1 //===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the data structures and types used in C++ 10 // overload resolution. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_SEMA_OVERLOAD_H 15 #define LLVM_CLANG_SEMA_OVERLOAD_H 16 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclAccessPair.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/Type.h" 24 #include "clang/Basic/LLVM.h" 25 #include "clang/Basic/SourceLocation.h" 26 #include "clang/Sema/SemaFixItUtils.h" 27 #include "clang/Sema/TemplateDeduction.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/AlignOf.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include <cassert> 38 #include <cstddef> 39 #include <cstdint> 40 #include <utility> 41 42 namespace clang { 43 44 class APValue; 45 class ASTContext; 46 class Sema; 47 48 /// OverloadingResult - Capture the result of performing overload 49 /// resolution. 50 enum OverloadingResult { 51 /// Overload resolution succeeded. 52 OR_Success, 53 54 /// No viable function found. 55 OR_No_Viable_Function, 56 57 /// Ambiguous candidates found. 58 OR_Ambiguous, 59 60 /// Succeeded, but refers to a deleted function. 61 OR_Deleted 62 }; 63 64 enum OverloadCandidateDisplayKind { 65 /// Requests that all candidates be shown. Viable candidates will 66 /// be printed first. 67 OCD_AllCandidates, 68 69 /// Requests that only viable candidates be shown. 70 OCD_ViableCandidates, 71 72 /// Requests that only tied-for-best candidates be shown. 73 OCD_AmbiguousCandidates 74 }; 75 76 /// The parameter ordering that will be used for the candidate. This is 77 /// used to represent C++20 binary operator rewrites that reverse the order 78 /// of the arguments. If the parameter ordering is Reversed, the Args list is 79 /// reversed (but obviously the ParamDecls for the function are not). 80 /// 81 /// After forming an OverloadCandidate with reversed parameters, the list 82 /// of conversions will (as always) be indexed by argument, so will be 83 /// in reverse parameter order. 84 enum class OverloadCandidateParamOrder : char { Normal, Reversed }; 85 86 /// The kinds of rewrite we perform on overload candidates. Note that the 87 /// values here are chosen to serve as both bitflags and as a rank (lower 88 /// values are preferred by overload resolution). 89 enum OverloadCandidateRewriteKind : unsigned { 90 /// Candidate is not a rewritten candidate. 91 CRK_None = 0x0, 92 93 /// Candidate is a rewritten candidate with a different operator name. 94 CRK_DifferentOperator = 0x1, 95 96 /// Candidate is a rewritten candidate with a reversed order of parameters. 97 CRK_Reversed = 0x2, 98 }; 99 100 /// ImplicitConversionKind - The kind of implicit conversion used to 101 /// convert an argument to a parameter's type. The enumerator values 102 /// match with the table titled 'Conversions' in [over.ics.scs] and are listed 103 /// such that better conversion kinds have smaller values. 104 enum ImplicitConversionKind { 105 /// Identity conversion (no conversion) 106 ICK_Identity = 0, 107 108 /// Lvalue-to-rvalue conversion (C++ [conv.lval]) 109 ICK_Lvalue_To_Rvalue, 110 111 /// Array-to-pointer conversion (C++ [conv.array]) 112 ICK_Array_To_Pointer, 113 114 /// Function-to-pointer (C++ [conv.array]) 115 ICK_Function_To_Pointer, 116 117 /// Function pointer conversion (C++17 [conv.fctptr]) 118 ICK_Function_Conversion, 119 120 /// Qualification conversions (C++ [conv.qual]) 121 ICK_Qualification, 122 123 /// Integral promotions (C++ [conv.prom]) 124 ICK_Integral_Promotion, 125 126 /// Floating point promotions (C++ [conv.fpprom]) 127 ICK_Floating_Promotion, 128 129 /// Complex promotions (Clang extension) 130 ICK_Complex_Promotion, 131 132 /// Integral conversions (C++ [conv.integral]) 133 ICK_Integral_Conversion, 134 135 /// Floating point conversions (C++ [conv.double] 136 ICK_Floating_Conversion, 137 138 /// Complex conversions (C99 6.3.1.6) 139 ICK_Complex_Conversion, 140 141 /// Floating-integral conversions (C++ [conv.fpint]) 142 ICK_Floating_Integral, 143 144 /// Pointer conversions (C++ [conv.ptr]) 145 ICK_Pointer_Conversion, 146 147 /// Pointer-to-member conversions (C++ [conv.mem]) 148 ICK_Pointer_Member, 149 150 /// Boolean conversions (C++ [conv.bool]) 151 ICK_Boolean_Conversion, 152 153 /// Conversions between compatible types in C99 154 ICK_Compatible_Conversion, 155 156 /// Derived-to-base (C++ [over.best.ics]) 157 ICK_Derived_To_Base, 158 159 /// Vector conversions 160 ICK_Vector_Conversion, 161 162 /// Arm SVE Vector conversions 163 ICK_SVE_Vector_Conversion, 164 165 /// RISC-V RVV Vector conversions 166 ICK_RVV_Vector_Conversion, 167 168 /// A vector splat from an arithmetic type 169 ICK_Vector_Splat, 170 171 /// Complex-real conversions (C99 6.3.1.7) 172 ICK_Complex_Real, 173 174 /// Block Pointer conversions 175 ICK_Block_Pointer_Conversion, 176 177 /// Transparent Union Conversions 178 ICK_TransparentUnionConversion, 179 180 /// Objective-C ARC writeback conversion 181 ICK_Writeback_Conversion, 182 183 /// Zero constant to event (OpenCL1.2 6.12.10) 184 ICK_Zero_Event_Conversion, 185 186 /// Zero constant to queue 187 ICK_Zero_Queue_Conversion, 188 189 /// Conversions allowed in C, but not C++ 190 ICK_C_Only_Conversion, 191 192 /// C-only conversion between pointers with incompatible types 193 ICK_Incompatible_Pointer_Conversion, 194 195 /// Fixed point type conversions according to N1169. 196 ICK_Fixed_Point_Conversion, 197 198 /// HLSL vector truncation. 199 ICK_HLSL_Vector_Truncation, 200 201 /// HLSL non-decaying array rvalue cast. 202 ICK_HLSL_Array_RValue, 203 204 // HLSL vector splat from scalar or boolean type. 205 ICK_HLSL_Vector_Splat, 206 207 /// The number of conversion kinds 208 ICK_Num_Conversion_Kinds, 209 }; 210 211 /// ImplicitConversionRank - The rank of an implicit conversion 212 /// kind. The enumerator values match with Table 9 of (C++ 213 /// 13.3.3.1.1) and are listed such that better conversion ranks 214 /// have smaller values. 