xref: /freebsd/sys/kern/uipc_socket.c (revision 371392bc10f262a71c197a64d3815d930f8527fe)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99  * from a pre-set VNET context.  sopoll_generic() currently does not need a
100  * VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h>			/* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157 
158 #include <vm/uma.h>
159 
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165 
166 static int	soreceive_generic_locked(struct socket *so,
167 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 		    struct mbuf **controlp, int *flagsp);
169 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
170 		    int flags);
171 static int	soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 		    struct mbuf **controlp, int flags);
174 static int	sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 		    struct uio *uio, struct mbuf *top, struct mbuf *control,
176 		    int flags, struct thread *td);
177 static void	so_rdknl_lock(void *);
178 static void	so_rdknl_unlock(void *);
179 static void	so_rdknl_assert_lock(void *, int);
180 static void	so_wrknl_lock(void *);
181 static void	so_wrknl_unlock(void *);
182 static void	so_wrknl_assert_lock(void *, int);
183 
184 static void	filt_sordetach(struct knote *kn);
185 static int	filt_soread(struct knote *kn, long hint);
186 static void	filt_sowdetach(struct knote *kn);
187 static int	filt_sowrite(struct knote *kn, long hint);
188 static int	filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t	soo_kqfilter;
190 
191 static const struct filterops soread_filtops = {
192 	.f_isfd = 1,
193 	.f_detach = filt_sordetach,
194 	.f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 	.f_isfd = 1,
198 	.f_detach = filt_sowdetach,
199 	.f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 	.f_isfd = 1,
203 	.f_detach = filt_sowdetach,
204 	.f_event = filt_soempty,
205 };
206 
207 so_gen_t	so_gencnt;	/* generation count for sockets */
208 
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211 
212 #define	VNET_SO_ASSERT(so)						\
213 	VNET_ASSERT(curvnet != NULL,					\
214 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215 
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define	V_socket_hhh		VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221 
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define	__splice32_packed	__packed
226 #else
227 #define	__splice32_packed
228 #endif
229 struct splice32 {
230 	int32_t	sp_fd;
231 	int64_t sp_max;
232 	struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236 
237 /*
238  * Limit on the number of connections in the listen queue waiting
239  * for accept(2).
240  * NB: The original sysctl somaxconn is still available but hidden
241  * to prevent confusion about the actual purpose of this number.
242  */
243 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
244 #define	V_somaxconn	VNET(somaxconn)
245 
246 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)247 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
248 {
249 	int error;
250 	u_int val;
251 
252 	val = V_somaxconn;
253 	error = sysctl_handle_int(oidp, &val, 0, req);
254 	if (error || !req->newptr )
255 		return (error);
256 
257 	/*
258 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
259 	 *   3 * sol_qlimit / 2
260 	 * below, will not overflow.
261          */
262 
263 	if (val < 1 || val > UINT_MAX / 3)
264 		return (EINVAL);
265 
266 	V_somaxconn = val;
267 	return (0);
268 }
269 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
270     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
271     sysctl_somaxconn, "IU",
272     "Maximum listen socket pending connection accept queue size");
273 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
274     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
275     sizeof(u_int), sysctl_somaxconn, "IU",
276     "Maximum listen socket pending connection accept queue size (compat)");
277 
278 static u_int numopensockets;
279 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)280 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
281 {
282 	u_int val;
283 
284 #ifdef VIMAGE
285 	if(!IS_DEFAULT_VNET(curvnet))
286 		val = curvnet->vnet_sockcnt;
287 	else
288 #endif
289 		val = numopensockets;
290 	return (sysctl_handle_int(oidp, &val, 0, req));
291 }
292 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
293     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
294     sysctl_numopensockets, "IU", "Number of open sockets");
295 
296 /*
297  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
298  * so_gencnt field.
299  */
300 static struct mtx so_global_mtx;
301 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
302 
303 /*
304  * General IPC sysctl name space, used by sockets and a variety of other IPC
305  * types.
306  */
307 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
308     "IPC");
309 
310 /*
311  * Initialize the socket subsystem and set up the socket
312  * memory allocator.
313  */
314 static uma_zone_t socket_zone;
315 int	maxsockets;
316 
317 static void
socket_zone_change(void * tag)318 socket_zone_change(void *tag)
319 {
320 
321 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
322 }
323 
324 static int splice_init_state;
325 static struct sx splice_init_lock;
326 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
327 
328 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
329     "Settings relating to the SO_SPLICE socket option");
330 
331 static bool splice_receive_stream = true;
332 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
333     &splice_receive_stream, 0,
334     "Use soreceive_stream() for stream splices");
335 
336 static uma_zone_t splice_zone;
337 static struct proc *splice_proc;
338 struct splice_wq {
339 	struct mtx	mtx;
340 	STAILQ_HEAD(, so_splice) head;
341 	bool		running;
342 } __aligned(CACHE_LINE_SIZE);
343 static struct splice_wq *splice_wq;
344 static uint32_t splice_index = 0;
345 
346 static void so_splice_timeout(void *arg, int pending);
347 static void so_splice_xfer(struct so_splice *s);
348 static int so_unsplice(struct socket *so, bool timeout);
349 
350 static void
splice_work_thread(void * ctx)351 splice_work_thread(void *ctx)
352 {
353 	struct splice_wq *wq = ctx;
354 	struct so_splice *s, *s_temp;
355 	STAILQ_HEAD(, so_splice) local_head;
356 	int cpu;
357 
358 	cpu = wq - splice_wq;
359 	if (bootverbose)
360 		printf("starting so_splice worker thread for CPU %d\n", cpu);
361 
362 	for (;;) {
363 		mtx_lock(&wq->mtx);
364 		while (STAILQ_EMPTY(&wq->head)) {
365 			wq->running = false;
366 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
367 			wq->running = true;
368 		}
369 		STAILQ_INIT(&local_head);
370 		STAILQ_CONCAT(&local_head, &wq->head);
371 		STAILQ_INIT(&wq->head);
372 		mtx_unlock(&wq->mtx);
373 		STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
374 			mtx_lock(&s->mtx);
375 			CURVNET_SET(s->src->so_vnet);
376 			so_splice_xfer(s);
377 			CURVNET_RESTORE();
378 		}
379 	}
380 }
381 
382 static void
so_splice_dispatch_async(struct so_splice * sp)383 so_splice_dispatch_async(struct so_splice *sp)
384 {
385 	struct splice_wq *wq;
386 	bool running;
387 
388 	wq = &splice_wq[sp->wq_index];
389 	mtx_lock(&wq->mtx);
390 	STAILQ_INSERT_TAIL(&wq->head, sp, next);
391 	running = wq->running;
392 	mtx_unlock(&wq->mtx);
393 	if (!running)
394 		wakeup(wq);
395 }
396 
397 void
so_splice_dispatch(struct so_splice * sp)398 so_splice_dispatch(struct so_splice *sp)
399 {
400 	mtx_assert(&sp->mtx, MA_OWNED);
401 
402 	if (sp->state != SPLICE_IDLE) {
403 		mtx_unlock(&sp->mtx);
404 	} else {
405 		sp->state = SPLICE_QUEUED;
406 		mtx_unlock(&sp->mtx);
407 		so_splice_dispatch_async(sp);
408 	}
409 }
410 
411 static int
splice_zinit(void * mem,int size __unused,int flags __unused)412 splice_zinit(void *mem, int size __unused, int flags __unused)
413 {
414 	struct so_splice *s;
415 
416 	s = (struct so_splice *)mem;
417 	mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
418 	return (0);
419 }
420 
421 static void
splice_zfini(void * mem,int size)422 splice_zfini(void *mem, int size)
423 {
424 	struct so_splice *s;
425 
426 	s = (struct so_splice *)mem;
427 	mtx_destroy(&s->mtx);
428 }
429 
430 static int
splice_init(void)431 splice_init(void)
432 {
433 	struct thread *td;
434 	int error, i, state;
435 
436 	state = atomic_load_acq_int(&splice_init_state);
437 	if (__predict_true(state > 0))
438 		return (0);
439 	if (state < 0)
440 		return (ENXIO);
441 	sx_xlock(&splice_init_lock);
442 	if (splice_init_state != 0) {
443 		sx_xunlock(&splice_init_lock);
444 		return (0);
445 	}
446 
447 	splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
448 	    NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
449 
450 	splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
451 	    M_WAITOK | M_ZERO);
452 
453 	/*
454 	 * Initialize the workqueues to run the splice work.  We create a
455 	 * work queue for each CPU.
456 	 */
457 	CPU_FOREACH(i) {
458 		STAILQ_INIT(&splice_wq[i].head);
459 		mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
460 	}
461 
462 	/* Start kthreads for each workqueue. */
463 	error = 0;
464 	CPU_FOREACH(i) {
465 		error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
466 		    &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
467 		if (error) {
468 			printf("Can't add so_splice thread %d error %d\n",
469 			    i, error);
470 			break;
471 		}
472 
473 		/*
474 		 * It's possible to create loops with SO_SPLICE; ensure that
475 		 * worker threads aren't able to starve the system too easily.
476 		 */
477 		thread_lock(td);
478 		sched_prio(td, PUSER);
479 		thread_unlock(td);
480 	}
481 
482 	splice_init_state = error != 0 ? -1 : 1;
483 	sx_xunlock(&splice_init_lock);
484 
485 	return (error);
486 }
487 
488 /*
489  * Lock a pair of socket's I/O locks for splicing.  Avoid blocking while holding
490  * one lock in order to avoid potential deadlocks in case there is some other
491  * code path which acquires more than one I/O lock at a time.
492  */
493 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)494 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
495 {
496 	int error;
497 
498 	for (;;) {
499 		error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
500 		KASSERT(error == 0,
501 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
502 		error = SOCK_IO_RECV_LOCK(so_src, 0);
503 		KASSERT(error == 0 || error == EWOULDBLOCK,
504 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
505 		if (error == 0)
506 			break;
507 		SOCK_IO_SEND_UNLOCK(so_dst);
508 
509 		error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
510 		KASSERT(error == 0,
511 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
512 		error = SOCK_IO_SEND_LOCK(so_dst, 0);
513 		KASSERT(error == 0 || error == EWOULDBLOCK,
514 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
515 		if (error == 0)
516 			break;
517 		SOCK_IO_RECV_UNLOCK(so_src);
518 	}
519 }
520 
521 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)522 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
523 {
524 	SOCK_IO_RECV_UNLOCK(so_src);
525 	SOCK_IO_SEND_UNLOCK(so_dst);
526 }
527 
528 /*
529  * Move data from the source to the sink.  Assumes that both of the relevant
530  * socket I/O locks are held.
531  */
532 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)533 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
534     ssize_t *lenp)
535 {
536 	struct uio uio;
537 	struct mbuf *m;
538 	struct sockbuf *sb_src, *sb_dst;
539 	ssize_t len;
540 	long space;
541 	int error, flags;
542 
543 	SOCK_IO_RECV_ASSERT_LOCKED(so_src);
544 	SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
545 
546 	error = 0;
547 	m = NULL;
548 	memset(&uio, 0, sizeof(uio));
549 
550 	sb_src = &so_src->so_rcv;
551 	sb_dst = &so_dst->so_snd;
552 
553 	space = sbspace(sb_dst);
554 	if (space < 0)
555 		space = 0;
556 	len = MIN(max, MIN(space, sbavail(sb_src)));
557 	if (len == 0) {
558 		SOCK_RECVBUF_LOCK(so_src);
559 		if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
560 			error = EPIPE;
561 		SOCK_RECVBUF_UNLOCK(so_src);
562 	} else {
563 		flags = MSG_DONTWAIT;
564 		uio.uio_resid = len;
565 		if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
566 			error = soreceive_stream_locked(so_src, sb_src, NULL,
567 			    &uio, &m, NULL, flags);
568 		} else {
569 			error = soreceive_generic_locked(so_src, NULL,
570 			    &uio, &m, NULL, &flags);
571 		}
572 		if (error != 0 && m != NULL) {
573 			m_freem(m);
574 			m = NULL;
575 		}
576 	}
577 	if (m != NULL) {
578 		len -= uio.uio_resid;
579 		error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
580 		    MSG_DONTWAIT, curthread);
581 	} else if (error == 0) {
582 		len = 0;
583 		SOCK_SENDBUF_LOCK(so_dst);
584 		if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
585 			error = EPIPE;
586 		SOCK_SENDBUF_UNLOCK(so_dst);
587 	}
588 	if (error == 0)
589 		*lenp = len;
590 	return (error);
591 }
592 
593 /*
594  * Transfer data from the source to the sink.
595  */
596 static void
so_splice_xfer(struct so_splice * sp)597 so_splice_xfer(struct so_splice *sp)
598 {
599 	struct socket *so_src, *so_dst;
600 	off_t max;
601 	ssize_t len;
602 	int error;
603 
604 	mtx_assert(&sp->mtx, MA_OWNED);
605 	KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
606 	    ("so_splice_xfer: invalid state %d", sp->state));
607 	KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
608 
609 	if (sp->state == SPLICE_CLOSING) {
610 		/* Userspace asked us to close the splice. */
611 		goto closing;
612 	}
613 
614 	sp->state = SPLICE_RUNNING;
615 	so_src = sp->src;
616 	so_dst = sp->dst;
617 	max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
618 	if (max < 0)
619 		max = 0;
620 
621 	/*
622 	 * Lock the sockets in order to block userspace from doing anything
623 	 * sneaky.  If an error occurs or one of the sockets can no longer
624 	 * transfer data, we will automatically unsplice.
