1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 #include <linux/rcuwait.h>
36
37 struct mempolicy;
38 struct anon_vma;
39 struct anon_vma_chain;
40 struct user_struct;
41 struct pt_regs;
42 struct folio_batch;
43
44 void arch_mm_preinit(void);
45 void mm_core_init(void);
46 void init_mm_internals(void);
47
48 extern atomic_long_t _totalram_pages;
totalram_pages(void)49 static inline unsigned long totalram_pages(void)
50 {
51 return (unsigned long)atomic_long_read(&_totalram_pages);
52 }
53
totalram_pages_inc(void)54 static inline void totalram_pages_inc(void)
55 {
56 atomic_long_inc(&_totalram_pages);
57 }
58
totalram_pages_dec(void)59 static inline void totalram_pages_dec(void)
60 {
61 atomic_long_dec(&_totalram_pages);
62 }
63
totalram_pages_add(long count)64 static inline void totalram_pages_add(long count)
65 {
66 atomic_long_add(count, &_totalram_pages);
67 }
68
69 extern void * high_memory;
70
71 #ifdef CONFIG_SYSCTL
72 extern int sysctl_legacy_va_layout;
73 #else
74 #define sysctl_legacy_va_layout 0
75 #endif
76
77 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
78 extern const int mmap_rnd_bits_min;
79 extern int mmap_rnd_bits_max __ro_after_init;
80 extern int mmap_rnd_bits __read_mostly;
81 #endif
82 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
83 extern const int mmap_rnd_compat_bits_min;
84 extern const int mmap_rnd_compat_bits_max;
85 extern int mmap_rnd_compat_bits __read_mostly;
86 #endif
87
88 #ifndef DIRECT_MAP_PHYSMEM_END
89 # ifdef MAX_PHYSMEM_BITS
90 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
91 # else
92 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
93 # endif
94 #endif
95
96 #include <asm/page.h>
97 #include <asm/processor.h>
98
99 #ifndef __pa_symbol
100 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
101 #endif
102
103 #ifndef page_to_virt
104 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
105 #endif
106
107 #ifndef lm_alias
108 #define lm_alias(x) __va(__pa_symbol(x))
109 #endif
110
111 /*
112 * To prevent common memory management code establishing
113 * a zero page mapping on a read fault.
114 * This macro should be defined within <asm/pgtable.h>.
115 * s390 does this to prevent multiplexing of hardware bits
116 * related to the physical page in case of virtualization.
117 */
118 #ifndef mm_forbids_zeropage
119 #define mm_forbids_zeropage(X) (0)
120 #endif
121
122 /*
123 * On some architectures it is expensive to call memset() for small sizes.
124 * If an architecture decides to implement their own version of
125 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
126 * define their own version of this macro in <asm/pgtable.h>
127 */
128 #if BITS_PER_LONG == 64
129 /* This function must be updated when the size of struct page grows above 96
130 * or reduces below 56. The idea that compiler optimizes out switch()
131 * statement, and only leaves move/store instructions. Also the compiler can
132 * combine write statements if they are both assignments and can be reordered,
133 * this can result in several of the writes here being dropped.
134 */
135 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)136 static inline void __mm_zero_struct_page(struct page *page)
137 {
138 unsigned long *_pp = (void *)page;
139
140 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
141 BUILD_BUG_ON(sizeof(struct page) & 7);
142 BUILD_BUG_ON(sizeof(struct page) < 56);
143 BUILD_BUG_ON(sizeof(struct page) > 96);
144
145 switch (sizeof(struct page)) {
146 case 96:
147 _pp[11] = 0;
148 fallthrough;
149 case 88:
150 _pp[10] = 0;
151 fallthrough;
152 case 80:
153 _pp[9] = 0;
154 fallthrough;
155 case 72:
156 _pp[8] = 0;
157 fallthrough;
158 case 64:
159 _pp[7] = 0;
160 fallthrough;
161 case 56:
162 _pp[6] = 0;
163 _pp[5] = 0;
164 _pp[4] = 0;
165 _pp[3] = 0;
166 _pp[2] = 0;
167 _pp[1] = 0;
168 _pp[0] = 0;
169 }
170 }
171 #else
172 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
173 #endif
174
175 /*
176 * Default maximum number of active map areas, this limits the number of vmas
177 * per mm struct. Users can overwrite this number by sysctl but there is a
178 * problem.
179 *
180 * When a program's coredump is generated as ELF format, a section is created
181 * per a vma. In ELF, the number of sections is represented in unsigned short.
182 * This means the number of sections should be smaller than 65535 at coredump.
183 * Because the kernel adds some informative sections to a image of program at
184 * generating coredump, we need some margin. The number of extra sections is
185 * 1-3 now and depends on arch. We use "5" as safe margin, here.
186 *
187 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
188 * not a hard limit any more. Although some userspace tools can be surprised by
189 * that.
190 */
191 #define MAPCOUNT_ELF_CORE_MARGIN (5)
192 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
193
194 extern int sysctl_max_map_count;
195
196 extern unsigned long sysctl_user_reserve_kbytes;
197 extern unsigned long sysctl_admin_reserve_kbytes;
198
199 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
200 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
201 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
202 #else
203 #define nth_page(page,n) ((page) + (n))
204 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
205 #endif
206
207 /* to align the pointer to the (next) page boundary */
208 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
209
210 /* to align the pointer to the (prev) page boundary */
211 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
212
213 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
214 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
215
lru_to_folio(struct list_head * head)216 static inline struct folio *lru_to_folio(struct list_head *head)
217 {
218 return list_entry((head)->prev, struct folio, lru);
219 }
220
221 void setup_initial_init_mm(void *start_code, void *end_code,
222 void *end_data, void *brk);
223
224 /*
225 * Linux kernel virtual memory manager primitives.
226 * The idea being to have a "virtual" mm in the same way
227 * we have a virtual fs - giving a cleaner interface to the
228 * mm details, and allowing different kinds of memory mappings
229 * (from shared memory to executable loading to arbitrary
230 * mmap() functions).
231 */
232
233 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
234 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
235 void vm_area_free(struct vm_area_struct *);
236
237 #ifndef CONFIG_MMU
238 extern struct rb_root nommu_region_tree;
239 extern struct rw_semaphore nommu_region_sem;
240
241 extern unsigned int kobjsize(const void *objp);
242 #endif
243
244 /*
245 * vm_flags in vm_area_struct, see mm_types.h.
246 * When changing, update also include/trace/events/mmflags.h
247 */
248 #define VM_NONE 0x00000000
249
250 #define VM_READ 0x00000001 /* currently active flags */
251 #define VM_WRITE 0x00000002
252 #define VM_EXEC 0x00000004
253 #define VM_SHARED 0x00000008
254
255 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
256 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
257 #define VM_MAYWRITE 0x00000020
258 #define VM_MAYEXEC 0x00000040
259 #define VM_MAYSHARE 0x00000080
260
261 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
262 #ifdef CONFIG_MMU
263 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
264 #else /* CONFIG_MMU */
265 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
266 #define VM_UFFD_MISSING 0
267 #endif /* CONFIG_MMU */
268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
270
271 #define VM_LOCKED 0x00002000
272 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
273
274 /* Used by sys_madvise() */
275 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
276 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
277
278 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
279 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
280 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
281 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
282 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
283 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
284 #define VM_SYNC 0x00800000 /* Synchronous page faults */
285 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
286 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
287 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
288
289 #ifdef CONFIG_MEM_SOFT_DIRTY
290 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
291 #else
292 # define VM_SOFTDIRTY 0
293 #endif
294
295 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
296 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
297 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
298 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
299
300 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
301 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
302 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
309 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
310 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
311 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
312 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
313 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
314 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
315 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
316
317 #ifdef CONFIG_ARCH_HAS_PKEYS
318 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
319 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
320 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
321 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
322 #if CONFIG_ARCH_PKEY_BITS > 3
323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
324 #else
325 # define VM_PKEY_BIT3 0
326 #endif
327 #if CONFIG_ARCH_PKEY_BITS > 4
328 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
329 #else
330 # define VM_PKEY_BIT4 0
331 #endif
332 #endif /* CONFIG_ARCH_HAS_PKEYS */
333
334 #ifdef CONFIG_X86_USER_SHADOW_STACK
335 /*
336 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
337 * support core mm.
338 *
339 * These VMAs will get a single end guard page. This helps userspace protect
340 * itself from attacks. A single page is enough for current shadow stack archs
341 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
342 * for more details on the guard size.
343 */
344 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
345 #endif
346
347 #if defined(CONFIG_ARM64_GCS)
348 /*
349 * arm64's Guarded Control Stack implements similar functionality and
350 * has similar constraints to shadow stacks.
351 */
352 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
353 #endif
354
355 #ifndef VM_SHADOW_STACK
356 # define VM_SHADOW_STACK VM_NONE
357 #endif
358
359 #if defined(CONFIG_X86)
360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC64)
362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
373 #endif
374
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
378 #else
379 # define VM_MTE VM_NONE
380 # define VM_MTE_ALLOWED VM_NONE
381 #endif
382
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP VM_NONE
385 #endif
386
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT 38
389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393
394 /*
395 * This flag is used to connect VFIO to arch specific KVM code. It
396 * indicates that the memory under this VMA is safe for use with any
397 * non-cachable memory type inside KVM. Some VFIO devices, on some
398 * platforms, are thought to be unsafe and can cause machine crashes
399 * if KVM does not lock down the memory type.
400 */
401 #ifdef CONFIG_64BIT
402 #define VM_ALLOW_ANY_UNCACHED_BIT 39
403 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404 #else
405 #define VM_ALLOW_ANY_UNCACHED VM_NONE
406 #endif
407
408 #ifdef CONFIG_64BIT
409 #define VM_DROPPABLE_BIT 40
410 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
411 #elif defined(CONFIG_PPC32)
412 #define VM_DROPPABLE VM_ARCH_1
413 #else
414 #define VM_DROPPABLE VM_NONE
415 #endif
416
417 #ifdef CONFIG_64BIT
418 /* VM is sealed, in vm_flags */
419 #define VM_SEALED _BITUL(63)
420 #endif
421
422 /* Bits set in the VMA until the stack is in its final location */
423 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
424
425 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
426
427 /* Common data flag combinations */
428 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
429 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
430 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
431 VM_MAYWRITE | VM_MAYEXEC)
432 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
433 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
434
435 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
436 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
437 #endif
438
439 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
440 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
441 #endif
442
443 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
444
445 #ifdef CONFIG_STACK_GROWSUP
446 #define VM_STACK VM_GROWSUP
447 #define VM_STACK_EARLY VM_GROWSDOWN
448 #else
449 #define VM_STACK VM_GROWSDOWN
450 #define VM_STACK_EARLY 0
451 #endif
452
453 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
454
455 /* VMA basic access permission flags */
456 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
457
458
459 /*
460 * Special vmas that are non-mergable, non-mlock()able.
461 */
462 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
463
464 /* This mask prevents VMA from being scanned with khugepaged */
465 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
466
467 /* This mask defines which mm->def_flags a process can inherit its parent */
468 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
469
470 /* This mask represents all the VMA flag bits used by mlock */
471 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
472
473 /* Arch-specific flags to clear when updating VM flags on protection change */
474 #ifndef VM_ARCH_CLEAR
475 # define VM_ARCH_CLEAR VM_NONE
476 #endif
477 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
478
479 /*
480 * mapping from the currently active vm_flags protection bits (the
481 * low four bits) to a page protection mask..
482 */
483
484 /*
485 * The default fault flags that should be used by most of the
486 * arch-specific page fault handlers.
487 */
488 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
489 FAULT_FLAG_KILLABLE | \
490 FAULT_FLAG_INTERRUPTIBLE)
491
492 /**
493 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
494 * @flags: Fault flags.
495 *
496 * This is mostly used for places where we want to try to avoid taking
497 * the mmap_lock for too long a time when waiting for another condition
498 * to change, in which case we can try to be polite to release the
499 * mmap_lock in the first round to avoid potential starvation of other
500 * processes that would also want the mmap_lock.
501 *
502 * Return: true if the page fault allows retry and this is the first
503 * attempt of the fault handling; false otherwise.
504 */
fault_flag_allow_retry_first(enum fault_flag flags)505 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
506 {
507 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
508 (!(flags & FAULT_FLAG_TRIED));
509 }
510
511 #define FAULT_FLAG_TRACE \
512 { FAULT_FLAG_WRITE, "WRITE" }, \
513 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
514 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
515 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
516 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
517 { FAULT_FLAG_TRIED, "TRIED" }, \
518 { FAULT_FLAG_USER, "USER" }, \
519 { FAULT_FLAG_REMOTE, "REMOTE" }, \
520 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
521 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
522 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
523
524 /*
525 * vm_fault is filled by the pagefault handler and passed to the vma's
526 * ->fault function. The vma's ->fault is responsible for returning a bitmask
527 * of VM_FAULT_xxx flags that give details about how the fault was handled.
528 *
529 * MM layer fills up gfp_mask for page allocations but fault handler might
530 * alter it if its implementation requires a different allocation context.
531 *
532 * pgoff should be used in favour of virtual_address, if possible.
533 */
534 struct vm_fault {
535 const struct {
536 struct vm_area_struct *vma; /* Target VMA */
537 gfp_t gfp_mask; /* gfp mask to be used for allocations */
538 pgoff_t pgoff; /* Logical page offset based on vma */
539 unsigned long address; /* Faulting virtual address - masked */
540 unsigned long real_address; /* Faulting virtual address - unmasked */
541 };
542 enum fault_flag flags; /* FAULT_FLAG_xxx flags
543 * XXX: should really be 'const' */
544 pmd_t *pmd; /* Pointer to pmd entry matching
545 * the 'address' */
546 pud_t *pud; /* Pointer to pud entry matching
547 * the 'address'
548 */
549 union {
550 pte_t orig_pte; /* Value of PTE at the time of fault */
551 pmd_t orig_pmd; /* Value of PMD at the time of fault,
552 * used by PMD fault only.
553 */
554 };
555
556 struct page *cow_page; /* Page handler may use for COW fault */
557 struct page *page; /* ->fault handlers should return a
558 * page here, unless VM_FAULT_NOPAGE
559 * is set (which is also implied by
560 * VM_FAULT_ERROR).
561 */
562 /* These three entries are valid only while holding ptl lock */
563 pte_t *pte; /* Pointer to pte entry matching
564 * the 'address'. NULL if the page
565 * table hasn't been allocated.
566 */
567 spinlock_t *ptl; /* Page table lock.
568 * Protects pte page table if 'pte'
569 * is not NULL, otherwise pmd.
570 */
571 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
572 * vm_ops->map_pages() sets up a page
573 * table from atomic context.
574 * do_fault_around() pre-allocates
575 * page table to avoid allocation from
576 * atomic context.
577 */
578 };
579
580 /*
581 * These are the virtual MM functions - opening of an area, closing and
582 * unmapping it (needed to keep files on disk up-to-date etc), pointer
583 * to the functions called when a no-page or a wp-page exception occurs.
584 */
585 struct vm_operations_struct {
586 void (*open)(struct vm_area_struct * area);
587 /**
588 * @close: Called when the VMA is being removed from the MM.
589 * Context: User context. May sleep. Caller holds mmap_lock.
590 */
591 void (*close)(struct vm_area_struct * area);
592 /* Called any time before splitting to check if it's allowed */
593 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
594 int (*mremap)(struct vm_area_struct *area);
595 /*
596 * Called by mprotect() to make driver-specific permission
597 * checks before mprotect() is finalised. The VMA must not
598 * be modified. Returns 0 if mprotect() can proceed.