215 enum ImplicitConversionRank { 216 /// Exact Match 217 ICR_Exact_Match = 0, 218 219 /// HLSL Scalar Widening 220 ICR_HLSL_Scalar_Widening, 221 222 /// Promotion 223 ICR_Promotion, 224 225 /// HLSL Scalar Widening with promotion 226 ICR_HLSL_Scalar_Widening_Promotion, 227 228 /// HLSL Matching Dimension Reduction 229 ICR_HLSL_Dimension_Reduction, 230 231 /// Conversion 232 ICR_Conversion, 233 234 /// OpenCL Scalar Widening 235 ICR_OCL_Scalar_Widening, 236 237 /// HLSL Scalar Widening with conversion 238 ICR_HLSL_Scalar_Widening_Conversion, 239 240 /// Complex <-> Real conversion 241 ICR_Complex_Real_Conversion, 242 243 /// ObjC ARC writeback conversion 244 ICR_Writeback_Conversion, 245 246 /// Conversion only allowed in the C standard (e.g. void* to char*). 247 ICR_C_Conversion, 248 249 /// Conversion not allowed by the C standard, but that we accept as an 250 /// extension anyway. 251 ICR_C_Conversion_Extension, 252 253 /// HLSL Dimension reduction with promotion 254 ICR_HLSL_Dimension_Reduction_Promotion, 255 256 /// HLSL Dimension reduction with conversion 257 ICR_HLSL_Dimension_Reduction_Conversion, 258 }; 259 260 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind); 261 262 ImplicitConversionRank 263 GetDimensionConversionRank(ImplicitConversionRank Base, 264 ImplicitConversionKind Dimension); 265 266 /// NarrowingKind - The kind of narrowing conversion being performed by a 267 /// standard conversion sequence according to C++11 [dcl.init.list]p7. 268 enum NarrowingKind { 269 /// Not a narrowing conversion. 270 NK_Not_Narrowing, 271 272 /// A narrowing conversion by virtue of the source and destination types. 273 NK_Type_Narrowing, 274 275 /// A narrowing conversion, because a constant expression got narrowed. 276 NK_Constant_Narrowing, 277 278 /// A narrowing conversion, because a non-constant-expression variable might 279 /// have got narrowed. 280 NK_Variable_Narrowing, 281 282 /// Cannot tell whether this is a narrowing conversion because the 283 /// expression is value-dependent. 284 NK_Dependent_Narrowing, 285 }; 286 287 /// StandardConversionSequence - represents a standard conversion 288 /// sequence (C++ 13.3.3.1.1). A standard conversion sequence 289 /// contains between zero and three conversions. If a particular 290 /// conversion is not needed, it will be set to the identity conversion 291 /// (ICK_Identity). 292 class StandardConversionSequence { 293 public: 294 /// First -- The first conversion can be an lvalue-to-rvalue 295 /// conversion, array-to-pointer conversion, or 296 /// function-to-pointer conversion. 297 ImplicitConversionKind First : 8; 298 299 /// Second - The second conversion can be an integral promotion, 300 /// floating point promotion, integral conversion, floating point 301 /// conversion, floating-integral conversion, pointer conversion, 302 /// pointer-to-member conversion, or boolean conversion. 303 ImplicitConversionKind Second : 8; 304 305 /// Dimension - Between the second and third conversion a vector or matrix 306 /// dimension conversion may occur. If this is not ICK_Identity this 307 /// conversion truncates the vector or matrix, or extends a scalar. 308 ImplicitConversionKind Dimension : 8; 309 310 /// Third - The third conversion can be a qualification conversion 311 /// or a function conversion. 312 ImplicitConversionKind Third : 8; 313 314 /// Whether this is the deprecated conversion of a 315 /// string literal to a pointer to non-const character data 316 /// (C++ 4.2p2). 317 LLVM_PREFERRED_TYPE(bool) 318 unsigned DeprecatedStringLiteralToCharPtr : 1; 319 320 /// Whether the qualification conversion involves a change in the 321 /// Objective-C lifetime (for automatic reference counting). 322 LLVM_PREFERRED_TYPE(bool) 323 unsigned QualificationIncludesObjCLifetime : 1; 324 325 /// IncompatibleObjC - Whether this is an Objective-C conversion 326 /// that we should warn about (if we actually use it). 327 LLVM_PREFERRED_TYPE(bool) 328 unsigned IncompatibleObjC : 1; 329 330 /// ReferenceBinding - True when this is a reference binding 331 /// (C++ [over.ics.ref]). 332 LLVM_PREFERRED_TYPE(bool) 333 unsigned ReferenceBinding : 1; 334 335 /// DirectBinding - True when this is a reference binding that is a 336 /// direct binding (C++ [dcl.init.ref]). 337 LLVM_PREFERRED_TYPE(bool) 338 unsigned DirectBinding : 1; 339 340 /// Whether this is an lvalue reference binding (otherwise, it's 341 /// an rvalue reference binding). 342 LLVM_PREFERRED_TYPE(bool) 343 unsigned IsLvalueReference : 1; 344 345 /// Whether we're binding to a function lvalue. 346 LLVM_PREFERRED_TYPE(bool) 347 unsigned BindsToFunctionLvalue : 1; 348 349 /// Whether we're binding to an rvalue. 350 LLVM_PREFERRED_TYPE(bool) 351 unsigned BindsToRvalue : 1; 352 353 /// Whether this binds an implicit object argument to a 354 /// non-static member function without a ref-qualifier. 355 LLVM_PREFERRED_TYPE(bool) 356 unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1; 357 358 /// Whether this binds a reference to an object with a different 359 /// Objective-C lifetime qualifier. 360 LLVM_PREFERRED_TYPE(bool) 361 unsigned ObjCLifetimeConversionBinding : 1; 362 363 /// FromType - The type that this conversion is converting 364 /// from. This is an opaque pointer that can be translated into a 365 /// QualType. 366 void *FromTypePtr; 367 368 /// ToType - The types that this conversion is converting to in 369 /// each step. This is an opaque pointer that can be translated 370 /// into a QualType. 371 void *ToTypePtrs[3]; 372 373 /// CopyConstructor - The copy constructor that is used to perform 374 /// this conversion, when the conversion is actually just the 375 /// initialization of an object via copy constructor. Such 376 /// conversions are either identity conversions or derived-to-base 377 /// conversions. 