625 	 */
626 	mtx_unlock(&sp->mtx);
627 	splice_lock_pair(so_src, so_dst);
628 
629 	error = so_splice_xfer_data(so_src, so_dst, max, &len);
630 
631 	mtx_lock(&sp->mtx);
632 
633 	/*
634 	 * Update our stats while still holding the socket locks.  This
635 	 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
636 	 */
637 	if (error == 0) {
638 		KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
639 		so_src->so_splice_sent += len;
640 	}
641 	splice_unlock_pair(so_src, so_dst);
642 
643 	switch (sp->state) {
644 	case SPLICE_CLOSING:
645 closing:
646 		sp->state = SPLICE_CLOSED;
647 		wakeup(sp);
648 		mtx_unlock(&sp->mtx);
649 		break;
650 	case SPLICE_RUNNING:
651 		if (error != 0 ||
652 		    (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
653 			sp->state = SPLICE_EXCEPTION;
654 			soref(so_src);
655 			mtx_unlock(&sp->mtx);
656 			(void)so_unsplice(so_src, false);
657 			sorele(so_src);
658 		} else {
659 			/*
660 			 * Locklessly check for additional bytes in the source's
661 			 * receive buffer and queue more work if possible.  We
662 			 * may end up queuing needless work, but that's ok, and
663 			 * if we race with a thread inserting more data into the
664 			 * buffer and observe sbavail() == 0, the splice mutex
665 			 * ensures that splice_push() will queue more work for
666 			 * us.
667 			 */
668 			if (sbavail(&so_src->so_rcv) > 0 &&
669 			    sbspace(&so_dst->so_snd) > 0) {
670 				sp->state = SPLICE_QUEUED;
671 				mtx_unlock(&sp->mtx);
672 				so_splice_dispatch_async(sp);
673 			} else {
674 				sp->state = SPLICE_IDLE;
675 				mtx_unlock(&sp->mtx);
676 			}
677 		}
678 		break;
679 	default:
680 		__assert_unreachable();
681 	}
682 }
683 
684 static void
socket_init(void * tag)685 socket_init(void *tag)
686 {
687 
688 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
689 	    NULL, NULL, UMA_ALIGN_PTR, 0);
690 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
691 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
692 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
693 	    EVENTHANDLER_PRI_FIRST);
694 }
695 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
696 
697 #ifdef SOCKET_HHOOK
698 static void
socket_hhook_register(int subtype)699 socket_hhook_register(int subtype)
700 {
701 
702 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
703 	    &V_socket_hhh[subtype],
704 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
705 		printf("%s: WARNING: unable to register hook\n", __func__);
706 }
707 
708 static void
socket_hhook_deregister(int subtype)709 socket_hhook_deregister(int subtype)
710 {
711 
712 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
713 		printf("%s: WARNING: unable to deregister hook\n", __func__);
714 }
715 
716 static void
socket_vnet_init(const void * unused __unused)717 socket_vnet_init(const void *unused __unused)
718 {
719 	int i;
720 
721 	/* We expect a contiguous range */
722 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
723 		socket_hhook_register(i);
724 }
725 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
726     socket_vnet_init, NULL);
727 
728 static void
socket_vnet_uninit(const void * unused __unused)729 socket_vnet_uninit(const void *unused __unused)
730 {
731 	int i;
732 
733 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
734 		socket_hhook_deregister(i);
735 }
736 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
737     socket_vnet_uninit, NULL);
738 #endif	/* SOCKET_HHOOK */
739 
740 /*
741  * Initialise maxsockets.  This SYSINIT must be run after
742  * tunable_mbinit().
743  */
744 static void
init_maxsockets(void * ignored)745 init_maxsockets(void *ignored)
746 {
747 
748 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
749 	maxsockets = imax(maxsockets, maxfiles);
750 }
751 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
752 
753 /*
754  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
755  * of the change so that they can update their dependent limits as required.
756  */
757 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)758 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
759 {
760 	int error, newmaxsockets;
761 
762 	newmaxsockets = maxsockets;
763 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
764 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
765 		if (newmaxsockets > maxsockets &&
766 		    newmaxsockets <= maxfiles) {
767 			maxsockets = newmaxsockets;
768 			EVENTHANDLER_INVOKE(maxsockets_change);
769 		} else
770 			error = EINVAL;
771 	}
772 	return (error);
773 }
774 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
775     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
776     &maxsockets, 0, sysctl_maxsockets, "IU",
777     "Maximum number of sockets available");
778 
779 /*
780  * Socket operation routines.  These routines are called by the routines in
781  * sys_socket.c or from a system process, and implement the semantics of
782  * socket operations by switching out to the protocol specific routines.
783  */
784 
785 /*
786  * Get a socket structure from our zone, and initialize it.  Note that it
787  * would probably be better to allocate socket and PCB at the same time, but
788  * I'm not convinced that all the protocols can be easily modified to do
789  * this.
790  *
791  * soalloc() returns a socket with a ref count of 0.
792  */
793 static struct socket *
soalloc(struct vnet * vnet)794 soalloc(struct vnet *vnet)
795 {
796 	struct socket *so;
797 
798 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
799 	if (so == NULL)
800 		return (NULL);
801 #ifdef MAC
802 	if (mac_socket_init(so, M_NOWAIT) != 0) {
803 		uma_zfree(socket_zone, so);
804 		return (NULL);
805 	}
806 #endif
807 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
808 		uma_zfree(socket_zone, so);
809 		return (NULL);
810 	}
811 
812 	/*
813 	 * The socket locking protocol allows to lock 2 sockets at a time,
814 	 * however, the first one must be a listening socket.  WITNESS lacks
815 	 * a feature to change class of an existing lock, so we use DUPOK.
816 	 */
817 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
818 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
819 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
820 	so->so_rcv.sb_sel = &so->so_rdsel;
821 	so->so_snd.sb_sel = &so->so_wrsel;
822 	sx_init(&so->so_snd_sx, "so_snd_sx");
823 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
824 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
825 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
826 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
827 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
828 #ifdef VIMAGE
829 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
830 	    __func__, __LINE__, so));
831 	so->so_vnet = vnet;
832 #endif
833 #ifdef SOCKET_HHOOK
834 	/* We shouldn't need the so_global_mtx */
835 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
836 		/* Do we need more comprehensive error returns? */
837 		uma_zfree(socket_zone, so);
838 		return (NULL);
839 	}
840 #endif
841 	mtx_lock(&so_global_mtx);
842 	so->so_gencnt = ++so_gencnt;
843 	++numopensockets;
844 #ifdef VIMAGE
845 	vnet->vnet_sockcnt++;
846 #endif
847 	mtx_unlock(&so_global_mtx);
848 
849 	return (so);
850 }
851 
852 /*
853  * Free the storage associated with a socket at the socket layer, tear down
854  * locks, labels, etc.  All protocol state is assumed already to have been
855  * torn down (and possibly never set up) by the caller.
856  */
857 void
sodealloc(struct socket * so)858 sodealloc(struct socket *so)
859 {
860 
861 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
862 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
863 
864 	mtx_lock(&so_global_mtx);
865 	so->so_gencnt = ++so_gencnt;
866 	--numopensockets;	/* Could be below, but faster here. */
867 #ifdef VIMAGE
868 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
869 	    __func__, __LINE__, so));
870 	so->so_vnet->vnet_sockcnt--;
871 #endif
872 	mtx_unlock(&so_global_mtx);
873 #ifdef MAC
874 	mac_socket_destroy(so);
875 #endif
876 #ifdef SOCKET_HHOOK
877 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
878 #endif
879 
880 	khelp_destroy_osd(&so->osd);
881 	if (SOLISTENING(so)) {
882 		if (so->sol_accept_filter != NULL)
883 			accept_filt_setopt(so, NULL);
884 	} else {
885 		if (so->so_rcv.sb_hiwat)
886 			(void)chgsbsize(so->so_cred->cr_uidinfo,
887 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
888 		if (so->so_snd.sb_hiwat)
889 			(void)chgsbsize(so->so_cred->cr_uidinfo,
890 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
891 		sx_destroy(&so->so_snd_sx);
892 		sx_destroy(&so->so_rcv_sx);
893 		mtx_destroy(&so->so_snd_mtx);
894 		mtx_destroy(&so->so_rcv_mtx);
895 	}
896 	crfree(so->so_cred);
897 	mtx_destroy(&so->so_lock);
898 	uma_zfree(socket_zone, so);
899 }
900 
901 /*
902  * socreate returns a socket with a ref count of 1 and a file descriptor
903  * reference.  The socket should be closed with soclose().
904  */
905 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)906 socreate(int dom, struct socket **aso, int type, int proto,
907     struct ucred *cred, struct thread *td)
908 {
909 	struct protosw *prp;
910 	struct socket *so;
911 	int error;
912 
913 	/*
914 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
915 	 * shim until all applications have been updated.
916 	 */
917 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
918 	    proto == IPPROTO_DIVERT)) {
919 		dom = PF_DIVERT;
920 		printf("%s uses obsolete way to create divert(4) socket\n",
921 		    td->td_proc->p_comm);
922 	}
923 
924 	prp = pffindproto(dom, type, proto);
925 	if (prp == NULL) {
926 		/* No support for domain. */
927 		if (pffinddomain(dom) == NULL)
928 			return (EAFNOSUPPORT);
929 		/* No support for socket type. */
930 		if (proto == 0 && type != 0)
931 			return (EPROTOTYPE);
932 		return (EPROTONOSUPPORT);
933 	}
934 
935 	MPASS(prp->pr_attach);
936 
937 	if ((prp->pr_flags & PR_CAPATTACH) == 0) {
938 		if (CAP_TRACING(td))
939 			ktrcapfail(CAPFAIL_PROTO, &proto);
940 		if (IN_CAPABILITY_MODE(td))
941 			return (ECAPMODE);
942 	}
943 
944 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
945 		return (EPROTONOSUPPORT);
946 
947 	so = soalloc(CRED_TO_VNET(cred));
948 	if (so == NULL)
949 		return (ENOBUFS);
950 
951 	so->so_type = type;
952 	so->so_cred = crhold(cred);
953 	if ((prp->pr_domain->dom_family == PF_INET) ||
954 	    (prp->pr_domain->dom_family == PF_INET6) ||
955 	    (prp->pr_domain->dom_family == PF_ROUTE))
956 		so->so_fibnum = td->td_proc->p_fibnum;
957 	else
958 		so->so_fibnum = 0;
959 	so->so_proto = prp;
960 #ifdef MAC
961 	mac_socket_create(cred, so);
962 #endif
963 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
964 	    so_rdknl_assert_lock);
965 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
966 	    so_wrknl_assert_lock);
967 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
968 		so->so_snd.sb_mtx = &so->so_snd_mtx;
969 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
970 	}
971 	/*
972 	 * Auto-sizing of socket buffers is managed by the protocols and
973 	 * the appropriate flags must be set in the pru_attach function.
974 	 */
975 	CURVNET_SET(so->so_vnet);
976 	error = prp->pr_attach(so, proto, td);
977 	CURVNET_RESTORE();
978 	if (error) {
979 		sodealloc(so);
980 		return (error);
981 	}
982 	soref(so);
983 	*aso = so;
984 	return (0);
985 }
986 
987 #ifdef REGRESSION
988 static int regression_sonewconn_earlytest = 1;
989 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
990     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
991 #endif
992 
993 static int sooverprio = LOG_DEBUG;
994 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
995     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
996 
997 static struct timeval overinterval = { 60, 0 };
998 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
999     &overinterval,
1000     "Delay in seconds between warnings for listen socket overflows");
1001 
1002 /*
1003  * When an attempt at a new connection is noted on a socket which supports
1004  * accept(2), the protocol has two options:
1005  * 1) Call legacy sonewconn() function, which would call protocol attach
1006  *    method, same as used for socket(2).
1007  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1008  *    and then call solisten_enqueue().
1009  *
1010  * Note: the ref count on the socket is 0 on return.
1011  */
1012 struct socket *
solisten_clone(struct socket * head)1013 solisten_clone(struct socket *head)
1014 {
1015 	struct sbuf descrsb;
1016 	struct socket *so;
1017 	int len, overcount;
1018 	u_int qlen;
1019 	const char localprefix[] = "local:";
1020 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1021 #if defined(INET6)
1022 	char addrbuf[INET6_ADDRSTRLEN];
1023 #elif defined(INET)
1024 	char addrbuf[INET_ADDRSTRLEN];
1025 #endif
1026 	bool dolog, over;
1027 
1028 	SOLISTEN_LOCK(head);
1029 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1030 #ifdef REGRESSION
1031 	if (regression_sonewconn_earlytest && over) {
1032 #else
1033 	if (over) {
1034 #endif
1035 		head->sol_overcount++;
1036 		dolog = (sooverprio >= 0) &&
1037 			!!ratecheck(&head->sol_lastover, &overinterval);
1038 
1039 		/*
1040 		 * If we're going to log, copy the overflow count and queue
1041 		 * length from the listen socket before dropping the lock.
