1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called. If pru_attach() returned an error,
51 * pru_detach() will not be called. Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99 * from a pre-set VNET context. sopoll_generic() currently does not need a
100 * VNET context to be set.
101 */
102
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152
153 #include <net/vnet.h>
154
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157
158 #include <vm/uma.h>
159
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165
166 static int soreceive_generic_locked(struct socket *so,
167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 struct mbuf **controlp, int *flagsp);
169 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
170 int flags);
171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 struct mbuf **controlp, int flags);
174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 struct uio *uio, struct mbuf *top, struct mbuf *control,
176 int flags, struct thread *td);
177 static void so_rdknl_lock(void *);
178 static void so_rdknl_unlock(void *);
179 static void so_rdknl_assert_lock(void *, int);
180 static void so_wrknl_lock(void *);
181 static void so_wrknl_unlock(void *);
182 static void so_wrknl_assert_lock(void *, int);
183
184 static void filt_sordetach(struct knote *kn);
185 static int filt_soread(struct knote *kn, long hint);
186 static void filt_sowdetach(struct knote *kn);
187 static int filt_sowrite(struct knote *kn, long hint);
188 static int filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t soo_kqfilter;
190
191 static const struct filterops soread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sordetach,
194 .f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 .f_isfd = 1,
198 .f_detach = filt_sowdetach,
199 .f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 .f_isfd = 1,
203 .f_detach = filt_sowdetach,
204 .f_event = filt_soempty,
205 };
206
207 so_gen_t so_gencnt; /* generation count for sockets */
208
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211
212 #define VNET_SO_ASSERT(so) \
213 VNET_ASSERT(curvnet != NULL, \
214 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define V_socket_hhh VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define __splice32_packed __packed
226 #else
227 #define __splice32_packed
228 #endif
229 struct splice32 {
230 int32_t sp_fd;
231 int64_t sp_max;
232 struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236
237 /*
238 * Limit on the number of connections in the listen queue waiting
239 * for accept(2).
240 * NB: The original sysctl somaxconn is still available but hidden
241 * to prevent confusion about the actual purpose of this number.
242 */
243 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
244 #define V_somaxconn VNET(somaxconn)
245
246 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)247 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
248 {
249 int error;
250 u_int val;
251
252 val = V_somaxconn;
253 error = sysctl_handle_int(oidp, &val, 0, req);
254 if (error || !req->newptr )
255 return (error);
256
257 /*
258 * The purpose of the UINT_MAX / 3 limit, is so that the formula
259 * 3 * sol_qlimit / 2
260 * below, will not overflow.
261 */
262
263 if (val < 1 || val > UINT_MAX / 3)
264 return (EINVAL);
265
266 V_somaxconn = val;
267 return (0);
268 }
269 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
270 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
271 sysctl_somaxconn, "IU",
272 "Maximum listen socket pending connection accept queue size");
273 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
274 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
275 sizeof(u_int), sysctl_somaxconn, "IU",
276 "Maximum listen socket pending connection accept queue size (compat)");
277
278 static u_int numopensockets;
279 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)280 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
281 {
282 u_int val;
283
284 #ifdef VIMAGE
285 if(!IS_DEFAULT_VNET(curvnet))
286 val = curvnet->vnet_sockcnt;
287 else
288 #endif
289 val = numopensockets;
290 return (sysctl_handle_int(oidp, &val, 0, req));
291 }
292 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
293 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
294 sysctl_numopensockets, "IU", "Number of open sockets");
295
296 /*
297 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
298 * so_gencnt field.
299 */
300 static struct mtx so_global_mtx;
301 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
302
303 /*
304 * General IPC sysctl name space, used by sockets and a variety of other IPC
305 * types.
306 */
307 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
308 "IPC");
309
310 /*
311 * Initialize the socket subsystem and set up the socket
312 * memory allocator.
313 */
314 static uma_zone_t socket_zone;
315 int maxsockets;
316
317 static void
socket_zone_change(void * tag)318 socket_zone_change(void *tag)
319 {
320
321 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
322 }
323
324 static int splice_init_state;
325 static struct sx splice_init_lock;
326 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
327
328 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
329 "Settings relating to the SO_SPLICE socket option");
330
331 static bool splice_receive_stream = true;
332 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
333 &splice_receive_stream, 0,
334 "Use soreceive_stream() for stream splices");
335
336 static uma_zone_t splice_zone;
337 static struct proc *splice_proc;
338 struct splice_wq {
339 struct mtx mtx;
340 STAILQ_HEAD(, so_splice) head;
341 bool running;
342 } __aligned(CACHE_LINE_SIZE);
343 static struct splice_wq *splice_wq;
344 static uint32_t splice_index = 0;
345
346 static void so_splice_timeout(void *arg, int pending);
347 static void so_splice_xfer(struct so_splice *s);
348 static int so_unsplice(struct socket *so, bool timeout);
349
350 static void
splice_work_thread(void * ctx)351 splice_work_thread(void *ctx)
352 {
353 struct splice_wq *wq = ctx;
354 struct so_splice *s, *s_temp;
355 STAILQ_HEAD(, so_splice) local_head;
356 int cpu;
357
358 cpu = wq - splice_wq;
359 if (bootverbose)
360 printf("starting so_splice worker thread for CPU %d\n", cpu);
361
362 for (;;) {
363 mtx_lock(&wq->mtx);
364 while (STAILQ_EMPTY(&wq->head)) {
365 wq->running = false;
366 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
367 wq->running = true;
368 }
369 STAILQ_INIT(&local_head);
370 STAILQ_CONCAT(&local_head, &wq->head);
371 STAILQ_INIT(&wq->head);
372 mtx_unlock(&wq->mtx);
373 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
374 mtx_lock(&s->mtx);
375 CURVNET_SET(s->src->so_vnet);
376 so_splice_xfer(s);
377 CURVNET_RESTORE();
378 }
379 }
380 }
381
382 static void
so_splice_dispatch_async(struct so_splice * sp)383 so_splice_dispatch_async(struct so_splice *sp)
384 {
385 struct splice_wq *wq;
386 bool running;
387
388 wq = &splice_wq[sp->wq_index];
389 mtx_lock(&wq->mtx);
390 STAILQ_INSERT_TAIL(&wq->head, sp, next);
391 running = wq->running;
392 mtx_unlock(&wq->mtx);
393 if (!running)
394 wakeup(wq);
395 }
396
397 void
so_splice_dispatch(struct so_splice * sp)398 so_splice_dispatch(struct so_splice *sp)
399 {
400 mtx_assert(&sp->mtx, MA_OWNED);
401
402 if (sp->state != SPLICE_IDLE) {
403 mtx_unlock(&sp->mtx);
404 } else {
405 sp->state = SPLICE_QUEUED;
406 mtx_unlock(&sp->mtx);
407 so_splice_dispatch_async(sp);
408 }
409 }
410
411 static int
splice_zinit(void * mem,int size __unused,int flags __unused)412 splice_zinit(void *mem, int size __unused, int flags __unused)
413 {
414 struct so_splice *s;
415
416 s = (struct so_splice *)mem;
417 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
418 return (0);
419 }
420
421 static void
splice_zfini(void * mem,int size)422 splice_zfini(void *mem, int size)
423 {
424 struct so_splice *s;
425
426 s = (struct so_splice *)mem;
427 mtx_destroy(&s->mtx);
428 }
429
430 static int
splice_init(void)431 splice_init(void)
432 {
433 struct thread *td;
434 int error, i, state;
435
436 state = atomic_load_acq_int(&splice_init_state);
437 if (__predict_true(state > 0))
438 return (0);
439 if (state < 0)
440 return (ENXIO);
441 sx_xlock(&splice_init_lock);
442 if (splice_init_state != 0) {
443 sx_xunlock(&splice_init_lock);
444 return (0);
445 }
446
447 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
448 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
449
450 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
451 M_WAITOK | M_ZERO);
452
453 /*
454 * Initialize the workqueues to run the splice work. We create a
455 * work queue for each CPU.
456 */
457 CPU_FOREACH(i) {
458 STAILQ_INIT(&splice_wq[i].head);
459 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
460 }
461
462 /* Start kthreads for each workqueue. */
463 error = 0;
464 CPU_FOREACH(i) {
465 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
466 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
467 if (error) {
468 printf("Can't add so_splice thread %d error %d\n",
469 i, error);
470 break;
471 }
472
473 /*
474 * It's possible to create loops with SO_SPLICE; ensure that
475 * worker threads aren't able to starve the system too easily.
476 */
477 thread_lock(td);
478 sched_prio(td, PUSER);
479 thread_unlock(td);
480 }
481
482 splice_init_state = error != 0 ? -1 : 1;
483 sx_xunlock(&splice_init_lock);
484
485 return (error);
486 }
487
488 /*
489 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
490 * one lock in order to avoid potential deadlocks in case there is some other
491 * code path which acquires more than one I/O lock at a time.
492 */
493 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)494 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
495 {
496 int error;
497
498 for (;;) {
499 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
500 KASSERT(error == 0,
501 ("%s: failed to lock send I/O lock: %d", __func__, error));
502 error = SOCK_IO_RECV_LOCK(so_src, 0);
503 KASSERT(error == 0 || error == EWOULDBLOCK,
504 ("%s: failed to lock recv I/O lock: %d", __func__, error));
505 if (error == 0)
506 break;
507 SOCK_IO_SEND_UNLOCK(so_dst);
508
509 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
510 KASSERT(error == 0,
511 ("%s: failed to lock recv I/O lock: %d", __func__, error));
512 error = SOCK_IO_SEND_LOCK(so_dst, 0);
513 KASSERT(error == 0 || error == EWOULDBLOCK,
514 ("%s: failed to lock send I/O lock: %d", __func__, error));
515 if (error == 0)
516 break;
517 SOCK_IO_RECV_UNLOCK(so_src);
518 }
519 }
520
521 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)522 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
523 {
524 SOCK_IO_RECV_UNLOCK(so_src);
525 SOCK_IO_SEND_UNLOCK(so_dst);
526 }
527
528 /*
529 * Move data from the source to the sink. Assumes that both of the relevant
530 * socket I/O locks are held.
531 */
532 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)533 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
534 ssize_t *lenp)
535 {
536 struct uio uio;
537 struct mbuf *m;
538 struct sockbuf *sb_src, *sb_dst;
539 ssize_t len;
540 long space;
541 int error, flags;
542
543 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
544 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
545
546 error = 0;
547 m = NULL;
548 memset(&uio, 0, sizeof(uio));
549
550 sb_src = &so_src->so_rcv;
551 sb_dst = &so_dst->so_snd;
552
553 space = sbspace(sb_dst);
554 if (space < 0)
555 space = 0;
556 len = MIN(max, MIN(space, sbavail(sb_src)));
557 if (len == 0) {
558 SOCK_RECVBUF_LOCK(so_src);
559 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
560 error = EPIPE;
561 SOCK_RECVBUF_UNLOCK(so_src);
562 } else {
563 flags = MSG_DONTWAIT;
564 uio.uio_resid = len;
565 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
566 error = soreceive_stream_locked(so_src, sb_src, NULL,
567 &uio, &m, NULL, flags);
568 } else {
569 error = soreceive_generic_locked(so_src, NULL,
570 &uio, &m, NULL, &flags);
571 }
572 if (error != 0 && m != NULL) {
573 m_freem(m);
574 m = NULL;
575 }
576 }
577 if (m != NULL) {
578 len -= uio.uio_resid;
579 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
580 MSG_DONTWAIT, curthread);
581 } else if (error == 0) {
582 len = 0;
583 SOCK_SENDBUF_LOCK(so_dst);
584 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
585 error = EPIPE;
586 SOCK_SENDBUF_UNLOCK(so_dst);
587 }
588 if (error == 0)
589 *lenp = len;
590 return (error);
591 }
592
593 /*
594 * Transfer data from the source to the sink.
595 */
596 static void
so_splice_xfer(struct so_splice * sp)597 so_splice_xfer(struct so_splice *sp)
598 {
599 struct socket *so_src, *so_dst;
600 off_t max;
601 ssize_t len;
602 int error;
603
604 mtx_assert(&sp->mtx, MA_OWNED);
605 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
606 ("so_splice_xfer: invalid state %d", sp->state));
607 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
608
609 if (sp->state == SPLICE_CLOSING) {
610 /* Userspace asked us to close the splice. */
611 goto closing;
612 }
613
614 sp->state = SPLICE_RUNNING;
615 so_src = sp->src;
616 so_dst = sp->dst;
617 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
618 if (max < 0)
619 max = 0;
620
621 /*
622 * Lock the sockets in order to block userspace from doing anything
623 * sneaky. If an error occurs or one of the sockets can no longer
624 * transfer data, we will automatically unsplice.
625 */
626 mtx_unlock(&sp->mtx);
627 splice_lock_pair(so_src, so_dst);
628
629 error = so_splice_xfer_data(so_src, so_dst, max, &len);
630
631 mtx_lock(&sp->mtx);
632
633 /*
634 * Update our stats while still holding the socket locks. This
635 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
636 */
637 if (error == 0) {
638 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
639 so_src->so_splice_sent += len;
640 }
641 splice_unlock_pair(so_src, so_dst);
642
643 switch (sp->state) {
644 case SPLICE_CLOSING:
645 closing:
646 sp->state = SPLICE_CLOSED;
647 wakeup(sp);
648 mtx_unlock(&sp->mtx);
649 break;
650 case SPLICE_RUNNING:
651 if (error != 0 ||
652 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
653 sp->state = SPLICE_EXCEPTION;
654 soref(so_src);
655 mtx_unlock(&sp->mtx);
656 (void)so_unsplice(so_src, false);
657 sorele(so_src);
658 } else {
659 /*
660 * Locklessly check for additional bytes in the source's
661 * receive buffer and queue more work if possible. We
662 * may end up queuing needless work, but that's ok, and
663 * if we race with a thread inserting more data into the
664 * buffer and observe sbavail() == 0, the splice mutex
665 * ensures that splice_push() will queue more work for
666 * us.
667 */
668 if (sbavail(&so_src->so_rcv) > 0 &&
669 sbspace(&so_dst->so_snd) > 0) {
670 sp->state = SPLICE_QUEUED;
671 mtx_unlock(&sp->mtx);
672 so_splice_dispatch_async(sp);
673 } else {
674 sp->state = SPLICE_IDLE;
675 mtx_unlock(&sp->mtx);
676 }
677 }
678 break;
679 default:
680 __assert_unreachable();
681 }
682 }
683
684 static void
socket_init(void * tag)685 socket_init(void *tag)
686 {
687
688 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
689 NULL, NULL, UMA_ALIGN_PTR, 0);
690 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
691 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
692 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
693 EVENTHANDLER_PRI_FIRST);
694 }
695 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
696
697 #ifdef SOCKET_HHOOK
698 static void
socket_hhook_register(int subtype)699 socket_hhook_register(int subtype)
700 {
701
702 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
703 &V_socket_hhh[subtype],
704 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
705 printf("%s: WARNING: unable to register hook\n", __func__);
706 }
707
708 static void
socket_hhook_deregister(int subtype)709 socket_hhook_deregister(int subtype)
710 {
711
712 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
713 printf("%s: WARNING: unable to deregister hook\n", __func__);
714 }
715
716 static void
socket_vnet_init(const void * unused __unused)717 socket_vnet_init(const void *unused __unused)
718 {
719 int i;
720
721 /* We expect a contiguous range */
722 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
723 socket_hhook_register(i);
724 }
725 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
726 socket_vnet_init, NULL);
727
728 static void
socket_vnet_uninit(const void * unused __unused)729 socket_vnet_uninit(const void *unused __unused)
730 {
731 int i;
732
733 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
734 socket_hhook_deregister(i);
735 }
736 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
737 socket_vnet_uninit, NULL);
738 #endif /* SOCKET_HHOOK */
739
740 /*
741 * Initialise maxsockets. This SYSINIT must be run after
742 * tunable_mbinit().
743 */
744 static void
init_maxsockets(void * ignored)745 init_maxsockets(void *ignored)
746 {
747
748 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
749 maxsockets = imax(maxsockets, maxfiles);
750 }
751 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
752
753 /*
754 * Sysctl to get and set the maximum global sockets limit. Notify protocols
755 * of the change so that they can update their dependent limits as required.
756 */
757 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)758 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
759 {
760 int error, newmaxsockets;
761
762 newmaxsockets = maxsockets;
763 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
764 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
765 if (newmaxsockets > maxsockets &&
766 newmaxsockets <= maxfiles) {
767 maxsockets = newmaxsockets;
768 EVENTHANDLER_INVOKE(maxsockets_change);
769 } else
770 error = EINVAL;
771 }
772 return (error);
773 }
774 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
775 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
776 &maxsockets, 0, sysctl_maxsockets, "IU",
777 "Maximum number of sockets available");
778
779 /*
780 * Socket operation routines. These routines are called by the routines in
781 * sys_socket.c or from a system process, and implement the semantics of
782 * socket operations by switching out to the protocol specific routines.
783 */
784
785 /*
786 * Get a socket structure from our zone, and initialize it. Note that it
787 * would probably be better to allocate socket and PCB at the same time, but
788 * I'm not convinced that all the protocols can be easily modified to do
789 * this.
790 *
791 * soalloc() returns a socket with a ref count of 0.
792 */
793 static struct socket *
soalloc(struct vnet * vnet)794 soalloc(struct vnet *vnet)
795 {
796 struct socket *so;
797
798 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
799 if (so == NULL)
800 return (NULL);
801 #ifdef MAC
802 if (mac_socket_init(so, M_NOWAIT) != 0) {
803 uma_zfree(socket_zone, so);
804 return (NULL);
805 }
806 #endif
807 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
808 uma_zfree(socket_zone, so);
809 return (NULL);
810 }
811
812 /*
813 * The socket locking protocol allows to lock 2 sockets at a time,
814 * however, the first one must be a listening socket. WITNESS lacks
815 * a feature to change class of an existing lock, so we use DUPOK.
816 */
817 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
818 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
819 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
820 so->so_rcv.sb_sel = &so->so_rdsel;
821 so->so_snd.sb_sel = &so->so_wrsel;
822 sx_init(&so->so_snd_sx, "so_snd_sx");
823 sx_init(&so->so_rcv_sx, "so_rcv_sx");
824 TAILQ_INIT(&so->so_snd.sb_aiojobq);
825 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
826 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
827 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
828 #ifdef VIMAGE
829 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
830 __func__, __LINE__, so));
831 so->so_vnet = vnet;
832 #endif
833 #ifdef SOCKET_HHOOK
834 /* We shouldn't need the so_global_mtx */
835 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
836 /* Do we need more comprehensive error returns? */
837 uma_zfree(socket_zone, so);
838 return (NULL);
839 }
840 #endif
841 mtx_lock(&so_global_mtx);
842 so->so_gencnt = ++so_gencnt;
843 ++numopensockets;
844 #ifdef VIMAGE
845 vnet->vnet_sockcnt++;
846 #endif
847 mtx_unlock(&so_global_mtx);
848
849 return (so);
850 }
851
852 /*
853 * Free the storage associated with a socket at the socket layer, tear down
854 * locks, labels, etc. All protocol state is assumed already to have been
855 * torn down (and possibly never set up) by the caller.