378 CXXConstructorDecl *CopyConstructor; 379 DeclAccessPair FoundCopyConstructor; 380 setFromType(QualType T)381 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } 382 setToType(unsigned Idx,QualType T)383 void setToType(unsigned Idx, QualType T) { 384 assert(Idx < 3 && "To type index is out of range"); 385 ToTypePtrs[Idx] = T.getAsOpaquePtr(); 386 } 387 setAllToTypes(QualType T)388 void setAllToTypes(QualType T) { 389 ToTypePtrs[0] = T.getAsOpaquePtr(); 390 ToTypePtrs[1] = ToTypePtrs[0]; 391 ToTypePtrs[2] = ToTypePtrs[0]; 392 } 393 getFromType()394 QualType getFromType() const { 395 return QualType::getFromOpaquePtr(FromTypePtr); 396 } 397 getToType(unsigned Idx)398 QualType getToType(unsigned Idx) const { 399 assert(Idx < 3 && "To type index is out of range"); 400 return QualType::getFromOpaquePtr(ToTypePtrs[Idx]); 401 } 402 403 void setAsIdentityConversion(); 404 isIdentityConversion()405 bool isIdentityConversion() const { 406 return Second == ICK_Identity && Dimension == ICK_Identity && 407 Third == ICK_Identity; 408 } 409 410 ImplicitConversionRank getRank() const; 411 NarrowingKind 412 getNarrowingKind(ASTContext &Context, const Expr *Converted, 413 APValue &ConstantValue, QualType &ConstantType, 414 bool IgnoreFloatToIntegralConversion = false) const; 415 bool isPointerConversionToBool() const; 416 bool isPointerConversionToVoidPointer(ASTContext& Context) const; 417 void dump() const; 418 }; 419 420 /// UserDefinedConversionSequence - Represents a user-defined 421 /// conversion sequence (C++ 13.3.3.1.2). 422 struct UserDefinedConversionSequence { 423 /// Represents the standard conversion that occurs before 424 /// the actual user-defined conversion. 425 /// 426 /// C++11 13.3.3.1.2p1: 427 /// If the user-defined conversion is specified by a constructor 428 /// (12.3.1), the initial standard conversion sequence converts 429 /// the source type to the type required by the argument of the 430 /// constructor. If the user-defined conversion is specified by 431 /// a conversion function (12.3.2), the initial standard 432 /// conversion sequence converts the source type to the implicit 433 /// object parameter of the conversion function. 434 StandardConversionSequence Before; 435 436 /// EllipsisConversion - When this is true, it means user-defined 437 /// conversion sequence starts with a ... (ellipsis) conversion, instead of 438 /// a standard conversion. In this case, 'Before' field must be ignored. 439 // FIXME. I much rather put this as the first field. But there seems to be 440 // a gcc code gen. bug which causes a crash in a test. Putting it here seems 441 // to work around the crash. 442 bool EllipsisConversion : 1; 443 444 /// HadMultipleCandidates - When this is true, it means that the 445 /// conversion function was resolved from an overloaded set having 446 /// size greater than 1. 447 bool HadMultipleCandidates : 1; 448 449 /// After - Represents the standard conversion that occurs after 450 /// the actual user-defined conversion. 451 StandardConversionSequence After; 452 453 /// ConversionFunction - The function that will perform the 454 /// user-defined conversion. Null if the conversion is an 455 /// aggregate initialization from an initializer list. 456 FunctionDecl* ConversionFunction; 457 458 /// The declaration that we found via name lookup, which might be 459 /// the same as \c ConversionFunction or it might be a using declaration 460 /// that refers to \c ConversionFunction. 461 DeclAccessPair FoundConversionFunction; 462 463 void dump() const; 464 }; 465 466 /// Represents an ambiguous user-defined conversion sequence. 467 struct AmbiguousConversionSequence { 468 using ConversionSet = 469 SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>; 470 471 void *FromTypePtr; 472 void *ToTypePtr; 473 char Buffer[sizeof(ConversionSet)]; 474 getFromTypeAmbiguousConversionSequence475 QualType getFromType() const { 476 return QualType::getFromOpaquePtr(FromTypePtr); 477 } 478 getToTypeAmbiguousConversionSequence479 QualType getToType() const { 480 return QualType::getFromOpaquePtr(ToTypePtr); 481 } 482 setFromTypeAmbiguousConversionSequence483 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } setToTypeAmbiguousConversionSequence484 void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); } 485 conversionsAmbiguousConversionSequence486 ConversionSet &conversions() { 487 return *reinterpret_cast<ConversionSet*>(Buffer); 488 } 489 conversionsAmbiguousConversionSequence490 const ConversionSet &conversions() const { 491 return *reinterpret_cast<const ConversionSet*>(Buffer); 492 } 493 addConversionAmbiguousConversionSequence494 void addConversion(NamedDecl *Found, FunctionDecl *D) { 495 conversions().push_back(std::make_pair(Found, D)); 496 } 497 498 using iterator = ConversionSet::iterator; 499 beginAmbiguousConversionSequence500 iterator begin() { return conversions().begin(); } endAmbiguousConversionSequence501 iterator end() { return conversions().end(); } 502 503 using const_iterator = ConversionSet::const_iterator; 504 beginAmbiguousConversionSequence505 const_iterator begin() const { return conversions().begin(); } endAmbiguousConversionSequence506 const_iterator end() const { return conversions().end(); } 507 508 void construct(); 509 void destruct(); 510 void copyFrom(const AmbiguousConversionSequence &); 511 }; 512 513 /// BadConversionSequence - Records information about an invalid 514 /// conversion sequence. 515 struct BadConversionSequence { 516 enum FailureKind { 517 no_conversion, 518 unrelated_class, 519 bad_qualifiers, 520 lvalue_ref_to_rvalue, 521 rvalue_ref_to_lvalue, 522 too_few_initializers, 523 too_many_initializers, 524 }; 525 526 // This can be null, e.g. for implicit object arguments. 527 Expr *FromExpr; 528 529 FailureKind Kind; 530 531 private: 532 // The type we're converting from (an opaque QualType). 533 void *FromTy; 534 535 // The type we're converting to (an opaque QualType). 