1042 		 * Also, reset the overflow count.
1043 		 */
1044 		if (dolog) {
1045 			overcount = head->sol_overcount;
1046 			head->sol_overcount = 0;
1047 			qlen = head->sol_qlen;
1048 		}
1049 		SOLISTEN_UNLOCK(head);
1050 
1051 		if (dolog) {
1052 			/*
1053 			 * Try to print something descriptive about the
1054 			 * socket for the error message.
1055 			 */
1056 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1057 			    SBUF_FIXEDLEN);
1058 			switch (head->so_proto->pr_domain->dom_family) {
1059 #if defined(INET) || defined(INET6)
1060 #ifdef INET
1061 			case AF_INET:
1062 #endif
1063 #ifdef INET6
1064 			case AF_INET6:
1065 				if (head->so_proto->pr_domain->dom_family ==
1066 				    AF_INET6 ||
1067 				    (sotoinpcb(head)->inp_inc.inc_flags &
1068 				    INC_ISIPV6)) {
1069 					ip6_sprintf(addrbuf,
1070 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
1071 					sbuf_printf(&descrsb, "[%s]", addrbuf);
1072 				} else
1073 #endif
1074 				{
1075 #ifdef INET
1076 					inet_ntoa_r(
1077 					    sotoinpcb(head)->inp_inc.inc_laddr,
1078 					    addrbuf);
1079 					sbuf_cat(&descrsb, addrbuf);
1080 #endif
1081 				}
1082 				sbuf_printf(&descrsb, ":%hu (proto %u)",
1083 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1084 				    head->so_proto->pr_protocol);
1085 				break;
1086 #endif /* INET || INET6 */
1087 			case AF_UNIX:
1088 				sbuf_cat(&descrsb, localprefix);
1089 				if (sotounpcb(head)->unp_addr != NULL)
1090 					len =
1091 					    sotounpcb(head)->unp_addr->sun_len -
1092 					    offsetof(struct sockaddr_un,
1093 					    sun_path);
1094 				else
1095 					len = 0;
1096 				if (len > 0)
1097 					sbuf_bcat(&descrsb,
1098 					    sotounpcb(head)->unp_addr->sun_path,
1099 					    len);
1100 				else
1101 					sbuf_cat(&descrsb, "(unknown)");
1102 				break;
1103 			}
1104 
1105 			/*
1106 			 * If we can't print something more specific, at least
1107 			 * print the domain name.
1108 			 */
1109 			if (sbuf_finish(&descrsb) != 0 ||
1110 			    sbuf_len(&descrsb) <= 0) {
1111 				sbuf_clear(&descrsb);
1112 				sbuf_cat(&descrsb,
1113 				    head->so_proto->pr_domain->dom_name ?:
1114 				    "unknown");
1115 				sbuf_finish(&descrsb);
1116 			}
1117 			KASSERT(sbuf_len(&descrsb) > 0,
1118 			    ("%s: sbuf creation failed", __func__));
1119 			/*
1120 			 * Preserve the historic listen queue overflow log
1121 			 * message, that starts with "sonewconn:".  It has
1122 			 * been known to sysadmins for years and also test
1123 			 * sys/kern/sonewconn_overflow checks for it.
1124 			 */
1125 			if (head->so_cred == 0) {
1126 				log(LOG_PRI(sooverprio),
1127 				    "sonewconn: pcb %p (%s): "
1128 				    "Listen queue overflow: %i already in "
1129 				    "queue awaiting acceptance (%d "
1130 				    "occurrences)\n", head->so_pcb,
1131 				    sbuf_data(&descrsb),
1132 			    	qlen, overcount);
1133 			} else {
1134 				log(LOG_PRI(sooverprio),
1135 				    "sonewconn: pcb %p (%s): "
1136 				    "Listen queue overflow: "
1137 				    "%i already in queue awaiting acceptance "
1138 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
1139 				    head->so_pcb, sbuf_data(&descrsb), qlen,
1140 				    overcount, head->so_cred->cr_uid,
1141 				    head->so_cred->cr_rgid,
1142 				    head->so_cred->cr_prison ?
1143 					head->so_cred->cr_prison->pr_name :
1144 					"not_jailed");
1145 			}
1146 			sbuf_delete(&descrsb);
1147 
1148 			overcount = 0;
1149 		}
1150 
1151 		return (NULL);
1152 	}
1153 	SOLISTEN_UNLOCK(head);
1154 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1155 	    __func__, head));
1156 	so = soalloc(head->so_vnet);
1157 	if (so == NULL) {
1158 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1159 		    "limit reached or out of memory\n",
1160 		    __func__, head->so_pcb);
1161 		return (NULL);
1162 	}
1163 	so->so_listen = head;
1164 	so->so_type = head->so_type;
1165 	/*
1166 	 * POSIX is ambiguous on what options an accept(2)ed socket should
1167 	 * inherit from the listener.  Words "create a new socket" may be
1168 	 * interpreted as not inheriting anything.  Best programming practice
1169 	 * for application developers is to not rely on such inheritance.
1170 	 * FreeBSD had historically inherited all so_options excluding
1171 	 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1172 	 * including those completely irrelevant to a new born socket.  For
1173 	 * compatibility with older versions we will inherit a list of
1174 	 * meaningful options.
1175 	 * The crucial bit to inherit is SO_ACCEPTFILTER.  We need it present
1176 	 * in the child socket for soisconnected() promoting socket from the
1177 	 * incomplete queue to complete.  It will be cleared before the child
1178 	 * gets available to accept(2).
1179 	 */
1180 	so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1181 	    SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1182 	so->so_linger = head->so_linger;
1183 	so->so_state = head->so_state;
1184 	so->so_fibnum = head->so_fibnum;
1185 	so->so_proto = head->so_proto;
1186 	so->so_cred = crhold(head->so_cred);
1187 #ifdef SOCKET_HHOOK
1188 	if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1189 		if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1190 			sodealloc(so);
1191 			log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1192 			return (NULL);
1193 		}
1194 	}
1195 #endif
1196 #ifdef MAC
1197 	mac_socket_newconn(head, so);
1198 #endif
1199 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1200 	    so_rdknl_assert_lock);
1201 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1202 	    so_wrknl_assert_lock);
1203 	VNET_SO_ASSERT(head);
1204 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1205 		sodealloc(so);
1206 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1207 		    __func__, head->so_pcb);
1208 		return (NULL);
1209 	}
1210 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1211 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1212 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1213 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1214 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1215 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1216 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1217 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1218 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1219 	}
1220 
1221 	return (so);
1222 }
1223 
1224 /* Connstatus may be 0 or SS_ISCONNECTED. */
1225 struct socket *
1226 sonewconn(struct socket *head, int connstatus)
1227 {
1228 	struct socket *so;
1229 
1230 	if ((so = solisten_clone(head)) == NULL)
1231 		return (NULL);
1232 
1233 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1234 		sodealloc(so);
1235 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1236 		    __func__, head->so_pcb);
1237 		return (NULL);
1238 	}
1239 
1240 	(void)solisten_enqueue(so, connstatus);
1241 
1242 	return (so);
1243 }
1244 
1245 /*
1246  * Enqueue socket cloned by solisten_clone() to the listen queue of the
1247  * listener it has been cloned from.
1248  *
1249  * Return 'true' if socket landed on complete queue, otherwise 'false'.
1250  */
1251 bool
1252 solisten_enqueue(struct socket *so, int connstatus)
1253 {
1254 	struct socket *head = so->so_listen;
1255 
1256 	MPASS(refcount_load(&so->so_count) == 0);
1257 	refcount_init(&so->so_count, 1);
1258 
1259 	SOLISTEN_LOCK(head);
1260 	if (head->sol_accept_filter != NULL)
1261 		connstatus = 0;
1262 	so->so_state |= connstatus;
1263 	soref(head); /* A socket on (in)complete queue refs head. */
1264 	if (connstatus) {
1265 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1266 		so->so_qstate = SQ_COMP;
1267 		head->sol_qlen++;
1268 		solisten_wakeup(head);	/* unlocks */
1269 		return (true);
1270 	} else {
1271 		/*
1272 		 * Keep removing sockets from the head until there's room for
1273 		 * us to insert on the tail.  In pre-locking revisions, this
1274 		 * was a simple if(), but as we could be racing with other
1275 		 * threads and soabort() requires dropping locks, we must
1276 		 * loop waiting for the condition to be true.
1277 		 */
1278 		while (head->sol_incqlen > head->sol_qlimit) {
1279 			struct socket *sp;
1280 
1281 			sp = TAILQ_FIRST(&head->sol_incomp);
1282 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1283 			head->sol_incqlen--;
1284 			SOCK_LOCK(sp);
1285 			sp->so_qstate = SQ_NONE;
1286 			sp->so_listen = NULL;
1287 			SOCK_UNLOCK(sp);
1288 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
1289 			soabort(sp);
1290 			SOLISTEN_LOCK(head);
1291 		}
1292 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1293 		so->so_qstate = SQ_INCOMP;
1294 		head->sol_incqlen++;
1295 		SOLISTEN_UNLOCK(head);
1296 		return (false);
1297 	}
1298 }
1299 
1300 #if defined(SCTP) || defined(SCTP_SUPPORT)
1301 /*
1302  * Socket part of sctp_peeloff().  Detach a new socket from an
1303  * association.  The new socket is returned with a reference.
1304  *
1305  * XXXGL: reduce copy-paste with solisten_clone().
1306  */
1307 struct socket *
1308 sopeeloff(struct socket *head)
1309 {
1310 	struct socket *so;
1311 
1312 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1313 	    __func__, __LINE__, head));
1314 	so = soalloc(head->so_vnet);
1315 	if (so == NULL) {
1316 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1317 		    "limit reached or out of memory\n",
1318 		    __func__, head->so_pcb);
1319 		return (NULL);
1320 	}
1321 	so->so_type = head->so_type;
1322 	so->so_options = head->so_options;
1323 	so->so_linger = head->so_linger;
1324 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1325 	so->so_fibnum = head->so_fibnum;
1326 	so->so_proto = head->so_proto;
1327 	so->so_cred = crhold(head->so_cred);
1328 #ifdef MAC
1329 	mac_socket_newconn(head, so);
1330 #endif
1331 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1332 	    so_rdknl_assert_lock);
1333 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1334 	    so_wrknl_assert_lock);
1335 	VNET_SO_ASSERT(head);
1336 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1337 		sodealloc(so);
1338 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1339 		    __func__, head->so_pcb);
1340 		return (NULL);
1341 	}
1342 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1343 		sodealloc(so);
1344 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1345 		    __func__, head->so_pcb);
1346 		return (NULL);
1347 	}
1348 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1349 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1350 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1351 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1352 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1353 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1354 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1355 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1356 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1357 	}
1358 
1359 	soref(so);
1360 
1361 	return (so);
1362 }
1363 #endif	/* SCTP */
1364 
1365 int
1366 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1367 {
1368 	int error;
1369 
1370 	CURVNET_SET(so->so_vnet);
1371 	error = so->so_proto->pr_bind(so, nam, td);
1372 	CURVNET_RESTORE();
1373 	return (error);
1374 }
1375 
1376 int
1377 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1378 {
1379 	int error;
1380 
1381 	CURVNET_SET(so->so_vnet);
1382 	error = so->so_proto->pr_bindat(fd, so, nam, td);
1383 	CURVNET_RESTORE();
1384 	return (error);
1385 }
1386 
1387 /*
1388  * solisten() transitions a socket from a non-listening state to a listening
1389  * state, but can also be used to update the listen queue depth on an
1390  * existing listen socket.  The protocol will call back into the sockets
1391  * layer using solisten_proto_check() and solisten_proto() to check and set
1392  * socket-layer listen state.  Call backs are used so that the protocol can
1393  * acquire both protocol and socket layer locks in whatever order is required
1394  * by the protocol.
1395  *
1396  * Protocol implementors are advised to hold the socket lock across the
1397  * socket-layer test and set to avoid races at the socket layer.
1398  */
1399 int
1400 solisten(struct socket *so, int backlog, struct thread *td)
1401 {
1402 	int error;
1403 
1404 	CURVNET_SET(so->so_vnet);
1405 	error = so->so_proto->pr_listen(so, backlog, td);
1406 	CURVNET_RESTORE();
1407 	return (error);
1408 }
1409 
1410 /*
1411  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
1412  * order to interlock with socket I/O.
1413  */
1414 int
1415 solisten_proto_check(struct socket *so)
1416 {
1417 	SOCK_LOCK_ASSERT(so);
1418 
1419 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1420 	    SS_ISDISCONNECTING)) != 0)
1421 		return (EINVAL);
1422 
1423 	/*
1424 	 * Sleeping is not permitted here, so simply fail if userspace is
1425 	 * attempting to transmit or receive on the socket.  This kind of
1426 	 * transient failure is not ideal, but it should occur only if userspace
1427 	 * is misusing the socket interfaces.
