1
2 #pragma ident "%Z%%M% %I% %E% SMI"
3
4 /*
5 ** 2001 September 15
6 **
7 ** The author disclaims copyright to this source code. In place of
8 ** a legal notice, here is a blessing:
9 **
10 ** May you do good and not evil.
11 ** May you find forgiveness for yourself and forgive others.
12 ** May you share freely, never taking more than you give.
13 **
14 *************************************************************************
15 ** This file contains C code routines that are called by the SQLite parser
16 ** when syntax rules are reduced. The routines in this file handle the
17 ** following kinds of SQL syntax:
18 **
19 ** CREATE TABLE
20 ** DROP TABLE
21 ** CREATE INDEX
22 ** DROP INDEX
23 ** creating ID lists
24 ** BEGIN TRANSACTION
25 ** COMMIT
26 ** ROLLBACK
27 ** PRAGMA
28 **
29 ** $Id: build.c,v 1.176.2.2 2004/07/20 00:50:30 drh Exp $
30 */
31 #include "sqliteInt.h"
32 #include <ctype.h>
33
34 /*
35 ** This routine is called when a new SQL statement is beginning to
36 ** be parsed. Check to see if the schema for the database needs
37 ** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
38 ** If it does, then read it.
39 */
sqliteBeginParse(Parse * pParse,int explainFlag)40 void sqliteBeginParse(Parse *pParse, int explainFlag){
41 sqlite *db = pParse->db;
42 int i;
43 pParse->explain = explainFlag;
44 if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
45 int rc = sqliteInit(db, &pParse->zErrMsg);
46 if( rc!=SQLITE_OK ){
47 pParse->rc = rc;
48 pParse->nErr++;
49 }
50 }
51 for(i=0; i<db->nDb; i++){
52 DbClearProperty(db, i, DB_Locked);
53 if( !db->aDb[i].inTrans ){
54 DbClearProperty(db, i, DB_Cookie);
55 }
56 }
57 pParse->nVar = 0;
58 }
59
60 /*
61 ** This routine is called after a single SQL statement has been
62 ** parsed and we want to execute the VDBE code to implement
63 ** that statement. Prior action routines should have already
64 ** constructed VDBE code to do the work of the SQL statement.
65 ** This routine just has to execute the VDBE code.
66 **
67 ** Note that if an error occurred, it might be the case that
68 ** no VDBE code was generated.
69 */
sqliteExec(Parse * pParse)70 void sqliteExec(Parse *pParse){
71 sqlite *db = pParse->db;
72 Vdbe *v = pParse->pVdbe;
73
74 if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
75 sqliteVdbeAddOp(v, OP_Halt, 0, 0);
76 }
77 if( sqlite_malloc_failed ) return;
78 if( v && pParse->nErr==0 ){
79 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
80 sqliteVdbeTrace(v, trace);
81 sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
82 pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
83 pParse->colNamesSet = 0;
84 }else if( pParse->rc==SQLITE_OK ){
85 pParse->rc = SQLITE_ERROR;
86 }
87 pParse->nTab = 0;
88 pParse->nMem = 0;
89 pParse->nSet = 0;
90 pParse->nAgg = 0;
91 pParse->nVar = 0;
92 }
93
94 /*
95 ** Locate the in-memory structure that describes
96 ** a particular database table given the name
97 ** of that table and (optionally) the name of the database
98 ** containing the table. Return NULL if not found.
99 **
100 ** If zDatabase is 0, all databases are searched for the
101 ** table and the first matching table is returned. (No checking
102 ** for duplicate table names is done.) The search order is
103 ** TEMP first, then MAIN, then any auxiliary databases added
104 ** using the ATTACH command.
105 **
106 ** See also sqliteLocateTable().
107 */
sqliteFindTable(sqlite * db,const char * zName,const char * zDatabase)108 Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
109 Table *p = 0;
110 int i;
111 for(i=0; i<db->nDb; i++){
112 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
113 if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
114 p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
115 if( p ) break;
116 }
117 return p;
118 }
119
120 /*
121 ** Locate the in-memory structure that describes
122 ** a particular database table given the name
123 ** of that table and (optionally) the name of the database
124 ** containing the table. Return NULL if not found.
125 ** Also leave an error message in pParse->zErrMsg.
126 **
127 ** The difference between this routine and sqliteFindTable()
128 ** is that this routine leaves an error message in pParse->zErrMsg
129 ** where sqliteFindTable() does not.
130 */
sqliteLocateTable(Parse * pParse,const char * zName,const char * zDbase)131 Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
132 Table *p;
133
134 p = sqliteFindTable(pParse->db, zName, zDbase);
135 if( p==0 ){
136 if( zDbase ){
137 sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
138 }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
139 sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
140 zName, zDbase);
141 }else{
142 sqliteErrorMsg(pParse, "no such table: %s", zName);
143 }
144 }
145 return p;
146 }
147
148 /*
149 ** Locate the in-memory structure that describes
150 ** a particular index given the name of that index
151 ** and the name of the database that contains the index.
152 ** Return NULL if not found.
153 **
154 ** If zDatabase is 0, all databases are searched for the
155 ** table and the first matching index is returned. (No checking
156 ** for duplicate index names is done.) The search order is
157 ** TEMP first, then MAIN, then any auxiliary databases added
158 ** using the ATTACH command.
159 */
sqliteFindIndex(sqlite * db,const char * zName,const char * zDb)160 Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
161 Index *p = 0;
162 int i;
163 for(i=0; i<db->nDb; i++){
164 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
165 if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
166 p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
167 if( p ) break;
168 }
169 return p;
170 }
171
172 /*
173 ** Remove the given index from the index hash table, and free
174 ** its memory structures.
175 **
176 ** The index is removed from the database hash tables but
177 ** it is not unlinked from the Table that it indexes.
178 ** Unlinking from the Table must be done by the calling function.
179 */
sqliteDeleteIndex(sqlite * db,Index * p)180 static void sqliteDeleteIndex(sqlite *db, Index *p){
181 Index *pOld;
182
183 assert( db!=0 && p->zName!=0 );
184 pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
185 strlen(p->zName)+1, 0);
186 if( pOld!=0 && pOld!=p ){
187 sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
188 strlen(pOld->zName)+1, pOld);
189 }
190 sqliteFree(p);
191 }
192
193 /*
194 ** Unlink the given index from its table, then remove
195 ** the index from the index hash table and free its memory
196 ** structures.
197 */
sqliteUnlinkAndDeleteIndex(sqlite * db,Index * pIndex)198 void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
199 if( pIndex->pTable->pIndex==pIndex ){
200 pIndex->pTable->pIndex = pIndex->pNext;
201 }else{
202 Index *p;
203 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
204 if( p && p->pNext==pIndex ){
205 p->pNext = pIndex->pNext;
206 }
207 }
208 sqliteDeleteIndex(db, pIndex);
209 }
210
211 /*
212 ** Erase all schema information from the in-memory hash tables of
213 ** database connection. This routine is called to reclaim memory
214 ** before the connection closes. It is also called during a rollback
215 ** if there were schema changes during the transaction.
216 **
217 ** If iDb<=0 then reset the internal schema tables for all database
218 ** files. If iDb>=2 then reset the internal schema for only the
219 ** single file indicated.
220 */
sqliteResetInternalSchema(sqlite * db,int iDb)221 void sqliteResetInternalSchema(sqlite *db, int iDb){
222 HashElem *pElem;
223 Hash temp1;
224 Hash temp2;
225 int i, j;
226
227 assert( iDb>=0 && iDb<db->nDb );
228 db->flags &= ~SQLITE_Initialized;
229 for(i=iDb; i<db->nDb; i++){
230 Db *pDb = &db->aDb[i];
231 temp1 = pDb->tblHash;
232 temp2 = pDb->trigHash;
233 sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
234 sqliteHashClear(&pDb->aFKey);
235 sqliteHashClear(&pDb->idxHash);
236 for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
237 Trigger *pTrigger = sqliteHashData(pElem);
238 sqliteDeleteTrigger(pTrigger);
239 }
240 sqliteHashClear(&temp2);
241 sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
242 for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
243 Table *pTab = sqliteHashData(pElem);
244 sqliteDeleteTable(db, pTab);
245 }
246 sqliteHashClear(&temp1);
247 DbClearProperty(db, i, DB_SchemaLoaded);
248 if( iDb>0 ) return;
249 }
250 assert( iDb==0 );
251 db->flags &= ~SQLITE_InternChanges;
252
253 /* If one or more of the auxiliary database files has been closed,
254 ** then remove then from the auxiliary database list. We take the
255 ** opportunity to do this here since we have just deleted all of the
256 ** schema hash tables and therefore do not have to make any changes
257 ** to any of those tables.
258 */
259 for(i=0; i<db->nDb; i++){
260 struct Db *pDb = &db->aDb[i];
261 if( pDb->pBt==0 ){
262 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
263 pDb->pAux = 0;
264 }
265 }
266 for(i=j=2; i<db->nDb; i++){
267 struct Db *pDb = &db->aDb[i];
268 if( pDb->pBt==0 ){
269 sqliteFree(pDb->zName);
270 pDb->zName = 0;
271 continue;
272 }
273 if( j<i ){
274 db->aDb[j] = db->aDb[i];
275 }
276 j++;
277 }
278 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
279 db->nDb = j;
280 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
281 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
282 sqliteFree(db->aDb);
283 db->aDb = db->aDbStatic;
284 }
285 }
286
287 /*
288 ** This routine is called whenever a rollback occurs. If there were
289 ** schema changes during the transaction, then we have to reset the
290 ** internal hash tables and reload them from disk.
