xref: /freebsd/sys/dev/wg/if_wg.c (revision d15d610fac97df4fefed3f14b31dcfbdcec65bf9)
1 /* SPDX-License-Identifier: ISC
2  *
3  * Copyright (C) 2015-2021 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright (C) 2019-2021 Matt Dunwoodie <ncon@noconroy.net>
5  * Copyright (c) 2019-2020 Rubicon Communications, LLC (Netgate)
6  * Copyright (c) 2021 Kyle Evans <kevans@FreeBSD.org>
7  * Copyright (c) 2022 The FreeBSD Foundation
8  */
9 
10 #include "opt_inet.h"
11 #include "opt_inet6.h"
12 
13 #include <sys/param.h>
14 #include <sys/systm.h>
15 #include <sys/counter.h>
16 #include <sys/gtaskqueue.h>
17 #include <sys/jail.h>
18 #include <sys/kernel.h>
19 #include <sys/lock.h>
20 #include <sys/mbuf.h>
21 #include <sys/module.h>
22 #include <sys/nv.h>
23 #include <sys/priv.h>
24 #include <sys/protosw.h>
25 #include <sys/rmlock.h>
26 #include <sys/rwlock.h>
27 #include <sys/smp.h>
28 #include <sys/socket.h>
29 #include <sys/socketvar.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/sx.h>
33 #include <machine/_inttypes.h>
34 #include <net/bpf.h>
35 #include <net/ethernet.h>
36 #include <net/if.h>
37 #include <net/if_clone.h>
38 #include <net/if_types.h>
39 #include <net/if_var.h>
40 #include <net/netisr.h>
41 #include <net/radix.h>
42 #include <netinet/in.h>
43 #include <netinet6/in6_var.h>
44 #include <netinet/ip.h>
45 #include <netinet/ip6.h>
46 #include <netinet/ip_icmp.h>
47 #include <netinet/icmp6.h>
48 #include <netinet/udp_var.h>
49 #include <netinet6/nd6.h>
50 
51 #include "wg_noise.h"
52 #include "wg_cookie.h"
53 #include "version.h"
54 #include "if_wg.h"
55 
56 #define DEFAULT_MTU		(ETHERMTU - 80)
57 #define MAX_MTU			(IF_MAXMTU - 80)
58 
59 #define MAX_STAGED_PKT		128
60 #define MAX_QUEUED_PKT		1024
61 #define MAX_QUEUED_PKT_MASK	(MAX_QUEUED_PKT - 1)
62 
63 #define MAX_QUEUED_HANDSHAKES	4096
64 
65 #define REKEY_TIMEOUT_JITTER	334 /* 1/3 sec, round for arc4random_uniform */
66 #define MAX_TIMER_HANDSHAKES	(90 / REKEY_TIMEOUT)
67 #define NEW_HANDSHAKE_TIMEOUT	(REKEY_TIMEOUT + KEEPALIVE_TIMEOUT)
68 #define UNDERLOAD_TIMEOUT	1
69 
70 #define DPRINTF(sc, ...) if (if_getflags(sc->sc_ifp) & IFF_DEBUG) if_printf(sc->sc_ifp, ##__VA_ARGS__)
71 
72 /* First byte indicating packet type on the wire */
73 #define WG_PKT_INITIATION htole32(1)
74 #define WG_PKT_RESPONSE htole32(2)
75 #define WG_PKT_COOKIE htole32(3)
76 #define WG_PKT_DATA htole32(4)
77 
78 #define WG_PKT_PADDING		16
79 #define WG_KEY_SIZE		32
80 
81 struct wg_pkt_initiation {
82 	uint32_t		t;
83 	uint32_t		s_idx;
84 	uint8_t			ue[NOISE_PUBLIC_KEY_LEN];
85 	uint8_t			es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN];
86 	uint8_t			ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN];
87 	struct cookie_macs	m;
88 };
89 
90 struct wg_pkt_response {
91 	uint32_t		t;
92 	uint32_t		s_idx;
93 	uint32_t		r_idx;
94 	uint8_t			ue[NOISE_PUBLIC_KEY_LEN];
95 	uint8_t			en[0 + NOISE_AUTHTAG_LEN];
96 	struct cookie_macs	m;
97 };
98 
99 struct wg_pkt_cookie {
100 	uint32_t		t;
101 	uint32_t		r_idx;
102 	uint8_t			nonce[COOKIE_NONCE_SIZE];
103 	uint8_t			ec[COOKIE_ENCRYPTED_SIZE];
104 };
105 
106 struct wg_pkt_data {
107 	uint32_t		t;
108 	uint32_t		r_idx;
109 	uint64_t		nonce;
110 	uint8_t			buf[];
111 };
112 
113 struct wg_endpoint {
114 	union {
115 		struct sockaddr		r_sa;
116 		struct sockaddr_in	r_sin;
117 #ifdef INET6
118 		struct sockaddr_in6	r_sin6;
119 #endif
120 	} e_remote;
121 	union {
122 		struct in_addr		l_in;
123 #ifdef INET6
124 		struct in6_pktinfo	l_pktinfo6;
125 #define l_in6 l_pktinfo6.ipi6_addr
126 #endif
127 	} e_local;
128 };
129 
130 struct aip_addr {
131 	uint8_t		length;
132 	union {
133 		uint8_t		bytes[16];
134 		uint32_t	ip;
135 		uint32_t	ip6[4];
136 		struct in_addr	in;
137 		struct in6_addr	in6;
138 	};
139 };
140 
141 struct wg_aip {
142 	struct radix_node	 a_nodes[2];
143 	LIST_ENTRY(wg_aip)	 a_entry;
144 	struct aip_addr		 a_addr;
145 	struct aip_addr		 a_mask;
146 	struct wg_peer		*a_peer;
147 	sa_family_t		 a_af;
148 };
149 
150 struct wg_packet {
151 	STAILQ_ENTRY(wg_packet)	 p_serial;
152 	STAILQ_ENTRY(wg_packet)	 p_parallel;
153 	struct wg_endpoint	 p_endpoint;
154 	struct noise_keypair	*p_keypair;
155 	uint64_t		 p_nonce;
156 	struct mbuf		*p_mbuf;
157 	int			 p_mtu;
158 	sa_family_t		 p_af;
159 	enum wg_ring_state {
160 		WG_PACKET_UNCRYPTED,
161 		WG_PACKET_CRYPTED,
162 		WG_PACKET_DEAD,
163 	}			 p_state;
164 };
165 
166 STAILQ_HEAD(wg_packet_list, wg_packet);
167 
168 struct wg_queue {
169 	struct mtx		 q_mtx;
170 	struct wg_packet_list	 q_queue;
171 	size_t			 q_len;
172 };
173 
174 struct wg_peer {
175 	TAILQ_ENTRY(wg_peer)		 p_entry;
176 	uint64_t			 p_id;
177 	struct wg_softc			*p_sc;
178 
179 	struct noise_remote		*p_remote;
180 	struct cookie_maker		 p_cookie;
181 
182 	struct rwlock			 p_endpoint_lock;
183 	struct wg_endpoint		 p_endpoint;
184 
185 	struct wg_queue	 		 p_stage_queue;
186 	struct wg_queue	 		 p_encrypt_serial;
187 	struct wg_queue	 		 p_decrypt_serial;
188 
189 	bool				 p_enabled;
190 	bool				 p_need_another_keepalive;
191 	uint16_t			 p_persistent_keepalive_interval;
192 	struct callout			 p_new_handshake;
193 	struct callout			 p_send_keepalive;
194 	struct callout			 p_retry_handshake;
195 	struct callout			 p_zero_key_material;
196 	struct callout			 p_persistent_keepalive;
197 
198 	struct mtx			 p_handshake_mtx;
199 	struct timespec			 p_handshake_complete;	/* nanotime */
200 	int				 p_handshake_retries;
201 
202 	struct grouptask		 p_send;
203 	struct grouptask		 p_recv;
204 
205 	counter_u64_t			 p_tx_bytes;
206 	counter_u64_t			 p_rx_bytes;
207 
208 	LIST_HEAD(, wg_aip)		 p_aips;
209 	size_t				 p_aips_num;
210 };
211 
212 struct wg_socket {
213 	struct socket	*so_so4;
214 	struct socket	*so_so6;
215 	uint32_t	 so_user_cookie;
216 	int		 so_fibnum;
217 	in_port_t	 so_port;
218 };
219 
220 struct wg_softc {
221 	LIST_ENTRY(wg_softc)	 sc_entry;
222 	if_t			 sc_ifp;
223 	int			 sc_flags;
224 
225 	struct ucred		*sc_ucred;
226 	struct wg_socket	 sc_socket;
227 
228 	TAILQ_HEAD(,wg_peer)	 sc_peers;
229 	size_t			 sc_peers_num;
230 
231 	struct noise_local	*sc_local;
232 	struct cookie_checker	 sc_cookie;
233 
234 	struct radix_node_head	*sc_aip4;
235 	struct radix_node_head	*sc_aip6;
236 
237 	struct grouptask	 sc_handshake;
238 	struct wg_queue		 sc_handshake_queue;
239 
240 	struct grouptask	*sc_encrypt;
241 	struct grouptask	*sc_decrypt;
242 	struct wg_queue		 sc_encrypt_parallel;
243 	struct wg_queue		 sc_decrypt_parallel;
244 	u_int			 sc_encrypt_last_cpu;
245 	u_int			 sc_decrypt_last_cpu;
246 
247 	struct sx		 sc_lock;
248 };
249 
250 #define	WGF_DYING	0x0001
251 
252 #define MAX_LOOPS	8
253 #define MTAG_WGLOOP	0x77676c70 /* wglp */
254 
255 #define	GROUPTASK_DRAIN(gtask)			\
256 	gtaskqueue_drain((gtask)->gt_taskqueue, &(gtask)->gt_task)
257 
258 #define BPF_MTAP2_AF(ifp, m, af) do { \
259 		uint32_t __bpf_tap_af = (af); \
260 		BPF_MTAP2(ifp, &__bpf_tap_af, sizeof(__bpf_tap_af), m); \
261 	} while (0)
262 
263 static int clone_count;
264 static uma_zone_t wg_packet_zone;
265 static volatile unsigned long peer_counter = 0;
266 static const char wgname[] = "wg";
267 static unsigned wg_osd_jail_slot;
268 
269 static struct sx wg_sx;
270 SX_SYSINIT(wg_sx, &wg_sx, "wg_sx");
271 
272 static LIST_HEAD(, wg_softc) wg_list = LIST_HEAD_INITIALIZER(wg_list);
273 
274 static TASKQGROUP_DEFINE(wg_tqg, mp_ncpus, 1);
275 
276 MALLOC_DEFINE(M_WG, "WG", "wireguard");
277 
278 VNET_DEFINE_STATIC(struct if_clone *, wg_cloner);
279 
280 #define	V_wg_cloner	VNET(wg_cloner)
281 #define	WG_CAPS		IFCAP_LINKSTATE
282 
283 struct wg_timespec64 {
284 	uint64_t	tv_sec;
285 	uint64_t	tv_nsec;
286 };
287 
288 static int wg_socket_init(struct wg_softc *, in_port_t);
289 static int wg_socket_bind(struct socket **, struct socket **, in_port_t *);
290 static void wg_socket_set(struct wg_softc *, struct socket *, struct socket *);
291 static void wg_socket_uninit(struct wg_softc *);
292 static int wg_socket_set_sockopt(struct socket *, struct socket *, int, void *, size_t);
293 static int wg_socket_set_cookie(struct wg_softc *, uint32_t);
294 static int wg_socket_set_fibnum(struct wg_softc *, int);
295 static int wg_send(struct wg_softc *, struct wg_endpoint *, struct mbuf *);
296 static void wg_timers_enable(struct wg_peer *);
297 static void wg_timers_disable(struct wg_peer *);
298 static void wg_timers_set_persistent_keepalive(struct wg_peer *, uint16_t);
299 static void wg_timers_get_last_handshake(struct wg_peer *, struct wg_timespec64 *);
300 static void wg_timers_event_data_sent(struct wg_peer *);
301 static void wg_timers_event_data_received(struct wg_peer *);
302 static void wg_timers_event_any_authenticated_packet_sent(struct wg_peer *);
303 static void wg_timers_event_any_authenticated_packet_received(struct wg_peer *);
304 static void wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *);
305 static void wg_timers_event_handshake_initiated(struct wg_peer *);
306 static void wg_timers_event_handshake_complete(struct wg_peer *);
307 static void wg_timers_event_session_derived(struct wg_peer *);
308 static void wg_timers_event_want_initiation(struct wg_peer *);
309 static void wg_timers_run_send_initiation(struct wg_peer *, bool);
310 static void wg_timers_run_retry_handshake(void *);
311 static void wg_timers_run_send_keepalive(void *);
312 static void wg_timers_run_new_handshake(void *);
313 static void wg_timers_run_zero_key_material(void *);
314 static void wg_timers_run_persistent_keepalive(void *);
315 static int wg_aip_add(struct wg_softc *, struct wg_peer *, sa_family_t,
316     const void *, uint8_t);
317 static int wg_aip_del(struct wg_softc *, struct wg_peer *, sa_family_t,
318     const void *, uint8_t);
319 static struct wg_peer *wg_aip_lookup(struct wg_softc *, sa_family_t, void *);
320 static void wg_aip_remove_all(struct wg_softc *, struct wg_peer *);
321 static struct wg_peer *wg_peer_create(struct wg_softc *,
322     const uint8_t [WG_KEY_SIZE], int *);
323 static void wg_peer_free_deferred(struct noise_remote *);
324 static void wg_peer_destroy(struct wg_peer *);
325 static void wg_peer_destroy_all(struct wg_softc *);
326 static void wg_peer_send_buf(struct wg_peer *, uint8_t *, size_t);
327 static void wg_send_initiation(struct wg_peer *);
328 static void wg_send_response(struct wg_peer *);
329 static void wg_send_cookie(struct wg_softc *, struct cookie_macs *, uint32_t, struct wg_endpoint *);
330 static void wg_peer_set_endpoint(struct wg_peer *, struct wg_endpoint *);
331 static void wg_peer_clear_src(struct wg_peer *);
332 static void wg_peer_get_endpoint(struct wg_peer *, struct wg_endpoint *);
333 static void wg_send_buf(struct wg_softc *, struct wg_endpoint *, uint8_t *, size_t);
334 static void wg_send_keepalive(struct wg_peer *);
335 static void wg_handshake(struct wg_softc *, struct wg_packet *);
336 static void wg_encrypt(struct wg_softc *, struct wg_packet *);
337 static void wg_decrypt(struct wg_softc *, struct wg_packet *);
338 static void wg_softc_handshake_receive(struct wg_softc *);
339 static void wg_softc_decrypt(struct wg_softc *);
340 static void wg_softc_encrypt(struct wg_softc *);
341 static void wg_encrypt_dispatch(struct wg_softc *);
342 static void wg_decrypt_dispatch(struct wg_softc *);
343 static void wg_deliver_out(struct wg_peer *);
344 static void wg_deliver_in(struct wg_peer *);
345 static struct wg_packet *wg_packet_alloc(struct mbuf *);
346 static void wg_packet_free(struct wg_packet *);
347 static void wg_queue_init(struct wg_queue *, const char *);
348 static void wg_queue_deinit(struct wg_queue *);
349 static size_t wg_queue_len(struct wg_queue *);
350 static int wg_queue_enqueue_handshake(struct wg_queue *, struct wg_packet *);
351 static struct wg_packet *wg_queue_dequeue_handshake(struct wg_queue *);
352 static void wg_queue_push_staged(struct wg_queue *, struct wg_packet *);
353 static void wg_queue_enlist_staged(struct wg_queue *, struct wg_packet_list *);
354 static void wg_queue_delist_staged(struct wg_queue *, struct wg_packet_list *);
355 static void wg_queue_purge(struct wg_queue *);
356 static int wg_queue_both(struct wg_queue *, struct wg_queue *, struct wg_packet *);
357 static struct wg_packet *wg_queue_dequeue_serial(struct wg_queue *);
358 static struct wg_packet *wg_queue_dequeue_parallel(struct wg_queue *);
359 static bool wg_input(struct mbuf *, int, struct inpcb *, const struct sockaddr *, void *);
360 static void wg_peer_send_staged(struct wg_peer *);
361 static int wg_clone_create(struct if_clone *ifc, char *name, size_t len,
362 	struct ifc_data *ifd, if_t *ifpp);
363 static void wg_qflush(if_t);
364 static inline int determine_af_and_pullup(struct mbuf **m, sa_family_t *af);
365 static int wg_xmit(if_t, struct mbuf *, sa_family_t, uint32_t);
366 static int wg_transmit(if_t, struct mbuf *);
367 static int wg_output(if_t, struct mbuf *, const struct sockaddr *, struct route *);
368 static int wg_clone_destroy(struct if_clone *ifc, if_t ifp,
369 	uint32_t flags);
370 static bool wgc_privileged(struct wg_softc *);
371 static int wgc_get(struct wg_softc *, struct wg_data_io *);
372 static int wgc_set(struct wg_softc *, struct wg_data_io *);