1428 	 */
1429 	if (!sx_try_xlock(&so->so_snd_sx))
1430 		return (EAGAIN);
1431 	if (!sx_try_xlock(&so->so_rcv_sx)) {
1432 		sx_xunlock(&so->so_snd_sx);
1433 		return (EAGAIN);
1434 	}
1435 	mtx_lock(&so->so_snd_mtx);
1436 	mtx_lock(&so->so_rcv_mtx);
1437 
1438 	/* Interlock with soo_aio_queue() and KTLS. */
1439 	if (!SOLISTENING(so)) {
1440 		bool ktls;
1441 
1442 #ifdef KERN_TLS
1443 		ktls = so->so_snd.sb_tls_info != NULL ||
1444 		    so->so_rcv.sb_tls_info != NULL;
1445 #else
1446 		ktls = false;
1447 #endif
1448 		if (ktls ||
1449 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1450 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1451 			solisten_proto_abort(so);
1452 			return (EINVAL);
1453 		}
1454 	}
1455 
1456 	return (0);
1457 }
1458 
1459 /*
1460  * Undo the setup done by solisten_proto_check().
1461  */
1462 void
1463 solisten_proto_abort(struct socket *so)
1464 {
1465 	mtx_unlock(&so->so_snd_mtx);
1466 	mtx_unlock(&so->so_rcv_mtx);
1467 	sx_xunlock(&so->so_snd_sx);
1468 	sx_xunlock(&so->so_rcv_sx);
1469 }
1470 
1471 void
1472 solisten_proto(struct socket *so, int backlog)
1473 {
1474 	int sbrcv_lowat, sbsnd_lowat;
1475 	u_int sbrcv_hiwat, sbsnd_hiwat;
1476 	short sbrcv_flags, sbsnd_flags;
1477 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1478 
1479 	SOCK_LOCK_ASSERT(so);
1480 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1481 	    SS_ISDISCONNECTING)) == 0,
1482 	    ("%s: bad socket state %p", __func__, so));
1483 
1484 	if (SOLISTENING(so))
1485 		goto listening;
1486 
1487 	/*
1488 	 * Change this socket to listening state.
1489 	 */
1490 	sbrcv_lowat = so->so_rcv.sb_lowat;
1491 	sbsnd_lowat = so->so_snd.sb_lowat;
1492 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1493 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1494 	sbrcv_flags = so->so_rcv.sb_flags;
1495 	sbsnd_flags = so->so_snd.sb_flags;
1496 	sbrcv_timeo = so->so_rcv.sb_timeo;
1497 	sbsnd_timeo = so->so_snd.sb_timeo;
1498 
1499 #ifdef MAC
1500 	mac_socketpeer_label_free(so->so_peerlabel);
1501 #endif
1502 
1503 	if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1504 		sbdestroy(so, SO_SND);
1505 		sbdestroy(so, SO_RCV);
1506 	}
1507 
1508 #ifdef INVARIANTS
1509 	bzero(&so->so_rcv,
1510 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1511 #endif
1512 
1513 	so->sol_sbrcv_lowat = sbrcv_lowat;
1514 	so->sol_sbsnd_lowat = sbsnd_lowat;
1515 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1516 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1517 	so->sol_sbrcv_flags = sbrcv_flags;
1518 	so->sol_sbsnd_flags = sbsnd_flags;
1519 	so->sol_sbrcv_timeo = sbrcv_timeo;
1520 	so->sol_sbsnd_timeo = sbsnd_timeo;
1521 
1522 	so->sol_qlen = so->sol_incqlen = 0;
1523 	TAILQ_INIT(&so->sol_incomp);
1524 	TAILQ_INIT(&so->sol_comp);
1525 
1526 	so->sol_accept_filter = NULL;
1527 	so->sol_accept_filter_arg = NULL;
1528 	so->sol_accept_filter_str = NULL;
1529 
1530 	so->sol_upcall = NULL;
1531 	so->sol_upcallarg = NULL;
1532 
1533 	so->so_options |= SO_ACCEPTCONN;
1534 
1535 listening:
1536 	if (backlog < 0 || backlog > V_somaxconn)
1537 		backlog = V_somaxconn;
1538 	so->sol_qlimit = backlog;
1539 
1540 	mtx_unlock(&so->so_snd_mtx);
1541 	mtx_unlock(&so->so_rcv_mtx);
1542 	sx_xunlock(&so->so_snd_sx);
1543 	sx_xunlock(&so->so_rcv_sx);
1544 }
1545 
1546 /*
1547  * Wakeup listeners/subsystems once we have a complete connection.
1548  * Enters with lock, returns unlocked.
1549  */
1550 void
1551 solisten_wakeup(struct socket *sol)
1552 {
1553 
1554 	if (sol->sol_upcall != NULL)
1555 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1556 	else {
1557 		selwakeuppri(&sol->so_rdsel, PSOCK);
1558 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1559 	}
1560 	SOLISTEN_UNLOCK(sol);
1561 	wakeup_one(&sol->sol_comp);
1562 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1563 		pgsigio(&sol->so_sigio, SIGIO, 0);
1564 }
1565 
1566 /*
1567  * Return single connection off a listening socket queue.  Main consumer of
1568  * the function is kern_accept4().  Some modules, that do their own accept
1569  * management also use the function.  The socket reference held by the
1570  * listen queue is handed to the caller.
1571  *
1572  * Listening socket must be locked on entry and is returned unlocked on
1573  * return.
1574  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1575  */
1576 int
1577 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1578 {
1579 	struct socket *so;
1580 	int error;
1581 
1582 	SOLISTEN_LOCK_ASSERT(head);
1583 
1584 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1585 	    head->so_error == 0) {
1586 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1587 		    "accept", 0);
1588 		if (error != 0) {
1589 			SOLISTEN_UNLOCK(head);
1590 			return (error);
1591 		}
1592 	}
1593 	if (head->so_error) {
1594 		error = head->so_error;
1595 		head->so_error = 0;
1596 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1597 		error = EWOULDBLOCK;
1598 	else
1599 		error = 0;
1600 	if (error) {
1601 		SOLISTEN_UNLOCK(head);
1602 		return (error);
1603 	}
1604 	so = TAILQ_FIRST(&head->sol_comp);
1605 	SOCK_LOCK(so);
1606 	KASSERT(so->so_qstate == SQ_COMP,
1607 	    ("%s: so %p not SQ_COMP", __func__, so));
1608 	head->sol_qlen--;
1609 	so->so_qstate = SQ_NONE;
1610 	so->so_listen = NULL;
1611 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1612 	if (flags & ACCEPT4_INHERIT)
1613 		so->so_state |= (head->so_state & SS_NBIO);
1614 	else
1615 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1616 	SOCK_UNLOCK(so);
1617 	sorele_locked(head);
1618 
1619 	*ret = so;
1620 	return (0);
1621 }
1622 
1623 static struct so_splice *
1624 so_splice_alloc(off_t max)
1625 {
1626 	struct so_splice *sp;
1627 
1628 	sp = uma_zalloc(splice_zone, M_WAITOK);
1629 	sp->src = NULL;
1630 	sp->dst = NULL;
1631 	sp->max = max > 0 ? max : -1;
1632 	do {
1633 		sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1634 		    (mp_maxid + 1);
1635 	} while (CPU_ABSENT(sp->wq_index));
1636 	sp->state = SPLICE_INIT;
1637 	TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1638 	    sp);
1639 	return (sp);
1640 }
1641 
1642 static void
1643 so_splice_free(struct so_splice *sp)
1644 {
1645 	KASSERT(sp->state == SPLICE_CLOSED,
1646 	    ("so_splice_free: sp %p not closed", sp));
1647 	uma_zfree(splice_zone, sp);
1648 }
1649 
1650 static void
1651 so_splice_timeout(void *arg, int pending __unused)
1652 {
1653 	struct so_splice *sp;
1654 
1655 	sp = arg;
1656 	(void)so_unsplice(sp->src, true);
1657 }
1658 
1659 /*
1660  * Splice the output from so to the input of so2.
1661  */
1662 static int
1663 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1664 {
1665 	struct so_splice *sp;
1666 	int error;
1667 
1668 	if (splice->sp_max < 0)
1669 		return (EINVAL);
1670 	/* Handle only TCP for now; TODO: other streaming protos */
1671 	if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1672 	    so2->so_proto->pr_protocol != IPPROTO_TCP)
1673 		return (EPROTONOSUPPORT);
1674 	if (so->so_vnet != so2->so_vnet)
1675 		return (EINVAL);
1676 
1677 	/* so_splice_xfer() assumes that we're using these implementations. */
1678 	KASSERT(so->so_proto->pr_sosend == sosend_generic,
1679 	    ("so_splice: sosend not sosend_generic"));
1680 	KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1681 	    so2->so_proto->pr_soreceive == soreceive_stream,
1682 	    ("so_splice: soreceive not soreceive_generic/stream"));
1683 
1684 	sp = so_splice_alloc(splice->sp_max);
1685 	so->so_splice_sent = 0;
1686 	sp->src = so;
1687 	sp->dst = so2;
1688 
1689 	error = 0;
1690 	SOCK_LOCK(so);
1691 	if (SOLISTENING(so))
1692 		error = EINVAL;
1693 	else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1694 		error = ENOTCONN;
1695 	else if (so->so_splice != NULL)
1696 		error = EBUSY;
1697 	if (error != 0) {
1698 		SOCK_UNLOCK(so);
1699 		uma_zfree(splice_zone, sp);
1700 		return (error);
1701 	}
1702 	soref(so);
1703 	so->so_splice = sp;
1704 	SOCK_RECVBUF_LOCK(so);
1705 	so->so_rcv.sb_flags |= SB_SPLICED;
1706 	SOCK_RECVBUF_UNLOCK(so);
1707 	SOCK_UNLOCK(so);
1708 
1709 	error = 0;
1710 	SOCK_LOCK(so2);
1711 	if (SOLISTENING(so2))
1712 		error = EINVAL;
1713 	else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1714 		error = ENOTCONN;
1715 	else if (so2->so_splice_back != NULL)
1716 		error = EBUSY;
1717 	if (error != 0) {
1718 		SOCK_UNLOCK(so2);
1719 		SOCK_LOCK(so);
1720 		so->so_splice = NULL;
1721 		SOCK_RECVBUF_LOCK(so);
1722 		so->so_rcv.sb_flags &= ~SB_SPLICED;
1723 		SOCK_RECVBUF_UNLOCK(so);
1724 		SOCK_UNLOCK(so);
1725 		sorele(so);
1726 		uma_zfree(splice_zone, sp);
1727 		return (error);
1728 	}
1729 	soref(so2);
1730 	so2->so_splice_back = sp;
1731 	SOCK_SENDBUF_LOCK(so2);
1732 	so2->so_snd.sb_flags |= SB_SPLICED;
1733 	mtx_lock(&sp->mtx);
1734 	SOCK_SENDBUF_UNLOCK(so2);
1735 	SOCK_UNLOCK(so2);
1736 
1737 	if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1738 		taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1739 		    tvtosbt(splice->sp_idle), 0, C_PREL(4));
1740 	}
1741 
1742 	/*
1743 	 * Transfer any data already present in the socket buffer.
1744 	 */
1745 	sp->state = SPLICE_QUEUED;
1746 	so_splice_xfer(sp);
1747 	return (0);
1748 }
1749 
1750 static int
1751 so_unsplice(struct socket *so, bool timeout)
1752 {
1753 	struct socket *so2;
1754 	struct so_splice *sp;
1755 	bool drain;
1756 
1757 	/*
1758 	 * First unset SB_SPLICED and hide the splice structure so that
1759 	 * wakeup routines will stop enqueuing work.  This also ensures that
1760 	 * a only a single thread will proceed with the unsplice.
1761 	 */
1762 	SOCK_LOCK(so);
1763 	if (SOLISTENING(so)) {
1764 		SOCK_UNLOCK(so);
1765 		return (EINVAL);
1766 	}
1767 	SOCK_RECVBUF_LOCK(so);
1768 	if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1769 		SOCK_RECVBUF_UNLOCK(so);
1770 		SOCK_UNLOCK(so);
1771 		return (ENOTCONN);
1772 	}
1773 	so->so_rcv.sb_flags &= ~SB_SPLICED;
1774 	sp = so->so_splice;
1775 	so->so_splice = NULL;
1776 	SOCK_RECVBUF_UNLOCK(so);
1777 	SOCK_UNLOCK(so);
1778 
1779 	so2 = sp->dst;
1780 	SOCK_LOCK(so2);
1781 	KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1782 	SOCK_SENDBUF_LOCK(so2);
1783 	KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1784 	    ("%s: so2 is not spliced", __func__));
1785 	KASSERT(so2->so_splice_back == sp,
1786 	    ("%s: so_splice_back != sp", __func__));
1787 	so2->so_snd.sb_flags &= ~SB_SPLICED;
1788 	so2->so_splice_back = NULL;
1789 	SOCK_SENDBUF_UNLOCK(so2);
1790 	SOCK_UNLOCK(so2);
1791 
1792 	/*
1793 	 * No new work is being enqueued.  The worker thread might be
1794 	 * splicing data right now, in which case we want to wait for it to
1795 	 * finish before proceeding.