291 */
sqliteRollbackInternalChanges(sqlite * db)292 void sqliteRollbackInternalChanges(sqlite *db){
293 if( db->flags & SQLITE_InternChanges ){
294 sqliteResetInternalSchema(db, 0);
295 }
296 }
297
298 /*
299 ** This routine is called when a commit occurs.
300 */
sqliteCommitInternalChanges(sqlite * db)301 void sqliteCommitInternalChanges(sqlite *db){
302 db->aDb[0].schema_cookie = db->next_cookie;
303 db->flags &= ~SQLITE_InternChanges;
304 }
305
306 /*
307 ** Remove the memory data structures associated with the given
308 ** Table. No changes are made to disk by this routine.
309 **
310 ** This routine just deletes the data structure. It does not unlink
311 ** the table data structure from the hash table. Nor does it remove
312 ** foreign keys from the sqlite.aFKey hash table. But it does destroy
313 ** memory structures of the indices and foreign keys associated with
314 ** the table.
315 **
316 ** Indices associated with the table are unlinked from the "db"
317 ** data structure if db!=NULL. If db==NULL, indices attached to
318 ** the table are deleted, but it is assumed they have already been
319 ** unlinked.
320 */
sqliteDeleteTable(sqlite * db,Table * pTable)321 void sqliteDeleteTable(sqlite *db, Table *pTable){
322 int i;
323 Index *pIndex, *pNext;
324 FKey *pFKey, *pNextFKey;
325
326 if( pTable==0 ) return;
327
328 /* Delete all indices associated with this table
329 */
330 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
331 pNext = pIndex->pNext;
332 assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
333 sqliteDeleteIndex(db, pIndex);
334 }
335
336 /* Delete all foreign keys associated with this table. The keys
337 ** should have already been unlinked from the db->aFKey hash table
338 */
339 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
340 pNextFKey = pFKey->pNextFrom;
341 assert( pTable->iDb<db->nDb );
342 assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
343 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
344 sqliteFree(pFKey);
345 }
346
347 /* Delete the Table structure itself.
348 */
349 for(i=0; i<pTable->nCol; i++){
350 sqliteFree(pTable->aCol[i].zName);
351 sqliteFree(pTable->aCol[i].zDflt);
352 sqliteFree(pTable->aCol[i].zType);
353 }
354 sqliteFree(pTable->zName);
355 sqliteFree(pTable->aCol);
356 sqliteSelectDelete(pTable->pSelect);
357 sqliteFree(pTable);
358 }
359
360 /*
361 ** Unlink the given table from the hash tables and the delete the
362 ** table structure with all its indices and foreign keys.
363 */
sqliteUnlinkAndDeleteTable(sqlite * db,Table * p)364 static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
365 Table *pOld;
366 FKey *pF1, *pF2;
367 int i = p->iDb;
368 assert( db!=0 );
369 pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
370 assert( pOld==0 || pOld==p );
371 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
372 int nTo = strlen(pF1->zTo) + 1;
373 pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
374 if( pF2==pF1 ){
375 sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
376 }else{
377 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
378 if( pF2 ){
379 pF2->pNextTo = pF1->pNextTo;
380 }
381 }
382 }
383 sqliteDeleteTable(db, p);
384 }
385
386 /*
387 ** Construct the name of a user table or index from a token.
388 **
389 ** Space to hold the name is obtained from sqliteMalloc() and must
390 ** be freed by the calling function.
391 */
sqliteTableNameFromToken(Token * pName)392 char *sqliteTableNameFromToken(Token *pName){
393 char *zName = sqliteStrNDup(pName->z, pName->n);
394 sqliteDequote(zName);
395 return zName;
396 }
397
398 /*
399 ** Generate code to open the appropriate master table. The table
400 ** opened will be SQLITE_MASTER for persistent tables and
401 ** SQLITE_TEMP_MASTER for temporary tables. The table is opened
402 ** on cursor 0.
403 */
sqliteOpenMasterTable(Vdbe * v,int isTemp)404 void sqliteOpenMasterTable(Vdbe *v, int isTemp){
405 sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
406 sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
407 }
408
409 /*
410 ** Begin constructing a new table representation in memory. This is
411 ** the first of several action routines that get called in response
412 ** to a CREATE TABLE statement. In particular, this routine is called
413 ** after seeing tokens "CREATE" and "TABLE" and the table name. The
414 ** pStart token is the CREATE and pName is the table name. The isTemp
415 ** flag is true if the table should be stored in the auxiliary database
416 ** file instead of in the main database file. This is normally the case
417 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
418 ** CREATE and TABLE.
419 **
420 ** The new table record is initialized and put in pParse->pNewTable.
421 ** As more of the CREATE TABLE statement is parsed, additional action
422 ** routines will be called to add more information to this record.
423 ** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
424 ** is called to complete the construction of the new table record.
425 */
sqliteStartTable(Parse * pParse,Token * pStart,Token * pName,int isTemp,int isView)426 void sqliteStartTable(
427 Parse *pParse, /* Parser context */
428 Token *pStart, /* The "CREATE" token */
429 Token *pName, /* Name of table or view to create */
430 int isTemp, /* True if this is a TEMP table */
431 int isView /* True if this is a VIEW */
432 ){
433 Table *pTable;
434 Index *pIdx;
435 char *zName;
436 sqlite *db = pParse->db;
437 Vdbe *v;
438 int iDb;
439
440 pParse->sFirstToken = *pStart;
441 zName = sqliteTableNameFromToken(pName);
442 if( zName==0 ) return;
443 if( db->init.iDb==1 ) isTemp = 1;
444 #ifndef SQLITE_OMIT_AUTHORIZATION
445 assert( (isTemp & 1)==isTemp );
446 {
447 int code;
448 char *zDb = isTemp ? "temp" : "main";
449 if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
450 sqliteFree(zName);
451 return;
452 }
453 if( isView ){
454 if( isTemp ){
455 code = SQLITE_CREATE_TEMP_VIEW;
456 }else{
457 code = SQLITE_CREATE_VIEW;
458 }
459 }else{
460 if( isTemp ){
461 code = SQLITE_CREATE_TEMP_TABLE;
462 }else{
463 code = SQLITE_CREATE_TABLE;
464 }
465 }
466 if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
467 sqliteFree(zName);
468 return;
469 }
470 }
471 #endif
472
473
474 /* Before trying to create a temporary table, make sure the Btree for
475 ** holding temporary tables is open.
476 */
477 if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
478 int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
479 if( rc!=SQLITE_OK ){
480 sqliteErrorMsg(pParse, "unable to open a temporary database "
481 "file for storing temporary tables");
482 pParse->nErr++;
483 return;
484 }
485 if( db->flags & SQLITE_InTrans ){
486 rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
487 if( rc!=SQLITE_OK ){
488 sqliteErrorMsg(pParse, "unable to get a write lock on "
489 "the temporary database file");
490 return;
491 }
492 }
493 }
494
495 /* Make sure the new table name does not collide with an existing
496 ** index or table name. Issue an error message if it does.
497 **
498 ** If we are re-reading the sqlite_master table because of a schema
499 ** change and a new permanent table is found whose name collides with
500 ** an existing temporary table, that is not an error.
501 */
502 pTable = sqliteFindTable(db, zName, 0);
503 iDb = isTemp ? 1 : db->init.iDb;
504 if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
505 sqliteErrorMsg(pParse, "table %T already exists", pName);
506 sqliteFree(zName);
507 return;
508 }
509 if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
510 (pIdx->iDb==0 || !db->init.busy) ){
511 sqliteErrorMsg(pParse, "there is already an index named %s", zName);
512 sqliteFree(zName);
513 return;
514 }
515 pTable = sqliteMalloc( sizeof(Table) );
516 if( pTable==0 ){
517 sqliteFree(zName);
518 return;
519 }
520 pTable->zName = zName;
521 pTable->nCol = 0;
522 pTable->aCol = 0;
523 pTable->iPKey = -1;
524 pTable->pIndex = 0;
525 pTable->iDb = iDb;
526 if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
527 pParse->pNewTable = pTable;
528
529 /* Begin generating the code that will insert the table record into
530 ** the SQLITE_MASTER table. Note in particular that we must go ahead
531 ** and allocate the record number for the table entry now. Before any
532 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
533 ** indices to be created and the table record must come before the
534 ** indices. Hence, the record number for the table must be allocated
535 ** now.
536 */
537 if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
538 sqliteBeginWriteOperation(pParse, 0, isTemp);
539 if( !isTemp ){
540 sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
541 sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
542 }
543 sqliteOpenMasterTable(v, isTemp);
544 sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
545 sqliteVdbeAddOp(v, OP_Dup, 0, 0);
546 sqliteVdbeAddOp(v, OP_String, 0, 0);
547 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
548 }
549 }
550
551 /*
552 ** Add a new column to the table currently being constructed.
553 **
554 ** The parser calls this routine once for each column declaration
555 ** in a CREATE TABLE statement. sqliteStartTable() gets called
556 ** first to get things going. Then this routine is called for each
557 ** column.