856 */
857 void
sodealloc(struct socket * so)858 sodealloc(struct socket *so)
859 {
860
861 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
862 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
863
864 mtx_lock(&so_global_mtx);
865 so->so_gencnt = ++so_gencnt;
866 --numopensockets; /* Could be below, but faster here. */
867 #ifdef VIMAGE
868 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
869 __func__, __LINE__, so));
870 so->so_vnet->vnet_sockcnt--;
871 #endif
872 mtx_unlock(&so_global_mtx);
873 #ifdef MAC
874 mac_socket_destroy(so);
875 #endif
876 #ifdef SOCKET_HHOOK
877 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
878 #endif
879
880 khelp_destroy_osd(&so->osd);
881 if (SOLISTENING(so)) {
882 if (so->sol_accept_filter != NULL)
883 accept_filt_setopt(so, NULL);
884 } else {
885 if (so->so_rcv.sb_hiwat)
886 (void)chgsbsize(so->so_cred->cr_uidinfo,
887 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
888 if (so->so_snd.sb_hiwat)
889 (void)chgsbsize(so->so_cred->cr_uidinfo,
890 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
891 sx_destroy(&so->so_snd_sx);
892 sx_destroy(&so->so_rcv_sx);
893 mtx_destroy(&so->so_snd_mtx);
894 mtx_destroy(&so->so_rcv_mtx);
895 }
896 crfree(so->so_cred);
897 mtx_destroy(&so->so_lock);
898 uma_zfree(socket_zone, so);
899 }
900
901 /*
902 * socreate returns a socket with a ref count of 1 and a file descriptor
903 * reference. The socket should be closed with soclose().
904 */
905 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)906 socreate(int dom, struct socket **aso, int type, int proto,
907 struct ucred *cred, struct thread *td)
908 {
909 struct protosw *prp;
910 struct socket *so;
911 int error;
912
913 /*
914 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
915 * shim until all applications have been updated.
916 */
917 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
918 proto == IPPROTO_DIVERT)) {
919 dom = PF_DIVERT;
920 printf("%s uses obsolete way to create divert(4) socket\n",
921 td->td_proc->p_comm);
922 }
923
924 prp = pffindproto(dom, type, proto);
925 if (prp == NULL) {
926 /* No support for domain. */
927 if (pffinddomain(dom) == NULL)
928 return (EAFNOSUPPORT);
929 /* No support for socket type. */
930 if (proto == 0 && type != 0)
931 return (EPROTOTYPE);
932 return (EPROTONOSUPPORT);
933 }
934
935 MPASS(prp->pr_attach);
936
937 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
938 if (CAP_TRACING(td))
939 ktrcapfail(CAPFAIL_PROTO, &proto);
940 if (IN_CAPABILITY_MODE(td))
941 return (ECAPMODE);
942 }
943
944 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
945 return (EPROTONOSUPPORT);
946
947 so = soalloc(CRED_TO_VNET(cred));
948 if (so == NULL)
949 return (ENOBUFS);
950
951 so->so_type = type;
952 so->so_cred = crhold(cred);
953 if ((prp->pr_domain->dom_family == PF_INET) ||
954 (prp->pr_domain->dom_family == PF_INET6) ||
955 (prp->pr_domain->dom_family == PF_ROUTE))
956 so->so_fibnum = td->td_proc->p_fibnum;
957 else
958 so->so_fibnum = 0;
959 so->so_proto = prp;
960 #ifdef MAC
961 mac_socket_create(cred, so);
962 #endif
963 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
964 so_rdknl_assert_lock);
965 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
966 so_wrknl_assert_lock);
967 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
968 so->so_snd.sb_mtx = &so->so_snd_mtx;
969 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
970 }
971 /*
972 * Auto-sizing of socket buffers is managed by the protocols and
973 * the appropriate flags must be set in the pru_attach function.
974 */
975 CURVNET_SET(so->so_vnet);
976 error = prp->pr_attach(so, proto, td);
977 CURVNET_RESTORE();
978 if (error) {
979 sodealloc(so);
980 return (error);
981 }
982 soref(so);
983 *aso = so;
984 return (0);
985 }
986
987 #ifdef REGRESSION
988 static int regression_sonewconn_earlytest = 1;
989 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
990 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
991 #endif
992
993 static int sooverprio = LOG_DEBUG;
994 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
995 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
996
997 static struct timeval overinterval = { 60, 0 };
998 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
999 &overinterval,
1000 "Delay in seconds between warnings for listen socket overflows");
1001
1002 /*
1003 * When an attempt at a new connection is noted on a socket which supports
1004 * accept(2), the protocol has two options:
1005 * 1) Call legacy sonewconn() function, which would call protocol attach
1006 * method, same as used for socket(2).
1007 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1008 * and then call solisten_enqueue().
1009 *
1010 * Note: the ref count on the socket is 0 on return.
1011 */
1012 struct socket *
solisten_clone(struct socket * head)1013 solisten_clone(struct socket *head)
1014 {
1015 struct sbuf descrsb;
1016 struct socket *so;
1017 int len, overcount;
1018 u_int qlen;
1019 const char localprefix[] = "local:";
1020 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1021 #if defined(INET6)
1022 char addrbuf[INET6_ADDRSTRLEN];
1023 #elif defined(INET)
1024 char addrbuf[INET_ADDRSTRLEN];
1025 #endif
1026 bool dolog, over;
1027
1028 SOLISTEN_LOCK(head);
1029 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1030 #ifdef REGRESSION
1031 if (regression_sonewconn_earlytest && over) {
1032 #else
1033 if (over) {
1034 #endif
1035 head->sol_overcount++;
1036 dolog = (sooverprio >= 0) &&
1037 !!ratecheck(&head->sol_lastover, &overinterval);
1038
1039 /*
1040 * If we're going to log, copy the overflow count and queue
1041 * length from the listen socket before dropping the lock.
1042 * Also, reset the overflow count.
1043 */
1044 if (dolog) {
1045 overcount = head->sol_overcount;
1046 head->sol_overcount = 0;
1047 qlen = head->sol_qlen;
1048 }
1049 SOLISTEN_UNLOCK(head);
1050
1051 if (dolog) {
1052 /*
1053 * Try to print something descriptive about the
1054 * socket for the error message.
1055 */
1056 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1057 SBUF_FIXEDLEN);
1058 switch (head->so_proto->pr_domain->dom_family) {
1059 #if defined(INET) || defined(INET6)
1060 #ifdef INET
1061 case AF_INET:
1062 #endif
1063 #ifdef INET6
1064 case AF_INET6:
1065 if (head->so_proto->pr_domain->dom_family ==
1066 AF_INET6 ||
1067 (sotoinpcb(head)->inp_inc.inc_flags &
1068 INC_ISIPV6)) {
1069 ip6_sprintf(addrbuf,
1070 &sotoinpcb(head)->inp_inc.inc6_laddr);
1071 sbuf_printf(&descrsb, "[%s]", addrbuf);
1072 } else
1073 #endif
1074 {
1075 #ifdef INET
1076 inet_ntoa_r(
1077 sotoinpcb(head)->inp_inc.inc_laddr,
1078 addrbuf);
1079 sbuf_cat(&descrsb, addrbuf);
1080 #endif
1081 }
1082 sbuf_printf(&descrsb, ":%hu (proto %u)",
1083 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1084 head->so_proto->pr_protocol);
1085 break;
1086 #endif /* INET || INET6 */
1087 case AF_UNIX:
1088 sbuf_cat(&descrsb, localprefix);
1089 if (sotounpcb(head)->unp_addr != NULL)
1090 len =
1091 sotounpcb(head)->unp_addr->sun_len -
1092 offsetof(struct sockaddr_un,
1093 sun_path);
1094 else
1095 len = 0;
1096 if (len > 0)
1097 sbuf_bcat(&descrsb,
1098 sotounpcb(head)->unp_addr->sun_path,
1099 len);
1100 else
1101 sbuf_cat(&descrsb, "(unknown)");
1102 break;
1103 }
1104
1105 /*
1106 * If we can't print something more specific, at least
1107 * print the domain name.
1108 */
1109 if (sbuf_finish(&descrsb) != 0 ||
1110 sbuf_len(&descrsb) <= 0) {
1111 sbuf_clear(&descrsb);
1112 sbuf_cat(&descrsb,
1113 head->so_proto->pr_domain->dom_name ?:
1114 "unknown");
1115 sbuf_finish(&descrsb);
1116 }
1117 KASSERT(sbuf_len(&descrsb) > 0,
1118 ("%s: sbuf creation failed", __func__));
1119 /*
1120 * Preserve the historic listen queue overflow log
1121 * message, that starts with "sonewconn:". It has
1122 * been known to sysadmins for years and also test
1123 * sys/kern/sonewconn_overflow checks for it.
1124 */
1125 if (head->so_cred == 0) {
1126 log(LOG_PRI(sooverprio),
1127 "sonewconn: pcb %p (%s): "
1128 "Listen queue overflow: %i already in "
1129 "queue awaiting acceptance (%d "
1130 "occurrences)\n", head->so_pcb,
1131 sbuf_data(&descrsb),
1132 qlen, overcount);
1133 } else {
1134 log(LOG_PRI(sooverprio),
1135 "sonewconn: pcb %p (%s): "
1136 "Listen queue overflow: "
1137 "%i already in queue awaiting acceptance "
1138 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1139 head->so_pcb, sbuf_data(&descrsb), qlen,
1140 overcount, head->so_cred->cr_uid,
1141 head->so_cred->cr_rgid,
1142 head->so_cred->cr_prison ?
1143 head->so_cred->cr_prison->pr_name :
1144 "not_jailed");
1145 }
1146 sbuf_delete(&descrsb);
1147
1148 overcount = 0;
1149 }
1150
1151 return (NULL);
1152 }
1153 SOLISTEN_UNLOCK(head);
1154 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1155 __func__, head));
1156 so = soalloc(head->so_vnet);
1157 if (so == NULL) {
1158 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1159 "limit reached or out of memory\n",
1160 __func__, head->so_pcb);
1161 return (NULL);
1162 }
1163 so->so_listen = head;
1164 so->so_type = head->so_type;
1165 /*
1166 * POSIX is ambiguous on what options an accept(2)ed socket should
1167 * inherit from the listener. Words "create a new socket" may be
1168 * interpreted as not inheriting anything. Best programming practice
1169 * for application developers is to not rely on such inheritance.
1170 * FreeBSD had historically inherited all so_options excluding
1171 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1172 * including those completely irrelevant to a new born socket. For
1173 * compatibility with older versions we will inherit a list of
1174 * meaningful options.
1175 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1176 * in the child socket for soisconnected() promoting socket from the
1177 * incomplete queue to complete. It will be cleared before the child
1178 * gets available to accept(2).
1179 */
1180 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1181 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1182 so->so_linger = head->so_linger;
1183 so->so_state = head->so_state;
1184 so->so_fibnum = head->so_fibnum;
1185 so->so_proto = head->so_proto;
1186 so->so_cred = crhold(head->so_cred);
1187 #ifdef SOCKET_HHOOK
1188 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1189 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1190 sodealloc(so);
1191 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1192 return (NULL);
1193 }
1194 }
1195 #endif
1196 #ifdef MAC
1197 mac_socket_newconn(head, so);
1198 #endif
1199 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1200 so_rdknl_assert_lock);
1201 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1202 so_wrknl_assert_lock);
1203 VNET_SO_ASSERT(head);
1204 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1205 sodealloc(so);
1206 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1207 __func__, head->so_pcb);
1208 return (NULL);
1209 }
1210 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1211 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1212 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1213 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1214 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1215 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1216 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1217 so->so_snd.sb_mtx = &so->so_snd_mtx;
1218 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1219 }
1220
1221 return (so);
1222 }
1223
1224 /* Connstatus may be 0 or SS_ISCONNECTED. */
1225 struct socket *
1226 sonewconn(struct socket *head, int connstatus)
1227 {
1228 struct socket *so;
1229
1230 if ((so = solisten_clone(head)) == NULL)
1231 return (NULL);
1232
1233 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1234 sodealloc(so);
1235 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1236 __func__, head->so_pcb);
1237 return (NULL);
1238 }
1239
1240 (void)solisten_enqueue(so, connstatus);
1241
1242 return (so);
1243 }
1244
1245 /*
1246 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1247 * listener it has been cloned from.
1248 *
1249 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1250 */
1251 bool
1252 solisten_enqueue(struct socket *so, int connstatus)
1253 {
1254 struct socket *head = so->so_listen;
1255
1256 MPASS(refcount_load(&so->so_count) == 0);
1257 refcount_init(&so->so_count, 1);
1258
1259 SOLISTEN_LOCK(head);
1260 if (head->sol_accept_filter != NULL)
1261 connstatus = 0;
1262 so->so_state |= connstatus;
1263 soref(head); /* A socket on (in)complete queue refs head. */
1264 if (connstatus) {
1265 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1266 so->so_qstate = SQ_COMP;
1267 head->sol_qlen++;
1268 solisten_wakeup(head); /* unlocks */
1269 return (true);
1270 } else {
1271 /*
1272 * Keep removing sockets from the head until there's room for
1273 * us to insert on the tail. In pre-locking revisions, this
1274 * was a simple if(), but as we could be racing with other
1275 * threads and soabort() requires dropping locks, we must
1276 * loop waiting for the condition to be true.
1277 */
1278 while (head->sol_incqlen > head->sol_qlimit) {
1279 struct socket *sp;
1280
1281 sp = TAILQ_FIRST(&head->sol_incomp);
1282 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1283 head->sol_incqlen--;
1284 SOCK_LOCK(sp);
1285 sp->so_qstate = SQ_NONE;
1286 sp->so_listen = NULL;
1287 SOCK_UNLOCK(sp);
1288 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1289 soabort(sp);
1290 SOLISTEN_LOCK(head);
1291 }
1292 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1293 so->so_qstate = SQ_INCOMP;
1294 head->sol_incqlen++;
1295 SOLISTEN_UNLOCK(head);
1296 return (false);
1297 }
1298 }
1299
1300 #if defined(SCTP) || defined(SCTP_SUPPORT)
1301 /*
1302 * Socket part of sctp_peeloff(). Detach a new socket from an
1303 * association. The new socket is returned with a reference.
1304 *
1305 * XXXGL: reduce copy-paste with solisten_clone().
1306 */
1307 struct socket *
1308 sopeeloff(struct socket *head)
1309 {
1310 struct socket *so;
1311
1312 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1313 __func__, __LINE__, head));
1314 so = soalloc(head->so_vnet);
1315 if (so == NULL) {
1316 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1317 "limit reached or out of memory\n",
1318 __func__, head->so_pcb);
1319 return (NULL);
1320 }
1321 so->so_type = head->so_type;
1322 so->so_options = head->so_options;
1323 so->so_linger = head->so_linger;
1324 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1325 so->so_fibnum = head->so_fibnum;
1326 so->so_proto = head->so_proto;
1327 so->so_cred = crhold(head->so_cred);
1328 #ifdef MAC
1329 mac_socket_newconn(head, so);
1330 #endif
1331 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1332 so_rdknl_assert_lock);
1333 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1334 so_wrknl_assert_lock);
1335 VNET_SO_ASSERT(head);
1336 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1337 sodealloc(so);
1338 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1339 __func__, head->so_pcb);
1340 return (NULL);
1341 }
1342 if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1343 sodealloc(so);
1344 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1345 __func__, head->so_pcb);
1346 return (NULL);
1347 }
1348 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1349 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1350 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1351 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1352 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1353 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1354 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1355 so->so_snd.sb_mtx = &so->so_snd_mtx;
1356 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1357 }
1358
1359 soref(so);
1360
1361 return (so);
1362 }
1363 #endif /* SCTP */
1364
1365 int
1366 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1367 {
1368 int error;
1369
1370 CURVNET_SET(so->so_vnet);
1371 error = so->so_proto->pr_bind(so, nam, td);
1372 CURVNET_RESTORE();
1373 return (error);
1374 }
1375
1376 int
1377 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1378 {
1379 int error;
1380
1381 CURVNET_SET(so->so_vnet);
1382 error = so->so_proto->pr_bindat(fd, so, nam, td);
1383 CURVNET_RESTORE();
1384 return (error);
1385 }
1386
1387 /*
1388 * solisten() transitions a socket from a non-listening state to a listening
1389 * state, but can also be used to update the listen queue depth on an
1390 * existing listen socket. The protocol will call back into the sockets
1391 * layer using solisten_proto_check() and solisten_proto() to check and set
1392 * socket-layer listen state. Call backs are used so that the protocol can
1393 * acquire both protocol and socket layer locks in whatever order is required
1394 * by the protocol.
1395 *
1396 * Protocol implementors are advised to hold the socket lock across the
1397 * socket-layer test and set to avoid races at the socket layer.
1398 */
1399 int
1400 solisten(struct socket *so, int backlog, struct thread *td)
1401 {
1402 int error;
1403
1404 CURVNET_SET(so->so_vnet);
1405 error = so->so_proto->pr_listen(so, backlog, td);
1406 CURVNET_RESTORE();
1407 return (error);
1408 }
1409
1410 /*
1411 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1412 * order to interlock with socket I/O.
1413 */
1414 int
1415 solisten_proto_check(struct socket *so)
1416 {
1417 SOCK_LOCK_ASSERT(so);
1418
1419 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1420 SS_ISDISCONNECTING)) != 0)
1421 return (EINVAL);
1422
1423 /*
1424 * Sleeping is not permitted here, so simply fail if userspace is
1425 * attempting to transmit or receive on the socket. This kind of
1426 * transient failure is not ideal, but it should occur only if userspace
1427 * is misusing the socket interfaces.
1428 */
1429 if (!sx_try_xlock(&so->so_snd_sx))
1430 return (EAGAIN);
1431 if (!sx_try_xlock(&so->so_rcv_sx)) {
1432 sx_xunlock(&so->so_snd_sx);
1433 return (EAGAIN);
1434 }
1435 mtx_lock(&so->so_snd_mtx);
1436 mtx_lock(&so->so_rcv_mtx);
1437
1438 /* Interlock with soo_aio_queue() and KTLS. */
1439 if (!SOLISTENING(so)) {
1440 bool ktls;
1441
1442 #ifdef KERN_TLS
1443 ktls = so->so_snd.sb_tls_info != NULL ||
1444 so->so_rcv.sb_tls_info != NULL;
1445 #else
1446 ktls = false;
1447 #endif
1448 if (ktls ||
1449 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1450 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1451 solisten_proto_abort(so);
1452 return (EINVAL);
1453 }
1454 }
1455
1456 return (0);
1457 }
1458
1459 /*
1460 * Undo the setup done by solisten_proto_check().