1796 	 */
1797 	mtx_lock(&sp->mtx);
1798 	switch (sp->state) {
1799 	case SPLICE_QUEUED:
1800 	case SPLICE_RUNNING:
1801 		sp->state = SPLICE_CLOSING;
1802 		while (sp->state == SPLICE_CLOSING)
1803 			msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1804 		break;
1805 	case SPLICE_IDLE:
1806 	case SPLICE_EXCEPTION:
1807 		sp->state = SPLICE_CLOSED;
1808 		break;
1809 	default:
1810 		__assert_unreachable();
1811 	}
1812 	if (!timeout) {
1813 		drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1814 		    NULL) != 0;
1815 	} else {
1816 		drain = false;
1817 	}
1818 	mtx_unlock(&sp->mtx);
1819 	if (drain)
1820 		taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1821 
1822 	/*
1823 	 * Now we hold the sole reference to the splice structure.
1824 	 * Clean up: signal userspace and release socket references.
1825 	 */
1826 	sorwakeup(so);
1827 	CURVNET_SET(so->so_vnet);
1828 	sorele(so);
1829 	sowwakeup(so2);
1830 	sorele(so2);
1831 	CURVNET_RESTORE();
1832 	so_splice_free(sp);
1833 	return (0);
1834 }
1835 
1836 /*
1837  * Free socket upon release of the very last reference.
1838  */
1839 static void
1840 sofree(struct socket *so)
1841 {
1842 	struct protosw *pr = so->so_proto;
1843 
1844 	SOCK_LOCK_ASSERT(so);
1845 	KASSERT(refcount_load(&so->so_count) == 0,
1846 	    ("%s: so %p has references", __func__, so));
1847 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1848 	    ("%s: so %p is on listen queue", __func__, so));
1849 	KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1850 	    ("%s: so %p rcvbuf is spliced", __func__, so));
1851 	KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1852 	    ("%s: so %p sndbuf is spliced", __func__, so));
1853 	KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1854 	    ("%s: so %p has spliced data", __func__, so));
1855 
1856 	SOCK_UNLOCK(so);
1857 
1858 	if (so->so_dtor != NULL)
1859 		so->so_dtor(so);
1860 
1861 	VNET_SO_ASSERT(so);
1862 	if (pr->pr_detach != NULL)
1863 		pr->pr_detach(so);
1864 
1865 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1866 		/*
1867 		 * From this point on, we assume that no other references to
1868 		 * this socket exist anywhere else in the stack.  Therefore,
1869 		 * no locks need to be acquired or held.
1870 		 */
1871 #ifdef INVARIANTS
1872 		SOCK_SENDBUF_LOCK(so);
1873 		SOCK_RECVBUF_LOCK(so);
1874 #endif
1875 		sbdestroy(so, SO_SND);
1876 		sbdestroy(so, SO_RCV);
1877 #ifdef INVARIANTS
1878 		SOCK_SENDBUF_UNLOCK(so);
1879 		SOCK_RECVBUF_UNLOCK(so);
1880 #endif
1881 	}
1882 	seldrain(&so->so_rdsel);
1883 	seldrain(&so->so_wrsel);
1884 	knlist_destroy(&so->so_rdsel.si_note);
1885 	knlist_destroy(&so->so_wrsel.si_note);
1886 	sodealloc(so);
1887 }
1888 
1889 /*
1890  * Release a reference on a socket while holding the socket lock.
1891  * Unlocks the socket lock before returning.
1892  */
1893 void
1894 sorele_locked(struct socket *so)
1895 {
1896 	SOCK_LOCK_ASSERT(so);
1897 	if (refcount_release(&so->so_count))
1898 		sofree(so);
1899 	else
1900 		SOCK_UNLOCK(so);
1901 }
1902 
1903 /*
1904  * Close a socket on last file table reference removal.  Initiate disconnect
1905  * if connected.  Free socket when disconnect complete.
1906  *
1907  * This function will sorele() the socket.  Note that soclose() may be called
1908  * prior to the ref count reaching zero.  The actual socket structure will
1909  * not be freed until the ref count reaches zero.
1910  */
1911 int
1912 soclose(struct socket *so)
1913 {
1914 	struct accept_queue lqueue;
1915 	int error = 0;
1916 	bool listening, last __diagused;
1917 
1918 	CURVNET_SET(so->so_vnet);
1919 	funsetown(&so->so_sigio);
1920 	if (so->so_state & SS_ISCONNECTED) {
1921 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1922 			error = sodisconnect(so);
1923 			if (error) {
1924 				if (error == ENOTCONN)
1925 					error = 0;
1926 				goto drop;
1927 			}
1928 		}
1929 
1930 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1931 			if ((so->so_state & SS_ISDISCONNECTING) &&
1932 			    (so->so_state & SS_NBIO))
1933 				goto drop;
1934 			while (so->so_state & SS_ISCONNECTED) {
1935 				error = tsleep(&so->so_timeo,
1936 				    PSOCK | PCATCH, "soclos",
1937 				    so->so_linger * hz);
1938 				if (error)
1939 					break;
1940 			}
1941 		}
1942 	}
1943 
1944 drop:
1945 	if (so->so_proto->pr_close != NULL)
1946 		so->so_proto->pr_close(so);
1947 
1948 	SOCK_LOCK(so);
1949 	if ((listening = SOLISTENING(so))) {
1950 		struct socket *sp;
1951 
1952 		TAILQ_INIT(&lqueue);
1953 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1954 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1955 
1956 		so->sol_qlen = so->sol_incqlen = 0;
1957 
1958 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1959 			SOCK_LOCK(sp);
1960 			sp->so_qstate = SQ_NONE;
1961 			sp->so_listen = NULL;
1962 			SOCK_UNLOCK(sp);
1963 			last = refcount_release(&so->so_count);
1964 			KASSERT(!last, ("%s: released last reference for %p",
1965 			    __func__, so));
1966 		}
1967 	}
1968 	sorele_locked(so);
1969 	if (listening) {
1970 		struct socket *sp, *tsp;
1971 
1972 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1973 			soabort(sp);
1974 	}
1975 	CURVNET_RESTORE();
1976 	return (error);
1977 }
1978 
1979 /*
1980  * soabort() is used to abruptly tear down a connection, such as when a
1981  * resource limit is reached (listen queue depth exceeded), or if a listen
1982  * socket is closed while there are sockets waiting to be accepted.
1983  *
1984  * This interface is tricky, because it is called on an unreferenced socket,
1985  * and must be called only by a thread that has actually removed the socket
1986  * from the listen queue it was on.  Likely this thread holds the last
1987  * reference on the socket and soabort() will proceed with sofree().  But
1988  * it might be not the last, as the sockets on the listen queues are seen
1989  * from the protocol side.
1990  *
1991  * This interface will call into the protocol code, so must not be called
1992  * with any socket locks held.  Protocols do call it while holding their own
1993  * recursible protocol mutexes, but this is something that should be subject
1994  * to review in the future.
1995  *
1996  * Usually socket should have a single reference left, but this is not a
1997  * requirement.  In the past, when we have had named references for file
1998  * descriptor and protocol, we asserted that none of them are being held.
1999  */
2000 void
2001 soabort(struct socket *so)
2002 {
2003 
2004 	VNET_SO_ASSERT(so);
2005 
2006 	if (so->so_proto->pr_abort != NULL)
2007 		so->so_proto->pr_abort(so);
2008 	SOCK_LOCK(so);
2009 	sorele_locked(so);
2010 }
2011 
2012 int
2013 soaccept(struct socket *so, struct sockaddr *sa)
2014 {
2015 #ifdef INVARIANTS
2016 	u_char len = sa->sa_len;
2017 #endif
2018 	int error;
2019 
2020 	CURVNET_SET(so->so_vnet);
2021 	error = so->so_proto->pr_accept(so, sa);
2022 	KASSERT(sa->sa_len <= len,
2023 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2024 	CURVNET_RESTORE();
2025 	return (error);
2026 }
2027 
2028 int
2029 sopeeraddr(struct socket *so, struct sockaddr *sa)
2030 {
2031 #ifdef INVARIANTS
2032 	u_char len = sa->sa_len;
2033 #endif
2034 	int error;
2035 
2036 	CURVNET_ASSERT_SET();
2037 
2038 	error = so->so_proto->pr_peeraddr(so, sa);
2039 	KASSERT(sa->sa_len <= len,
2040 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2041 
2042 	return (error);
2043 }
2044 
2045 int
2046 sosockaddr(struct socket *so, struct sockaddr *sa)
2047 {
2048 #ifdef INVARIANTS
2049 	u_char len = sa->sa_len;
2050 #endif
2051 	int error;
2052 
2053 	CURVNET_SET(so->so_vnet);
2054 	error = so->so_proto->pr_sockaddr(so, sa);
2055 	KASSERT(sa->sa_len <= len,
2056 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2057 	CURVNET_RESTORE();
2058 
2059 	return (error);
2060 }
2061 
2062 int
2063 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2064 {
2065 
2066 	return (soconnectat(AT_FDCWD, so, nam, td));
2067 }
2068 
2069 int
2070 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2071 {
2072 	int error;
2073 
2074 	CURVNET_SET(so->so_vnet);
2075 
2076 	/*
2077 	 * If protocol is connection-based, can only connect once.
2078 	 * Otherwise, if connected, try to disconnect first.  This allows
2079 	 * user to disconnect by connecting to, e.g., a null address.
2080 	 *
2081 	 * Note, this check is racy and may need to be re-evaluated at the
2082 	 * protocol layer.
2083 	 */
2084 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2085 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2086 	    (error = sodisconnect(so)))) {
2087 		error = EISCONN;
2088 	} else {
2089 		/*
2090 		 * Prevent accumulated error from previous connection from
2091 		 * biting us.
2092 		 */
2093 		so->so_error = 0;
2094 		if (fd == AT_FDCWD) {
2095 			error = so->so_proto->pr_connect(so, nam, td);
2096 		} else {
2097 			error = so->so_proto->pr_connectat(fd, so, nam, td);
2098 		}
2099 	}
2100 	CURVNET_RESTORE();
2101 
2102 	return (error);
2103 }
2104 
2105 int
2106 soconnect2(struct socket *so1, struct socket *so2)
2107 {
2108 	int error;
2109 
2110 	CURVNET_SET(so1->so_vnet);
2111 	error = so1->so_proto->pr_connect2(so1, so2);
2112 	CURVNET_RESTORE();
2113 	return (error);
2114 }
2115 
2116 int
2117 sodisconnect(struct socket *so)
2118 {
2119 	int error;
2120 
2121 	if ((so->so_state & SS_ISCONNECTED) == 0)
2122 		return (ENOTCONN);
2123 	if (so->so_state & SS_ISDISCONNECTING)
2124 		return (EALREADY);
2125 	VNET_SO_ASSERT(so);
2126 	error = so->so_proto->pr_disconnect(so);
2127 	return (error);
2128 }
2129 
2130 int
2131 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2132     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2133 {
2134 	long space;
2135 	ssize_t resid;
2136 	int clen = 0, error, dontroute;
2137 
2138 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2139 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2140 	    ("sosend_dgram: !PR_ATOMIC"));
2141 
2142 	if (uio != NULL)
2143 		resid = uio->uio_resid;
2144 	else
2145 		resid = top->m_pkthdr.len;
2146 	/*
2147 	 * In theory resid should be unsigned.  However, space must be
2148 	 * signed, as it might be less than 0 if we over-committed, and we
2149 	 * must use a signed comparison of space and resid.  On the other
2150 	 * hand, a negative resid causes us to loop sending 0-length
2151 	 * segments to the protocol.
2152 	 */
2153 	if (resid < 0) {
2154 		error = EINVAL;
2155 		goto out;
2156 	}
2157 
2158 	dontroute =
2159 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2160 	if (td != NULL)
2161 		td->td_ru.ru_msgsnd++;
2162 	if (control != NULL)
2163 		clen = control->m_len;
2164 
2165 	SOCKBUF_LOCK(&so->so_snd);
2166 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2167 		SOCKBUF_UNLOCK(&so->so_snd);
2168 		error = EPIPE;
2169 		goto out;
2170 	}
2171 	if (so->so_error) {
2172 		error = so->so_error;
2173 		so->so_error = 0;
2174 		SOCKBUF_UNLOCK(&so->so_snd);
2175 		goto out;
2176 	}
2177 	if ((so->so_state & SS_ISCONNECTED) == 0) {
2178 		/*
2179 		 * `sendto' and `sendmsg' is allowed on a connection-based
2180 		 * socket if it supports implied connect.  Return ENOTCONN if
2181 		 * not connected and no address is supplied.
2182 		 */
2183 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2184 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2185 			if (!(resid == 0 && clen != 0)) {
2186 				SOCKBUF_UNLOCK(&so->so_snd);
2187 				error = ENOTCONN;
2188 				goto out;
2189 			}
2190 		} else if (addr == NULL) {
2191 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2192 				error = ENOTCONN;
2193 			else
2194 				error = EDESTADDRREQ;
2195 			SOCKBUF_UNLOCK(&so->so_snd);
2196 			goto out;
2197 		}
2198 	}
2199 
2200 	/*
2201 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
2202 	 * problem and need fixing.