558 */
sqliteAddColumn(Parse * pParse,Token * pName)559 void sqliteAddColumn(Parse *pParse, Token *pName){
560 Table *p;
561 int i;
562 char *z = 0;
563 Column *pCol;
564 if( (p = pParse->pNewTable)==0 ) return;
565 sqliteSetNString(&z, pName->z, pName->n, 0);
566 if( z==0 ) return;
567 sqliteDequote(z);
568 for(i=0; i<p->nCol; i++){
569 if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
570 sqliteErrorMsg(pParse, "duplicate column name: %s", z);
571 sqliteFree(z);
572 return;
573 }
574 }
575 if( (p->nCol & 0x7)==0 ){
576 Column *aNew;
577 aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
578 if( aNew==0 ) return;
579 p->aCol = aNew;
580 }
581 pCol = &p->aCol[p->nCol];
582 memset(pCol, 0, sizeof(p->aCol[0]));
583 pCol->zName = z;
584 pCol->sortOrder = SQLITE_SO_NUM;
585 p->nCol++;
586 }
587
588 /*
589 ** This routine is called by the parser while in the middle of
590 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
591 ** been seen on a column. This routine sets the notNull flag on
592 ** the column currently under construction.
593 */
sqliteAddNotNull(Parse * pParse,int onError)594 void sqliteAddNotNull(Parse *pParse, int onError){
595 Table *p;
596 int i;
597 if( (p = pParse->pNewTable)==0 ) return;
598 i = p->nCol-1;
599 if( i>=0 ) p->aCol[i].notNull = onError;
600 }
601
602 /*
603 ** This routine is called by the parser while in the middle of
604 ** parsing a CREATE TABLE statement. The pFirst token is the first
605 ** token in the sequence of tokens that describe the type of the
606 ** column currently under construction. pLast is the last token
607 ** in the sequence. Use this information to construct a string
608 ** that contains the typename of the column and store that string
609 ** in zType.
610 */
sqliteAddColumnType(Parse * pParse,Token * pFirst,Token * pLast)611 void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
612 Table *p;
613 int i, j;
614 int n;
615 char *z, **pz;
616 Column *pCol;
617 if( (p = pParse->pNewTable)==0 ) return;
618 i = p->nCol-1;
619 if( i<0 ) return;
620 pCol = &p->aCol[i];
621 pz = &pCol->zType;
622 n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
623 sqliteSetNString(pz, pFirst->z, n, 0);
624 z = *pz;
625 if( z==0 ) return;
626 for(i=j=0; z[i]; i++){
627 int c = z[i];
628 if( isspace(c) ) continue;
629 z[j++] = c;
630 }
631 z[j] = 0;
632 if( pParse->db->file_format>=4 ){
633 pCol->sortOrder = sqliteCollateType(z, n);
634 }else{
635 pCol->sortOrder = SQLITE_SO_NUM;
636 }
637 }
638
639 /*
640 ** The given token is the default value for the last column added to
641 ** the table currently under construction. If "minusFlag" is true, it
642 ** means the value token was preceded by a minus sign.
643 **
644 ** This routine is called by the parser while in the middle of
645 ** parsing a CREATE TABLE statement.
646 */
sqliteAddDefaultValue(Parse * pParse,Token * pVal,int minusFlag)647 void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
648 Table *p;
649 int i;
650 char **pz;
651 if( (p = pParse->pNewTable)==0 ) return;
652 i = p->nCol-1;
653 if( i<0 ) return;
654 pz = &p->aCol[i].zDflt;
655 if( minusFlag ){
656 sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
657 }else{
658 sqliteSetNString(pz, pVal->z, pVal->n, 0);
659 }
660 sqliteDequote(*pz);
661 }
662
663 /*
664 ** Designate the PRIMARY KEY for the table. pList is a list of names
665 ** of columns that form the primary key. If pList is NULL, then the
666 ** most recently added column of the table is the primary key.
667 **
668 ** A table can have at most one primary key. If the table already has
669 ** a primary key (and this is the second primary key) then create an
670 ** error.
671 **
672 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
673 ** then we will try to use that column as the row id. (Exception:
674 ** For backwards compatibility with older databases, do not do this
675 ** if the file format version number is less than 1.) Set the Table.iPKey
676 ** field of the table under construction to be the index of the
677 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
678 ** no INTEGER PRIMARY KEY.
679 **
680 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
681 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
682 */
sqliteAddPrimaryKey(Parse * pParse,IdList * pList,int onError)683 void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
684 Table *pTab = pParse->pNewTable;
685 char *zType = 0;
686 int iCol = -1, i;
687 if( pTab==0 ) goto primary_key_exit;
688 if( pTab->hasPrimKey ){
689 sqliteErrorMsg(pParse,
690 "table \"%s\" has more than one primary key", pTab->zName);
691 goto primary_key_exit;
692 }
693 pTab->hasPrimKey = 1;
694 if( pList==0 ){
695 iCol = pTab->nCol - 1;
696 pTab->aCol[iCol].isPrimKey = 1;
697 }else{
698 for(i=0; i<pList->nId; i++){
699 for(iCol=0; iCol<pTab->nCol; iCol++){
700 if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
701 }
702 if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
703 }
704 if( pList->nId>1 ) iCol = -1;
705 }
706 if( iCol>=0 && iCol<pTab->nCol ){
707 zType = pTab->aCol[iCol].zType;
708 }
709 if( pParse->db->file_format>=1 &&
710 zType && sqliteStrICmp(zType, "INTEGER")==0 ){
711 pTab->iPKey = iCol;
712 pTab->keyConf = onError;
713 }else{
714 sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
715 pList = 0;
716 }
717
718 primary_key_exit:
719 sqliteIdListDelete(pList);
720 return;
721 }
722
723 /*
724 ** Return the appropriate collating type given a type name.
725 **
726 ** The collation type is text (SQLITE_SO_TEXT) if the type
727 ** name contains the character stream "text" or "blob" or
728 ** "clob". Any other type name is collated as numeric
729 ** (SQLITE_SO_NUM).
730 */
sqliteCollateType(const char * zType,int nType)731 int sqliteCollateType(const char *zType, int nType){
732 int i;
733 for(i=0; i<nType-3; i++){
734 int c = *(zType++) | 0x60;
735 if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
736 return SQLITE_SO_TEXT;
737 }
738 if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
739 return SQLITE_SO_TEXT;
740 }
741 if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
742 return SQLITE_SO_TEXT;
743 }
744 }
745 return SQLITE_SO_NUM;
746 }
747
748 /*
749 ** This routine is called by the parser while in the middle of
750 ** parsing a CREATE TABLE statement. A "COLLATE" clause has
751 ** been seen on a column. This routine sets the Column.sortOrder on
752 ** the column currently under construction.
753 */
sqliteAddCollateType(Parse * pParse,int collType)754 void sqliteAddCollateType(Parse *pParse, int collType){
755 Table *p;
756 int i;
757 if( (p = pParse->pNewTable)==0 ) return;
758 i = p->nCol-1;
759 if( i>=0 ) p->aCol[i].sortOrder = collType;
760 }
761
762 /*
763 ** Come up with a new random value for the schema cookie. Make sure
764 ** the new value is different from the old.
765 **
766 ** The schema cookie is used to determine when the schema for the
767 ** database changes. After each schema change, the cookie value
768 ** changes. When a process first reads the schema it records the
769 ** cookie. Thereafter, whenever it goes to access the database,
770 ** it checks the cookie to make sure the schema has not changed
771 ** since it was last read.
772 **
773 ** This plan is not completely bullet-proof. It is possible for
774 ** the schema to change multiple times and for the cookie to be
775 ** set back to prior value. But schema changes are infrequent
776 ** and the probability of hitting the same cookie value is only
777 ** 1 chance in 2^32. So we're safe enough.
778 */
sqliteChangeCookie(sqlite * db,Vdbe * v)779 void sqliteChangeCookie(sqlite *db, Vdbe *v){
780 if( db->next_cookie==db->aDb[0].schema_cookie ){
781 unsigned char r;
782 sqliteRandomness(1, &r);
783 db->next_cookie = db->aDb[0].schema_cookie + r + 1;
784 db->flags |= SQLITE_InternChanges;
785 sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
786 sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
787 }
788 }
789
790 /*
791 ** Measure the number of characters needed to output the given
792 ** identifier. The number returned includes any quotes used
793 ** but does not include the null terminator.
794 */
identLength(const char * z)795 static int identLength(const char *z){
796 int n;
797 int needQuote = 0;
798 for(n=0; *z; n++, z++){
799 if( *z=='\'' ){ n++; needQuote=1; }
800 }
801 return n + needQuote*2;
802 }
803
804 /*
805 ** Write an identifier onto the end of the given string. Add
806 ** quote characters as needed.
807 */
identPut(char * z,int * pIdx,char * zIdent)808 static void identPut(char *z, int *pIdx, char *zIdent){
809 int i, j, needQuote;
810 i = *pIdx;
811 for(j=0; zIdent[j]; j++){
812 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
813 }
814 needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
815 || sqliteKeywordCode(zIdent, j)!=TK_ID;
816 if( needQuote ) z[i++] = '\'';
817 for(j=0; zIdent[j]; j++){
818 z[i++] = zIdent[j];
819 if( zIdent[j]=='\'' ) z[i++] = '\'';
820 }
821 if( needQuote ) z[i++] = '\'';
822 z[i] = 0;
823 *pIdx = i;
824 }
825
826 /*
827 ** Generate a CREATE TABLE statement appropriate for the given
828 ** table. Memory to hold the text of the statement is obtained
829 ** from sqliteMalloc() and must be freed by the calling function.
