMP
gem_get_tsu_rate(struct macb * bp)3380 static unsigned int gem_get_tsu_rate(struct macb *bp)
3381 {
3382 struct clk *tsu_clk;
3383 unsigned int tsu_rate;
3384
3385 tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3386 if (!IS_ERR(tsu_clk))
3387 tsu_rate = clk_get_rate(tsu_clk);
3388 /* try pclk instead */
3389 else if (!IS_ERR(bp->pclk)) {
3390 tsu_clk = bp->pclk;
3391 tsu_rate = clk_get_rate(tsu_clk);
3392 } else
3393 return -ENOTSUPP;
3394 return tsu_rate;
3395 }
3396
gem_get_ptp_max_adj(void)3397 static s32 gem_get_ptp_max_adj(void)
3398 {
3399 return 64000000;
3400 }
3401
gem_get_ts_info(struct net_device * dev,struct kernel_ethtool_ts_info * info)3402 static int gem_get_ts_info(struct net_device *dev,
3403 struct kernel_ethtool_ts_info *info)
3404 {
3405 struct macb *bp = netdev_priv(dev);
3406
3407 if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3408 ethtool_op_get_ts_info(dev, info);
3409 return 0;
3410 }
3411
3412 info->so_timestamping =
3413 SOF_TIMESTAMPING_TX_SOFTWARE |
3414 SOF_TIMESTAMPING_TX_HARDWARE |
3415 SOF_TIMESTAMPING_RX_HARDWARE |
3416 SOF_TIMESTAMPING_RAW_HARDWARE;
3417 info->tx_types =
3418 (1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3419 (1 << HWTSTAMP_TX_OFF) |
3420 (1 << HWTSTAMP_TX_ON);
3421 info->rx_filters =
3422 (1 << HWTSTAMP_FILTER_NONE) |
3423 (1 << HWTSTAMP_FILTER_ALL);
3424
3425 if (bp->ptp_clock)
3426 info->phc_index = ptp_clock_index(bp->ptp_clock);
3427
3428 return 0;
3429 }
3430
3431 static struct macb_ptp_info gem_ptp_info = {
3432 .ptp_init = gem_ptp_init,
3433 .ptp_remove = gem_ptp_remove,
3434 .get_ptp_max_adj = gem_get_ptp_max_adj,
3435 .get_tsu_rate = gem_get_tsu_rate,
3436 .get_ts_info = gem_get_ts_info,
3437 .get_hwtst = gem_get_hwtst,
3438 .set_hwtst = gem_set_hwtst,
3439 };
3440 #endif
3441
macb_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)3442 static int macb_get_ts_info(struct net_device *netdev,
3443 struct kernel_ethtool_ts_info *info)
3444 {
3445 struct macb *bp = netdev_priv(netdev);
3446
3447 if (bp->ptp_info)
3448 return bp->ptp_info->get_ts_info(netdev, info);
3449
3450 return ethtool_op_get_ts_info(netdev, info);
3451 }
3452
gem_enable_flow_filters(struct macb * bp,bool enable)3453 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3454 {
3455 struct net_device *netdev = bp->dev;
3456 struct ethtool_rx_fs_item *item;
3457 u32 t2_scr;
3458 int num_t2_scr;
3459
3460 if (!(netdev->features & NETIF_F_NTUPLE))
3461 return;
3462
3463 num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3464
3465 list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3466 struct ethtool_rx_flow_spec *fs = &item->fs;
3467 struct ethtool_tcpip4_spec *tp4sp_m;
3468
3469 if (fs->location >= num_t2_scr)
3470 continue;
3471
3472 t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3473
3474 /* enable/disable screener regs for the flow entry */
3475 t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3476
3477 /* only enable fields with no masking */
3478 tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3479
3480 if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3481 t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3482 else
3483 t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3484
3485 if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3486 t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3487 else
3488 t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3489
3490 if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3491 t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3492 else
3493 t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3494
3495 gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3496 }
3497 }
3498
gem_prog_cmp_regs(struct macb * bp,struct ethtool_rx_flow_spec * fs)3499 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3500 {
3501 struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3502 uint16_t index = fs->location;
3503 u32 w0, w1, t2_scr;
3504 bool cmp_a = false;
3505 bool cmp_b = false;
3506 bool cmp_c = false;
3507
3508 if (!macb_is_gem(bp))
3509 return;
3510
3511 tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3512 tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3513
3514 /* ignore field if any masking set */
3515 if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3516 /* 1st compare reg - IP source address */
3517 w0 = 0;
3518 w1 = 0;
3519 w0 = tp4sp_v->ip4src;
3520 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3521 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3522 w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3523 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3524 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3525 cmp_a = true;
3526 }
3527
3528 /* ignore field if any masking set */
3529 if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3530 /* 2nd compare reg - IP destination address */
3531 w0 = 0;
3532 w1 = 0;
3533 w0 = tp4sp_v->ip4dst;
3534 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3535 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3536 w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3537 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3538 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3539 cmp_b = true;
3540 }
3541
3542 /* ignore both port fields if masking set in both */
3543 if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3544 /* 3rd compare reg - source port, destination port */
3545 w0 = 0;
3546 w1 = 0;
3547 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3548 if (tp4sp_m->psrc == tp4sp_m->pdst) {
3549 w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3550 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3551 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3552 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3553 } else {
3554 /* only one port definition */
3555 w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3556 w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3557 if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3558 w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3559 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3560 } else { /* dst port */
3561 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3562 w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3563 }
3564 }
3565 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3566 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3567 cmp_c = true;
3568 }
3569
3570 t2_scr = 0;
3571 t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3572 t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3573 if (cmp_a)
3574 t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3575 if (cmp_b)
3576 t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3577 if (cmp_c)
3578 t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3579 gem_writel_n(bp, SCRT2, index, t2_scr);
3580 }
3581
gem_add_flow_filter(struct net_device * netdev,struct ethtool_rxnfc * cmd)3582 static int gem_add_flow_filter(struct net_device *netdev,
3583 struct ethtool_rxnfc *cmd)
3584 {
3585 struct macb *bp = netdev_priv(netdev);
3586 struct ethtool_rx_flow_spec *fs = &cmd->fs;
3587 struct ethtool_rx_fs_item *item, *newfs;
3588 unsigned long flags;
3589 int ret = -EINVAL;
3590 bool added = false;
3591
3592 newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3593 if (newfs == NULL)
3594 return -ENOMEM;
3595 memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3596
3597 netdev_dbg(netdev,
3598 "Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3599 fs->flow_type, (int)fs->ring_cookie, fs->location,
3600 htonl(fs->h_u.tcp_ip4_spec.ip4src),
3601 htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3602 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3603 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3604
3605 spin_lock_irqsave(&bp->rx_fs_lock, flags);
3606
3607 /* find correct place to add in list */
3608 list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3609 if (item->fs.location > newfs->fs.location) {
3610 list_add_tail(&newfs->list, &item->list);
3611 added = true;
3612 break;
3613 } else if (item->fs.location == fs->location) {
3614 netdev_err(netdev, "Rule not added: location %d not free!\n",
3615 fs->location);
3616 ret = -EBUSY;
3617 goto err;
3618 }
3619 }
3620 if (!added)
3621 list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3622
3623 gem_prog_cmp_regs(bp, fs);
3624 bp->rx_fs_list.count++;
3625 /* enable filtering if NTUPLE on */
3626 gem_enable_flow_filters(bp, 1);
3627
3628 spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3629 return 0;
3630
3631 err:
3632 spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3633 kfree(newfs);
3634 return ret;
3635 }
3636
gem_del_flow_filter(struct net_device * netdev,struct ethtool_rxnfc * cmd)3637 static int gem_del_flow_filter(struct net_device *netdev,
3638 struct ethtool_rxnfc *cmd)
3639 {
3640 struct macb *bp = netdev_priv(netdev);
3641 struct ethtool_rx_fs_item *item;
3642 struct ethtool_rx_flow_spec *fs;
3643 unsigned long flags;
3644
3645 spin_lock_irqsave(&bp->rx_fs_lock, flags);
3646
3647 list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3648 if (item->fs.location == cmd->fs.location) {
3649 /* disable screener regs for the flow entry */
3650 fs = &(item->fs);
3651 netdev_dbg(netdev,
3652 "Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3653 fs->flow_type, (int)fs->ring_cookie, fs->location,
3654 htonl(fs->h_u.tcp_ip4_spec.ip4src),
3655 htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3656 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3657 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3658
3659 gem_writel_n(bp, SCRT2, fs->location, 0);
3660
3661 list_del(&item->list);
3662 bp->rx_fs_list.count--;
3663 spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3664 kfree(item);