599 */
600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
601 unsigned long end, unsigned long newflags);
602 vm_fault_t (*fault)(struct vm_fault *vmf);
603 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
604 vm_fault_t (*map_pages)(struct vm_fault *vmf,
605 pgoff_t start_pgoff, pgoff_t end_pgoff);
606 unsigned long (*pagesize)(struct vm_area_struct * area);
607
608 /* notification that a previously read-only page is about to become
609 * writable, if an error is returned it will cause a SIGBUS */
610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611
612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614
615 /* called by access_process_vm when get_user_pages() fails, typically
616 * for use by special VMAs. See also generic_access_phys() for a generic
617 * implementation useful for any iomem mapping.
618 */
619 int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 void *buf, int len, int write);
621
622 /* Called by the /proc/PID/maps code to ask the vma whether it
623 * has a special name. Returning non-NULL will also cause this
624 * vma to be dumped unconditionally. */
625 const char *(*name)(struct vm_area_struct *vma);
626
627 #ifdef CONFIG_NUMA
628 /*
629 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 * to hold the policy upon return. Caller should pass NULL @new to
631 * remove a policy and fall back to surrounding context--i.e. do not
632 * install a MPOL_DEFAULT policy, nor the task or system default
633 * mempolicy.
634 */
635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
636
637 /*
638 * get_policy() op must add reference [mpol_get()] to any policy at
639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
640 * in mm/mempolicy.c will do this automatically.
641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 * must return NULL--i.e., do not "fallback" to task or system default
645 * policy.
646 */
647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 unsigned long addr, pgoff_t *ilx);
649 #endif
650 /*
651 * Called by vm_normal_page() for special PTEs to find the
652 * page for @addr. This is useful if the default behavior
653 * (using pte_page()) would not find the correct page.
654 */
655 struct page *(*find_special_page)(struct vm_area_struct *vma,
656 unsigned long addr);
657 };
658
659 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)660 static inline void vma_numab_state_init(struct vm_area_struct *vma)
661 {
662 vma->numab_state = NULL;
663 }
vma_numab_state_free(struct vm_area_struct * vma)664 static inline void vma_numab_state_free(struct vm_area_struct *vma)
665 {
666 kfree(vma->numab_state);
667 }
668 #else
vma_numab_state_init(struct vm_area_struct * vma)669 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)670 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
671 #endif /* CONFIG_NUMA_BALANCING */
672
673 #ifdef CONFIG_PER_VMA_LOCK
vma_lock_init(struct vm_area_struct * vma,bool reset_refcnt)674 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
675 {
676 #ifdef CONFIG_DEBUG_LOCK_ALLOC
677 static struct lock_class_key lockdep_key;
678
679 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0);
680 #endif
681 if (reset_refcnt)
682 refcount_set(&vma->vm_refcnt, 0);
683 vma->vm_lock_seq = UINT_MAX;
684 }
685
is_vma_writer_only(int refcnt)686 static inline bool is_vma_writer_only(int refcnt)
687 {
688 /*
689 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma
690 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on
691 * a detached vma happens only in vma_mark_detached() and is a rare
692 * case, therefore most of the time there will be no unnecessary wakeup.
693 */
694 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1;
695 }
696
vma_refcount_put(struct vm_area_struct * vma)697 static inline void vma_refcount_put(struct vm_area_struct *vma)
698 {
699 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */
700 struct mm_struct *mm = vma->vm_mm;
701 int oldcnt;
702
703 rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
704 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) {
705
706 if (is_vma_writer_only(oldcnt - 1))
707 rcuwait_wake_up(&mm->vma_writer_wait);
708 }
709 }
710
711 /*
712 * Try to read-lock a vma. The function is allowed to occasionally yield false
713 * locked result to avoid performance overhead, in which case we fall back to
714 * using mmap_lock. The function should never yield false unlocked result.
715 * False locked result is possible if mm_lock_seq overflows or if vma gets
716 * reused and attached to a different mm before we lock it.
717 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got
718 * detached.
719 */
vma_start_read(struct mm_struct * mm,struct vm_area_struct * vma)720 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
721 struct vm_area_struct *vma)
722 {
723 int oldcnt;
724
725 /*
726 * Check before locking. A race might cause false locked result.
727 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
728 * ACQUIRE semantics, because this is just a lockless check whose result
729 * we don't rely on for anything - the mm_lock_seq read against which we
730 * need ordering is below.
731 */
732 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence))
733 return NULL;
734
735 /*
736 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire()
737 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET.
738 * Acquire fence is required here to avoid reordering against later
739 * vm_lock_seq check and checks inside lock_vma_under_rcu().
740 */
741 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
742 VMA_REF_LIMIT))) {
743 /* return EAGAIN if vma got detached from under us */
744 return oldcnt ? NULL : ERR_PTR(-EAGAIN);
745 }
746
747 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
748 /*
749 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result.
750 * False unlocked result is impossible because we modify and check
751 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq
752 * modification invalidates all existing locks.
753 *
754 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
755 * racing with vma_end_write_all(), we only start reading from the VMA
756 * after it has been unlocked.
757 * This pairs with RELEASE semantics in vma_end_write_all().
758 */
759 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) {
760 vma_refcount_put(vma);
761 return NULL;
762 }
763
764 return vma;
765 }
766
767 /*
768 * Use only while holding mmap read lock which guarantees that locking will not
769 * fail (nobody can concurrently write-lock the vma). vma_start_read() should
770 * not be used in such cases because it might fail due to mm_lock_seq overflow.
771 * This functionality is used to obtain vma read lock and drop the mmap read lock.
772 */
vma_start_read_locked_nested(struct vm_area_struct * vma,int subclass)773 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass)
774 {
775 int oldcnt;
776
777 mmap_assert_locked(vma->vm_mm);
778 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
779 VMA_REF_LIMIT)))
780 return false;
781
782 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
783 return true;
784 }
785
786 /*
787 * Use only while holding mmap read lock which guarantees that locking will not
788 * fail (nobody can concurrently write-lock the vma). vma_start_read() should
789 * not be used in such cases because it might fail due to mm_lock_seq overflow.
790 * This functionality is used to obtain vma read lock and drop the mmap read lock.
791 */
vma_start_read_locked(struct vm_area_struct * vma)792 static inline bool vma_start_read_locked(struct vm_area_struct *vma)
793 {
794 return vma_start_read_locked_nested(vma, 0);
795 }
796
vma_end_read(struct vm_area_struct * vma)797 static inline void vma_end_read(struct vm_area_struct *vma)
798 {
799 vma_refcount_put(vma);
800 }
801
802 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,unsigned int * mm_lock_seq)803 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
804 {
805 mmap_assert_write_locked(vma->vm_mm);
806
807 /*
808 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
809 * mm->mm_lock_seq can't be concurrently modified.
810 */
811 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
812 return (vma->vm_lock_seq == *mm_lock_seq);
813 }
814
815 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq);
816
817 /*
818 * Begin writing to a VMA.
819 * Exclude concurrent readers under the per-VMA lock until the currently
820 * write-locked mmap_lock is dropped or downgraded.
821 */
vma_start_write(struct vm_area_struct * vma)822 static inline void vma_start_write(struct vm_area_struct *vma)
823 {
824 unsigned int mm_lock_seq;
825
826 if (__is_vma_write_locked(vma, &mm_lock_seq))
827 return;
828
829 __vma_start_write(vma, mm_lock_seq);
830 }
831
vma_assert_write_locked(struct vm_area_struct * vma)832 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
833 {
834 unsigned int mm_lock_seq;
835
836 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
837 }
838
vma_assert_locked(struct vm_area_struct * vma)839 static inline void vma_assert_locked(struct vm_area_struct *vma)
840 {
841 unsigned int mm_lock_seq;
842
843 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 &&
844 !__is_vma_write_locked(vma, &mm_lock_seq), vma);
845 }
846
847 /*
848 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
849 * assertions should be made either under mmap_write_lock or when the object
850 * has been isolated under mmap_write_lock, ensuring no competing writers.
851 */
vma_assert_attached(struct vm_area_struct * vma)852 static inline void vma_assert_attached(struct vm_area_struct *vma)
853 {
854 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
855 }
856
vma_assert_detached(struct vm_area_struct * vma)857 static inline void vma_assert_detached(struct vm_area_struct *vma)
858 {
859 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
860 }
861
vma_mark_attached(struct vm_area_struct * vma)862 static inline void vma_mark_attached(struct vm_area_struct *vma)
863 {
864 vma_assert_write_locked(vma);
865 vma_assert_detached(vma);
866 refcount_set_release(&vma->vm_refcnt, 1);
867 }
868
869 void vma_mark_detached(struct vm_area_struct *vma);
870
release_fault_lock(struct vm_fault * vmf)871 static inline void release_fault_lock(struct vm_fault *vmf)
872 {
873 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
874 vma_end_read(vmf->vma);
875 else
876 mmap_read_unlock(vmf->vma->vm_mm);
877 }
878
assert_fault_locked(struct vm_fault * vmf)879 static inline void assert_fault_locked(struct vm_fault *vmf)
880 {
881 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
882 vma_assert_locked(vmf->vma);
883 else
884 mmap_assert_locked(vmf->vma->vm_mm);
885 }
886
887 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
888 unsigned long address);
889
890 #else /* CONFIG_PER_VMA_LOCK */
891
vma_lock_init(struct vm_area_struct * vma,bool reset_refcnt)892 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {}
vma_start_read(struct mm_struct * mm,struct vm_area_struct * vma)893 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
894 struct vm_area_struct *vma)
895 { return NULL; }
vma_end_read(struct vm_area_struct * vma)896 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)897 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)898 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
899 { mmap_assert_write_locked(vma->vm_mm); }
vma_assert_attached(struct vm_area_struct * vma)900 static inline void vma_assert_attached(struct vm_area_struct *vma) {}
vma_assert_detached(struct vm_area_struct * vma)901 static inline void vma_assert_detached(struct vm_area_struct *vma) {}
vma_mark_attached(struct vm_area_struct * vma)902 static inline void vma_mark_attached(struct vm_area_struct *vma) {}
vma_mark_detached(struct vm_area_struct * vma)903 static inline void vma_mark_detached(struct vm_area_struct *vma) {}
904
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)905 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
906 unsigned long address)
907 {
908 return NULL;
909 }
910
vma_assert_locked(struct vm_area_struct * vma)911 static inline void vma_assert_locked(struct vm_area_struct *vma)
912 {
913 mmap_assert_locked(vma->vm_mm);
914 }
915
release_fault_lock(struct vm_fault * vmf)916 static inline void release_fault_lock(struct vm_fault *vmf)
917 {
918 mmap_read_unlock(vmf->vma->vm_mm);
919 }
920
assert_fault_locked(struct vm_fault * vmf)921 static inline void assert_fault_locked(struct vm_fault *vmf)
922 {
923 mmap_assert_locked(vmf->vma->vm_mm);
924 }
925
926 #endif /* CONFIG_PER_VMA_LOCK */
927
928 extern const struct vm_operations_struct vma_dummy_vm_ops;
929
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)930 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
931 {
932 memset(vma, 0, sizeof(*vma));
933 vma->vm_mm = mm;
934 vma->vm_ops = &vma_dummy_vm_ops;
935 INIT_LIST_HEAD(&vma->anon_vma_chain);
936 vma_lock_init(vma, false);
937 }
938
939 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)940 static inline void vm_flags_init(struct vm_area_struct *vma,
941 vm_flags_t flags)
942 {
943 ACCESS_PRIVATE(vma, __vm_flags) = flags;
944 }
945
946 /*
947 * Use when VMA is part of the VMA tree and modifications need coordination
948 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
949 * it should be locked explicitly beforehand.
950 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)951 static inline void vm_flags_reset(struct vm_area_struct *vma,
952 vm_flags_t flags)
953 {
954 vma_assert_write_locked(vma);
955 vm_flags_init(vma, flags);
956 }
957
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)958 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
959 vm_flags_t flags)
960 {
961 vma_assert_write_locked(vma);
962 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
963 }
964
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)965 static inline void vm_flags_set(struct vm_area_struct *vma,
966 vm_flags_t flags)
967 {
968 vma_start_write(vma);
969 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
970 }
971
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)972 static inline void vm_flags_clear(struct vm_area_struct *vma,
973 vm_flags_t flags)
974 {
975 vma_start_write(vma);
976 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
977 }
978
979 /*
980 * Use only if VMA is not part of the VMA tree or has no other users and
981 * therefore needs no locking.
982 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)983 static inline void __vm_flags_mod(struct vm_area_struct *vma,
984 vm_flags_t set, vm_flags_t clear)
985 {
986 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
987 }
988
989 /*
990 * Use only when the order of set/clear operations is unimportant, otherwise
991 * use vm_flags_{set|clear} explicitly.
992 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)993 static inline void vm_flags_mod(struct vm_area_struct *vma,
994 vm_flags_t set, vm_flags_t clear)
995 {
996 vma_start_write(vma);
997 __vm_flags_mod(vma, set, clear);
998 }
999
vma_set_anonymous(struct vm_area_struct * vma)1000 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1001 {
1002 vma->vm_ops = NULL;
1003 }
1004
vma_is_anonymous(struct vm_area_struct * vma)1005 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1006 {
1007 return !vma->vm_ops;
1008 }
1009
1010 /*
1011 * Indicate if the VMA is a heap for the given task; for
1012 * /proc/PID/maps that is the heap of the main task.
1013 */
vma_is_initial_heap(const struct vm_area_struct * vma)1014 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1015 {
1016 return vma->vm_start < vma->vm_mm->brk &&
1017 vma->vm_end > vma->vm_mm->start_brk;
1018 }
1019
1020 /*
1021 * Indicate if the VMA is a stack for the given task; for
1022 * /proc/PID/maps that is the stack of the main task.
1023 */
vma_is_initial_stack(const struct vm_area_struct * vma)1024 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1025 {
1026 /*
1027 * We make no effort to guess what a given thread considers to be
1028 * its "stack". It's not even well-defined for programs written
1029 * languages like Go.
1030 */
1031 return vma->vm_start <= vma->vm_mm->start_stack &&
1032 vma->vm_end >= vma->vm_mm->start_stack;
1033 }
1034
vma_is_temporary_stack(struct vm_area_struct * vma)1035 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
1036 {
1037 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1038
1039 if (!maybe_stack)
1040 return false;
1041
1042 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1043 VM_STACK_INCOMPLETE_SETUP)
1044 return true;
1045
1046 return false;
1047 }
1048
vma_is_foreign(struct vm_area_struct * vma)1049 static inline bool vma_is_foreign(struct vm_area_struct *vma)
1050 {
1051 if (!current->mm)
1052 return true;
1053
1054 if (current->mm != vma->vm_mm)
1055 return true;
1056
1057 return false;
1058 }
1059
vma_is_accessible(struct vm_area_struct * vma)1060 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1061 {
1062 return vma->vm_flags & VM_ACCESS_FLAGS;
1063 }
1064
is_shared_maywrite(vm_flags_t vm_flags)1065 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1066 {
1067 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1068 (VM_SHARED | VM_MAYWRITE);
1069 }
1070
vma_is_shared_maywrite(struct vm_area_struct * vma)1071 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1072 {
1073 return is_shared_maywrite(vma->vm_flags);
1074 }
1075
1076 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)1077 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1078 {
1079 return mas_find(&vmi->mas, max - 1);
1080 }
1081
vma_next(struct vma_iterator * vmi)1082 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1083 {
1084 /*
1085 * Uses mas_find() to get the first VMA when the iterator starts.
1086 * Calling mas_next() could skip the first entry.