830 */
createTableStmt(Table * p)831 static char *createTableStmt(Table *p){
832 int i, k, n;
833 char *zStmt;
834 char *zSep, *zSep2, *zEnd;
835 n = 0;
836 for(i=0; i<p->nCol; i++){
837 n += identLength(p->aCol[i].zName);
838 }
839 n += identLength(p->zName);
840 if( n<40 ){
841 zSep = "";
842 zSep2 = ",";
843 zEnd = ")";
844 }else{
845 zSep = "\n ";
846 zSep2 = ",\n ";
847 zEnd = "\n)";
848 }
849 n += 35 + 6*p->nCol;
850 zStmt = sqliteMallocRaw( n );
851 if( zStmt==0 ) return 0;
852 strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
853 k = strlen(zStmt);
854 identPut(zStmt, &k, p->zName);
855 zStmt[k++] = '(';
856 for(i=0; i<p->nCol; i++){
857 strcpy(&zStmt[k], zSep);
858 k += strlen(&zStmt[k]);
859 zSep = zSep2;
860 identPut(zStmt, &k, p->aCol[i].zName);
861 }
862 strcpy(&zStmt[k], zEnd);
863 return zStmt;
864 }
865
866 /*
867 ** This routine is called to report the final ")" that terminates
868 ** a CREATE TABLE statement.
869 **
870 ** The table structure that other action routines have been building
871 ** is added to the internal hash tables, assuming no errors have
872 ** occurred.
873 **
874 ** An entry for the table is made in the master table on disk, unless
875 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
876 ** it means we are reading the sqlite_master table because we just
877 ** connected to the database or because the sqlite_master table has
878 ** recently changes, so the entry for this table already exists in
879 ** the sqlite_master table. We do not want to create it again.
880 **
881 ** If the pSelect argument is not NULL, it means that this routine
882 ** was called to create a table generated from a
883 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
884 ** the new table will match the result set of the SELECT.
885 */
sqliteEndTable(Parse * pParse,Token * pEnd,Select * pSelect)886 void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
887 Table *p;
888 sqlite *db = pParse->db;
889
890 if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
891 p = pParse->pNewTable;
892 if( p==0 ) return;
893
894 /* If the table is generated from a SELECT, then construct the
895 ** list of columns and the text of the table.
896 */
897 if( pSelect ){
898 Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
899 if( pSelTab==0 ) return;
900 assert( p->aCol==0 );
901 p->nCol = pSelTab->nCol;
902 p->aCol = pSelTab->aCol;
903 pSelTab->nCol = 0;
904 pSelTab->aCol = 0;
905 sqliteDeleteTable(0, pSelTab);
906 }
907
908 /* If the db->init.busy is 1 it means we are reading the SQL off the
909 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
910 ** So do not write to the disk again. Extract the root page number
911 ** for the table from the db->init.newTnum field. (The page number
912 ** should have been put there by the sqliteOpenCb routine.)
913 */
914 if( db->init.busy ){
915 p->tnum = db->init.newTnum;
916 }
917
918 /* If not initializing, then create a record for the new table
919 ** in the SQLITE_MASTER table of the database. The record number
920 ** for the new table entry should already be on the stack.
921 **
922 ** If this is a TEMPORARY table, write the entry into the auxiliary
923 ** file instead of into the main database file.
924 */
925 if( !db->init.busy ){
926 int n;
927 Vdbe *v;
928
929 v = sqliteGetVdbe(pParse);
930 if( v==0 ) return;
931 if( p->pSelect==0 ){
932 /* A regular table */
933 sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
934 }else{
935 /* A view */
936 sqliteVdbeAddOp(v, OP_Integer, 0, 0);
937 }
938 p->tnum = 0;
939 sqliteVdbeAddOp(v, OP_Pull, 1, 0);
940 sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
941 sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
942 sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
943 sqliteVdbeAddOp(v, OP_Dup, 4, 0);
944 sqliteVdbeAddOp(v, OP_String, 0, 0);
945 if( pSelect ){
946 char *z = createTableStmt(p);
947 n = z ? strlen(z) : 0;
948 sqliteVdbeChangeP3(v, -1, z, n);
949 sqliteFree(z);
950 }else{
951 assert( pEnd!=0 );
952 n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
953 sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
954 }
955 sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
956 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
957 if( !p->iDb ){
958 sqliteChangeCookie(db, v);
959 }
960 sqliteVdbeAddOp(v, OP_Close, 0, 0);
961 if( pSelect ){
962 sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
963 sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
964 pParse->nTab = 2;
965 sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
966 }
967 sqliteEndWriteOperation(pParse);
968 }
969
970 /* Add the table to the in-memory representation of the database.
971 */
972 if( pParse->explain==0 && pParse->nErr==0 ){
973 Table *pOld;
974 FKey *pFKey;
975 pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
976 p->zName, strlen(p->zName)+1, p);
977 if( pOld ){
978 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
979 return;
980 }
981 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
982 int nTo = strlen(pFKey->zTo) + 1;
983 pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
984 sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
985 }
986 pParse->pNewTable = 0;
987 db->nTable++;
988 db->flags |= SQLITE_InternChanges;
989 }
990 }
991
992 /*
993 ** The parser calls this routine in order to create a new VIEW
994 */
sqliteCreateView(Parse * pParse,Token * pBegin,Token * pName,Select * pSelect,int isTemp)995 void sqliteCreateView(
996 Parse *pParse, /* The parsing context */
997 Token *pBegin, /* The CREATE token that begins the statement */
998 Token *pName, /* The token that holds the name of the view */
999 Select *pSelect, /* A SELECT statement that will become the new view */
1000 int isTemp /* TRUE for a TEMPORARY view */
1001 ){
1002 Table *p;
1003 int n;
1004 const char *z;
1005 Token sEnd;
1006 DbFixer sFix;
1007
1008 sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
1009 p = pParse->pNewTable;
1010 if( p==0 || pParse->nErr ){
1011 sqliteSelectDelete(pSelect);
1012 return;
1013 }
1014 if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
1015 && sqliteFixSelect(&sFix, pSelect)
1016 ){
1017 sqliteSelectDelete(pSelect);
1018 return;
1019 }
1020
1021 /* Make a copy of the entire SELECT statement that defines the view.
1022 ** This will force all the Expr.token.z values to be dynamically
1023 ** allocated rather than point to the input string - which means that
1024 ** they will persist after the current sqlite_exec() call returns.
1025 */
1026 p->pSelect = sqliteSelectDup(pSelect);
1027 sqliteSelectDelete(pSelect);
1028 if( !pParse->db->init.busy ){
1029 sqliteViewGetColumnNames(pParse, p);
1030 }
1031
1032 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1033 ** the end.
1034 */
1035 sEnd = pParse->sLastToken;
1036 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
1037 sEnd.z += sEnd.n;
1038 }
1039 sEnd.n = 0;
1040 n = sEnd.z - pBegin->z;
1041 z = pBegin->z;
1042 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
1043 sEnd.z = &z[n-1];
1044 sEnd.n = 1;
1045
1046 /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
1047 sqliteEndTable(pParse, &sEnd, 0);
1048 return;
1049 }
1050
1051 /*
1052 ** The Table structure pTable is really a VIEW. Fill in the names of
1053 ** the columns of the view in the pTable structure. Return the number
1054 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1055 */
sqliteViewGetColumnNames(Parse * pParse,Table * pTable)1056 int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
1057 ExprList *pEList;
1058 Select *pSel;
1059 Table *pSelTab;
1060 int nErr = 0;
1061
1062 assert( pTable );
1063
1064 /* A positive nCol means the columns names for this view are
1065 ** already known.
1066 */
1067 if( pTable->nCol>0 ) return 0;
1068
1069 /* A negative nCol is a special marker meaning that we are currently
1070 ** trying to compute the column names. If we enter this routine with
1071 ** a negative nCol, it means two or more views form a loop, like this:
1072 **
1073 ** CREATE VIEW one AS SELECT * FROM two;
1074 ** CREATE VIEW two AS SELECT * FROM one;
1075 **
1076 ** Actually, this error is caught previously and so the following test
1077 ** should always fail. But we will leave it in place just to be safe.
1078 */
1079 if( pTable->nCol<0 ){
1080 sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1081 return 1;
1082 }
1083
1084 /* If we get this far, it means we need to compute the table names.
1085 */
1086 assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
1087 pSel = pTable->pSelect;
1088
1089 /* Note that the call to sqliteResultSetOfSelect() will expand any
1090 ** "*" elements in this list. But we will need to restore the list
1091 ** back to its original configuration afterwards, so we save a copy of
1092 ** the original in pEList.
1093 */
1094 pEList = pSel->pEList;
1095 pSel->pEList = sqliteExprListDup(pEList);
1096 if( pSel->pEList==0 ){
1097 pSel->pEList = pEList;
1098 return 1; /* Malloc failed */
1099 }
1100 pTable->nCol = -1;
1101 pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
1102 if( pSelTab ){
1103 assert( pTable->aCol==0 );
1104 pTable->nCol = pSelTab->nCol;
1105 pTable->aCol = pSelTab->aCol;
1106 pSelTab->nCol = 0;
1107 pSelTab->aCol = 0;
1108 sqliteDeleteTable(0, pSelTab);
1109 DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
1110 }else{
1111 pTable->nCol = 0;
1112 nErr++;
1113 }
1114 sqliteSelectUnbind(pSel);
1115 sqliteExprListDelete(pSel->pEList);
1116 pSel->pEList = pEList;
1117 return nErr;
1118 }
1119
1120 /*
1121 ** Clear the column names from the VIEW pTable.
1122 **
1123 ** This routine is called whenever any other table or view is modified.
1124 ** The view passed into this routine might depend directly or indirectly
1125 ** on the modified or deleted table so we need to clear the old column
1126 ** names so that they will be recomputed.