3665 return 0;
3666 }
3667 }
3668
3669 spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3670 return -EINVAL;
3671 }
3672
gem_get_flow_entry(struct net_device * netdev,struct ethtool_rxnfc * cmd)3673 static int gem_get_flow_entry(struct net_device *netdev,
3674 struct ethtool_rxnfc *cmd)
3675 {
3676 struct macb *bp = netdev_priv(netdev);
3677 struct ethtool_rx_fs_item *item;
3678
3679 list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3680 if (item->fs.location == cmd->fs.location) {
3681 memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3682 return 0;
3683 }
3684 }
3685 return -EINVAL;
3686 }
3687
gem_get_all_flow_entries(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 * rule_locs)3688 static int gem_get_all_flow_entries(struct net_device *netdev,
3689 struct ethtool_rxnfc *cmd, u32 *rule_locs)
3690 {
3691 struct macb *bp = netdev_priv(netdev);
3692 struct ethtool_rx_fs_item *item;
3693 uint32_t cnt = 0;
3694
3695 list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3696 if (cnt == cmd->rule_cnt)
3697 return -EMSGSIZE;
3698 rule_locs[cnt] = item->fs.location;
3699 cnt++;
3700 }
3701 cmd->data = bp->max_tuples;
3702 cmd->rule_cnt = cnt;
3703
3704 return 0;
3705 }
3706
gem_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 * rule_locs)3707 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3708 u32 *rule_locs)
3709 {
3710 struct macb *bp = netdev_priv(netdev);
3711 int ret = 0;
3712
3713 switch (cmd->cmd) {
3714 case ETHTOOL_GRXRINGS:
3715 cmd->data = bp->num_queues;
3716 break;
3717 case ETHTOOL_GRXCLSRLCNT:
3718 cmd->rule_cnt = bp->rx_fs_list.count;
3719 break;
3720 case ETHTOOL_GRXCLSRULE:
3721 ret = gem_get_flow_entry(netdev, cmd);
3722 break;
3723 case ETHTOOL_GRXCLSRLALL:
3724 ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3725 break;
3726 default:
3727 netdev_err(netdev,
3728 "Command parameter %d is not supported\n", cmd->cmd);
3729 ret = -EOPNOTSUPP;
3730 }
3731
3732 return ret;
3733 }
3734
gem_set_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd)3735 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3736 {
3737 struct macb *bp = netdev_priv(netdev);
3738 int ret;
3739
3740 switch (cmd->cmd) {
3741 case ETHTOOL_SRXCLSRLINS:
3742 if ((cmd->fs.location >= bp->max_tuples)
3743 || (cmd->fs.ring_cookie >= bp->num_queues)) {
3744 ret = -EINVAL;
3745 break;
3746 }
3747 ret = gem_add_flow_filter(netdev, cmd);
3748 break;
3749 case ETHTOOL_SRXCLSRLDEL:
3750 ret = gem_del_flow_filter(netdev, cmd);
3751 break;
3752 default:
3753 netdev_err(netdev,
3754 "Command parameter %d is not supported\n", cmd->cmd);
3755 ret = -EOPNOTSUPP;
3756 }
3757
3758 return ret;
3759 }
3760
3761 static const struct ethtool_ops macb_ethtool_ops = {
3762 .get_regs_len = macb_get_regs_len,
3763 .get_regs = macb_get_regs,
3764 .get_link = ethtool_op_get_link,
3765 .get_ts_info = ethtool_op_get_ts_info,
3766 .get_wol = macb_get_wol,
3767 .set_wol = macb_set_wol,
3768 .get_link_ksettings = macb_get_link_ksettings,
3769 .set_link_ksettings = macb_set_link_ksettings,
3770 .get_ringparam = macb_get_ringparam,
3771 .set_ringparam = macb_set_ringparam,
3772 };
3773
3774 static const struct ethtool_ops gem_ethtool_ops = {
3775 .get_regs_len = macb_get_regs_len,
3776 .get_regs = macb_get_regs,
3777 .get_wol = macb_get_wol,
3778 .set_wol = macb_set_wol,
3779 .get_link = ethtool_op_get_link,
3780 .get_ts_info = macb_get_ts_info,
3781 .get_ethtool_stats = gem_get_ethtool_stats,
3782 .get_strings = gem_get_ethtool_strings,
3783 .get_sset_count = gem_get_sset_count,
3784 .get_link_ksettings = macb_get_link_ksettings,
3785 .set_link_ksettings = macb_set_link_ksettings,
3786 .get_ringparam = macb_get_ringparam,
3787 .set_ringparam = macb_set_ringparam,
3788 .get_rxnfc = gem_get_rxnfc,
3789 .set_rxnfc = gem_set_rxnfc,
3790 };
3791
macb_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3792 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3793 {
3794 struct macb *bp = netdev_priv(dev);
3795
3796 if (!netif_running(dev))
3797 return -EINVAL;
3798
3799 return phylink_mii_ioctl(bp->phylink, rq, cmd);
3800 }
3801
macb_hwtstamp_get(struct net_device * dev,struct kernel_hwtstamp_config * cfg)3802 static int macb_hwtstamp_get(struct net_device *dev,
3803 struct kernel_hwtstamp_config *cfg)
3804 {
3805 struct macb *bp = netdev_priv(dev);
3806
3807 if (!netif_running(dev))
3808 return -EINVAL;
3809
3810 if (!bp->ptp_info)
3811 return -EOPNOTSUPP;
3812
3813 return bp->ptp_info->get_hwtst(dev, cfg);
3814 }
3815
macb_hwtstamp_set(struct net_device * dev,struct kernel_hwtstamp_config * cfg,struct netlink_ext_ack * extack)3816 static int macb_hwtstamp_set(struct net_device *dev,
3817 struct kernel_hwtstamp_config *cfg,
3818 struct netlink_ext_ack *extack)
3819 {
3820 struct macb *bp = netdev_priv(dev);
3821
3822 if (!netif_running(dev))
3823 return -EINVAL;
3824
3825 if (!bp->ptp_info)
3826 return -EOPNOTSUPP;
3827
3828 return bp->ptp_info->set_hwtst(dev, cfg, extack);
3829 }
3830
macb_set_txcsum_feature(struct macb * bp,netdev_features_t features)3831 static inline void macb_set_txcsum_feature(struct macb *bp,
3832 netdev_features_t features)
3833 {
3834 u32 val;
3835
3836 if (!macb_is_gem(bp))
3837 return;
3838
3839 val = gem_readl(bp, DMACFG);
3840 if (features & NETIF_F_HW_CSUM)
3841 val |= GEM_BIT(TXCOEN);
3842 else
3843 val &= ~GEM_BIT(TXCOEN);
3844
3845 gem_writel(bp, DMACFG, val);
3846 }
3847
macb_set_rxcsum_feature(struct macb * bp,netdev_features_t features)3848 static inline void macb_set_rxcsum_feature(struct macb *bp,
3849 netdev_features_t features)
3850 {
3851 struct net_device *netdev = bp->dev;
3852 u32 val;
3853
3854 if (!macb_is_gem(bp))
3855 return;
3856
3857 val = gem_readl(bp, NCFGR);
3858 if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3859 val |= GEM_BIT(RXCOEN);
3860 else
3861 val &= ~GEM_BIT(RXCOEN);
3862
3863 gem_writel(bp, NCFGR, val);
3864 }
3865
macb_set_rxflow_feature(struct macb * bp,netdev_features_t features)3866 static inline void macb_set_rxflow_feature(struct macb *bp,
3867 netdev_features_t features)
3868 {
3869 if (!macb_is_gem(bp))
3870 return;
3871
3872 gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3873 }
3874
macb_set_features(struct net_device * netdev,netdev_features_t features)3875 static int macb_set_features(struct net_device *netdev,
3876 netdev_features_t features)
3877 {
3878 struct macb *bp = netdev_priv(netdev);
3879 netdev_features_t changed = features ^ netdev->features;
3880
3881 /* TX checksum offload */
3882 if (changed & NETIF_F_HW_CSUM)
3883 macb_set_txcsum_feature(bp, features);
3884
3885 /* RX checksum offload */
3886 if (changed & NETIF_F_RXCSUM)
3887 macb_set_rxcsum_feature(bp, features);
3888
3889 /* RX Flow Filters */
3890 if (changed & NETIF_F_NTUPLE)
3891 macb_set_rxflow_feature(bp, features);
3892
3893 return 0;
3894 }
3895
macb_restore_features(struct macb * bp)3896 static void macb_restore_features(struct macb *bp)
3897 {
3898 struct net_device *netdev = bp->dev;
3899 netdev_features_t features = netdev->features;
3900 struct ethtool_rx_fs_item *item;
3901
3902 /* TX checksum offload */
3903 macb_set_txcsum_feature(bp, features);
3904
3905 /* RX checksum offload */
3906 macb_set_rxcsum_feature(bp, features);
3907
3908 /* RX Flow Filters */
3909 list_for_each_entry(item, &bp->rx_fs_list.list, list)
3910 gem_prog_cmp_regs(bp, &item->fs);
3911
3912 macb_set_rxflow_feature(bp, features);
3913 }
3914
3915 static const struct net_device_ops macb_netdev_ops = {
3916 .ndo_open = macb_open,
3917 .ndo_stop = macb_close,
3918 .ndo_start_xmit = macb_start_xmit,
3919 .ndo_set_rx_mode = macb_set_rx_mode,
3920 .ndo_get_stats = macb_get_stats,
3921 .ndo_eth_ioctl = macb_ioctl,
3922 .ndo_validate_addr = eth_validate_addr,
3923 .ndo_change_mtu = macb_change_mtu,
3924 .ndo_set_mac_address = macb_set_mac_addr,
3925 #ifdef CONFIG_NET_POLL_CONTROLLER
3926 .ndo_poll_controller = macb_poll_controller,
3927 #endif
3928 .ndo_set_features = macb_set_features,
3929 .ndo_features_check = macb_features_check,
3930 .ndo_hwtstamp_set = macb_hwtstamp_set,
3931 .ndo_hwtstamp_get = macb_hwtstamp_get,
3932 };
3933
3934 /* Configure peripheral capabilities according to device tree
3935 * and integration options used
3936 */
macb_configure_caps(struct macb * bp,const struct macb_config * dt_conf)3937 static void macb_configure_caps(struct macb *bp,
3938 const struct macb_config *dt_conf)
3939 {
3940 u32 dcfg;
3941
3942 if (dt_conf)
3943 bp->caps = dt_conf->caps;
3944
3945 if (hw_is_gem(bp->regs, bp->native_io)) {
3946 bp->caps |= MACB_CAPS_MACB_IS_GEM;
3947
3948 dcfg = gem_readl(bp, DCFG1);
3949 if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3950 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3951 if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3952 bp->caps |= MACB_CAPS_PCS;
3953 dcfg = gem_readl(bp, DCFG12);
3954 if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3955 bp->caps |= MACB_CAPS_HIGH_SPEED;
3956 dcfg = gem_readl(bp, DCFG2);
3957 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3958 bp->caps |= MACB_CAPS_FIFO_MODE;
3959 if (gem_has_ptp(bp)) {
3960 if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3961 dev_err(&bp->pdev->dev,
3962 "GEM doesn't support hardware ptp.\n");
3963 else {
3964 #ifdef CONFIG_MACB_USE_HWSTAMP
3965 bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3966 bp->ptp_info = &gem_ptp_info;
3967 #endif
3968 }
3969 }
3970 }
3971
3972 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3973 }
3974
macb_probe_queues(void __iomem * mem,bool native_io,unsigned int * queue_mask,unsigned int * num_queues)3975 static void macb_probe_queues(void __iomem *mem,
3976 bool native_io,
3977 unsigned int *queue_mask,
3978 unsigned int *num_queues)
3979 {
3980 *queue_mask = 0x1;
3981 *num_queues = 1;
3982
3983 /* is it macb or gem ?