1087 */
1088 return mas_find(&vmi->mas, ULONG_MAX);
1089 }
1090
1091 static inline
vma_iter_next_range(struct vma_iterator * vmi)1092 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1093 {
1094 return mas_next_range(&vmi->mas, ULONG_MAX);
1095 }
1096
1097
vma_prev(struct vma_iterator * vmi)1098 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1099 {
1100 return mas_prev(&vmi->mas, 0);
1101 }
1102
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1103 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1104 unsigned long start, unsigned long end, gfp_t gfp)
1105 {
1106 __mas_set_range(&vmi->mas, start, end - 1);
1107 mas_store_gfp(&vmi->mas, NULL, gfp);
1108 if (unlikely(mas_is_err(&vmi->mas)))
1109 return -ENOMEM;
1110
1111 return 0;
1112 }
1113
1114 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1115 static inline void vma_iter_free(struct vma_iterator *vmi)
1116 {
1117 mas_destroy(&vmi->mas);
1118 }
1119
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1120 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1121 struct vm_area_struct *vma)
1122 {
1123 vmi->mas.index = vma->vm_start;
1124 vmi->mas.last = vma->vm_end - 1;
1125 mas_store(&vmi->mas, vma);
1126 if (unlikely(mas_is_err(&vmi->mas)))
1127 return -ENOMEM;
1128
1129 vma_mark_attached(vma);
1130 return 0;
1131 }
1132
vma_iter_invalidate(struct vma_iterator * vmi)1133 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1134 {
1135 mas_pause(&vmi->mas);
1136 }
1137
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1138 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1139 {
1140 mas_set(&vmi->mas, addr);
1141 }
1142
1143 #define for_each_vma(__vmi, __vma) \
1144 while (((__vma) = vma_next(&(__vmi))) != NULL)
1145
1146 /* The MM code likes to work with exclusive end addresses */
1147 #define for_each_vma_range(__vmi, __vma, __end) \
1148 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1149
1150 #ifdef CONFIG_SHMEM
1151 /*
1152 * The vma_is_shmem is not inline because it is used only by slow
1153 * paths in userfault.
1154 */
1155 bool vma_is_shmem(struct vm_area_struct *vma);
1156 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1157 #else
vma_is_shmem(struct vm_area_struct * vma)1158 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1159 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1160 #endif
1161
1162 int vma_is_stack_for_current(struct vm_area_struct *vma);
1163
1164 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1165 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1166
1167 struct mmu_gather;
1168 struct inode;
1169
1170 extern void prep_compound_page(struct page *page, unsigned int order);
1171
folio_large_order(const struct folio * folio)1172 static inline unsigned int folio_large_order(const struct folio *folio)
1173 {
1174 return folio->_flags_1 & 0xff;
1175 }
1176
1177 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)1178 static inline long folio_large_nr_pages(const struct folio *folio)
1179 {
1180 return folio->_nr_pages;
1181 }
1182 #else
folio_large_nr_pages(const struct folio * folio)1183 static inline long folio_large_nr_pages(const struct folio *folio)
1184 {
1185 return 1L << folio_large_order(folio);
1186 }
1187 #endif
1188
1189 /*
1190 * compound_order() can be called without holding a reference, which means
1191 * that niceties like page_folio() don't work. These callers should be
1192 * prepared to handle wild return values. For example, PG_head may be
1193 * set before the order is initialised, or this may be a tail page.
1194 * See compaction.c for some good examples.
1195 */
compound_order(struct page * page)1196 static inline unsigned int compound_order(struct page *page)
1197 {
1198 struct folio *folio = (struct folio *)page;
1199
1200 if (!test_bit(PG_head, &folio->flags))
1201 return 0;
1202 return folio_large_order(folio);
1203 }
1204
1205 /**
1206 * folio_order - The allocation order of a folio.
1207 * @folio: The folio.
1208 *
1209 * A folio is composed of 2^order pages. See get_order() for the definition
1210 * of order.
1211 *
1212 * Return: The order of the folio.
1213 */
folio_order(const struct folio * folio)1214 static inline unsigned int folio_order(const struct folio *folio)
1215 {
1216 if (!folio_test_large(folio))
1217 return 0;
1218 return folio_large_order(folio);
1219 }
1220
1221 #include <linux/huge_mm.h>
1222
1223 /*
1224 * Methods to modify the page usage count.
1225 *
1226 * What counts for a page usage:
1227 * - cache mapping (page->mapping)
1228 * - private data (page->private)
1229 * - page mapped in a task's page tables, each mapping
1230 * is counted separately
1231 *
1232 * Also, many kernel routines increase the page count before a critical
1233 * routine so they can be sure the page doesn't go away from under them.
1234 */
1235
1236 /*
1237 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1238 */
put_page_testzero(struct page * page)1239 static inline int put_page_testzero(struct page *page)
1240 {
1241 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1242 return page_ref_dec_and_test(page);
1243 }
1244
folio_put_testzero(struct folio * folio)1245 static inline int folio_put_testzero(struct folio *folio)
1246 {
1247 return put_page_testzero(&folio->page);
1248 }
1249
1250 /*
1251 * Try to grab a ref unless the page has a refcount of zero, return false if
1252 * that is the case.
1253 * This can be called when MMU is off so it must not access
1254 * any of the virtual mappings.
1255 */
get_page_unless_zero(struct page * page)1256 static inline bool get_page_unless_zero(struct page *page)
1257 {
1258 return page_ref_add_unless(page, 1, 0);
1259 }
1260
folio_get_nontail_page(struct page * page)1261 static inline struct folio *folio_get_nontail_page(struct page *page)
1262 {
1263 if (unlikely(!get_page_unless_zero(page)))
1264 return NULL;
1265 return (struct folio *)page;
1266 }
1267
1268 extern int page_is_ram(unsigned long pfn);
1269
1270 enum {
1271 REGION_INTERSECTS,
1272 REGION_DISJOINT,
1273 REGION_MIXED,
1274 };
1275
1276 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1277 unsigned long desc);
1278
1279 /* Support for virtually mapped pages */
1280 struct page *vmalloc_to_page(const void *addr);
1281 unsigned long vmalloc_to_pfn(const void *addr);
1282
1283 /*
1284 * Determine if an address is within the vmalloc range
1285 *
1286 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1287 * is no special casing required.
1288 */
1289 #ifdef CONFIG_MMU
1290 extern bool is_vmalloc_addr(const void *x);
1291 extern int is_vmalloc_or_module_addr(const void *x);
1292 #else
is_vmalloc_addr(const void * x)1293 static inline bool is_vmalloc_addr(const void *x)
1294 {
1295 return false;
1296 }
is_vmalloc_or_module_addr(const void * x)1297 static inline int is_vmalloc_or_module_addr(const void *x)
1298 {
1299 return 0;
1300 }
1301 #endif
1302
1303 /*
1304 * How many times the entire folio is mapped as a single unit (eg by a
1305 * PMD or PUD entry). This is probably not what you want, except for
1306 * debugging purposes or implementation of other core folio_*() primitives.
1307 */
folio_entire_mapcount(const struct folio * folio)1308 static inline int folio_entire_mapcount(const struct folio *folio)
1309 {
1310 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1311 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1312 return 0;
1313 return atomic_read(&folio->_entire_mapcount) + 1;
1314 }
1315
folio_large_mapcount(const struct folio * folio)1316 static inline int folio_large_mapcount(const struct folio *folio)
1317 {
1318 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1319 return atomic_read(&folio->_large_mapcount) + 1;
1320 }
1321
1322 /**
1323 * folio_mapcount() - Number of mappings of this folio.
1324 * @folio: The folio.
1325 *
1326 * The folio mapcount corresponds to the number of present user page table
1327 * entries that reference any part of a folio. Each such present user page
1328 * table entry must be paired with exactly on folio reference.
1329 *
1330 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1331 * exactly once.
1332 *
1333 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1334 * references the entire folio counts exactly once, even when such special
1335 * page table entries are comprised of multiple ordinary page table entries.
1336 *
1337 * Will report 0 for pages which cannot be mapped into userspace, such as
1338 * slab, page tables and similar.
1339 *
1340 * Return: The number of times this folio is mapped.
1341 */
folio_mapcount(const struct folio * folio)1342 static inline int folio_mapcount(const struct folio *folio)
1343 {
1344 int mapcount;
1345
1346 if (likely(!folio_test_large(folio))) {
1347 mapcount = atomic_read(&folio->_mapcount) + 1;
1348 if (page_mapcount_is_type(mapcount))
1349 mapcount = 0;
1350 return mapcount;
1351 }
1352 return folio_large_mapcount(folio);
1353 }
1354
1355 /**
1356 * folio_mapped - Is this folio mapped into userspace?
1357 * @folio: The folio.
1358 *
1359 * Return: True if any page in this folio is referenced by user page tables.
1360 */
folio_mapped(const struct folio * folio)1361 static inline bool folio_mapped(const struct folio *folio)
1362 {
1363 return folio_mapcount(folio) >= 1;
1364 }
1365
1366 /*
1367 * Return true if this page is mapped into pagetables.
1368 * For compound page it returns true if any sub-page of compound page is mapped,
1369 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1370 */
page_mapped(const struct page * page)1371 static inline bool page_mapped(const struct page *page)
1372 {
1373 return folio_mapped(page_folio(page));
1374 }
1375
virt_to_head_page(const void * x)1376 static inline struct page *virt_to_head_page(const void *x)
1377 {
1378 struct page *page = virt_to_page(x);
1379
1380 return compound_head(page);
1381 }
1382
virt_to_folio(const void * x)1383 static inline struct folio *virt_to_folio(const void *x)
1384 {
1385 struct page *page = virt_to_page(x);
1386
1387 return page_folio(page);
1388 }
1389
1390 void __folio_put(struct folio *folio);
1391
1392 void split_page(struct page *page, unsigned int order);
1393 void folio_copy(struct folio *dst, struct folio *src);
1394 int folio_mc_copy(struct folio *dst, struct folio *src);
1395
1396 unsigned long nr_free_buffer_pages(void);
1397
1398 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1399 static inline unsigned long page_size(struct page *page)
1400 {
1401 return PAGE_SIZE << compound_order(page);
1402 }
1403
1404 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1405 static inline unsigned int page_shift(struct page *page)
1406 {
1407 return PAGE_SHIFT + compound_order(page);
1408 }
1409
1410 /**
1411 * thp_order - Order of a transparent huge page.
1412 * @page: Head page of a transparent huge page.
1413 */
thp_order(struct page * page)1414 static inline unsigned int thp_order(struct page *page)
1415 {
1416 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1417 return compound_order(page);
1418 }
1419
1420 /**
1421 * thp_size - Size of a transparent huge page.
1422 * @page: Head page of a transparent huge page.
1423 *
1424 * Return: Number of bytes in this page.
1425 */
thp_size(struct page * page)1426 static inline unsigned long thp_size(struct page *page)
1427 {
1428 return PAGE_SIZE << thp_order(page);
1429 }
1430
1431 #ifdef CONFIG_MMU
1432 /*
1433 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1434 * servicing faults for write access. In the normal case, do always want
1435 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1436 * that do not have writing enabled, when used by access_process_vm.
1437 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1438 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1439 {
1440 if (likely(vma->vm_flags & VM_WRITE))
1441 pte = pte_mkwrite(pte, vma);
1442 return pte;
1443 }
1444
1445 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1446 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1447 struct page *page, unsigned int nr, unsigned long addr);
1448
1449 vm_fault_t finish_fault(struct vm_fault *vmf);
1450 #endif
1451
1452 /*
1453 * Multiple processes may "see" the same page. E.g. for untouched
1454 * mappings of /dev/null, all processes see the same page full of
1455 * zeroes, and text pages of executables and shared libraries have
1456 * only one copy in memory, at most, normally.
1457 *
1458 * For the non-reserved pages, page_count(page) denotes a reference count.
1459 * page_count() == 0 means the page is free. page->lru is then used for
1460 * freelist management in the buddy allocator.
1461 * page_count() > 0 means the page has been allocated.
1462 *
1463 * Pages are allocated by the slab allocator in order to provide memory
1464 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1465 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1466 * unless a particular usage is carefully commented. (the responsibility of
1467 * freeing the kmalloc memory is the caller's, of course).
1468 *
1469 * A page may be used by anyone else who does a __get_free_page().
1470 * In this case, page_count still tracks the references, and should only
1471 * be used through the normal accessor functions. The top bits of page->flags
1472 * and page->virtual store page management information, but all other fields
1473 * are unused and could be used privately, carefully. The management of this
1474 * page is the responsibility of the one who allocated it, and those who have
1475 * subsequently been given references to it.
1476 *
1477 * The other pages (we may call them "pagecache pages") are completely
1478 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1479 * The following discussion applies only to them.
1480 *
1481 * A pagecache page contains an opaque `private' member, which belongs to the
1482 * page's address_space. Usually, this is the address of a circular list of
1483 * the page's disk buffers. PG_private must be set to tell the VM to call
1484 * into the filesystem to release these pages.
1485 *
1486 * A page may belong to an inode's memory mapping. In this case, page->mapping
1487 * is the pointer to the inode, and page->index is the file offset of the page,
1488 * in units of PAGE_SIZE.
1489 *
1490 * If pagecache pages are not associated with an inode, they are said to be
1491 * anonymous pages. These may become associated with the swapcache, and in that
1492 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1493 *
1494 * In either case (swapcache or inode backed), the pagecache itself holds one
1495 * reference to the page. Setting PG_private should also increment the
1496 * refcount. The each user mapping also has a reference to the page.
1497 *
1498 * The pagecache pages are stored in a per-mapping radix tree, which is
1499 * rooted at mapping->i_pages, and indexed by offset.
1500 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1501 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1502 *
1503 * All pagecache pages may be subject to I/O:
1504 * - inode pages may need to be read from disk,
1505 * - inode pages which have been modified and are MAP_SHARED may need
1506 * to be written back to the inode on disk,
1507 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1508 * modified may need to be swapped out to swap space and (later) to be read
1509 * back into memory.
1510 */
1511
1512 /* 127: arbitrary random number, small enough to assemble well */
1513 #define folio_ref_zero_or_close_to_overflow(folio) \
1514 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1515
1516 /**
1517 * folio_get - Increment the reference count on a folio.
1518 * @folio: The folio.
1519 *
1520 * Context: May be called in any context, as long as you know that
1521 * you have a refcount on the folio. If you do not already have one,
1522 * folio_try_get() may be the right interface for you to use.
1523 */
folio_get(struct folio * folio)1524 static inline void folio_get(struct folio *folio)
1525 {
1526 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1527 folio_ref_inc(folio);
1528 }
1529
get_page(struct page * page)1530 static inline void get_page(struct page *page)
1531 {
1532 struct folio *folio = page_folio(page);
1533 if (WARN_ON_ONCE(folio_test_slab(folio)))
1534 return;
1535 folio_get(folio);
1536 }
1537
try_get_page(struct page * page)1538 static inline __must_check bool try_get_page(struct page *page)
1539 {
1540 page = compound_head(page);
1541 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1542 return false;
1543 page_ref_inc(page);
1544 return true;
1545 }
1546
1547 /**
1548 * folio_put - Decrement the reference count on a folio.
1549 * @folio: The folio.
1550 *
1551 * If the folio's reference count reaches zero, the memory will be
1552 * released back to the page allocator and may be used by another
1553 * allocation immediately. Do not access the memory or the struct folio
1554 * after calling folio_put() unless you can be sure that it wasn't the
1555 * last reference.
1556 *
1557 * Context: May be called in process or interrupt context, but not in NMI
1558 * context. May be called while holding a spinlock.
1559 */
folio_put(struct folio * folio)1560 static inline void folio_put(struct folio *folio)
1561 {
1562 if (folio_put_testzero(folio))
1563 __folio_put(folio);
1564 }
1565
1566 /**
1567 * folio_put_refs - Reduce the reference count on a folio.
1568 * @folio: The folio.
1569 * @refs: The amount to subtract from the folio's reference count.
1570 *
1571 * If the folio's reference count reaches zero, the memory will be
1572 * released back to the page allocator and may be used by another
1573 * allocation immediately. Do not access the memory or the struct folio
1574 * after calling folio_put_refs() unless you can be sure that these weren't
1575 * the last references.
1576 *
1577 * Context: May be called in process or interrupt context, but not in NMI
1578 * context. May be called while holding a spinlock.