1127 */
sqliteViewResetColumnNames(Table * pTable)1128 static void sqliteViewResetColumnNames(Table *pTable){
1129 int i;
1130 Column *pCol;
1131 assert( pTable!=0 && pTable->pSelect!=0 );
1132 for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
1133 sqliteFree(pCol->zName);
1134 sqliteFree(pCol->zDflt);
1135 sqliteFree(pCol->zType);
1136 }
1137 sqliteFree(pTable->aCol);
1138 pTable->aCol = 0;
1139 pTable->nCol = 0;
1140 }
1141
1142 /*
1143 ** Clear the column names from every VIEW in database idx.
1144 */
sqliteViewResetAll(sqlite * db,int idx)1145 static void sqliteViewResetAll(sqlite *db, int idx){
1146 HashElem *i;
1147 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1148 for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
1149 Table *pTab = sqliteHashData(i);
1150 if( pTab->pSelect ){
1151 sqliteViewResetColumnNames(pTab);
1152 }
1153 }
1154 DbClearProperty(db, idx, DB_UnresetViews);
1155 }
1156
1157 /*
1158 ** Given a token, look up a table with that name. If not found, leave
1159 ** an error for the parser to find and return NULL.
1160 */
sqliteTableFromToken(Parse * pParse,Token * pTok)1161 Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
1162 char *zName;
1163 Table *pTab;
1164 zName = sqliteTableNameFromToken(pTok);
1165 if( zName==0 ) return 0;
1166 pTab = sqliteFindTable(pParse->db, zName, 0);
1167 sqliteFree(zName);
1168 if( pTab==0 ){
1169 sqliteErrorMsg(pParse, "no such table: %T", pTok);
1170 }
1171 return pTab;
1172 }
1173
1174 /*
1175 ** This routine is called to do the work of a DROP TABLE statement.
1176 ** pName is the name of the table to be dropped.
1177 */
sqliteDropTable(Parse * pParse,Token * pName,int isView)1178 void sqliteDropTable(Parse *pParse, Token *pName, int isView){
1179 Table *pTable;
1180 Vdbe *v;
1181 int base;
1182 sqlite *db = pParse->db;
1183 int iDb;
1184
1185 if( pParse->nErr || sqlite_malloc_failed ) return;
1186 pTable = sqliteTableFromToken(pParse, pName);
1187 if( pTable==0 ) return;
1188 iDb = pTable->iDb;
1189 assert( iDb>=0 && iDb<db->nDb );
1190 #ifndef SQLITE_OMIT_AUTHORIZATION
1191 {
1192 int code;
1193 const char *zTab = SCHEMA_TABLE(pTable->iDb);
1194 const char *zDb = db->aDb[pTable->iDb].zName;
1195 if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
1196 return;
1197 }
1198 if( isView ){
1199 if( iDb==1 ){
1200 code = SQLITE_DROP_TEMP_VIEW;
1201 }else{
1202 code = SQLITE_DROP_VIEW;
1203 }
1204 }else{
1205 if( iDb==1 ){
1206 code = SQLITE_DROP_TEMP_TABLE;
1207 }else{
1208 code = SQLITE_DROP_TABLE;
1209 }
1210 }
1211 if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
1212 return;
1213 }
1214 if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
1215 return;
1216 }
1217 }
1218 #endif
1219 if( pTable->readOnly ){
1220 sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
1221 pParse->nErr++;
1222 return;
1223 }
1224 if( isView && pTable->pSelect==0 ){
1225 sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
1226 return;
1227 }
1228 if( !isView && pTable->pSelect ){
1229 sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
1230 return;
1231 }
1232
1233 /* Generate code to remove the table from the master table
1234 ** on disk.
1235 */
1236 v = sqliteGetVdbe(pParse);
1237 if( v ){
1238 static VdbeOpList dropTable[] = {
1239 { OP_Rewind, 0, ADDR(8), 0},
1240 { OP_String, 0, 0, 0}, /* 1 */
1241 { OP_MemStore, 1, 1, 0},
1242 { OP_MemLoad, 1, 0, 0}, /* 3 */
1243 { OP_Column, 0, 2, 0},
1244 { OP_Ne, 0, ADDR(7), 0},
1245 { OP_Delete, 0, 0, 0},
1246 { OP_Next, 0, ADDR(3), 0}, /* 7 */
1247 };
1248 Index *pIdx;
1249 Trigger *pTrigger;
1250 sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
1251
1252 /* Drop all triggers associated with the table being dropped */
1253 pTrigger = pTable->pTrigger;
1254 while( pTrigger ){
1255 assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
1256 sqliteDropTriggerPtr(pParse, pTrigger, 1);
1257 if( pParse->explain ){
1258 pTrigger = pTrigger->pNext;
1259 }else{
1260 pTrigger = pTable->pTrigger;
1261 }
1262 }
1263
1264 /* Drop all SQLITE_MASTER entries that refer to the table */
1265 sqliteOpenMasterTable(v, pTable->iDb);
1266 base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
1267 sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
1268
1269 /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
1270 if( pTable->iDb!=1 ){
1271 sqliteOpenMasterTable(v, 1);
1272 base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
1273 sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
1274 }
1275
1276 if( pTable->iDb==0 ){
1277 sqliteChangeCookie(db, v);
1278 }
1279 sqliteVdbeAddOp(v, OP_Close, 0, 0);
1280 if( !isView ){
1281 sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
1282 for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
1283 sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
1284 }
1285 }
1286 sqliteEndWriteOperation(pParse);
1287 }
1288
1289 /* Delete the in-memory description of the table.
1290 **
1291 ** Exception: if the SQL statement began with the EXPLAIN keyword,
1292 ** then no changes should be made.
1293 */
1294 if( !pParse->explain ){
1295 sqliteUnlinkAndDeleteTable(db, pTable);
1296 db->flags |= SQLITE_InternChanges;
1297 }
1298 sqliteViewResetAll(db, iDb);
1299 }
1300
1301 /*
1302 ** This routine constructs a P3 string suitable for an OP_MakeIdxKey
1303 ** opcode and adds that P3 string to the most recently inserted instruction
1304 ** in the virtual machine. The P3 string consists of a single character
1305 ** for each column in the index pIdx of table pTab. If the column uses
1306 ** a numeric sort order, then the P3 string character corresponding to
1307 ** that column is 'n'. If the column uses a text sort order, then the
1308 ** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
1309 ** additional information. See also the sqliteAddKeyType() routine.
1310 */
sqliteAddIdxKeyType(Vdbe * v,Index * pIdx)1311 void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
1312 char *zType;
1313 Table *pTab;
1314 int i, n;
1315 assert( pIdx!=0 && pIdx->pTable!=0 );
1316 pTab = pIdx->pTable;
1317 n = pIdx->nColumn;
1318 zType = sqliteMallocRaw( n+1 );
1319 if( zType==0 ) return;
1320 for(i=0; i<n; i++){
1321 int iCol = pIdx->aiColumn[i];
1322 assert( iCol>=0 && iCol<pTab->nCol );
1323 if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
1324 zType[i] = 't';
1325 }else{
1326 zType[i] = 'n';
1327 }
1328 }
1329 zType[n] = 0;
1330 sqliteVdbeChangeP3(v, -1, zType, n);
1331 sqliteFree(zType);
1332 }
1333
1334 /*
1335 ** This routine is called to create a new foreign key on the table
1336 ** currently under construction. pFromCol determines which columns
1337 ** in the current table point to the foreign key. If pFromCol==0 then
1338 ** connect the key to the last column inserted. pTo is the name of
1339 ** the table referred to. pToCol is a list of tables in the other
1340 ** pTo table that the foreign key points to. flags contains all
1341 ** information about the conflict resolution algorithms specified
1342 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
1343 **
1344 ** An FKey structure is created and added to the table currently
1345 ** under construction in the pParse->pNewTable field. The new FKey
1346 ** is not linked into db->aFKey at this point - that does not happen
1347 ** until sqliteEndTable().
1348 **
1349 ** The foreign key is set for IMMEDIATE processing. A subsequent call
1350 ** to sqliteDeferForeignKey() might change this to DEFERRED.