3984 *
3985 * We need to read directly from the hardware here because
3986 * we are early in the probe process and don't have the
3987 * MACB_CAPS_MACB_IS_GEM flag positioned
3988 */
3989 if (!hw_is_gem(mem, native_io))
3990 return;
3991
3992 /* bit 0 is never set but queue 0 always exists */
3993 *queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
3994 *num_queues = hweight32(*queue_mask);
3995 }
3996
macb_clks_disable(struct clk * pclk,struct clk * hclk,struct clk * tx_clk,struct clk * rx_clk,struct clk * tsu_clk)3997 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
3998 struct clk *rx_clk, struct clk *tsu_clk)
3999 {
4000 struct clk_bulk_data clks[] = {
4001 { .clk = tsu_clk, },
4002 { .clk = rx_clk, },
4003 { .clk = pclk, },
4004 { .clk = hclk, },
4005 { .clk = tx_clk },
4006 };
4007
4008 clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
4009 }
4010
macb_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk,struct clk ** rx_clk,struct clk ** tsu_clk)4011 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
4012 struct clk **hclk, struct clk **tx_clk,
4013 struct clk **rx_clk, struct clk **tsu_clk)
4014 {
4015 struct macb_platform_data *pdata;
4016 int err;
4017
4018 pdata = dev_get_platdata(&pdev->dev);
4019 if (pdata) {
4020 *pclk = pdata->pclk;
4021 *hclk = pdata->hclk;
4022 } else {
4023 *pclk = devm_clk_get(&pdev->dev, "pclk");
4024 *hclk = devm_clk_get(&pdev->dev, "hclk");
4025 }
4026
4027 if (IS_ERR_OR_NULL(*pclk))
4028 return dev_err_probe(&pdev->dev,
4029 IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
4030 "failed to get pclk\n");
4031
4032 if (IS_ERR_OR_NULL(*hclk))
4033 return dev_err_probe(&pdev->dev,
4034 IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
4035 "failed to get hclk\n");
4036
4037 *tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
4038 if (IS_ERR(*tx_clk))
4039 return PTR_ERR(*tx_clk);
4040
4041 *rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
4042 if (IS_ERR(*rx_clk))
4043 return PTR_ERR(*rx_clk);
4044
4045 *tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
4046 if (IS_ERR(*tsu_clk))
4047 return PTR_ERR(*tsu_clk);
4048
4049 err = clk_prepare_enable(*pclk);
4050 if (err) {
4051 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4052 return err;
4053 }
4054
4055 err = clk_prepare_enable(*hclk);
4056 if (err) {
4057 dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
4058 goto err_disable_pclk;
4059 }
4060
4061 err = clk_prepare_enable(*tx_clk);
4062 if (err) {
4063 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
4064 goto err_disable_hclk;
4065 }
4066
4067 err = clk_prepare_enable(*rx_clk);
4068 if (err) {
4069 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
4070 goto err_disable_txclk;
4071 }
4072
4073 err = clk_prepare_enable(*tsu_clk);
4074 if (err) {
4075 dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
4076 goto err_disable_rxclk;
4077 }
4078
4079 return 0;
4080
4081 err_disable_rxclk:
4082 clk_disable_unprepare(*rx_clk);
4083
4084 err_disable_txclk:
4085 clk_disable_unprepare(*tx_clk);
4086
4087 err_disable_hclk:
4088 clk_disable_unprepare(*hclk);
4089
4090 err_disable_pclk:
4091 clk_disable_unprepare(*pclk);
4092
4093 return err;
4094 }
4095
macb_init(struct platform_device * pdev)4096 static int macb_init(struct platform_device *pdev)
4097 {
4098 struct net_device *dev = platform_get_drvdata(pdev);
4099 unsigned int hw_q, q;
4100 struct macb *bp = netdev_priv(dev);
4101 struct macb_queue *queue;
4102 int err;
4103 u32 val, reg;
4104
4105 bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
4106 bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
4107
4108 /* set the queue register mapping once for all: queue0 has a special
4109 * register mapping but we don't want to test the queue index then
4110 * compute the corresponding register offset at run time.
4111 */
4112 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
4113 if (!(bp->queue_mask & (1 << hw_q)))
4114 continue;
4115
4116 queue = &bp->queues[q];
4117 queue->bp = bp;
4118 spin_lock_init(&queue->tx_ptr_lock);
4119 netif_napi_add(dev, &queue->napi_rx, macb_rx_poll);
4120 netif_napi_add(dev, &queue->napi_tx, macb_tx_poll);
4121 if (hw_q) {
4122 queue->ISR = GEM_ISR(hw_q - 1);
4123 queue->IER = GEM_IER(hw_q - 1);
4124 queue->IDR = GEM_IDR(hw_q - 1);
4125 queue->IMR = GEM_IMR(hw_q - 1);
4126 queue->TBQP = GEM_TBQP(hw_q - 1);
4127 queue->RBQP = GEM_RBQP(hw_q - 1);
4128 queue->RBQS = GEM_RBQS(hw_q - 1);
4129 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4130 if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4131 queue->TBQPH = GEM_TBQPH(hw_q - 1);
4132 queue->RBQPH = GEM_RBQPH(hw_q - 1);
4133 }
4134 #endif
4135 } else {
4136 /* queue0 uses legacy registers */
4137 queue->ISR = MACB_ISR;
4138 queue->IER = MACB_IER;
4139 queue->IDR = MACB_IDR;
4140 queue->IMR = MACB_IMR;
4141 queue->TBQP = MACB_TBQP;
4142 queue->RBQP = MACB_RBQP;
4143 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4144 if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4145 queue->TBQPH = MACB_TBQPH;
4146 queue->RBQPH = MACB_RBQPH;
4147 }
4148 #endif
4149 }
4150
4151 /* get irq: here we use the linux queue index, not the hardware
4152 * queue index. the queue irq definitions in the device tree
4153 * must remove the optional gaps that could exist in the
4154 * hardware queue mask.