2203 	 */
2204 	space = sbspace(&so->so_snd);
2205 	if (flags & MSG_OOB)
2206 		space += 1024;
2207 	space -= clen;
2208 	SOCKBUF_UNLOCK(&so->so_snd);
2209 	if (resid > space) {
2210 		error = EMSGSIZE;
2211 		goto out;
2212 	}
2213 	if (uio == NULL) {
2214 		resid = 0;
2215 		if (flags & MSG_EOR)
2216 			top->m_flags |= M_EOR;
2217 	} else {
2218 		/*
2219 		 * Copy the data from userland into a mbuf chain.
2220 		 * If no data is to be copied in, a single empty mbuf
2221 		 * is returned.
2222 		 */
2223 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2224 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2225 		if (top == NULL) {
2226 			error = EFAULT;	/* only possible error */
2227 			goto out;
2228 		}
2229 		space -= resid - uio->uio_resid;
2230 		resid = uio->uio_resid;
2231 	}
2232 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2233 	/*
2234 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2235 	 * than with.
2236 	 */
2237 	if (dontroute) {
2238 		SOCK_LOCK(so);
2239 		so->so_options |= SO_DONTROUTE;
2240 		SOCK_UNLOCK(so);
2241 	}
2242 	/*
2243 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2244 	 * of date.  We could have received a reset packet in an interrupt or
2245 	 * maybe we slept while doing page faults in uiomove() etc.  We could
2246 	 * probably recheck again inside the locking protection here, but
2247 	 * there are probably other places that this also happens.  We must
2248 	 * rethink this.
2249 	 */
2250 	VNET_SO_ASSERT(so);
2251 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2252 	/*
2253 	 * If the user set MSG_EOF, the protocol understands this flag and
2254 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2255 	 */
2256 	    ((flags & MSG_EOF) &&
2257 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2258 	     (resid <= 0)) ?
2259 		PRUS_EOF :
2260 		/* If there is more to send set PRUS_MORETOCOME */
2261 		(flags & MSG_MORETOCOME) ||
2262 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2263 		top, addr, control, td);
2264 	if (dontroute) {
2265 		SOCK_LOCK(so);
2266 		so->so_options &= ~SO_DONTROUTE;
2267 		SOCK_UNLOCK(so);
2268 	}
2269 	clen = 0;
2270 	control = NULL;
2271 	top = NULL;
2272 out:
2273 	if (top != NULL)
2274 		m_freem(top);
2275 	if (control != NULL)
2276 		m_freem(control);
2277 	return (error);
2278 }
2279 
2280 /*
2281  * Send on a socket.  If send must go all at once and message is larger than
2282  * send buffering, then hard error.  Lock against other senders.  If must go
2283  * all at once and not enough room now, then inform user that this would
2284  * block and do nothing.  Otherwise, if nonblocking, send as much as
2285  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
2286  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
2287  * in mbuf chain must be small enough to send all at once.
2288  *
2289  * Returns nonzero on error, timeout or signal; callers must check for short
2290  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
2291  * on return.
2292  */
2293 static int
2294 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2295     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2296 {
2297 	long space;
2298 	ssize_t resid;
2299 	int clen = 0, error, dontroute;
2300 	int atomic = sosendallatonce(so) || top;
2301 	int pr_send_flag;
2302 #ifdef KERN_TLS
2303 	struct ktls_session *tls;
2304 	int tls_enq_cnt, tls_send_flag;
2305 	uint8_t tls_rtype;
2306 
2307 	tls = NULL;
2308 	tls_rtype = TLS_RLTYPE_APP;
2309 #endif
2310 
2311 	SOCK_IO_SEND_ASSERT_LOCKED(so);
2312 
2313 	if (uio != NULL)
2314 		resid = uio->uio_resid;
2315 	else if ((top->m_flags & M_PKTHDR) != 0)
2316 		resid = top->m_pkthdr.len;
2317 	else
2318 		resid = m_length(top, NULL);
2319 	/*
2320 	 * In theory resid should be unsigned.  However, space must be
2321 	 * signed, as it might be less than 0 if we over-committed, and we
2322 	 * must use a signed comparison of space and resid.  On the other
2323 	 * hand, a negative resid causes us to loop sending 0-length
2324 	 * segments to the protocol.
2325 	 *
2326 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2327 	 * type sockets since that's an error.
2328 	 */
2329 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2330 		error = EINVAL;
2331 		goto out;
2332 	}
2333 
2334 	dontroute =
2335 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2336 	    (so->so_proto->pr_flags & PR_ATOMIC);
2337 	if (td != NULL)
2338 		td->td_ru.ru_msgsnd++;
2339 	if (control != NULL)
2340 		clen = control->m_len;
2341 
2342 #ifdef KERN_TLS
2343 	tls_send_flag = 0;
2344 	tls = ktls_hold(so->so_snd.sb_tls_info);
2345 	if (tls != NULL) {
2346 		if (tls->mode == TCP_TLS_MODE_SW)
2347 			tls_send_flag = PRUS_NOTREADY;
2348 
2349 		if (control != NULL) {
2350 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2351 
2352 			if (clen >= sizeof(*cm) &&
2353 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2354 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2355 				clen = 0;
2356 				m_freem(control);
2357 				control = NULL;
2358 				atomic = 1;
2359 			}
2360 		}
2361 
2362 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2363 			error = EINVAL;
2364 			goto out;
2365 		}
2366 	}
2367 #endif
2368 
2369 restart:
2370 	do {
2371 		SOCKBUF_LOCK(&so->so_snd);
2372 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2373 			SOCKBUF_UNLOCK(&so->so_snd);
2374 			error = EPIPE;
2375 			goto out;
2376 		}
2377 		if (so->so_error) {
2378 			error = so->so_error;
2379 			so->so_error = 0;
2380 			SOCKBUF_UNLOCK(&so->so_snd);
2381 			goto out;
2382 		}
2383 		if ((so->so_state & SS_ISCONNECTED) == 0) {
2384 			/*
2385 			 * `sendto' and `sendmsg' is allowed on a connection-
2386 			 * based socket if it supports implied connect.
2387 			 * Return ENOTCONN if not connected and no address is
2388 			 * supplied.
2389 			 */
2390 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2391 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2392 				if (!(resid == 0 && clen != 0)) {
2393 					SOCKBUF_UNLOCK(&so->so_snd);
2394 					error = ENOTCONN;
2395 					goto out;
2396 				}
2397 			} else if (addr == NULL) {
2398 				SOCKBUF_UNLOCK(&so->so_snd);
2399 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2400 					error = ENOTCONN;
2401 				else
2402 					error = EDESTADDRREQ;
2403 				goto out;
2404 			}
2405 		}
2406 		space = sbspace(&so->so_snd);
2407 		if (flags & MSG_OOB)
2408 			space += 1024;
2409 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
2410 		    clen > so->so_snd.sb_hiwat) {
2411 			SOCKBUF_UNLOCK(&so->so_snd);
2412 			error = EMSGSIZE;
2413 			goto out;
2414 		}
2415 		if (space < resid + clen &&
2416 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2417 			if ((so->so_state & SS_NBIO) ||
2418 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2419 				SOCKBUF_UNLOCK(&so->so_snd);
2420 				error = EWOULDBLOCK;
2421 				goto out;
2422 			}
2423 			error = sbwait(so, SO_SND);
2424 			SOCKBUF_UNLOCK(&so->so_snd);
2425 			if (error)
2426 				goto out;
2427 			goto restart;
2428 		}
2429 		SOCKBUF_UNLOCK(&so->so_snd);
2430 		space -= clen;
2431 		do {
2432 			if (uio == NULL) {
2433 				resid = 0;
2434 				if (flags & MSG_EOR)
2435 					top->m_flags |= M_EOR;
2436 #ifdef KERN_TLS
2437 				if (tls != NULL) {
2438 					ktls_frame(top, tls, &tls_enq_cnt,
2439 					    tls_rtype);
2440 					tls_rtype = TLS_RLTYPE_APP;
2441 				}
2442 #endif
2443 			} else {
2444 				/*
2445 				 * Copy the data from userland into a mbuf
2446 				 * chain.  If resid is 0, which can happen
2447 				 * only if we have control to send, then
2448 				 * a single empty mbuf is returned.  This
2449 				 * is a workaround to prevent protocol send
2450 				 * methods to panic.
2451 				 */
2452 #ifdef KERN_TLS
2453 				if (tls != NULL) {
2454 					top = m_uiotombuf(uio, M_WAITOK, space,
2455 					    tls->params.max_frame_len,
2456 					    M_EXTPG |
2457 					    ((flags & MSG_EOR) ? M_EOR : 0));
2458 					if (top != NULL) {
2459 						ktls_frame(top, tls,
2460 						    &tls_enq_cnt, tls_rtype);
2461 					}
2462 					tls_rtype = TLS_RLTYPE_APP;
2463 				} else
2464 #endif
2465 					top = m_uiotombuf(uio, M_WAITOK, space,
2466 					    (atomic ? max_hdr : 0),
2467 					    (atomic ? M_PKTHDR : 0) |
2468 					    ((flags & MSG_EOR) ? M_EOR : 0));
2469 				if (top == NULL) {
2470 					error = EFAULT; /* only possible error */
2471 					goto out;
2472 				}
2473 				space -= resid - uio->uio_resid;
2474 				resid = uio->uio_resid;
2475 			}
2476 			if (dontroute) {
2477 				SOCK_LOCK(so);
2478 				so->so_options |= SO_DONTROUTE;
2479 				SOCK_UNLOCK(so);
2480 			}
2481 			/*
2482 			 * XXX all the SBS_CANTSENDMORE checks previously
2483 			 * done could be out of date.  We could have received
2484 			 * a reset packet in an interrupt or maybe we slept
2485 			 * while doing page faults in uiomove() etc.  We
2486 			 * could probably recheck again inside the locking
2487 			 * protection here, but there are probably other
2488 			 * places that this also happens.  We must rethink
2489 			 * this.
2490 			 */
2491 			VNET_SO_ASSERT(so);
2492 
2493 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2494 			/*
2495 			 * If the user set MSG_EOF, the protocol understands
2496 			 * this flag and nothing left to send then use
2497 			 * PRU_SEND_EOF instead of PRU_SEND.
2498 			 */
2499 			    ((flags & MSG_EOF) &&
2500 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2501 			     (resid <= 0)) ?
2502 				PRUS_EOF :
2503 			/* If there is more to send set PRUS_MORETOCOME. */
2504 			    (flags & MSG_MORETOCOME) ||
2505 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2506 
2507 #ifdef KERN_TLS
2508 			pr_send_flag |= tls_send_flag;
2509 #endif
2510 
2511 			error = so->so_proto->pr_send(so, pr_send_flag, top,
2512 			    addr, control, td);
2513 
2514 			if (dontroute) {
2515 				SOCK_LOCK(so);
2516 				so->so_options &= ~SO_DONTROUTE;
2517 				SOCK_UNLOCK(so);
2518 			}
2519 
2520 #ifdef KERN_TLS
2521 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2522 				if (error != 0) {
2523 					m_freem(top);
2524 					top = NULL;
2525 				} else {
2526 					soref(so);
2527 					ktls_enqueue(top, so, tls_enq_cnt);
2528 				}
2529 			}
2530 #endif
2531 			clen = 0;
2532 			control = NULL;
2533 			top = NULL;
2534 			if (error)
2535 				goto out;
2536 		} while (resid && space > 0);
2537 	} while (resid);
2538 
2539 out:
2540 #ifdef KERN_TLS
2541 	if (tls != NULL)
2542 		ktls_free(tls);
2543 #endif
2544 	if (top != NULL)
2545 		m_freem(top);
2546 	if (control != NULL)
2547 		m_freem(control);
2548 	return (error);
2549 }
2550 
2551 int
2552 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2553     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2554 {
2555 	int error;
2556 
2557 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2558 	if (error)
2559 		return (error);
2560 	error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2561 	SOCK_IO_SEND_UNLOCK(so);
2562 	return (error);
2563 }
2564 
2565 /*
2566  * Send to a socket from a kernel thread.
2567  *
2568  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2569  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
2570  * to be set at all.  This function should just boil down to a static inline
2571  * calling the protocol method.
2572  */
2573 int
2574 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2575     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2576 {
2577 	int error;
2578 
2579 	CURVNET_SET(so->so_vnet);
2580 	error = so->so_proto->pr_sosend(so, addr, uio,
2581 	    top, control, flags, td);
2582 	CURVNET_RESTORE();
2583 	return (error);
2584 }
2585 
2586 /*
2587  * send(2), write(2) or aio_write(2) on a socket.