373 static int wg_up(struct wg_softc *);
374 static void wg_down(struct wg_softc *);
375 static void wg_reassign(if_t, struct vnet *, char *unused);
376 static void wg_init(void *);
377 static int wg_ioctl(if_t, u_long, caddr_t);
378 static void vnet_wg_init(const void *);
379 static void vnet_wg_uninit(const void *);
380 static int wg_module_init(void);
381 static void wg_module_deinit(void);
382 
383 /* TODO Peer */
384 static struct wg_peer *
wg_peer_create(struct wg_softc * sc,const uint8_t pub_key[WG_KEY_SIZE],int * errp)385 wg_peer_create(struct wg_softc *sc, const uint8_t pub_key[WG_KEY_SIZE],
386     int *errp)
387 {
388 	struct wg_peer *peer;
389 
390 	sx_assert(&sc->sc_lock, SX_XLOCKED);
391 
392 	peer = malloc(sizeof(*peer), M_WG, M_WAITOK | M_ZERO);
393 
394 	peer->p_remote = noise_remote_alloc(sc->sc_local, peer, pub_key);
395 	if ((*errp = noise_remote_enable(peer->p_remote)) != 0) {
396 		noise_remote_free(peer->p_remote, NULL);
397 		free(peer, M_WG);
398 		return (NULL);
399 	}
400 
401 	peer->p_id = peer_counter++;
402 	peer->p_sc = sc;
403 	peer->p_tx_bytes = counter_u64_alloc(M_WAITOK);
404 	peer->p_rx_bytes = counter_u64_alloc(M_WAITOK);
405 
406 	cookie_maker_init(&peer->p_cookie, pub_key);
407 
408 	rw_init(&peer->p_endpoint_lock, "wg_peer_endpoint");
409 
410 	wg_queue_init(&peer->p_stage_queue, "stageq");
411 	wg_queue_init(&peer->p_encrypt_serial, "txq");
412 	wg_queue_init(&peer->p_decrypt_serial, "rxq");
413 
414 	peer->p_enabled = false;
415 	peer->p_need_another_keepalive = false;
416 	peer->p_persistent_keepalive_interval = 0;
417 	callout_init(&peer->p_new_handshake, true);
418 	callout_init(&peer->p_send_keepalive, true);
419 	callout_init(&peer->p_retry_handshake, true);
420 	callout_init(&peer->p_persistent_keepalive, true);
421 	callout_init(&peer->p_zero_key_material, true);
422 
423 	mtx_init(&peer->p_handshake_mtx, "peer handshake", NULL, MTX_DEF);
424 	bzero(&peer->p_handshake_complete, sizeof(peer->p_handshake_complete));
425 	peer->p_handshake_retries = 0;
426 
427 	GROUPTASK_INIT(&peer->p_send, 0, (gtask_fn_t *)wg_deliver_out, peer);
428 	taskqgroup_attach(qgroup_wg_tqg, &peer->p_send, peer, NULL, NULL, "wg send");
429 	GROUPTASK_INIT(&peer->p_recv, 0, (gtask_fn_t *)wg_deliver_in, peer);
430 	taskqgroup_attach(qgroup_wg_tqg, &peer->p_recv, peer, NULL, NULL, "wg recv");
431 
432 	LIST_INIT(&peer->p_aips);
433 	peer->p_aips_num = 0;
434 
435 	TAILQ_INSERT_TAIL(&sc->sc_peers, peer, p_entry);
436 	sc->sc_peers_num++;
437 
438 	if (if_getlinkstate(sc->sc_ifp) == LINK_STATE_UP)
439 		wg_timers_enable(peer);
440 
441 	DPRINTF(sc, "Peer %" PRIu64 " created\n", peer->p_id);
442 	return (peer);
443 }
444 
445 static void
wg_peer_free_deferred(struct noise_remote * r)446 wg_peer_free_deferred(struct noise_remote *r)
447 {
448 	struct wg_peer *peer = noise_remote_arg(r);
449 
450 	/* While there are no references remaining, we may still have
451 	 * p_{send,recv} executing (think empty queue, but wg_deliver_{in,out}
452 	 * needs to check the queue. We should wait for them and then free. */
453 	GROUPTASK_DRAIN(&peer->p_recv);
454 	GROUPTASK_DRAIN(&peer->p_send);
455 	taskqgroup_detach(qgroup_wg_tqg, &peer->p_recv);
456 	taskqgroup_detach(qgroup_wg_tqg, &peer->p_send);
457 
458 	wg_queue_deinit(&peer->p_decrypt_serial);
459 	wg_queue_deinit(&peer->p_encrypt_serial);
460 	wg_queue_deinit(&peer->p_stage_queue);
461 
462 	counter_u64_free(peer->p_tx_bytes);
463 	counter_u64_free(peer->p_rx_bytes);
464 	rw_destroy(&peer->p_endpoint_lock);
465 	mtx_destroy(&peer->p_handshake_mtx);
466 
467 	cookie_maker_free(&peer->p_cookie);
468 
469 	free(peer, M_WG);
470 }
471 
472 static void
wg_peer_destroy(struct wg_peer * peer)473 wg_peer_destroy(struct wg_peer *peer)
474 {
475 	struct wg_softc *sc = peer->p_sc;
476 	sx_assert(&sc->sc_lock, SX_XLOCKED);
477 
478 	/* Disable remote and timers. This will prevent any new handshakes
479 	 * occuring. */
480 	noise_remote_disable(peer->p_remote);
481 	wg_timers_disable(peer);
482 
483 	/* Now we can remove all allowed IPs so no more packets will be routed
484 	 * to the peer. */
485 	wg_aip_remove_all(sc, peer);
486 
487 	/* Remove peer from the interface, then free. Some references may still
488 	 * exist to p_remote, so noise_remote_free will wait until they're all
489 	 * put to call wg_peer_free_deferred. */
490 	sc->sc_peers_num--;
491 	TAILQ_REMOVE(&sc->sc_peers, peer, p_entry);
492 	DPRINTF(sc, "Peer %" PRIu64 " destroyed\n", peer->p_id);
493 	noise_remote_free(peer->p_remote, wg_peer_free_deferred);
494 }
495 
496 static void
wg_peer_destroy_all(struct wg_softc * sc)497 wg_peer_destroy_all(struct wg_softc *sc)
498 {
499 	struct wg_peer *peer, *tpeer;
500 	TAILQ_FOREACH_SAFE(peer, &sc->sc_peers, p_entry, tpeer)
501 		wg_peer_destroy(peer);
502 }
503 
504 static void
wg_peer_set_endpoint(struct wg_peer * peer,struct wg_endpoint * e)505 wg_peer_set_endpoint(struct wg_peer *peer, struct wg_endpoint *e)
506 {
507 	MPASS(e->e_remote.r_sa.sa_family != 0);
508 	if (memcmp(e, &peer->p_endpoint, sizeof(*e)) == 0)
509 		return;
510 
511 	rw_wlock(&peer->p_endpoint_lock);
512 	peer->p_endpoint = *e;
513 	rw_wunlock(&peer->p_endpoint_lock);
514 }
515 
516 static void
wg_peer_clear_src(struct wg_peer * peer)517 wg_peer_clear_src(struct wg_peer *peer)
518 {
519 	rw_wlock(&peer->p_endpoint_lock);
520 	bzero(&peer->p_endpoint.e_local, sizeof(peer->p_endpoint.e_local));
521 	rw_wunlock(&peer->p_endpoint_lock);
522 }
523 
524 static void
wg_peer_get_endpoint(struct wg_peer * peer,struct wg_endpoint * e)525 wg_peer_get_endpoint(struct wg_peer *peer, struct wg_endpoint *e)
526 {
527 	rw_rlock(&peer->p_endpoint_lock);
528 	*e = peer->p_endpoint;
529 	rw_runlock(&peer->p_endpoint_lock);
530 }
531 
532 static int
wg_aip_addrinfo(struct wg_aip * aip,const void * baddr,uint8_t cidr)533 wg_aip_addrinfo(struct wg_aip *aip, const void *baddr, uint8_t cidr)
534 {
535 	struct aip_addr *addr, *mask;
536 
537 	addr = &aip->a_addr;
538 	mask = &aip->a_mask;
539 	switch (aip->a_af) {
540 #ifdef INET
541 	case AF_INET:
542 		if (cidr > 32) cidr = 32;
543 		addr->in = *(const struct in_addr *)baddr;
544 		mask->ip = htonl(~((1LL << (32 - cidr)) - 1) & 0xffffffff);
545 		addr->ip &= mask->ip;
546 		addr->length = mask->length = offsetof(struct aip_addr, in) + sizeof(struct in_addr);
547 		break;
548 #endif
549 #ifdef INET6
550 	case AF_INET6:
551 		if (cidr > 128) cidr = 128;
552 		addr->in6 = *(const struct in6_addr *)baddr;
553 		in6_prefixlen2mask(&mask->in6, cidr);
554 		for (int i = 0; i < 4; i++)
555 			addr->ip6[i] &= mask->ip6[i];
556 		addr->length = mask->length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr);
557 		break;
558 #endif
559 	default:
560 		return (EAFNOSUPPORT);
561 	}
562 
563 	return (0);
564 }
565 
566 /* Allowed IP */
567 static int
wg_aip_add(struct wg_softc * sc,struct wg_peer * peer,sa_family_t af,const void * baddr,uint8_t cidr)568 wg_aip_add(struct wg_softc *sc, struct wg_peer *peer, sa_family_t af,
569     const void *baddr, uint8_t cidr)
570 {
571 	struct radix_node_head	*root = NULL;
572 	struct radix_node	*node;
573 	struct wg_aip		*aip;
574 	int			 ret = 0;
575 
576 	aip = malloc(sizeof(*aip), M_WG, M_WAITOK | M_ZERO);
577 	aip->a_peer = peer;
578 	aip->a_af = af;
579 
580 	ret = wg_aip_addrinfo(aip, baddr, cidr);
581 	if (ret != 0) {
582 		free(aip, M_WG);
583 		return (ret);
584 	}
585 
586 	root = af == AF_INET ? sc->sc_aip4 : sc->sc_aip6;
587 	MPASS(root != NULL);
588 	RADIX_NODE_HEAD_LOCK(root);
589 	node = root->rnh_addaddr(&aip->a_addr, &aip->a_mask, &root->rh, aip->a_nodes);
590 	if (node == aip->a_nodes) {
591 		LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry);
592 		peer->p_aips_num++;
593 	} else if (!node)
594 		node = root->rnh_lookup(&aip->a_addr, &aip->a_mask, &root->rh);
595 	if (!node) {
596 		free(aip, M_WG);
597 		ret = ENOMEM;
598 	} else if (node != aip->a_nodes) {
599 		free(aip, M_WG);
600 		aip = (struct wg_aip *)node;
601 		if (aip->a_peer != peer) {
602 			LIST_REMOVE(aip, a_entry);
603 			aip->a_peer->p_aips_num--;
604 			aip->a_peer = peer;
605 			LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry);
606 			aip->a_peer->p_aips_num++;
607 		}
608 	}
609 	RADIX_NODE_HEAD_UNLOCK(root);
610 	return (ret);
611 }
612 
613 static int
wg_aip_del(struct wg_softc * sc,struct wg_peer * peer,sa_family_t af,const void * baddr,uint8_t cidr)614 wg_aip_del(struct wg_softc *sc, struct wg_peer *peer, sa_family_t af,
615     const void *baddr, uint8_t cidr)
616 {
617 	struct radix_node_head	*root = NULL;
618 	struct radix_node	*dnode __diagused, *node;
619 	struct wg_aip		 *aip, addr;
620 	int			 ret = 0;
621 
622 	/*
623 	 * We need to be sure that all padding is cleared, as it is above when
624 	 * new AllowedIPs are added, since we want to do a direct comparison.
625 	 */
626 	memset(&addr, 0, sizeof(addr));
627 	addr.a_af = af;
628 
629 	ret = wg_aip_addrinfo(&addr, baddr, cidr);
630 	if (ret != 0)
631 		return (ret);
632 
633 	root = af == AF_INET ? sc->sc_aip4 : sc->sc_aip6;
634 
635 	MPASS(root != NULL);
636 	RADIX_NODE_HEAD_LOCK(root);
637 
638 	node = root->rnh_lookup(&addr.a_addr, &addr.a_mask, &root->rh);
639 	if (node == NULL) {
640 		RADIX_NODE_HEAD_UNLOCK(root);
641 		return (0);
642 	}
643 
644 	aip = (struct wg_aip *)node;
645 	if (aip->a_peer != peer) {
646 		/*
647 		 * They could have specified an allowed-ip that belonged to a
648 		 * different peer, in which case our job is done because the
649 		 * AllowedIP has been removed.
650 		 */
651 		RADIX_NODE_HEAD_UNLOCK(root);
652 		return (0);
653 	}
654 
655 	dnode = root->rnh_deladdr(&aip->a_addr, &aip->a_mask, &root->rh);
656 	MPASS(dnode == node);
657 	RADIX_NODE_HEAD_UNLOCK(root);
658 
659 	LIST_REMOVE(aip, a_entry);
660 	peer->p_aips_num--;
661 	free(aip, M_WG);
662 	return (0);
663 }
664 
665 static struct wg_peer *
wg_aip_lookup(struct wg_softc * sc,sa_family_t af,void * a)666 wg_aip_lookup(struct wg_softc *sc, sa_family_t af, void *a)
667 {
668 	struct radix_node_head	*root;
669 	struct radix_node	*node;
670 	struct wg_peer		*peer;
671 	struct aip_addr		 addr;
672 	RADIX_NODE_HEAD_RLOCK_TRACKER;
673 
674 	switch (af) {
675 	case AF_INET:
676 		root = sc->sc_aip4;
677 		memcpy(&addr.in, a, sizeof(addr.in));
678 		addr.length = offsetof(struct aip_addr, in) + sizeof(struct in_addr);
679 		break;
680 	case AF_INET6:
681 		root = sc->sc_aip6;
682 		memcpy(&addr.in6, a, sizeof(addr.in6));
683 		addr.length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr);
684 		break;
685 	default:
686 		return NULL;
687 	}
688 
689 	RADIX_NODE_HEAD_RLOCK(root);
690 	node = root->rnh_matchaddr(&addr, &root->rh);
691 	if (node != NULL) {
692 		peer = ((struct wg_aip *)node)->a_peer;
693 		noise_remote_ref(peer->p_remote);
694 	} else {
695 		peer = NULL;
696 	}
697 	RADIX_NODE_HEAD_RUNLOCK(root);
698 
699 	return (peer);
700 }
701 
702 static void
wg_aip_remove_all(struct wg_softc * sc,struct wg_peer * peer)703 wg_aip_remove_all(struct wg_softc *sc, struct wg_peer *peer)
704 {
705 	struct wg_aip		*aip, *taip;
706 
707 	RADIX_NODE_HEAD_LOCK(sc->sc_aip4);
708 	LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) {
709 		if (aip->a_af == AF_INET) {
710 			if (sc->sc_aip4->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip4->rh) == NULL)
711 				panic("failed to delete aip %p", aip);
712 			LIST_REMOVE(aip, a_entry);
713 			peer->p_aips_num--;
714 			free(aip, M_WG);
715 		}
716 	}
717 	RADIX_NODE_HEAD_UNLOCK(sc->sc_aip4);
718 
719 	RADIX_NODE_HEAD_LOCK(sc->sc_aip6);
720 	LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) {
721 		if (aip->a_af == AF_INET6) {
722 			if (sc->sc_aip6->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip6->rh) == NULL)
723 				panic("failed to delete aip %p", aip);
724 			LIST_REMOVE(aip, a_entry);
725 			peer->p_aips_num--;
726 			free(aip, M_WG);
727 		}
728 	}
729 	RADIX_NODE_HEAD_UNLOCK(sc->sc_aip6);
730 
731 	if (!LIST_EMPTY(&peer->p_aips) || peer->p_aips_num != 0)
732 		panic("wg_aip_remove_all could not delete all %p", peer);
733 }
734 
735 static int
wg_socket_init(struct wg_softc * sc,in_port_t port)736 wg_socket_init(struct wg_softc *sc, in_port_t port)
737 {
738 	struct ucred *cred = sc->sc_ucred;
739 	struct socket *so4 = NULL, *so6 = NULL;
740 	int rc;
741 
742 	sx_assert(&sc->sc_lock, SX_XLOCKED);
743 
744 	if (!cred)
745 		return (EBUSY);
746 
747 	/*
748 	 * For socket creation, we use the creds of the thread that created the
749 	 * tunnel rather than the current thread to maintain the semantics that
750 	 * WireGuard has on Linux with network namespaces -- that the sockets
751 	 * are created in their home vnet so that they can be configured and
752 	 * functionally attached to a foreign vnet as the jail's only interface
753 	 * to the network.
754 	 */
755 #ifdef INET
756 	rc = socreate(AF_INET, &so4, SOCK_DGRAM, IPPROTO_UDP, cred, curthread);
757 	if (rc)
758 		goto out;
759 
760 	rc = udp_set_kernel_tunneling(so4, wg_input, NULL, sc);
761 	/*
762 	 * udp_set_kernel_tunneling can only fail if there is already a tunneling function set.
763 	 * This should never happen with a new socket.