4155 */
4156 queue->irq = platform_get_irq(pdev, q);
4157 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
4158 IRQF_SHARED, dev->name, queue);
4159 if (err) {
4160 dev_err(&pdev->dev,
4161 "Unable to request IRQ %d (error %d)\n",
4162 queue->irq, err);
4163 return err;
4164 }
4165
4166 INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
4167 q++;
4168 }
4169
4170 dev->netdev_ops = &macb_netdev_ops;
4171
4172 /* setup appropriated routines according to adapter type */
4173 if (macb_is_gem(bp)) {
4174 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4175 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4176 bp->macbgem_ops.mog_init_rings = gem_init_rings;
4177 bp->macbgem_ops.mog_rx = gem_rx;
4178 dev->ethtool_ops = &gem_ethtool_ops;
4179 } else {
4180 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4181 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4182 bp->macbgem_ops.mog_init_rings = macb_init_rings;
4183 bp->macbgem_ops.mog_rx = macb_rx;
4184 dev->ethtool_ops = &macb_ethtool_ops;
4185 }
4186
4187 netdev_sw_irq_coalesce_default_on(dev);
4188
4189 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4190
4191 /* Set features */
4192 dev->hw_features = NETIF_F_SG;
4193
4194 /* Check LSO capability */
4195 if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4196 dev->hw_features |= MACB_NETIF_LSO;
4197
4198 /* Checksum offload is only available on gem with packet buffer */
4199 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4200 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4201 if (bp->caps & MACB_CAPS_SG_DISABLED)
4202 dev->hw_features &= ~NETIF_F_SG;
4203 dev->features = dev->hw_features;
4204
4205 /* Check RX Flow Filters support.
4206 * Max Rx flows set by availability of screeners & compare regs:
4207 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4208 */
4209 reg = gem_readl(bp, DCFG8);
4210 bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4211 GEM_BFEXT(T2SCR, reg));
4212 INIT_LIST_HEAD(&bp->rx_fs_list.list);
4213 if (bp->max_tuples > 0) {
4214 /* also needs one ethtype match to check IPv4 */
4215 if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4216 /* program this reg now */
4217 reg = 0;
4218 reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4219 gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4220 /* Filtering is supported in hw but don't enable it in kernel now */
4221 dev->hw_features |= NETIF_F_NTUPLE;
4222 /* init Rx flow definitions */
4223 bp->rx_fs_list.count = 0;
4224 spin_lock_init(&bp->rx_fs_lock);
4225 } else
4226 bp->max_tuples = 0;
4227 }
4228
4229 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4230 val = 0;
4231 if (phy_interface_mode_is_rgmii(bp->phy_interface))
4232 val = bp->usrio->rgmii;
4233 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4234 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4235 val = bp->usrio->rmii;
4236 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4237 val = bp->usrio->mii;
4238
4239 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4240 val |= bp->usrio->refclk;
4241
4242 macb_or_gem_writel(bp, USRIO, val);
4243 }
4244
4245 /* Set MII management clock divider */
4246 val = macb_mdc_clk_div(bp);
4247 val |= macb_dbw(bp);
4248 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4249 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4250 macb_writel(bp, NCFGR, val);
4251
4252 return 0;
4253 }
4254
4255 static const struct macb_usrio_config macb_default_usrio = {
4256 .mii = MACB_BIT(MII),
4257 .rmii = MACB_BIT(RMII),
4258 .rgmii = GEM_BIT(RGMII),
4259 .refclk = MACB_BIT(CLKEN),
4260 };
4261
4262 #if defined(CONFIG_OF)
4263 /* 1518 rounded up */
4264 #define AT91ETHER_MAX_RBUFF_SZ 0x600
4265 /* max number of receive buffers */
4266 #define AT91ETHER_MAX_RX_DESCR 9
4267
4268 static struct sifive_fu540_macb_mgmt *mgmt;
4269
at91ether_alloc_coherent(struct macb * lp)4270 static int at91ether_alloc_coherent(struct macb *lp)
4271 {
4272 struct macb_queue *q = &lp->queues[0];
4273
4274 q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4275 (AT91ETHER_MAX_RX_DESCR *
4276 macb_dma_desc_get_size(lp)),
4277 &q->rx_ring_dma, GFP_KERNEL);
4278 if (!q->rx_ring)
4279 return -ENOMEM;
4280
4281 q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4282 AT91ETHER_MAX_RX_DESCR *
4283 AT91ETHER_MAX_RBUFF_SZ,
4284 &q->rx_buffers_dma, GFP_KERNEL);
4285 if (!q->rx_buffers) {
4286 dma_free_coherent(&lp->pdev->dev,
4287 AT91ETHER_MAX_RX_DESCR *
4288 macb_dma_desc_get_size(lp),
4289 q->rx_ring, q->rx_ring_dma);
4290 q->rx_ring = NULL;
4291 return -ENOMEM;
4292 }
4293
4294 return 0;
4295 }
4296
at91ether_free_coherent(struct macb * lp)4297 static void at91ether_free_coherent(struct macb *lp)
4298 {
4299 struct macb_queue *q = &lp->queues[0];
4300
4301 if (q->rx_ring) {
4302 dma_free_coherent(&lp->pdev->dev,
4303 AT91ETHER_MAX_RX_DESCR *
4304 macb_dma_desc_get_size(lp),
4305 q->rx_ring, q->rx_ring_dma);
4306 q->rx_ring = NULL;
4307 }
4308
4309 if (q->rx_buffers) {
4310 dma_free_coherent(&lp->pdev->dev,
4311 AT91ETHER_MAX_RX_DESCR *
4312 AT91ETHER_MAX_RBUFF_SZ,
4313 q->rx_buffers, q->rx_buffers_dma);
4314 q->rx_buffers = NULL;
4315 }
4316 }
4317
4318 /* Initialize and start the Receiver and Transmit subsystems */
at91ether_start(struct macb * lp)4319 static int at91ether_start(struct macb *lp)
4320 {
4321 struct macb_queue *q = &lp->queues[0];
4322 struct macb_dma_desc *desc;
4323 dma_addr_t addr;
4324 u32 ctl;
4325 int i, ret;
4326
4327 ret = at91ether_alloc_coherent(lp);
4328 if (ret)
4329 return ret;
4330
4331 addr = q->rx_buffers_dma;
4332 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4333 desc = macb_rx_desc(q, i);
4334 macb_set_addr(lp, desc, addr);
4335 desc->ctrl = 0;
4336 addr += AT91ETHER_MAX_RBUFF_SZ;
4337 }
4338
4339 /* Set the Wrap bit on the last descriptor */
4340 desc->addr |= MACB_BIT(RX_WRAP);
4341
4342 /* Reset buffer index */
4343 q->rx_tail = 0;
4344
4345 /* Program address of descriptor list in Rx Buffer Queue register */
4346 macb_writel(lp, RBQP, q->rx_ring_dma);
4347
4348 /* Enable Receive and Transmit */
4349 ctl = macb_readl(lp, NCR);
4350 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4351
4352 /* Enable MAC interrupts */
4353 macb_writel(lp, IER, MACB_BIT(RCOMP) |
4354 MACB_BIT(RXUBR) |
4355 MACB_BIT(ISR_TUND) |
4356 MACB_BIT(ISR_RLE) |
4357 MACB_BIT(TCOMP) |
4358 MACB_BIT(ISR_ROVR) |
4359 MACB_BIT(HRESP));
4360
4361 return 0;
4362 }
4363
at91ether_stop(struct macb * lp)4364 static void at91ether_stop(struct macb *lp)
4365 {
4366 u32 ctl;
4367
4368 /* Disable MAC interrupts */
4369 macb_writel(lp, IDR, MACB_BIT(RCOMP) |
4370 MACB_BIT(RXUBR) |
4371 MACB_BIT(ISR_TUND) |
4372 MACB_BIT(ISR_RLE) |
4373 MACB_BIT(TCOMP) |
4374 MACB_BIT(ISR_ROVR) |
4375 MACB_BIT(HRESP));
4376
4377 /* Disable Receiver and Transmitter */
4378 ctl = macb_readl(lp, NCR);
4379 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4380
4381 /* Free resources. */
4382 at91ether_free_coherent(lp);
4383 }
4384
4385 /* Open the ethernet interface */
at91ether_open(struct net_device * dev)4386 static int at91ether_open(struct net_device *dev)
4387 {
4388 struct macb *lp = netdev_priv(dev);
4389 u32 ctl;
4390 int ret;
4391
4392 ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4393 if (ret < 0)
4394 return ret;
4395
4396 /* Clear internal statistics */
4397 ctl = macb_readl(lp, NCR);
4398 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4399
4400 macb_set_hwaddr(lp);
4401
4402 ret = at91ether_start(lp);
4403 if (ret)
4404 goto pm_exit;
4405
4406 ret = macb_phylink_connect(lp);
4407 if (ret)
4408 goto stop;
4409
4410 netif_start_queue(dev);
4411
4412 return 0;
4413
4414 stop:
4415 at91ether_stop(lp);
4416 pm_exit:
4417 pm_runtime_put_sync(&lp->pdev->dev);
4418 return ret;
4419 }
4420
4421 /* Close the interface */
at91ether_close(struct net_device * dev)4422 static int at91ether_close(struct net_device *dev)
4423 {
4424 struct macb *lp = netdev_priv(dev);
4425
4426 netif_stop_queue(dev);
4427
4428 phylink_stop(lp->phylink);
4429 phylink_disconnect_phy(lp->phylink);
4430
4431 at91ether_stop(lp);
4432
4433 return pm_runtime_put(&lp->pdev->dev);
4434 }
4435
4436 /* Transmit packet */
at91ether_start_xmit(struct sk_buff * skb,struct net_device * dev)4437 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4438 struct net_device *dev)
4439 {
4440 struct macb *lp = netdev_priv(dev);
4441
4442 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4443 int desc = 0;
4444
4445 netif_stop_queue(dev);
4446
4447 /* Store packet information (to free when Tx completed) */
4448 lp->rm9200_txq[desc].skb = skb;
4449 lp->rm9200_txq[desc].size = skb->len;
4450 lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4451 skb->len, DMA_TO_DEVICE);
4452 if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4453 dev_kfree_skb_any(skb);
4454 dev->stats.tx_dropped++;
4455 netdev_err(dev, "%s: DMA mapping error\n", __func__);
4456 return NETDEV_TX_OK;
4457 }
4458
4459 /* Set address of the data in the Transmit Address register */
4460 macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4461 /* Set length of the packet in the Transmit Control register */
4462 macb_writel(lp, TCR, skb->len);
4463
4464 } else {
4465 netdev_err(dev, "%s called, but device is busy!\n", __func__);
4466 return NETDEV_TX_BUSY;
4467 }
4468
4469 return NETDEV_TX_OK;
4470 }
4471
4472 /* Extract received frame from buffer descriptors and sent to upper layers.