1579 */
folio_put_refs(struct folio * folio,int refs)1580 static inline void folio_put_refs(struct folio *folio, int refs)
1581 {
1582 if (folio_ref_sub_and_test(folio, refs))
1583 __folio_put(folio);
1584 }
1585
1586 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1587
1588 /*
1589 * union release_pages_arg - an array of pages or folios
1590 *
1591 * release_pages() releases a simple array of multiple pages, and
1592 * accepts various different forms of said page array: either
1593 * a regular old boring array of pages, an array of folios, or
1594 * an array of encoded page pointers.
1595 *
1596 * The transparent union syntax for this kind of "any of these
1597 * argument types" is all kinds of ugly, so look away.
1598 */
1599 typedef union {
1600 struct page **pages;
1601 struct folio **folios;
1602 struct encoded_page **encoded_pages;
1603 } release_pages_arg __attribute__ ((__transparent_union__));
1604
1605 void release_pages(release_pages_arg, int nr);
1606
1607 /**
1608 * folios_put - Decrement the reference count on an array of folios.
1609 * @folios: The folios.
1610 *
1611 * Like folio_put(), but for a batch of folios. This is more efficient
1612 * than writing the loop yourself as it will optimise the locks which need
1613 * to be taken if the folios are freed. The folios batch is returned
1614 * empty and ready to be reused for another batch; there is no need to
1615 * reinitialise it.
1616 *
1617 * Context: May be called in process or interrupt context, but not in NMI
1618 * context. May be called while holding a spinlock.
1619 */
folios_put(struct folio_batch * folios)1620 static inline void folios_put(struct folio_batch *folios)
1621 {
1622 folios_put_refs(folios, NULL);
1623 }
1624
put_page(struct page * page)1625 static inline void put_page(struct page *page)
1626 {
1627 struct folio *folio = page_folio(page);
1628
1629 if (folio_test_slab(folio))
1630 return;
1631
1632 folio_put(folio);
1633 }
1634
1635 /*
1636 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1637 * the page's refcount so that two separate items are tracked: the original page
1638 * reference count, and also a new count of how many pin_user_pages() calls were
1639 * made against the page. ("gup-pinned" is another term for the latter).
1640 *
1641 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1642 * distinct from normal pages. As such, the unpin_user_page() call (and its
1643 * variants) must be used in order to release gup-pinned pages.
1644 *
1645 * Choice of value:
1646 *
1647 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1648 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1649 * simpler, due to the fact that adding an even power of two to the page
1650 * refcount has the effect of using only the upper N bits, for the code that
1651 * counts up using the bias value. This means that the lower bits are left for
1652 * the exclusive use of the original code that increments and decrements by one
1653 * (or at least, by much smaller values than the bias value).
1654 *
1655 * Of course, once the lower bits overflow into the upper bits (and this is
1656 * OK, because subtraction recovers the original values), then visual inspection
1657 * no longer suffices to directly view the separate counts. However, for normal
1658 * applications that don't have huge page reference counts, this won't be an
1659 * issue.
1660 *
1661 * Locking: the lockless algorithm described in folio_try_get_rcu()
1662 * provides safe operation for get_user_pages(), folio_mkclean() and
1663 * other calls that race to set up page table entries.
1664 */
1665 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1666
1667 void unpin_user_page(struct page *page);
1668 void unpin_folio(struct folio *folio);
1669 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1670 bool make_dirty);
1671 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1672 bool make_dirty);
1673 void unpin_user_pages(struct page **pages, unsigned long npages);
1674 void unpin_user_folio(struct folio *folio, unsigned long npages);
1675 void unpin_folios(struct folio **folios, unsigned long nfolios);
1676
is_cow_mapping(vm_flags_t flags)1677 static inline bool is_cow_mapping(vm_flags_t flags)
1678 {
1679 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1680 }
1681
1682 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1683 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1684 {
1685 /*
1686 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1687 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1688 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1689 * underlying memory if ptrace is active, so this is only possible if
1690 * ptrace does not apply. Note that there is no mprotect() to upgrade
1691 * write permissions later.
1692 */
1693 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1694 }
1695 #endif
1696
1697 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1698 #define SECTION_IN_PAGE_FLAGS
1699 #endif
1700
1701 /*
1702 * The identification function is mainly used by the buddy allocator for
1703 * determining if two pages could be buddies. We are not really identifying
1704 * the zone since we could be using the section number id if we do not have
1705 * node id available in page flags.
1706 * We only guarantee that it will return the same value for two combinable
1707 * pages in a zone.
1708 */
page_zone_id(struct page * page)1709 static inline int page_zone_id(struct page *page)
1710 {
1711 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1712 }
1713
1714 #ifdef NODE_NOT_IN_PAGE_FLAGS
1715 int page_to_nid(const struct page *page);
1716 #else
page_to_nid(const struct page * page)1717 static inline int page_to_nid(const struct page *page)
1718 {
1719 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1720 }
1721 #endif
1722
folio_nid(const struct folio * folio)1723 static inline int folio_nid(const struct folio *folio)
1724 {
1725 return page_to_nid(&folio->page);
1726 }
1727
1728 #ifdef CONFIG_NUMA_BALANCING
1729 /* page access time bits needs to hold at least 4 seconds */
1730 #define PAGE_ACCESS_TIME_MIN_BITS 12
1731 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1732 #define PAGE_ACCESS_TIME_BUCKETS \
1733 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1734 #else
1735 #define PAGE_ACCESS_TIME_BUCKETS 0
1736 #endif
1737
1738 #define PAGE_ACCESS_TIME_MASK \
1739 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1740
cpu_pid_to_cpupid(int cpu,int pid)1741 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1742 {
1743 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1744 }
1745
cpupid_to_pid(int cpupid)1746 static inline int cpupid_to_pid(int cpupid)
1747 {
1748 return cpupid & LAST__PID_MASK;
1749 }
1750
cpupid_to_cpu(int cpupid)1751 static inline int cpupid_to_cpu(int cpupid)
1752 {
1753 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1754 }
1755
cpupid_to_nid(int cpupid)1756 static inline int cpupid_to_nid(int cpupid)
1757 {
1758 return cpu_to_node(cpupid_to_cpu(cpupid));
1759 }
1760
cpupid_pid_unset(int cpupid)1761 static inline bool cpupid_pid_unset(int cpupid)
1762 {
1763 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1764 }
1765
cpupid_cpu_unset(int cpupid)1766 static inline bool cpupid_cpu_unset(int cpupid)
1767 {
1768 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1769 }
1770
__cpupid_match_pid(pid_t task_pid,int cpupid)1771 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1772 {
1773 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1774 }
1775
1776 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1777 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1778 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1779 {
1780 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1781 }
1782
folio_last_cpupid(struct folio * folio)1783 static inline int folio_last_cpupid(struct folio *folio)
1784 {
1785 return folio->_last_cpupid;
1786 }
page_cpupid_reset_last(struct page * page)1787 static inline void page_cpupid_reset_last(struct page *page)
1788 {
1789 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1790 }
1791 #else
folio_last_cpupid(struct folio * folio)1792 static inline int folio_last_cpupid(struct folio *folio)
1793 {
1794 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1795 }
1796
1797 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1798
page_cpupid_reset_last(struct page * page)1799 static inline void page_cpupid_reset_last(struct page *page)
1800 {
1801 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1802 }
1803 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1804
folio_xchg_access_time(struct folio * folio,int time)1805 static inline int folio_xchg_access_time(struct folio *folio, int time)
1806 {
1807 int last_time;
1808
1809 last_time = folio_xchg_last_cpupid(folio,
1810 time >> PAGE_ACCESS_TIME_BUCKETS);
1811 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1812 }
1813
vma_set_access_pid_bit(struct vm_area_struct * vma)1814 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1815 {
1816 unsigned int pid_bit;
1817
1818 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1819 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1820 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1821 }
1822 }
1823
1824 bool folio_use_access_time(struct folio *folio);
1825 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1826 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1827 {
1828 return folio_nid(folio); /* XXX */
1829 }
1830
folio_xchg_access_time(struct folio * folio,int time)1831 static inline int folio_xchg_access_time(struct folio *folio, int time)
1832 {
1833 return 0;
1834 }
1835
folio_last_cpupid(struct folio * folio)1836 static inline int folio_last_cpupid(struct folio *folio)
1837 {
1838 return folio_nid(folio); /* XXX */
1839 }
1840
cpupid_to_nid(int cpupid)1841 static inline int cpupid_to_nid(int cpupid)
1842 {
1843 return -1;
1844 }
1845
cpupid_to_pid(int cpupid)1846 static inline int cpupid_to_pid(int cpupid)
1847 {
1848 return -1;
1849 }
1850
cpupid_to_cpu(int cpupid)1851 static inline int cpupid_to_cpu(int cpupid)
1852 {
1853 return -1;
1854 }
1855
cpu_pid_to_cpupid(int nid,int pid)1856 static inline int cpu_pid_to_cpupid(int nid, int pid)
1857 {
1858 return -1;
1859 }
1860
cpupid_pid_unset(int cpupid)1861 static inline bool cpupid_pid_unset(int cpupid)
1862 {
1863 return true;
1864 }
1865
page_cpupid_reset_last(struct page * page)1866 static inline void page_cpupid_reset_last(struct page *page)
1867 {
1868 }
1869
cpupid_match_pid(struct task_struct * task,int cpupid)1870 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1871 {
1872 return false;
1873 }
1874
vma_set_access_pid_bit(struct vm_area_struct * vma)1875 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1876 {
1877 }
folio_use_access_time(struct folio * folio)1878 static inline bool folio_use_access_time(struct folio *folio)
1879 {
1880 return false;
1881 }
1882 #endif /* CONFIG_NUMA_BALANCING */
1883
1884 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1885
1886 /*
1887 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1888 * setting tags for all pages to native kernel tag value 0xff, as the default
1889 * value 0x00 maps to 0xff.
1890 */
1891
page_kasan_tag(const struct page * page)1892 static inline u8 page_kasan_tag(const struct page *page)
1893 {
1894 u8 tag = KASAN_TAG_KERNEL;
1895
1896 if (kasan_enabled()) {
1897 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1898 tag ^= 0xff;
1899 }
1900
1901 return tag;
1902 }
1903
page_kasan_tag_set(struct page * page,u8 tag)1904 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1905 {
1906 unsigned long old_flags, flags;
1907
1908 if (!kasan_enabled())
1909 return;
1910
1911 tag ^= 0xff;
1912 old_flags = READ_ONCE(page->flags);
1913 do {
1914 flags = old_flags;
1915 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1916 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1917 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1918 }
1919
page_kasan_tag_reset(struct page * page)1920 static inline void page_kasan_tag_reset(struct page *page)
1921 {
1922 if (kasan_enabled())
1923 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1924 }
1925
1926 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1927
page_kasan_tag(const struct page * page)1928 static inline u8 page_kasan_tag(const struct page *page)
1929 {
1930 return 0xff;
1931 }
1932
page_kasan_tag_set(struct page * page,u8 tag)1933 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1934 static inline void page_kasan_tag_reset(struct page *page) { }
1935
1936 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1937
page_zone(const struct page * page)1938 static inline struct zone *page_zone(const struct page *page)
1939 {
1940 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1941 }
1942
page_pgdat(const struct page * page)1943 static inline pg_data_t *page_pgdat(const struct page *page)
1944 {
1945 return NODE_DATA(page_to_nid(page));
1946 }
1947
folio_zone(const struct folio * folio)1948 static inline struct zone *folio_zone(const struct folio *folio)
1949 {
1950 return page_zone(&folio->page);
1951 }
1952
folio_pgdat(const struct folio * folio)1953 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1954 {
1955 return page_pgdat(&folio->page);
1956 }
1957
1958 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1959 static inline void set_page_section(struct page *page, unsigned long section)
1960 {
1961 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1962 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1963 }
1964
page_to_section(const struct page * page)1965 static inline unsigned long page_to_section(const struct page *page)
1966 {
1967 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1968 }
1969 #endif
1970
1971 /**
1972 * folio_pfn - Return the Page Frame Number of a folio.
1973 * @folio: The folio.
1974 *
1975 * A folio may contain multiple pages. The pages have consecutive
1976 * Page Frame Numbers.
1977 *
1978 * Return: The Page Frame Number of the first page in the folio.
1979 */
folio_pfn(const struct folio * folio)1980 static inline unsigned long folio_pfn(const struct folio *folio)
1981 {
1982 return page_to_pfn(&folio->page);
1983 }
1984
pfn_folio(unsigned long pfn)1985 static inline struct folio *pfn_folio(unsigned long pfn)
1986 {
1987 return page_folio(pfn_to_page(pfn));
1988 }
1989
folio_has_pincount(const struct folio * folio)1990 static inline bool folio_has_pincount(const struct folio *folio)
1991 {
1992 if (IS_ENABLED(CONFIG_64BIT))
1993 return folio_test_large(folio);
1994 return folio_order(folio) > 1;
1995 }
1996
1997 /**
1998 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1999 * @folio: The folio.
2000 *
2001 * This function checks if a folio has been pinned via a call to
2002 * a function in the pin_user_pages() family.
2003 *
2004 * For small folios, the return value is partially fuzzy: false is not fuzzy,
2005 * because it means "definitely not pinned for DMA", but true means "probably
2006 * pinned for DMA, but possibly a false positive due to having at least
2007 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2008 *
2009 * False positives are OK, because: a) it's unlikely for a folio to
2010 * get that many refcounts, and b) all the callers of this routine are
2011 * expected to be able to deal gracefully with a false positive.
2012 *
2013 * For most large folios, the result will be exactly correct. That's because
2014 * we have more tracking data available: the _pincount field is used
2015 * instead of the GUP_PIN_COUNTING_BIAS scheme.
2016 *
2017 * For more information, please see Documentation/core-api/pin_user_pages.rst.
2018 *
2019 * Return: True, if it is likely that the folio has been "dma-pinned".
2020 * False, if the folio is definitely not dma-pinned.
2021 */
folio_maybe_dma_pinned(struct folio * folio)2022 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2023 {
2024 if (folio_has_pincount(folio))
2025 return atomic_read(&folio->_pincount) > 0;
2026
2027 /*
2028 * folio_ref_count() is signed. If that refcount overflows, then
2029 * folio_ref_count() returns a negative value, and callers will avoid
2030 * further incrementing the refcount.
2031 *
2032 * Here, for that overflow case, use the sign bit to count a little
2033 * bit higher via unsigned math, and thus still get an accurate result.
2034 */
2035 return ((unsigned int)folio_ref_count(folio)) >=
2036 GUP_PIN_COUNTING_BIAS;
2037 }
2038
2039 /*
2040 * This should most likely only be called during fork() to see whether we
2041 * should break the cow immediately for an anon page on the src mm.
2042 *
2043 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2044 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)2045 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2046 struct folio *folio)
2047 {
2048 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2049
2050 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
2051 return false;
2052
2053 return folio_maybe_dma_pinned(folio);
2054 }
2055
2056 /**
2057 * is_zero_page - Query if a page is a zero page
2058 * @page: The page to query
2059 *
2060 * This returns true if @page is one of the permanent zero pages.
2061 */
is_zero_page(const struct page * page)2062 static inline bool is_zero_page(const struct page *page)
2063 {
2064 return is_zero_pfn(page_to_pfn(page));
2065 }
2066
2067 /**
2068 * is_zero_folio - Query if a folio is a zero page
2069 * @folio: The folio to query
2070 *
2071 * This returns true if @folio is one of the permanent zero pages.