2588  */
2589 int
2590 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2591     struct mbuf *control, int flags, struct proc *userproc)
2592 {
2593 	struct thread *td;
2594 	ssize_t len;
2595 	int error;
2596 
2597 	td = uio->uio_td;
2598 	len = uio->uio_resid;
2599 	CURVNET_SET(so->so_vnet);
2600 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2601 	    td);
2602 	CURVNET_RESTORE();
2603 	if (error != 0) {
2604 		/*
2605 		 * Clear transient errors for stream protocols if they made
2606 		 * some progress.  Make exclusion for aio(4) that would
2607 		 * schedule a new write in case of EWOULDBLOCK and clear
2608 		 * error itself.  See soaio_process_job().
2609 		 */
2610 		if (uio->uio_resid != len &&
2611 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2612 		    userproc == NULL &&
2613 		    (error == ERESTART || error == EINTR ||
2614 		    error == EWOULDBLOCK))
2615 			error = 0;
2616 		/* Generation of SIGPIPE can be controlled per socket. */
2617 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2618 		    (flags & MSG_NOSIGNAL) == 0) {
2619 			if (userproc != NULL) {
2620 				/* aio(4) job */
2621 				PROC_LOCK(userproc);
2622 				kern_psignal(userproc, SIGPIPE);
2623 				PROC_UNLOCK(userproc);
2624 			} else {
2625 				PROC_LOCK(td->td_proc);
2626 				tdsignal(td, SIGPIPE);
2627 				PROC_UNLOCK(td->td_proc);
2628 			}
2629 		}
2630 	}
2631 	return (error);
2632 }
2633 
2634 /*
2635  * The part of soreceive() that implements reading non-inline out-of-band
2636  * data from a socket.  For more complete comments, see soreceive(), from
2637  * which this code originated.
2638  *
2639  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2640  * unable to return an mbuf chain to the caller.
2641  */
2642 static int
2643 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2644 {
2645 	struct protosw *pr = so->so_proto;
2646 	struct mbuf *m;
2647 	int error;
2648 
2649 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2650 	VNET_SO_ASSERT(so);
2651 
2652 	m = m_get(M_WAITOK, MT_DATA);
2653 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2654 	if (error)
2655 		goto bad;
2656 	do {
2657 		error = uiomove(mtod(m, void *),
2658 		    (int) min(uio->uio_resid, m->m_len), uio);
2659 		m = m_free(m);
2660 	} while (uio->uio_resid && error == 0 && m);
2661 bad:
2662 	if (m != NULL)
2663 		m_freem(m);
2664 	return (error);
2665 }
2666 
2667 /*
2668  * Following replacement or removal of the first mbuf on the first mbuf chain
2669  * of a socket buffer, push necessary state changes back into the socket
2670  * buffer so that other consumers see the values consistently.  'nextrecord'
2671  * is the callers locally stored value of the original value of
2672  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2673  * NOTE: 'nextrecord' may be NULL.
2674  */
2675 static __inline void
2676 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2677 {
2678 
2679 	SOCKBUF_LOCK_ASSERT(sb);
2680 	/*
2681 	 * First, update for the new value of nextrecord.  If necessary, make
2682 	 * it the first record.
2683 	 */
2684 	if (sb->sb_mb != NULL)
2685 		sb->sb_mb->m_nextpkt = nextrecord;
2686 	else
2687 		sb->sb_mb = nextrecord;
2688 
2689 	/*
2690 	 * Now update any dependent socket buffer fields to reflect the new
2691 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
2692 	 * addition of a second clause that takes care of the case where
2693 	 * sb_mb has been updated, but remains the last record.
2694 	 */
2695 	if (sb->sb_mb == NULL) {
2696 		sb->sb_mbtail = NULL;
2697 		sb->sb_lastrecord = NULL;
2698 	} else if (sb->sb_mb->m_nextpkt == NULL)
2699 		sb->sb_lastrecord = sb->sb_mb;
2700 }
2701 
2702 /*
2703  * Implement receive operations on a socket.  We depend on the way that
2704  * records are added to the sockbuf by sbappend.  In particular, each record
2705  * (mbufs linked through m_next) must begin with an address if the protocol
2706  * so specifies, followed by an optional mbuf or mbufs containing ancillary
2707  * data, and then zero or more mbufs of data.  In order to allow parallelism
2708  * between network receive and copying to user space, as well as avoid
2709  * sleeping with a mutex held, we release the socket buffer mutex during the
2710  * user space copy.  Although the sockbuf is locked, new data may still be
2711  * appended, and thus we must maintain consistency of the sockbuf during that
2712  * time.
2713  *
2714  * The caller may receive the data as a single mbuf chain by supplying an
2715  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
2716  * the count in uio_resid.
2717  */
2718 static int
2719 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2720     struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2721 {
2722 	struct mbuf *m;
2723 	int flags, error, offset;
2724 	ssize_t len;
2725 	struct protosw *pr = so->so_proto;
2726 	struct mbuf *nextrecord;
2727 	int moff, type = 0;
2728 	ssize_t orig_resid = uio->uio_resid;
2729 	bool report_real_len = false;
2730 
2731 	SOCK_IO_RECV_ASSERT_LOCKED(so);
2732 
2733 	error = 0;
2734 	if (flagsp != NULL) {
2735 		report_real_len = *flagsp & MSG_TRUNC;
2736 		*flagsp &= ~MSG_TRUNC;
2737 		flags = *flagsp &~ MSG_EOR;
2738 	} else
2739 		flags = 0;
2740 
2741 restart:
2742 	SOCKBUF_LOCK(&so->so_rcv);
2743 	m = so->so_rcv.sb_mb;
2744 	/*
2745 	 * If we have less data than requested, block awaiting more (subject
2746 	 * to any timeout) if:
2747 	 *   1. the current count is less than the low water mark, or
2748 	 *   2. MSG_DONTWAIT is not set
2749 	 */
2750 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2751 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2752 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2753 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2754 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2755 		    ("receive: m == %p sbavail == %u",
2756 		    m, sbavail(&so->so_rcv)));
2757 		if (so->so_error || so->so_rerror) {
2758 			if (m != NULL)
2759 				goto dontblock;
2760 			if (so->so_error)
2761 				error = so->so_error;
2762 			else
2763 				error = so->so_rerror;
2764 			if ((flags & MSG_PEEK) == 0) {
2765 				if (so->so_error)
2766 					so->so_error = 0;
2767 				else
2768 					so->so_rerror = 0;
2769 			}
2770 			SOCKBUF_UNLOCK(&so->so_rcv);
2771 			goto release;
2772 		}
2773 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2774 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2775 			if (m != NULL)
2776 				goto dontblock;
2777 #ifdef KERN_TLS
2778 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2779 			    so->so_rcv.sb_tlscc == 0) {
2780 #else
2781 			else {
2782 #endif
2783 				SOCKBUF_UNLOCK(&so->so_rcv);
2784 				goto release;
2785 			}
2786 		}
2787 		for (; m != NULL; m = m->m_next)
2788 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2789 				m = so->so_rcv.sb_mb;
2790 				goto dontblock;
2791 			}
2792 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2793 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2794 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2795 			SOCKBUF_UNLOCK(&so->so_rcv);
2796 			error = ENOTCONN;
2797 			goto release;
2798 		}
2799 		if (uio->uio_resid == 0 && !report_real_len) {
2800 			SOCKBUF_UNLOCK(&so->so_rcv);
2801 			goto release;
2802 		}
2803 		if ((so->so_state & SS_NBIO) ||
2804 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2805 			SOCKBUF_UNLOCK(&so->so_rcv);
2806 			error = EWOULDBLOCK;
2807 			goto release;
2808 		}
2809 		SBLASTRECORDCHK(&so->so_rcv);
2810 		SBLASTMBUFCHK(&so->so_rcv);
2811 		error = sbwait(so, SO_RCV);
2812 		SOCKBUF_UNLOCK(&so->so_rcv);
2813 		if (error)
2814 			goto release;
2815 		goto restart;
2816 	}
2817 dontblock:
2818 	/*
2819 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2820 	 * pointer to the next record in the socket buffer.  We must keep the
2821 	 * various socket buffer pointers and local stack versions of the
2822 	 * pointers in sync, pushing out modifications before dropping the
2823 	 * socket buffer mutex, and re-reading them when picking it up.
2824 	 *
2825 	 * Otherwise, we will race with the network stack appending new data
2826 	 * or records onto the socket buffer by using inconsistent/stale
2827 	 * versions of the field, possibly resulting in socket buffer
2828 	 * corruption.
2829 	 *
2830 	 * By holding the high-level sblock(), we prevent simultaneous
2831 	 * readers from pulling off the front of the socket buffer.
2832 	 */
2833 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2834 	if (uio->uio_td)
2835 		uio->uio_td->td_ru.ru_msgrcv++;
2836 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2837 	SBLASTRECORDCHK(&so->so_rcv);
2838 	SBLASTMBUFCHK(&so->so_rcv);
2839 	nextrecord = m->m_nextpkt;
2840 	if (pr->pr_flags & PR_ADDR) {
2841 		KASSERT(m->m_type == MT_SONAME,
2842 		    ("m->m_type == %d", m->m_type));
2843 		orig_resid = 0;
2844 		if (psa != NULL)
2845 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2846 			    M_NOWAIT);
2847 		if (flags & MSG_PEEK) {
2848 			m = m->m_next;
2849 		} else {
2850 			sbfree(&so->so_rcv, m);
2851 			so->so_rcv.sb_mb = m_free(m);
2852 			m = so->so_rcv.sb_mb;
2853 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2854 		}
2855 	}
2856 
2857 	/*
2858 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2859 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2860 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2861 	 * perform externalization (or freeing if controlp == NULL).
2862 	 */
2863 	if (m != NULL && m->m_type == MT_CONTROL) {
2864 		struct mbuf *cm = NULL, *cmn;
2865 		struct mbuf **cme = &cm;
2866 #ifdef KERN_TLS
2867 		struct cmsghdr *cmsg;
2868 		struct tls_get_record tgr;
2869 
2870 		/*
2871 		 * For MSG_TLSAPPDATA, check for an alert record.
2872 		 * If found, return ENXIO without removing
2873 		 * it from the receive queue.  This allows a subsequent
2874 		 * call without MSG_TLSAPPDATA to receive it.
2875 		 * Note that, for TLS, there should only be a single
2876 		 * control mbuf with the TLS_GET_RECORD message in it.
2877 		 */
2878 		if (flags & MSG_TLSAPPDATA) {
2879 			cmsg = mtod(m, struct cmsghdr *);
2880 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2881 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2882 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2883 				if (__predict_false(tgr.tls_type ==
2884 				    TLS_RLTYPE_ALERT)) {
2885 					SOCKBUF_UNLOCK(&so->so_rcv);
2886 					error = ENXIO;
2887 					goto release;
2888 				}
2889 			}
2890 		}
2891 #endif
2892 
2893 		do {
2894 			if (flags & MSG_PEEK) {
2895 				if (controlp != NULL) {
2896 					*controlp = m_copym(m, 0, m->m_len,
2897 					    M_NOWAIT);
2898 					controlp = &(*controlp)->m_next;
2899 				}
2900 				m = m->m_next;
2901 			} else {
2902 				sbfree(&so->so_rcv, m);
2903 				so->so_rcv.sb_mb = m->m_next;
2904 				m->m_next = NULL;
2905 				*cme = m;
2906 				cme = &(*cme)->m_next;
2907 				m = so->so_rcv.sb_mb;
2908 			}
2909 		} while (m != NULL && m->m_type == MT_CONTROL);
2910 		if ((flags & MSG_PEEK) == 0)
2911 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2912 		while (cm != NULL) {
2913 			cmn = cm->m_next;
2914 			cm->m_next = NULL;
2915 			if (pr->pr_domain->dom_externalize != NULL) {
2916 				SOCKBUF_UNLOCK(&so->so_rcv);
2917 				VNET_SO_ASSERT(so);
2918 				error = (*pr->pr_domain->dom_externalize)
2919 				    (cm, controlp, flags);
2920 				SOCKBUF_LOCK(&so->so_rcv);
2921 			} else if (controlp != NULL)
2922 				*controlp = cm;
2923 			else
2924 				m_freem(cm);
2925 			if (controlp != NULL) {
2926 				while (*controlp != NULL)
2927 					controlp = &(*controlp)->m_next;
2928 			}
2929 			cm = cmn;
2930 		}
2931 		if (m != NULL)
2932 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2933 		else
2934 			nextrecord = so->so_rcv.sb_mb;
2935 		orig_resid = 0;
2936 	}
2937 	if (m != NULL) {
2938 		if ((flags & MSG_PEEK) == 0) {
2939 			KASSERT(m->m_nextpkt == nextrecord,
2940 			    ("soreceive: post-control, nextrecord !sync"));
2941 			if (nextrecord == NULL) {
2942 				KASSERT(so->so_rcv.sb_mb == m,
2943 				    ("soreceive: post-control, sb_mb!=m"));
2944 				KASSERT(so->so_rcv.sb_lastrecord == m,
2945 				    ("soreceive: post-control, lastrecord!=m"));
2946 			}
2947 		}
2948 		type = m->m_type;
2949 		if (type == MT_OOBDATA)
2950 			flags |= MSG_OOB;
2951 	} else {
2952 		if ((flags & MSG_PEEK) == 0) {
2953 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2954 			    ("soreceive: sb_mb != nextrecord"));
2955 			if (so->so_rcv.sb_mb == NULL) {
2956 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2957 				    ("soreceive: sb_lastercord != NULL"));
2958 			}
2959 		}
2960 	}
2961 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2962 	SBLASTRECORDCHK(&so->so_rcv);
2963 	SBLASTMBUFCHK(&so->so_rcv);
2964 
2965 	/*
2966 	 * Now continue to read any data mbufs off of the head of the socket
2967 	 * buffer until the read request is satisfied.  Note that 'type' is
2968 	 * used to store the type of any mbuf reads that have happened so far
2969 	 * such that soreceive() can stop reading if the type changes, which
2970 	 * causes soreceive() to return only one of regular data and inline
2971 	 * out-of-band data in a single socket receive operation.