1351 */
sqliteCreateForeignKey(Parse * pParse,IdList * pFromCol,Token * pTo,IdList * pToCol,int flags)1352 void sqliteCreateForeignKey(
1353 Parse *pParse, /* Parsing context */
1354 IdList *pFromCol, /* Columns in this table that point to other table */
1355 Token *pTo, /* Name of the other table */
1356 IdList *pToCol, /* Columns in the other table */
1357 int flags /* Conflict resolution algorithms. */
1358 ){
1359 Table *p = pParse->pNewTable;
1360 int nByte;
1361 int i;
1362 int nCol;
1363 char *z;
1364 FKey *pFKey = 0;
1365
1366 assert( pTo!=0 );
1367 if( p==0 || pParse->nErr ) goto fk_end;
1368 if( pFromCol==0 ){
1369 int iCol = p->nCol-1;
1370 if( iCol<0 ) goto fk_end;
1371 if( pToCol && pToCol->nId!=1 ){
1372 sqliteErrorMsg(pParse, "foreign key on %s"
1373 " should reference only one column of table %T",
1374 p->aCol[iCol].zName, pTo);
1375 goto fk_end;
1376 }
1377 nCol = 1;
1378 }else if( pToCol && pToCol->nId!=pFromCol->nId ){
1379 sqliteErrorMsg(pParse,
1380 "number of columns in foreign key does not match the number of "
1381 "columns in the referenced table");
1382 goto fk_end;
1383 }else{
1384 nCol = pFromCol->nId;
1385 }
1386 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
1387 if( pToCol ){
1388 for(i=0; i<pToCol->nId; i++){
1389 nByte += strlen(pToCol->a[i].zName) + 1;
1390 }
1391 }
1392 pFKey = sqliteMalloc( nByte );
1393 if( pFKey==0 ) goto fk_end;
1394 pFKey->pFrom = p;
1395 pFKey->pNextFrom = p->pFKey;
1396 z = (char*)&pFKey[1];
1397 pFKey->aCol = (struct sColMap*)z;
1398 z += sizeof(struct sColMap)*nCol;
1399 pFKey->zTo = z;
1400 memcpy(z, pTo->z, pTo->n);
1401 z[pTo->n] = 0;
1402 z += pTo->n+1;
1403 pFKey->pNextTo = 0;
1404 pFKey->nCol = nCol;
1405 if( pFromCol==0 ){
1406 pFKey->aCol[0].iFrom = p->nCol-1;
1407 }else{
1408 for(i=0; i<nCol; i++){
1409 int j;
1410 for(j=0; j<p->nCol; j++){
1411 if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
1412 pFKey->aCol[i].iFrom = j;
1413 break;
1414 }
1415 }
1416 if( j>=p->nCol ){
1417 sqliteErrorMsg(pParse,
1418 "unknown column \"%s\" in foreign key definition",
1419 pFromCol->a[i].zName);
1420 goto fk_end;
1421 }
1422 }
1423 }
1424 if( pToCol ){
1425 for(i=0; i<nCol; i++){
1426 int n = strlen(pToCol->a[i].zName);
1427 pFKey->aCol[i].zCol = z;
1428 memcpy(z, pToCol->a[i].zName, n);
1429 z[n] = 0;
1430 z += n+1;
1431 }
1432 }
1433 pFKey->isDeferred = 0;
1434 pFKey->deleteConf = flags & 0xff;
1435 pFKey->updateConf = (flags >> 8 ) & 0xff;
1436 pFKey->insertConf = (flags >> 16 ) & 0xff;
1437
1438 /* Link the foreign key to the table as the last step.
1439 */
1440 p->pFKey = pFKey;
1441 pFKey = 0;
1442
1443 fk_end:
1444 sqliteFree(pFKey);
1445 sqliteIdListDelete(pFromCol);
1446 sqliteIdListDelete(pToCol);
1447 }
1448
1449 /*
1450 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
1451 ** clause is seen as part of a foreign key definition. The isDeferred
1452 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
1453 ** The behavior of the most recently created foreign key is adjusted
1454 ** accordingly.
1455 */
sqliteDeferForeignKey(Parse * pParse,int isDeferred)1456 void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
1457 Table *pTab;
1458 FKey *pFKey;
1459 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
1460 pFKey->isDeferred = isDeferred;
1461 }
1462
1463 /*
1464 ** Create a new index for an SQL table. pIndex is the name of the index
1465 ** and pTable is the name of the table that is to be indexed. Both will
1466 ** be NULL for a primary key or an index that is created to satisfy a
1467 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
1468 ** as the table to be indexed. pParse->pNewTable is a table that is
1469 ** currently being constructed by a CREATE TABLE statement.
1470 **
1471 ** pList is a list of columns to be indexed. pList will be NULL if this
1472 ** is a primary key or unique-constraint on the most recent column added
1473 ** to the table currently under construction.
1474 */
sqliteCreateIndex(Parse * pParse,Token * pName,SrcList * pTable,IdList * pList,int onError,Token * pStart,Token * pEnd)1475 void sqliteCreateIndex(
1476 Parse *pParse, /* All information about this parse */
1477 Token *pName, /* Name of the index. May be NULL */
1478 SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
1479 IdList *pList, /* A list of columns to be indexed */
1480 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1481 Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
1482 Token *pEnd /* The ")" that closes the CREATE INDEX statement */
1483 ){
1484 Table *pTab; /* Table to be indexed */
1485 Index *pIndex; /* The index to be created */
1486 char *zName = 0;
1487 int i, j;
1488 Token nullId; /* Fake token for an empty ID list */
1489 DbFixer sFix; /* For assigning database names to pTable */
1490 int isTemp; /* True for a temporary index */
1491 sqlite *db = pParse->db;
1492
1493 if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
1494 if( db->init.busy
1495 && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
1496 && sqliteFixSrcList(&sFix, pTable)
1497 ){
1498 goto exit_create_index;
1499 }
1500
1501 /*
1502 ** Find the table that is to be indexed. Return early if not found.
1503 */
1504 if( pTable!=0 ){
1505 assert( pName!=0 );
1506 assert( pTable->nSrc==1 );
1507 pTab = sqliteSrcListLookup(pParse, pTable);
1508 }else{
1509 assert( pName==0 );
1510 pTab = pParse->pNewTable;
1511 }
1512 if( pTab==0 || pParse->nErr ) goto exit_create_index;
1513 if( pTab->readOnly ){
1514 sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
1515 goto exit_create_index;
1516 }
1517 if( pTab->iDb>=2 && db->init.busy==0 ){
1518 sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
1519 goto exit_create_index;
1520 }
1521 if( pTab->pSelect ){
1522 sqliteErrorMsg(pParse, "views may not be indexed");
1523 goto exit_create_index;
1524 }
1525 isTemp = pTab->iDb==1;
1526
1527 /*
1528 ** Find the name of the index. Make sure there is not already another
1529 ** index or table with the same name.
1530 **
1531 ** Exception: If we are reading the names of permanent indices from the
1532 ** sqlite_master table (because some other process changed the schema) and
1533 ** one of the index names collides with the name of a temporary table or
1534 ** index, then we will continue to process this index.
1535 **
1536 ** If pName==0 it means that we are
1537 ** dealing with a primary key or UNIQUE constraint. We have to invent our
1538 ** own name.
1539 */
1540 if( pName && !db->init.busy ){
1541 Index *pISameName; /* Another index with the same name */
1542 Table *pTSameName; /* A table with same name as the index */
1543 zName = sqliteTableNameFromToken(pName);
1544 if( zName==0 ) goto exit_create_index;
1545 if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
1546 sqliteErrorMsg(pParse, "index %s already exists", zName);
1547 goto exit_create_index;
1548 }
1549 if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
1550 sqliteErrorMsg(pParse, "there is already a table named %s", zName);
1551 goto exit_create_index;
1552 }
1553 }else if( pName==0 ){
1554 char zBuf[30];
1555 int n;
1556 Index *pLoop;
1557 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
1558 sprintf(zBuf,"%d)",n);
1559 zName = 0;
1560 sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
1561 if( zName==0 ) goto exit_create_index;
1562 }else{
1563 zName = sqliteStrNDup(pName->z, pName->n);
1564 }
1565
1566 /* Check for authorization to create an index.
1567 */
1568 #ifndef SQLITE_OMIT_AUTHORIZATION
1569 {
1570 const char *zDb = db->aDb[pTab->iDb].zName;
1571
1572 assert( pTab->iDb==db->init.iDb || isTemp );
1573 if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1574 goto exit_create_index;
1575 }
1576 i = SQLITE_CREATE_INDEX;
1577 if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
1578 if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
1579 goto exit_create_index;
1580 }
1581 }
1582 #endif
1583
1584 /* If pList==0, it means this routine was called to make a primary
1585 ** key out of the last column added to the table under construction.
1586 ** So create a fake list to simulate this.
1587 */
1588 if( pList==0 ){
1589 nullId.z = pTab->aCol[pTab->nCol-1].zName;
1590 nullId.n = strlen(nullId.z);
1591 pList = sqliteIdListAppend(0, &nullId);
1592 if( pList==0 ) goto exit_create_index;
1593 }
1594
1595 /*
1596 ** Allocate the index structure.
1597 */
1598 pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
1599 sizeof(int)*pList->nId );
1600 if( pIndex==0 ) goto exit_create_index;
1601 pIndex->aiColumn = (int*)&pIndex[1];
1602 pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
1603 strcpy(pIndex->zName, zName);
1604 pIndex->pTable = pTab;
1605 pIndex->nColumn = pList->nId;
1606 pIndex->onError = onError;
1607 pIndex->autoIndex = pName==0;
1608 pIndex->iDb = isTemp ? 1 : db->init.iDb;
1609
1610 /* Scan the names of the columns of the table to be indexed and
1611 ** load the column indices into the Index structure. Report an error
1612 ** if any column is not found.
1613 */
1614 for(i=0; i<pList->nId; i++){
1615 for(j=0; j<pTab->nCol; j++){
1616 if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
1617 }
1618 if( j>=pTab->nCol ){
1619 sqliteErrorMsg(pParse, "table %s has no column named %s",
1620 pTab->zName, pList->a[i].zName);
1621 sqliteFree(pIndex);
1622 goto exit_create_index;
1623 }
1624 pIndex->aiColumn[i] = j;
1625 }
1626
1627 /* Link the new Index structure to its table and to the other
1628 ** in-memory database structures.
1629 */
1630 if( !pParse->explain ){
1631 Index *p;
1632 p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
1633 pIndex->zName, strlen(pIndex->zName)+1, pIndex);
1634 if( p ){
1635 assert( p==pIndex ); /* Malloc must have failed */
1636 sqliteFree(pIndex);
1637 goto exit_create_index;
1638 }
1639 db->flags |= SQLITE_InternChanges;
1640 }
1641
1642 /* When adding an index to the list of indices for a table, make
1643 ** sure all indices labeled OE_Replace come after all those labeled
1644 ** OE_Ignore. This is necessary for the correct operation of UPDATE
1645 ** and INSERT.