536 void *ToTy; 537 538 public: initBadConversionSequence539 void init(FailureKind K, Expr *From, QualType To) { 540 init(K, From->getType(), To); 541 FromExpr = From; 542 } 543 initBadConversionSequence544 void init(FailureKind K, QualType From, QualType To) { 545 Kind = K; 546 FromExpr = nullptr; 547 setFromType(From); 548 setToType(To); 549 } 550 getFromTypeBadConversionSequence551 QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); } getToTypeBadConversionSequence552 QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); } 553 setFromExprBadConversionSequence554 void setFromExpr(Expr *E) { 555 FromExpr = E; 556 setFromType(E->getType()); 557 } 558 setFromTypeBadConversionSequence559 void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); } setToTypeBadConversionSequence560 void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); } 561 }; 562 563 /// ImplicitConversionSequence - Represents an implicit conversion 564 /// sequence, which may be a standard conversion sequence 565 /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2), 566 /// or an ellipsis conversion sequence (C++ 13.3.3.1.3). 567 class ImplicitConversionSequence { 568 public: 569 /// Kind - The kind of implicit conversion sequence. BadConversion 570 /// specifies that there is no conversion from the source type to 571 /// the target type. AmbiguousConversion represents the unique 572 /// ambiguous conversion (C++0x [over.best.ics]p10). 573 /// StaticObjectArgumentConversion represents the conversion rules for 574 /// the synthesized first argument of calls to static member functions 575 /// ([over.best.ics.general]p8). 576 enum Kind { 577 StandardConversion = 0, 578 StaticObjectArgumentConversion, 579 UserDefinedConversion, 580 AmbiguousConversion, 581 EllipsisConversion, 582 BadConversion 583 }; 584 585 private: 586 enum { 587 Uninitialized = BadConversion + 1 588 }; 589 590 /// ConversionKind - The kind of implicit conversion sequence. 591 LLVM_PREFERRED_TYPE(Kind) 592 unsigned ConversionKind : 31; 593 594 // Whether the initializer list was of an incomplete array. 595 LLVM_PREFERRED_TYPE(bool) 596 unsigned InitializerListOfIncompleteArray : 1; 597 598 /// When initializing an array or std::initializer_list from an 599 /// initializer-list, this is the array or std::initializer_list type being 600 /// initialized. The remainder of the conversion sequence, including ToType, 601 /// describe the worst conversion of an initializer to an element of the 602 /// array or std::initializer_list. (Note, 'worst' is not well defined.) 603 QualType InitializerListContainerType; 604 setKind(Kind K)605 void setKind(Kind K) { 606 destruct(); 607 ConversionKind = K; 608 } 609 destruct()610 void destruct() { 611 if (ConversionKind == AmbiguousConversion) Ambiguous.destruct(); 612 } 613 614 public: 615 union { 616 /// When ConversionKind == StandardConversion, provides the 617 /// details of the standard conversion sequence. 618 StandardConversionSequence Standard; 619 620 /// When ConversionKind == UserDefinedConversion, provides the 621 /// details of the user-defined conversion sequence. 622 UserDefinedConversionSequence UserDefined; 623 624 /// When ConversionKind == AmbiguousConversion, provides the 625 /// details of the ambiguous conversion. 626 AmbiguousConversionSequence Ambiguous; 627 628 /// When ConversionKind == BadConversion, provides the details 629 /// of the bad conversion. 630 BadConversionSequence Bad; 631 }; 632 ImplicitConversionSequence()633 ImplicitConversionSequence() 634 : ConversionKind(Uninitialized), 635 InitializerListOfIncompleteArray(false) { 636 Standard.setAsIdentityConversion(); 637 } 638 ImplicitConversionSequence(const ImplicitConversionSequence & Other)639 ImplicitConversionSequence(const ImplicitConversionSequence &Other) 640 : ConversionKind(Other.ConversionKind), 641 InitializerListOfIncompleteArray( 642 Other.InitializerListOfIncompleteArray), 643 InitializerListContainerType(Other.InitializerListContainerType) { 644 switch (ConversionKind) { 645 case Uninitialized: break; 646 case StandardConversion: Standard = Other.Standard; break; 647 case StaticObjectArgumentConversion: 648 break; 649 case UserDefinedConversion: UserDefined = Other.UserDefined; break; 650 case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break; 651 case EllipsisConversion: break; 652 case BadConversion: Bad = Other.Bad; break; 653 } 654 } 655 656 ImplicitConversionSequence & 657 operator=(const ImplicitConversionSequence &Other) { 658 destruct(); 659 new (this) ImplicitConversionSequence(Other); 660 return *this; 661 } 662 ~ImplicitConversionSequence()663 ~ImplicitConversionSequence() { 664 destruct(); 665 } 666 getKind()667 Kind getKind() const { 668 assert(isInitialized() && "querying uninitialized conversion"); 669 return Kind(ConversionKind); 670 } 671 672 /// Return a ranking of the implicit conversion sequence 673 /// kind, where smaller ranks represent better conversion 674 /// sequences. 675 /// 676 /// In particular, this routine gives user-defined conversion 677 /// sequences and ambiguous conversion sequences the same rank, 678 /// per C++ [over.best.ics]p10. getKindRank()679 unsigned getKindRank() const { 680 switch (getKind()) { 681 case StandardConversion: 682 case StaticObjectArgumentConversion: 683 return 0; 684 685 case UserDefinedConversion: 686 case AmbiguousConversion: 687 return 1; 688 689 case EllipsisConversion: 690 return 2; 691 692 case BadConversion: 693 return 3; 694 } 695 696 llvm_unreachable("Invalid ImplicitConversionSequence::Kind!"); 697 } 698 isBad()699 bool isBad() const { return getKind() == BadConversion; } isStandard()700 bool isStandard() const { return getKind() == StandardConversion; } isStaticObjectArgument()701 bool isStaticObjectArgument() const { 702 return getKind() == StaticObjectArgumentConversion; 703 } isEllipsis()704 bool isEllipsis() const { return getKind() == EllipsisConversion; } isAmbiguous()705 bool isAmbiguous() const { return getKind() == AmbiguousConversion; } isUserDefined()706 bool isUserDefined() const { return getKind() == UserDefinedConversion; } isFailure()707 bool isFailure() const { return isBad() || isAmbiguous(); } 708 709 /// Determines whether this conversion sequence has been 710 /// initialized. Most