4473 * (Called from interrupt context)
4474 */
at91ether_rx(struct net_device * dev)4475 static void at91ether_rx(struct net_device *dev)
4476 {
4477 struct macb *lp = netdev_priv(dev);
4478 struct macb_queue *q = &lp->queues[0];
4479 struct macb_dma_desc *desc;
4480 unsigned char *p_recv;
4481 struct sk_buff *skb;
4482 unsigned int pktlen;
4483
4484 desc = macb_rx_desc(q, q->rx_tail);
4485 while (desc->addr & MACB_BIT(RX_USED)) {
4486 p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4487 pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4488 skb = netdev_alloc_skb(dev, pktlen + 2);
4489 if (skb) {
4490 skb_reserve(skb, 2);
4491 skb_put_data(skb, p_recv, pktlen);
4492
4493 skb->protocol = eth_type_trans(skb, dev);
4494 dev->stats.rx_packets++;
4495 dev->stats.rx_bytes += pktlen;
4496 netif_rx(skb);
4497 } else {
4498 dev->stats.rx_dropped++;
4499 }
4500
4501 if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4502 dev->stats.multicast++;
4503
4504 /* reset ownership bit */
4505 desc->addr &= ~MACB_BIT(RX_USED);
4506
4507 /* wrap after last buffer */
4508 if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4509 q->rx_tail = 0;
4510 else
4511 q->rx_tail++;
4512
4513 desc = macb_rx_desc(q, q->rx_tail);
4514 }
4515 }
4516
4517 /* MAC interrupt handler */
at91ether_interrupt(int irq,void * dev_id)4518 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4519 {
4520 struct net_device *dev = dev_id;
4521 struct macb *lp = netdev_priv(dev);
4522 u32 intstatus, ctl;
4523 unsigned int desc;
4524
4525 /* MAC Interrupt Status register indicates what interrupts are pending.
4526 * It is automatically cleared once read.
4527 */
4528 intstatus = macb_readl(lp, ISR);
4529
4530 /* Receive complete */
4531 if (intstatus & MACB_BIT(RCOMP))
4532 at91ether_rx(dev);
4533
4534 /* Transmit complete */
4535 if (intstatus & MACB_BIT(TCOMP)) {
4536 /* The TCOM bit is set even if the transmission failed */
4537 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4538 dev->stats.tx_errors++;
4539
4540 desc = 0;
4541 if (lp->rm9200_txq[desc].skb) {
4542 dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4543 lp->rm9200_txq[desc].skb = NULL;
4544 dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4545 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4546 dev->stats.tx_packets++;
4547 dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4548 }
4549 netif_wake_queue(dev);
4550 }
4551
4552 /* Work-around for EMAC Errata section 41.3.1 */
4553 if (intstatus & MACB_BIT(RXUBR)) {
4554 ctl = macb_readl(lp, NCR);
4555 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4556 wmb();
4557 macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4558 }
4559
4560 if (intstatus & MACB_BIT(ISR_ROVR))
4561 netdev_err(dev, "ROVR error\n");
4562
4563 return IRQ_HANDLED;
4564 }
4565
4566 #ifdef CONFIG_NET_POLL_CONTROLLER
at91ether_poll_controller(struct net_device * dev)4567 static void at91ether_poll_controller(struct net_device *dev)
4568 {
4569 unsigned long flags;
4570
4571 local_irq_save(flags);
4572 at91ether_interrupt(dev->irq, dev);
4573 local_irq_restore(flags);
4574 }
4575 #endif
4576
4577 static const struct net_device_ops at91ether_netdev_ops = {
4578 .ndo_open = at91ether_open,
4579 .ndo_stop = at91ether_close,
4580 .ndo_start_xmit = at91ether_start_xmit,
4581 .ndo_get_stats = macb_get_stats,
4582 .ndo_set_rx_mode = macb_set_rx_mode,
4583 .ndo_set_mac_address = eth_mac_addr,
4584 .ndo_eth_ioctl = macb_ioctl,
4585 .ndo_validate_addr = eth_validate_addr,
4586 #ifdef CONFIG_NET_POLL_CONTROLLER
4587 .ndo_poll_controller = at91ether_poll_controller,
4588 #endif
4589 .ndo_hwtstamp_set = macb_hwtstamp_set,
4590 .ndo_hwtstamp_get = macb_hwtstamp_get,
4591 };
4592
at91ether_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk,struct clk ** rx_clk,struct clk ** tsu_clk)4593 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4594 struct clk **hclk, struct clk **tx_clk,
4595 struct clk **rx_clk, struct clk **tsu_clk)
4596 {
4597 int err;
4598
4599 *hclk = NULL;
4600 *tx_clk = NULL;
4601 *rx_clk = NULL;
4602 *tsu_clk = NULL;
4603
4604 *pclk = devm_clk_get(&pdev->dev, "ether_clk");
4605 if (IS_ERR(*pclk))
4606 return PTR_ERR(*pclk);
4607
4608 err = clk_prepare_enable(*pclk);
4609 if (err) {
4610 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4611 return err;
4612 }
4613
4614 return 0;
4615 }
4616
at91ether_init(struct platform_device * pdev)4617 static int at91ether_init(struct platform_device *pdev)
4618 {
4619 struct net_device *dev = platform_get_drvdata(pdev);
4620 struct macb *bp = netdev_priv(dev);
4621 int err;
4622
4623 bp->queues[0].bp = bp;
4624
4625 dev->netdev_ops = &at91ether_netdev_ops;
4626 dev->ethtool_ops = &macb_ethtool_ops;
4627
4628 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4629 0, dev->name, dev);
4630 if (err)
4631 return err;
4632
4633 macb_writel(bp, NCR, 0);
4634
4635 macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4636
4637 return 0;
4638 }
4639
fu540_macb_tx_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)4640 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4641 unsigned long parent_rate)
4642 {
4643 return mgmt->rate;
4644 }
4645
fu540_macb_tx_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)4646 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4647 unsigned long *parent_rate)
4648 {
4649 if (WARN_ON(rate < 2500000))
4650 return 2500000;
4651 else if (rate == 2500000)
4652 return 2500000;
4653 else if (WARN_ON(rate < 13750000))
4654 return 2500000;
4655 else if (WARN_ON(rate < 25000000))
4656 return 25000000;
4657 else if (rate == 25000000)
4658 return 25000000;
4659 else if (WARN_ON(rate < 75000000))
4660 return 25000000;
4661 else if (WARN_ON(rate < 125000000))
4662 return 125000000;
4663 else if (rate == 125000000)
4664 return 125000000;
4665
4666 WARN_ON(rate > 125000000);
4667
4668 return 125000000;
4669 }
4670
fu540_macb_tx_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4671 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4672 unsigned long parent_rate)
4673 {
4674 rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4675 if (rate != 125000000)
4676 iowrite32(1, mgmt->reg);
4677 else
4678 iowrite32(0, mgmt->reg);
4679 mgmt->rate = rate;
4680
4681 return 0;
4682 }
4683
4684 static const struct clk_ops fu540_c000_ops = {
4685 .recalc_rate = fu540_macb_tx_recalc_rate,
4686 .round_rate = fu540_macb_tx_round_rate,
4687 .set_rate = fu540_macb_tx_set_rate,
4688 };
4689
fu540_c000_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk,struct clk ** rx_clk,struct clk ** tsu_clk)4690 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4691 struct clk **hclk, struct clk **tx_clk,
4692 struct clk **rx_clk, struct clk **tsu_clk)
4693 {
4694 struct clk_init_data init;
4695 int err = 0;
4696
4697 err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4698 if (err)
4699 return err;
4700
4701 mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4702 if (!mgmt) {
4703 err = -ENOMEM;
4704 goto err_disable_clks;
4705 }
4706
4707 init.name = "sifive-gemgxl-mgmt";
4708 init.ops = &fu540_c000_ops;
4709 init.flags = 0;
4710 init.num_parents = 0;
4711
4712 mgmt->rate = 0;
4713 mgmt->hw.init = &init;
4714
4715 *tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4716 if (IS_ERR(*tx_clk)) {
4717 err = PTR_ERR(*tx_clk);
4718 goto err_disable_clks;
4719 }
4720
4721 err = clk_prepare_enable(*tx_clk);
4722 if (err) {
4723 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4724 *tx_clk = NULL;
4725 goto err_disable_clks;
4726 } else {
4727 dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4728 }
4729
4730 return 0;
4731
4732 err_disable_clks:
4733 macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4734
4735 return err;
4736 }
4737
fu540_c000_init(struct platform_device * pdev)4738 static int fu540_c000_init(struct platform_device *pdev)
4739 {
4740 mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4741 if (IS_ERR(mgmt->reg))