2072 */
is_zero_folio(const struct folio * folio)2073 static inline bool is_zero_folio(const struct folio *folio)
2074 {
2075 return is_zero_page(&folio->page);
2076 }
2077
2078 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2079 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2080 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2081 {
2082 #ifdef CONFIG_CMA
2083 int mt = folio_migratetype(folio);
2084
2085 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2086 return false;
2087 #endif
2088 /* The zero page can be "pinned" but gets special handling. */
2089 if (is_zero_folio(folio))
2090 return true;
2091
2092 /* Coherent device memory must always allow eviction. */
2093 if (folio_is_device_coherent(folio))
2094 return false;
2095
2096 /*
2097 * Filesystems can only tolerate transient delays to truncate and
2098 * hole-punch operations
2099 */
2100 if (folio_is_fsdax(folio))
2101 return false;
2102
2103 /* Otherwise, non-movable zone folios can be pinned. */
2104 return !folio_is_zone_movable(folio);
2105
2106 }
2107 #else
folio_is_longterm_pinnable(struct folio * folio)2108 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2109 {
2110 return true;
2111 }
2112 #endif
2113
set_page_zone(struct page * page,enum zone_type zone)2114 static inline void set_page_zone(struct page *page, enum zone_type zone)
2115 {
2116 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2117 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2118 }
2119
set_page_node(struct page * page,unsigned long node)2120 static inline void set_page_node(struct page *page, unsigned long node)
2121 {
2122 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2123 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2124 }
2125
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2126 static inline void set_page_links(struct page *page, enum zone_type zone,
2127 unsigned long node, unsigned long pfn)
2128 {
2129 set_page_zone(page, zone);
2130 set_page_node(page, node);
2131 #ifdef SECTION_IN_PAGE_FLAGS
2132 set_page_section(page, pfn_to_section_nr(pfn));
2133 #endif
2134 }
2135
2136 /**
2137 * folio_nr_pages - The number of pages in the folio.
2138 * @folio: The folio.
2139 *
2140 * Return: A positive power of two.
2141 */
folio_nr_pages(const struct folio * folio)2142 static inline long folio_nr_pages(const struct folio *folio)
2143 {
2144 if (!folio_test_large(folio))
2145 return 1;
2146 return folio_large_nr_pages(folio);
2147 }
2148
2149 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2150 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2151 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2152 #else
2153 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2154 #endif
2155
2156 /*
2157 * compound_nr() returns the number of pages in this potentially compound
2158 * page. compound_nr() can be called on a tail page, and is defined to
2159 * return 1 in that case.
2160 */
compound_nr(struct page * page)2161 static inline long compound_nr(struct page *page)
2162 {
2163 struct folio *folio = (struct folio *)page;
2164
2165 if (!test_bit(PG_head, &folio->flags))
2166 return 1;
2167 return folio_large_nr_pages(folio);
2168 }
2169
2170 /**
2171 * thp_nr_pages - The number of regular pages in this huge page.
2172 * @page: The head page of a huge page.
2173 */
thp_nr_pages(struct page * page)2174 static inline long thp_nr_pages(struct page *page)
2175 {
2176 return folio_nr_pages((struct folio *)page);
2177 }
2178
2179 /**
2180 * folio_next - Move to the next physical folio.
2181 * @folio: The folio we're currently operating on.
2182 *
2183 * If you have physically contiguous memory which may span more than
2184 * one folio (eg a &struct bio_vec), use this function to move from one
2185 * folio to the next. Do not use it if the memory is only virtually
2186 * contiguous as the folios are almost certainly not adjacent to each
2187 * other. This is the folio equivalent to writing ``page++``.
2188 *
2189 * Context: We assume that the folios are refcounted and/or locked at a
2190 * higher level and do not adjust the reference counts.
2191 * Return: The next struct folio.
2192 */
folio_next(struct folio * folio)2193 static inline struct folio *folio_next(struct folio *folio)
2194 {
2195 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2196 }
2197
2198 /**
2199 * folio_shift - The size of the memory described by this folio.
2200 * @folio: The folio.
2201 *
2202 * A folio represents a number of bytes which is a power-of-two in size.
2203 * This function tells you which power-of-two the folio is. See also
2204 * folio_size() and folio_order().
2205 *
2206 * Context: The caller should have a reference on the folio to prevent
2207 * it from being split. It is not necessary for the folio to be locked.
2208 * Return: The base-2 logarithm of the size of this folio.
2209 */
folio_shift(const struct folio * folio)2210 static inline unsigned int folio_shift(const struct folio *folio)
2211 {
2212 return PAGE_SHIFT + folio_order(folio);
2213 }
2214
2215 /**
2216 * folio_size - The number of bytes in a folio.
2217 * @folio: The folio.
2218 *
2219 * Context: The caller should have a reference on the folio to prevent
2220 * it from being split. It is not necessary for the folio to be locked.
2221 * Return: The number of bytes in this folio.
2222 */
folio_size(const struct folio * folio)2223 static inline size_t folio_size(const struct folio *folio)
2224 {
2225 return PAGE_SIZE << folio_order(folio);
2226 }
2227
2228 /**
2229 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2230 * tables of more than one MM
2231 * @folio: The folio.
2232 *
2233 * This function checks if the folio maybe currently mapped into more than one
2234 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2235 * MM ("mapped exclusively").
2236 *
2237 * For KSM folios, this function also returns "mapped shared" when a folio is
2238 * mapped multiple times into the same MM, because the individual page mappings
2239 * are independent.
2240 *
2241 * For small anonymous folios and anonymous hugetlb folios, the return
2242 * value will be exactly correct: non-KSM folios can only be mapped at most once
2243 * into an MM, and they cannot be partially mapped. KSM folios are
2244 * considered shared even if mapped multiple times into the same MM.
2245 *
2246 * For other folios, the result can be fuzzy:
2247 * #. For partially-mappable large folios (THP), the return value can wrongly
2248 * indicate "mapped shared" (false positive) if a folio was mapped by
2249 * more than two MMs at one point in time.
2250 * #. For pagecache folios (including hugetlb), the return value can wrongly
2251 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2252 * cover the same file range.
2253 *
2254 * Further, this function only considers current page table mappings that
2255 * are tracked using the folio mapcount(s).
2256 *
2257 * This function does not consider:
2258 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2259 * pagecache, temporary unmapping for migration).
2260 * #. If the folio is mapped differently (VM_PFNMAP).
2261 * #. If hugetlb page table sharing applies. Callers might want to check
2262 * hugetlb_pmd_shared().
2263 *
2264 * Return: Whether the folio is estimated to be mapped into more than one MM.
2265 */
folio_maybe_mapped_shared(struct folio * folio)2266 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2267 {
2268 int mapcount = folio_mapcount(folio);
2269
2270 /* Only partially-mappable folios require more care. */
2271 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2272 return mapcount > 1;
2273
2274 /*
2275 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2276 * simply assume "mapped shared", nobody should really care
2277 * about this for arbitrary kernel allocations.
2278 */
2279 if (!IS_ENABLED(CONFIG_MM_ID))
2280 return true;
2281
2282 /*
2283 * A single mapping implies "mapped exclusively", even if the
2284 * folio flag says something different: it's easier to handle this
2285 * case here instead of on the RMAP hot path.
2286 */
2287 if (mapcount <= 1)
2288 return false;
2289 return folio_test_large_maybe_mapped_shared(folio);
2290 }
2291
2292 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2293 static inline int arch_make_folio_accessible(struct folio *folio)
2294 {
2295 return 0;
2296 }
2297 #endif
2298
2299 /*
2300 * Some inline functions in vmstat.h depend on page_zone()
2301 */
2302 #include <linux/vmstat.h>
2303
2304 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2305 #define HASHED_PAGE_VIRTUAL
2306 #endif
2307
2308 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2309 static inline void *page_address(const struct page *page)
2310 {
2311 return page->virtual;
2312 }
set_page_address(struct page * page,void * address)2313 static inline void set_page_address(struct page *page, void *address)
2314 {
2315 page->virtual = address;
2316 }
2317 #define page_address_init() do { } while(0)
2318 #endif
2319
2320 #if defined(HASHED_PAGE_VIRTUAL)
2321 void *page_address(const struct page *page);
2322 void set_page_address(struct page *page, void *virtual);
2323 void page_address_init(void);
2324 #endif
2325
lowmem_page_address(const struct page * page)2326 static __always_inline void *lowmem_page_address(const struct page *page)
2327 {
2328 return page_to_virt(page);
2329 }
2330
2331 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2332 #define page_address(page) lowmem_page_address(page)
2333 #define set_page_address(page, address) do { } while(0)
2334 #define page_address_init() do { } while(0)
2335 #endif
2336
folio_address(const struct folio * folio)2337 static inline void *folio_address(const struct folio *folio)
2338 {
2339 return page_address(&folio->page);
2340 }
2341
2342 /*
2343 * Return true only if the page has been allocated with
2344 * ALLOC_NO_WATERMARKS and the low watermark was not
2345 * met implying that the system is under some pressure.
2346 */
page_is_pfmemalloc(const struct page * page)2347 static inline bool page_is_pfmemalloc(const struct page *page)
2348 {
2349 /*
2350 * lru.next has bit 1 set if the page is allocated from the
2351 * pfmemalloc reserves. Callers may simply overwrite it if
2352 * they do not need to preserve that information.
2353 */
2354 return (uintptr_t)page->lru.next & BIT(1);
2355 }
2356
2357 /*
2358 * Return true only if the folio has been allocated with
2359 * ALLOC_NO_WATERMARKS and the low watermark was not
2360 * met implying that the system is under some pressure.
2361 */
folio_is_pfmemalloc(const struct folio * folio)2362 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2363 {
2364 /*
2365 * lru.next has bit 1 set if the page is allocated from the
2366 * pfmemalloc reserves. Callers may simply overwrite it if
2367 * they do not need to preserve that information.
2368 */
2369 return (uintptr_t)folio->lru.next & BIT(1);
2370 }
2371
2372 /*
2373 * Only to be called by the page allocator on a freshly allocated
2374 * page.
2375 */
set_page_pfmemalloc(struct page * page)2376 static inline void set_page_pfmemalloc(struct page *page)
2377 {
2378 page->lru.next = (void *)BIT(1);
2379 }
2380
clear_page_pfmemalloc(struct page * page)2381 static inline void clear_page_pfmemalloc(struct page *page)
2382 {
2383 page->lru.next = NULL;
2384 }
2385
2386 /*
2387 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2388 */
2389 extern void pagefault_out_of_memory(void);
2390
2391 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2392 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2393 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2394
2395 /*
2396 * Parameter block passed down to zap_pte_range in exceptional cases.
2397 */
2398 struct zap_details {
2399 struct folio *single_folio; /* Locked folio to be unmapped */
2400 bool even_cows; /* Zap COWed private pages too? */
2401 bool reclaim_pt; /* Need reclaim page tables? */
2402 zap_flags_t zap_flags; /* Extra flags for zapping */
2403 };
2404
2405 /*
2406 * Whether to drop the pte markers, for example, the uffd-wp information for
2407 * file-backed memory. This should only be specified when we will completely
2408 * drop the page in the mm, either by truncation or unmapping of the vma. By
2409 * default, the flag is not set.
2410 */
2411 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2412 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2413 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2414
2415 #ifdef CONFIG_SCHED_MM_CID
2416 void sched_mm_cid_before_execve(struct task_struct *t);
2417 void sched_mm_cid_after_execve(struct task_struct *t);
2418 void sched_mm_cid_fork(struct task_struct *t);
2419 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2420 static inline int task_mm_cid(struct task_struct *t)
2421 {
2422 return t->mm_cid;
2423 }
2424 #else
sched_mm_cid_before_execve(struct task_struct * t)2425 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2426 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2427 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2428 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2429 static inline int task_mm_cid(struct task_struct *t)
2430 {
2431 /*
2432 * Use the processor id as a fall-back when the mm cid feature is
2433 * disabled. This provides functional per-cpu data structure accesses
2434 * in user-space, althrough it won't provide the memory usage benefits.
2435 */
2436 return raw_smp_processor_id();
2437 }
2438 #endif
2439
2440 #ifdef CONFIG_MMU
2441 extern bool can_do_mlock(void);
2442 #else
can_do_mlock(void)2443 static inline bool can_do_mlock(void) { return false; }
2444 #endif
2445 extern int user_shm_lock(size_t, struct ucounts *);
2446 extern void user_shm_unlock(size_t, struct ucounts *);
2447
2448 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2449 pte_t pte);
2450 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2451 pte_t pte);
2452 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2453 unsigned long addr, pmd_t pmd);
2454 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2455 pmd_t pmd);
2456
2457 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2458 unsigned long size);
2459 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2460 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2461 static inline void zap_vma_pages(struct vm_area_struct *vma)
2462 {
2463 zap_page_range_single(vma, vma->vm_start,
2464 vma->vm_end - vma->vm_start, NULL);
2465 }
2466 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2467 struct vm_area_struct *start_vma, unsigned long start,
2468 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2469
2470 struct mmu_notifier_range;
2471
2472 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2473 unsigned long end, unsigned long floor, unsigned long ceiling);
2474 int
2475 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2476 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2477 void *buf, int len, int write);
2478
2479 struct follow_pfnmap_args {
2480 /**
2481 * Inputs:
2482 * @vma: Pointer to @vm_area_struct struct
2483 * @address: the virtual address to walk
2484 */
2485 struct vm_area_struct *vma;
2486 unsigned long address;
2487 /**
2488 * Internals:
2489 *
2490 * The caller shouldn't touch any of these.
2491 */
2492 spinlock_t *lock;
2493 pte_t *ptep;
2494 /**
2495 * Outputs:
2496 *
2497 * @pfn: the PFN of the address
2498 * @addr_mask: address mask covering pfn
2499 * @pgprot: the pgprot_t of the mapping
2500 * @writable: whether the mapping is writable
2501 * @special: whether the mapping is a special mapping (real PFN maps)
2502 */
2503 unsigned long pfn;
2504 unsigned long addr_mask;
2505 pgprot_t pgprot;
2506 bool writable;
2507 bool special;
2508 };
2509 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2510 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2511
2512 extern void truncate_pagecache(struct inode *inode, loff_t new);
2513 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2514 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2515 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2516 int generic_error_remove_folio(struct address_space *mapping,
2517 struct folio *folio);
2518
2519 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2520 unsigned long address, struct pt_regs *regs);
2521
2522 #ifdef CONFIG_MMU
2523 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2524 unsigned long address, unsigned int flags,
2525 struct pt_regs *regs);
2526 extern int fixup_user_fault(struct mm_struct *mm,
2527 unsigned long address, unsigned int fault_flags,
2528 bool *unlocked);
2529 void unmap_mapping_pages(struct address_space *mapping,
2530 pgoff_t start, pgoff_t nr, bool even_cows);
2531 void unmap_mapping_range(struct address_space *mapping,
2532 loff_t const holebegin, loff_t const holelen, int even_cows);
2533 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2534 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2535 unsigned long address, unsigned int flags,
2536 struct pt_regs *regs)
2537 {
2538 /* should never happen if there's no MMU */
2539 BUG();
2540 return VM_FAULT_SIGBUS;
2541 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2542 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2543 unsigned int fault_flags, bool *unlocked)
2544 {
2545 /* should never happen if there's no MMU */
2546 BUG();
2547 return -EFAULT;
2548 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2549 static inline void unmap_mapping_pages(struct address_space *mapping,
2550 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2551 static inline void unmap_mapping_range(struct address_space *mapping,
2552 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2553 #endif
2554
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2555 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2556 loff_t const holebegin, loff_t const holelen)
2557 {
2558 unmap_mapping_range(mapping, holebegin, holelen, 0);
2559 }
2560
2561 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2562 unsigned long addr);
2563
2564 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2565 void *buf, int len, unsigned int gup_flags);
2566 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2567 void *buf, int len, unsigned int gup_flags);
2568
2569 #ifdef CONFIG_BPF_SYSCALL
2570 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2571 void *buf, int len, unsigned int gup_flags);
2572 #endif
2573
2574 long get_user_pages_remote(struct mm_struct *mm,
2575 unsigned long start, unsigned long nr_pages,
2576 unsigned int gup_flags, struct page **pages,
2577 int *locked);
2578 long pin_user_pages_remote(struct mm_struct *mm,
2579 unsigned long start, unsigned long nr_pages,
2580 unsigned int gup_flags, struct page **pages,
2581 int *locked);
2582
2583 /*
2584 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2585 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2586 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2587 unsigned long addr,
2588 int gup_flags,
2589 struct vm_area_struct **vmap)
2590 {
2591 struct page *page;
2592 struct vm_area_struct *vma;
2593 int got;
2594
2595 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2596 return ERR_PTR(-EINVAL);
2597
2598 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2599
2600 if (got < 0)
2601 return ERR_PTR(got);
2602
2603 vma = vma_lookup(mm, addr);
2604 if (WARN_ON_ONCE(!vma)) {
2605 put_page(page);
2606 return ERR_PTR(-EINVAL);
2607 }
2608
2609 *vmap = vma;
2610 return page;
2611 }
2612
2613 long get_user_pages(unsigned long start, unsigned long nr_pages,
2614 unsigned int gup_flags, struct page **pages);
2615 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2616 unsigned int gup_flags, struct page **pages);
2617 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2618 struct page **pages, unsigned int gup_flags);
2619 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2620 struct page **pages, unsigned int gup_flags);
2621 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2622 struct folio **folios, unsigned int max_folios,
2623 pgoff_t *offset);
2624 int folio_add_pins(struct folio *folio, unsigned int pins);
2625
2626 int get_user_pages_fast(unsigned long start, int nr_pages,
2627 unsigned int gup_flags, struct page **pages);
2628 int pin_user_pages_fast(unsigned long start, int nr_pages,
2629 unsigned int gup_flags, struct page **pages);
2630 void folio_add_pin(struct folio *folio);
2631
2632 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2633 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2634 struct task_struct *task, bool bypass_rlim);
2635
2636 struct kvec;
2637 struct page *get_dump_page(unsigned long addr, int *locked);
2638
2639 bool folio_mark_dirty(struct folio *folio);
2640 bool folio_mark_dirty_lock(struct folio *folio);
2641 bool set_page_dirty(struct page *page);
2642 int set_page_dirty_lock(struct page *page);
2643
2644 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2645
2646 /*
2647 * Flags used by change_protection(). For now we make it a bitmap so
2648 * that we can pass in multiple flags just like parameters. However
2649 * for now all the callers are only use one of the flags at the same
2650 * time.