1461 */
1462 void
1463 solisten_proto_abort(struct socket *so)
1464 {
1465 mtx_unlock(&so->so_snd_mtx);
1466 mtx_unlock(&so->so_rcv_mtx);
1467 sx_xunlock(&so->so_snd_sx);
1468 sx_xunlock(&so->so_rcv_sx);
1469 }
1470
1471 void
1472 solisten_proto(struct socket *so, int backlog)
1473 {
1474 int sbrcv_lowat, sbsnd_lowat;
1475 u_int sbrcv_hiwat, sbsnd_hiwat;
1476 short sbrcv_flags, sbsnd_flags;
1477 sbintime_t sbrcv_timeo, sbsnd_timeo;
1478
1479 SOCK_LOCK_ASSERT(so);
1480 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1481 SS_ISDISCONNECTING)) == 0,
1482 ("%s: bad socket state %p", __func__, so));
1483
1484 if (SOLISTENING(so))
1485 goto listening;
1486
1487 /*
1488 * Change this socket to listening state.
1489 */
1490 sbrcv_lowat = so->so_rcv.sb_lowat;
1491 sbsnd_lowat = so->so_snd.sb_lowat;
1492 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1493 sbsnd_hiwat = so->so_snd.sb_hiwat;
1494 sbrcv_flags = so->so_rcv.sb_flags;
1495 sbsnd_flags = so->so_snd.sb_flags;
1496 sbrcv_timeo = so->so_rcv.sb_timeo;
1497 sbsnd_timeo = so->so_snd.sb_timeo;
1498
1499 #ifdef MAC
1500 mac_socketpeer_label_free(so->so_peerlabel);
1501 #endif
1502
1503 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1504 sbdestroy(so, SO_SND);
1505 sbdestroy(so, SO_RCV);
1506 }
1507
1508 #ifdef INVARIANTS
1509 bzero(&so->so_rcv,
1510 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1511 #endif
1512
1513 so->sol_sbrcv_lowat = sbrcv_lowat;
1514 so->sol_sbsnd_lowat = sbsnd_lowat;
1515 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1516 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1517 so->sol_sbrcv_flags = sbrcv_flags;
1518 so->sol_sbsnd_flags = sbsnd_flags;
1519 so->sol_sbrcv_timeo = sbrcv_timeo;
1520 so->sol_sbsnd_timeo = sbsnd_timeo;
1521
1522 so->sol_qlen = so->sol_incqlen = 0;
1523 TAILQ_INIT(&so->sol_incomp);
1524 TAILQ_INIT(&so->sol_comp);
1525
1526 so->sol_accept_filter = NULL;
1527 so->sol_accept_filter_arg = NULL;
1528 so->sol_accept_filter_str = NULL;
1529
1530 so->sol_upcall = NULL;
1531 so->sol_upcallarg = NULL;
1532
1533 so->so_options |= SO_ACCEPTCONN;
1534
1535 listening:
1536 if (backlog < 0 || backlog > V_somaxconn)
1537 backlog = V_somaxconn;
1538 so->sol_qlimit = backlog;
1539
1540 mtx_unlock(&so->so_snd_mtx);
1541 mtx_unlock(&so->so_rcv_mtx);
1542 sx_xunlock(&so->so_snd_sx);
1543 sx_xunlock(&so->so_rcv_sx);
1544 }
1545
1546 /*
1547 * Wakeup listeners/subsystems once we have a complete connection.
1548 * Enters with lock, returns unlocked.
1549 */
1550 void
1551 solisten_wakeup(struct socket *sol)
1552 {
1553
1554 if (sol->sol_upcall != NULL)
1555 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1556 else {
1557 selwakeuppri(&sol->so_rdsel, PSOCK);
1558 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1559 }
1560 SOLISTEN_UNLOCK(sol);
1561 wakeup_one(&sol->sol_comp);
1562 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1563 pgsigio(&sol->so_sigio, SIGIO, 0);
1564 }
1565
1566 /*
1567 * Return single connection off a listening socket queue. Main consumer of
1568 * the function is kern_accept4(). Some modules, that do their own accept
1569 * management also use the function. The socket reference held by the
1570 * listen queue is handed to the caller.
1571 *
1572 * Listening socket must be locked on entry and is returned unlocked on
1573 * return.
1574 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1575 */
1576 int
1577 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1578 {
1579 struct socket *so;
1580 int error;
1581
1582 SOLISTEN_LOCK_ASSERT(head);
1583
1584 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1585 head->so_error == 0) {
1586 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1587 "accept", 0);
1588 if (error != 0) {
1589 SOLISTEN_UNLOCK(head);
1590 return (error);
1591 }
1592 }
1593 if (head->so_error) {
1594 error = head->so_error;
1595 head->so_error = 0;
1596 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1597 error = EWOULDBLOCK;
1598 else
1599 error = 0;
1600 if (error) {
1601 SOLISTEN_UNLOCK(head);
1602 return (error);
1603 }
1604 so = TAILQ_FIRST(&head->sol_comp);
1605 SOCK_LOCK(so);
1606 KASSERT(so->so_qstate == SQ_COMP,
1607 ("%s: so %p not SQ_COMP", __func__, so));
1608 head->sol_qlen--;
1609 so->so_qstate = SQ_NONE;
1610 so->so_listen = NULL;
1611 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1612 if (flags & ACCEPT4_INHERIT)
1613 so->so_state |= (head->so_state & SS_NBIO);
1614 else
1615 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1616 SOCK_UNLOCK(so);
1617 sorele_locked(head);
1618
1619 *ret = so;
1620 return (0);
1621 }
1622
1623 static struct so_splice *
1624 so_splice_alloc(off_t max)
1625 {
1626 struct so_splice *sp;
1627
1628 sp = uma_zalloc(splice_zone, M_WAITOK);
1629 sp->src = NULL;
1630 sp->dst = NULL;
1631 sp->max = max > 0 ? max : -1;
1632 do {
1633 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1634 (mp_maxid + 1);
1635 } while (CPU_ABSENT(sp->wq_index));
1636 sp->state = SPLICE_INIT;
1637 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1638 sp);
1639 return (sp);
1640 }
1641
1642 static void
1643 so_splice_free(struct so_splice *sp)
1644 {
1645 KASSERT(sp->state == SPLICE_CLOSED,
1646 ("so_splice_free: sp %p not closed", sp));
1647 uma_zfree(splice_zone, sp);
1648 }
1649
1650 static void
1651 so_splice_timeout(void *arg, int pending __unused)
1652 {
1653 struct so_splice *sp;
1654
1655 sp = arg;
1656 (void)so_unsplice(sp->src, true);
1657 }
1658
1659 /*
1660 * Splice the output from so to the input of so2.
1661 */
1662 static int
1663 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1664 {
1665 struct so_splice *sp;
1666 int error;
1667
1668 if (splice->sp_max < 0)
1669 return (EINVAL);
1670 /* Handle only TCP for now; TODO: other streaming protos */
1671 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1672 so2->so_proto->pr_protocol != IPPROTO_TCP)
1673 return (EPROTONOSUPPORT);
1674 if (so->so_vnet != so2->so_vnet)
1675 return (EINVAL);
1676
1677 /* so_splice_xfer() assumes that we're using these implementations. */
1678 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1679 ("so_splice: sosend not sosend_generic"));
1680 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1681 so2->so_proto->pr_soreceive == soreceive_stream,
1682 ("so_splice: soreceive not soreceive_generic/stream"));
1683
1684 sp = so_splice_alloc(splice->sp_max);
1685 so->so_splice_sent = 0;
1686 sp->src = so;
1687 sp->dst = so2;
1688
1689 error = 0;
1690 SOCK_LOCK(so);
1691 if (SOLISTENING(so))
1692 error = EINVAL;
1693 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1694 error = ENOTCONN;
1695 else if (so->so_splice != NULL)
1696 error = EBUSY;
1697 if (error != 0) {
1698 SOCK_UNLOCK(so);
1699 uma_zfree(splice_zone, sp);
1700 return (error);
1701 }
1702 soref(so);
1703 so->so_splice = sp;
1704 SOCK_RECVBUF_LOCK(so);
1705 so->so_rcv.sb_flags |= SB_SPLICED;
1706 SOCK_RECVBUF_UNLOCK(so);
1707 SOCK_UNLOCK(so);
1708
1709 error = 0;
1710 SOCK_LOCK(so2);
1711 if (SOLISTENING(so2))
1712 error = EINVAL;
1713 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1714 error = ENOTCONN;
1715 else if (so2->so_splice_back != NULL)
1716 error = EBUSY;
1717 if (error != 0) {
1718 SOCK_UNLOCK(so2);
1719 SOCK_LOCK(so);
1720 so->so_splice = NULL;
1721 SOCK_RECVBUF_LOCK(so);
1722 so->so_rcv.sb_flags &= ~SB_SPLICED;
1723 SOCK_RECVBUF_UNLOCK(so);
1724 SOCK_UNLOCK(so);
1725 sorele(so);
1726 uma_zfree(splice_zone, sp);
1727 return (error);
1728 }
1729 soref(so2);
1730 so2->so_splice_back = sp;
1731 SOCK_SENDBUF_LOCK(so2);
1732 so2->so_snd.sb_flags |= SB_SPLICED;
1733 mtx_lock(&sp->mtx);
1734 SOCK_SENDBUF_UNLOCK(so2);
1735 SOCK_UNLOCK(so2);
1736
1737 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1738 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1739 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1740 }
1741
1742 /*
1743 * Transfer any data already present in the socket buffer.
1744 */
1745 sp->state = SPLICE_QUEUED;
1746 so_splice_xfer(sp);
1747 return (0);
1748 }
1749
1750 static int
1751 so_unsplice(struct socket *so, bool timeout)
1752 {
1753 struct socket *so2;
1754 struct so_splice *sp;
1755 bool drain;
1756
1757 /*
1758 * First unset SB_SPLICED and hide the splice structure so that
1759 * wakeup routines will stop enqueuing work. This also ensures that
1760 * a only a single thread will proceed with the unsplice.
1761 */
1762 SOCK_LOCK(so);
1763 if (SOLISTENING(so)) {
1764 SOCK_UNLOCK(so);
1765 return (EINVAL);
1766 }
1767 SOCK_RECVBUF_LOCK(so);
1768 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1769 SOCK_RECVBUF_UNLOCK(so);
1770 SOCK_UNLOCK(so);
1771 return (ENOTCONN);
1772 }
1773 so->so_rcv.sb_flags &= ~SB_SPLICED;
1774 sp = so->so_splice;
1775 so->so_splice = NULL;
1776 SOCK_RECVBUF_UNLOCK(so);
1777 SOCK_UNLOCK(so);
1778
1779 so2 = sp->dst;
1780 SOCK_LOCK(so2);
1781 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1782 SOCK_SENDBUF_LOCK(so2);
1783 KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1784 ("%s: so2 is not spliced", __func__));
1785 KASSERT(so2->so_splice_back == sp,
1786 ("%s: so_splice_back != sp", __func__));
1787 so2->so_snd.sb_flags &= ~SB_SPLICED;
1788 so2->so_splice_back = NULL;
1789 SOCK_SENDBUF_UNLOCK(so2);
1790 SOCK_UNLOCK(so2);
1791
1792 /*
1793 * No new work is being enqueued. The worker thread might be
1794 * splicing data right now, in which case we want to wait for it to
1795 * finish before proceeding.
1796 */
1797 mtx_lock(&sp->mtx);
1798 switch (sp->state) {
1799 case SPLICE_QUEUED:
1800 case SPLICE_RUNNING:
1801 sp->state = SPLICE_CLOSING;
1802 while (sp->state == SPLICE_CLOSING)
1803 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1804 break;
1805 case SPLICE_IDLE:
1806 case SPLICE_EXCEPTION:
1807 sp->state = SPLICE_CLOSED;
1808 break;
1809 default:
1810 __assert_unreachable();
1811 }
1812 if (!timeout) {
1813 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1814 NULL) != 0;
1815 } else {
1816 drain = false;
1817 }
1818 mtx_unlock(&sp->mtx);
1819 if (drain)
1820 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1821
1822 /*
1823 * Now we hold the sole reference to the splice structure.
1824 * Clean up: signal userspace and release socket references.
1825 */
1826 sorwakeup(so);
1827 CURVNET_SET(so->so_vnet);
1828 sorele(so);
1829 sowwakeup(so2);
1830 sorele(so2);
1831 CURVNET_RESTORE();
1832 so_splice_free(sp);
1833 return (0);
1834 }
1835
1836 /*
1837 * Free socket upon release of the very last reference.
1838 */
1839 static void
1840 sofree(struct socket *so)
1841 {
1842 struct protosw *pr = so->so_proto;
1843
1844 SOCK_LOCK_ASSERT(so);
1845 KASSERT(refcount_load(&so->so_count) == 0,
1846 ("%s: so %p has references", __func__, so));
1847 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1848 ("%s: so %p is on listen queue", __func__, so));
1849 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1850 ("%s: so %p rcvbuf is spliced", __func__, so));
1851 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1852 ("%s: so %p sndbuf is spliced", __func__, so));
1853 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1854 ("%s: so %p has spliced data", __func__, so));
1855
1856 SOCK_UNLOCK(so);
1857
1858 if (so->so_dtor != NULL)
1859 so->so_dtor(so);
1860
1861 VNET_SO_ASSERT(so);
1862 if (pr->pr_detach != NULL)
1863 pr->pr_detach(so);
1864
1865 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1866 /*
1867 * From this point on, we assume that no other references to
1868 * this socket exist anywhere else in the stack. Therefore,
1869 * no locks need to be acquired or held.
1870 */
1871 #ifdef INVARIANTS
1872 SOCK_SENDBUF_LOCK(so);
1873 SOCK_RECVBUF_LOCK(so);
1874 #endif
1875 sbdestroy(so, SO_SND);
1876 sbdestroy(so, SO_RCV);
1877 #ifdef INVARIANTS
1878 SOCK_SENDBUF_UNLOCK(so);
1879 SOCK_RECVBUF_UNLOCK(so);
1880 #endif
1881 }
1882 seldrain(&so->so_rdsel);
1883 seldrain(&so->so_wrsel);
1884 knlist_destroy(&so->so_rdsel.si_note);
1885 knlist_destroy(&so->so_wrsel.si_note);
1886 sodealloc(so);
1887 }
1888
1889 /*
1890 * Release a reference on a socket while holding the socket lock.
1891 * Unlocks the socket lock before returning.
1892 */
1893 void
1894 sorele_locked(struct socket *so)
1895 {
1896 SOCK_LOCK_ASSERT(so);
1897 if (refcount_release(&so->so_count))
1898 sofree(so);
1899 else
1900 SOCK_UNLOCK(so);
1901 }
1902
1903 /*
1904 * Close a socket on last file table reference removal. Initiate disconnect
1905 * if connected. Free socket when disconnect complete.
1906 *
1907 * This function will sorele() the socket. Note that soclose() may be called
1908 * prior to the ref count reaching zero. The actual socket structure will
1909 * not be freed until the ref count reaches zero.
1910 */
1911 int
1912 soclose(struct socket *so)
1913 {
1914 struct accept_queue lqueue;
1915 int error = 0;
1916 bool listening, last __diagused;
1917
1918 CURVNET_SET(so->so_vnet);
1919 funsetown(&so->so_sigio);
1920 if (so->so_state & SS_ISCONNECTED) {
1921 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1922 error = sodisconnect(so);
1923 if (error) {
1924 if (error == ENOTCONN)
1925 error = 0;
1926 goto drop;
1927 }
1928 }
1929
1930 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1931 if ((so->so_state & SS_ISDISCONNECTING) &&
1932 (so->so_state & SS_NBIO))
1933 goto drop;
1934 while (so->so_state & SS_ISCONNECTED) {
1935 error = tsleep(&so->so_timeo,
1936 PSOCK | PCATCH, "soclos",
1937 so->so_linger * hz);
1938 if (error)
1939 break;
1940 }
1941 }
1942 }
1943
1944 drop:
1945 if (so->so_proto->pr_close != NULL)
1946 so->so_proto->pr_close(so);
1947
1948 SOCK_LOCK(so);
1949 if ((listening = SOLISTENING(so))) {
1950 struct socket *sp;
1951
1952 TAILQ_INIT(&lqueue);
1953 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1954 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1955
1956 so->sol_qlen = so->sol_incqlen = 0;
1957
1958 TAILQ_FOREACH(sp, &lqueue, so_list) {
1959 SOCK_LOCK(sp);
1960 sp->so_qstate = SQ_NONE;
1961 sp->so_listen = NULL;
1962 SOCK_UNLOCK(sp);
1963 last = refcount_release(&so->so_count);
1964 KASSERT(!last, ("%s: released last reference for %p",
1965 __func__, so));
1966 }
1967 }
1968 sorele_locked(so);
1969 if (listening) {
1970 struct socket *sp, *tsp;
1971
1972 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1973 soabort(sp);
1974 }
1975 CURVNET_RESTORE();
1976 return (error);
1977 }
1978
1979 /*
1980 * soabort() is used to abruptly tear down a connection, such as when a
1981 * resource limit is reached (listen queue depth exceeded), or if a listen
1982 * socket is closed while there are sockets waiting to be accepted.
1983 *
1984 * This interface is tricky, because it is called on an unreferenced socket,
1985 * and must be called only by a thread that has actually removed the socket
1986 * from the listen queue it was on. Likely this thread holds the last
1987 * reference on the socket and soabort() will proceed with sofree(). But
1988 * it might be not the last, as the sockets on the listen queues are seen
1989 * from the protocol side.
1990 *
1991 * This interface will call into the protocol code, so must not be called
1992 * with any socket locks held. Protocols do call it while holding their own
1993 * recursible protocol mutexes, but this is something that should be subject
1994 * to review in the future.
1995 *
1996 * Usually socket should have a single reference left, but this is not a
1997 * requirement. In the past, when we have had named references for file
1998 * descriptor and protocol, we asserted that none of them are being held.
1999 */
2000 void
2001 soabort(struct socket *so)
2002 {
2003
2004 VNET_SO_ASSERT(so);
2005
2006 if (so->so_proto->pr_abort != NULL)
2007 so->so_proto->pr_abort(so);
2008 SOCK_LOCK(so);
2009 sorele_locked(so);
2010 }
2011
2012 int
2013 soaccept(struct socket *so, struct sockaddr *sa)
2014 {
2015 #ifdef INVARIANTS
2016 u_char len = sa->sa_len;
2017 #endif
2018 int error;
2019
2020 CURVNET_SET(so->so_vnet);
2021 error = so->so_proto->pr_accept(so, sa);
2022 KASSERT(sa->sa_len <= len,
2023 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2024 CURVNET_RESTORE();
2025 return (error);
2026 }
2027
2028 int
2029 sopeeraddr(struct socket *so, struct sockaddr *sa)
2030 {
2031 #ifdef INVARIANTS
2032 u_char len = sa->sa_len;
2033 #endif
2034 int error;
2035
2036 CURVNET_ASSERT_SET();
2037
2038 error = so->so_proto->pr_peeraddr(so, sa);
2039 KASSERT(sa->sa_len <= len,
2040 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2041
2042 return (error);
2043 }
2044
2045 int
2046 sosockaddr(struct socket *so, struct sockaddr *sa)
2047 {
2048 #ifdef INVARIANTS
2049 u_char len = sa->sa_len;
2050 #endif
2051 int error;
2052
2053 CURVNET_SET(so->so_vnet);
2054 error = so->so_proto->pr_sockaddr(so, sa);
2055 KASSERT(sa->sa_len <= len,
2056 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2057 CURVNET_RESTORE();
2058
2059 return (error);
2060 }
2061
2062 int
2063 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2064 {
2065
2066 return (soconnectat(AT_FDCWD, so, nam, td));
2067 }
2068
2069 int
2070 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2071 {
2072 int error;
2073
2074 CURVNET_SET(so->so_vnet);
2075
2076 /*
2077 * If protocol is connection-based, can only connect once.