4742 return PTR_ERR(mgmt->reg);
4743
4744 return macb_init(pdev);
4745 }
4746
init_reset_optional(struct platform_device * pdev)4747 static int init_reset_optional(struct platform_device *pdev)
4748 {
4749 struct net_device *dev = platform_get_drvdata(pdev);
4750 struct macb *bp = netdev_priv(dev);
4751 int ret;
4752
4753 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4754 /* Ensure PHY device used in SGMII mode is ready */
4755 bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4756
4757 if (IS_ERR(bp->sgmii_phy))
4758 return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy),
4759 "failed to get SGMII PHY\n");
4760
4761 ret = phy_init(bp->sgmii_phy);
4762 if (ret)
4763 return dev_err_probe(&pdev->dev, ret,
4764 "failed to init SGMII PHY\n");
4765
4766 ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG);
4767 if (!ret) {
4768 u32 pm_info[2];
4769
4770 ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains",
4771 pm_info, ARRAY_SIZE(pm_info));
4772 if (ret) {
4773 dev_err(&pdev->dev, "Failed to read power management information\n");
4774 goto err_out_phy_exit;
4775 }
4776 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0);
4777 if (ret)
4778 goto err_out_phy_exit;
4779
4780 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1);
4781 if (ret)
4782 goto err_out_phy_exit;
4783 }
4784
4785 }
4786
4787 /* Fully reset controller at hardware level if mapped in device tree */
4788 ret = device_reset_optional(&pdev->dev);
4789 if (ret) {
4790 phy_exit(bp->sgmii_phy);
4791 return dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4792 }
4793
4794 ret = macb_init(pdev);
4795
4796 err_out_phy_exit:
4797 if (ret)
4798 phy_exit(bp->sgmii_phy);
4799
4800 return ret;
4801 }
4802
4803 static const struct macb_usrio_config sama7g5_usrio = {
4804 .mii = 0,
4805 .rmii = 1,
4806 .rgmii = 2,
4807 .refclk = BIT(2),
4808 .hdfctlen = BIT(6),
4809 };
4810
4811 static const struct macb_config fu540_c000_config = {
4812 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4813 MACB_CAPS_GEM_HAS_PTP,
4814 .dma_burst_length = 16,
4815 .clk_init = fu540_c000_clk_init,
4816 .init = fu540_c000_init,
4817 .jumbo_max_len = 10240,
4818 .usrio = &macb_default_usrio,
4819 };
4820
4821 static const struct macb_config at91sam9260_config = {
4822 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4823 .clk_init = macb_clk_init,
4824 .init = macb_init,
4825 .usrio = &macb_default_usrio,
4826 };
4827
4828 static const struct macb_config sama5d3macb_config = {
4829 .caps = MACB_CAPS_SG_DISABLED |
4830 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4831 .clk_init = macb_clk_init,
4832 .init = macb_init,
4833 .usrio = &macb_default_usrio,
4834 };
4835
4836 static const struct macb_config pc302gem_config = {
4837 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4838 .dma_burst_length = 16,
4839 .clk_init = macb_clk_init,
4840 .init = macb_init,
4841 .usrio = &macb_default_usrio,
4842 };
4843
4844 static const struct macb_config sama5d2_config = {
4845 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4846 .dma_burst_length = 16,
4847 .clk_init = macb_clk_init,
4848 .init = macb_init,
4849 .jumbo_max_len = 10240,
4850 .usrio = &macb_default_usrio,
4851 };
4852
4853 static const struct macb_config sama5d29_config = {
4854 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4855 .dma_burst_length = 16,
4856 .clk_init = macb_clk_init,
4857 .init = macb_init,
4858 .usrio = &macb_default_usrio,
4859 };
4860
4861 static const struct macb_config sama5d3_config = {
4862 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4863 MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4864 .dma_burst_length = 16,
4865 .clk_init = macb_clk_init,
4866 .init = macb_init,
4867 .jumbo_max_len = 10240,
4868 .usrio = &macb_default_usrio,
4869 };
4870
4871 static const struct macb_config sama5d4_config = {
4872 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4873 .dma_burst_length = 4,
4874 .clk_init = macb_clk_init,
4875 .init = macb_init,
4876 .usrio = &macb_default_usrio,
4877 };
4878
4879 static const struct macb_config emac_config = {
4880 .caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4881 .clk_init = at91ether_clk_init,
4882 .init = at91ether_init,
4883 .usrio = &macb_default_usrio,
4884 };
4885
4886 static const struct macb_config np4_config = {
4887 .caps = MACB_CAPS_USRIO_DISABLED,
4888 .clk_init = macb_clk_init,
4889 .init = macb_init,
4890 .usrio = &macb_default_usrio,
4891 };
4892
4893 static const struct macb_config zynqmp_config = {
4894 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4895 MACB_CAPS_JUMBO |
4896 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4897 .dma_burst_length = 16,
4898 .clk_init = macb_clk_init,
4899 .init = init_reset_optional,
4900 .jumbo_max_len = 10240,
4901 .usrio = &macb_default_usrio,
4902 };
4903
4904 static const struct macb_config zynq_config = {
4905 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4906 MACB_CAPS_NEEDS_RSTONUBR,
4907 .dma_burst_length = 16,
4908 .clk_init = macb_clk_init,
4909 .init = macb_init,
4910 .usrio = &macb_default_usrio,
4911 };
4912
4913 static const struct macb_config mpfs_config = {
4914 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4915 MACB_CAPS_JUMBO |
4916 MACB_CAPS_GEM_HAS_PTP,
4917 .dma_burst_length = 16,
4918 .clk_init = macb_clk_init,
4919 .init = init_reset_optional,
4920 .usrio = &macb_default_usrio,
4921 .max_tx_length = 4040, /* Cadence Erratum 1686 */
4922 .jumbo_max_len = 4040,
4923 };
4924
4925 static const struct macb_config sama7g5_gem_config = {
4926 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4927 MACB_CAPS_MIIONRGMII | MACB_CAPS_GEM_HAS_PTP,
4928 .dma_burst_length = 16,
4929 .clk_init = macb_clk_init,
4930 .init = macb_init,
4931 .usrio = &sama7g5_usrio,
4932 };
4933
4934 static const struct macb_config sama7g5_emac_config = {
4935 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4936 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII |
4937 MACB_CAPS_GEM_HAS_PTP,
4938 .dma_burst_length = 16,
4939 .clk_init = macb_clk_init,
4940 .init = macb_init,
4941 .usrio = &sama7g5_usrio,
4942 };
4943
4944 static const struct macb_config versal_config = {
4945 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4946 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK |
4947 MACB_CAPS_QUEUE_DISABLE,
4948 .dma_burst_length = 16,
4949 .clk_init = macb_clk_init,
4950 .init = init_reset_optional,
4951 .jumbo_max_len = 10240,
4952 .usrio = &macb_default_usrio,
4953 };
4954
4955 static const struct of_device_id macb_dt_ids[] = {
4956 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4957 { .compatible = "cdns,macb" },
4958 { .compatible = "cdns,np4-macb", .data = &np4_config },
4959 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4960 { .compatible = "cdns,gem", .data = &pc302gem_config },
4961 { .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4962 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4963 { .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4964 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4965 { .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4966 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4967 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4968 { .compatible = "cdns,emac", .data = &emac_config },
4969 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */
4970 { .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */
4971 { .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4972 { .compatible = "microchip,mpfs-macb", .data = &mpfs_config },
4973 { .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4974 { .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4975 { .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config},
4976 { .compatible = "xlnx,zynq-gem", .data = &zynq_config },
4977 { .compatible = "xlnx,versal-gem", .data = &versal_config},
4978 { /* sentinel */ }