1646 */
1647 if( onError!=OE_Replace || pTab->pIndex==0
1648 || pTab->pIndex->onError==OE_Replace){
1649 pIndex->pNext = pTab->pIndex;
1650 pTab->pIndex = pIndex;
1651 }else{
1652 Index *pOther = pTab->pIndex;
1653 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
1654 pOther = pOther->pNext;
1655 }
1656 pIndex->pNext = pOther->pNext;
1657 pOther->pNext = pIndex;
1658 }
1659
1660 /* If the db->init.busy is 1 it means we are reading the SQL off the
1661 ** "sqlite_master" table on the disk. So do not write to the disk
1662 ** again. Extract the table number from the db->init.newTnum field.
1663 */
1664 if( db->init.busy && pTable!=0 ){
1665 pIndex->tnum = db->init.newTnum;
1666 }
1667
1668 /* If the db->init.busy is 0 then create the index on disk. This
1669 ** involves writing the index into the master table and filling in the
1670 ** index with the current table contents.
1671 **
1672 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
1673 ** command. db->init.busy is 1 when a database is opened and
1674 ** CREATE INDEX statements are read out of the master table. In
1675 ** the latter case the index already exists on disk, which is why
1676 ** we don't want to recreate it.
1677 **
1678 ** If pTable==0 it means this index is generated as a primary key
1679 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
1680 ** has just been created, it contains no data and the index initialization
1681 ** step can be skipped.
1682 */
1683 else if( db->init.busy==0 ){
1684 int n;
1685 Vdbe *v;
1686 int lbl1, lbl2;
1687 int i;
1688 int addr;
1689
1690 v = sqliteGetVdbe(pParse);
1691 if( v==0 ) goto exit_create_index;
1692 if( pTable!=0 ){
1693 sqliteBeginWriteOperation(pParse, 0, isTemp);
1694 sqliteOpenMasterTable(v, isTemp);
1695 }
1696 sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
1697 sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
1698 sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
1699 sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
1700 sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
1701 pIndex->tnum = 0;
1702 if( pTable ){
1703 sqliteVdbeCode(v,
1704 OP_Dup, 0, 0,
1705 OP_Integer, isTemp, 0,
1706 OP_OpenWrite, 1, 0,
1707 0);
1708 }
1709 addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
1710 if( pStart && pEnd ){
1711 n = Addr(pEnd->z) - Addr(pStart->z) + 1;
1712 sqliteVdbeChangeP3(v, addr, pStart->z, n);
1713 }
1714 sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
1715 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
1716 if( pTable ){
1717 sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
1718 sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
1719 lbl2 = sqliteVdbeMakeLabel(v);
1720 sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
1721 lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
1722 for(i=0; i<pIndex->nColumn; i++){
1723 int iCol = pIndex->aiColumn[i];
1724 if( pTab->iPKey==iCol ){
1725 sqliteVdbeAddOp(v, OP_Dup, i, 0);
1726 }else{
1727 sqliteVdbeAddOp(v, OP_Column, 2, iCol);
1728 }
1729 }
1730 sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
1731 if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
1732 sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
1733 "indexed columns are not unique", P3_STATIC);
1734 sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
1735 sqliteVdbeResolveLabel(v, lbl2);
1736 sqliteVdbeAddOp(v, OP_Close, 2, 0);
1737 sqliteVdbeAddOp(v, OP_Close, 1, 0);
1738 }
1739 if( pTable!=0 ){
1740 if( !isTemp ){
1741 sqliteChangeCookie(db, v);
1742 }
1743 sqliteVdbeAddOp(v, OP_Close, 0, 0);
1744 sqliteEndWriteOperation(pParse);
1745 }
1746 }
1747
1748 /* Clean up before exiting */
1749 exit_create_index:
1750 sqliteIdListDelete(pList);
1751 sqliteSrcListDelete(pTable);
1752 sqliteFree(zName);
1753 return;
1754 }
1755
1756 /*
1757 ** This routine will drop an existing named index. This routine
1758 ** implements the DROP INDEX statement.
1759 */
sqliteDropIndex(Parse * pParse,SrcList * pName)1760 void sqliteDropIndex(Parse *pParse, SrcList *pName){
1761 Index *pIndex;
1762 Vdbe *v;
1763 sqlite *db = pParse->db;
1764
1765 if( pParse->nErr || sqlite_malloc_failed ) return;
1766 assert( pName->nSrc==1 );
1767 pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
1768 if( pIndex==0 ){
1769 sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
1770 goto exit_drop_index;
1771 }
1772 if( pIndex->autoIndex ){
1773 sqliteErrorMsg(pParse, "index associated with UNIQUE "
1774 "or PRIMARY KEY constraint cannot be dropped", 0);
1775 goto exit_drop_index;
1776 }
1777 if( pIndex->iDb>1 ){
1778 sqliteErrorMsg(pParse, "cannot alter schema of attached "
1779 "databases", 0);
1780 goto exit_drop_index;
1781 }
1782 #ifndef SQLITE_OMIT_AUTHORIZATION
1783 {
1784 int code = SQLITE_DROP_INDEX;
1785 Table *pTab = pIndex->pTable;
1786 const char *zDb = db->aDb[pIndex->iDb].zName;
1787 const char *zTab = SCHEMA_TABLE(pIndex->iDb);
1788 if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
1789 goto exit_drop_index;
1790 }
1791 if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
1792 if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
1793 goto exit_drop_index;
1794 }
1795 }
1796 #endif
1797
1798 /* Generate code to remove the index and from the master table */
1799 v = sqliteGetVdbe(pParse);
1800 if( v ){
1801 static VdbeOpList dropIndex[] = {
1802 { OP_Rewind, 0, ADDR(9), 0},
1803 { OP_String, 0, 0, 0}, /* 1 */
1804 { OP_MemStore, 1, 1, 0},
1805 { OP_MemLoad, 1, 0, 0}, /* 3 */
1806 { OP_Column, 0, 1, 0},
1807 { OP_Eq, 0, ADDR(8), 0},
1808 { OP_Next, 0, ADDR(3), 0},
1809 { OP_Goto, 0, ADDR(9), 0},
1810 { OP_Delete, 0, 0, 0}, /* 8 */
1811 };
1812 int base;
1813
1814 sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
1815 sqliteOpenMasterTable(v, pIndex->iDb);
1816 base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
1817 sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
1818 if( pIndex->iDb==0 ){
1819 sqliteChangeCookie(db, v);
1820 }
1821 sqliteVdbeAddOp(v, OP_Close, 0, 0);
1822 sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
1823 sqliteEndWriteOperation(pParse);
1824 }
1825
1826 /* Delete the in-memory description of this index.
1827 */
1828 if( !pParse->explain ){
1829 sqliteUnlinkAndDeleteIndex(db, pIndex);
1830 db->flags |= SQLITE_InternChanges;
1831 }
1832
1833 exit_drop_index:
1834 sqliteSrcListDelete(pName);
1835 }
1836
1837 /*
1838 ** Append a new element to the given IdList. Create a new IdList if
1839 ** need be.
1840 **
1841 ** A new IdList is returned, or NULL if malloc() fails.
1842 */
sqliteIdListAppend(IdList * pList,Token * pToken)1843 IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
1844 if( pList==0 ){
1845 pList = sqliteMalloc( sizeof(IdList) );
1846 if( pList==0 ) return 0;
1847 pList->nAlloc = 0;
1848 }
1849 if( pList->nId>=pList->nAlloc ){
1850 struct IdList_item *a;
1851 pList->nAlloc = pList->nAlloc*2 + 5;
1852 a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
1853 if( a==0 ){
1854 sqliteIdListDelete(pList);
1855 return 0;
1856 }
1857 pList->a = a;
1858 }
1859 memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
1860 if( pToken ){
1861 char **pz = &pList->a[pList->nId].zName;
1862 sqliteSetNString(pz, pToken->z, pToken->n, 0);
1863 if( *pz==0 ){
1864 sqliteIdListDelete(pList);
1865 return 0;
1866 }else{
1867 sqliteDequote(*pz);
1868 }
1869 }
1870 pList->nId++;
1871 return pList;
1872 }
1873
1874 /*
1875 ** Append a new table name to the given SrcList. Create a new SrcList if
1876 ** need be. A new entry is created in the SrcList even if pToken is NULL.
1877 **
1878 ** A new SrcList is returned, or NULL if malloc() fails.
1879 **
1880 ** If pDatabase is not null, it means that the table has an optional
1881 ** database name prefix. Like this: "database.table". The pDatabase
1882 ** points to the table name and the pTable points to the database name.
1883 ** The SrcList.a[].zName field is filled with the table name which might
1884 ** come from pTable (if pDatabase is NULL) or from pDatabase.
1885 ** SrcList.a[].zDatabase is filled with the database name from pTable,
1886 ** or with NULL if no database is specified.
1887 **
1888 ** In other words, if call like this:
1889 **
1890 ** sqliteSrcListAppend(A,B,0);
1891 **
1892 ** Then B is a table name and the database name is unspecified. If called
1893 ** like this:
1894 **
1895 ** sqliteSrcListAppend(A,B,C);
1896 **
1897 ** Then C is the table name and B is the database name.