2078 * Otherwise, if connected, try to disconnect first. This allows
2079 * user to disconnect by connecting to, e.g., a null address.
2080 *
2081 * Note, this check is racy and may need to be re-evaluated at the
2082 * protocol layer.
2083 */
2084 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2085 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2086 (error = sodisconnect(so)))) {
2087 error = EISCONN;
2088 } else {
2089 /*
2090 * Prevent accumulated error from previous connection from
2091 * biting us.
2092 */
2093 so->so_error = 0;
2094 if (fd == AT_FDCWD) {
2095 error = so->so_proto->pr_connect(so, nam, td);
2096 } else {
2097 error = so->so_proto->pr_connectat(fd, so, nam, td);
2098 }
2099 }
2100 CURVNET_RESTORE();
2101
2102 return (error);
2103 }
2104
2105 int
2106 soconnect2(struct socket *so1, struct socket *so2)
2107 {
2108 int error;
2109
2110 CURVNET_SET(so1->so_vnet);
2111 error = so1->so_proto->pr_connect2(so1, so2);
2112 CURVNET_RESTORE();
2113 return (error);
2114 }
2115
2116 int
2117 sodisconnect(struct socket *so)
2118 {
2119 int error;
2120
2121 if ((so->so_state & SS_ISCONNECTED) == 0)
2122 return (ENOTCONN);
2123 if (so->so_state & SS_ISDISCONNECTING)
2124 return (EALREADY);
2125 VNET_SO_ASSERT(so);
2126 error = so->so_proto->pr_disconnect(so);
2127 return (error);
2128 }
2129
2130 int
2131 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2132 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2133 {
2134 long space;
2135 ssize_t resid;
2136 int clen = 0, error, dontroute;
2137
2138 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2139 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2140 ("sosend_dgram: !PR_ATOMIC"));
2141
2142 if (uio != NULL)
2143 resid = uio->uio_resid;
2144 else
2145 resid = top->m_pkthdr.len;
2146 /*
2147 * In theory resid should be unsigned. However, space must be
2148 * signed, as it might be less than 0 if we over-committed, and we
2149 * must use a signed comparison of space and resid. On the other
2150 * hand, a negative resid causes us to loop sending 0-length
2151 * segments to the protocol.
2152 */
2153 if (resid < 0) {
2154 error = EINVAL;
2155 goto out;
2156 }
2157
2158 dontroute =
2159 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2160 if (td != NULL)
2161 td->td_ru.ru_msgsnd++;
2162 if (control != NULL)
2163 clen = control->m_len;
2164
2165 SOCKBUF_LOCK(&so->so_snd);
2166 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2167 SOCKBUF_UNLOCK(&so->so_snd);
2168 error = EPIPE;
2169 goto out;
2170 }
2171 if (so->so_error) {
2172 error = so->so_error;
2173 so->so_error = 0;
2174 SOCKBUF_UNLOCK(&so->so_snd);
2175 goto out;
2176 }
2177 if ((so->so_state & SS_ISCONNECTED) == 0) {
2178 /*
2179 * `sendto' and `sendmsg' is allowed on a connection-based
2180 * socket if it supports implied connect. Return ENOTCONN if
2181 * not connected and no address is supplied.
2182 */
2183 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2184 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2185 if (!(resid == 0 && clen != 0)) {
2186 SOCKBUF_UNLOCK(&so->so_snd);
2187 error = ENOTCONN;
2188 goto out;
2189 }
2190 } else if (addr == NULL) {
2191 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2192 error = ENOTCONN;
2193 else
2194 error = EDESTADDRREQ;
2195 SOCKBUF_UNLOCK(&so->so_snd);
2196 goto out;
2197 }
2198 }
2199
2200 /*
2201 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2202 * problem and need fixing.
2203 */
2204 space = sbspace(&so->so_snd);
2205 if (flags & MSG_OOB)
2206 space += 1024;
2207 space -= clen;
2208 SOCKBUF_UNLOCK(&so->so_snd);
2209 if (resid > space) {
2210 error = EMSGSIZE;
2211 goto out;
2212 }
2213 if (uio == NULL) {
2214 resid = 0;
2215 if (flags & MSG_EOR)
2216 top->m_flags |= M_EOR;
2217 } else {
2218 /*
2219 * Copy the data from userland into a mbuf chain.
2220 * If no data is to be copied in, a single empty mbuf
2221 * is returned.
2222 */
2223 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2224 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2225 if (top == NULL) {
2226 error = EFAULT; /* only possible error */
2227 goto out;
2228 }
2229 space -= resid - uio->uio_resid;
2230 resid = uio->uio_resid;
2231 }
2232 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2233 /*
2234 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2235 * than with.
2236 */
2237 if (dontroute) {
2238 SOCK_LOCK(so);
2239 so->so_options |= SO_DONTROUTE;
2240 SOCK_UNLOCK(so);
2241 }
2242 /*
2243 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2244 * of date. We could have received a reset packet in an interrupt or
2245 * maybe we slept while doing page faults in uiomove() etc. We could
2246 * probably recheck again inside the locking protection here, but
2247 * there are probably other places that this also happens. We must
2248 * rethink this.
2249 */
2250 VNET_SO_ASSERT(so);
2251 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2252 /*
2253 * If the user set MSG_EOF, the protocol understands this flag and
2254 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2255 */
2256 ((flags & MSG_EOF) &&
2257 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2258 (resid <= 0)) ?
2259 PRUS_EOF :
2260 /* If there is more to send set PRUS_MORETOCOME */
2261 (flags & MSG_MORETOCOME) ||
2262 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2263 top, addr, control, td);
2264 if (dontroute) {
2265 SOCK_LOCK(so);
2266 so->so_options &= ~SO_DONTROUTE;
2267 SOCK_UNLOCK(so);
2268 }
2269 clen = 0;
2270 control = NULL;
2271 top = NULL;
2272 out:
2273 if (top != NULL)
2274 m_freem(top);
2275 if (control != NULL)
2276 m_freem(control);
2277 return (error);
2278 }
2279
2280 /*
2281 * Send on a socket. If send must go all at once and message is larger than
2282 * send buffering, then hard error. Lock against other senders. If must go
2283 * all at once and not enough room now, then inform user that this would
2284 * block and do nothing. Otherwise, if nonblocking, send as much as
2285 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2286 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2287 * in mbuf chain must be small enough to send all at once.
2288 *
2289 * Returns nonzero on error, timeout or signal; callers must check for short
2290 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2291 * on return.
2292 */
2293 static int
2294 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2295 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2296 {
2297 long space;
2298 ssize_t resid;
2299 int clen = 0, error, dontroute;
2300 int atomic = sosendallatonce(so) || top;
2301 int pr_send_flag;
2302 #ifdef KERN_TLS
2303 struct ktls_session *tls;
2304 int tls_enq_cnt, tls_send_flag;
2305 uint8_t tls_rtype;
2306
2307 tls = NULL;
2308 tls_rtype = TLS_RLTYPE_APP;
2309 #endif
2310
2311 SOCK_IO_SEND_ASSERT_LOCKED(so);
2312
2313 if (uio != NULL)
2314 resid = uio->uio_resid;
2315 else if ((top->m_flags & M_PKTHDR) != 0)
2316 resid = top->m_pkthdr.len;
2317 else
2318 resid = m_length(top, NULL);
2319 /*
2320 * In theory resid should be unsigned. However, space must be
2321 * signed, as it might be less than 0 if we over-committed, and we
2322 * must use a signed comparison of space and resid. On the other
2323 * hand, a negative resid causes us to loop sending 0-length
2324 * segments to the protocol.
2325 *
2326 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2327 * type sockets since that's an error.
2328 */
2329 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2330 error = EINVAL;
2331 goto out;
2332 }
2333
2334 dontroute =
2335 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2336 (so->so_proto->pr_flags & PR_ATOMIC);
2337 if (td != NULL)
2338 td->td_ru.ru_msgsnd++;
2339 if (control != NULL)
2340 clen = control->m_len;
2341
2342 #ifdef KERN_TLS
2343 tls_send_flag = 0;
2344 tls = ktls_hold(so->so_snd.sb_tls_info);
2345 if (tls != NULL) {
2346 if (tls->mode == TCP_TLS_MODE_SW)
2347 tls_send_flag = PRUS_NOTREADY;
2348
2349 if (control != NULL) {
2350 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2351
2352 if (clen >= sizeof(*cm) &&
2353 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2354 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2355 clen = 0;
2356 m_freem(control);
2357 control = NULL;
2358 atomic = 1;
2359 }
2360 }
2361
2362 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2363 error = EINVAL;
2364 goto out;
2365 }
2366 }
2367 #endif
2368
2369 restart:
2370 do {
2371 SOCKBUF_LOCK(&so->so_snd);
2372 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2373 SOCKBUF_UNLOCK(&so->so_snd);
2374 error = EPIPE;
2375 goto out;
2376 }
2377 if (so->so_error) {
2378 error = so->so_error;
2379 so->so_error = 0;
2380 SOCKBUF_UNLOCK(&so->so_snd);
2381 goto out;
2382 }
2383 if ((so->so_state & SS_ISCONNECTED) == 0) {
2384 /*
2385 * `sendto' and `sendmsg' is allowed on a connection-
2386 * based socket if it supports implied connect.
2387 * Return ENOTCONN if not connected and no address is
2388 * supplied.
2389 */
2390 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2391 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2392 if (!(resid == 0 && clen != 0)) {
2393 SOCKBUF_UNLOCK(&so->so_snd);
2394 error = ENOTCONN;
2395 goto out;
2396 }
2397 } else if (addr == NULL) {
2398 SOCKBUF_UNLOCK(&so->so_snd);
2399 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2400 error = ENOTCONN;
2401 else
2402 error = EDESTADDRREQ;
2403 goto out;
2404 }
2405 }
2406 space = sbspace(&so->so_snd);
2407 if (flags & MSG_OOB)
2408 space += 1024;
2409 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2410 clen > so->so_snd.sb_hiwat) {
2411 SOCKBUF_UNLOCK(&so->so_snd);
2412 error = EMSGSIZE;
2413 goto out;
2414 }
2415 if (space < resid + clen &&
2416 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2417 if ((so->so_state & SS_NBIO) ||
2418 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2419 SOCKBUF_UNLOCK(&so->so_snd);
2420 error = EWOULDBLOCK;
2421 goto out;
2422 }
2423 error = sbwait(so, SO_SND);
2424 SOCKBUF_UNLOCK(&so->so_snd);
2425 if (error)
2426 goto out;
2427 goto restart;
2428 }
2429 SOCKBUF_UNLOCK(&so->so_snd);
2430 space -= clen;
2431 do {
2432 if (uio == NULL) {
2433 resid = 0;
2434 if (flags & MSG_EOR)
2435 top->m_flags |= M_EOR;
2436 #ifdef KERN_TLS
2437 if (tls != NULL) {
2438 ktls_frame(top, tls, &tls_enq_cnt,
2439 tls_rtype);
2440 tls_rtype = TLS_RLTYPE_APP;
2441 }
2442 #endif
2443 } else {
2444 /*
2445 * Copy the data from userland into a mbuf
2446 * chain. If resid is 0, which can happen
2447 * only if we have control to send, then
2448 * a single empty mbuf is returned. This
2449 * is a workaround to prevent protocol send
2450 * methods to panic.
2451 */
2452 #ifdef KERN_TLS
2453 if (tls != NULL) {
2454 top = m_uiotombuf(uio, M_WAITOK, space,
2455 tls->params.max_frame_len,
2456 M_EXTPG |
2457 ((flags & MSG_EOR) ? M_EOR : 0));
2458 if (top != NULL) {
2459 ktls_frame(top, tls,
2460 &tls_enq_cnt, tls_rtype);
2461 }
2462 tls_rtype = TLS_RLTYPE_APP;
2463 } else
2464 #endif
2465 top = m_uiotombuf(uio, M_WAITOK, space,
2466 (atomic ? max_hdr : 0),
2467 (atomic ? M_PKTHDR : 0) |
2468 ((flags & MSG_EOR) ? M_EOR : 0));
2469 if (top == NULL) {
2470 error = EFAULT; /* only possible error */
2471 goto out;
2472 }
2473 space -= resid - uio->uio_resid;
2474 resid = uio->uio_resid;
2475 }
2476 if (dontroute) {
2477 SOCK_LOCK(so);
2478 so->so_options |= SO_DONTROUTE;
2479 SOCK_UNLOCK(so);
2480 }
2481 /*
2482 * XXX all the SBS_CANTSENDMORE checks previously
2483 * done could be out of date. We could have received
2484 * a reset packet in an interrupt or maybe we slept
2485 * while doing page faults in uiomove() etc. We
2486 * could probably recheck again inside the locking
2487 * protection here, but there are probably other
2488 * places that this also happens. We must rethink
2489 * this.
2490 */
2491 VNET_SO_ASSERT(so);
2492
2493 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2494 /*
2495 * If the user set MSG_EOF, the protocol understands
2496 * this flag and nothing left to send then use
2497 * PRU_SEND_EOF instead of PRU_SEND.
2498 */
2499 ((flags & MSG_EOF) &&
2500 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2501 (resid <= 0)) ?
2502 PRUS_EOF :
2503 /* If there is more to send set PRUS_MORETOCOME. */
2504 (flags & MSG_MORETOCOME) ||
2505 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2506
2507 #ifdef KERN_TLS
2508 pr_send_flag |= tls_send_flag;
2509 #endif
2510
2511 error = so->so_proto->pr_send(so, pr_send_flag, top,
2512 addr, control, td);
2513
2514 if (dontroute) {
2515 SOCK_LOCK(so);
2516 so->so_options &= ~SO_DONTROUTE;
2517 SOCK_UNLOCK(so);
2518 }
2519
2520 #ifdef KERN_TLS
2521 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2522 if (error != 0) {
2523 m_freem(top);
2524 top = NULL;
2525 } else {
2526 soref(so);
2527 ktls_enqueue(top, so, tls_enq_cnt);
2528 }
2529 }
2530 #endif
2531 clen = 0;
2532 control = NULL;
2533 top = NULL;
2534 if (error)
2535 goto out;
2536 } while (resid && space > 0);
2537 } while (resid);
2538
2539 out:
2540 #ifdef KERN_TLS
2541 if (tls != NULL)
2542 ktls_free(tls);
2543 #endif
2544 if (top != NULL)
2545 m_freem(top);
2546 if (control != NULL)
2547 m_freem(control);
2548 return (error);
2549 }
2550
2551 int
2552 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2553 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2554 {
2555 int error;
2556
2557 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2558 if (error)
2559 return (error);
2560 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2561 SOCK_IO_SEND_UNLOCK(so);
2562 return (error);
2563 }
2564
2565 /*
2566 * Send to a socket from a kernel thread.
2567 *
2568 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2569 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2570 * to be set at all. This function should just boil down to a static inline
2571 * calling the protocol method.
2572 */
2573 int
2574 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2575 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2576 {
2577 int error;
2578
2579 CURVNET_SET(so->so_vnet);
2580 error = so->so_proto->pr_sosend(so, addr, uio,
2581 top, control, flags, td);
2582 CURVNET_RESTORE();
2583 return (error);
2584 }
2585
2586 /*
2587 * send(2), write(2) or aio_write(2) on a socket.
2588 */
2589 int
2590 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2591 struct mbuf *control, int flags, struct proc *userproc)
2592 {
2593 struct thread *td;
2594 ssize_t len;
2595 int error;
2596
2597 td = uio->uio_td;
2598 len = uio->uio_resid;
2599 CURVNET_SET(so->so_vnet);
2600 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2601 td);
2602 CURVNET_RESTORE();
2603 if (error != 0) {
2604 /*
2605 * Clear transient errors for stream protocols if they made
2606 * some progress. Make exclusion for aio(4) that would
2607 * schedule a new write in case of EWOULDBLOCK and clear
2608 * error itself. See soaio_process_job().
2609 */
2610 if (uio->uio_resid != len &&
2611 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2612 userproc == NULL &&
2613 (error == ERESTART || error == EINTR ||
2614 error == EWOULDBLOCK))
2615 error = 0;
2616 /* Generation of SIGPIPE can be controlled per socket. */
2617 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2618 (flags & MSG_NOSIGNAL) == 0) {
2619 if (userproc != NULL) {
2620 /* aio(4) job */
2621 PROC_LOCK(userproc);
2622 kern_psignal(userproc, SIGPIPE);
2623 PROC_UNLOCK(userproc);
2624 } else {
2625 PROC_LOCK(td->td_proc);
2626 tdsignal(td, SIGPIPE);
2627 PROC_UNLOCK(td->td_proc);
2628 }
2629 }
2630 }
2631 return (error);
2632 }
2633
2634 /*
2635 * The part of soreceive() that implements reading non-inline out-of-band
2636 * data from a socket. For more complete comments, see soreceive(), from
2637 * which this code originated.
2638 *
2639 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2640 * unable to return an mbuf chain to the caller.
2641 */
2642 static int
2643 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2644 {
2645 struct protosw *pr = so->so_proto;
2646 struct mbuf *m;
2647 int error;
2648
2649 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2650 VNET_SO_ASSERT(so);
2651
2652 m = m_get(M_WAITOK, MT_DATA);
2653 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2654 if (error)
2655 goto bad;
2656 do {
2657 error = uiomove(mtod(m, void *),
2658 (int) min(uio->uio_resid, m->m_len), uio);
2659 m = m_free(m);
2660 } while (uio->uio_resid && error == 0 && m);
2661 bad:
2662 if (m != NULL)
2663 m_freem(m);
2664 return (error);
2665 }
2666
2667 /*
2668 * Following replacement or removal of the first mbuf on the first mbuf chain
2669 * of a socket buffer, push necessary state changes back into the socket
2670 * buffer so that other consumers see the values consistently. 'nextrecord'
2671 * is the callers locally stored value of the original value of
2672 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2673 * NOTE: 'nextrecord' may be NULL.
2674 */
2675 static __inline void
2676 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2677 {
2678
2679 SOCKBUF_LOCK_ASSERT(sb);
2680 /*
2681 * First, update for the new value of nextrecord. If necessary, make
2682 * it the first record.
2683 */
2684 if (sb->sb_mb != NULL)
2685 sb->sb_mb->m_nextpkt = nextrecord;
2686 else
2687 sb->sb_mb = nextrecord;
2688
2689 /*
2690 * Now update any dependent socket buffer fields to reflect the new
2691 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2692 * addition of a second clause that takes care of the case where
2693 * sb_mb has been updated, but remains the last record.