operations should never need to query 711 /// uninitialized conversions and should assert as above. isInitialized()712 bool isInitialized() const { return ConversionKind != Uninitialized; } 713 714 /// Sets this sequence as a bad conversion for an explicit argument. setBad(BadConversionSequence::FailureKind Failure,Expr * FromExpr,QualType ToType)715 void setBad(BadConversionSequence::FailureKind Failure, 716 Expr *FromExpr, QualType ToType) { 717 setKind(BadConversion); 718 Bad.init(Failure, FromExpr, ToType); 719 } 720 721 /// Sets this sequence as a bad conversion for an implicit argument. setBad(BadConversionSequence::FailureKind Failure,QualType FromType,QualType ToType)722 void setBad(BadConversionSequence::FailureKind Failure, 723 QualType FromType, QualType ToType) { 724 setKind(BadConversion); 725 Bad.init(Failure, FromType, ToType); 726 } 727 setStandard()728 void setStandard() { setKind(StandardConversion); } setStaticObjectArgument()729 void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); } setEllipsis()730 void setEllipsis() { setKind(EllipsisConversion); } setUserDefined()731 void setUserDefined() { setKind(UserDefinedConversion); } 732 setAmbiguous()733 void setAmbiguous() { 734 if (ConversionKind == AmbiguousConversion) return; 735 ConversionKind = AmbiguousConversion; 736 Ambiguous.construct(); 737 } 738 setAsIdentityConversion(QualType T)739 void setAsIdentityConversion(QualType T) { 740 setStandard(); 741 Standard.setAsIdentityConversion(); 742 Standard.setFromType(T); 743 Standard.setAllToTypes(T); 744 } 745 746 // True iff this is a conversion sequence from an initializer list to an 747 // array or std::initializer. hasInitializerListContainerType()748 bool hasInitializerListContainerType() const { 749 return !InitializerListContainerType.isNull(); 750 } setInitializerListContainerType(QualType T,bool IA)751 void setInitializerListContainerType(QualType T, bool IA) { 752 InitializerListContainerType = T; 753 InitializerListOfIncompleteArray = IA; 754 } isInitializerListOfIncompleteArray()755 bool isInitializerListOfIncompleteArray() const { 756 return InitializerListOfIncompleteArray; 757 } getInitializerListContainerType()758 QualType getInitializerListContainerType() const { 759 assert(hasInitializerListContainerType() && 760 "not initializer list container"); 761 return InitializerListContainerType; 762 } 763 764 /// Form an "implicit" conversion sequence from nullptr_t to bool, for a 765 /// direct-initialization of a bool object from nullptr_t. getNullptrToBool(QualType SourceType,QualType DestType,bool NeedLValToRVal)766 static ImplicitConversionSequence getNullptrToBool(QualType SourceType, 767 QualType DestType, 768 bool NeedLValToRVal) { 769 ImplicitConversionSequence ICS; 770 ICS.setStandard(); 771 ICS.Standard.setAsIdentityConversion(); 772 ICS.Standard.setFromType(SourceType); 773 if (NeedLValToRVal) 774 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 775 ICS.Standard.setToType(0, SourceType); 776 ICS.Standard.Second = ICK_Boolean_Conversion; 777 ICS.Standard.setToType(1, DestType); 778 ICS.Standard.setToType(2, DestType); 779 return ICS; 780 } 781 782 // The result of a comparison between implicit conversion 783 // sequences. Use Sema::CompareImplicitConversionSequences to 784 // actually perform the comparison. 785 enum CompareKind { 786 Better = -1, 787 Indistinguishable = 0, 788 Worse = 1 789 }; 790 791 void DiagnoseAmbiguousConversion(Sema &S, 792 SourceLocation CaretLoc, 793 const PartialDiagnostic &PDiag) const; 794 795 void dump() const; 796 }; 797 798 enum OverloadFailureKind { 799 ovl_fail_too_many_arguments, 800 ovl_fail_too_few_arguments, 801 ovl_fail_bad_conversion, 802 ovl_fail_bad_deduction, 803 804 /// This conversion candidate was not considered because it 805 /// duplicates the work of a trivial or derived-to-base 806 /// conversion. 807 ovl_fail_trivial_conversion, 808 809 /// This conversion candidate was not considered because it is 810 /// an illegal instantiation of a constructor temploid: it is 811 /// callable with one argument, we only have one argument, and 812 /// its first parameter type is exactly the type of the class. 813 /// 814 /// Defining such a constructor directly is illegal, and 815 /// template-argument deduction is supposed to ignore such 816 /// instantiations, but we can still get one with the right 817 /// kind of implicit instantiation. 818 ovl_fail_illegal_constructor, 819 820 /// This conversion candidate is not viable because its result 821 /// type is not implicitly convertible to the desired type. 822 ovl_fail_bad_final_conversion, 823 824 /// This conversion function template specialization candidate is not 825 /// viable because the final conversion was not an exact match. 826 ovl_fail_final_conversion_not_exact, 827 828 /// (CUDA) This candidate was not viable because the callee 829 /// was not accessible from the caller's target (i.e. host->device, 830 /// global->host, device->host). 831 ovl_fail_bad_target, 832 833 /// This candidate function was not viable because an enable_if 834 /// attribute disabled it. 835 ovl_fail_enable_if, 836 837 /// This candidate constructor or conversion function is explicit but 838 /// the context doesn't permit explicit functions. 839 ovl_fail_explicit, 840 841 /// This candidate was not viable because its address could not be taken. 842 ovl_fail_addr_not_available, 843 844 /// This inherited constructor is not viable because it would slice the 845 /// argument. 846 ovl_fail_inhctor_slice, 847 848 /// This candidate was not viable because it is a non-default multiversioned 849 /// function. 850 ovl_non_default_multiversion_function, 851 852 /// This constructor/conversion candidate fail due to an address space 853 /// mismatch between the object being constructed and the overload 854 /// candidate. 855 ovl_fail_object_addrspace_mismatch, 856 857 /// This candidate was not viable because its associated constraints were 858 /// not satisfied. 