764 	 */
765 	MPASS(rc == 0);
766 #endif
767 
768 #ifdef INET6
769 	rc = socreate(AF_INET6, &so6, SOCK_DGRAM, IPPROTO_UDP, cred, curthread);
770 	if (rc)
771 		goto out;
772 	rc = udp_set_kernel_tunneling(so6, wg_input, NULL, sc);
773 	MPASS(rc == 0);
774 #endif
775 
776 	if (sc->sc_socket.so_user_cookie) {
777 		rc = wg_socket_set_sockopt(so4, so6, SO_USER_COOKIE, &sc->sc_socket.so_user_cookie, sizeof(sc->sc_socket.so_user_cookie));
778 		if (rc)
779 			goto out;
780 	}
781 	rc = wg_socket_set_sockopt(so4, so6, SO_SETFIB, &sc->sc_socket.so_fibnum, sizeof(sc->sc_socket.so_fibnum));
782 	if (rc)
783 		goto out;
784 
785 	rc = wg_socket_bind(&so4, &so6, &port);
786 	if (!rc) {
787 		sc->sc_socket.so_port = port;
788 		wg_socket_set(sc, so4, so6);
789 	}
790 out:
791 	if (rc) {
792 		if (so4 != NULL)
793 			soclose(so4);
794 		if (so6 != NULL)
795 			soclose(so6);
796 	}
797 	return (rc);
798 }
799 
wg_socket_set_sockopt(struct socket * so4,struct socket * so6,int name,void * val,size_t len)800 static int wg_socket_set_sockopt(struct socket *so4, struct socket *so6, int name, void *val, size_t len)
801 {
802 	int ret4 = 0, ret6 = 0;
803 	struct sockopt sopt = {
804 		.sopt_dir = SOPT_SET,
805 		.sopt_level = SOL_SOCKET,
806 		.sopt_name = name,
807 		.sopt_val = val,
808 		.sopt_valsize = len
809 	};
810 
811 	if (so4)
812 		ret4 = sosetopt(so4, &sopt);
813 	if (so6)
814 		ret6 = sosetopt(so6, &sopt);
815 	return (ret4 ?: ret6);
816 }
817 
wg_socket_set_cookie(struct wg_softc * sc,uint32_t user_cookie)818 static int wg_socket_set_cookie(struct wg_softc *sc, uint32_t user_cookie)
819 {
820 	struct wg_socket *so = &sc->sc_socket;
821 	int ret;
822 
823 	sx_assert(&sc->sc_lock, SX_XLOCKED);
824 	ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_USER_COOKIE, &user_cookie, sizeof(user_cookie));
825 	if (!ret)
826 		so->so_user_cookie = user_cookie;
827 	return (ret);
828 }
829 
wg_socket_set_fibnum(struct wg_softc * sc,int fibnum)830 static int wg_socket_set_fibnum(struct wg_softc *sc, int fibnum)
831 {
832 	struct wg_socket *so = &sc->sc_socket;
833 	int ret;
834 
835 	sx_assert(&sc->sc_lock, SX_XLOCKED);
836 
837 	ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_SETFIB, &fibnum, sizeof(fibnum));
838 	if (!ret)
839 		so->so_fibnum = fibnum;
840 	return (ret);
841 }
842 
843 static void
wg_socket_uninit(struct wg_softc * sc)844 wg_socket_uninit(struct wg_softc *sc)
845 {
846 	wg_socket_set(sc, NULL, NULL);
847 }
848 
849 static void
wg_socket_set(struct wg_softc * sc,struct socket * new_so4,struct socket * new_so6)850 wg_socket_set(struct wg_softc *sc, struct socket *new_so4, struct socket *new_so6)
851 {
852 	struct wg_socket *so = &sc->sc_socket;
853 	struct socket *so4, *so6;
854 
855 	sx_assert(&sc->sc_lock, SX_XLOCKED);
856 
857 	so4 = atomic_load_ptr(&so->so_so4);
858 	so6 = atomic_load_ptr(&so->so_so6);
859 	atomic_store_ptr(&so->so_so4, new_so4);
860 	atomic_store_ptr(&so->so_so6, new_so6);
861 
862 	if (!so4 && !so6)
863 		return;
864 	NET_EPOCH_WAIT();
865 	if (so4)
866 		soclose(so4);
867 	if (so6)
868 		soclose(so6);
869 }
870 
871 static int
wg_socket_bind(struct socket ** in_so4,struct socket ** in_so6,in_port_t * requested_port)872 wg_socket_bind(struct socket **in_so4, struct socket **in_so6, in_port_t *requested_port)
873 {
874 	struct socket *so4 = *in_so4, *so6 = *in_so6;
875 	int ret4 = 0, ret6 = 0;
876 	in_port_t port = *requested_port;
877 	struct sockaddr_in sin = {
878 		.sin_len = sizeof(struct sockaddr_in),
879 		.sin_family = AF_INET,
880 		.sin_port = htons(port)
881 	};
882 	struct sockaddr_in6 sin6 = {
883 		.sin6_len = sizeof(struct sockaddr_in6),
884 		.sin6_family = AF_INET6,
885 		.sin6_port = htons(port)
886 	};
887 
888 	if (so4) {
889 		ret4 = sobind(so4, (struct sockaddr *)&sin, curthread);
890 		if (ret4 && ret4 != EADDRNOTAVAIL)
891 			return (ret4);
892 		if (!ret4 && !sin.sin_port) {
893 			struct sockaddr_in bound_sin =
894 			    { .sin_len = sizeof(bound_sin) };
895 			int ret;
896 
897 			ret = sosockaddr(so4, (struct sockaddr *)&bound_sin);
898 			if (ret)
899 				return (ret);
900 			port = ntohs(bound_sin.sin_port);
901 			sin6.sin6_port = bound_sin.sin_port;
902 		}
903 	}
904 
905 	if (so6) {
906 		ret6 = sobind(so6, (struct sockaddr *)&sin6, curthread);
907 		if (ret6 && ret6 != EADDRNOTAVAIL)
908 			return (ret6);
909 		if (!ret6 && !sin6.sin6_port) {
910 			struct sockaddr_in6 bound_sin6 =
911 			    { .sin6_len = sizeof(bound_sin6) };
912 			int ret;
913 
914 			ret = sosockaddr(so6, (struct sockaddr *)&bound_sin6);
915 			if (ret)
916 				return (ret);
917 			port = ntohs(bound_sin6.sin6_port);
918 		}
919 	}
920 
921 	if (ret4 && ret6)
922 		return (ret4);
923 	*requested_port = port;
924 	if (ret4 && !ret6 && so4) {
925 		soclose(so4);
926 		*in_so4 = NULL;
927 	} else if (ret6 && !ret4 && so6) {
928 		soclose(so6);
929 		*in_so6 = NULL;
930 	}
931 	return (0);
932 }
933 
934 static int
wg_send(struct wg_softc * sc,struct wg_endpoint * e,struct mbuf * m)935 wg_send(struct wg_softc *sc, struct wg_endpoint *e, struct mbuf *m)
936 {
937 	struct epoch_tracker et;
938 	struct sockaddr *sa;
939 	struct wg_socket *so = &sc->sc_socket;
940 	struct socket *so4, *so6;
941 	struct mbuf *control = NULL;
942 	int ret = 0;
943 	size_t len = m->m_pkthdr.len;
944 
945 	/* Get local control address before locking */
946 	if (e->e_remote.r_sa.sa_family == AF_INET) {
947 		if (e->e_local.l_in.s_addr != INADDR_ANY)
948 			control = sbcreatecontrol((caddr_t)&e->e_local.l_in,
949 			    sizeof(struct in_addr), IP_SENDSRCADDR,
950 			    IPPROTO_IP, M_NOWAIT);
951 #ifdef INET6
952 	} else if (e->e_remote.r_sa.sa_family == AF_INET6) {
953 		if (!IN6_IS_ADDR_UNSPECIFIED(&e->e_local.l_in6))
954 			control = sbcreatecontrol((caddr_t)&e->e_local.l_pktinfo6,
955 			    sizeof(struct in6_pktinfo), IPV6_PKTINFO,
956 			    IPPROTO_IPV6, M_NOWAIT);
957 #endif
958 	} else {
959 		m_freem(m);
960 		return (EAFNOSUPPORT);
961 	}
962 
963 	/* Get remote address */
964 	sa = &e->e_remote.r_sa;
965 
966 	NET_EPOCH_ENTER(et);
967 	so4 = atomic_load_ptr(&so->so_so4);
968 	so6 = atomic_load_ptr(&so->so_so6);
969 	if (e->e_remote.r_sa.sa_family == AF_INET && so4 != NULL)
970 		ret = sosend(so4, sa, NULL, m, control, 0, curthread);
971 	else if (e->e_remote.r_sa.sa_family == AF_INET6 && so6 != NULL)
972 		ret = sosend(so6, sa, NULL, m, control, 0, curthread);
973 	else {
974 		ret = ENOTCONN;
975 		m_freem(control);
976 		m_freem(m);
977 	}
978 	NET_EPOCH_EXIT(et);
979 	if (ret == 0) {
980 		if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1);
981 		if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, len);
982 	}
983 	return (ret);
984 }
985 
986 static void
wg_send_buf(struct wg_softc * sc,struct wg_endpoint * e,uint8_t * buf,size_t len)987 wg_send_buf(struct wg_softc *sc, struct wg_endpoint *e, uint8_t *buf, size_t len)
988 {
989 	struct mbuf	*m;
990 	int		 ret = 0;
991 	bool		 retried = false;
992 
993 retry:
994 	m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
995 	if (!m) {
996 		ret = ENOMEM;
997 		goto out;
998 	}
999 	m_copyback(m, 0, len, buf);
1000 
1001 	if (ret == 0) {
1002 		ret = wg_send(sc, e, m);
1003 		/* Retry if we couldn't bind to e->e_local */
1004 		if (ret == EADDRNOTAVAIL && !retried) {
1005 			bzero(&e->e_local, sizeof(e->e_local));
1006 			retried = true;
1007 			goto retry;
1008 		}
1009 	} else {
1010 		ret = wg_send(sc, e, m);
1011 	}
1012 out:
1013 	if (ret)
1014 		DPRINTF(sc, "Unable to send packet: %d\n", ret);
1015 }
1016 
1017 /* Timers */
1018 static void
wg_timers_enable(struct wg_peer * peer)1019 wg_timers_enable(struct wg_peer *peer)
1020 {
1021 	atomic_store_bool(&peer->p_enabled, true);
1022 	wg_timers_run_persistent_keepalive(peer);
1023 }
1024 
1025 static void
wg_timers_disable(struct wg_peer * peer)1026 wg_timers_disable(struct wg_peer *peer)
1027 {
1028 	/* By setting p_enabled = false, then calling NET_EPOCH_WAIT, we can be
1029 	 * sure no new handshakes are created after the wait. This is because
1030 	 * all callout_resets (scheduling the callout) are guarded by
1031 	 * p_enabled. We can be sure all sections that read p_enabled and then
1032 	 * optionally call callout_reset are finished as they are surrounded by
1033 	 * NET_EPOCH_{ENTER,EXIT}.
1034 	 *
1035 	 * However, as new callouts may be scheduled during NET_EPOCH_WAIT (but
1036 	 * not after), we stop all callouts leaving no callouts active.
1037 	 *
1038 	 * We should also pull NET_EPOCH_WAIT out of the FOREACH(peer) loops, but the
1039 	 * performance impact is acceptable for the time being. */
1040 	atomic_store_bool(&peer->p_enabled, false);
1041 	NET_EPOCH_WAIT();
1042 	atomic_store_bool(&peer->p_need_another_keepalive, false);
1043 
1044 	callout_stop(&peer->p_new_handshake);
1045 	callout_stop(&peer->p_send_keepalive);
1046 	callout_stop(&peer->p_retry_handshake);
1047 	callout_stop(&peer->p_persistent_keepalive);
1048 	callout_stop(&peer->p_zero_key_material);
1049 }
1050 
1051 static void
wg_timers_set_persistent_keepalive(struct wg_peer * peer,uint16_t interval)1052 wg_timers_set_persistent_keepalive(struct wg_peer *peer, uint16_t interval)
1053 {
1054 	struct epoch_tracker et;
1055 	if (interval != peer->p_persistent_keepalive_interval) {
1056 		atomic_store_16(&peer->p_persistent_keepalive_interval, interval);
1057 		NET_EPOCH_ENTER(et);
1058 		if (atomic_load_bool(&peer->p_enabled))
1059 			wg_timers_run_persistent_keepalive(peer);
1060 		NET_EPOCH_EXIT(et);
1061 	}
1062 }
1063 
1064 static void
wg_timers_get_last_handshake(struct wg_peer * peer,struct wg_timespec64 * time)1065 wg_timers_get_last_handshake(struct wg_peer *peer, struct wg_timespec64 *time)
1066 {
1067 	mtx_lock(&peer->p_handshake_mtx);
1068 	time->tv_sec = peer->p_handshake_complete.tv_sec;
1069 	time->tv_nsec = peer->p_handshake_complete.tv_nsec;
1070 	mtx_unlock(&peer->p_handshake_mtx);
1071 }
1072 
1073 static void
wg_timers_event_data_sent(struct wg_peer * peer)1074 wg_timers_event_data_sent(struct wg_peer *peer)
1075 {
1076 	struct epoch_tracker et;
1077 	NET_EPOCH_ENTER(et);
1078 	if (atomic_load_bool(&peer->p_enabled) &&
1079 	    !callout_pending(&peer->p_new_handshake))
1080 		callout_reset(&peer->p_new_handshake, MSEC_2_TICKS(
1081 		    NEW_HANDSHAKE_TIMEOUT * 1000 +
1082 		    arc4random_uniform(REKEY_TIMEOUT_JITTER)),
1083 		    wg_timers_run_new_handshake, peer);
1084 	NET_EPOCH_EXIT(et);
1085 }
1086 
1087 static void
wg_timers_event_data_received(struct wg_peer * peer)1088 wg_timers_event_data_received(struct wg_peer *peer)
1089 {
1090 	struct epoch_tracker et;
1091 	NET_EPOCH_ENTER(et);
1092 	if (atomic_load_bool(&peer->p_enabled)) {
1093 		if (!callout_pending(&peer->p_send_keepalive))
1094 			callout_reset(&peer->p_send_keepalive,
1095 			    MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000),
1096 			    wg_timers_run_send_keepalive, peer);
1097 		else
1098 			atomic_store_bool(&peer->p_need_another_keepalive,
1099 			    true);
1100 	}
1101 	NET_EPOCH_EXIT(et);
1102 }
1103 
1104 static void
wg_timers_event_any_authenticated_packet_sent(struct wg_peer * peer)1105 wg_timers_event_any_authenticated_packet_sent(struct wg_peer *peer)
1106 {
1107 	callout_stop(&peer->p_send_keepalive);
1108 }
1109 
1110 static void
wg_timers_event_any_authenticated_packet_received(struct wg_peer * peer)1111 wg_timers_event_any_authenticated_packet_received(struct wg_peer *peer)
1112 {
1113 	callout_stop(&peer->p_new_handshake);
1114 }
1115 
1116 static void
wg_timers_event_any_authenticated_packet_traversal(struct wg_peer * peer)1117 wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *peer)
1118 {
1119 	struct epoch_tracker et;
1120 	uint16_t interval;
1121 	NET_EPOCH_ENTER(et);
1122 	interval = atomic_load_16(&peer->p_persistent_keepalive_interval);
1123 	if (atomic_load_bool(&peer->p_enabled) && interval > 0)
1124 		callout_reset(&peer->p_persistent_keepalive,
1125 		     MSEC_2_TICKS(interval * 1000),
1126 		     wg_timers_run_persistent_keepalive, peer);
1127 	NET_EPOCH_EXIT(et);
1128 }
1129 
1130 static void
wg_timers_event_handshake_initiated(struct wg_peer * peer)1131 wg_timers_event_handshake_initiated(struct wg_peer *peer)
1132 {
1133 	struct epoch_tracker et;
1134 	NET_EPOCH_ENTER(et);
1135 	if (atomic_load_bool(&peer->p_enabled))
1136 		callout_reset(&peer->p_retry_handshake, MSEC_2_TICKS(
1137 		    REKEY_TIMEOUT * 1000 +
1138 		    arc4random_uniform(REKEY_TIMEOUT_JITTER)),
1139 		    wg_timers_run_retry_handshake, peer);
1140 	NET_EPOCH_EXIT(et);
1141 }
1142 
1143 static void
wg_timers_event_handshake_complete(struct wg_peer * peer)1144 wg_timers_event_handshake_complete(struct wg_peer *peer)
1145 {
1146 	struct epoch_tracker et;
1147 	NET_EPOCH_ENTER(et);
1148 	if (atomic_load_bool(&peer->p_enabled)) {
1149 		mtx_lock(&peer->p_handshake_mtx);
1150 		callout_stop(&peer->p_retry_handshake);
1151 		peer->p_handshake_retries = 0;
1152 		getnanotime(&peer->p_handshake_complete);
1153 		mtx_unlock(&peer->p_handshake_mtx);
1154 		wg_timers_run_send_keepalive(peer);
1155 	}
1156 	NET_EPOCH_EXIT(et);
1157 }
1158 
1159 static void
wg_timers_event_session_derived(struct wg_peer * peer)1160 wg_timers_event_session_derived(struct wg_peer *peer)
1161 {
1162 	struct epoch_tracker et;
1163 	NET_EPOCH_ENTER(et);
1164 	if (atomic_load_bool(&peer->p_enabled))
1165 		callout_reset(&peer->p_zero_key_material,
1166 		    MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000),
1167 		    wg_timers_run_zero_key_material, peer);
1168 	NET_EPOCH_EXIT(et);
1169 }
1170 
1171 static void
wg_timers_event_want_initiation(struct wg_peer * peer)1172 wg_timers_event_want_initiation(struct wg_peer *peer)
1173 {
1174 	struct epoch_tracker et;
1175 	NET_EPOCH_ENTER(et);
1176 	if (atomic_load_bool(&peer->p_enabled))
1177 		wg_timers_run_send_initiation(peer, false);
1178 	NET_EPOCH_EXIT(et);
1179 }
1180 
1181 static void
wg_timers_run_send_initiation(struct wg_peer * peer,bool is_retry)1182 wg_timers_run_send_initiation(struct wg_peer *peer, bool is_retry)
1183 {
1184 	if (!is_retry)
1185 		peer->p_handshake_retries = 0;
1186 	if (noise_remote_initiation_expired(peer->p_remote) == ETIMEDOUT)
1187 		wg_send_initiation(peer);
1188 }
1189 
1190 static void
wg_timers_run_retry_handshake(void * _peer)1191 wg_timers_run_retry_handshake(void *_peer)
1192 {
1193 	struct epoch_tracker et;
1194 	struct wg_peer *peer = _peer;
1195 
1196 	mtx_lock(&peer->p_handshake_mtx);
1197 	if (peer->p_handshake_retries <= MAX_TIMER_HANDSHAKES) {
1198 		peer->p_handshake_retries++;
1199 		mtx_unlock(&peer->p_handshake_mtx);
1200 
1201 		DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete "
1202 		    "after %d seconds, retrying (try %d)\n", peer->p_id,
1203 		    REKEY_TIMEOUT, peer->p_handshake_retries + 1);
1204 		wg_peer_clear_src(peer);
1205 		wg_timers_run_send_initiation(peer, true);