4979 };
4980 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4981 #endif /* CONFIG_OF */
4982
4983 static const struct macb_config default_gem_config = {
4984 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4985 MACB_CAPS_JUMBO |
4986 MACB_CAPS_GEM_HAS_PTP,
4987 .dma_burst_length = 16,
4988 .clk_init = macb_clk_init,
4989 .init = macb_init,
4990 .usrio = &macb_default_usrio,
4991 .jumbo_max_len = 10240,
4992 };
4993
macb_probe(struct platform_device * pdev)4994 static int macb_probe(struct platform_device *pdev)
4995 {
4996 const struct macb_config *macb_config = &default_gem_config;
4997 int (*clk_init)(struct platform_device *, struct clk **,
4998 struct clk **, struct clk **, struct clk **,
4999 struct clk **) = macb_config->clk_init;
5000 int (*init)(struct platform_device *) = macb_config->init;
5001 struct device_node *np = pdev->dev.of_node;
5002 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
5003 struct clk *tsu_clk = NULL;
5004 unsigned int queue_mask, num_queues;
5005 bool native_io;
5006 phy_interface_t interface;
5007 struct net_device *dev;
5008 struct resource *regs;
5009 u32 wtrmrk_rst_val;
5010 void __iomem *mem;
5011 struct macb *bp;
5012 int err, val;
5013
5014 mem = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
5015 if (IS_ERR(mem))
5016 return PTR_ERR(mem);
5017
5018 if (np) {
5019 const struct of_device_id *match;
5020
5021 match = of_match_node(macb_dt_ids, np);
5022 if (match && match->data) {
5023 macb_config = match->data;
5024 clk_init = macb_config->clk_init;
5025 init = macb_config->init;
5026 }
5027 }
5028
5029 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
5030 if (err)
5031 return err;
5032
5033 pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
5034 pm_runtime_use_autosuspend(&pdev->dev);
5035 pm_runtime_get_noresume(&pdev->dev);
5036 pm_runtime_set_active(&pdev->dev);
5037 pm_runtime_enable(&pdev->dev);
5038 native_io = hw_is_native_io(mem);
5039
5040 macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
5041 dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
5042 if (!dev) {
5043 err = -ENOMEM;
5044 goto err_disable_clocks;
5045 }
5046
5047 dev->base_addr = regs->start;
5048
5049 SET_NETDEV_DEV(dev, &pdev->dev);
5050
5051 bp = netdev_priv(dev);
5052 bp->pdev = pdev;
5053 bp->dev = dev;
5054 bp->regs = mem;
5055 bp->native_io = native_io;
5056 if (native_io) {
5057 bp->macb_reg_readl = hw_readl_native;
5058 bp->macb_reg_writel = hw_writel_native;
5059 } else {
5060 bp->macb_reg_readl = hw_readl;
5061 bp->macb_reg_writel = hw_writel;
5062 }
5063 bp->num_queues = num_queues;
5064 bp->queue_mask = queue_mask;
5065 if (macb_config)
5066 bp->dma_burst_length = macb_config->dma_burst_length;
5067 bp->pclk = pclk;
5068 bp->hclk = hclk;
5069 bp->tx_clk = tx_clk;
5070 bp->rx_clk = rx_clk;
5071 bp->tsu_clk = tsu_clk;
5072 if (macb_config)
5073 bp->jumbo_max_len = macb_config->jumbo_max_len;
5074
5075 if (!hw_is_gem(bp->regs, bp->native_io))
5076 bp->max_tx_length = MACB_MAX_TX_LEN;
5077 else if (macb_config->max_tx_length)
5078 bp->max_tx_length = macb_config->max_tx_length;
5079 else
5080 bp->max_tx_length = GEM_MAX_TX_LEN;
5081
5082 bp->wol = 0;
5083 device_set_wakeup_capable(&pdev->dev, 1);
5084
5085 bp->usrio = macb_config->usrio;
5086
5087 /* By default we set to partial store and forward mode for zynqmp.
5088 * Disable if not set in devicetree.
5089 */
5090 if (GEM_BFEXT(PBUF_CUTTHRU, gem_readl(bp, DCFG6))) {
5091 err = of_property_read_u32(bp->pdev->dev.of_node,
5092 "cdns,rx-watermark",
5093 &bp->rx_watermark);
5094
5095 if (!err) {
5096 /* Disable partial store and forward in case of error or
5097 * invalid watermark value
5098 */
5099 wtrmrk_rst_val = (1 << (GEM_BFEXT(RX_PBUF_ADDR, gem_readl(bp, DCFG2)))) - 1;
5100 if (bp->rx_watermark > wtrmrk_rst_val || !bp->rx_watermark) {
5101 dev_info(&bp->pdev->dev, "Invalid watermark value\n");
5102 bp->rx_watermark = 0;
5103 }
5104 }
5105 }
5106 spin_lock_init(&bp->lock);
5107 spin_lock_init(&bp->stats_lock);
5108
5109 /* setup capabilities */
5110 macb_configure_caps(bp, macb_config);
5111
5112 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
5113 if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
5114 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
5115 bp->hw_dma_cap |= HW_DMA_CAP_64B;
5116 }
5117 #endif
5118 platform_set_drvdata(pdev, dev);
5119
5120 dev->irq = platform_get_irq(pdev, 0);
5121 if (dev->irq < 0) {
5122 err = dev->irq;
5123 goto err_out_free_netdev;
5124 }
5125
5126 /* MTU range: 68 - 1518 or 10240 */
5127 dev->min_mtu = GEM_MTU_MIN_SIZE;
5128 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
5129 dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN;
5130 else
5131 dev->max_mtu = 1536 - ETH_HLEN - ETH_FCS_LEN;
5132
5133 if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
5134 val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
5135 if (val)
5136 bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
5137 macb_dma_desc_get_size(bp);
5138
5139 val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
5140 if (val)
5141 bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
5142 macb_dma_desc_get_size(bp);
5143 }
5144
5145 bp->rx_intr_mask = MACB_RX_INT_FLAGS;
5146 if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
5147 bp->rx_intr_mask |= MACB_BIT(RXUBR);
5148
5149 err = of_get_ethdev_address(np, bp->dev);
5150 if (err == -EPROBE_DEFER)
5151 goto err_out_free_netdev;
5152 else if (err)
5153 macb_get_hwaddr(bp);
5154
5155 err = of_get_phy_mode(np, &interface);
5156 if (err)
5157 /* not found in DT, MII by default */
5158 bp->phy_interface = PHY_INTERFACE_MODE_MII;
5159 else
5160 bp->phy_interface = interface;
5161
5162 /* IP specific init */
5163 err = init(pdev);
5164 if (err)
5165 goto err_out_free_netdev;
5166
5167 err = macb_mii_init(bp);
5168 if (err)
5169 goto err_out_phy_exit;
5170
5171 netif_carrier_off(dev);
5172
5173 err = register_netdev(dev);
5174 if (err) {
5175 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5176 goto err_out_unregister_mdio;
5177 }
5178
5179 INIT_WORK(&bp->hresp_err_bh_work, macb_hresp_error_task);
5180
5181 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
5182 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
5183 dev->base_addr, dev->irq, dev->dev_addr);
5184
5185 pm_runtime_mark_last_busy(&bp->pdev->dev);
5186 pm_runtime_put_autosuspend(&bp->pdev->dev);
5187
5188 return 0;
5189
5190 err_out_unregister_mdio:
5191 mdiobus_unregister(bp->mii_bus);
5192 mdiobus_free(bp->mii_bus);
5193
5194 err_out_phy_exit:
5195 phy_exit(bp->sgmii_phy);
5196
5197 err_out_free_netdev:
5198 free_netdev(dev);
5199
5200 err_disable_clocks:
5201 macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
5202 pm_runtime_disable(&pdev->dev);
5203 pm_runtime_set_suspended(&pdev->dev);
5204 pm_runtime_dont_use_autosuspend(&pdev->dev);
5205
5206 return err;
5207 }
5208
macb_remove(struct platform_device * pdev)5209 static void macb_remove(struct platform_device *pdev)
5210 {
5211 struct net_device *dev;
5212 struct macb *bp;
5213
5214 dev = platform_get_drvdata(pdev);
5215
5216 if (dev) {
5217 bp = netdev_priv(dev);
5218 phy_exit(bp->sgmii_phy);
5219 mdiobus_unregister(bp->mii_bus);
5220 mdiobus_free(bp->mii_bus);
5221
5222 unregister_netdev(dev);
5223 cancel_work_sync(&bp->hresp_err_bh_work);
5224 pm_runtime_disable(&pdev->dev);
5225 pm_runtime_dont_use_autosuspend(&pdev->dev);
5226 if (!pm_runtime_suspended(&pdev->dev)) {
5227 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
5228 bp->rx_clk, bp->tsu_clk);
5229 pm_runtime_set_suspended(&pdev->dev);
5230 }
5231 phylink_destroy(bp->phylink);
5232 free_netdev(dev);
5233 }
5234 }
5235
macb_suspend(struct device * dev)5236 static int __maybe_unused macb_suspend(struct device *dev)
5237 {
5238 struct net_device *netdev = dev_get_drvdata(dev);
5239 struct macb *bp = netdev_priv(netdev);
5240 struct in_ifaddr *ifa = NULL;
5241 struct macb_queue *queue;