859 ovl_fail_constraints_not_satisfied, 860 861 /// This candidate was not viable because it has internal linkage and is 862 /// from a different module unit than the use. 863 ovl_fail_module_mismatched, 864 }; 865 866 /// A list of implicit conversion sequences for the arguments of an 867 /// OverloadCandidate. 868 using ConversionSequenceList = 869 llvm::MutableArrayRef<ImplicitConversionSequence>; 870 871 /// OverloadCandidate - A single candidate in an overload set (C++ 13.3). 872 struct OverloadCandidate { 873 /// Function - The actual function that this candidate 874 /// represents. When NULL, this is a built-in candidate 875 /// (C++ [over.oper]) or a surrogate for a conversion to a 876 /// function pointer or reference (C++ [over.call.object]). 877 FunctionDecl *Function; 878 879 /// FoundDecl - The original declaration that was looked up / 880 /// invented / otherwise found, together with its access. 881 /// Might be a UsingShadowDecl or a FunctionTemplateDecl. 882 DeclAccessPair FoundDecl; 883 884 /// BuiltinParamTypes - Provides the parameter types of a built-in overload 885 /// candidate. Only valid when Function is NULL. 886 QualType BuiltinParamTypes[3]; 887 888 /// Surrogate - The conversion function for which this candidate 889 /// is a surrogate, but only if IsSurrogate is true. 890 CXXConversionDecl *Surrogate; 891 892 /// The conversion sequences used to convert the function arguments 893 /// to the function parameters. Note that these are indexed by argument, 894 /// so may not match the parameter order of Function. 895 ConversionSequenceList Conversions; 896 897 /// The FixIt hints which can be used to fix the Bad candidate. 898 ConversionFixItGenerator Fix; 899 900 /// Viable - True to indicate that this overload candidate is viable. 901 bool Viable : 1; 902 903 /// Whether this candidate is the best viable function, or tied for being 904 /// the best viable function. 905 /// 906 /// For an ambiguous overload resolution, indicates whether this candidate 907 /// was part of the ambiguity kernel: the minimal non-empty set of viable 908 /// candidates such that all elements of the ambiguity kernel are better 909 /// than all viable candidates not in the ambiguity kernel. 910 bool Best : 1; 911 912 /// IsSurrogate - True to indicate that this candidate is a 913 /// surrogate for a conversion to a function pointer or reference 914 /// (C++ [over.call.object]). 915 bool IsSurrogate : 1; 916 917 /// IgnoreObjectArgument - True to indicate that the first 918 /// argument's conversion, which for this function represents the 919 /// implicit object argument, should be ignored. This will be true 920 /// when the candidate is a static member function (where the 921 /// implicit object argument is just a placeholder) or a 922 /// non-static member function when the call doesn't have an 923 /// object argument. 924 bool IgnoreObjectArgument : 1; 925 926 bool TookAddressOfOverload : 1; 927 928 /// True if the candidate was found using ADL. 929 CallExpr::ADLCallKind IsADLCandidate : 1; 930 931 /// Whether this is a rewritten candidate, and if so, of what kind? 932 LLVM_PREFERRED_TYPE(OverloadCandidateRewriteKind) 933 unsigned RewriteKind : 2; 934 935 /// FailureKind - The reason why this candidate is not viable. 936 /// Actually an OverloadFailureKind. 937 unsigned char FailureKind; 938 939 /// The number of call arguments that were explicitly provided, 940 /// to be used while performing partial ordering of function templates. 941 unsigned ExplicitCallArguments; 942 943 union { 944 DeductionFailureInfo DeductionFailure; 945 946 /// FinalConversion - For a conversion function (where Function is 947 /// a CXXConversionDecl), the standard conversion that occurs 948 /// after the call to the overload candidate to convert the result 949 /// of calling the conversion function to the required type. 950 StandardConversionSequence FinalConversion; 951 }; 952 953 /// Get RewriteKind value in OverloadCandidateRewriteKind type (This 954 /// function is to workaround the spurious GCC bitfield enum warning) getRewriteKindOverloadCandidate955 OverloadCandidateRewriteKind getRewriteKind() const { 956 return static_cast<OverloadCandidateRewriteKind>(RewriteKind); 957 } 958 isReversedOverloadCandidate959 bool isReversed() const { return getRewriteKind() & CRK_Reversed; } 960 961 /// hasAmbiguousConversion - Returns whether this overload 962 /// candidate requires an ambiguous conversion or not. hasAmbiguousConversionOverloadCandidate963 bool hasAmbiguousConversion() const { 964 for (auto &C : Conversions) { 965 if (!C.isInitialized()) return false; 966 if (C.isAmbiguous()) return true; 967 } 968 return false; 969 } 970 TryToFixBadConversionOverloadCandidate971 bool TryToFixBadConversion(unsigned Idx, Sema &S) { 972 bool CanFix = Fix.tryToFixConversion( 973 Conversions[Idx].Bad.FromExpr, 974 Conversions[Idx].Bad.getFromType(), 975 Conversions[Idx].Bad.getToType(), S); 976 977 // If at least one conversion fails, the candidate cannot be fixed. 978 if (!CanFix) 979 Fix.clear(); 980 981 return CanFix; 982 } 983 getNumParamsOverloadCandidate984 unsigned getNumParams() const { 985 if (IsSurrogate) { 986 QualType STy = Surrogate->getConversionType(); 987 while (STy->isPointerType() || STy->isReferenceType()) 988 STy = STy->getPointeeType(); 989 return STy->castAs<FunctionProtoType>()->getNumParams(); 990 } 991 if (Function) 992 return Function->getNumParams(); 993 return ExplicitCallArguments; 994 } 995 996 bool NotValidBecauseConstraintExprHasError() const; 997 998 private: 999 friend class OverloadCandidateSet; OverloadCandidateOverloadCandidate1000 OverloadCandidate() 1001 : IsSurrogate(false), IgnoreObjectArgument(false), 1002 TookAddressOfOverload(false), IsADLCandidate(CallExpr::NotADL), 1003 RewriteKind(CRK_None) {} 1004 }; 1005 1006 /// OverloadCandidateSet - A set of overload candidates, used in C++ 1007 /// overload resolution (C++ 13.3). 1008 class OverloadCandidateSet { 1009 public: 1010 enum CandidateSetKind { 1011 /// Normal lookup. 