1898 */
sqliteSrcListAppend(SrcList * pList,Token * pTable,Token * pDatabase)1899 SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
1900 if( pList==0 ){
1901 pList = sqliteMalloc( sizeof(SrcList) );
1902 if( pList==0 ) return 0;
1903 pList->nAlloc = 1;
1904 }
1905 if( pList->nSrc>=pList->nAlloc ){
1906 SrcList *pNew;
1907 pList->nAlloc *= 2;
1908 pNew = sqliteRealloc(pList,
1909 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
1910 if( pNew==0 ){
1911 sqliteSrcListDelete(pList);
1912 return 0;
1913 }
1914 pList = pNew;
1915 }
1916 memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
1917 if( pDatabase && pDatabase->z==0 ){
1918 pDatabase = 0;
1919 }
1920 if( pDatabase && pTable ){
1921 Token *pTemp = pDatabase;
1922 pDatabase = pTable;
1923 pTable = pTemp;
1924 }
1925 if( pTable ){
1926 char **pz = &pList->a[pList->nSrc].zName;
1927 sqliteSetNString(pz, pTable->z, pTable->n, 0);
1928 if( *pz==0 ){
1929 sqliteSrcListDelete(pList);
1930 return 0;
1931 }else{
1932 sqliteDequote(*pz);
1933 }
1934 }
1935 if( pDatabase ){
1936 char **pz = &pList->a[pList->nSrc].zDatabase;
1937 sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
1938 if( *pz==0 ){
1939 sqliteSrcListDelete(pList);
1940 return 0;
1941 }else{
1942 sqliteDequote(*pz);
1943 }
1944 }
1945 pList->a[pList->nSrc].iCursor = -1;
1946 pList->nSrc++;
1947 return pList;
1948 }
1949
1950 /*
1951 ** Assign cursors to all tables in a SrcList
1952 */
sqliteSrcListAssignCursors(Parse * pParse,SrcList * pList)1953 void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
1954 int i;
1955 for(i=0; i<pList->nSrc; i++){
1956 if( pList->a[i].iCursor<0 ){
1957 pList->a[i].iCursor = pParse->nTab++;
1958 }
1959 }
1960 }
1961
1962 /*
1963 ** Add an alias to the last identifier on the given identifier list.
1964 */
sqliteSrcListAddAlias(SrcList * pList,Token * pToken)1965 void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
1966 if( pList && pList->nSrc>0 ){
1967 int i = pList->nSrc - 1;
1968 sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
1969 sqliteDequote(pList->a[i].zAlias);
1970 }
1971 }
1972
1973 /*
1974 ** Delete an IdList.
1975 */
sqliteIdListDelete(IdList * pList)1976 void sqliteIdListDelete(IdList *pList){
1977 int i;
1978 if( pList==0 ) return;
1979 for(i=0; i<pList->nId; i++){
1980 sqliteFree(pList->a[i].zName);
1981 }
1982 sqliteFree(pList->a);
1983 sqliteFree(pList);
1984 }
1985
1986 /*
1987 ** Return the index in pList of the identifier named zId. Return -1
1988 ** if not found.
1989 */
sqliteIdListIndex(IdList * pList,const char * zName)1990 int sqliteIdListIndex(IdList *pList, const char *zName){
1991 int i;
1992 if( pList==0 ) return -1;
1993 for(i=0; i<pList->nId; i++){
1994 if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
1995 }
1996 return -1;
1997 }
1998
1999 /*
2000 ** Delete an entire SrcList including all its substructure.
2001 */
sqliteSrcListDelete(SrcList * pList)2002 void sqliteSrcListDelete(SrcList *pList){
2003 int i;
2004 if( pList==0 ) return;
2005 for(i=0; i<pList->nSrc; i++){
2006 sqliteFree(pList->a[i].zDatabase);
2007 sqliteFree(pList->a[i].zName);
2008 sqliteFree(pList->a[i].zAlias);
2009 if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
2010 sqliteDeleteTable(0, pList->a[i].pTab);
2011 }
2012 sqliteSelectDelete(pList->a[i].pSelect);
2013 sqliteExprDelete(pList->a[i].pOn);
2014 sqliteIdListDelete(pList->a[i].pUsing);
2015 }
2016 sqliteFree(pList);
2017 }
2018
2019 /*
2020 ** Begin a transaction
2021 */
sqliteBeginTransaction(Parse * pParse,int onError)2022 void sqliteBeginTransaction(Parse *pParse, int onError){
2023 sqlite *db;
2024
2025 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2026 if( pParse->nErr || sqlite_malloc_failed ) return;
2027 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
2028 if( db->flags & SQLITE_InTrans ){
2029 sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
2030 return;
2031 }
2032 sqliteBeginWriteOperation(pParse, 0, 0);
2033 if( !pParse->explain ){
2034 db->flags |= SQLITE_InTrans;
2035 db->onError = onError;
2036 }
2037 }
2038
2039 /*
2040 ** Commit a transaction
2041 */
sqliteCommitTransaction(Parse * pParse)2042 void sqliteCommitTransaction(Parse *pParse){
2043 sqlite *db;
2044
2045 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2046 if( pParse->nErr || sqlite_malloc_failed ) return;
2047 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
2048 if( (db->flags & SQLITE_InTrans)==0 ){
2049 sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
2050 return;
2051 }
2052 if( !pParse->explain ){
2053 db->flags &= ~SQLITE_InTrans;
2054 }
2055 sqliteEndWriteOperation(pParse);
2056 if( !pParse->explain ){
2057 db->onError = OE_Default;
2058 }
2059 }
2060
2061 /*
2062 ** Rollback a transaction
2063 */
sqliteRollbackTransaction(Parse * pParse)2064 void sqliteRollbackTransaction(Parse *pParse){
2065 sqlite *db;
2066 Vdbe *v;
2067
2068 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2069 if( pParse->nErr || sqlite_malloc_failed ) return;
2070 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
2071 if( (db->flags & SQLITE_InTrans)==0 ){
2072 sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
2073 return;
2074 }
2075 v = sqliteGetVdbe(pParse);
2076 if( v ){
2077 sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
2078 }
2079 if( !pParse->explain ){
2080 db->flags &= ~SQLITE_InTrans;
2081 db->onError = OE_Default;
2082 }
2083 }
2084
2085 /*
2086 ** Generate VDBE code that will verify the schema cookie for all
2087 ** named database files.
2088 */
sqliteCodeVerifySchema(Parse * pParse,int iDb)2089 void sqliteCodeVerifySchema(Parse *pParse, int iDb){
2090 sqlite *db = pParse->db;
2091 Vdbe *v = sqliteGetVdbe(pParse);
2092 assert( iDb>=0 && iDb<db->nDb );
2093 assert( db->aDb[iDb].pBt!=0 );
2094 if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
2095 sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
2096 DbSetProperty(db, iDb, DB_Cookie);
2097 }
2098 }
2099
2100 /*
2101 ** Generate VDBE code that prepares for doing an operation that
2102 ** might change the database.
2103 **
2104 ** This routine starts a new transaction if we are not already within
2105 ** a transaction. If we are already within a transaction, then a checkpoint
2106 ** is set if the setCheckpoint parameter is true. A checkpoint should
2107 ** be set for operations that might fail (due to a constraint) part of
2108 ** the way through and which will need to undo some writes without having to
2109 ** rollback the whole transaction. For operations where all constraints
2110 ** can be checked before any changes are made to the database, it is never
2111 ** necessary to undo a write and the checkpoint should not be set.
2112 **
2113 ** Only database iDb and the temp database are made writable by this call.
2114 ** If iDb==0, then the main and temp databases are made writable. If
2115 ** iDb==1 then only the temp database is made writable. If iDb>1 then the
2116 ** specified auxiliary database and the temp database are made writable.
2117 */
sqliteBeginWriteOperation(Parse * pParse,int setCheckpoint,int iDb)2118 void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
2119 Vdbe *v;
2120 sqlite *db = pParse->db;
2121 if( DbHasProperty(db, iDb, DB_Locked) ) return;
2122 v = sqliteGetVdbe(pParse);
2123 if( v==0 ) return;
2124 if( !db->aDb[iDb].inTrans ){
2125 sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
2126 DbSetProperty(db, iDb, DB_Locked);
2127 sqliteCodeVerifySchema(pParse, iDb);
2128 if( iDb!=1 ){
2129 sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
2130 }
2131 }else if( setCheckpoint ){
2132 sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
2133 DbSetProperty(db, iDb, DB_Locked);
2134 }
2135 }
2136
2137 /*
2138 ** Generate code that concludes an operation that may have changed
2139 ** the database. If a statement transaction was started, then emit
2140 ** an OP_Commit that will cause the changes to be committed to disk.
2141 **
2142 ** Note that checkpoints are automatically committed at the end of
2143 ** a statement. Note also that there can be multiple calls to
2144 ** sqliteBeginWriteOperation() but there should only be a single
2145 ** call to sqliteEndWriteOperation() at the conclusion of the statement.
2146 */
sqliteEndWriteOperation(Parse * pParse)2147 void sqliteEndWriteOperation(Parse *pParse){
2148 Vdbe *v;
2149 sqlite *db = pParse->db;
2150 if( pParse->trigStack ) return; /* if this is in a trigger */
2151 v = sqliteGetVdbe(pParse);
2152 if( v==0 ) return;
2153 if( db->flags & SQLITE_InTrans ){
2154 /* A BEGIN has executed. Do not commit until we see an explicit
2155 ** COMMIT statement. */
2156 }else{
2157 sqliteVdbeAddOp(v, OP_Commit, 0, 0);
2158 }
2159 }
2160