2694 */
2695 if (sb->sb_mb == NULL) {
2696 sb->sb_mbtail = NULL;
2697 sb->sb_lastrecord = NULL;
2698 } else if (sb->sb_mb->m_nextpkt == NULL)
2699 sb->sb_lastrecord = sb->sb_mb;
2700 }
2701
2702 /*
2703 * Implement receive operations on a socket. We depend on the way that
2704 * records are added to the sockbuf by sbappend. In particular, each record
2705 * (mbufs linked through m_next) must begin with an address if the protocol
2706 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2707 * data, and then zero or more mbufs of data. In order to allow parallelism
2708 * between network receive and copying to user space, as well as avoid
2709 * sleeping with a mutex held, we release the socket buffer mutex during the
2710 * user space copy. Although the sockbuf is locked, new data may still be
2711 * appended, and thus we must maintain consistency of the sockbuf during that
2712 * time.
2713 *
2714 * The caller may receive the data as a single mbuf chain by supplying an
2715 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2716 * the count in uio_resid.
2717 */
2718 static int
2719 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2720 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2721 {
2722 struct mbuf *m;
2723 int flags, error, offset;
2724 ssize_t len;
2725 struct protosw *pr = so->so_proto;
2726 struct mbuf *nextrecord;
2727 int moff, type = 0;
2728 ssize_t orig_resid = uio->uio_resid;
2729 bool report_real_len = false;
2730
2731 SOCK_IO_RECV_ASSERT_LOCKED(so);
2732
2733 error = 0;
2734 if (flagsp != NULL) {
2735 report_real_len = *flagsp & MSG_TRUNC;
2736 *flagsp &= ~MSG_TRUNC;
2737 flags = *flagsp &~ MSG_EOR;
2738 } else
2739 flags = 0;
2740
2741 restart:
2742 SOCKBUF_LOCK(&so->so_rcv);
2743 m = so->so_rcv.sb_mb;
2744 /*
2745 * If we have less data than requested, block awaiting more (subject
2746 * to any timeout) if:
2747 * 1. the current count is less than the low water mark, or
2748 * 2. MSG_DONTWAIT is not set
2749 */
2750 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2751 sbavail(&so->so_rcv) < uio->uio_resid) &&
2752 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2753 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2754 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2755 ("receive: m == %p sbavail == %u",
2756 m, sbavail(&so->so_rcv)));
2757 if (so->so_error || so->so_rerror) {
2758 if (m != NULL)
2759 goto dontblock;
2760 if (so->so_error)
2761 error = so->so_error;
2762 else
2763 error = so->so_rerror;
2764 if ((flags & MSG_PEEK) == 0) {
2765 if (so->so_error)
2766 so->so_error = 0;
2767 else
2768 so->so_rerror = 0;
2769 }
2770 SOCKBUF_UNLOCK(&so->so_rcv);
2771 goto release;
2772 }
2773 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2774 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2775 if (m != NULL)
2776 goto dontblock;
2777 #ifdef KERN_TLS
2778 else if (so->so_rcv.sb_tlsdcc == 0 &&
2779 so->so_rcv.sb_tlscc == 0) {
2780 #else
2781 else {
2782 #endif
2783 SOCKBUF_UNLOCK(&so->so_rcv);
2784 goto release;
2785 }
2786 }
2787 for (; m != NULL; m = m->m_next)
2788 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2789 m = so->so_rcv.sb_mb;
2790 goto dontblock;
2791 }
2792 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2793 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2794 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2795 SOCKBUF_UNLOCK(&so->so_rcv);
2796 error = ENOTCONN;
2797 goto release;
2798 }
2799 if (uio->uio_resid == 0 && !report_real_len) {
2800 SOCKBUF_UNLOCK(&so->so_rcv);
2801 goto release;
2802 }
2803 if ((so->so_state & SS_NBIO) ||
2804 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2805 SOCKBUF_UNLOCK(&so->so_rcv);
2806 error = EWOULDBLOCK;
2807 goto release;
2808 }
2809 SBLASTRECORDCHK(&so->so_rcv);
2810 SBLASTMBUFCHK(&so->so_rcv);
2811 error = sbwait(so, SO_RCV);
2812 SOCKBUF_UNLOCK(&so->so_rcv);
2813 if (error)
2814 goto release;
2815 goto restart;
2816 }
2817 dontblock:
2818 /*
2819 * From this point onward, we maintain 'nextrecord' as a cache of the
2820 * pointer to the next record in the socket buffer. We must keep the
2821 * various socket buffer pointers and local stack versions of the
2822 * pointers in sync, pushing out modifications before dropping the
2823 * socket buffer mutex, and re-reading them when picking it up.
2824 *
2825 * Otherwise, we will race with the network stack appending new data
2826 * or records onto the socket buffer by using inconsistent/stale
2827 * versions of the field, possibly resulting in socket buffer
2828 * corruption.
2829 *
2830 * By holding the high-level sblock(), we prevent simultaneous
2831 * readers from pulling off the front of the socket buffer.
2832 */
2833 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2834 if (uio->uio_td)
2835 uio->uio_td->td_ru.ru_msgrcv++;
2836 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2837 SBLASTRECORDCHK(&so->so_rcv);
2838 SBLASTMBUFCHK(&so->so_rcv);
2839 nextrecord = m->m_nextpkt;
2840 if (pr->pr_flags & PR_ADDR) {
2841 KASSERT(m->m_type == MT_SONAME,
2842 ("m->m_type == %d", m->m_type));
2843 orig_resid = 0;
2844 if (psa != NULL)
2845 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2846 M_NOWAIT);
2847 if (flags & MSG_PEEK) {
2848 m = m->m_next;
2849 } else {
2850 sbfree(&so->so_rcv, m);
2851 so->so_rcv.sb_mb = m_free(m);
2852 m = so->so_rcv.sb_mb;
2853 sockbuf_pushsync(&so->so_rcv, nextrecord);
2854 }
2855 }
2856
2857 /*
2858 * Process one or more MT_CONTROL mbufs present before any data mbufs
2859 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2860 * just copy the data; if !MSG_PEEK, we call into the protocol to
2861 * perform externalization (or freeing if controlp == NULL).
2862 */
2863 if (m != NULL && m->m_type == MT_CONTROL) {
2864 struct mbuf *cm = NULL, *cmn;
2865 struct mbuf **cme = &cm;
2866 #ifdef KERN_TLS
2867 struct cmsghdr *cmsg;
2868 struct tls_get_record tgr;
2869
2870 /*
2871 * For MSG_TLSAPPDATA, check for an alert record.
2872 * If found, return ENXIO without removing
2873 * it from the receive queue. This allows a subsequent
2874 * call without MSG_TLSAPPDATA to receive it.
2875 * Note that, for TLS, there should only be a single
2876 * control mbuf with the TLS_GET_RECORD message in it.
2877 */
2878 if (flags & MSG_TLSAPPDATA) {
2879 cmsg = mtod(m, struct cmsghdr *);
2880 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2881 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2882 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2883 if (__predict_false(tgr.tls_type ==
2884 TLS_RLTYPE_ALERT)) {
2885 SOCKBUF_UNLOCK(&so->so_rcv);
2886 error = ENXIO;
2887 goto release;
2888 }
2889 }
2890 }
2891 #endif
2892
2893 do {
2894 if (flags & MSG_PEEK) {
2895 if (controlp != NULL) {
2896 *controlp = m_copym(m, 0, m->m_len,
2897 M_NOWAIT);
2898 controlp = &(*controlp)->m_next;
2899 }
2900 m = m->m_next;
2901 } else {
2902 sbfree(&so->so_rcv, m);
2903 so->so_rcv.sb_mb = m->m_next;
2904 m->m_next = NULL;
2905 *cme = m;
2906 cme = &(*cme)->m_next;
2907 m = so->so_rcv.sb_mb;
2908 }
2909 } while (m != NULL && m->m_type == MT_CONTROL);
2910 if ((flags & MSG_PEEK) == 0)
2911 sockbuf_pushsync(&so->so_rcv, nextrecord);
2912 while (cm != NULL) {
2913 cmn = cm->m_next;
2914 cm->m_next = NULL;
2915 if (pr->pr_domain->dom_externalize != NULL) {
2916 SOCKBUF_UNLOCK(&so->so_rcv);
2917 VNET_SO_ASSERT(so);
2918 error = (*pr->pr_domain->dom_externalize)
2919 (cm, controlp, flags);
2920 SOCKBUF_LOCK(&so->so_rcv);
2921 } else if (controlp != NULL)
2922 *controlp = cm;
2923 else
2924 m_freem(cm);
2925 if (controlp != NULL) {
2926 while (*controlp != NULL)
2927 controlp = &(*controlp)->m_next;
2928 }
2929 cm = cmn;
2930 }
2931 if (m != NULL)
2932 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2933 else
2934 nextrecord = so->so_rcv.sb_mb;
2935 orig_resid = 0;
2936 }
2937 if (m != NULL) {
2938 if ((flags & MSG_PEEK) == 0) {
2939 KASSERT(m->m_nextpkt == nextrecord,
2940 ("soreceive: post-control, nextrecord !sync"));
2941 if (nextrecord == NULL) {
2942 KASSERT(so->so_rcv.sb_mb == m,
2943 ("soreceive: post-control, sb_mb!=m"));
2944 KASSERT(so->so_rcv.sb_lastrecord == m,
2945 ("soreceive: post-control, lastrecord!=m"));
2946 }
2947 }
2948 type = m->m_type;
2949 if (type == MT_OOBDATA)
2950 flags |= MSG_OOB;
2951 } else {
2952 if ((flags & MSG_PEEK) == 0) {
2953 KASSERT(so->so_rcv.sb_mb == nextrecord,
2954 ("soreceive: sb_mb != nextrecord"));
2955 if (so->so_rcv.sb_mb == NULL) {
2956 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2957 ("soreceive: sb_lastercord != NULL"));
2958 }
2959 }
2960 }
2961 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2962 SBLASTRECORDCHK(&so->so_rcv);
2963 SBLASTMBUFCHK(&so->so_rcv);
2964
2965 /*
2966 * Now continue to read any data mbufs off of the head of the socket
2967 * buffer until the read request is satisfied. Note that 'type' is
2968 * used to store the type of any mbuf reads that have happened so far
2969 * such that soreceive() can stop reading if the type changes, which
2970 * causes soreceive() to return only one of regular data and inline
2971 * out-of-band data in a single socket receive operation.
2972 */
2973 moff = 0;
2974 offset = 0;
2975 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2976 && error == 0) {
2977 /*
2978 * If the type of mbuf has changed since the last mbuf
2979 * examined ('type'), end the receive operation.
2980 */
2981 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2982 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2983 if (type != m->m_type)
2984 break;
2985 } else if (type == MT_OOBDATA)
2986 break;
2987 else
2988 KASSERT(m->m_type == MT_DATA,
2989 ("m->m_type == %d", m->m_type));
2990 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2991 len = uio->uio_resid;
2992 if (so->so_oobmark && len > so->so_oobmark - offset)
2993 len = so->so_oobmark - offset;
2994 if (len > m->m_len - moff)
2995 len = m->m_len - moff;
2996 /*
2997 * If mp is set, just pass back the mbufs. Otherwise copy
2998 * them out via the uio, then free. Sockbuf must be
2999 * consistent here (points to current mbuf, it points to next
3000 * record) when we drop priority; we must note any additions
3001 * to the sockbuf when we block interrupts again.
3002 */
3003 if (mp == NULL) {
3004 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3005 SBLASTRECORDCHK(&so->so_rcv);
3006 SBLASTMBUFCHK(&so->so_rcv);
3007 SOCKBUF_UNLOCK(&so->so_rcv);
3008 if ((m->m_flags & M_EXTPG) != 0)
3009 error = m_unmapped_uiomove(m, moff, uio,
3010 (int)len);
3011 else
3012 error = uiomove(mtod(m, char *) + moff,
3013 (int)len, uio);
3014 SOCKBUF_LOCK(&so->so_rcv);
3015 if (error) {
3016 /*
3017 * The MT_SONAME mbuf has already been removed
3018 * from the record, so it is necessary to
3019 * remove the data mbufs, if any, to preserve
3020 * the invariant in the case of PR_ADDR that
3021 * requires MT_SONAME mbufs at the head of
3022 * each record.
3023 */
3024 if (pr->pr_flags & PR_ATOMIC &&
3025 ((flags & MSG_PEEK) == 0))
3026 (void)sbdroprecord_locked(&so->so_rcv);
3027 SOCKBUF_UNLOCK(&so->so_rcv);
3028 goto release;
3029 }
3030 } else
3031 uio->uio_resid -= len;
3032 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3033 if (len == m->m_len - moff) {
3034 if (m->m_flags & M_EOR)
3035 flags |= MSG_EOR;
3036 if (flags & MSG_PEEK) {
3037 m = m->m_next;
3038 moff = 0;
3039 } else {
3040 nextrecord = m->m_nextpkt;
3041 sbfree(&so->so_rcv, m);
3042 if (mp != NULL) {
3043 m->m_nextpkt = NULL;
3044 *mp = m;
3045 mp = &m->m_next;
3046 so->so_rcv.sb_mb = m = m->m_next;
3047 *mp = NULL;
3048 } else {
3049 so->so_rcv.sb_mb = m_free(m);
3050 m = so->so_rcv.sb_mb;
3051 }
3052 sockbuf_pushsync(&so->so_rcv, nextrecord);
3053 SBLASTRECORDCHK(&so->so_rcv);
3054 SBLASTMBUFCHK(&so->so_rcv);
3055 }
3056 } else {
3057 if (flags & MSG_PEEK)
3058 moff += len;
3059 else {
3060 if (mp != NULL) {
3061 if (flags & MSG_DONTWAIT) {
3062 *mp = m_copym(m, 0, len,
3063 M_NOWAIT);
3064 if (*mp == NULL) {
3065 /*
3066 * m_copym() couldn't
3067 * allocate an mbuf.
3068 * Adjust uio_resid back
3069 * (it was adjusted
3070 * down by len bytes,
3071 * which we didn't end
3072 * up "copying" over).
3073 */
3074 uio->uio_resid += len;
3075 break;
3076 }
3077 } else {
3078 SOCKBUF_UNLOCK(&so->so_rcv);
3079 *mp = m_copym(m, 0, len,
3080 M_WAITOK);
3081 SOCKBUF_LOCK(&so->so_rcv);
3082 }
3083 }
3084 sbcut_locked(&so->so_rcv, len);
3085 }
3086 }
3087 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3088 if (so->so_oobmark) {
3089 if ((flags & MSG_PEEK) == 0) {
3090 so->so_oobmark -= len;
3091 if (so->so_oobmark == 0) {
3092 so->so_rcv.sb_state |= SBS_RCVATMARK;
3093 break;
3094 }
3095 } else {
3096 offset += len;
3097 if (offset == so->so_oobmark)
3098 break;
3099 }
3100 }
3101 if (flags & MSG_EOR)
3102 break;
3103 /*
3104 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3105 * must not quit until "uio->uio_resid == 0" or an error
3106 * termination. If a signal/timeout occurs, return with a
3107 * short count but without error. Keep sockbuf locked
3108 * against other readers.
3109 */
3110 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3111 !sosendallatonce(so) && nextrecord == NULL) {
3112 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3113 if (so->so_error || so->so_rerror ||
3114 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3115 break;
3116 /*
3117 * Notify the protocol that some data has been
3118 * drained before blocking.
3119 */
3120 if (pr->pr_flags & PR_WANTRCVD) {
3121 SOCKBUF_UNLOCK(&so->so_rcv);
3122 VNET_SO_ASSERT(so);
3123 pr->pr_rcvd(so, flags);
3124 SOCKBUF_LOCK(&so->so_rcv);
3125 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3126 (so->so_error || so->so_rerror ||
3127 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3128 break;
3129 }
3130 SBLASTRECORDCHK(&so->so_rcv);
3131 SBLASTMBUFCHK(&so->so_rcv);
3132 /*
3133 * We could receive some data while was notifying
3134 * the protocol. Skip blocking in this case.
3135 */
3136 if (so->so_rcv.sb_mb == NULL) {
3137 error = sbwait(so, SO_RCV);
3138 if (error) {
3139 SOCKBUF_UNLOCK(&so->so_rcv);
3140 goto release;
3141 }
3142 }
3143 m = so->so_rcv.sb_mb;
3144 if (m != NULL)
3145 nextrecord = m->m_nextpkt;
3146 }
3147 }
3148
3149 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3150 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3151 if (report_real_len)
3152 uio->uio_resid -= m_length(m, NULL) - moff;
3153 flags |= MSG_TRUNC;
3154 if ((flags & MSG_PEEK) == 0)
3155 (void) sbdroprecord_locked(&so->so_rcv);
3156 }
3157 if ((flags & MSG_PEEK) == 0) {
3158 if (m == NULL) {
3159 /*
3160 * First part is an inline SB_EMPTY_FIXUP(). Second
3161 * part makes sure sb_lastrecord is up-to-date if
3162 * there is still data in the socket buffer.
3163 */
3164 so->so_rcv.sb_mb = nextrecord;
3165 if (so->so_rcv.sb_mb == NULL) {
3166 so->so_rcv.sb_mbtail = NULL;
3167 so->so_rcv.sb_lastrecord = NULL;
3168 } else if (nextrecord->m_nextpkt == NULL)
3169 so->so_rcv.sb_lastrecord = nextrecord;
3170 }
3171 SBLASTRECORDCHK(&so->so_rcv);
3172 SBLASTMBUFCHK(&so->so_rcv);
3173 /*
3174 * If soreceive() is being done from the socket callback,
3175 * then don't need to generate ACK to peer to update window,
3176 * since ACK will be generated on return to TCP.
3177 */
3178 if (!(flags & MSG_SOCALLBCK) &&
3179 (pr->pr_flags & PR_WANTRCVD)) {
3180 SOCKBUF_UNLOCK(&so->so_rcv);
3181 VNET_SO_ASSERT(so);
3182 pr->pr_rcvd(so, flags);
3183 SOCKBUF_LOCK(&so->so_rcv);
3184 }
3185 }
3186 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3187 if (orig_resid == uio->uio_resid && orig_resid &&
3188 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3189 SOCKBUF_UNLOCK(&so->so_rcv);
3190 goto restart;
3191 }
3192 SOCKBUF_UNLOCK(&so->so_rcv);
3193
3194 if (flagsp != NULL)
3195 *flagsp |= flags;
3196 release:
3197 return (error);
3198 }
3199
3200 int
3201 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3202 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3203 {
3204 int error, flags;
3205
3206 if (psa != NULL)
3207 *psa = NULL;
3208 if (controlp != NULL)
3209 *controlp = NULL;
3210 if (flagsp != NULL) {
3211 flags = *flagsp;
3212 if ((flags & MSG_OOB) != 0)
3213 return (soreceive_rcvoob(so, uio, flags));
3214 } else {
3215 flags = 0;
3216 }
3217 if (mp != NULL)
3218 *mp = NULL;
3219
3220 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3221 if (error)
3222 return (error);
3223 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3224 SOCK_IO_RECV_UNLOCK(so);
3225 return (error);
3226 }
3227
3228 /*
3229 * Optimized version of soreceive() for stream (TCP) sockets.