1012 CSK_Normal, 1013 1014 /// C++ [over.match.oper]: 1015 /// Lookup of operator function candidates in a call using operator 1016 /// syntax. Candidates that have no parameters of class type will be 1017 /// skipped unless there is a parameter of (reference to) enum type and 1018 /// the corresponding argument is of the same enum type. 1019 CSK_Operator, 1020 1021 /// C++ [over.match.copy]: 1022 /// Copy-initialization of an object of class type by user-defined 1023 /// conversion. 1024 CSK_InitByUserDefinedConversion, 1025 1026 /// C++ [over.match.ctor], [over.match.list] 1027 /// Initialization of an object of class type by constructor, 1028 /// using either a parenthesized or braced list of arguments. 1029 CSK_InitByConstructor, 1030 1031 /// C++ [over.match.call.general] 1032 /// Resolve a call through the address of an overload set. 1033 CSK_AddressOfOverloadSet, 1034 }; 1035 1036 /// Information about operator rewrites to consider when adding operator 1037 /// functions to a candidate set. 1038 struct OperatorRewriteInfo { OperatorRewriteInfoOperatorRewriteInfo1039 OperatorRewriteInfo() 1040 : OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {} OperatorRewriteInfoOperatorRewriteInfo1041 OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc, 1042 bool AllowRewritten) 1043 : OriginalOperator(Op), OpLoc(OpLoc), 1044 AllowRewrittenCandidates(AllowRewritten) {} 1045 1046 /// The original operator as written in the source. 1047 OverloadedOperatorKind OriginalOperator; 1048 /// The source location of the operator. 1049 SourceLocation OpLoc; 1050 /// Whether we should include rewritten candidates in the overload set. 1051 bool AllowRewrittenCandidates; 1052 1053 /// Would use of this function result in a rewrite using a different 1054 /// operator? isRewrittenOperatorOperatorRewriteInfo1055 bool isRewrittenOperator(const FunctionDecl *FD) { 1056 return OriginalOperator && 1057 FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator; 1058 } 1059 isAcceptableCandidateOperatorRewriteInfo1060 bool isAcceptableCandidate(const FunctionDecl *FD) { 1061 if (!OriginalOperator) 1062 return true; 1063 1064 // For an overloaded operator, we can have candidates with a different 1065 // name in our unqualified lookup set. Make sure we only consider the 1066 // ones we're supposed to. 1067 OverloadedOperatorKind OO = 1068 FD->getDeclName().getCXXOverloadedOperator(); 1069 return OO && (OO == OriginalOperator || 1070 (AllowRewrittenCandidates && 1071 OO == getRewrittenOverloadedOperator(OriginalOperator))); 1072 } 1073 1074 /// Determine the kind of rewrite that should be performed for this 1075 /// candidate. 1076 OverloadCandidateRewriteKind getRewriteKindOperatorRewriteInfo1077 getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) { 1078 OverloadCandidateRewriteKind CRK = CRK_None; 1079 if (isRewrittenOperator(FD)) 1080 CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator); 1081 if (PO == OverloadCandidateParamOrder::Reversed) 1082 CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed); 1083 return CRK; 1084 } 1085 /// Determines whether this operator could be implemented by a function 1086 /// with reversed parameter order. isReversibleOperatorRewriteInfo1087 bool isReversible() { 1088 return AllowRewrittenCandidates && OriginalOperator && 1089 (getRewrittenOverloadedOperator(OriginalOperator) != OO_None || 1090 allowsReversed(OriginalOperator)); 1091 } 1092 1093 /// Determine whether reversing parameter order is allowed for operator 1094 /// Op. 1095 bool allowsReversed(OverloadedOperatorKind Op); 1096 1097 /// Determine whether we should add a rewritten candidate for \p FD with 1098 /// reversed parameter order. 1099 /// \param OriginalArgs are the original non reversed arguments. 1100 bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs, 1101 FunctionDecl *FD); 1102 }; 1103 1104 private: 1105 SmallVector<OverloadCandidate, 16> Candidates; 1106 llvm::SmallPtrSet<uintptr_t, 16> Functions; 1107 1108 // Allocator for ConversionSequenceLists. We store the first few of these 1109 // inline to avoid allocation for small sets. 1110 llvm::BumpPtrAllocator SlabAllocator; 1111 1112 SourceLocation Loc; 1113 CandidateSetKind Kind; 1114 OperatorRewriteInfo RewriteInfo; 1115 1116 constexpr static unsigned NumInlineBytes = 1117 24 * sizeof(ImplicitConversionSequence); 1118 unsigned NumInlineBytesUsed = 0; 1119 alignas(void *) char InlineSpace[NumInlineBytes]; 1120 1121 // Address space of the object being constructed. 1122 LangAS DestAS = LangAS::Default; 1123 1124 /// If we have space, allocates from inline storage. Otherwise, allocates 1125 /// from the slab allocator. 1126 /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator 1127 /// instead. 1128 /// FIXME: Now that this only allocates ImplicitConversionSequences, do we 1129 /// want to un-generalize this? 1130 template <typename T> slabAllocate(unsigned N)1131 T *slabAllocate(unsigned N) { 1132 // It's simpler if this doesn't need to consider alignment. 1133 static_assert(alignof(T) == alignof(void *), 1134 "Only works for pointer-aligned types."); 1135 static_assert(std::is_trivial<T>::value || 1136 std::is_same<ImplicitConversionSequence, T>::value, 1137 "Add destruction logic to OverloadCandidateSet::clear()."); 1138 1139 unsigned NBytes = sizeof(T) * N; 1140 if (NBytes > NumInlineBytes - NumInlineBytesUsed) 1141 return SlabAllocator.Allocate<T>(N); 1142 char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed; 1143 assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 && 1144 "Misaligned storage!"); 1145 1146 NumInlineBytesUsed += NBytes; 1147 return reinterpret_cast<T *>(FreeSpaceStart); 1148 } 1149 1150 void destroyCandidates(); 1151 1152 public: 1153 OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK, 1154 OperatorRewriteInfo RewriteInfo = {}) Loc(Loc)1155 : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {} 1156 OverloadCandidateSet(const OverloadCandidateSet &) = delete; 1157 OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete; ~OverloadCandidateSet()1158 ~OverloadCandidateSet() { destroyCandidates(); } 1159 getLocation()1160 SourceLocation getLocation() const { return Loc; } getKind()1161 CandidateSetKind getKind() const { return Kind; } getRewriteInfo()1162 OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; } 1163 1164 /// Whether diagnostics should be deferred. 