1206 	} else {
1207 		mtx_unlock(&peer->p_handshake_mtx);
1208 
1209 		DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete "
1210 		    "after %d retries, giving up\n", peer->p_id,
1211 		    MAX_TIMER_HANDSHAKES + 2);
1212 
1213 		callout_stop(&peer->p_send_keepalive);
1214 		wg_queue_purge(&peer->p_stage_queue);
1215 		NET_EPOCH_ENTER(et);
1216 		if (atomic_load_bool(&peer->p_enabled) &&
1217 		    !callout_pending(&peer->p_zero_key_material))
1218 			callout_reset(&peer->p_zero_key_material,
1219 			    MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000),
1220 			    wg_timers_run_zero_key_material, peer);
1221 		NET_EPOCH_EXIT(et);
1222 	}
1223 }
1224 
1225 static void
wg_timers_run_send_keepalive(void * _peer)1226 wg_timers_run_send_keepalive(void *_peer)
1227 {
1228 	struct epoch_tracker et;
1229 	struct wg_peer *peer = _peer;
1230 
1231 	wg_send_keepalive(peer);
1232 	NET_EPOCH_ENTER(et);
1233 	if (atomic_load_bool(&peer->p_enabled) &&
1234 	    atomic_load_bool(&peer->p_need_another_keepalive)) {
1235 		atomic_store_bool(&peer->p_need_another_keepalive, false);
1236 		callout_reset(&peer->p_send_keepalive,
1237 		    MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000),
1238 		    wg_timers_run_send_keepalive, peer);
1239 	}
1240 	NET_EPOCH_EXIT(et);
1241 }
1242 
1243 static void
wg_timers_run_new_handshake(void * _peer)1244 wg_timers_run_new_handshake(void *_peer)
1245 {
1246 	struct wg_peer *peer = _peer;
1247 
1248 	DPRINTF(peer->p_sc, "Retrying handshake with peer %" PRIu64 " because we "
1249 	    "stopped hearing back after %d seconds\n",
1250 	    peer->p_id, NEW_HANDSHAKE_TIMEOUT);
1251 
1252 	wg_peer_clear_src(peer);
1253 	wg_timers_run_send_initiation(peer, false);
1254 }
1255 
1256 static void
wg_timers_run_zero_key_material(void * _peer)1257 wg_timers_run_zero_key_material(void *_peer)
1258 {
1259 	struct wg_peer *peer = _peer;
1260 
1261 	DPRINTF(peer->p_sc, "Zeroing out keys for peer %" PRIu64 ", since we "
1262 	    "haven't received a new one in %d seconds\n",
1263 	    peer->p_id, REJECT_AFTER_TIME * 3);
1264 	noise_remote_keypairs_clear(peer->p_remote);
1265 }
1266 
1267 static void
wg_timers_run_persistent_keepalive(void * _peer)1268 wg_timers_run_persistent_keepalive(void *_peer)
1269 {
1270 	struct wg_peer *peer = _peer;
1271 
1272 	if (atomic_load_16(&peer->p_persistent_keepalive_interval) > 0)
1273 		wg_send_keepalive(peer);
1274 }
1275 
1276 /* TODO Handshake */
1277 static void
wg_peer_send_buf(struct wg_peer * peer,uint8_t * buf,size_t len)1278 wg_peer_send_buf(struct wg_peer *peer, uint8_t *buf, size_t len)
1279 {
1280 	struct wg_endpoint endpoint;
1281 
1282 	counter_u64_add(peer->p_tx_bytes, len);
1283 	wg_timers_event_any_authenticated_packet_traversal(peer);
1284 	wg_timers_event_any_authenticated_packet_sent(peer);
1285 	wg_peer_get_endpoint(peer, &endpoint);
1286 	wg_send_buf(peer->p_sc, &endpoint, buf, len);
1287 }
1288 
1289 static void
wg_send_initiation(struct wg_peer * peer)1290 wg_send_initiation(struct wg_peer *peer)
1291 {
1292 	struct wg_pkt_initiation pkt;
1293 
1294 	if (noise_create_initiation(peer->p_remote, &pkt.s_idx, pkt.ue,
1295 	    pkt.es, pkt.ets) != 0)
1296 		return;
1297 
1298 	DPRINTF(peer->p_sc, "Sending handshake initiation to peer %" PRIu64 "\n", peer->p_id);
1299 
1300 	pkt.t = WG_PKT_INITIATION;
1301 	cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt,
1302 	    sizeof(pkt) - sizeof(pkt.m));
1303 	wg_peer_send_buf(peer, (uint8_t *)&pkt, sizeof(pkt));
1304 	wg_timers_event_handshake_initiated(peer);
1305 }
1306 
1307 static void
wg_send_response(struct wg_peer * peer)1308 wg_send_response(struct wg_peer *peer)
1309 {
1310 	struct wg_pkt_response pkt;
1311 
1312 	if (noise_create_response(peer->p_remote, &pkt.s_idx, &pkt.r_idx,
1313 	    pkt.ue, pkt.en) != 0)
1314 		return;
1315 
1316 	DPRINTF(peer->p_sc, "Sending handshake response to peer %" PRIu64 "\n", peer->p_id);
1317 
1318 	wg_timers_event_session_derived(peer);
1319 	pkt.t = WG_PKT_RESPONSE;
1320 	cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt,
1321 	     sizeof(pkt)-sizeof(pkt.m));
1322 	wg_peer_send_buf(peer, (uint8_t*)&pkt, sizeof(pkt));
1323 }
1324 
1325 static void
wg_send_cookie(struct wg_softc * sc,struct cookie_macs * cm,uint32_t idx,struct wg_endpoint * e)1326 wg_send_cookie(struct wg_softc *sc, struct cookie_macs *cm, uint32_t idx,
1327     struct wg_endpoint *e)
1328 {
1329 	struct wg_pkt_cookie	pkt;
1330 
1331 	DPRINTF(sc, "Sending cookie response for denied handshake message\n");
1332 
1333 	pkt.t = WG_PKT_COOKIE;
1334 	pkt.r_idx = idx;
1335 
1336 	cookie_checker_create_payload(&sc->sc_cookie, cm, pkt.nonce,
1337 	    pkt.ec, &e->e_remote.r_sa);
1338 	wg_send_buf(sc, e, (uint8_t *)&pkt, sizeof(pkt));
1339 }
1340 
1341 static void
wg_send_keepalive(struct wg_peer * peer)1342 wg_send_keepalive(struct wg_peer *peer)
1343 {
1344 	struct wg_packet *pkt;
1345 	struct mbuf *m;
1346 
1347 	if (wg_queue_len(&peer->p_stage_queue) > 0)
1348 		goto send;
1349 	if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL)
1350 		return;
1351 	if ((pkt = wg_packet_alloc(m)) == NULL) {
1352 		m_freem(m);
1353 		return;
1354 	}
1355 	wg_queue_push_staged(&peer->p_stage_queue, pkt);
1356 	DPRINTF(peer->p_sc, "Sending keepalive packet to peer %" PRIu64 "\n", peer->p_id);
1357 send:
1358 	wg_peer_send_staged(peer);
1359 }
1360 
1361 static void
wg_handshake(struct wg_softc * sc,struct wg_packet * pkt)1362 wg_handshake(struct wg_softc *sc, struct wg_packet *pkt)
1363 {
1364 	struct wg_pkt_initiation	*init;
1365 	struct wg_pkt_response		*resp;
1366 	struct wg_pkt_cookie		*cook;
1367 	struct wg_endpoint		*e;
1368 	struct wg_peer			*peer;
1369 	struct mbuf			*m;
1370 	struct noise_remote		*remote = NULL;
1371 	int				 res;
1372 	bool				 underload = false;
1373 	static sbintime_t		 wg_last_underload; /* sbinuptime */
1374 
1375 	underload = wg_queue_len(&sc->sc_handshake_queue) >= MAX_QUEUED_HANDSHAKES / 8;
1376 	if (underload) {
1377 		wg_last_underload = getsbinuptime();
1378 	} else if (wg_last_underload) {
1379 		underload = wg_last_underload + UNDERLOAD_TIMEOUT * SBT_1S > getsbinuptime();
1380 		if (!underload)
1381 			wg_last_underload = 0;
1382 	}
1383 
1384 	m = pkt->p_mbuf;
1385 	e = &pkt->p_endpoint;
1386 
1387 	if ((pkt->p_mbuf = m = m_pullup(m, m->m_pkthdr.len)) == NULL)
1388 		goto error;
1389 
1390 	switch (*mtod(m, uint32_t *)) {
1391 	case WG_PKT_INITIATION:
1392 		init = mtod(m, struct wg_pkt_initiation *);
1393 
1394 		res = cookie_checker_validate_macs(&sc->sc_cookie, &init->m,
1395 				init, sizeof(*init) - sizeof(init->m),
1396 				underload, &e->e_remote.r_sa,
1397 				if_getvnet(sc->sc_ifp));
1398 
1399 		if (res == EINVAL) {
1400 			DPRINTF(sc, "Invalid initiation MAC\n");
1401 			goto error;
1402 		} else if (res == ECONNREFUSED) {
1403 			DPRINTF(sc, "Handshake ratelimited\n");
1404 			goto error;
1405 		} else if (res == EAGAIN) {
1406 			wg_send_cookie(sc, &init->m, init->s_idx, e);
1407 			goto error;
1408 		} else if (res != 0) {
1409 			panic("unexpected response: %d\n", res);
1410 		}
1411 
1412 		if (noise_consume_initiation(sc->sc_local, &remote,
1413 		    init->s_idx, init->ue, init->es, init->ets) != 0) {
1414 			DPRINTF(sc, "Invalid handshake initiation\n");
1415 			goto error;
1416 		}
1417 
1418 		peer = noise_remote_arg(remote);
1419 
1420 		DPRINTF(sc, "Receiving handshake initiation from peer %" PRIu64 "\n", peer->p_id);
1421 
1422 		wg_peer_set_endpoint(peer, e);
1423 		wg_send_response(peer);
1424 		break;
1425 	case WG_PKT_RESPONSE:
1426 		resp = mtod(m, struct wg_pkt_response *);
1427 
1428 		res = cookie_checker_validate_macs(&sc->sc_cookie, &resp->m,
1429 				resp, sizeof(*resp) - sizeof(resp->m),
1430 				underload, &e->e_remote.r_sa,
1431 				if_getvnet(sc->sc_ifp));
1432 
1433 		if (res == EINVAL) {
1434 			DPRINTF(sc, "Invalid response MAC\n");
1435 			goto error;
1436 		} else if (res == ECONNREFUSED) {
1437 			DPRINTF(sc, "Handshake ratelimited\n");
1438 			goto error;
1439 		} else if (res == EAGAIN) {
1440 			wg_send_cookie(sc, &resp->m, resp->s_idx, e);
1441 			goto error;
1442 		} else if (res != 0) {
1443 			panic("unexpected response: %d\n", res);
1444 		}
1445 
1446 		if (noise_consume_response(sc->sc_local, &remote,
1447 		    resp->s_idx, resp->r_idx, resp->ue, resp->en) != 0) {
1448 			DPRINTF(sc, "Invalid handshake response\n");
1449 			goto error;
1450 		}
1451 
1452 		peer = noise_remote_arg(remote);
1453 		DPRINTF(sc, "Receiving handshake response from peer %" PRIu64 "\n", peer->p_id);
1454 
1455 		wg_peer_set_endpoint(peer, e);
1456 		wg_timers_event_session_derived(peer);
1457 		wg_timers_event_handshake_complete(peer);
1458 		break;
1459 	case WG_PKT_COOKIE:
1460 		cook = mtod(m, struct wg_pkt_cookie *);
1461 
1462 		if ((remote = noise_remote_index(sc->sc_local, cook->r_idx)) == NULL) {
1463 			DPRINTF(sc, "Unknown cookie index\n");
1464 			goto error;
1465 		}
1466 
1467 		peer = noise_remote_arg(remote);
1468 
1469 		if (cookie_maker_consume_payload(&peer->p_cookie,
1470 		    cook->nonce, cook->ec) == 0) {
1471 			DPRINTF(sc, "Receiving cookie response\n");
1472 		} else {
1473 			DPRINTF(sc, "Could not decrypt cookie response\n");
1474 			goto error;
1475 		}
1476 
1477 		goto not_authenticated;
1478 	default:
1479 		panic("invalid packet in handshake queue");
1480 	}
1481 
1482 	wg_timers_event_any_authenticated_packet_received(peer);
1483 	wg_timers_event_any_authenticated_packet_traversal(peer);
1484 
1485 not_authenticated:
1486 	counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len);
1487 	if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1);
1488 	if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
1489 error:
1490 	if (remote != NULL)
1491 		noise_remote_put(remote);
1492 	wg_packet_free(pkt);
1493 }
1494 
1495 static void
wg_softc_handshake_receive(struct wg_softc * sc)1496 wg_softc_handshake_receive(struct wg_softc *sc)
1497 {
1498 	struct wg_packet *pkt;
1499 	while ((pkt = wg_queue_dequeue_handshake(&sc->sc_handshake_queue)) != NULL)
1500 		wg_handshake(sc, pkt);
1501 }
1502 
1503 static void
wg_mbuf_reset(struct mbuf * m)1504 wg_mbuf_reset(struct mbuf *m)
1505 {
1506 
1507 	struct m_tag *t, *tmp;
1508 
1509 	/*
1510 	 * We want to reset the mbuf to a newly allocated state, containing
1511 	 * just the packet contents. Unfortunately FreeBSD doesn't seem to
1512 	 * offer this anywhere, so we have to make it up as we go. If we can
1513 	 * get this in kern/kern_mbuf.c, that would be best.
1514 	 *
1515 	 * Notice: this may break things unexpectedly but it is better to fail
1516 	 *         closed in the extreme case than leak informtion in every
1517 	 *         case.
1518 	 *
1519 	 * With that said, all this attempts to do is remove any extraneous
1520 	 * information that could be present.
1521 	 */
1522 
1523 	M_ASSERTPKTHDR(m);
1524 
1525 	m->m_flags &= ~(M_BCAST|M_MCAST|M_VLANTAG|M_PROMISC|M_PROTOFLAGS);
1526 
1527 	M_HASHTYPE_CLEAR(m);
1528 #ifdef NUMA
1529         m->m_pkthdr.numa_domain = M_NODOM;
1530 #endif
1531 	SLIST_FOREACH_SAFE(t, &m->m_pkthdr.tags, m_tag_link, tmp) {
1532 		if ((t->m_tag_id != 0 || t->m_tag_cookie != MTAG_WGLOOP) &&
1533 		    t->m_tag_id != PACKET_TAG_MACLABEL)
1534 			m_tag_delete(m, t);
1535 	}
1536 
1537 	KASSERT((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0,
1538 	    ("%s: mbuf %p has a send tag", __func__, m));
1539 
1540 	m->m_pkthdr.csum_flags = 0;
1541 	m->m_pkthdr.PH_per.sixtyfour[0] = 0;
1542 	m->m_pkthdr.PH_loc.sixtyfour[0] = 0;
1543 }
1544 
1545 static inline unsigned int
calculate_padding(struct wg_packet * pkt)1546 calculate_padding(struct wg_packet *pkt)
1547 {
1548 	unsigned int padded_size, last_unit = pkt->p_mbuf->m_pkthdr.len;
1549 
1550 	/* Keepalive packets don't set p_mtu, but also have a length of zero. */
1551 	if (__predict_false(pkt->p_mtu == 0)) {
1552 		padded_size = (last_unit + (WG_PKT_PADDING - 1)) &
1553 		    ~(WG_PKT_PADDING - 1);
1554 		return (padded_size - last_unit);
1555 	}
1556 
1557 	if (__predict_false(last_unit > pkt->p_mtu))
1558 		last_unit %= pkt->p_mtu;
1559 
1560 	padded_size = (last_unit + (WG_PKT_PADDING - 1)) & ~(WG_PKT_PADDING - 1);
1561 	if (pkt->p_mtu < padded_size)
1562 		padded_size = pkt->p_mtu;
1563 	return (padded_size - last_unit);
1564 }
1565 
1566 static void
wg_encrypt(struct wg_softc * sc,struct wg_packet * pkt)1567 wg_encrypt(struct wg_softc *sc, struct wg_packet *pkt)
1568 {
1569 	static const uint8_t	 padding[WG_PKT_PADDING] = { 0 };
1570 	struct wg_pkt_data	*data;
1571 	struct wg_peer		*peer;
1572 	struct noise_remote	*remote;
1573 	struct mbuf		*m;
1574 	uint32_t		 idx;
1575 	unsigned int		 padlen;
1576 	enum wg_ring_state	 state = WG_PACKET_DEAD;
1577 
1578 	remote = noise_keypair_remote(pkt->p_keypair);
1579 	peer = noise_remote_arg(remote);
1580 	m = pkt->p_mbuf;
1581 
1582 	/* Pad the packet */
1583 	padlen = calculate_padding(pkt);
1584 	if (padlen != 0 && !m_append(m, padlen, padding))
1585 		goto out;
1586 
1587 	/* Do encryption */
1588 	if (noise_keypair_encrypt(pkt->p_keypair, &idx, pkt->p_nonce, m) != 0)
1589 		goto out;
1590 
1591 	/* Put header into packet */
1592 	M_PREPEND(m, sizeof(struct wg_pkt_data), M_NOWAIT);
1593 	if (m == NULL)
1594 		goto out;
1595 	data = mtod(m, struct wg_pkt_data *);
1596 	data->t = WG_PKT_DATA;
1597 	data->r_idx = idx;
1598 	data->nonce = htole64(pkt->p_nonce);
1599 
1600 	wg_mbuf_reset(m);
1601 	state = WG_PACKET_CRYPTED;
1602 out:
1603 	pkt->p_mbuf = m;
1604 	atomic_store_rel_int(&pkt->p_state, state);
1605 	GROUPTASK_ENQUEUE(&peer->p_send);
1606 	noise_remote_put(remote);
1607 }
1608 
1609 static void
wg_decrypt(struct wg_softc * sc,struct wg_packet * pkt)1610 wg_decrypt(struct wg_softc *sc, struct wg_packet *pkt)
1611 {
1612 	struct wg_peer		*peer, *allowed_peer;
1613 	struct noise_remote	*remote;
1614 	struct mbuf		*m;
1615 	int			 len;
1616 	enum wg_ring_state	 state = WG_PACKET_DEAD;
1617 
1618 	remote = noise_keypair_remote(pkt->p_keypair);
1619 	peer = noise_remote_arg(remote);
1620 	m = pkt->p_mbuf;
1621 
1622 	/* Read nonce and then adjust to remove the header. */
1623 	pkt->p_nonce = le64toh(mtod(m, struct wg_pkt_data *)->nonce);
1624 	m_adj(m, sizeof(struct wg_pkt_data));
1625 
1626 	if (noise_keypair_decrypt(pkt->p_keypair, pkt->p_nonce, m) != 0)
1627 		goto out;
1628 
1629 	/* A packet with length 0 is a keepalive packet */
1630 	if (__predict_false(m->m_pkthdr.len == 0)) {
1631 		DPRINTF(sc, "Receiving keepalive packet from peer "
1632 		    "%" PRIu64 "\n", peer->p_id);
1633 		state = WG_PACKET_CRYPTED;
1634 		goto out;
1635 	}
1636 
1637 	/*
1638 	 * We can let the network stack handle the intricate validation of the
1639 	 * IP header, we just worry about the sizeof and the version, so we can
1640 	 * read the source address in wg_aip_lookup.