3230 */
3231 static int
3232 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3233 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3234 struct mbuf **controlp, int flags)
3235 {
3236 int len = 0, error = 0, oresid;
3237 struct mbuf *m, *n = NULL;
3238
3239 SOCK_IO_RECV_ASSERT_LOCKED(so);
3240
3241 /* Easy one, no space to copyout anything. */
3242 if (uio->uio_resid == 0)
3243 return (EINVAL);
3244 oresid = uio->uio_resid;
3245
3246 SOCKBUF_LOCK(sb);
3247 /* We will never ever get anything unless we are or were connected. */
3248 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3249 error = ENOTCONN;
3250 goto out;
3251 }
3252
3253 restart:
3254 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3255
3256 /* Abort if socket has reported problems. */
3257 if (so->so_error) {
3258 if (sbavail(sb) > 0)
3259 goto deliver;
3260 if (oresid > uio->uio_resid)
3261 goto out;
3262 error = so->so_error;
3263 if (!(flags & MSG_PEEK))
3264 so->so_error = 0;
3265 goto out;
3266 }
3267
3268 /* Door is closed. Deliver what is left, if any. */
3269 if (sb->sb_state & SBS_CANTRCVMORE) {
3270 if (sbavail(sb) > 0)
3271 goto deliver;
3272 else
3273 goto out;
3274 }
3275
3276 /* Socket buffer is empty and we shall not block. */
3277 if (sbavail(sb) == 0 &&
3278 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3279 error = EAGAIN;
3280 goto out;
3281 }
3282
3283 /* Socket buffer got some data that we shall deliver now. */
3284 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3285 ((so->so_state & SS_NBIO) ||
3286 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3287 sbavail(sb) >= sb->sb_lowat ||
3288 sbavail(sb) >= uio->uio_resid ||
3289 sbavail(sb) >= sb->sb_hiwat) ) {
3290 goto deliver;
3291 }
3292
3293 /* On MSG_WAITALL we must wait until all data or error arrives. */
3294 if ((flags & MSG_WAITALL) &&
3295 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3296 goto deliver;
3297
3298 /*
3299 * Wait and block until (more) data comes in.
3300 * NB: Drops the sockbuf lock during wait.
3301 */
3302 error = sbwait(so, SO_RCV);
3303 if (error)
3304 goto out;
3305 goto restart;
3306
3307 deliver:
3308 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3309 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3310 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3311
3312 /* Statistics. */
3313 if (uio->uio_td)
3314 uio->uio_td->td_ru.ru_msgrcv++;
3315
3316 /* Fill uio until full or current end of socket buffer is reached. */
3317 len = min(uio->uio_resid, sbavail(sb));
3318 if (mp0 != NULL) {
3319 /* Dequeue as many mbufs as possible. */
3320 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3321 if (*mp0 == NULL)
3322 *mp0 = sb->sb_mb;
3323 else
3324 m_cat(*mp0, sb->sb_mb);
3325 for (m = sb->sb_mb;
3326 m != NULL && m->m_len <= len;
3327 m = m->m_next) {
3328 KASSERT(!(m->m_flags & M_NOTAVAIL),
3329 ("%s: m %p not available", __func__, m));
3330 len -= m->m_len;
3331 uio->uio_resid -= m->m_len;
3332 sbfree(sb, m);
3333 n = m;
3334 }
3335 n->m_next = NULL;
3336 sb->sb_mb = m;
3337 sb->sb_lastrecord = sb->sb_mb;
3338 if (sb->sb_mb == NULL)
3339 SB_EMPTY_FIXUP(sb);
3340 }
3341 /* Copy the remainder. */
3342 if (len > 0) {
3343 KASSERT(sb->sb_mb != NULL,
3344 ("%s: len > 0 && sb->sb_mb empty", __func__));
3345
3346 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3347 if (m == NULL)
3348 len = 0; /* Don't flush data from sockbuf. */
3349 else
3350 uio->uio_resid -= len;
3351 if (*mp0 != NULL)
3352 m_cat(*mp0, m);
3353 else
3354 *mp0 = m;
3355 if (*mp0 == NULL) {
3356 error = ENOBUFS;
3357 goto out;
3358 }
3359 }
3360 } else {
3361 /* NB: Must unlock socket buffer as uiomove may sleep. */
3362 SOCKBUF_UNLOCK(sb);
3363 error = m_mbuftouio(uio, sb->sb_mb, len);
3364 SOCKBUF_LOCK(sb);
3365 if (error)
3366 goto out;
3367 }
3368 SBLASTRECORDCHK(sb);
3369 SBLASTMBUFCHK(sb);
3370
3371 /*
3372 * Remove the delivered data from the socket buffer unless we
3373 * were only peeking.
3374 */
3375 if (!(flags & MSG_PEEK)) {
3376 if (len > 0)
3377 sbdrop_locked(sb, len);
3378
3379 /* Notify protocol that we drained some data. */
3380 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3381 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3382 !(flags & MSG_SOCALLBCK))) {
3383 SOCKBUF_UNLOCK(sb);
3384 VNET_SO_ASSERT(so);
3385 so->so_proto->pr_rcvd(so, flags);
3386 SOCKBUF_LOCK(sb);
3387 }
3388 }
3389
3390 /*
3391 * For MSG_WAITALL we may have to loop again and wait for
3392 * more data to come in.
3393 */
3394 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3395 goto restart;
3396 out:
3397 SBLASTRECORDCHK(sb);
3398 SBLASTMBUFCHK(sb);
3399 SOCKBUF_UNLOCK(sb);
3400 return (error);
3401 }
3402
3403 int
3404 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3405 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3406 {
3407 struct sockbuf *sb;
3408 int error, flags;
3409
3410 sb = &so->so_rcv;
3411
3412 /* We only do stream sockets. */
3413 if (so->so_type != SOCK_STREAM)
3414 return (EINVAL);
3415 if (psa != NULL)
3416 *psa = NULL;
3417 if (flagsp != NULL)
3418 flags = *flagsp & ~MSG_EOR;
3419 else
3420 flags = 0;
3421 if (controlp != NULL)
3422 *controlp = NULL;
3423 if (flags & MSG_OOB)
3424 return (soreceive_rcvoob(so, uio, flags));
3425 if (mp0 != NULL)
3426 *mp0 = NULL;
3427
3428 #ifdef KERN_TLS
3429 /*
3430 * KTLS store TLS records as records with a control message to
3431 * describe the framing.
3432 *
3433 * We check once here before acquiring locks to optimize the
3434 * common case.
3435 */
3436 if (sb->sb_tls_info != NULL)
3437 return (soreceive_generic(so, psa, uio, mp0, controlp,
3438 flagsp));
3439 #endif
3440
3441 /*
3442 * Prevent other threads from reading from the socket. This lock may be
3443 * dropped in order to sleep waiting for data to arrive.
3444 */
3445 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3446 if (error)
3447 return (error);
3448 #ifdef KERN_TLS
3449 if (__predict_false(sb->sb_tls_info != NULL)) {
3450 SOCK_IO_RECV_UNLOCK(so);
3451 return (soreceive_generic(so, psa, uio, mp0, controlp,
3452 flagsp));
3453 }
3454 #endif
3455 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3456 SOCK_IO_RECV_UNLOCK(so);
3457 return (error);
3458 }
3459
3460 /*
3461 * Optimized version of soreceive() for simple datagram cases from userspace.
3462 * Unlike in the stream case, we're able to drop a datagram if copyout()
3463 * fails, and because we handle datagrams atomically, we don't need to use a
3464 * sleep lock to prevent I/O interlacing.
3465 */
3466 int
3467 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3468 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3469 {
3470 struct mbuf *m, *m2;
3471 int flags, error;
3472 ssize_t len;
3473 struct protosw *pr = so->so_proto;
3474 struct mbuf *nextrecord;
3475
3476 if (psa != NULL)
3477 *psa = NULL;
3478 if (controlp != NULL)
3479 *controlp = NULL;
3480 if (flagsp != NULL)
3481 flags = *flagsp &~ MSG_EOR;
3482 else
3483 flags = 0;
3484
3485 /*
3486 * For any complicated cases, fall back to the full
3487 * soreceive_generic().
3488 */
3489 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3490 return (soreceive_generic(so, psa, uio, mp0, controlp,
3491 flagsp));
3492
3493 /*
3494 * Enforce restrictions on use.
3495 */
3496 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3497 ("soreceive_dgram: wantrcvd"));
3498 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3499 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3500 ("soreceive_dgram: SBS_RCVATMARK"));
3501 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3502 ("soreceive_dgram: P_CONNREQUIRED"));
3503
3504 /*
3505 * Loop blocking while waiting for a datagram.
3506 */
3507 SOCKBUF_LOCK(&so->so_rcv);
3508 while ((m = so->so_rcv.sb_mb) == NULL) {
3509 KASSERT(sbavail(&so->so_rcv) == 0,
3510 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3511 sbavail(&so->so_rcv)));
3512 if (so->so_error) {
3513 error = so->so_error;
3514 so->so_error = 0;
3515 SOCKBUF_UNLOCK(&so->so_rcv);
3516 return (error);
3517 }
3518 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3519 uio->uio_resid == 0) {
3520 SOCKBUF_UNLOCK(&so->so_rcv);
3521 return (0);
3522 }
3523 if ((so->so_state & SS_NBIO) ||
3524 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3525 SOCKBUF_UNLOCK(&so->so_rcv);
3526 return (EWOULDBLOCK);
3527 }
3528 SBLASTRECORDCHK(&so->so_rcv);
3529 SBLASTMBUFCHK(&so->so_rcv);
3530 error = sbwait(so, SO_RCV);
3531 if (error) {
3532 SOCKBUF_UNLOCK(&so->so_rcv);
3533 return (error);
3534 }
3535 }
3536 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3537
3538 if (uio->uio_td)
3539 uio->uio_td->td_ru.ru_msgrcv++;
3540 SBLASTRECORDCHK(&so->so_rcv);
3541 SBLASTMBUFCHK(&so->so_rcv);
3542 nextrecord = m->m_nextpkt;
3543 if (nextrecord == NULL) {
3544 KASSERT(so->so_rcv.sb_lastrecord == m,
3545 ("soreceive_dgram: lastrecord != m"));
3546 }
3547
3548 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3549 ("soreceive_dgram: m_nextpkt != nextrecord"));
3550
3551 /*
3552 * Pull 'm' and its chain off the front of the packet queue.
3553 */
3554 so->so_rcv.sb_mb = NULL;
3555 sockbuf_pushsync(&so->so_rcv, nextrecord);
3556
3557 /*
3558 * Walk 'm's chain and free that many bytes from the socket buffer.
3559 */
3560 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3561 sbfree(&so->so_rcv, m2);
3562
3563 /*
3564 * Do a few last checks before we let go of the lock.
3565 */
3566 SBLASTRECORDCHK(&so->so_rcv);
3567 SBLASTMBUFCHK(&so->so_rcv);
3568 SOCKBUF_UNLOCK(&so->so_rcv);
3569
3570 if (pr->pr_flags & PR_ADDR) {
3571 KASSERT(m->m_type == MT_SONAME,
3572 ("m->m_type == %d", m->m_type));
3573 if (psa != NULL)
3574 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3575 M_WAITOK);
3576 m = m_free(m);
3577 }
3578 KASSERT(m, ("%s: no data or control after soname", __func__));
3579
3580 /*
3581 * Packet to copyout() is now in 'm' and it is disconnected from the
3582 * queue.
3583 *
3584 * Process one or more MT_CONTROL mbufs present before any data mbufs
3585 * in the first mbuf chain on the socket buffer. We call into the
3586 * protocol to perform externalization (or freeing if controlp ==
3587 * NULL). In some cases there can be only MT_CONTROL mbufs without
3588 * MT_DATA mbufs.
3589 */
3590 if (m->m_type == MT_CONTROL) {
3591 struct mbuf *cm = NULL, *cmn;
3592 struct mbuf **cme = &cm;
3593
3594 do {
3595 m2 = m->m_next;
3596 m->m_next = NULL;
3597 *cme = m;
3598 cme = &(*cme)->m_next;
3599 m = m2;
3600 } while (m != NULL && m->m_type == MT_CONTROL);
3601 while (cm != NULL) {
3602 cmn = cm->m_next;
3603 cm->m_next = NULL;
3604 if (pr->pr_domain->dom_externalize != NULL) {
3605 error = (*pr->pr_domain->dom_externalize)
3606 (cm, controlp, flags);
3607 } else if (controlp != NULL)
3608 *controlp = cm;
3609 else
3610 m_freem(cm);
3611 if (controlp != NULL) {
3612 while (*controlp != NULL)
3613 controlp = &(*controlp)->m_next;
3614 }
3615 cm = cmn;
3616 }
3617 }
3618 KASSERT(m == NULL || m->m_type == MT_DATA,
3619 ("soreceive_dgram: !data"));
3620 while (m != NULL && uio->uio_resid > 0) {
3621 len = uio->uio_resid;
3622 if (len > m->m_len)
3623 len = m->m_len;
3624 error = uiomove(mtod(m, char *), (int)len, uio);
3625 if (error) {
3626 m_freem(m);
3627 return (error);
3628 }
3629 if (len == m->m_len)
3630 m = m_free(m);
3631 else {
3632 m->m_data += len;
3633 m->m_len -= len;
3634 }
3635 }
3636 if (m != NULL) {
3637 flags |= MSG_TRUNC;
3638 m_freem(m);
3639 }
3640 if (flagsp != NULL)
3641 *flagsp |= flags;
3642 return (0);
3643 }
3644
3645 int
3646 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3647 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3648 {
3649 int error;
3650
3651 CURVNET_SET(so->so_vnet);
3652 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3653 CURVNET_RESTORE();
3654 return (error);
3655 }
3656
3657 int
3658 soshutdown(struct socket *so, enum shutdown_how how)
3659 {
3660 int error;
3661
3662 CURVNET_SET(so->so_vnet);
3663 error = so->so_proto->pr_shutdown(so, how);
3664 CURVNET_RESTORE();
3665
3666 return (error);
3667 }
3668
3669 /*
3670 * Used by several pr_shutdown implementations that use generic socket buffers.
3671 */
3672 void
3673 sorflush(struct socket *so)
3674 {
3675 int error;
3676
3677 VNET_SO_ASSERT(so);
3678
3679 /*
3680 * Dislodge threads currently blocked in receive and wait to acquire
3681 * a lock against other simultaneous readers before clearing the
3682 * socket buffer. Don't let our acquire be interrupted by a signal
3683 * despite any existing socket disposition on interruptable waiting.
3684 *
3685 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3686 * methods that read the top of the socket buffer without acquisition
3687 * of the socket buffer mutex, assuming that top of the buffer
3688 * exclusively belongs to the read(2) syscall. This is handy when
3689 * performing MSG_PEEK.
3690 */
3691 socantrcvmore(so);
3692
3693 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3694 if (error != 0) {
3695 KASSERT(SOLISTENING(so),
3696 ("%s: soiolock(%p) failed", __func__, so));
3697 return;
3698 }
3699
3700 sbrelease(so, SO_RCV);
3701 SOCK_IO_RECV_UNLOCK(so);
3702
3703 }
3704
3705 int
3706 sosetfib(struct socket *so, int fibnum)
3707 {
3708 if (fibnum < 0 || fibnum >= rt_numfibs)
3709 return (EINVAL);
3710
3711 SOCK_LOCK(so);
3712 so->so_fibnum = fibnum;
3713 SOCK_UNLOCK(so);
3714
3715 return (0);
3716 }
3717
3718 #ifdef SOCKET_HHOOK
3719 /*
3720 * Wrapper for Socket established helper hook.
3721 * Parameters: socket, context of the hook point, hook id.
3722 */
3723 static inline int
3724 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3725 {
3726 struct socket_hhook_data hhook_data = {
3727 .so = so,
3728 .hctx = hctx,
3729 .m = NULL,
3730 .status = 0
3731 };
3732
3733 CURVNET_SET(so->so_vnet);
3734 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3735 CURVNET_RESTORE();
3736
3737 /* Ugly but needed, since hhooks return void for now */
3738 return (hhook_data.status);
3739 }
3740 #endif
3741
3742 /*
3743 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3744 * additional variant to handle the case where the option value needs to be
3745 * some kind of integer, but not a specific size. In addition to their use
3746 * here, these functions are also called by the protocol-level pr_ctloutput()
3747 * routines.
3748 */
3749 int
3750 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3751 {
3752 size_t valsize;
3753
3754 /*
3755 * If the user gives us more than we wanted, we ignore it, but if we
3756 * don't get the minimum length the caller wants, we return EINVAL.
3757 * On success, sopt->sopt_valsize is set to however much we actually
3758 * retrieved.
3759 */
3760 if ((valsize = sopt->sopt_valsize) < minlen)
3761 return EINVAL;
3762 if (valsize > len)
3763 sopt->sopt_valsize = valsize = len;
3764
3765 if (sopt->sopt_td != NULL)
3766 return (copyin(sopt->sopt_val, buf, valsize));
3767
3768 bcopy(sopt->sopt_val, buf, valsize);
3769 return (0);
3770 }
3771
3772 /*
3773 * Kernel version of setsockopt(2).