2651 */
2652 /*
2653 * Whether we should manually check if we can map individual PTEs writable,
2654 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2655 * PTEs automatically in a writable mapping.
2656 */
2657 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2658 /* Whether this protection change is for NUMA hints */
2659 #define MM_CP_PROT_NUMA (1UL << 1)
2660 /* Whether this change is for write protecting */
2661 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2662 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2663 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2664 MM_CP_UFFD_WP_RESOLVE)
2665
2666 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2667 pte_t pte);
2668 extern long change_protection(struct mmu_gather *tlb,
2669 struct vm_area_struct *vma, unsigned long start,
2670 unsigned long end, unsigned long cp_flags);
2671 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2672 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2673 unsigned long start, unsigned long end, unsigned long newflags);
2674
2675 /*
2676 * doesn't attempt to fault and will return short.
2677 */
2678 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2679 unsigned int gup_flags, struct page **pages);
2680
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2681 static inline bool get_user_page_fast_only(unsigned long addr,
2682 unsigned int gup_flags, struct page **pagep)
2683 {
2684 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2685 }
2686 /*
2687 * per-process(per-mm_struct) statistics.
2688 */
get_mm_counter(struct mm_struct * mm,int member)2689 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2690 {
2691 return percpu_counter_read_positive(&mm->rss_stat[member]);
2692 }
2693
2694 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2695
add_mm_counter(struct mm_struct * mm,int member,long value)2696 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2697 {
2698 percpu_counter_add(&mm->rss_stat[member], value);
2699
2700 mm_trace_rss_stat(mm, member);
2701 }
2702
inc_mm_counter(struct mm_struct * mm,int member)2703 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2704 {
2705 percpu_counter_inc(&mm->rss_stat[member]);
2706
2707 mm_trace_rss_stat(mm, member);
2708 }
2709
dec_mm_counter(struct mm_struct * mm,int member)2710 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2711 {
2712 percpu_counter_dec(&mm->rss_stat[member]);
2713
2714 mm_trace_rss_stat(mm, member);
2715 }
2716
2717 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2718 static inline int mm_counter_file(struct folio *folio)
2719 {
2720 if (folio_test_swapbacked(folio))
2721 return MM_SHMEMPAGES;
2722 return MM_FILEPAGES;
2723 }
2724
mm_counter(struct folio * folio)2725 static inline int mm_counter(struct folio *folio)
2726 {
2727 if (folio_test_anon(folio))
2728 return MM_ANONPAGES;
2729 return mm_counter_file(folio);
2730 }
2731
get_mm_rss(struct mm_struct * mm)2732 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2733 {
2734 return get_mm_counter(mm, MM_FILEPAGES) +
2735 get_mm_counter(mm, MM_ANONPAGES) +
2736 get_mm_counter(mm, MM_SHMEMPAGES);
2737 }
2738
get_mm_hiwater_rss(struct mm_struct * mm)2739 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2740 {
2741 return max(mm->hiwater_rss, get_mm_rss(mm));
2742 }
2743
get_mm_hiwater_vm(struct mm_struct * mm)2744 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2745 {
2746 return max(mm->hiwater_vm, mm->total_vm);
2747 }
2748
update_hiwater_rss(struct mm_struct * mm)2749 static inline void update_hiwater_rss(struct mm_struct *mm)
2750 {
2751 unsigned long _rss = get_mm_rss(mm);
2752
2753 if ((mm)->hiwater_rss < _rss)
2754 (mm)->hiwater_rss = _rss;
2755 }
2756
update_hiwater_vm(struct mm_struct * mm)2757 static inline void update_hiwater_vm(struct mm_struct *mm)
2758 {
2759 if (mm->hiwater_vm < mm->total_vm)
2760 mm->hiwater_vm = mm->total_vm;
2761 }
2762
reset_mm_hiwater_rss(struct mm_struct * mm)2763 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2764 {
2765 mm->hiwater_rss = get_mm_rss(mm);
2766 }
2767
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2768 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2769 struct mm_struct *mm)
2770 {
2771 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2772
2773 if (*maxrss < hiwater_rss)
2774 *maxrss = hiwater_rss;
2775 }
2776
2777 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2778 static inline int pte_special(pte_t pte)
2779 {
2780 return 0;
2781 }
2782
pte_mkspecial(pte_t pte)2783 static inline pte_t pte_mkspecial(pte_t pte)
2784 {
2785 return pte;
2786 }
2787 #endif
2788
2789 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2790 static inline bool pmd_special(pmd_t pmd)
2791 {
2792 return false;
2793 }
2794
pmd_mkspecial(pmd_t pmd)2795 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2796 {
2797 return pmd;
2798 }
2799 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2800
2801 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2802 static inline bool pud_special(pud_t pud)
2803 {
2804 return false;
2805 }
2806
pud_mkspecial(pud_t pud)2807 static inline pud_t pud_mkspecial(pud_t pud)
2808 {
2809 return pud;
2810 }
2811 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2812
2813 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2814 static inline int pte_devmap(pte_t pte)
2815 {
2816 return 0;
2817 }
2818 #endif
2819
2820 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2821 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2822 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2823 spinlock_t **ptl)
2824 {
2825 pte_t *ptep;
2826 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2827 return ptep;
2828 }
2829
2830 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2831 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2832 unsigned long address)
2833 {
2834 return 0;
2835 }
2836 #else
2837 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2838 #endif
2839
2840 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2841 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2842 unsigned long address)
2843 {
2844 return 0;
2845 }
mm_inc_nr_puds(struct mm_struct * mm)2846 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2847 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2848
2849 #else
2850 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2851
mm_inc_nr_puds(struct mm_struct * mm)2852 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2853 {
2854 if (mm_pud_folded(mm))
2855 return;
2856 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2857 }
2858
mm_dec_nr_puds(struct mm_struct * mm)2859 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2860 {
2861 if (mm_pud_folded(mm))
2862 return;
2863 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2864 }
2865 #endif
2866
2867 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2868 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2869 unsigned long address)
2870 {
2871 return 0;
2872 }
2873
mm_inc_nr_pmds(struct mm_struct * mm)2874 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2875 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2876
2877 #else
2878 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2879
mm_inc_nr_pmds(struct mm_struct * mm)2880 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2881 {
2882 if (mm_pmd_folded(mm))
2883 return;
2884 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2885 }
2886
mm_dec_nr_pmds(struct mm_struct * mm)2887 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2888 {
2889 if (mm_pmd_folded(mm))
2890 return;
2891 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2892 }
2893 #endif
2894
2895 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2896 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2897 {
2898 atomic_long_set(&mm->pgtables_bytes, 0);
2899 }
2900
mm_pgtables_bytes(const struct mm_struct * mm)2901 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2902 {
2903 return atomic_long_read(&mm->pgtables_bytes);
2904 }
2905
mm_inc_nr_ptes(struct mm_struct * mm)2906 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2907 {
2908 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2909 }
2910
mm_dec_nr_ptes(struct mm_struct * mm)2911 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2912 {
2913 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2914 }
2915 #else
2916
mm_pgtables_bytes_init(struct mm_struct * mm)2917 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2918 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2919 {
2920 return 0;
2921 }
2922
mm_inc_nr_ptes(struct mm_struct * mm)2923 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2924 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2925 #endif
2926
2927 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2928 int __pte_alloc_kernel(pmd_t *pmd);
2929
2930 #if defined(CONFIG_MMU)
2931
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2932 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2933 unsigned long address)
2934 {
2935 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2936 NULL : p4d_offset(pgd, address);
2937 }
2938
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2939 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2940 unsigned long address)
2941 {
2942 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2943 NULL : pud_offset(p4d, address);
2944 }
2945
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2946 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2947 {
2948 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2949 NULL: pmd_offset(pud, address);
2950 }
2951 #endif /* CONFIG_MMU */
2952
virt_to_ptdesc(const void * x)2953 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2954 {
2955 return page_ptdesc(virt_to_page(x));
2956 }
2957
ptdesc_to_virt(const struct ptdesc * pt)2958 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2959 {
2960 return page_to_virt(ptdesc_page(pt));
2961 }
2962
ptdesc_address(const struct ptdesc * pt)2963 static inline void *ptdesc_address(const struct ptdesc *pt)
2964 {
2965 return folio_address(ptdesc_folio(pt));
2966 }
2967
pagetable_is_reserved(struct ptdesc * pt)2968 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2969 {
2970 return folio_test_reserved(ptdesc_folio(pt));
2971 }
2972
2973 /**
2974 * pagetable_alloc - Allocate pagetables
2975 * @gfp: GFP flags
2976 * @order: desired pagetable order
2977 *
2978 * pagetable_alloc allocates memory for page tables as well as a page table
2979 * descriptor to describe that memory.
2980 *
2981 * Return: The ptdesc describing the allocated page tables.
2982 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2983 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2984 {
2985 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2986
2987 return page_ptdesc(page);
2988 }
2989 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2990
2991 /**
2992 * pagetable_free - Free pagetables
2993 * @pt: The page table descriptor
2994 *
2995 * pagetable_free frees the memory of all page tables described by a page
2996 * table descriptor and the memory for the descriptor itself.
2997 */
pagetable_free(struct ptdesc * pt)2998 static inline void pagetable_free(struct ptdesc *pt)
2999 {
3000 struct page *page = ptdesc_page(pt);
3001
3002 __free_pages(page, compound_order(page));
3003 }
3004
3005 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3006 #if ALLOC_SPLIT_PTLOCKS
3007 void __init ptlock_cache_init(void);
3008 bool ptlock_alloc(struct ptdesc *ptdesc);
3009 void ptlock_free(struct ptdesc *ptdesc);
3010
ptlock_ptr(struct ptdesc * ptdesc)3011 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3012 {
3013 return ptdesc->ptl;
3014 }
3015 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)3016 static inline void ptlock_cache_init(void)
3017 {
3018 }
3019
ptlock_alloc(struct ptdesc * ptdesc)3020 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3021 {
3022 return true;
3023 }
3024
ptlock_free(struct ptdesc * ptdesc)3025 static inline void ptlock_free(struct ptdesc *ptdesc)
3026 {
3027 }
3028
ptlock_ptr(struct ptdesc * ptdesc)3029 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3030 {
3031 return &ptdesc->ptl;
3032 }
3033 #endif /* ALLOC_SPLIT_PTLOCKS */
3034
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3035 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3036 {
3037 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3038 }
3039
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3040 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3041 {
3042 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3043 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3044 return ptlock_ptr(virt_to_ptdesc(pte));
3045 }
3046
ptlock_init(struct ptdesc * ptdesc)3047 static inline bool ptlock_init(struct ptdesc *ptdesc)
3048 {
3049 /*
3050 * prep_new_page() initialize page->private (and therefore page->ptl)
3051 * with 0. Make sure nobody took it in use in between.
3052 *
3053 * It can happen if arch try to use slab for page table allocation:
3054 * slab code uses page->slab_cache, which share storage with page->ptl.
3055 */
3056 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3057 if (!ptlock_alloc(ptdesc))
3058 return false;
3059 spin_lock_init(ptlock_ptr(ptdesc));
3060 return true;
3061 }
3062
3063 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3064 /*
3065 * We use mm->page_table_lock to guard all pagetable pages of the mm.
3066 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3067 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3068 {
3069 return &mm->page_table_lock;
3070 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3071 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3072 {
3073 return &mm->page_table_lock;
3074 }
ptlock_cache_init(void)3075 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)3076 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)3077 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3078 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3079
__pagetable_ctor(struct ptdesc * ptdesc)3080 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3081 {
3082 struct folio *folio = ptdesc_folio(ptdesc);
3083
3084 __folio_set_pgtable(folio);
3085 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3086 }
3087
pagetable_dtor(struct ptdesc * ptdesc)3088 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3089 {
3090 struct folio *folio = ptdesc_folio(ptdesc);
3091
3092 ptlock_free(ptdesc);
3093 __folio_clear_pgtable(folio);
3094 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3095 }
3096
pagetable_dtor_free(struct ptdesc * ptdesc)3097 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3098 {
3099 pagetable_dtor(ptdesc);
3100 pagetable_free(ptdesc);
3101 }
3102
pagetable_pte_ctor(struct ptdesc * ptdesc)3103 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3104 {
3105 if (!ptlock_init(ptdesc))
3106 return false;
3107 __pagetable_ctor(ptdesc);
3108 return true;
3109 }
3110
3111 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3112 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3113 pmd_t *pmdvalp)
3114 {
3115 pte_t *pte;
3116
3117 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3118 return pte;
3119 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3120 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3121 {
3122 return __pte_offset_map(pmd, addr, NULL);
3123 }
3124
3125 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3126 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3127 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3128 unsigned long addr, spinlock_t **ptlp)
3129 {
3130 pte_t *pte;
3131
3132 __cond_lock(RCU, __cond_lock(*ptlp,
3133 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3134 return pte;
3135 }
3136
3137 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3138 unsigned long addr, spinlock_t **ptlp);
3139 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3140 unsigned long addr, pmd_t *pmdvalp,
3141 spinlock_t **ptlp);
3142
3143 #define pte_unmap_unlock(pte, ptl) do { \
3144 spin_unlock(ptl); \
3145 pte_unmap(pte); \
3146 } while (0)
3147
3148 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3149
3150 #define pte_alloc_map(mm, pmd, address) \
3151 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3152
3153 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3154 (pte_alloc(mm, pmd) ? \
3155 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3156
3157 #define pte_alloc_kernel(pmd, address) \
3158 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3159 NULL: pte_offset_kernel(pmd, address))
3160
3161 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3162
pmd_pgtable_page(pmd_t * pmd)3163 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3164 {
3165 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3166 return virt_to_page((void *)((unsigned long) pmd & mask));
3167 }
3168
pmd_ptdesc(pmd_t * pmd)3169 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3170 {
3171 return page_ptdesc(pmd_pgtable_page(pmd));
3172 }
3173
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3174 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3175 {
3176 return ptlock_ptr(pmd_ptdesc(pmd));
3177 }
3178
pmd_ptlock_init(struct ptdesc * ptdesc)3179 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3180 {
3181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3182 ptdesc->pmd_huge_pte = NULL;
3183 #endif
3184 return ptlock_init(ptdesc);
3185 }
3186
3187 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3188
3189 #else
3190
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3191 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3192 {
3193 return &mm->page_table_lock;
3194 }
3195
pmd_ptlock_init(struct ptdesc * ptdesc)3196 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3197
3198 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3199
3200 #endif
3201
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3202 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3203 {
3204 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3205 spin_lock(ptl);
3206 return ptl;
3207 }
3208
pagetable_pmd_ctor(struct ptdesc * ptdesc)3209 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3210 {
3211 if (!pmd_ptlock_init(ptdesc))
3212 return false;
3213 ptdesc_pmd_pts_init(ptdesc);
3214 __pagetable_ctor(ptdesc);
3215 return true;
3216 }
3217
3218 /*
3219 * No scalability reason to split PUD locks yet, but follow the same pattern
3220 * as the PMD locks to make it easier if we decide to. The VM should not be
3221 * considered ready to switch to split PUD locks yet; there may be places
3222 * which need to be converted from page_table_lock.