1641 	 */
1642 
1643 	if (determine_af_and_pullup(&m, &pkt->p_af) == 0) {
1644 		if (pkt->p_af == AF_INET) {
1645 			struct ip *ip = mtod(m, struct ip *);
1646 			allowed_peer = wg_aip_lookup(sc, AF_INET, &ip->ip_src);
1647 			len = ntohs(ip->ip_len);
1648 			if (len >= sizeof(struct ip) && len < m->m_pkthdr.len)
1649 				m_adj(m, len - m->m_pkthdr.len);
1650 		} else if (pkt->p_af == AF_INET6) {
1651 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1652 			allowed_peer = wg_aip_lookup(sc, AF_INET6, &ip6->ip6_src);
1653 			len = ntohs(ip6->ip6_plen) + sizeof(struct ip6_hdr);
1654 			if (len < m->m_pkthdr.len)
1655 				m_adj(m, len - m->m_pkthdr.len);
1656 		} else
1657 			panic("determine_af_and_pullup returned unexpected value");
1658 	} else {
1659 		DPRINTF(sc, "Packet is neither ipv4 nor ipv6 from peer %" PRIu64 "\n", peer->p_id);
1660 		goto out;
1661 	}
1662 
1663 	/* We only want to compare the address, not dereference, so drop the ref. */
1664 	if (allowed_peer != NULL)
1665 		noise_remote_put(allowed_peer->p_remote);
1666 
1667 	if (__predict_false(peer != allowed_peer)) {
1668 		DPRINTF(sc, "Packet has unallowed src IP from peer %" PRIu64 "\n", peer->p_id);
1669 		goto out;
1670 	}
1671 
1672 	wg_mbuf_reset(m);
1673 	state = WG_PACKET_CRYPTED;
1674 out:
1675 	pkt->p_mbuf = m;
1676 	atomic_store_rel_int(&pkt->p_state, state);
1677 	GROUPTASK_ENQUEUE(&peer->p_recv);
1678 	noise_remote_put(remote);
1679 }
1680 
1681 static void
wg_softc_decrypt(struct wg_softc * sc)1682 wg_softc_decrypt(struct wg_softc *sc)
1683 {
1684 	struct wg_packet *pkt;
1685 
1686 	while ((pkt = wg_queue_dequeue_parallel(&sc->sc_decrypt_parallel)) != NULL)
1687 		wg_decrypt(sc, pkt);
1688 }
1689 
1690 static void
wg_softc_encrypt(struct wg_softc * sc)1691 wg_softc_encrypt(struct wg_softc *sc)
1692 {
1693 	struct wg_packet *pkt;
1694 
1695 	while ((pkt = wg_queue_dequeue_parallel(&sc->sc_encrypt_parallel)) != NULL)
1696 		wg_encrypt(sc, pkt);
1697 }
1698 
1699 static void
wg_encrypt_dispatch(struct wg_softc * sc)1700 wg_encrypt_dispatch(struct wg_softc *sc)
1701 {
1702 	/*
1703 	 * The update to encrypt_last_cpu is racey such that we may
1704 	 * reschedule the task for the same CPU multiple times, but
1705 	 * the race doesn't really matter.
1706 	 */
1707 	u_int cpu = (sc->sc_encrypt_last_cpu + 1) % mp_ncpus;
1708 	sc->sc_encrypt_last_cpu = cpu;
1709 	GROUPTASK_ENQUEUE(&sc->sc_encrypt[cpu]);
1710 }
1711 
1712 static void
wg_decrypt_dispatch(struct wg_softc * sc)1713 wg_decrypt_dispatch(struct wg_softc *sc)
1714 {
1715 	u_int cpu = (sc->sc_decrypt_last_cpu + 1) % mp_ncpus;
1716 	sc->sc_decrypt_last_cpu = cpu;
1717 	GROUPTASK_ENQUEUE(&sc->sc_decrypt[cpu]);
1718 }
1719 
1720 static void
wg_deliver_out(struct wg_peer * peer)1721 wg_deliver_out(struct wg_peer *peer)
1722 {
1723 	struct wg_endpoint	 endpoint;
1724 	struct wg_softc		*sc = peer->p_sc;
1725 	struct wg_packet	*pkt;
1726 	struct mbuf		*m;
1727 	int			 rc, len;
1728 
1729 	wg_peer_get_endpoint(peer, &endpoint);
1730 
1731 	while ((pkt = wg_queue_dequeue_serial(&peer->p_encrypt_serial)) != NULL) {
1732 		if (atomic_load_acq_int(&pkt->p_state) != WG_PACKET_CRYPTED)
1733 			goto error;
1734 
1735 		m = pkt->p_mbuf;
1736 		pkt->p_mbuf = NULL;
1737 
1738 		len = m->m_pkthdr.len;
1739 
1740 		wg_timers_event_any_authenticated_packet_traversal(peer);
1741 		wg_timers_event_any_authenticated_packet_sent(peer);
1742 		rc = wg_send(sc, &endpoint, m);
1743 		if (rc == 0) {
1744 			if (len > (sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN))
1745 				wg_timers_event_data_sent(peer);
1746 			counter_u64_add(peer->p_tx_bytes, len);
1747 		} else if (rc == EADDRNOTAVAIL) {
1748 			wg_peer_clear_src(peer);
1749 			wg_peer_get_endpoint(peer, &endpoint);
1750 			goto error;
1751 		} else {
1752 			goto error;
1753 		}
1754 		wg_packet_free(pkt);
1755 		if (noise_keep_key_fresh_send(peer->p_remote))
1756 			wg_timers_event_want_initiation(peer);
1757 		continue;
1758 error:
1759 		if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1);
1760 		wg_packet_free(pkt);
1761 	}
1762 }
1763 
1764 #ifdef DEV_NETMAP
1765 /*
1766  * Hand a packet to the netmap RX ring, via netmap's
1767  * freebsd_generic_rx_handler().
1768  */
1769 static void
wg_deliver_netmap(if_t ifp,struct mbuf * m,int af)1770 wg_deliver_netmap(if_t ifp, struct mbuf *m, int af)
1771 {
1772 	struct ether_header *eh;
1773 
1774 	M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
1775 	if (__predict_false(m == NULL)) {
1776 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1777 		return;
1778 	}
1779 
1780 	eh = mtod(m, struct ether_header *);
1781 	eh->ether_type = af == AF_INET ?
1782 	    htons(ETHERTYPE_IP) : htons(ETHERTYPE_IPV6);
1783 	memcpy(eh->ether_shost, "\x02\x02\x02\x02\x02\x02", ETHER_ADDR_LEN);
1784 	memcpy(eh->ether_dhost, "\xff\xff\xff\xff\xff\xff", ETHER_ADDR_LEN);
1785 	if_input(ifp, m);
1786 }
1787 #endif
1788 
1789 static void
wg_deliver_in(struct wg_peer * peer)1790 wg_deliver_in(struct wg_peer *peer)
1791 {
1792 	struct wg_softc		*sc = peer->p_sc;
1793 	if_t			 ifp = sc->sc_ifp;
1794 	struct wg_packet	*pkt;
1795 	struct mbuf		*m;
1796 	struct epoch_tracker	 et;
1797 	int			 af;
1798 
1799 	while ((pkt = wg_queue_dequeue_serial(&peer->p_decrypt_serial)) != NULL) {
1800 		if (atomic_load_acq_int(&pkt->p_state) != WG_PACKET_CRYPTED)
1801 			goto error;
1802 
1803 		m = pkt->p_mbuf;
1804 		if (noise_keypair_nonce_check(pkt->p_keypair, pkt->p_nonce) != 0)
1805 			goto error;
1806 
1807 		if (noise_keypair_received_with(pkt->p_keypair) == ECONNRESET)
1808 			wg_timers_event_handshake_complete(peer);
1809 
1810 		wg_timers_event_any_authenticated_packet_received(peer);
1811 		wg_timers_event_any_authenticated_packet_traversal(peer);
1812 		wg_peer_set_endpoint(peer, &pkt->p_endpoint);
1813 
1814 		counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len +
1815 		    sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN);
1816 		if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1);
1817 		if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len +
1818 		    sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN);
1819 
1820 		if (m->m_pkthdr.len == 0)
1821 			goto done;
1822 
1823 		af = pkt->p_af;
1824 		MPASS(af == AF_INET || af == AF_INET6);
1825 		pkt->p_mbuf = NULL;
1826 
1827 		m->m_pkthdr.rcvif = ifp;
1828 
1829 		NET_EPOCH_ENTER(et);
1830 		BPF_MTAP2_AF(ifp, m, af);
1831 
1832 		CURVNET_SET(if_getvnet(ifp));
1833 		M_SETFIB(m, if_getfib(ifp));
1834 #ifdef DEV_NETMAP
1835 		if ((if_getcapenable(ifp) & IFCAP_NETMAP) != 0)
1836 			wg_deliver_netmap(ifp, m, af);
1837 		else
1838 #endif
1839 		if (af == AF_INET)
1840 			netisr_dispatch(NETISR_IP, m);
1841 		else if (af == AF_INET6)
1842 			netisr_dispatch(NETISR_IPV6, m);
1843 		CURVNET_RESTORE();
1844 		NET_EPOCH_EXIT(et);
1845 
1846 		wg_timers_event_data_received(peer);
1847 
1848 done:
1849 		if (noise_keep_key_fresh_recv(peer->p_remote))
1850 			wg_timers_event_want_initiation(peer);
1851 		wg_packet_free(pkt);
1852 		continue;
1853 error:
1854 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1855 		wg_packet_free(pkt);
1856 	}
1857 }
1858 
1859 static struct wg_packet *
wg_packet_alloc(struct mbuf * m)1860 wg_packet_alloc(struct mbuf *m)
1861 {
1862 	struct wg_packet *pkt;
1863 
1864 	if ((pkt = uma_zalloc(wg_packet_zone, M_NOWAIT | M_ZERO)) == NULL)
1865 		return (NULL);
1866 	pkt->p_mbuf = m;
1867 	return (pkt);
1868 }
1869 
1870 static void
wg_packet_free(struct wg_packet * pkt)1871 wg_packet_free(struct wg_packet *pkt)
1872 {
1873 	if (pkt->p_keypair != NULL)
1874 		noise_keypair_put(pkt->p_keypair);
1875 	if (pkt->p_mbuf != NULL)
1876 		m_freem(pkt->p_mbuf);
1877 	uma_zfree(wg_packet_zone, pkt);
1878 }
1879 
1880 static void
wg_queue_init(struct wg_queue * queue,const char * name)1881 wg_queue_init(struct wg_queue *queue, const char *name)
1882 {
1883 	mtx_init(&queue->q_mtx, name, NULL, MTX_DEF);
1884 	STAILQ_INIT(&queue->q_queue);
1885 	queue->q_len = 0;
1886 }
1887 
1888 static void
wg_queue_deinit(struct wg_queue * queue)1889 wg_queue_deinit(struct wg_queue *queue)
1890 {
1891 	wg_queue_purge(queue);
1892 	mtx_destroy(&queue->q_mtx);
1893 }
1894 
1895 static size_t
wg_queue_len(struct wg_queue * queue)1896 wg_queue_len(struct wg_queue *queue)
1897 {
1898 	return (queue->q_len);
1899 }
1900 
1901 static int
wg_queue_enqueue_handshake(struct wg_queue * hs,struct wg_packet * pkt)1902 wg_queue_enqueue_handshake(struct wg_queue *hs, struct wg_packet *pkt)
1903 {
1904 	int ret = 0;
1905 	mtx_lock(&hs->q_mtx);
1906 	if (hs->q_len < MAX_QUEUED_HANDSHAKES) {
1907 		STAILQ_INSERT_TAIL(&hs->q_queue, pkt, p_parallel);
1908 		hs->q_len++;
1909 	} else {
1910 		ret = ENOBUFS;
1911 	}
1912 	mtx_unlock(&hs->q_mtx);
1913 	if (ret != 0)
1914 		wg_packet_free(pkt);
1915 	return (ret);
1916 }
1917 
1918 static struct wg_packet *
wg_queue_dequeue_handshake(struct wg_queue * hs)1919 wg_queue_dequeue_handshake(struct wg_queue *hs)
1920 {
1921 	struct wg_packet *pkt;
1922 	mtx_lock(&hs->q_mtx);
1923 	if ((pkt = STAILQ_FIRST(&hs->q_queue)) != NULL) {
1924 		STAILQ_REMOVE_HEAD(&hs->q_queue, p_parallel);
1925 		hs->q_len--;
1926 	}
1927 	mtx_unlock(&hs->q_mtx);
1928 	return (pkt);
1929 }
1930 
1931 static void
wg_queue_push_staged(struct wg_queue * staged,struct wg_packet * pkt)1932 wg_queue_push_staged(struct wg_queue *staged, struct wg_packet *pkt)
1933 {
1934 	struct wg_packet *old = NULL;
1935 
1936 	mtx_lock(&staged->q_mtx);
1937 	if (staged->q_len >= MAX_STAGED_PKT) {
1938 		old = STAILQ_FIRST(&staged->q_queue);
1939 		STAILQ_REMOVE_HEAD(&staged->q_queue, p_parallel);
1940 		staged->q_len--;
1941 	}
1942 	STAILQ_INSERT_TAIL(&staged->q_queue, pkt, p_parallel);
1943 	staged->q_len++;
1944 	mtx_unlock(&staged->q_mtx);
1945 
1946 	if (old != NULL)
1947 		wg_packet_free(old);
1948 }
1949 
1950 static void
wg_queue_enlist_staged(struct wg_queue * staged,struct wg_packet_list * list)1951 wg_queue_enlist_staged(struct wg_queue *staged, struct wg_packet_list *list)
1952 {
1953 	struct wg_packet *pkt, *tpkt;
1954 	STAILQ_FOREACH_SAFE(pkt, list, p_parallel, tpkt)
1955 		wg_queue_push_staged(staged, pkt);
1956 }
1957 
1958 static void
wg_queue_delist_staged(struct wg_queue * staged,struct wg_packet_list * list)1959 wg_queue_delist_staged(struct wg_queue *staged, struct wg_packet_list *list)
1960 {
1961 	STAILQ_INIT(list);
1962 	mtx_lock(&staged->q_mtx);
1963 	STAILQ_CONCAT(list, &staged->q_queue);
1964 	staged->q_len = 0;
1965 	mtx_unlock(&staged->q_mtx);
1966 }
1967 
1968 static void
wg_queue_purge(struct wg_queue * staged)1969 wg_queue_purge(struct wg_queue *staged)
1970 {
1971 	struct wg_packet_list list;
1972 	struct wg_packet *pkt, *tpkt;
1973 	wg_queue_delist_staged(staged, &list);
1974 	STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt)
1975 		wg_packet_free(pkt);
1976 }
1977 
1978 static int
wg_queue_both(struct wg_queue * parallel,struct wg_queue * serial,struct wg_packet * pkt)1979 wg_queue_both(struct wg_queue *parallel, struct wg_queue *serial, struct wg_packet *pkt)
1980 {
1981 	pkt->p_state = WG_PACKET_UNCRYPTED;
1982 
1983 	mtx_lock(&serial->q_mtx);
1984 	if (serial->q_len < MAX_QUEUED_PKT) {
1985 		serial->q_len++;
1986 		STAILQ_INSERT_TAIL(&serial->q_queue, pkt, p_serial);
1987 	} else {
1988 		mtx_unlock(&serial->q_mtx);
1989 		wg_packet_free(pkt);
1990 		return (ENOBUFS);
1991 	}
1992 	mtx_unlock(&serial->q_mtx);
1993 
1994 	mtx_lock(&parallel->q_mtx);
1995 	if (parallel->q_len < MAX_QUEUED_PKT) {
1996 		parallel->q_len++;
1997 		STAILQ_INSERT_TAIL(&parallel->q_queue, pkt, p_parallel);
1998 	} else {
1999 		mtx_unlock(&parallel->q_mtx);
2000 		pkt->p_state = WG_PACKET_DEAD;
2001 		return (ENOBUFS);
2002 	}
2003 	mtx_unlock(&parallel->q_mtx);
2004 
2005 	return (0);
2006 }
2007 
2008 static struct wg_packet *
wg_queue_dequeue_serial(struct wg_queue * serial)2009 wg_queue_dequeue_serial(struct wg_queue *serial)
2010 {
2011 	struct wg_packet *pkt = NULL;
2012 	mtx_lock(&serial->q_mtx);
2013 	if (serial->q_len > 0 && STAILQ_FIRST(&serial->q_queue)->p_state != WG_PACKET_UNCRYPTED) {
2014 		serial->q_len--;
2015 		pkt = STAILQ_FIRST(&serial->q_queue);
2016 		STAILQ_REMOVE_HEAD(&serial->q_queue, p_serial);
2017 	}
2018 	mtx_unlock(&serial->q_mtx);
2019 	return (pkt);
2020 }
2021 
2022 static struct wg_packet *
wg_queue_dequeue_parallel(struct wg_queue * parallel)2023 wg_queue_dequeue_parallel(struct wg_queue *parallel)
2024 {
2025 	struct wg_packet *pkt = NULL;
2026 	mtx_lock(&parallel->q_mtx);
2027 	if (parallel->q_len > 0) {
2028 		parallel->q_len--;
2029 		pkt = STAILQ_FIRST(&parallel->q_queue);
2030 		STAILQ_REMOVE_HEAD(&parallel->q_queue, p_parallel);
2031 	}
2032 	mtx_unlock(&parallel->q_mtx);
2033 	return (pkt);
2034 }
2035 
2036 static bool
wg_input(struct mbuf * m,int offset,struct inpcb * inpcb,const struct sockaddr * sa,void * _sc)2037 wg_input(struct mbuf *m, int offset, struct inpcb *inpcb,
2038     const struct sockaddr *sa, void *_sc)
2039 {
2040 #ifdef INET
2041 	const struct sockaddr_in	*sin;
2042 #endif
2043 #ifdef INET6
2044 	const struct sockaddr_in6	*sin6;
2045 #endif
2046 	struct noise_remote		*remote;
2047 	struct wg_pkt_data		*data;
2048 	struct wg_packet		*pkt;
2049 	struct wg_peer			*peer;
2050 	struct wg_softc			*sc = _sc;
2051 	struct mbuf			*defragged;
2052 
2053 	defragged = m_defrag(m, M_NOWAIT);