1165 bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc); 1166 1167 /// Determine when this overload candidate will be new to the 1168 /// overload set. 1169 bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO = 1170 OverloadCandidateParamOrder::Normal) { 1171 uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl()); 1172 Key |= static_cast<uintptr_t>(PO); 1173 return Functions.insert(Key).second; 1174 } 1175 1176 /// Exclude a function from being considered by overload resolution. exclude(Decl * F)1177 void exclude(Decl *F) { 1178 isNewCandidate(F, OverloadCandidateParamOrder::Normal); 1179 isNewCandidate(F, OverloadCandidateParamOrder::Reversed); 1180 } 1181 1182 /// Clear out all of the candidates. 1183 void clear(CandidateSetKind CSK); 1184 1185 using iterator = SmallVectorImpl<OverloadCandidate>::iterator; 1186 begin()1187 iterator begin() { return Candidates.begin(); } end()1188 iterator end() { return Candidates.end(); } 1189 size()1190 size_t size() const { return Candidates.size(); } empty()1191 bool empty() const { return Candidates.empty(); } 1192 1193 /// Allocate storage for conversion sequences for NumConversions 1194 /// conversions. 1195 ConversionSequenceList allocateConversionSequences(unsigned NumConversions)1196 allocateConversionSequences(unsigned NumConversions) { 1197 ImplicitConversionSequence *Conversions = 1198 slabAllocate<ImplicitConversionSequence>(NumConversions); 1199 1200 // Construct the new objects. 1201 for (unsigned I = 0; I != NumConversions; ++I) 1202 new (&Conversions[I]) ImplicitConversionSequence(); 1203 1204 return ConversionSequenceList(Conversions, NumConversions); 1205 } 1206 1207 /// Add a new candidate with NumConversions conversion sequence slots 1208 /// to the overload set. 1209 OverloadCandidate & 1210 addCandidate(unsigned NumConversions = 0, 1211 ConversionSequenceList Conversions = std::nullopt) { 1212 assert((Conversions.empty() || Conversions.size() == NumConversions) && 1213 "preallocated conversion sequence has wrong length"); 1214 1215 Candidates.push_back(OverloadCandidate()); 1216 OverloadCandidate &C = Candidates.back(); 1217 C.Conversions = Conversions.empty() 1218 ? allocateConversionSequences(NumConversions) 1219 : Conversions; 1220 return C; 1221 } 1222 1223 /// Find the best viable function on this overload set, if it exists. 1224 OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc, 1225 OverloadCandidateSet::iterator& Best); 1226 1227 SmallVector<OverloadCandidate *, 32> CompleteCandidates( 1228 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 1229 SourceLocation OpLoc = SourceLocation(), 1230 llvm::function_ref<bool(OverloadCandidate &)> Filter = 1231 [](OverloadCandidate &) { return true; }); 1232 1233 void NoteCandidates( 1234 PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD, 1235 ArrayRef<Expr *> Args, StringRef Opc = "", 1236 SourceLocation Loc = SourceLocation(), 1237 llvm::function_ref<bool(OverloadCandidate &)> Filter = 1238 [](OverloadCandidate &) { return true; }); 1239 1240 void NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 1241 ArrayRef<OverloadCandidate *> Cands, 1242 StringRef Opc = "", 1243 SourceLocation OpLoc = SourceLocation()); 1244 getDestAS()1245 LangAS getDestAS() { return DestAS; } 1246 setDestAS(LangAS AS)1247 void setDestAS(LangAS AS) { 1248 assert((Kind == CSK_InitByConstructor || 1249 Kind == CSK_InitByUserDefinedConversion) && 1250 "can't set the destination address space when not constructing an " 1251 "object"); 1252 DestAS = AS; 1253 } 1254 1255 }; 1256 1257 bool isBetterOverloadCandidate(Sema &S, 1258 const OverloadCandidate &Cand1, 1259 const OverloadCandidate &Cand2, 1260 SourceLocation Loc, 1261 OverloadCandidateSet::CandidateSetKind Kind); 1262 1263 struct ConstructorInfo { 1264 DeclAccessPair FoundDecl; 1265 CXXConstructorDecl *Constructor; 1266 FunctionTemplateDecl *ConstructorTmpl; 1267 1268 explicit operator bool() const { return Constructor; } 1269 }; 1270 1271 // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload 1272 // that takes one of these. getConstructorInfo(NamedDecl * ND)1273 inline ConstructorInfo getConstructorInfo(NamedDecl *ND) { 1274 if (isa<UsingDecl>(ND)) 1275 return ConstructorInfo{}; 1276 1277 // For constructors, the access check is performed against the underlying 1278 // declaration, not the found declaration. 1279 auto *D = ND->getUnderlyingDecl(); 1280 ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr, 1281 nullptr}; 1282 Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 1283 if (Info.ConstructorTmpl) 1284 D = Info.ConstructorTmpl->getTemplatedDecl(); 1285 Info.Constructor = dyn_cast<CXXConstructorDecl>(D); 1286 return Info; 1287 } 1288 1289 // Returns false if signature help is relevant despite number of arguments 1290 // exceeding parameters. Specifically, it returns false when 1291 // PartialOverloading is true and one of the following: 1292 // * Function is variadic 1293 // * Function is template variadic 1294 // * Function is an instantiation of template variadic function 1295 // The last case may seem strange. The idea is that if we added one more 1296 // argument, we'd end up with a function similar to Function. Since, in the 1297 // context of signature help and/or code completion, we do not know what the 1298 // type of the next argument (that the user is typing) will be, this is as 1299 // good candidate as we can get, despite the fact that it takes one less 1300 // parameter. 1301 bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function); 1302 1303 } // namespace clang 1304 1305 #endif // LLVM_CLANG_SEMA_OVERLOAD_H 1306