5242 struct in_device *idev;
5243 unsigned long flags;
5244 unsigned int q;
5245 int err;
5246 u32 tmp;
5247
5248 if (!device_may_wakeup(&bp->dev->dev))
5249 phy_exit(bp->sgmii_phy);
5250
5251 if (!netif_running(netdev))
5252 return 0;
5253
5254 if (bp->wol & MACB_WOL_ENABLED) {
5255 /* Check for IP address in WOL ARP mode */
5256 idev = __in_dev_get_rcu(bp->dev);
5257 if (idev)
5258 ifa = rcu_dereference(idev->ifa_list);
5259 if ((bp->wolopts & WAKE_ARP) && !ifa) {
5260 netdev_err(netdev, "IP address not assigned as required by WoL walk ARP\n");
5261 return -EOPNOTSUPP;
5262 }
5263 spin_lock_irqsave(&bp->lock, flags);
5264
5265 /* Disable Tx and Rx engines before disabling the queues,
5266 * this is mandatory as per the IP spec sheet
5267 */
5268 tmp = macb_readl(bp, NCR);
5269 macb_writel(bp, NCR, tmp & ~(MACB_BIT(TE) | MACB_BIT(RE)));
5270 for (q = 0, queue = bp->queues; q < bp->num_queues;
5271 ++q, ++queue) {
5272 /* Disable RX queues */
5273 if (bp->caps & MACB_CAPS_QUEUE_DISABLE) {
5274 queue_writel(queue, RBQP, MACB_BIT(QUEUE_DISABLE));
5275 } else {
5276 /* Tie off RX queues */
5277 queue_writel(queue, RBQP,
5278 lower_32_bits(bp->rx_ring_tieoff_dma));
5279 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
5280 queue_writel(queue, RBQPH,
5281 upper_32_bits(bp->rx_ring_tieoff_dma));
5282 #endif
5283 }
5284 /* Disable all interrupts */
5285 queue_writel(queue, IDR, -1);
5286 queue_readl(queue, ISR);
5287 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5288 queue_writel(queue, ISR, -1);
5289 }
5290 /* Enable Receive engine */
5291 macb_writel(bp, NCR, tmp | MACB_BIT(RE));
5292 /* Flush all status bits */
5293 macb_writel(bp, TSR, -1);
5294 macb_writel(bp, RSR, -1);
5295
5296 tmp = (bp->wolopts & WAKE_MAGIC) ? MACB_BIT(MAG) : 0;
5297 if (bp->wolopts & WAKE_ARP) {
5298 tmp |= MACB_BIT(ARP);
5299 /* write IP address into register */
5300 tmp |= MACB_BFEXT(IP, be32_to_cpu(ifa->ifa_local));
5301 }
5302
5303 /* Change interrupt handler and
5304 * Enable WoL IRQ on queue 0
5305 */
5306 devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5307 if (macb_is_gem(bp)) {
5308 err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5309 IRQF_SHARED, netdev->name, bp->queues);
5310 if (err) {
5311 dev_err(dev,
5312 "Unable to request IRQ %d (error %d)\n",
5313 bp->queues[0].irq, err);
5314 spin_unlock_irqrestore(&bp->lock, flags);
5315 return err;
5316 }
5317 queue_writel(bp->queues, IER, GEM_BIT(WOL));
5318 gem_writel(bp, WOL, tmp);
5319 } else {
5320 err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5321 IRQF_SHARED, netdev->name, bp->queues);
5322 if (err) {
5323 dev_err(dev,
5324 "Unable to request IRQ %d (error %d)\n",
5325 bp->queues[0].irq, err);
5326 spin_unlock_irqrestore(&bp->lock, flags);
5327 return err;
5328 }
5329 queue_writel(bp->queues, IER, MACB_BIT(WOL));
5330 macb_writel(bp, WOL, tmp);
5331 }
5332 spin_unlock_irqrestore(&bp->lock, flags);
5333
5334 enable_irq_wake(bp->queues[0].irq);
5335 }
5336
5337 netif_device_detach(netdev);
5338 for (q = 0, queue = bp->queues; q < bp->num_queues;
5339 ++q, ++queue) {
5340 napi_disable(&queue->napi_rx);
5341 napi_disable(&queue->napi_tx);
5342 }
5343
5344 if (!(bp->wol & MACB_WOL_ENABLED)) {
5345 rtnl_lock();
5346 phylink_stop(bp->phylink);
5347 rtnl_unlock();
5348 spin_lock_irqsave(&bp->lock, flags);
5349 macb_reset_hw(bp);
5350 spin_unlock_irqrestore(&bp->lock, flags);
5351 }
5352
5353 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5354 bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5355
5356 if (netdev->hw_features & NETIF_F_NTUPLE)
5357 bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5358
5359 if (bp->ptp_info)
5360 bp->ptp_info->ptp_remove(netdev);
5361 if (!device_may_wakeup(dev))
5362 pm_runtime_force_suspend(dev);
5363
5364 return 0;
5365 }
5366
macb_resume(struct device * dev)5367 static int __maybe_unused macb_resume(struct device *dev)
5368 {
5369 struct net_device *netdev = dev_get_drvdata(dev);
5370 struct macb *bp = netdev_priv(netdev);
5371 struct macb_queue *queue;
5372 unsigned long flags;
5373 unsigned int q;
5374 int err;
5375
5376 if (!device_may_wakeup(&bp->dev->dev))
5377 phy_init(bp->sgmii_phy);
5378
5379 if (!netif_running(netdev))
5380 return 0;
5381
5382 if (!device_may_wakeup(dev))
5383 pm_runtime_force_resume(dev);
5384
5385 if (bp->wol & MACB_WOL_ENABLED) {
5386 spin_lock_irqsave(&bp->lock, flags);
5387 /* Disable WoL */
5388 if (macb_is_gem(bp)) {
5389 queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5390 gem_writel(bp, WOL, 0);
5391 } else {
5392 queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5393 macb_writel(bp, WOL, 0);
5394 }
5395 /* Clear ISR on queue 0 */
5396 queue_readl(bp->queues, ISR);
5397 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5398 queue_writel(bp->queues, ISR, -1);
5399 /* Replace interrupt handler on queue 0 */
5400 devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5401 err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5402 IRQF_SHARED, netdev->name, bp->queues);
5403 if (err) {
5404 dev_err(dev,
5405 "Unable to request IRQ %d (error %d)\n",
5406 bp->queues[0].irq, err);
5407 spin_unlock_irqrestore(&bp->lock, flags);
5408 return err;
5409 }
5410 spin_unlock_irqrestore(&bp->lock, flags);
5411
5412 disable_irq_wake(bp->queues[0].irq);
5413
5414 /* Now make sure we disable phy before moving
5415 * to common restore path
5416 */
5417 rtnl_lock();
5418 phylink_stop(bp->phylink);
5419 rtnl_unlock();
5420 }
5421
5422 for (q = 0, queue = bp->queues; q < bp->num_queues;
5423 ++q, ++queue) {
5424 napi_enable(&queue->napi_rx);
5425 napi_enable(&queue->napi_tx);
5426 }
5427
5428 if (netdev->hw_features & NETIF_F_NTUPLE)
5429 gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5430
5431 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5432 macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5433
5434 macb_writel(bp, NCR, MACB_BIT(MPE));
5435 macb_init_hw(bp);
5436 macb_set_rx_mode(netdev);
5437 macb_restore_features(bp);
5438 rtnl_lock();
5439
5440 phylink_start(bp->phylink);
5441 rtnl_unlock();
5442
5443 netif_device_attach(netdev);
5444 if (bp->ptp_info)
5445 bp->ptp_info->ptp_init(netdev);
5446
5447 return 0;
5448 }
5449
macb_runtime_suspend(struct device * dev)5450 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5451 {
5452 struct net_device *netdev = dev_get_drvdata(dev);
5453 struct macb *bp = netdev_priv(netdev);
5454
5455 if (!(device_may_wakeup(dev)))
5456 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5457 else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK))
5458 macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5459
5460 return 0;
5461 }
5462
macb_runtime_resume(struct device * dev)5463 static int __maybe_unused macb_runtime_resume(struct device *dev)
5464 {
5465 struct net_device *netdev = dev_get_drvdata(dev);
5466 struct macb *bp = netdev_priv(netdev);
5467
5468 if (!(device_may_wakeup(dev))) {
5469 clk_prepare_enable(bp->pclk);
5470 clk_prepare_enable(bp->hclk);
5471 clk_prepare_enable(bp->tx_clk);
5472 clk_prepare_enable(bp->rx_clk);
5473 clk_prepare_enable(bp->tsu_clk);
5474 } else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) {
5475 clk_prepare_enable(bp->tsu_clk);
5476 }
5477
5478 return 0;
5479 }
5480
5481 static const struct dev_pm_ops macb_pm_ops = {
5482 SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5483 SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5484 };
5485
5486 static struct platform_driver macb_driver = {
5487 .probe = macb_probe,
5488 .remove = macb_remove,
5489 .driver = {
5490 .name = "macb",
5491 .of_match_table = of_match_ptr(macb_dt_ids),
5492 .pm = &macb_pm_ops,
5493 },
5494 };
5495
5496 module_platform_driver(macb_driver);
5497
5498 MODULE_LICENSE("GPL");
5499 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5500 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5501 MODULE_ALIAS("platform:macb");
5502