2054 	if (defragged)
2055 		m = defragged;
2056 	m = m_unshare(m, M_NOWAIT);
2057 	if (!m) {
2058 		if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
2059 		return true;
2060 	}
2061 
2062 	/* Caller provided us with `sa`, no need for this header. */
2063 	m_adj(m, offset + sizeof(struct udphdr));
2064 
2065 	/* Pullup enough to read packet type */
2066 	if ((m = m_pullup(m, sizeof(uint32_t))) == NULL) {
2067 		if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
2068 		return true;
2069 	}
2070 
2071 	if ((pkt = wg_packet_alloc(m)) == NULL) {
2072 		if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
2073 		m_freem(m);
2074 		return true;
2075 	}
2076 
2077 	/* Save send/recv address and port for later. */
2078 	switch (sa->sa_family) {
2079 #ifdef INET
2080 	case AF_INET:
2081 		sin = (const struct sockaddr_in *)sa;
2082 		pkt->p_endpoint.e_remote.r_sin = sin[0];
2083 		pkt->p_endpoint.e_local.l_in = sin[1].sin_addr;
2084 		break;
2085 #endif
2086 #ifdef INET6
2087 	case AF_INET6:
2088 		sin6 = (const struct sockaddr_in6 *)sa;
2089 		pkt->p_endpoint.e_remote.r_sin6 = sin6[0];
2090 		pkt->p_endpoint.e_local.l_in6 = sin6[1].sin6_addr;
2091 		break;
2092 #endif
2093 	default:
2094 		goto error;
2095 	}
2096 
2097 	if ((m->m_pkthdr.len == sizeof(struct wg_pkt_initiation) &&
2098 		*mtod(m, uint32_t *) == WG_PKT_INITIATION) ||
2099 	    (m->m_pkthdr.len == sizeof(struct wg_pkt_response) &&
2100 		*mtod(m, uint32_t *) == WG_PKT_RESPONSE) ||
2101 	    (m->m_pkthdr.len == sizeof(struct wg_pkt_cookie) &&
2102 		*mtod(m, uint32_t *) == WG_PKT_COOKIE)) {
2103 
2104 		if (wg_queue_enqueue_handshake(&sc->sc_handshake_queue, pkt) != 0) {
2105 			if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
2106 			DPRINTF(sc, "Dropping handshake packet\n");
2107 		}
2108 		GROUPTASK_ENQUEUE(&sc->sc_handshake);
2109 	} else if (m->m_pkthdr.len >= sizeof(struct wg_pkt_data) +
2110 	    NOISE_AUTHTAG_LEN && *mtod(m, uint32_t *) == WG_PKT_DATA) {
2111 
2112 		/* Pullup whole header to read r_idx below. */
2113 		if ((pkt->p_mbuf = m_pullup(m, sizeof(struct wg_pkt_data))) == NULL)
2114 			goto error;
2115 
2116 		data = mtod(pkt->p_mbuf, struct wg_pkt_data *);
2117 		if ((pkt->p_keypair = noise_keypair_lookup(sc->sc_local, data->r_idx)) == NULL)
2118 			goto error;
2119 
2120 		remote = noise_keypair_remote(pkt->p_keypair);
2121 		peer = noise_remote_arg(remote);
2122 		if (wg_queue_both(&sc->sc_decrypt_parallel, &peer->p_decrypt_serial, pkt) != 0)
2123 			if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
2124 		wg_decrypt_dispatch(sc);
2125 		noise_remote_put(remote);
2126 	} else {
2127 		goto error;
2128 	}
2129 	return true;
2130 error:
2131 	if_inc_counter(sc->sc_ifp, IFCOUNTER_IERRORS, 1);
2132 	wg_packet_free(pkt);
2133 	return true;
2134 }
2135 
2136 static void
wg_peer_send_staged(struct wg_peer * peer)2137 wg_peer_send_staged(struct wg_peer *peer)
2138 {
2139 	struct wg_packet_list	 list;
2140 	struct noise_keypair	*keypair;
2141 	struct wg_packet	*pkt, *tpkt;
2142 	struct wg_softc		*sc = peer->p_sc;
2143 
2144 	wg_queue_delist_staged(&peer->p_stage_queue, &list);
2145 
2146 	if (STAILQ_EMPTY(&list))
2147 		return;
2148 
2149 	if ((keypair = noise_keypair_current(peer->p_remote)) == NULL)
2150 		goto error;
2151 
2152 	STAILQ_FOREACH(pkt, &list, p_parallel) {
2153 		if (noise_keypair_nonce_next(keypair, &pkt->p_nonce) != 0)
2154 			goto error_keypair;
2155 	}
2156 	STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt) {
2157 		pkt->p_keypair = noise_keypair_ref(keypair);
2158 		if (wg_queue_both(&sc->sc_encrypt_parallel, &peer->p_encrypt_serial, pkt) != 0)
2159 			if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1);
2160 	}
2161 	wg_encrypt_dispatch(sc);
2162 	noise_keypair_put(keypair);
2163 	return;
2164 
2165 error_keypair:
2166 	noise_keypair_put(keypair);
2167 error:
2168 	wg_queue_enlist_staged(&peer->p_stage_queue, &list);
2169 	wg_timers_event_want_initiation(peer);
2170 }
2171 
2172 static inline void
xmit_err(if_t ifp,struct mbuf * m,struct wg_packet * pkt,sa_family_t af)2173 xmit_err(if_t ifp, struct mbuf *m, struct wg_packet *pkt, sa_family_t af)
2174 {
2175 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2176 	switch (af) {
2177 #ifdef INET
2178 	case AF_INET:
2179 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
2180 		if (pkt)
2181 			pkt->p_mbuf = NULL;
2182 		m = NULL;
2183 		break;
2184 #endif
2185 #ifdef INET6
2186 	case AF_INET6:
2187 		icmp6_error(m, ICMP6_DST_UNREACH, 0, 0);
2188 		if (pkt)
2189 			pkt->p_mbuf = NULL;
2190 		m = NULL;
2191 		break;
2192 #endif
2193 	}
2194 	if (pkt)
2195 		wg_packet_free(pkt);
2196 	else if (m)
2197 		m_freem(m);
2198 }
2199 
2200 static int
wg_xmit(if_t ifp,struct mbuf * m,sa_family_t af,uint32_t mtu)2201 wg_xmit(if_t ifp, struct mbuf *m, sa_family_t af, uint32_t mtu)
2202 {
2203 	struct wg_packet	*pkt = NULL;
2204 	struct wg_softc		*sc = if_getsoftc(ifp);
2205 	struct wg_peer		*peer;
2206 	int			 rc = 0;
2207 	sa_family_t		 peer_af;
2208 
2209 	/* Work around lifetime issue in the ipv6 mld code. */
2210 	if (__predict_false((if_getflags(ifp) & IFF_DYING) || !sc)) {
2211 		rc = ENXIO;
2212 		goto err_xmit;
2213 	}
2214 
2215 	if ((pkt = wg_packet_alloc(m)) == NULL) {
2216 		rc = ENOBUFS;
2217 		goto err_xmit;
2218 	}
2219 	pkt->p_mtu = mtu;
2220 	pkt->p_af = af;
2221 
2222 	if (af == AF_INET) {
2223 		peer = wg_aip_lookup(sc, AF_INET, &mtod(m, struct ip *)->ip_dst);
2224 	} else if (af == AF_INET6) {
2225 		peer = wg_aip_lookup(sc, AF_INET6, &mtod(m, struct ip6_hdr *)->ip6_dst);
2226 	} else {
2227 		rc = EAFNOSUPPORT;
2228 		goto err_xmit;
2229 	}
2230 
2231 	BPF_MTAP2_AF(ifp, m, pkt->p_af);
2232 
2233 	if (__predict_false(peer == NULL)) {
2234 		rc = ENETUNREACH;
2235 		goto err_xmit;
2236 	}
2237 
2238 	if (__predict_false(if_tunnel_check_nesting(ifp, m, MTAG_WGLOOP, MAX_LOOPS))) {
2239 		DPRINTF(sc, "Packet looped");
2240 		rc = ELOOP;
2241 		goto err_peer;
2242 	}
2243 
2244 	peer_af = peer->p_endpoint.e_remote.r_sa.sa_family;
2245 	if (__predict_false(peer_af != AF_INET && peer_af != AF_INET6)) {
2246 		DPRINTF(sc, "No valid endpoint has been configured or "
2247 			    "discovered for peer %" PRIu64 "\n", peer->p_id);
2248 		rc = EHOSTUNREACH;
2249 		goto err_peer;
2250 	}
2251 
2252 	wg_queue_push_staged(&peer->p_stage_queue, pkt);
2253 	wg_peer_send_staged(peer);
2254 	noise_remote_put(peer->p_remote);
2255 	return (0);
2256 
2257 err_peer:
2258 	noise_remote_put(peer->p_remote);
2259 err_xmit:
2260 	xmit_err(ifp, m, pkt, af);
2261 	return (rc);
2262 }
2263 
2264 static inline int
determine_af_and_pullup(struct mbuf ** m,sa_family_t * af)2265 determine_af_and_pullup(struct mbuf **m, sa_family_t *af)
2266 {
2267 	u_char ipv;
2268 	if ((*m)->m_pkthdr.len >= sizeof(struct ip6_hdr))
2269 		*m = m_pullup(*m, sizeof(struct ip6_hdr));
2270 	else if ((*m)->m_pkthdr.len >= sizeof(struct ip))
2271 		*m = m_pullup(*m, sizeof(struct ip));
2272 	else
2273 		return (EAFNOSUPPORT);
2274 	if (*m == NULL)
2275 		return (ENOBUFS);
2276 	ipv = mtod(*m, struct ip *)->ip_v;
2277 	if (ipv == 4)
2278 		*af = AF_INET;
2279 	else if (ipv == 6 && (*m)->m_pkthdr.len >= sizeof(struct ip6_hdr))
2280 		*af = AF_INET6;
2281 	else
2282 		return (EAFNOSUPPORT);
2283 	return (0);
2284 }
2285 
2286 static int
determine_ethertype_and_pullup(struct mbuf ** m,int * etp)2287 determine_ethertype_and_pullup(struct mbuf **m, int *etp)
2288 {
2289 	struct ether_header *eh;
2290 
2291 	*m = m_pullup(*m, sizeof(struct ether_header));
2292 	if (__predict_false(*m == NULL))
2293 		return (ENOBUFS);
2294 	eh = mtod(*m, struct ether_header *);
2295 	*etp = ntohs(eh->ether_type);
2296 	if (*etp != ETHERTYPE_IP && *etp != ETHERTYPE_IPV6)
2297 		return (EAFNOSUPPORT);
2298 	return (0);
2299 }
2300 
2301 /*
2302  * This should only be invoked by netmap, via nm_os_generic_xmit_frame(), to
2303  * transmit packets from the netmap TX ring.
2304  */
2305 static int
wg_transmit(if_t ifp,struct mbuf * m)2306 wg_transmit(if_t ifp, struct mbuf *m)
2307 {
2308 	sa_family_t af;
2309 	int et, ret;
2310 	struct mbuf *defragged;
2311 
2312 	KASSERT((if_getcapenable(ifp) & IFCAP_NETMAP) != 0,
2313 	    ("%s: ifp %p is not in netmap mode", __func__, ifp));
2314 
2315 	defragged = m_defrag(m, M_NOWAIT);
2316 	if (defragged)
2317 		m = defragged;
2318 	m = m_unshare(m, M_NOWAIT);
2319 	if (!m) {
2320 		xmit_err(ifp, m, NULL, AF_UNSPEC);
2321 		return (ENOBUFS);
2322 	}
2323 
2324 	ret = determine_ethertype_and_pullup(&m, &et);
2325 	if (ret) {
2326 		xmit_err(ifp, m, NULL, AF_UNSPEC);
2327 		return (ret);
2328 	}
2329 	m_adj(m, sizeof(struct ether_header));
2330 
2331 	ret = determine_af_and_pullup(&m, &af);
2332 	if (ret) {
2333 		xmit_err(ifp, m, NULL, AF_UNSPEC);
2334 		return (ret);
2335 	}
2336 
2337 	/*
2338 	 * netmap only gets to see transient errors, since it handles errors by
2339 	 * refusing to advance the transmit ring and retrying later.
2340 	 */
2341 	ret = wg_xmit(ifp, m, af, if_getmtu(ifp));
2342 	if (ret == ENOBUFS)
2343 		return (ret);
2344 	return (0);
2345 }
2346 
2347 #ifdef DEV_NETMAP
2348 /*
2349  * This should only be invoked by netmap, via nm_os_send_up(), to process
2350  * packets from the host TX ring.
2351  */
2352 static void
wg_if_input(if_t ifp,struct mbuf * m)2353 wg_if_input(if_t ifp, struct mbuf *m)
2354 {
2355 	int et;
2356 
2357 	KASSERT((if_getcapenable(ifp) & IFCAP_NETMAP) != 0,
2358 	    ("%s: ifp %p is not in netmap mode", __func__, ifp));
2359 
2360 	if (determine_ethertype_and_pullup(&m, &et) != 0) {
2361 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2362 		m_freem(m);
2363 		return;
2364 	}
2365 	CURVNET_SET(if_getvnet(ifp));
2366 	switch (et) {
2367 	case ETHERTYPE_IP:
2368 		m_adj(m, sizeof(struct ether_header));
2369 		netisr_dispatch(NETISR_IP, m);
2370 		break;
2371 	case ETHERTYPE_IPV6:
2372 		m_adj(m, sizeof(struct ether_header));
2373 		netisr_dispatch(NETISR_IPV6, m);
2374 		break;
2375 	default:
2376 		__assert_unreachable();
2377 	}
2378 	CURVNET_RESTORE();
2379 }
2380 
2381 /*
2382  * Deliver a packet to the host RX ring.  Because the interface is in netmap
2383  * mode, the if_transmit() call should pass the packet to netmap_transmit().
2384  */
2385 static int
wg_xmit_netmap(if_t ifp,struct mbuf * m,int af)2386 wg_xmit_netmap(if_t ifp, struct mbuf *m, int af)
2387 {
2388 	struct ether_header *eh;
2389 
2390 	if (__predict_false(if_tunnel_check_nesting(ifp, m, MTAG_WGLOOP,
2391 	    MAX_LOOPS))) {
2392 		printf("%s:%d\n", __func__, __LINE__);
2393 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2394 		m_freem(m);
2395 		return (ELOOP);
2396 	}
2397 
2398 	M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
2399 	if (__predict_false(m == NULL)) {
2400 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2401 		return (ENOBUFS);
2402 	}
2403 
2404 	eh = mtod(m, struct ether_header *);
2405 	eh->ether_type = af == AF_INET ?
2406 	    htons(ETHERTYPE_IP) : htons(ETHERTYPE_IPV6);
2407 	memcpy(eh->ether_shost, "\x06\x06\x06\x06\x06\x06", ETHER_ADDR_LEN);
2408 	memcpy(eh->ether_dhost, "\xff\xff\xff\xff\xff\xff", ETHER_ADDR_LEN);
2409 	return (if_transmit(ifp, m));
2410 }
2411 #endif /* DEV_NETMAP */
2412 
2413 static int
wg_output(if_t ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)2414 wg_output(if_t ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro)
2415 {
2416 	sa_family_t parsed_af;
2417 	uint32_t af, mtu;
2418 	int ret;
2419 	struct mbuf *defragged;
2420 
2421 	/* BPF writes need to be handled specially. */
2422 	if (dst->sa_family == AF_UNSPEC || dst->sa_family == pseudo_AF_HDRCMPLT)
2423 		memcpy(&af, dst->sa_data, sizeof(af));
2424 	else
2425 		af = RO_GET_FAMILY(ro, dst);
2426 	if (af == AF_UNSPEC) {
2427 		xmit_err(ifp, m, NULL, af);
2428 		return (EAFNOSUPPORT);
2429 	}
2430 
2431 #ifdef DEV_NETMAP
2432 	if ((if_getcapenable(ifp) & IFCAP_NETMAP) != 0)
2433 		return (wg_xmit_netmap(ifp, m, af));
2434 #endif
2435 
2436 	defragged = m_defrag(m, M_NOWAIT);
2437 	if (defragged)
2438 		m = defragged;
2439 	m = m_unshare(m, M_NOWAIT);
2440 	if (!m) {
2441 		xmit_err(ifp, m, NULL, AF_UNSPEC);
2442 		return (ENOBUFS);
2443 	}
2444 
2445 	ret = determine_af_and_pullup(&m, &parsed_af);
2446 	if (ret) {
2447 		xmit_err(ifp, m, NULL, AF_UNSPEC);
2448 		return (ret);
2449 	}
2450 
2451 	MPASS(parsed_af == af);
2452 	mtu = (ro != NULL && ro->ro_mtu > 0) ? ro->ro_mtu : if_getmtu(ifp);
2453 	return (wg_xmit(ifp, m, parsed_af, mtu));
2454 }
2455 
2456 static int
wg_peer_add(struct wg_softc * sc,const nvlist_t * nvl)2457 wg_peer_add(struct wg_softc *sc, const nvlist_t *nvl)
2458 {
2459 	uint8_t			 public[WG_KEY_SIZE];
2460 	const void *pub_key, *preshared_key = NULL;
2461 	const struct sockaddr *endpoint;
2462 	int err;
2463 	size_t size;
2464 	struct noise_remote *remote;
2465 	struct wg_peer *peer = NULL;
2466 	bool need_cleanup = false;
2467 
2468 	sx_assert(&sc->sc_lock, SX_XLOCKED);
2469 
2470 	if (!nvlist_exists_binary(nvl, "public-key")) {
2471 		return (EINVAL);
2472 	}
2473 	pub_key = nvlist_get_binary(nvl, "public-key", &size);
2474 	if (size != WG_KEY_SIZE) {
2475 		return (EINVAL);
2476 	}
2477 	if (noise_local_keys(sc->sc_local, public, NULL) == 0 &&
2478 	    bcmp(public, pub_key, WG_KEY_SIZE) == 0) {
2479 		return (0); // Silently ignored; not actually a failure.