3774 *
3775 * XXX: optlen is size_t, not socklen_t
3776 */
3777 int
3778 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3779 size_t optlen)
3780 {
3781 struct sockopt sopt;
3782
3783 sopt.sopt_level = level;
3784 sopt.sopt_name = optname;
3785 sopt.sopt_dir = SOPT_SET;
3786 sopt.sopt_val = optval;
3787 sopt.sopt_valsize = optlen;
3788 sopt.sopt_td = NULL;
3789 return (sosetopt(so, &sopt));
3790 }
3791
3792 int
3793 sosetopt(struct socket *so, struct sockopt *sopt)
3794 {
3795 int error, optval;
3796 struct linger l;
3797 struct timeval tv;
3798 sbintime_t val, *valp;
3799 uint32_t val32;
3800 #ifdef MAC
3801 struct mac extmac;
3802 #endif
3803
3804 CURVNET_SET(so->so_vnet);
3805 error = 0;
3806 if (sopt->sopt_level != SOL_SOCKET) {
3807 if (so->so_proto->pr_ctloutput != NULL)
3808 error = (*so->so_proto->pr_ctloutput)(so, sopt);
3809 else
3810 error = ENOPROTOOPT;
3811 } else {
3812 switch (sopt->sopt_name) {
3813 case SO_ACCEPTFILTER:
3814 error = accept_filt_setopt(so, sopt);
3815 if (error)
3816 goto bad;
3817 break;
3818
3819 case SO_LINGER:
3820 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3821 if (error)
3822 goto bad;
3823 if (l.l_linger < 0 ||
3824 l.l_linger > USHRT_MAX ||
3825 l.l_linger > (INT_MAX / hz)) {
3826 error = EDOM;
3827 goto bad;
3828 }
3829 SOCK_LOCK(so);
3830 so->so_linger = l.l_linger;
3831 if (l.l_onoff)
3832 so->so_options |= SO_LINGER;
3833 else
3834 so->so_options &= ~SO_LINGER;
3835 SOCK_UNLOCK(so);
3836 break;
3837
3838 case SO_DEBUG:
3839 case SO_KEEPALIVE:
3840 case SO_DONTROUTE:
3841 case SO_USELOOPBACK:
3842 case SO_BROADCAST:
3843 case SO_REUSEADDR:
3844 case SO_REUSEPORT:
3845 case SO_REUSEPORT_LB:
3846 case SO_OOBINLINE:
3847 case SO_TIMESTAMP:
3848 case SO_BINTIME:
3849 case SO_NOSIGPIPE:
3850 case SO_NO_DDP:
3851 case SO_NO_OFFLOAD:
3852 case SO_RERROR:
3853 error = sooptcopyin(sopt, &optval, sizeof optval,
3854 sizeof optval);
3855 if (error)
3856 goto bad;
3857 SOCK_LOCK(so);
3858 if (optval)
3859 so->so_options |= sopt->sopt_name;
3860 else
3861 so->so_options &= ~sopt->sopt_name;
3862 SOCK_UNLOCK(so);
3863 break;
3864
3865 case SO_SETFIB:
3866 error = so->so_proto->pr_ctloutput(so, sopt);
3867 break;
3868
3869 case SO_USER_COOKIE:
3870 error = sooptcopyin(sopt, &val32, sizeof val32,
3871 sizeof val32);
3872 if (error)
3873 goto bad;
3874 so->so_user_cookie = val32;
3875 break;
3876
3877 case SO_SNDBUF:
3878 case SO_RCVBUF:
3879 case SO_SNDLOWAT:
3880 case SO_RCVLOWAT:
3881 error = so->so_proto->pr_setsbopt(so, sopt);
3882 if (error)
3883 goto bad;
3884 break;
3885
3886 case SO_SNDTIMEO:
3887 case SO_RCVTIMEO:
3888 #ifdef COMPAT_FREEBSD32
3889 if (SV_CURPROC_FLAG(SV_ILP32)) {
3890 struct timeval32 tv32;
3891
3892 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3893 sizeof tv32);
3894 CP(tv32, tv, tv_sec);
3895 CP(tv32, tv, tv_usec);
3896 } else
3897 #endif
3898 error = sooptcopyin(sopt, &tv, sizeof tv,
3899 sizeof tv);
3900 if (error)
3901 goto bad;
3902 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3903 tv.tv_usec >= 1000000) {
3904 error = EDOM;
3905 goto bad;
3906 }
3907 if (tv.tv_sec > INT32_MAX)
3908 val = SBT_MAX;
3909 else
3910 val = tvtosbt(tv);
3911 SOCK_LOCK(so);
3912 valp = sopt->sopt_name == SO_SNDTIMEO ?
3913 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3914 &so->so_snd.sb_timeo) :
3915 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3916 &so->so_rcv.sb_timeo);
3917 *valp = val;
3918 SOCK_UNLOCK(so);
3919 break;
3920
3921 case SO_LABEL:
3922 #ifdef MAC
3923 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3924 sizeof extmac);
3925 if (error)
3926 goto bad;
3927 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3928 so, &extmac);
3929 #else
3930 error = EOPNOTSUPP;
3931 #endif
3932 break;
3933
3934 case SO_TS_CLOCK:
3935 error = sooptcopyin(sopt, &optval, sizeof optval,
3936 sizeof optval);
3937 if (error)
3938 goto bad;
3939 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3940 error = EINVAL;
3941 goto bad;
3942 }
3943 so->so_ts_clock = optval;
3944 break;
3945
3946 case SO_MAX_PACING_RATE:
3947 error = sooptcopyin(sopt, &val32, sizeof(val32),
3948 sizeof(val32));
3949 if (error)
3950 goto bad;
3951 so->so_max_pacing_rate = val32;
3952 break;
3953
3954 case SO_SPLICE: {
3955 struct splice splice;
3956
3957 #ifdef COMPAT_FREEBSD32
3958 if (SV_CURPROC_FLAG(SV_ILP32)) {
3959 struct splice32 splice32;
3960
3961 error = sooptcopyin(sopt, &splice32,
3962 sizeof(splice32), sizeof(splice32));
3963 if (error == 0) {
3964 splice.sp_fd = splice32.sp_fd;
3965 splice.sp_max = splice32.sp_max;
3966 CP(splice32.sp_idle, splice.sp_idle,
3967 tv_sec);
3968 CP(splice32.sp_idle, splice.sp_idle,
3969 tv_usec);
3970 }
3971 } else
3972 #endif
3973 {
3974 error = sooptcopyin(sopt, &splice,
3975 sizeof(splice), sizeof(splice));
3976 }
3977 if (error)
3978 goto bad;
3979 #ifdef KTRACE
3980 if (KTRPOINT(curthread, KTR_STRUCT))
3981 ktrsplice(&splice);
3982 #endif
3983
3984 error = splice_init();
3985 if (error != 0)
3986 goto bad;
3987
3988 if (splice.sp_fd >= 0) {
3989 struct file *fp;
3990 struct socket *so2;
3991
3992 if (!cap_rights_contains(sopt->sopt_rights,
3993 &cap_recv_rights)) {
3994 error = ENOTCAPABLE;
3995 goto bad;
3996 }
3997 error = getsock(sopt->sopt_td, splice.sp_fd,
3998 &cap_send_rights, &fp);
3999 if (error != 0)
4000 goto bad;
4001 so2 = fp->f_data;
4002
4003 error = so_splice(so, so2, &splice);
4004 fdrop(fp, sopt->sopt_td);
4005 } else {
4006 error = so_unsplice(so, false);
4007 }
4008 break;
4009 }
4010 default:
4011 #ifdef SOCKET_HHOOK
4012 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4013 error = hhook_run_socket(so, sopt,
4014 HHOOK_SOCKET_OPT);
4015 else
4016 #endif
4017 error = ENOPROTOOPT;
4018 break;
4019 }
4020 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
4021 (void)(*so->so_proto->pr_ctloutput)(so, sopt);
4022 }
4023 bad:
4024 CURVNET_RESTORE();
4025 return (error);
4026 }
4027
4028 /*
4029 * Helper routine for getsockopt.
4030 */
4031 int
4032 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4033 {
4034 int error;
4035 size_t valsize;
4036
4037 error = 0;
4038
4039 /*
4040 * Documented get behavior is that we always return a value, possibly
4041 * truncated to fit in the user's buffer. Traditional behavior is
4042 * that we always tell the user precisely how much we copied, rather
4043 * than something useful like the total amount we had available for
4044 * her. Note that this interface is not idempotent; the entire
4045 * answer must be generated ahead of time.
4046 */
4047 valsize = min(len, sopt->sopt_valsize);
4048 sopt->sopt_valsize = valsize;
4049 if (sopt->sopt_val != NULL) {
4050 if (sopt->sopt_td != NULL)
4051 error = copyout(buf, sopt->sopt_val, valsize);
4052 else
4053 bcopy(buf, sopt->sopt_val, valsize);
4054 }
4055 return (error);
4056 }
4057
4058 int
4059 sogetopt(struct socket *so, struct sockopt *sopt)
4060 {
4061 int error, optval;
4062 struct linger l;
4063 struct timeval tv;
4064 #ifdef MAC
4065 struct mac extmac;
4066 #endif
4067
4068 CURVNET_SET(so->so_vnet);
4069 error = 0;
4070 if (sopt->sopt_level != SOL_SOCKET) {
4071 if (so->so_proto->pr_ctloutput != NULL)
4072 error = (*so->so_proto->pr_ctloutput)(so, sopt);
4073 else
4074 error = ENOPROTOOPT;
4075 CURVNET_RESTORE();
4076 return (error);
4077 } else {
4078 switch (sopt->sopt_name) {
4079 case SO_ACCEPTFILTER:
4080 error = accept_filt_getopt(so, sopt);
4081 break;
4082
4083 case SO_LINGER:
4084 SOCK_LOCK(so);
4085 l.l_onoff = so->so_options & SO_LINGER;
4086 l.l_linger = so->so_linger;
4087 SOCK_UNLOCK(so);
4088 error = sooptcopyout(sopt, &l, sizeof l);
4089 break;
4090
4091 case SO_USELOOPBACK:
4092 case SO_DONTROUTE:
4093 case SO_DEBUG:
4094 case SO_KEEPALIVE:
4095 case SO_REUSEADDR:
4096 case SO_REUSEPORT:
4097 case SO_REUSEPORT_LB:
4098 case SO_BROADCAST:
4099 case SO_OOBINLINE:
4100 case SO_ACCEPTCONN:
4101 case SO_TIMESTAMP:
4102 case SO_BINTIME:
4103 case SO_NOSIGPIPE:
4104 case SO_NO_DDP:
4105 case SO_NO_OFFLOAD:
4106 case SO_RERROR:
4107 optval = so->so_options & sopt->sopt_name;
4108 integer:
4109 error = sooptcopyout(sopt, &optval, sizeof optval);
4110 break;
4111
4112 case SO_FIB:
4113 SOCK_LOCK(so);
4114 optval = so->so_fibnum;
4115 SOCK_UNLOCK(so);
4116 goto integer;
4117
4118 case SO_DOMAIN:
4119 optval = so->so_proto->pr_domain->dom_family;
4120 goto integer;
4121
4122 case SO_TYPE:
4123 optval = so->so_type;
4124 goto integer;
4125
4126 case SO_PROTOCOL:
4127 optval = so->so_proto->pr_protocol;
4128 goto integer;
4129
4130 case SO_ERROR:
4131 SOCK_LOCK(so);
4132 if (so->so_error) {
4133 optval = so->so_error;
4134 so->so_error = 0;
4135 } else {
4136 optval = so->so_rerror;
4137 so->so_rerror = 0;
4138 }
4139 SOCK_UNLOCK(so);
4140 goto integer;
4141
4142 case SO_SNDBUF:
4143 SOCK_LOCK(so);
4144 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4145 so->so_snd.sb_hiwat;
4146 SOCK_UNLOCK(so);
4147 goto integer;
4148
4149 case SO_RCVBUF:
4150 SOCK_LOCK(so);
4151 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4152 so->so_rcv.sb_hiwat;
4153 SOCK_UNLOCK(so);
4154 goto integer;
4155
4156 case SO_SNDLOWAT:
4157 SOCK_LOCK(so);
4158 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4159 so->so_snd.sb_lowat;
4160 SOCK_UNLOCK(so);
4161 goto integer;
4162
4163 case SO_RCVLOWAT:
4164 SOCK_LOCK(so);
4165 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4166 so->so_rcv.sb_lowat;
4167 SOCK_UNLOCK(so);
4168 goto integer;
4169
4170 case SO_SNDTIMEO:
4171 case SO_RCVTIMEO:
4172 SOCK_LOCK(so);
4173 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4174 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4175 so->so_snd.sb_timeo) :
4176 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4177 so->so_rcv.sb_timeo));
4178 SOCK_UNLOCK(so);
4179 #ifdef COMPAT_FREEBSD32
4180 if (SV_CURPROC_FLAG(SV_ILP32)) {
4181 struct timeval32 tv32;
4182
4183 CP(tv, tv32, tv_sec);
4184 CP(tv, tv32, tv_usec);
4185 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4186 } else
4187 #endif
4188 error = sooptcopyout(sopt, &tv, sizeof tv);
4189 break;
4190
4191 case SO_LABEL:
4192 #ifdef MAC
4193 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4194 sizeof(extmac));
4195 if (error)
4196 goto bad;
4197 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4198 so, &extmac);
4199 if (error)
4200 goto bad;
4201 /* Don't copy out extmac, it is unchanged. */
4202 #else
4203 error = EOPNOTSUPP;
4204 #endif
4205 break;
4206
4207 case SO_PEERLABEL:
4208 #ifdef MAC
4209 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4210 sizeof(extmac));
4211 if (error)
4212 goto bad;
4213 error = mac_getsockopt_peerlabel(
4214 sopt->sopt_td->td_ucred, so, &extmac);
4215 if (error)
4216 goto bad;
4217 /* Don't copy out extmac, it is unchanged. */
4218 #else
4219 error = EOPNOTSUPP;
4220 #endif
4221 break;
4222
4223 case SO_LISTENQLIMIT:
4224 SOCK_LOCK(so);
4225 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4226 SOCK_UNLOCK(so);
4227 goto integer;
4228
4229 case SO_LISTENQLEN:
4230 SOCK_LOCK(so);
4231 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4232 SOCK_UNLOCK(so);
4233 goto integer;
4234
4235 case SO_LISTENINCQLEN:
4236 SOCK_LOCK(so);
4237 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4238 SOCK_UNLOCK(so);
4239 goto integer;
4240
4241 case SO_TS_CLOCK:
4242 optval = so->so_ts_clock;
4243 goto integer;
4244
4245 case SO_MAX_PACING_RATE:
4246 optval = so->so_max_pacing_rate;
4247 goto integer;
4248
4249 case SO_SPLICE: {
4250 off_t n;
4251
4252 /*
4253 * Acquire the I/O lock to serialize with
4254 * so_splice_xfer(). This is not required for
4255 * correctness, but makes testing simpler: once a byte
4256 * has been transmitted to the sink and observed (e.g.,
4257 * by reading from the socket to which the sink is
4258 * connected), a subsequent getsockopt(SO_SPLICE) will
4259 * return an up-to-date value.
4260 */
4261 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4262 if (error != 0)
4263 goto bad;
4264 SOCK_LOCK(so);
4265 if (SOLISTENING(so)) {
4266 n = 0;
4267 } else {
4268 n = so->so_splice_sent;
4269 }
4270 SOCK_UNLOCK(so);
4271 SOCK_IO_RECV_UNLOCK(so);
4272 error = sooptcopyout(sopt, &n, sizeof(n));
4273 break;
4274 }
4275
4276 default:
4277 #ifdef SOCKET_HHOOK
4278 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4279 error = hhook_run_socket(so, sopt,
4280 HHOOK_SOCKET_OPT);
4281 else
4282 #endif
4283 error = ENOPROTOOPT;
4284 break;
4285 }
4286 }
4287 bad:
4288 CURVNET_RESTORE();
4289 return (error);
4290 }
4291
4292 int
4293 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4294 {
4295 struct mbuf *m, *m_prev;
4296 int sopt_size = sopt->sopt_valsize;
4297
4298 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4299 if (m == NULL)
4300 return ENOBUFS;
4301 if (sopt_size > MLEN) {
4302 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4303 if ((m->m_flags & M_EXT) == 0) {
4304 m_free(m);
4305 return ENOBUFS;
4306 }
4307 m->m_len = min(MCLBYTES, sopt_size);
4308 } else {
4309 m->m_len = min(MLEN, sopt_size);
4310 }
4311 sopt_size -= m->m_len;
4312 *mp = m;
4313 m_prev = m;
4314
4315 while (sopt_size) {
4316 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4317 if (m == NULL) {
4318 m_freem(*mp);
4319 return ENOBUFS;
4320 }
4321 if (sopt_size > MLEN) {
4322 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4323 M_NOWAIT);
4324 if ((m->m_flags & M_EXT) == 0) {
4325 m_freem(m);
4326 m_freem(*mp);
4327 return ENOBUFS;
4328 }
4329 m->m_len = min(MCLBYTES, sopt_size);
4330 } else {
4331 m->m_len = min(MLEN, sopt_size);
4332 }
4333 sopt_size -= m->m_len;
4334 m_prev->m_next = m;
4335 m_prev = m;
4336 }
4337 return (0);
4338 }
4339
4340 int
4341 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4342 {
4343 struct mbuf *m0 = m;
4344
4345 if (sopt->sopt_val == NULL)
4346 return (0);
4347 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4348 if (sopt->sopt_td != NULL) {
4349 int error;
4350
4351 error = copyin(sopt->sopt_val, mtod(m, char *),
4352 m->m_len);
4353 if (error != 0) {
4354 m_freem(m0);
4355 return(error);
4356 }
4357 } else
4358 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4359 sopt->sopt_valsize -= m->m_len;
4360 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4361 m = m->m_next;
4362 }
4363 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4364 panic("ip6_sooptmcopyin");
4365 return (0);
4366 }
4367
4368 int
4369 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4370 {
4371 struct mbuf *m0 = m;
4372 size_t valsize = 0;
4373
4374 if (sopt->sopt_val == NULL)
4375 return (0);
4376 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4377 if (sopt->sopt_td != NULL) {
4378 int error;
4379
4380 error = copyout(mtod(m, char *), sopt->sopt_val,
4381 m->m_len);
4382 if (error != 0) {
4383 m_freem(m0);
4384 return(error);
4385 }
4386 } else
4387 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4388 sopt->sopt_valsize -= m->m_len;
4389 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4390 valsize += m->m_len;
4391 m = m->m_next;
4392 }
4393 if (m != NULL) {
4394 /* enough soopt buffer should be given from user-land */
4395 m_freem(m0);
4396 return(EINVAL);
4397 }
4398 sopt->sopt_valsize = valsize;
4399 return (0);
4400 }
4401
4402 /*
4403 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4404 * out-of-band data, which will then notify socket consumers.