3223 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3224 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3225 {
3226 return &mm->page_table_lock;
3227 }
3228
pud_lock(struct mm_struct * mm,pud_t * pud)3229 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3230 {
3231 spinlock_t *ptl = pud_lockptr(mm, pud);
3232
3233 spin_lock(ptl);
3234 return ptl;
3235 }
3236
pagetable_pud_ctor(struct ptdesc * ptdesc)3237 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3238 {
3239 __pagetable_ctor(ptdesc);
3240 }
3241
pagetable_p4d_ctor(struct ptdesc * ptdesc)3242 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3243 {
3244 __pagetable_ctor(ptdesc);
3245 }
3246
pagetable_pgd_ctor(struct ptdesc * ptdesc)3247 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3248 {
3249 __pagetable_ctor(ptdesc);
3250 }
3251
3252 extern void __init pagecache_init(void);
3253 extern void free_initmem(void);
3254
3255 /*
3256 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3257 * into the buddy system. The freed pages will be poisoned with pattern
3258 * "poison" if it's within range [0, UCHAR_MAX].
3259 * Return pages freed into the buddy system.
3260 */
3261 extern unsigned long free_reserved_area(void *start, void *end,
3262 int poison, const char *s);
3263
3264 extern void adjust_managed_page_count(struct page *page, long count);
3265
3266 extern void reserve_bootmem_region(phys_addr_t start,
3267 phys_addr_t end, int nid);
3268
3269 /* Free the reserved page into the buddy system, so it gets managed. */
3270 void free_reserved_page(struct page *page);
3271
mark_page_reserved(struct page * page)3272 static inline void mark_page_reserved(struct page *page)
3273 {
3274 SetPageReserved(page);
3275 adjust_managed_page_count(page, -1);
3276 }
3277
free_reserved_ptdesc(struct ptdesc * pt)3278 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3279 {
3280 free_reserved_page(ptdesc_page(pt));
3281 }
3282
3283 /*
3284 * Default method to free all the __init memory into the buddy system.
3285 * The freed pages will be poisoned with pattern "poison" if it's within
3286 * range [0, UCHAR_MAX].
3287 * Return pages freed into the buddy system.
3288 */
free_initmem_default(int poison)3289 static inline unsigned long free_initmem_default(int poison)
3290 {
3291 extern char __init_begin[], __init_end[];
3292
3293 return free_reserved_area(&__init_begin, &__init_end,
3294 poison, "unused kernel image (initmem)");
3295 }
3296
get_num_physpages(void)3297 static inline unsigned long get_num_physpages(void)
3298 {
3299 int nid;
3300 unsigned long phys_pages = 0;
3301
3302 for_each_online_node(nid)
3303 phys_pages += node_present_pages(nid);
3304
3305 return phys_pages;
3306 }
3307
3308 /*
3309 * Using memblock node mappings, an architecture may initialise its
3310 * zones, allocate the backing mem_map and account for memory holes in an
3311 * architecture independent manner.
3312 *
3313 * An architecture is expected to register range of page frames backed by
3314 * physical memory with memblock_add[_node]() before calling
3315 * free_area_init() passing in the PFN each zone ends at. At a basic
3316 * usage, an architecture is expected to do something like
3317 *
3318 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3319 * max_highmem_pfn};
3320 * for_each_valid_physical_page_range()
3321 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3322 * free_area_init(max_zone_pfns);
3323 */
3324 void free_area_init(unsigned long *max_zone_pfn);
3325 unsigned long node_map_pfn_alignment(void);
3326 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3327 unsigned long end_pfn);
3328 extern void get_pfn_range_for_nid(unsigned int nid,
3329 unsigned long *start_pfn, unsigned long *end_pfn);
3330
3331 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3332 static inline int early_pfn_to_nid(unsigned long pfn)
3333 {
3334 return 0;
3335 }
3336 #else
3337 /* please see mm/page_alloc.c */
3338 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3339 #endif
3340
3341 extern void mem_init(void);
3342 extern void __init mmap_init(void);
3343
3344 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3345 static inline void show_mem(void)
3346 {
3347 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3348 }
3349 extern long si_mem_available(void);
3350 extern void si_meminfo(struct sysinfo * val);
3351 extern void si_meminfo_node(struct sysinfo *val, int nid);
3352
3353 extern __printf(3, 4)
3354 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3355
3356 extern void setup_per_cpu_pageset(void);
3357
3358 /* nommu.c */
3359 extern atomic_long_t mmap_pages_allocated;
3360 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3361
3362 /* interval_tree.c */
3363 void vma_interval_tree_insert(struct vm_area_struct *node,
3364 struct rb_root_cached *root);
3365 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3366 struct vm_area_struct *prev,
3367 struct rb_root_cached *root);
3368 void vma_interval_tree_remove(struct vm_area_struct *node,
3369 struct rb_root_cached *root);
3370 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3371 unsigned long start, unsigned long last);
3372 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3373 unsigned long start, unsigned long last);
3374
3375 #define vma_interval_tree_foreach(vma, root, start, last) \
3376 for (vma = vma_interval_tree_iter_first(root, start, last); \
3377 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3378
3379 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3380 struct rb_root_cached *root);
3381 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3382 struct rb_root_cached *root);
3383 struct anon_vma_chain *
3384 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3385 unsigned long start, unsigned long last);
3386 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3387 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3388 #ifdef CONFIG_DEBUG_VM_RB
3389 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3390 #endif
3391
3392 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3393 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3394 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3395
3396 /* mmap.c */
3397 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3398 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3399 extern void exit_mmap(struct mm_struct *);
3400 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3401 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3402 unsigned long addr, bool write);
3403
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3404 static inline int check_data_rlimit(unsigned long rlim,
3405 unsigned long new,
3406 unsigned long start,
3407 unsigned long end_data,
3408 unsigned long start_data)
3409 {
3410 if (rlim < RLIM_INFINITY) {
3411 if (((new - start) + (end_data - start_data)) > rlim)
3412 return -ENOSPC;
3413 }
3414
3415 return 0;
3416 }
3417
3418 extern int mm_take_all_locks(struct mm_struct *mm);
3419 extern void mm_drop_all_locks(struct mm_struct *mm);
3420
3421 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3422 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3423 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3424 extern struct file *get_task_exe_file(struct task_struct *task);
3425
3426 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3427 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3428
3429 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3430 const struct vm_special_mapping *sm);
3431 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3432 unsigned long addr, unsigned long len,
3433 unsigned long flags,
3434 const struct vm_special_mapping *spec);
3435
3436 unsigned long randomize_stack_top(unsigned long stack_top);
3437 unsigned long randomize_page(unsigned long start, unsigned long range);
3438
3439 unsigned long
3440 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3441 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3442
3443 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3444 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3445 unsigned long pgoff, unsigned long flags)
3446 {
3447 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3448 }
3449
3450 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3451 unsigned long len, unsigned long prot, unsigned long flags,
3452 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3453 struct list_head *uf);
3454 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3455 unsigned long start, size_t len, struct list_head *uf,
3456 bool unlock);
3457 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3458 struct mm_struct *mm, unsigned long start,
3459 unsigned long end, struct list_head *uf, bool unlock);
3460 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3461 struct list_head *uf);
3462 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3463
3464 #ifdef CONFIG_MMU
3465 extern int __mm_populate(unsigned long addr, unsigned long len,
3466 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3467 static inline void mm_populate(unsigned long addr, unsigned long len)
3468 {
3469 /* Ignore errors */
3470 (void) __mm_populate(addr, len, 1);
3471 }
3472 #else
mm_populate(unsigned long addr,unsigned long len)3473 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3474 #endif
3475
3476 /* This takes the mm semaphore itself */
3477 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3478 extern int vm_munmap(unsigned long, size_t);
3479 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3480 unsigned long, unsigned long,
3481 unsigned long, unsigned long);
3482
3483 struct vm_unmapped_area_info {
3484 #define VM_UNMAPPED_AREA_TOPDOWN 1
3485 unsigned long flags;
3486 unsigned long length;
3487 unsigned long low_limit;
3488 unsigned long high_limit;
3489 unsigned long align_mask;
3490 unsigned long align_offset;
3491 unsigned long start_gap;
3492 };
3493
3494 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3495
3496 /* truncate.c */
3497 extern void truncate_inode_pages(struct address_space *, loff_t);
3498 extern void truncate_inode_pages_range(struct address_space *,
3499 loff_t lstart, loff_t lend);
3500 extern void truncate_inode_pages_final(struct address_space *);
3501
3502 /* generic vm_area_ops exported for stackable file systems */
3503 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3504 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3505 pgoff_t start_pgoff, pgoff_t end_pgoff);
3506 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3507
3508 extern unsigned long stack_guard_gap;
3509 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3510 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3511 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3512
3513 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3514 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3515 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3516 struct vm_area_struct **pprev);
3517
3518 /*
3519 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3520 * NULL if none. Assume start_addr < end_addr.
3521 */
3522 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3523 unsigned long start_addr, unsigned long end_addr);
3524
3525 /**
3526 * vma_lookup() - Find a VMA at a specific address
3527 * @mm: The process address space.
3528 * @addr: The user address.
3529 *
3530 * Return: The vm_area_struct at the given address, %NULL otherwise.
3531 */
3532 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3533 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3534 {
3535 return mtree_load(&mm->mm_mt, addr);
3536 }
3537
stack_guard_start_gap(struct vm_area_struct * vma)3538 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3539 {
3540 if (vma->vm_flags & VM_GROWSDOWN)
3541 return stack_guard_gap;
3542
3543 /* See reasoning around the VM_SHADOW_STACK definition */
3544 if (vma->vm_flags & VM_SHADOW_STACK)
3545 return PAGE_SIZE;
3546
3547 return 0;
3548 }
3549
vm_start_gap(struct vm_area_struct * vma)3550 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3551 {
3552 unsigned long gap = stack_guard_start_gap(vma);
3553 unsigned long vm_start = vma->vm_start;
3554
3555 vm_start -= gap;
3556 if (vm_start > vma->vm_start)
3557 vm_start = 0;
3558 return vm_start;
3559 }
3560
vm_end_gap(struct vm_area_struct * vma)3561 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3562 {
3563 unsigned long vm_end = vma->vm_end;
3564
3565 if (vma->vm_flags & VM_GROWSUP) {
3566 vm_end += stack_guard_gap;
3567 if (vm_end < vma->vm_end)
3568 vm_end = -PAGE_SIZE;
3569 }
3570 return vm_end;
3571 }
3572
vma_pages(struct vm_area_struct * vma)3573 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3574 {
3575 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3576 }
3577
3578 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3579 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3580 unsigned long vm_start, unsigned long vm_end)
3581 {
3582 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3583
3584 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3585 vma = NULL;
3586
3587 return vma;
3588 }
3589
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3590 static inline bool range_in_vma(struct vm_area_struct *vma,
3591 unsigned long start, unsigned long end)
3592 {
3593 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3594 }
3595
3596 #ifdef CONFIG_MMU
3597 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3598 void vma_set_page_prot(struct vm_area_struct *vma);
3599 #else
vm_get_page_prot(unsigned long vm_flags)3600 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3601 {
3602 return __pgprot(0);
3603 }
vma_set_page_prot(struct vm_area_struct * vma)3604 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3605 {
3606 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3607 }
3608 #endif
3609
3610 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3611
3612 #ifdef CONFIG_NUMA_BALANCING
3613 unsigned long change_prot_numa(struct vm_area_struct *vma,
3614 unsigned long start, unsigned long end);
3615 #endif
3616
3617 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3618 unsigned long addr);
3619 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3620 unsigned long pfn, unsigned long size, pgprot_t);
3621 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3622 unsigned long pfn, unsigned long size, pgprot_t prot);
3623 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3624 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3625 struct page **pages, unsigned long *num);
3626 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3627 unsigned long num);
3628 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3629 unsigned long num);
3630 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3631 bool write);
3632 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3633 unsigned long pfn);
3634 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3635 unsigned long pfn, pgprot_t pgprot);
3636 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3637 pfn_t pfn);
3638 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3639 unsigned long addr, pfn_t pfn);
3640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3641
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3642 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3643 unsigned long addr, struct page *page)
3644 {
3645 int err = vm_insert_page(vma, addr, page);
3646
3647 if (err == -ENOMEM)
3648 return VM_FAULT_OOM;
3649 if (err < 0 && err != -EBUSY)
3650 return VM_FAULT_SIGBUS;
3651
3652 return VM_FAULT_NOPAGE;
3653 }
3654
3655 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3656 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3657 unsigned long addr, unsigned long pfn,
3658 unsigned long size, pgprot_t prot)
3659 {
3660 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3661 }
3662 #endif
3663
vmf_error(int err)3664 static inline vm_fault_t vmf_error(int err)
3665 {
3666 if (err == -ENOMEM)
3667 return VM_FAULT_OOM;
3668 else if (err == -EHWPOISON)
3669 return VM_FAULT_HWPOISON;
3670 return VM_FAULT_SIGBUS;
3671 }
3672
3673 /*
3674 * Convert errno to return value for ->page_mkwrite() calls.
3675 *
3676 * This should eventually be merged with vmf_error() above, but will need a
3677 * careful audit of all vmf_error() callers.
3678 */
vmf_fs_error(int err)3679 static inline vm_fault_t vmf_fs_error(int err)
3680 {
3681 if (err == 0)
3682 return VM_FAULT_LOCKED;
3683 if (err == -EFAULT || err == -EAGAIN)
3684 return VM_FAULT_NOPAGE;
3685 if (err == -ENOMEM)
3686 return VM_FAULT_OOM;
3687 /* -ENOSPC, -EDQUOT, -EIO ... */
3688 return VM_FAULT_SIGBUS;
3689 }
3690
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3691 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3692 {
3693 if (vm_fault & VM_FAULT_OOM)
3694 return -ENOMEM;
3695 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3696 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3697 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3698 return -EFAULT;
3699 return 0;
3700 }
3701
3702 /*
3703 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3704 * a (NUMA hinting) fault is required.
3705 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3706 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3707 unsigned int flags)
3708 {
3709 /*
3710 * If callers don't want to honor NUMA hinting faults, no need to
3711 * determine if we would actually have to trigger a NUMA hinting fault.
3712 */
3713 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3714 return true;
3715
3716 /*
3717 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3718 *
3719 * Requiring a fault here even for inaccessible VMAs would mean that
3720 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3721 * refuses to process NUMA hinting faults in inaccessible VMAs.