2480 	}
2481 	if ((remote = noise_remote_lookup(sc->sc_local, pub_key)) != NULL)
2482 		peer = noise_remote_arg(remote);
2483 	if (nvlist_exists_bool(nvl, "remove") &&
2484 		nvlist_get_bool(nvl, "remove")) {
2485 		if (remote != NULL) {
2486 			wg_peer_destroy(peer);
2487 			noise_remote_put(remote);
2488 		}
2489 		return (0);
2490 	}
2491 	if (nvlist_exists_bool(nvl, "replace-allowedips") &&
2492 		nvlist_get_bool(nvl, "replace-allowedips") &&
2493 	    peer != NULL) {
2494 
2495 		wg_aip_remove_all(sc, peer);
2496 	}
2497 	if (peer == NULL) {
2498 		peer = wg_peer_create(sc, pub_key, &err);
2499 		if (peer == NULL)
2500 			goto out;
2501 		need_cleanup = true;
2502 	}
2503 	if (nvlist_exists_binary(nvl, "endpoint")) {
2504 		endpoint = nvlist_get_binary(nvl, "endpoint", &size);
2505 		if (size > sizeof(peer->p_endpoint.e_remote)) {
2506 			err = EINVAL;
2507 			goto out;
2508 		}
2509 		memcpy(&peer->p_endpoint.e_remote, endpoint, size);
2510 	}
2511 	if (nvlist_exists_binary(nvl, "preshared-key")) {
2512 		preshared_key = nvlist_get_binary(nvl, "preshared-key", &size);
2513 		if (size != WG_KEY_SIZE) {
2514 			err = EINVAL;
2515 			goto out;
2516 		}
2517 		noise_remote_set_psk(peer->p_remote, preshared_key);
2518 	}
2519 	if (nvlist_exists_number(nvl, "persistent-keepalive-interval")) {
2520 		uint64_t pki = nvlist_get_number(nvl, "persistent-keepalive-interval");
2521 		if (pki > UINT16_MAX) {
2522 			err = EINVAL;
2523 			goto out;
2524 		}
2525 		wg_timers_set_persistent_keepalive(peer, pki);
2526 	}
2527 	if (nvlist_exists_nvlist_array(nvl, "allowed-ips")) {
2528 		const void *addr;
2529 		uint64_t cidr;
2530 		const nvlist_t * const * aipl;
2531 		size_t allowedip_count;
2532 
2533 		aipl = nvlist_get_nvlist_array(nvl, "allowed-ips", &allowedip_count);
2534 		for (size_t idx = 0; idx < allowedip_count; idx++) {
2535 			sa_family_t ipaf;
2536 			int ipflags;
2537 
2538 			if (!nvlist_exists_number(aipl[idx], "cidr"))
2539 				continue;
2540 
2541 			ipaf = AF_UNSPEC;
2542 			ipflags = 0;
2543 			if (nvlist_exists_number(aipl[idx], "flags"))
2544 				ipflags = nvlist_get_number(aipl[idx], "flags");
2545 			if ((ipflags & ~WGALLOWEDIP_VALID_FLAGS) != 0) {
2546 				err = EOPNOTSUPP;
2547 				goto out;
2548 			}
2549 			cidr = nvlist_get_number(aipl[idx], "cidr");
2550 			if (nvlist_exists_binary(aipl[idx], "ipv4")) {
2551 				addr = nvlist_get_binary(aipl[idx], "ipv4", &size);
2552 				if (addr == NULL || cidr > 32 || size != sizeof(struct in_addr)) {
2553 					err = EINVAL;
2554 					goto out;
2555 				}
2556 
2557 				ipaf = AF_INET;
2558 			} else if (nvlist_exists_binary(aipl[idx], "ipv6")) {
2559 				addr = nvlist_get_binary(aipl[idx], "ipv6", &size);
2560 				if (addr == NULL || cidr > 128 || size != sizeof(struct in6_addr)) {
2561 					err = EINVAL;
2562 					goto out;
2563 				}
2564 
2565 				ipaf = AF_INET6;
2566 			} else {
2567 				continue;
2568 			}
2569 
2570 			MPASS(ipaf != AF_UNSPEC);
2571 			if ((ipflags & WGALLOWEDIP_REMOVE_ME) != 0) {
2572 				err = wg_aip_del(sc, peer, ipaf, addr, cidr);
2573 			} else {
2574 				err = wg_aip_add(sc, peer, ipaf, addr, cidr);
2575 			}
2576 
2577 			if (err != 0)
2578 				goto out;
2579 		}
2580 	}
2581 	if (remote != NULL)
2582 		noise_remote_put(remote);
2583 	return (0);
2584 out:
2585 	if (need_cleanup) /* If we fail, only destroy if it was new. */
2586 		wg_peer_destroy(peer);
2587 	if (remote != NULL)
2588 		noise_remote_put(remote);
2589 	return (err);
2590 }
2591 
2592 static int
wgc_set(struct wg_softc * sc,struct wg_data_io * wgd)2593 wgc_set(struct wg_softc *sc, struct wg_data_io *wgd)
2594 {
2595 	uint8_t public[WG_KEY_SIZE], private[WG_KEY_SIZE];
2596 	if_t ifp;
2597 	void *nvlpacked;
2598 	nvlist_t *nvl;
2599 	ssize_t size;
2600 	int err;
2601 
2602 	ifp = sc->sc_ifp;
2603 	if (wgd->wgd_size == 0 || wgd->wgd_data == NULL)
2604 		return (EFAULT);
2605 
2606 	/* Can nvlists be streamed in? It's not nice to impose arbitrary limits like that but
2607 	 * there needs to be _some_ limitation. */
2608 	if (wgd->wgd_size >= UINT32_MAX / 2)
2609 		return (E2BIG);
2610 
2611 	nvlpacked = malloc(wgd->wgd_size, M_TEMP, M_WAITOK | M_ZERO);
2612 
2613 	err = copyin(wgd->wgd_data, nvlpacked, wgd->wgd_size);
2614 	if (err)
2615 		goto out;
2616 	nvl = nvlist_unpack(nvlpacked, wgd->wgd_size, 0);
2617 	if (nvl == NULL) {
2618 		err = EBADMSG;
2619 		goto out;
2620 	}
2621 	sx_xlock(&sc->sc_lock);
2622 	if (nvlist_exists_bool(nvl, "replace-peers") &&
2623 		nvlist_get_bool(nvl, "replace-peers"))
2624 		wg_peer_destroy_all(sc);
2625 	if (nvlist_exists_number(nvl, "listen-port")) {
2626 		uint64_t new_port = nvlist_get_number(nvl, "listen-port");
2627 		if (new_port > UINT16_MAX) {
2628 			err = EINVAL;
2629 			goto out_locked;
2630 		}
2631 		if (new_port != sc->sc_socket.so_port) {
2632 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2633 				if ((err = wg_socket_init(sc, new_port)) != 0)
2634 					goto out_locked;
2635 			} else
2636 				sc->sc_socket.so_port = new_port;
2637 		}
2638 	}
2639 	if (nvlist_exists_binary(nvl, "private-key")) {
2640 		const void *key = nvlist_get_binary(nvl, "private-key", &size);
2641 		if (size != WG_KEY_SIZE) {
2642 			err = EINVAL;
2643 			goto out_locked;
2644 		}
2645 
2646 		if (noise_local_keys(sc->sc_local, NULL, private) != 0 ||
2647 		    timingsafe_bcmp(private, key, WG_KEY_SIZE) != 0) {
2648 			struct wg_peer *peer;
2649 
2650 			if (curve25519_generate_public(public, key)) {
2651 				/* Peer conflict: remove conflicting peer. */
2652 				struct noise_remote *remote;
2653 				if ((remote = noise_remote_lookup(sc->sc_local,
2654 				    public)) != NULL) {
2655 					peer = noise_remote_arg(remote);
2656 					wg_peer_destroy(peer);
2657 					noise_remote_put(remote);
2658 				}
2659 			}
2660 
2661 			/*
2662 			 * Set the private key and invalidate all existing
2663 			 * handshakes.
2664 			 */
2665 			/* Note: we might be removing the private key. */
2666 			noise_local_private(sc->sc_local, key);
2667 			if (noise_local_keys(sc->sc_local, NULL, NULL) == 0)
2668 				cookie_checker_update(&sc->sc_cookie, public);
2669 			else
2670 				cookie_checker_update(&sc->sc_cookie, NULL);
2671 		}
2672 	}
2673 	if (nvlist_exists_number(nvl, "user-cookie")) {
2674 		uint64_t user_cookie = nvlist_get_number(nvl, "user-cookie");
2675 		if (user_cookie > UINT32_MAX) {
2676 			err = EINVAL;
2677 			goto out_locked;
2678 		}
2679 		err = wg_socket_set_cookie(sc, user_cookie);
2680 		if (err)
2681 			goto out_locked;
2682 	}
2683 	if (nvlist_exists_nvlist_array(nvl, "peers")) {
2684 		size_t peercount;
2685 		const nvlist_t * const*nvl_peers;
2686 
2687 		nvl_peers = nvlist_get_nvlist_array(nvl, "peers", &peercount);
2688 		for (int i = 0; i < peercount; i++) {
2689 			err = wg_peer_add(sc, nvl_peers[i]);
2690 			if (err != 0)
2691 				goto out_locked;
2692 		}
2693 	}
2694 
2695 out_locked:
2696 	sx_xunlock(&sc->sc_lock);
2697 	nvlist_destroy(nvl);
2698 out:
2699 	zfree(nvlpacked, M_TEMP);
2700 	return (err);
2701 }
2702 
2703 static int
wgc_get(struct wg_softc * sc,struct wg_data_io * wgd)2704 wgc_get(struct wg_softc *sc, struct wg_data_io *wgd)
2705 {
2706 	uint8_t public_key[WG_KEY_SIZE] = { 0 };
2707 	uint8_t private_key[WG_KEY_SIZE] = { 0 };
2708 	uint8_t preshared_key[NOISE_SYMMETRIC_KEY_LEN] = { 0 };
2709 	nvlist_t *nvl, *nvl_peer, *nvl_aip, **nvl_peers, **nvl_aips;
2710 	size_t size, peer_count, aip_count, i, j;
2711 	struct wg_timespec64 ts64;
2712 	struct wg_peer *peer;
2713 	struct wg_aip *aip;
2714 	void *packed;
2715 	int err = 0;
2716 
2717 	nvl = nvlist_create(0);
2718 	if (!nvl)
2719 		return (ENOMEM);
2720 
2721 	sx_slock(&sc->sc_lock);
2722 
2723 	if (sc->sc_socket.so_port != 0)
2724 		nvlist_add_number(nvl, "listen-port", sc->sc_socket.so_port);
2725 	if (sc->sc_socket.so_user_cookie != 0)
2726 		nvlist_add_number(nvl, "user-cookie", sc->sc_socket.so_user_cookie);
2727 	if (noise_local_keys(sc->sc_local, public_key, private_key) == 0) {
2728 		nvlist_add_binary(nvl, "public-key", public_key, WG_KEY_SIZE);
2729 		if (wgc_privileged(sc))
2730 			nvlist_add_binary(nvl, "private-key", private_key, WG_KEY_SIZE);
2731 		explicit_bzero(private_key, sizeof(private_key));
2732 	}
2733 	peer_count = sc->sc_peers_num;
2734 	if (peer_count) {
2735 		nvl_peers = mallocarray(peer_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO);
2736 		i = 0;
2737 		TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) {
2738 			if (i >= peer_count)
2739 				panic("peers changed from under us");
2740 
2741 			nvl_peers[i++] = nvl_peer = nvlist_create(0);
2742 			if (!nvl_peer) {
2743 				err = ENOMEM;
2744 				goto err_peer;
2745 			}
2746 
2747 			(void)noise_remote_keys(peer->p_remote, public_key, preshared_key);
2748 			nvlist_add_binary(nvl_peer, "public-key", public_key, sizeof(public_key));
2749 			if (wgc_privileged(sc))
2750 				nvlist_add_binary(nvl_peer, "preshared-key", preshared_key, sizeof(preshared_key));
2751 			explicit_bzero(preshared_key, sizeof(preshared_key));
2752 			if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET)
2753 				nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in));
2754 			else if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET6)
2755 				nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in6));
2756 			wg_timers_get_last_handshake(peer, &ts64);
2757 			nvlist_add_binary(nvl_peer, "last-handshake-time", &ts64, sizeof(ts64));
2758 			nvlist_add_number(nvl_peer, "persistent-keepalive-interval", peer->p_persistent_keepalive_interval);
2759 			nvlist_add_number(nvl_peer, "rx-bytes", counter_u64_fetch(peer->p_rx_bytes));
2760 			nvlist_add_number(nvl_peer, "tx-bytes", counter_u64_fetch(peer->p_tx_bytes));
2761 
2762 			aip_count = peer->p_aips_num;
2763 			if (aip_count) {
2764 				nvl_aips = mallocarray(aip_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO);
2765 				j = 0;
2766 				LIST_FOREACH(aip, &peer->p_aips, a_entry) {
2767 					if (j >= aip_count)
2768 						panic("aips changed from under us");
2769 
2770 					nvl_aips[j++] = nvl_aip = nvlist_create(0);
2771 					if (!nvl_aip) {
2772 						err = ENOMEM;
2773 						goto err_aip;
2774 					}
2775 					if (aip->a_af == AF_INET) {
2776 						nvlist_add_binary(nvl_aip, "ipv4", &aip->a_addr.in, sizeof(aip->a_addr.in));
2777 						nvlist_add_number(nvl_aip, "cidr", bitcount32(aip->a_mask.ip));
2778 					}
2779 #ifdef INET6
2780 					else if (aip->a_af == AF_INET6) {
2781 						nvlist_add_binary(nvl_aip, "ipv6", &aip->a_addr.in6, sizeof(aip->a_addr.in6));
2782 						nvlist_add_number(nvl_aip, "cidr", in6_mask2len(&aip->a_mask.in6, NULL));
2783 					}
2784 #endif
2785 				}
2786 				nvlist_add_nvlist_array(nvl_peer, "allowed-ips", (const nvlist_t *const *)nvl_aips, aip_count);
2787 			err_aip:
2788 				for (j = 0; j < aip_count; ++j)
2789 					nvlist_destroy(nvl_aips[j]);
2790 				free(nvl_aips, M_NVLIST);
2791 				if (err)
2792 					goto err_peer;
2793 			}
2794 		}
2795 		nvlist_add_nvlist_array(nvl, "peers", (const nvlist_t * const *)nvl_peers, peer_count);
2796 	err_peer:
2797 		for (i = 0; i < peer_count; ++i)
2798 			nvlist_destroy(nvl_peers[i]);
2799 		free(nvl_peers, M_NVLIST);
2800 		if (err) {
2801 			sx_sunlock(&sc->sc_lock);
2802 			goto err;
2803 		}
2804 	}
2805 	sx_sunlock(&sc->sc_lock);
2806 	packed = nvlist_pack(nvl, &size);
2807 	if (!packed) {
2808 		err = ENOMEM;
2809 		goto err;
2810 	}
2811 	if (!wgd->wgd_size) {
2812 		wgd->wgd_size = size;
2813 		goto out;
2814 	}
2815 	if (wgd->wgd_size < size) {
2816 		err = ENOSPC;
2817 		goto out;
2818 	}
2819 	err = copyout(packed, wgd->wgd_data, size);
2820 	wgd->wgd_size = size;
2821 
2822 out:
2823 	zfree(packed, M_NVLIST);
2824 err:
2825 	nvlist_destroy(nvl);
2826 	return (err);
2827 }
2828 
2829 static int
wg_ioctl(if_t ifp,u_long cmd,caddr_t data)2830 wg_ioctl(if_t ifp, u_long cmd, caddr_t data)
2831 {
2832 	struct wg_data_io *wgd = (struct wg_data_io *)data;
2833 	struct ifreq *ifr = (struct ifreq *)data;
2834 	struct wg_softc *sc;
2835 	int ret = 0;
2836 
2837 	sx_slock(&wg_sx);
2838 	sc = if_getsoftc(ifp);
2839 	if (!sc) {
2840 		ret = ENXIO;
2841 		goto out;
2842 	}
2843 
2844 	switch (cmd) {
2845 	case SIOCSWG:
2846 		ret = priv_check(curthread, PRIV_NET_WG);
2847 		if (ret == 0)
2848 			ret = wgc_set(sc, wgd);
2849 		break;
2850 	case SIOCGWG:
2851 		ret = wgc_get(sc, wgd);
2852 		break;
2853 	/* Interface IOCTLs */
2854 	case SIOCSIFADDR:
2855 		/*
2856 		 * This differs from *BSD norms, but is more uniform with how
2857 		 * WireGuard behaves elsewhere.