4405 */
4406 void
4407 sohasoutofband(struct socket *so)
4408 {
4409
4410 if (so->so_sigio != NULL)
4411 pgsigio(&so->so_sigio, SIGURG, 0);
4412 selwakeuppri(&so->so_rdsel, PSOCK);
4413 }
4414
4415 int
4416 sopoll_generic(struct socket *so, int events, struct thread *td)
4417 {
4418 int revents;
4419
4420 SOCK_LOCK(so);
4421 if (SOLISTENING(so)) {
4422 if (!(events & (POLLIN | POLLRDNORM)))
4423 revents = 0;
4424 else if (!TAILQ_EMPTY(&so->sol_comp))
4425 revents = events & (POLLIN | POLLRDNORM);
4426 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4427 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4428 else {
4429 selrecord(td, &so->so_rdsel);
4430 revents = 0;
4431 }
4432 } else {
4433 revents = 0;
4434 SOCK_SENDBUF_LOCK(so);
4435 SOCK_RECVBUF_LOCK(so);
4436 if (events & (POLLIN | POLLRDNORM))
4437 if (soreadabledata(so) && !isspliced(so))
4438 revents |= events & (POLLIN | POLLRDNORM);
4439 if (events & (POLLOUT | POLLWRNORM))
4440 if (sowriteable(so) && !issplicedback(so))
4441 revents |= events & (POLLOUT | POLLWRNORM);
4442 if (events & (POLLPRI | POLLRDBAND))
4443 if (so->so_oobmark ||
4444 (so->so_rcv.sb_state & SBS_RCVATMARK))
4445 revents |= events & (POLLPRI | POLLRDBAND);
4446 if ((events & POLLINIGNEOF) == 0) {
4447 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4448 revents |= events & (POLLIN | POLLRDNORM);
4449 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4450 revents |= POLLHUP;
4451 }
4452 }
4453 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4454 revents |= events & POLLRDHUP;
4455 if (revents == 0) {
4456 if (events &
4457 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4458 selrecord(td, &so->so_rdsel);
4459 so->so_rcv.sb_flags |= SB_SEL;
4460 }
4461 if (events & (POLLOUT | POLLWRNORM)) {
4462 selrecord(td, &so->so_wrsel);
4463 so->so_snd.sb_flags |= SB_SEL;
4464 }
4465 }
4466 SOCK_RECVBUF_UNLOCK(so);
4467 SOCK_SENDBUF_UNLOCK(so);
4468 }
4469 SOCK_UNLOCK(so);
4470 return (revents);
4471 }
4472
4473 int
4474 soo_kqfilter(struct file *fp, struct knote *kn)
4475 {
4476 struct socket *so = kn->kn_fp->f_data;
4477 struct sockbuf *sb;
4478 sb_which which;
4479 struct knlist *knl;
4480
4481 switch (kn->kn_filter) {
4482 case EVFILT_READ:
4483 kn->kn_fop = &soread_filtops;
4484 knl = &so->so_rdsel.si_note;
4485 sb = &so->so_rcv;
4486 which = SO_RCV;
4487 break;
4488 case EVFILT_WRITE:
4489 kn->kn_fop = &sowrite_filtops;
4490 knl = &so->so_wrsel.si_note;
4491 sb = &so->so_snd;
4492 which = SO_SND;
4493 break;
4494 case EVFILT_EMPTY:
4495 kn->kn_fop = &soempty_filtops;
4496 knl = &so->so_wrsel.si_note;
4497 sb = &so->so_snd;
4498 which = SO_SND;
4499 break;
4500 default:
4501 return (EINVAL);
4502 }
4503
4504 SOCK_LOCK(so);
4505 if (SOLISTENING(so)) {
4506 knlist_add(knl, kn, 1);
4507 } else {
4508 SOCK_BUF_LOCK(so, which);
4509 knlist_add(knl, kn, 1);
4510 sb->sb_flags |= SB_KNOTE;
4511 SOCK_BUF_UNLOCK(so, which);
4512 }
4513 SOCK_UNLOCK(so);
4514 return (0);
4515 }
4516
4517 static void
4518 filt_sordetach(struct knote *kn)
4519 {
4520 struct socket *so = kn->kn_fp->f_data;
4521
4522 so_rdknl_lock(so);
4523 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4524 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4525 so->so_rcv.sb_flags &= ~SB_KNOTE;
4526 so_rdknl_unlock(so);
4527 }
4528
4529 /*ARGSUSED*/
4530 static int
4531 filt_soread(struct knote *kn, long hint)
4532 {
4533 struct socket *so;
4534
4535 so = kn->kn_fp->f_data;
4536
4537 if (SOLISTENING(so)) {
4538 SOCK_LOCK_ASSERT(so);
4539 kn->kn_data = so->sol_qlen;
4540 if (so->so_error) {
4541 kn->kn_flags |= EV_EOF;
4542 kn->kn_fflags = so->so_error;
4543 return (1);
4544 }
4545 return (!TAILQ_EMPTY(&so->sol_comp));
4546 }
4547
4548 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4549 return (0);
4550
4551 SOCK_RECVBUF_LOCK_ASSERT(so);
4552
4553 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4554 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4555 kn->kn_flags |= EV_EOF;
4556 kn->kn_fflags = so->so_error;
4557 return (1);
4558 } else if (so->so_error || so->so_rerror)
4559 return (1);
4560
4561 if (kn->kn_sfflags & NOTE_LOWAT) {
4562 if (kn->kn_data >= kn->kn_sdata)
4563 return (1);
4564 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4565 return (1);
4566
4567 #ifdef SOCKET_HHOOK
4568 /* This hook returning non-zero indicates an event, not error */
4569 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4570 #else
4571 return (0);
4572 #endif
4573 }
4574
4575 static void
4576 filt_sowdetach(struct knote *kn)
4577 {
4578 struct socket *so = kn->kn_fp->f_data;
4579
4580 so_wrknl_lock(so);
4581 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4582 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4583 so->so_snd.sb_flags &= ~SB_KNOTE;
4584 so_wrknl_unlock(so);
4585 }
4586
4587 /*ARGSUSED*/
4588 static int
4589 filt_sowrite(struct knote *kn, long hint)
4590 {
4591 struct socket *so;
4592
4593 so = kn->kn_fp->f_data;
4594
4595 if (SOLISTENING(so))
4596 return (0);
4597
4598 SOCK_SENDBUF_LOCK_ASSERT(so);
4599 kn->kn_data = sbspace(&so->so_snd);
4600
4601 #ifdef SOCKET_HHOOK
4602 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4603 #endif
4604
4605 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4606 kn->kn_flags |= EV_EOF;
4607 kn->kn_fflags = so->so_error;
4608 return (1);
4609 } else if (so->so_error) /* temporary udp error */
4610 return (1);
4611 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4612 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4613 return (0);
4614 else if (kn->kn_sfflags & NOTE_LOWAT)
4615 return (kn->kn_data >= kn->kn_sdata);
4616 else
4617 return (kn->kn_data >= so->so_snd.sb_lowat);
4618 }
4619
4620 static int
4621 filt_soempty(struct knote *kn, long hint)
4622 {
4623 struct socket *so;
4624
4625 so = kn->kn_fp->f_data;
4626
4627 if (SOLISTENING(so))
4628 return (1);
4629
4630 SOCK_SENDBUF_LOCK_ASSERT(so);
4631 kn->kn_data = sbused(&so->so_snd);
4632
4633 if (kn->kn_data == 0)
4634 return (1);
4635 else
4636 return (0);
4637 }
4638
4639 int
4640 socheckuid(struct socket *so, uid_t uid)
4641 {
4642
4643 if (so == NULL)
4644 return (EPERM);
4645 if (so->so_cred->cr_uid != uid)
4646 return (EPERM);
4647 return (0);
4648 }
4649
4650 /*
4651 * These functions are used by protocols to notify the socket layer (and its
4652 * consumers) of state changes in the sockets driven by protocol-side events.
4653 */
4654
4655 /*
4656 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4657 *
4658 * Normal sequence from the active (originating) side is that
4659 * soisconnecting() is called during processing of connect() call, resulting
4660 * in an eventual call to soisconnected() if/when the connection is
4661 * established. When the connection is torn down soisdisconnecting() is
4662 * called during processing of disconnect() call, and soisdisconnected() is
4663 * called when the connection to the peer is totally severed. The semantics
4664 * of these routines are such that connectionless protocols can call
4665 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4666 * calls when setting up a ``connection'' takes no time.
4667 *
4668 * From the passive side, a socket is created with two queues of sockets:
4669 * so_incomp for connections in progress and so_comp for connections already
4670 * made and awaiting user acceptance. As a protocol is preparing incoming
4671 * connections, it creates a socket structure queued on so_incomp by calling
4672 * sonewconn(). When the connection is established, soisconnected() is
4673 * called, and transfers the socket structure to so_comp, making it available
4674 * to accept().
4675 *
4676 * If a socket is closed with sockets on either so_incomp or so_comp, these
4677 * sockets are dropped.
4678 *
4679 * If higher-level protocols are implemented in the kernel, the wakeups done
4680 * here will sometimes cause software-interrupt process scheduling.
4681 */
4682 void
4683 soisconnecting(struct socket *so)
4684 {
4685
4686 SOCK_LOCK(so);
4687 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4688 so->so_state |= SS_ISCONNECTING;
4689 SOCK_UNLOCK(so);
4690 }
4691
4692 void
4693 soisconnected(struct socket *so)
4694 {
4695 bool last __diagused;
4696
4697 SOCK_LOCK(so);
4698 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4699 so->so_state |= SS_ISCONNECTED;
4700
4701 if (so->so_qstate == SQ_INCOMP) {
4702 struct socket *head = so->so_listen;
4703 int ret;
4704
4705 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4706 /*
4707 * Promoting a socket from incomplete queue to complete, we
4708 * need to go through reverse order of locking. We first do
4709 * trylock, and if that doesn't succeed, we go the hard way
4710 * leaving a reference and rechecking consistency after proper
4711 * locking.
4712 */
4713 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4714 soref(head);
4715 SOCK_UNLOCK(so);
4716 SOLISTEN_LOCK(head);
4717 SOCK_LOCK(so);
4718 if (__predict_false(head != so->so_listen)) {
4719 /*
4720 * The socket went off the listen queue,
4721 * should be lost race to close(2) of sol.
4722 * The socket is about to soabort().
4723 */
4724 SOCK_UNLOCK(so);
4725 sorele_locked(head);
4726 return;
4727 }
4728 last = refcount_release(&head->so_count);
4729 KASSERT(!last, ("%s: released last reference for %p",
4730 __func__, head));
4731 }
4732 again:
4733 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4734 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4735 head->sol_incqlen--;
4736 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4737 head->sol_qlen++;
4738 so->so_qstate = SQ_COMP;
4739 SOCK_UNLOCK(so);
4740 solisten_wakeup(head); /* unlocks */
4741 } else {
4742 SOCK_RECVBUF_LOCK(so);
4743 soupcall_set(so, SO_RCV,
4744 head->sol_accept_filter->accf_callback,
4745 head->sol_accept_filter_arg);
4746 so->so_options &= ~SO_ACCEPTFILTER;
4747 ret = head->sol_accept_filter->accf_callback(so,
4748 head->sol_accept_filter_arg, M_NOWAIT);
4749 if (ret == SU_ISCONNECTED) {
4750 soupcall_clear(so, SO_RCV);
4751 SOCK_RECVBUF_UNLOCK(so);
4752 goto again;
4753 }
4754 SOCK_RECVBUF_UNLOCK(so);
4755 SOCK_UNLOCK(so);
4756 SOLISTEN_UNLOCK(head);
4757 }
4758 return;
4759 }
4760 SOCK_UNLOCK(so);
4761 wakeup(&so->so_timeo);
4762 sorwakeup(so);
4763 sowwakeup(so);
4764 }
4765
4766 void
4767 soisdisconnecting(struct socket *so)
4768 {
4769
4770 SOCK_LOCK(so);
4771 so->so_state &= ~SS_ISCONNECTING;
4772 so->so_state |= SS_ISDISCONNECTING;
4773
4774 if (!SOLISTENING(so)) {
4775 SOCK_RECVBUF_LOCK(so);
4776 socantrcvmore_locked(so);
4777 SOCK_SENDBUF_LOCK(so);
4778 socantsendmore_locked(so);
4779 }
4780 SOCK_UNLOCK(so);
4781 wakeup(&so->so_timeo);
4782 }
4783
4784 void
4785 soisdisconnected(struct socket *so)
4786 {
4787
4788 SOCK_LOCK(so);
4789
4790 /*
4791 * There is at least one reader of so_state that does not
4792 * acquire socket lock, namely soreceive_generic(). Ensure
4793 * that it never sees all flags that track connection status
4794 * cleared, by ordering the update with a barrier semantic of
4795 * our release thread fence.
4796 */
4797 so->so_state |= SS_ISDISCONNECTED;
4798 atomic_thread_fence_rel();
4799 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4800
4801 if (!SOLISTENING(so)) {
4802 SOCK_UNLOCK(so);
4803 SOCK_RECVBUF_LOCK(so);
4804 socantrcvmore_locked(so);
4805 SOCK_SENDBUF_LOCK(so);
4806 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4807 socantsendmore_locked(so);
4808 } else
4809 SOCK_UNLOCK(so);
4810 wakeup(&so->so_timeo);
4811 }
4812
4813 int
4814 soiolock(struct socket *so, struct sx *sx, int flags)
4815 {
4816 int error;
4817
4818 KASSERT((flags & SBL_VALID) == flags,
4819 ("soiolock: invalid flags %#x", flags));
4820
4821 if ((flags & SBL_WAIT) != 0) {
4822 if ((flags & SBL_NOINTR) != 0) {
4823 sx_xlock(sx);
4824 } else {
4825 error = sx_xlock_sig(sx);
4826 if (error != 0)
4827 return (error);
4828 }
4829 } else if (!sx_try_xlock(sx)) {
4830 return (EWOULDBLOCK);
4831 }
4832
4833 if (__predict_false(SOLISTENING(so))) {
4834 sx_xunlock(sx);
4835 return (ENOTCONN);
4836 }
4837 return (0);
4838 }
4839
4840 void
4841 soiounlock(struct sx *sx)
4842 {
4843 sx_xunlock(sx);
4844 }
4845
4846 /*
4847 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4848 */
4849 struct sockaddr *
4850 sodupsockaddr(const struct sockaddr *sa, int mflags)
4851 {
4852 struct sockaddr *sa2;
4853
4854 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4855 if (sa2)
4856 bcopy(sa, sa2, sa->sa_len);
4857 return sa2;
4858 }
4859
4860 /*
4861 * Register per-socket destructor.
4862 */
4863 void
4864 sodtor_set(struct socket *so, so_dtor_t *func)
4865 {
4866
4867 SOCK_LOCK_ASSERT(so);
4868 so->so_dtor = func;
4869 }
4870
4871 /*
4872 * Register per-socket buffer upcalls.
4873 */
4874 void
4875 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4876 {
4877 struct sockbuf *sb;
4878
4879 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4880
4881 switch (which) {
4882 case SO_RCV:
4883 sb = &so->so_rcv;
4884 break;
4885 case SO_SND:
4886 sb = &so->so_snd;
4887 break;
4888 }
4889 SOCK_BUF_LOCK_ASSERT(so, which);
4890 sb->sb_upcall = func;
4891 sb->sb_upcallarg = arg;
4892 sb->sb_flags |= SB_UPCALL;
4893 }
4894
4895 void
4896 soupcall_clear(struct socket *so, sb_which which)
4897 {
4898 struct sockbuf *sb;
4899
4900 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4901
4902 switch (which) {
4903 case SO_RCV:
4904 sb = &so->so_rcv;
4905 break;
4906 case SO_SND:
4907 sb = &so->so_snd;
4908 break;
4909 }
4910 SOCK_BUF_LOCK_ASSERT(so, which);
4911 KASSERT(sb->sb_upcall != NULL,
4912 ("%s: so %p no upcall to clear", __func__, so));
4913 sb->sb_upcall = NULL;
4914 sb->sb_upcallarg = NULL;
4915 sb->sb_flags &= ~SB_UPCALL;
4916 }
4917
4918 void
4919 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4920 {
4921
4922 SOLISTEN_LOCK_ASSERT(so);
4923 so->sol_upcall = func;
4924 so->sol_upcallarg = arg;
4925 }
4926
4927 static void
4928 so_rdknl_lock(void *arg)
4929 {
4930 struct socket *so = arg;
4931
4932 retry:
4933 if (SOLISTENING(so)) {
4934 SOLISTEN_LOCK(so);
4935 } else {
4936 SOCK_RECVBUF_LOCK(so);
4937 if (__predict_false(SOLISTENING(so))) {
4938 SOCK_RECVBUF_UNLOCK(so);
4939 goto retry;
4940 }
4941 }
4942 }
4943
4944 static void
4945 so_rdknl_unlock(void *arg)
4946 {
4947 struct socket *so = arg;
4948
4949 if (SOLISTENING(so))
4950 SOLISTEN_UNLOCK(so);
4951 else
4952 SOCK_RECVBUF_UNLOCK(so);
4953 }
4954
4955 static void
4956 so_rdknl_assert_lock(void *arg, int what)
4957 {
4958 struct socket *so = arg;
4959
4960 if (what == LA_LOCKED) {
4961 if (SOLISTENING(so))
4962 SOLISTEN_LOCK_ASSERT(so);
4963 else
4964 SOCK_RECVBUF_LOCK_ASSERT(so);
4965 } else {
4966 if (SOLISTENING(so))
4967 SOLISTEN_UNLOCK_ASSERT(so);
4968 else
4969 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4970 }
4971 }
4972
4973 static void
4974 so_wrknl_lock(void *arg)
4975 {
4976 struct socket *so = arg;
4977
4978 retry:
4979 if (SOLISTENING(so)) {
4980 SOLISTEN_LOCK(so);
4981 } else {
4982 SOCK_SENDBUF_LOCK(so);
4983 if (__predict_false(SOLISTENING(so))) {
4984 SOCK_SENDBUF_UNLOCK(so);
4985 goto retry;
4986 }
4987 }
4988 }
4989
4990 static void
4991 so_wrknl_unlock(void *arg)
4992 {
4993 struct socket *so = arg;
4994
4995 if (SOLISTENING(so))
4996 SOLISTEN_UNLOCK(so);
4997 else
4998 SOCK_SENDBUF_UNLOCK(so);
4999 }
5000
5001 static void
5002 so_wrknl_assert_lock(void *arg, int what)
5003 {
5004 struct socket *so = arg;
5005
5006 if (what == LA_LOCKED) {
5007 if (SOLISTENING(so))
5008 SOLISTEN_LOCK_ASSERT(so);
5009 else
5010 SOCK_SENDBUF_LOCK_ASSERT(so);
5011 } else {
5012 if (SOLISTENING(so))
5013 SOLISTEN_UNLOCK_ASSERT(so);
5014 else
5015 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5016 }
5017 }
5018
5019 /*
5020 * Create an external-format (``xsocket'') structure using the information in
5021 * the kernel-format socket structure pointed to by so. This is done to
5022 * reduce the spew of irrelevant information over this interface, to isolate
5023 * user code from changes in the kernel structure, and potentially to provide
5024 * information-hiding if we decide that some of this information should be
5025 * hidden from users.
5026 */
5027 void
5028 sotoxsocket(struct socket *so, struct xsocket *xso)
5029 {
5030
5031 bzero(xso, sizeof(*xso));
5032 xso->xso_len = sizeof *xso;
5033 xso->xso_so = (uintptr_t)so;
5034 xso->so_type = so->so_type;
5035 xso->so_options = so->so_options;
5036 xso->so_linger = so->so_linger;
5037 xso->so_state = so->so_state;
5038 xso->so_pcb = (uintptr_t)so->so_pcb;
5039 xso->xso_protocol = so->so_proto->pr_protocol;
5040 xso->xso_family = so->so_proto->pr_domain->dom_family;
5041 xso->so_timeo = so->so_timeo;
5042 xso->so_error = so->so_error;
5043 xso->so_uid = so->so_cred->cr_uid;
5044 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5045 SOCK_LOCK(so);
5046 xso->so_fibnum = so->so_fibnum;
5047 if (SOLISTENING(so)) {
5048 xso->so_qlen = so->sol_qlen;
5049 xso->so_incqlen = so->sol_incqlen;
5050 xso->so_qlimit = so->sol_qlimit;
5051 xso->so_oobmark = 0;
5052 } else {
5053 xso->so_state |= so->so_qstate;
5054 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5055 xso->so_oobmark = so->so_oobmark;
5056 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5057 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5058 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5059 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5060 }
5061 SOCK_UNLOCK(so);
5062 }
5063
5064 int
5065 so_options_get(const struct socket *so)
5066 {
5067
5068 return (so->so_options);
5069 }
5070
5071 void
5072 so_options_set(struct socket *so, int val)
5073 {
5074
5075 so->so_options = val;
5076 }
5077
5078 int
5079 so_error_get(const struct socket *so)
5080 {
5081
5082 return (so->so_error);
5083 }
5084
5085 void
5086 so_error_set(struct socket *so, int val)
5087 {
5088
5089 so->so_error = val;
5090 }
5091