3722 */
3723 return !vma_is_accessible(vma);
3724 }
3725
3726 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3727 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3728 unsigned long size, pte_fn_t fn, void *data);
3729 extern int apply_to_existing_page_range(struct mm_struct *mm,
3730 unsigned long address, unsigned long size,
3731 pte_fn_t fn, void *data);
3732
3733 #ifdef CONFIG_PAGE_POISONING
3734 extern void __kernel_poison_pages(struct page *page, int numpages);
3735 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3736 extern bool _page_poisoning_enabled_early;
3737 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3738 static inline bool page_poisoning_enabled(void)
3739 {
3740 return _page_poisoning_enabled_early;
3741 }
3742 /*
3743 * For use in fast paths after init_mem_debugging() has run, or when a
3744 * false negative result is not harmful when called too early.
3745 */
page_poisoning_enabled_static(void)3746 static inline bool page_poisoning_enabled_static(void)
3747 {
3748 return static_branch_unlikely(&_page_poisoning_enabled);
3749 }
kernel_poison_pages(struct page * page,int numpages)3750 static inline void kernel_poison_pages(struct page *page, int numpages)
3751 {
3752 if (page_poisoning_enabled_static())
3753 __kernel_poison_pages(page, numpages);
3754 }
kernel_unpoison_pages(struct page * page,int numpages)3755 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3756 {
3757 if (page_poisoning_enabled_static())
3758 __kernel_unpoison_pages(page, numpages);
3759 }
3760 #else
page_poisoning_enabled(void)3761 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3762 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3763 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3764 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3765 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3766 #endif
3767
3768 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3769 static inline bool want_init_on_alloc(gfp_t flags)
3770 {
3771 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3772 &init_on_alloc))
3773 return true;
3774 return flags & __GFP_ZERO;
3775 }
3776
3777 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3778 static inline bool want_init_on_free(void)
3779 {
3780 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3781 &init_on_free);
3782 }
3783
3784 extern bool _debug_pagealloc_enabled_early;
3785 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3786
debug_pagealloc_enabled(void)3787 static inline bool debug_pagealloc_enabled(void)
3788 {
3789 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3790 _debug_pagealloc_enabled_early;
3791 }
3792
3793 /*
3794 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3795 * or when a false negative result is not harmful when called too early.
3796 */
debug_pagealloc_enabled_static(void)3797 static inline bool debug_pagealloc_enabled_static(void)
3798 {
3799 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3800 return false;
3801
3802 return static_branch_unlikely(&_debug_pagealloc_enabled);
3803 }
3804
3805 /*
3806 * To support DEBUG_PAGEALLOC architecture must ensure that
3807 * __kernel_map_pages() never fails
3808 */
3809 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3810 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3811 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3812 {
3813 if (debug_pagealloc_enabled_static())
3814 __kernel_map_pages(page, numpages, 1);
3815 }
3816
debug_pagealloc_unmap_pages(struct page * page,int numpages)3817 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3818 {
3819 if (debug_pagealloc_enabled_static())
3820 __kernel_map_pages(page, numpages, 0);
3821 }
3822
3823 extern unsigned int _debug_guardpage_minorder;
3824 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3825
debug_guardpage_minorder(void)3826 static inline unsigned int debug_guardpage_minorder(void)
3827 {
3828 return _debug_guardpage_minorder;
3829 }
3830
debug_guardpage_enabled(void)3831 static inline bool debug_guardpage_enabled(void)
3832 {
3833 return static_branch_unlikely(&_debug_guardpage_enabled);
3834 }
3835
page_is_guard(struct page * page)3836 static inline bool page_is_guard(struct page *page)
3837 {
3838 if (!debug_guardpage_enabled())
3839 return false;
3840
3841 return PageGuard(page);
3842 }
3843
3844 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3845 static inline bool set_page_guard(struct zone *zone, struct page *page,
3846 unsigned int order)
3847 {
3848 if (!debug_guardpage_enabled())
3849 return false;
3850 return __set_page_guard(zone, page, order);
3851 }
3852
3853 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3854 static inline void clear_page_guard(struct zone *zone, struct page *page,
3855 unsigned int order)
3856 {
3857 if (!debug_guardpage_enabled())
3858 return;
3859 __clear_page_guard(zone, page, order);
3860 }
3861
3862 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3863 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3864 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3865 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3866 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3867 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3868 static inline bool set_page_guard(struct zone *zone, struct page *page,
3869 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3870 static inline void clear_page_guard(struct zone *zone, struct page *page,
3871 unsigned int order) {}
3872 #endif /* CONFIG_DEBUG_PAGEALLOC */
3873
3874 #ifdef __HAVE_ARCH_GATE_AREA
3875 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3876 extern int in_gate_area_no_mm(unsigned long addr);
3877 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3878 #else
get_gate_vma(struct mm_struct * mm)3879 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3880 {
3881 return NULL;
3882 }
in_gate_area_no_mm(unsigned long addr)3883 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3884 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3885 {
3886 return 0;
3887 }
3888 #endif /* __HAVE_ARCH_GATE_AREA */
3889
3890 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3891
3892 void drop_slab(void);
3893
3894 #ifndef CONFIG_MMU
3895 #define randomize_va_space 0
3896 #else
3897 extern int randomize_va_space;
3898 #endif
3899
3900 const char * arch_vma_name(struct vm_area_struct *vma);
3901 #ifdef CONFIG_MMU
3902 void print_vma_addr(char *prefix, unsigned long rip);
3903 #else
print_vma_addr(char * prefix,unsigned long rip)3904 static inline void print_vma_addr(char *prefix, unsigned long rip)
3905 {
3906 }
3907 #endif
3908
3909 void *sparse_buffer_alloc(unsigned long size);
3910 unsigned long section_map_size(void);
3911 struct page * __populate_section_memmap(unsigned long pfn,
3912 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3913 struct dev_pagemap *pgmap);
3914 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3915 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3916 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3917 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3918 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3919 struct vmem_altmap *altmap, unsigned long ptpfn,
3920 unsigned long flags);
3921 void *vmemmap_alloc_block(unsigned long size, int node);
3922 struct vmem_altmap;
3923 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3924 struct vmem_altmap *altmap);
3925 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3926 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3927 unsigned long addr, unsigned long next);
3928 int vmemmap_check_pmd(pmd_t *pmd, int node,
3929 unsigned long addr, unsigned long next);
3930 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3931 int node, struct vmem_altmap *altmap);
3932 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3933 int node, struct vmem_altmap *altmap);
3934 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3935 struct vmem_altmap *altmap);
3936 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3937 unsigned long headsize);
3938 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3939 unsigned long headsize);
3940 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3941 unsigned long headsize);
3942 void vmemmap_populate_print_last(void);
3943 #ifdef CONFIG_MEMORY_HOTPLUG
3944 void vmemmap_free(unsigned long start, unsigned long end,
3945 struct vmem_altmap *altmap);
3946 #endif
3947
3948 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3949 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3950 {
3951 /* number of pfns from base where pfn_to_page() is valid */
3952 if (altmap)
3953 return altmap->reserve + altmap->free;
3954 return 0;
3955 }
3956
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3957 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3958 unsigned long nr_pfns)
3959 {
3960 altmap->alloc -= nr_pfns;
3961 }
3962 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3963 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3964 {
3965 return 0;
3966 }
3967
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3968 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3969 unsigned long nr_pfns)
3970 {
3971 }
3972 #endif
3973
3974 #define VMEMMAP_RESERVE_NR 2
3975 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3976 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3977 struct dev_pagemap *pgmap)
3978 {
3979 unsigned long nr_pages;
3980 unsigned long nr_vmemmap_pages;
3981
3982 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3983 return false;
3984
3985 nr_pages = pgmap_vmemmap_nr(pgmap);
3986 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3987 /*
3988 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3989 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3990 */
3991 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3992 }
3993 /*
3994 * If we don't have an architecture override, use the generic rule
3995 */
3996 #ifndef vmemmap_can_optimize
3997 #define vmemmap_can_optimize __vmemmap_can_optimize
3998 #endif
3999
4000 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)4001 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4002 struct dev_pagemap *pgmap)
4003 {
4004 return false;
4005 }
4006 #endif
4007
4008 enum mf_flags {
4009 MF_COUNT_INCREASED = 1 << 0,
4010 MF_ACTION_REQUIRED = 1 << 1,
4011 MF_MUST_KILL = 1 << 2,
4012 MF_SOFT_OFFLINE = 1 << 3,
4013 MF_UNPOISON = 1 << 4,
4014 MF_SW_SIMULATED = 1 << 5,
4015 MF_NO_RETRY = 1 << 6,
4016 MF_MEM_PRE_REMOVE = 1 << 7,
4017 };
4018 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4019 unsigned long count, int mf_flags);
4020 extern int memory_failure(unsigned long pfn, int flags);
4021 extern void memory_failure_queue_kick(int cpu);
4022 extern int unpoison_memory(unsigned long pfn);
4023 extern atomic_long_t num_poisoned_pages __read_mostly;
4024 extern int soft_offline_page(unsigned long pfn, int flags);
4025 #ifdef CONFIG_MEMORY_FAILURE
4026 /*
4027 * Sysfs entries for memory failure handling statistics.
4028 */
4029 extern const struct attribute_group memory_failure_attr_group;
4030 extern void memory_failure_queue(unsigned long pfn, int flags);
4031 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4032 bool *migratable_cleared);
4033 void num_poisoned_pages_inc(unsigned long pfn);
4034 void num_poisoned_pages_sub(unsigned long pfn, long i);
4035 #else
memory_failure_queue(unsigned long pfn,int flags)4036 static inline void memory_failure_queue(unsigned long pfn, int flags)
4037 {
4038 }
4039
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)4040 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4041 bool *migratable_cleared)
4042 {
4043 return 0;
4044 }
4045
num_poisoned_pages_inc(unsigned long pfn)4046 static inline void num_poisoned_pages_inc(unsigned long pfn)
4047 {
4048 }
4049
num_poisoned_pages_sub(unsigned long pfn,long i)4050 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4051 {
4052 }
4053 #endif
4054
4055 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4056 extern void memblk_nr_poison_inc(unsigned long pfn);
4057 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4058 #else
memblk_nr_poison_inc(unsigned long pfn)4059 static inline void memblk_nr_poison_inc(unsigned long pfn)
4060 {
4061 }
4062
memblk_nr_poison_sub(unsigned long pfn,long i)4063 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4064 {
4065 }
4066 #endif
4067
4068 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4069 static inline int arch_memory_failure(unsigned long pfn, int flags)
4070 {
4071 return -ENXIO;
4072 }
4073 #endif
4074
4075 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4076 static inline bool arch_is_platform_page(u64 paddr)
4077 {
4078 return false;
4079 }
4080 #endif
4081
4082 /*
4083 * Error handlers for various types of pages.
4084 */
4085 enum mf_result {
4086 MF_IGNORED, /* Error: cannot be handled */
4087 MF_FAILED, /* Error: handling failed */
4088 MF_DELAYED, /* Will be handled later */
4089 MF_RECOVERED, /* Successfully recovered */
4090 };
4091
4092 enum mf_action_page_type {
4093 MF_MSG_KERNEL,
4094 MF_MSG_KERNEL_HIGH_ORDER,
4095 MF_MSG_DIFFERENT_COMPOUND,
4096 MF_MSG_HUGE,
4097 MF_MSG_FREE_HUGE,
4098 MF_MSG_GET_HWPOISON,
4099 MF_MSG_UNMAP_FAILED,
4100 MF_MSG_DIRTY_SWAPCACHE,
4101 MF_MSG_CLEAN_SWAPCACHE,
4102 MF_MSG_DIRTY_MLOCKED_LRU,
4103 MF_MSG_CLEAN_MLOCKED_LRU,
4104 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4105 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4106 MF_MSG_DIRTY_LRU,
4107 MF_MSG_CLEAN_LRU,
4108 MF_MSG_TRUNCATED_LRU,
4109 MF_MSG_BUDDY,
4110 MF_MSG_DAX,
4111 MF_MSG_UNSPLIT_THP,
4112 MF_MSG_ALREADY_POISONED,
4113 MF_MSG_UNKNOWN,
4114 };
4115
4116 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4117 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4118 int copy_user_large_folio(struct folio *dst, struct folio *src,
4119 unsigned long addr_hint,
4120 struct vm_area_struct *vma);
4121 long copy_folio_from_user(struct folio *dst_folio,
4122 const void __user *usr_src,
4123 bool allow_pagefault);
4124
4125 /**
4126 * vma_is_special_huge - Are transhuge page-table entries considered special?
4127 * @vma: Pointer to the struct vm_area_struct to consider
4128 *
4129 * Whether transhuge page-table entries are considered "special" following
4130 * the definition in vm_normal_page().
4131 *
4132 * Return: true if transhuge page-table entries should be considered special,
4133 * false otherwise.
4134 */
vma_is_special_huge(const struct vm_area_struct * vma)4135 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4136 {
4137 return vma_is_dax(vma) || (vma->vm_file &&
4138 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4139 }
4140
4141 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4142
4143 #if MAX_NUMNODES > 1
4144 void __init setup_nr_node_ids(void);
4145 #else
setup_nr_node_ids(void)4146 static inline void setup_nr_node_ids(void) {}
4147 #endif
4148
4149 extern int memcmp_pages(struct page *page1, struct page *page2);
4150
pages_identical(struct page * page1,struct page * page2)4151 static inline int pages_identical(struct page *page1, struct page *page2)
4152 {
4153 return !memcmp_pages(page1, page2);
4154 }
4155
4156 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4157 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4158 pgoff_t first_index, pgoff_t nr,
4159 pgoff_t bitmap_pgoff,
4160 unsigned long *bitmap,
4161 pgoff_t *start,
4162 pgoff_t *end);
4163
4164 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4165 pgoff_t first_index, pgoff_t nr);
4166 #endif
4167
4168 #ifdef CONFIG_ANON_VMA_NAME
4169 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4170 unsigned long len_in,
4171 struct anon_vma_name *anon_name);
4172 #else
4173 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4174 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4175 unsigned long len_in, struct anon_vma_name *anon_name) {
4176 return 0;
4177 }
4178 #endif
4179
4180 #ifdef CONFIG_UNACCEPTED_MEMORY
4181
4182 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4183 void accept_memory(phys_addr_t start, unsigned long size);
4184
4185 #else
4186
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4187 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4188 unsigned long size)
4189 {
4190 return false;
4191 }
4192
accept_memory(phys_addr_t start,unsigned long size)4193 static inline void accept_memory(phys_addr_t start, unsigned long size)
4194 {
4195 }
4196
4197 #endif
4198
pfn_is_unaccepted_memory(unsigned long pfn)4199 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4200 {
4201 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4202 }
4203
4204 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4205 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4206
4207 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4208 int reserve_mem_release_by_name(const char *name);
4209
4210 #ifdef CONFIG_64BIT
4211 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4212 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4213 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4214 {
4215 /* noop on 32 bit */
4216 return 0;
4217 }
4218 #endif
4219
4220 /*
4221 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4222 * be zeroed or not.
4223 */
user_alloc_needs_zeroing(void)4224 static inline bool user_alloc_needs_zeroing(void)
4225 {
4226 /*
4227 * for user folios, arch with cache aliasing requires cache flush and
4228 * arc changes folio->flags to make icache coherent with dcache, so
4229 * always return false to make caller use
4230 * clear_user_page()/clear_user_highpage().
4231 */
4232 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4233 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4234 &init_on_alloc);
4235 }
4236
4237 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4238 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4239 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4240
4241
4242 /*
4243 * mseal of userspace process's system mappings.
4244 */
4245 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4246 #define VM_SEALED_SYSMAP VM_SEALED
4247 #else
4248 #define VM_SEALED_SYSMAP VM_NONE
4249 #endif
4250
4251 #endif /* _LINUX_MM_H */
4252