2858 		 */
2859 		break;
2860 	case SIOCSIFFLAGS:
2861 		if (if_getflags(ifp) & IFF_UP)
2862 			ret = wg_up(sc);
2863 		else
2864 			wg_down(sc);
2865 		break;
2866 	case SIOCSIFMTU:
2867 		if (ifr->ifr_mtu <= 0 || ifr->ifr_mtu > MAX_MTU)
2868 			ret = EINVAL;
2869 		else
2870 			if_setmtu(ifp, ifr->ifr_mtu);
2871 		break;
2872 	case SIOCADDMULTI:
2873 	case SIOCDELMULTI:
2874 		break;
2875 	case SIOCGTUNFIB:
2876 		ifr->ifr_fib = sc->sc_socket.so_fibnum;
2877 		break;
2878 	case SIOCSTUNFIB:
2879 		ret = priv_check(curthread, PRIV_NET_WG);
2880 		if (ret)
2881 			break;
2882 		ret = priv_check(curthread, PRIV_NET_SETIFFIB);
2883 		if (ret)
2884 			break;
2885 		sx_xlock(&sc->sc_lock);
2886 		ret = wg_socket_set_fibnum(sc, ifr->ifr_fib);
2887 		sx_xunlock(&sc->sc_lock);
2888 		break;
2889 	default:
2890 		ret = ENOTTY;
2891 	}
2892 
2893 out:
2894 	sx_sunlock(&wg_sx);
2895 	return (ret);
2896 }
2897 
2898 static int
wg_up(struct wg_softc * sc)2899 wg_up(struct wg_softc *sc)
2900 {
2901 	if_t ifp = sc->sc_ifp;
2902 	struct wg_peer *peer;
2903 	int rc = EBUSY;
2904 
2905 	sx_xlock(&sc->sc_lock);
2906 	/* Jail's being removed, no more wg_up(). */
2907 	if ((sc->sc_flags & WGF_DYING) != 0)
2908 		goto out;
2909 
2910 	/* Silent success if we're already running. */
2911 	rc = 0;
2912 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2913 		goto out;
2914 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2915 
2916 	rc = wg_socket_init(sc, sc->sc_socket.so_port);
2917 	if (rc == 0) {
2918 		TAILQ_FOREACH(peer, &sc->sc_peers, p_entry)
2919 			wg_timers_enable(peer);
2920 		if_link_state_change(sc->sc_ifp, LINK_STATE_UP);
2921 	} else {
2922 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2923 		DPRINTF(sc, "Unable to initialize sockets: %d\n", rc);
2924 	}
2925 out:
2926 	sx_xunlock(&sc->sc_lock);
2927 	return (rc);
2928 }
2929 
2930 static void
wg_down(struct wg_softc * sc)2931 wg_down(struct wg_softc *sc)
2932 {
2933 	if_t ifp = sc->sc_ifp;
2934 	struct wg_peer *peer;
2935 
2936 	sx_xlock(&sc->sc_lock);
2937 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2938 		sx_xunlock(&sc->sc_lock);
2939 		return;
2940 	}
2941 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2942 
2943 	TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) {
2944 		wg_queue_purge(&peer->p_stage_queue);
2945 		wg_timers_disable(peer);
2946 	}
2947 
2948 	wg_queue_purge(&sc->sc_handshake_queue);
2949 
2950 	TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) {
2951 		noise_remote_handshake_clear(peer->p_remote);
2952 		noise_remote_keypairs_clear(peer->p_remote);
2953 	}
2954 
2955 	if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN);
2956 	wg_socket_uninit(sc);
2957 
2958 	sx_xunlock(&sc->sc_lock);
2959 }
2960 
2961 static int
wg_clone_create(struct if_clone * ifc,char * name,size_t len,struct ifc_data * ifd,struct ifnet ** ifpp)2962 wg_clone_create(struct if_clone *ifc, char *name, size_t len,
2963     struct ifc_data *ifd, struct ifnet **ifpp)
2964 {
2965 	struct wg_softc *sc;
2966 	if_t ifp;
2967 
2968 	sc = malloc(sizeof(*sc), M_WG, M_WAITOK | M_ZERO);
2969 
2970 	sc->sc_local = noise_local_alloc(sc);
2971 
2972 	sc->sc_encrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO);
2973 
2974 	sc->sc_decrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO);
2975 
2976 	if (!rn_inithead((void **)&sc->sc_aip4, offsetof(struct aip_addr, in) * NBBY))
2977 		goto free_decrypt;
2978 
2979 	if (!rn_inithead((void **)&sc->sc_aip6, offsetof(struct aip_addr, in6) * NBBY))
2980 		goto free_aip4;
2981 
2982 	atomic_add_int(&clone_count, 1);
2983 	ifp = sc->sc_ifp = if_alloc(IFT_WIREGUARD);
2984 
2985 	sc->sc_ucred = crhold(curthread->td_ucred);
2986 	sc->sc_socket.so_fibnum = curthread->td_proc->p_fibnum;
2987 	sc->sc_socket.so_port = 0;
2988 
2989 	TAILQ_INIT(&sc->sc_peers);
2990 	sc->sc_peers_num = 0;
2991 
2992 	cookie_checker_init(&sc->sc_cookie);
2993 
2994 	RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip4);
2995 	RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip6);
2996 
2997 	GROUPTASK_INIT(&sc->sc_handshake, 0, (gtask_fn_t *)wg_softc_handshake_receive, sc);
2998 	taskqgroup_attach(qgroup_wg_tqg, &sc->sc_handshake, sc, NULL, NULL, "wg tx initiation");
2999 	wg_queue_init(&sc->sc_handshake_queue, "hsq");
3000 
3001 	for (int i = 0; i < mp_ncpus; i++) {
3002 		GROUPTASK_INIT(&sc->sc_encrypt[i], 0,
3003 		     (gtask_fn_t *)wg_softc_encrypt, sc);
3004 		taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_encrypt[i], sc, i, NULL, NULL, "wg encrypt");
3005 		GROUPTASK_INIT(&sc->sc_decrypt[i], 0,
3006 		    (gtask_fn_t *)wg_softc_decrypt, sc);
3007 		taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_decrypt[i], sc, i, NULL, NULL, "wg decrypt");
3008 	}
3009 
3010 	wg_queue_init(&sc->sc_encrypt_parallel, "encp");
3011 	wg_queue_init(&sc->sc_decrypt_parallel, "decp");
3012 
3013 	sx_init(&sc->sc_lock, "wg softc lock");
3014 
3015 	if_setsoftc(ifp, sc);
3016 	if_setcapabilities(ifp, WG_CAPS);
3017 	if_setcapenable(ifp, WG_CAPS);
3018 	if_initname(ifp, wgname, ifd->unit);
3019 
3020 	if_setmtu(ifp, DEFAULT_MTU);
3021 	if_setflags(ifp, IFF_NOARP | IFF_MULTICAST);
3022 	if_setinitfn(ifp, wg_init);
3023 	if_setreassignfn(ifp, wg_reassign);
3024 	if_setqflushfn(ifp, wg_qflush);
3025 	if_settransmitfn(ifp, wg_transmit);
3026 #ifdef DEV_NETMAP
3027 	if_setinputfn(ifp, wg_if_input);
3028 #endif
3029 	if_setoutputfn(ifp, wg_output);
3030 	if_setioctlfn(ifp, wg_ioctl);
3031 	if_attach(ifp);
3032 	bpfattach(ifp, DLT_NULL, sizeof(uint32_t));
3033 #ifdef INET6
3034 	ND_IFINFO(ifp)->flags &= ~ND6_IFF_AUTO_LINKLOCAL;
3035 	ND_IFINFO(ifp)->flags |= ND6_IFF_NO_DAD;
3036 #endif
3037 	sx_xlock(&wg_sx);
3038 	LIST_INSERT_HEAD(&wg_list, sc, sc_entry);
3039 	sx_xunlock(&wg_sx);
3040 	*ifpp = ifp;
3041 	return (0);
3042 free_aip4:
3043 	RADIX_NODE_HEAD_DESTROY(sc->sc_aip4);
3044 	free(sc->sc_aip4, M_RTABLE);
3045 free_decrypt:
3046 	free(sc->sc_decrypt, M_WG);
3047 	free(sc->sc_encrypt, M_WG);
3048 	noise_local_free(sc->sc_local, NULL);
3049 	free(sc, M_WG);
3050 	return (ENOMEM);
3051 }
3052 
3053 static void
wg_clone_deferred_free(struct noise_local * l)3054 wg_clone_deferred_free(struct noise_local *l)
3055 {
3056 	struct wg_softc *sc = noise_local_arg(l);
3057 
3058 	free(sc, M_WG);
3059 	atomic_add_int(&clone_count, -1);
3060 }
3061 
3062 static int
wg_clone_destroy(struct if_clone * ifc,if_t ifp,uint32_t flags)3063 wg_clone_destroy(struct if_clone *ifc, if_t ifp, uint32_t flags)
3064 {
3065 	struct wg_softc *sc = if_getsoftc(ifp);
3066 	struct ucred *cred;
3067 
3068 	sx_xlock(&wg_sx);
3069 	if_setsoftc(ifp, NULL);
3070 	sx_xlock(&sc->sc_lock);
3071 	sc->sc_flags |= WGF_DYING;
3072 	cred = sc->sc_ucred;
3073 	sc->sc_ucred = NULL;
3074 	sx_xunlock(&sc->sc_lock);
3075 	LIST_REMOVE(sc, sc_entry);
3076 	sx_xunlock(&wg_sx);
3077 
3078 	if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN);
3079 	CURVNET_SET(if_getvnet(sc->sc_ifp));
3080 	if_purgeaddrs(sc->sc_ifp);
3081 	CURVNET_RESTORE();
3082 
3083 	sx_xlock(&sc->sc_lock);
3084 	wg_socket_uninit(sc);
3085 	sx_xunlock(&sc->sc_lock);
3086 
3087 	/*
3088 	 * No guarantees that all traffic have passed until the epoch has
3089 	 * elapsed with the socket closed.
3090 	 */
3091 	NET_EPOCH_WAIT();
3092 
3093 	taskqgroup_drain_all(qgroup_wg_tqg);
3094 	sx_xlock(&sc->sc_lock);
3095 	wg_peer_destroy_all(sc);
3096 	NET_EPOCH_DRAIN_CALLBACKS();
3097 	sx_xunlock(&sc->sc_lock);
3098 	sx_destroy(&sc->sc_lock);
3099 	taskqgroup_detach(qgroup_wg_tqg, &sc->sc_handshake);
3100 	for (int i = 0; i < mp_ncpus; i++) {
3101 		taskqgroup_detach(qgroup_wg_tqg, &sc->sc_encrypt[i]);
3102 		taskqgroup_detach(qgroup_wg_tqg, &sc->sc_decrypt[i]);
3103 	}
3104 	free(sc->sc_encrypt, M_WG);
3105 	free(sc->sc_decrypt, M_WG);
3106 	wg_queue_deinit(&sc->sc_handshake_queue);
3107 	wg_queue_deinit(&sc->sc_encrypt_parallel);
3108 	wg_queue_deinit(&sc->sc_decrypt_parallel);
3109 
3110 	RADIX_NODE_HEAD_DESTROY(sc->sc_aip4);
3111 	RADIX_NODE_HEAD_DESTROY(sc->sc_aip6);
3112 	rn_detachhead((void **)&sc->sc_aip4);
3113 	rn_detachhead((void **)&sc->sc_aip6);
3114 
3115 	cookie_checker_free(&sc->sc_cookie);
3116 
3117 	if (cred != NULL)
3118 		crfree(cred);
3119 	bpfdetach(sc->sc_ifp);
3120 	if_detach(sc->sc_ifp);
3121 	if_free(sc->sc_ifp);
3122 
3123 	noise_local_free(sc->sc_local, wg_clone_deferred_free);
3124 
3125 	return (0);
3126 }
3127 
3128 static void
wg_qflush(if_t ifp __unused)3129 wg_qflush(if_t ifp __unused)
3130 {
3131 }
3132 
3133 /*
3134  * Privileged information (private-key, preshared-key) are only exported for
3135  * root and jailed root by default.
3136  */
3137 static bool
wgc_privileged(struct wg_softc * sc)3138 wgc_privileged(struct wg_softc *sc)
3139 {
3140 	struct thread *td;
3141 
3142 	td = curthread;
3143 	return (priv_check(td, PRIV_NET_WG) == 0);
3144 }
3145 
3146 static void
wg_reassign(if_t ifp,struct vnet * new_vnet __unused,char * unused __unused)3147 wg_reassign(if_t ifp, struct vnet *new_vnet __unused,
3148     char *unused __unused)
3149 {
3150 	struct wg_softc *sc;
3151 
3152 	sc = if_getsoftc(ifp);
3153 	wg_down(sc);
3154 }
3155 
3156 static void
wg_init(void * xsc)3157 wg_init(void *xsc)
3158 {
3159 	struct wg_softc *sc;
3160 
3161 	sc = xsc;
3162 	wg_up(sc);
3163 }
3164 
3165 static void
vnet_wg_init(const void * unused __unused)3166 vnet_wg_init(const void *unused __unused)
3167 {
3168 	struct if_clone_addreq req = {
3169 		.create_f = wg_clone_create,
3170 		.destroy_f = wg_clone_destroy,
3171 		.flags = IFC_F_AUTOUNIT,
3172 	};
3173 	V_wg_cloner = ifc_attach_cloner(wgname, &req);
3174 }
3175 VNET_SYSINIT(vnet_wg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
3176 	     vnet_wg_init, NULL);
3177 
3178 static void
vnet_wg_uninit(const void * unused __unused)3179 vnet_wg_uninit(const void *unused __unused)
3180 {
3181 	if (V_wg_cloner)
3182 		ifc_detach_cloner(V_wg_cloner);
3183 }
3184 VNET_SYSUNINIT(vnet_wg_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
3185 	       vnet_wg_uninit, NULL);
3186 
3187 static int
wg_prison_remove(void * obj,void * data __unused)3188 wg_prison_remove(void *obj, void *data __unused)
3189 {
3190 	const struct prison *pr = obj;
3191 	struct wg_softc *sc;
3192 
3193 	/*
3194 	 * Do a pass through all if_wg interfaces and release creds on any from
3195 	 * the jail that are supposed to be going away.  This will, in turn, let
3196 	 * the jail die so that we don't end up with Schrödinger's jail.
3197 	 */
3198 	sx_slock(&wg_sx);
3199 	LIST_FOREACH(sc, &wg_list, sc_entry) {
3200 		sx_xlock(&sc->sc_lock);
3201 		if (!(sc->sc_flags & WGF_DYING) && sc->sc_ucred && sc->sc_ucred->cr_prison == pr) {
3202 			struct ucred *cred = sc->sc_ucred;
3203 			DPRINTF(sc, "Creating jail exiting\n");
3204 			if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN);
3205 			wg_socket_uninit(sc);
3206 			sc->sc_ucred = NULL;
3207 			crfree(cred);
3208 			sc->sc_flags |= WGF_DYING;
3209 		}
3210 		sx_xunlock(&sc->sc_lock);
3211 	}
3212 	sx_sunlock(&wg_sx);
3213 
3214 	return (0);
3215 }
3216 
3217 #ifdef SELFTESTS
3218 #include "selftest/allowedips.c"
wg_run_selftests(void)3219 static bool wg_run_selftests(void)
3220 {
3221 	bool ret = true;
3222 	ret &= wg_allowedips_selftest();
3223 	ret &= noise_counter_selftest();
3224 	ret &= cookie_selftest();
3225 	return ret;
3226 }
3227 #else
wg_run_selftests(void)3228 static inline bool wg_run_selftests(void) { return true; }
3229 #endif
3230 
3231 static int
wg_module_init(void)3232 wg_module_init(void)
3233 {
3234 	int ret;
3235 	osd_method_t methods[PR_MAXMETHOD] = {
3236 		[PR_METHOD_REMOVE] = wg_prison_remove,
3237 	};
3238 
3239 	wg_packet_zone = uma_zcreate("wg packet", sizeof(struct wg_packet),
3240 	     NULL, NULL, NULL, NULL, 0, 0);
3241 
3242 	ret = crypto_init();
3243 	if (ret != 0)
3244 		return (ret);
3245 	ret = cookie_init();
3246 	if (ret != 0)
3247 		return (ret);
3248 
3249 	wg_osd_jail_slot = osd_jail_register(NULL, methods);
3250 
3251 	if (!wg_run_selftests())
3252 		return (ENOTRECOVERABLE);
3253 
3254 	return (0);
3255 }
3256 
3257 static void
wg_module_deinit(void)3258 wg_module_deinit(void)
3259 {
3260 	VNET_ITERATOR_DECL(vnet_iter);
3261 	VNET_LIST_RLOCK();
3262 	VNET_FOREACH(vnet_iter) {
3263 		struct if_clone *clone = VNET_VNET(vnet_iter, wg_cloner);
3264 		if (clone) {
3265 			ifc_detach_cloner(clone);
3266 			VNET_VNET(vnet_iter, wg_cloner) = NULL;
3267 		}
3268 	}
3269 	VNET_LIST_RUNLOCK();
3270 	NET_EPOCH_WAIT();
3271 	MPASS(LIST_EMPTY(&wg_list));
3272 	if (wg_osd_jail_slot != 0)
3273 		osd_jail_deregister(wg_osd_jail_slot);
3274 	cookie_deinit();
3275 	crypto_deinit();
3276 	if (wg_packet_zone != NULL)
3277 		uma_zdestroy(wg_packet_zone);
3278 }
3279 
3280 static int
wg_module_event_handler(module_t mod,int what,void * arg)3281 wg_module_event_handler(module_t mod, int what, void *arg)
3282 {
3283 	switch (what) {
3284 		case MOD_LOAD:
3285 			return wg_module_init();
3286 		case MOD_UNLOAD:
3287 			wg_module_deinit();
3288 			break;
3289 		default:
3290 			return (EOPNOTSUPP);
3291 	}
3292 	return (0);
3293 }
3294 
3295 static moduledata_t wg_moduledata = {
3296 	"if_wg",
3297 	wg_module_event_handler,
3298 	NULL
3299 };
3300 
3301 DECLARE_MODULE(if_wg, wg_moduledata, SI_SUB_PSEUDO, SI_ORDER_ANY);
3302 MODULE_VERSION(if_wg, WIREGUARD_VERSION);
3303 MODULE_DEPEND(if_wg, crypto, 1, 1, 1);
3304