2972 	 */
2973 	moff = 0;
2974 	offset = 0;
2975 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2976 	    && error == 0) {
2977 		/*
2978 		 * If the type of mbuf has changed since the last mbuf
2979 		 * examined ('type'), end the receive operation.
2980 		 */
2981 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2982 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2983 			if (type != m->m_type)
2984 				break;
2985 		} else if (type == MT_OOBDATA)
2986 			break;
2987 		else
2988 		    KASSERT(m->m_type == MT_DATA,
2989 			("m->m_type == %d", m->m_type));
2990 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2991 		len = uio->uio_resid;
2992 		if (so->so_oobmark && len > so->so_oobmark - offset)
2993 			len = so->so_oobmark - offset;
2994 		if (len > m->m_len - moff)
2995 			len = m->m_len - moff;
2996 		/*
2997 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2998 		 * them out via the uio, then free.  Sockbuf must be
2999 		 * consistent here (points to current mbuf, it points to next
3000 		 * record) when we drop priority; we must note any additions
3001 		 * to the sockbuf when we block interrupts again.
3002 		 */
3003 		if (mp == NULL) {
3004 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3005 			SBLASTRECORDCHK(&so->so_rcv);
3006 			SBLASTMBUFCHK(&so->so_rcv);
3007 			SOCKBUF_UNLOCK(&so->so_rcv);
3008 			if ((m->m_flags & M_EXTPG) != 0)
3009 				error = m_unmapped_uiomove(m, moff, uio,
3010 				    (int)len);
3011 			else
3012 				error = uiomove(mtod(m, char *) + moff,
3013 				    (int)len, uio);
3014 			SOCKBUF_LOCK(&so->so_rcv);
3015 			if (error) {
3016 				/*
3017 				 * The MT_SONAME mbuf has already been removed
3018 				 * from the record, so it is necessary to
3019 				 * remove the data mbufs, if any, to preserve
3020 				 * the invariant in the case of PR_ADDR that
3021 				 * requires MT_SONAME mbufs at the head of
3022 				 * each record.
3023 				 */
3024 				if (pr->pr_flags & PR_ATOMIC &&
3025 				    ((flags & MSG_PEEK) == 0))
3026 					(void)sbdroprecord_locked(&so->so_rcv);
3027 				SOCKBUF_UNLOCK(&so->so_rcv);
3028 				goto release;
3029 			}
3030 		} else
3031 			uio->uio_resid -= len;
3032 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3033 		if (len == m->m_len - moff) {
3034 			if (m->m_flags & M_EOR)
3035 				flags |= MSG_EOR;
3036 			if (flags & MSG_PEEK) {
3037 				m = m->m_next;
3038 				moff = 0;
3039 			} else {
3040 				nextrecord = m->m_nextpkt;
3041 				sbfree(&so->so_rcv, m);
3042 				if (mp != NULL) {
3043 					m->m_nextpkt = NULL;
3044 					*mp = m;
3045 					mp = &m->m_next;
3046 					so->so_rcv.sb_mb = m = m->m_next;
3047 					*mp = NULL;
3048 				} else {
3049 					so->so_rcv.sb_mb = m_free(m);
3050 					m = so->so_rcv.sb_mb;
3051 				}
3052 				sockbuf_pushsync(&so->so_rcv, nextrecord);
3053 				SBLASTRECORDCHK(&so->so_rcv);
3054 				SBLASTMBUFCHK(&so->so_rcv);
3055 			}
3056 		} else {
3057 			if (flags & MSG_PEEK)
3058 				moff += len;
3059 			else {
3060 				if (mp != NULL) {
3061 					if (flags & MSG_DONTWAIT) {
3062 						*mp = m_copym(m, 0, len,
3063 						    M_NOWAIT);
3064 						if (*mp == NULL) {
3065 							/*
3066 							 * m_copym() couldn't
3067 							 * allocate an mbuf.
3068 							 * Adjust uio_resid back
3069 							 * (it was adjusted
3070 							 * down by len bytes,
3071 							 * which we didn't end
3072 							 * up "copying" over).
3073 							 */
3074 							uio->uio_resid += len;
3075 							break;
3076 						}
3077 					} else {
3078 						SOCKBUF_UNLOCK(&so->so_rcv);
3079 						*mp = m_copym(m, 0, len,
3080 						    M_WAITOK);
3081 						SOCKBUF_LOCK(&so->so_rcv);
3082 					}
3083 				}
3084 				sbcut_locked(&so->so_rcv, len);
3085 			}
3086 		}
3087 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3088 		if (so->so_oobmark) {
3089 			if ((flags & MSG_PEEK) == 0) {
3090 				so->so_oobmark -= len;
3091 				if (so->so_oobmark == 0) {
3092 					so->so_rcv.sb_state |= SBS_RCVATMARK;
3093 					break;
3094 				}
3095 			} else {
3096 				offset += len;
3097 				if (offset == so->so_oobmark)
3098 					break;
3099 			}
3100 		}
3101 		if (flags & MSG_EOR)
3102 			break;
3103 		/*
3104 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3105 		 * must not quit until "uio->uio_resid == 0" or an error
3106 		 * termination.  If a signal/timeout occurs, return with a
3107 		 * short count but without error.  Keep sockbuf locked
3108 		 * against other readers.
3109 		 */
3110 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3111 		    !sosendallatonce(so) && nextrecord == NULL) {
3112 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3113 			if (so->so_error || so->so_rerror ||
3114 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
3115 				break;
3116 			/*
3117 			 * Notify the protocol that some data has been
3118 			 * drained before blocking.
3119 			 */
3120 			if (pr->pr_flags & PR_WANTRCVD) {
3121 				SOCKBUF_UNLOCK(&so->so_rcv);
3122 				VNET_SO_ASSERT(so);
3123 				pr->pr_rcvd(so, flags);
3124 				SOCKBUF_LOCK(&so->so_rcv);
3125 				if (__predict_false(so->so_rcv.sb_mb == NULL &&
3126 				    (so->so_error || so->so_rerror ||
3127 				    so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3128 					break;
3129 			}
3130 			SBLASTRECORDCHK(&so->so_rcv);
3131 			SBLASTMBUFCHK(&so->so_rcv);
3132 			/*
3133 			 * We could receive some data while was notifying
3134 			 * the protocol. Skip blocking in this case.
3135 			 */
3136 			if (so->so_rcv.sb_mb == NULL) {
3137 				error = sbwait(so, SO_RCV);
3138 				if (error) {
3139 					SOCKBUF_UNLOCK(&so->so_rcv);
3140 					goto release;
3141 				}
3142 			}
3143 			m = so->so_rcv.sb_mb;
3144 			if (m != NULL)
3145 				nextrecord = m->m_nextpkt;
3146 		}
3147 	}
3148 
3149 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3150 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3151 		if (report_real_len)
3152 			uio->uio_resid -= m_length(m, NULL) - moff;
3153 		flags |= MSG_TRUNC;
3154 		if ((flags & MSG_PEEK) == 0)
3155 			(void) sbdroprecord_locked(&so->so_rcv);
3156 	}
3157 	if ((flags & MSG_PEEK) == 0) {
3158 		if (m == NULL) {
3159 			/*
3160 			 * First part is an inline SB_EMPTY_FIXUP().  Second
3161 			 * part makes sure sb_lastrecord is up-to-date if
3162 			 * there is still data in the socket buffer.
3163 			 */
3164 			so->so_rcv.sb_mb = nextrecord;
3165 			if (so->so_rcv.sb_mb == NULL) {
3166 				so->so_rcv.sb_mbtail = NULL;
3167 				so->so_rcv.sb_lastrecord = NULL;
3168 			} else if (nextrecord->m_nextpkt == NULL)
3169 				so->so_rcv.sb_lastrecord = nextrecord;
3170 		}
3171 		SBLASTRECORDCHK(&so->so_rcv);
3172 		SBLASTMBUFCHK(&so->so_rcv);
3173 		/*
3174 		 * If soreceive() is being done from the socket callback,
3175 		 * then don't need to generate ACK to peer to update window,
3176 		 * since ACK will be generated on return to TCP.
3177 		 */
3178 		if (!(flags & MSG_SOCALLBCK) &&
3179 		    (pr->pr_flags & PR_WANTRCVD)) {
3180 			SOCKBUF_UNLOCK(&so->so_rcv);
3181 			VNET_SO_ASSERT(so);
3182 			pr->pr_rcvd(so, flags);
3183 			SOCKBUF_LOCK(&so->so_rcv);
3184 		}
3185 	}
3186 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3187 	if (orig_resid == uio->uio_resid && orig_resid &&
3188 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3189 		SOCKBUF_UNLOCK(&so->so_rcv);
3190 		goto restart;
3191 	}
3192 	SOCKBUF_UNLOCK(&so->so_rcv);
3193 
3194 	if (flagsp != NULL)
3195 		*flagsp |= flags;
3196 release:
3197 	return (error);
3198 }
3199 
3200 int
3201 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3202     struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3203 {
3204 	int error, flags;
3205 
3206 	if (psa != NULL)
3207 		*psa = NULL;
3208 	if (controlp != NULL)
3209 		*controlp = NULL;
3210 	if (flagsp != NULL) {
3211 		flags = *flagsp;
3212 		if ((flags & MSG_OOB) != 0)
3213 			return (soreceive_rcvoob(so, uio, flags));
3214 	} else {
3215 		flags = 0;
3216 	}
3217 	if (mp != NULL)
3218 		*mp = NULL;
3219 
3220 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3221 	if (error)
3222 		return (error);
3223 	error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3224 	SOCK_IO_RECV_UNLOCK(so);
3225 	return (error);
3226 }
3227 
3228 /*
3229  * Optimized version of soreceive() for stream (TCP) sockets.
3230  */
3231 static int
3232 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3233     struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3234     struct mbuf **controlp, int flags)
3235 {
3236 	int len = 0, error = 0, oresid;
3237 	struct mbuf *m, *n = NULL;
3238 
3239 	SOCK_IO_RECV_ASSERT_LOCKED(so);
3240 
3241 	/* Easy one, no space to copyout anything. */
3242 	if (uio->uio_resid == 0)
3243 		return (EINVAL);
3244 	oresid = uio->uio_resid;
3245 
3246 	SOCKBUF_LOCK(sb);
3247 	/* We will never ever get anything unless we are or were connected. */
3248 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3249 		error = ENOTCONN;
3250 		goto out;
3251 	}
3252 
3253 restart:
3254 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3255 
3256 	/* Abort if socket has reported problems. */
3257 	if (so->so_error) {
3258 		if (sbavail(sb) > 0)
3259 			goto deliver;
3260 		if (oresid > uio->uio_resid)
3261 			goto out;
3262 		error = so->so_error;
3263 		if (!(flags & MSG_PEEK))
3264 			so->so_error = 0;
3265 		goto out;
3266 	}
3267 
3268 	/* Door is closed.  Deliver what is left, if any. */
3269 	if (sb->sb_state & SBS_CANTRCVMORE) {
3270 		if (sbavail(sb) > 0)
3271 			goto deliver;
3272 		else
3273 			goto out;
3274 	}
3275 
3276 	/* Socket buffer is empty and we shall not block. */
3277 	if (sbavail(sb) == 0 &&
3278 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3279 		error = EAGAIN;
3280 		goto out;
3281 	}
3282 
3283 	/* Socket buffer got some data that we shall deliver now. */
3284 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3285 	    ((so->so_state & SS_NBIO) ||
3286 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3287 	     sbavail(sb) >= sb->sb_lowat ||
3288 	     sbavail(sb) >= uio->uio_resid ||
3289 	     sbavail(sb) >= sb->sb_hiwat) ) {
3290 		goto deliver;
3291 	}
3292 
3293 	/* On MSG_WAITALL we must wait until all data or error arrives. */
3294 	if ((flags & MSG_WAITALL) &&
3295 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3296 		goto deliver;
3297 
3298 	/*
3299 	 * Wait and block until (more) data comes in.
3300 	 * NB: Drops the sockbuf lock during wait.
3301 	 */
3302 	error = sbwait(so, SO_RCV);
3303 	if (error)
3304 		goto out;
3305 	goto restart;
3306 
3307 deliver:
3308 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3309 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3310 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3311 
3312 	/* Statistics. */
3313 	if (uio->uio_td)
3314 		uio->uio_td->td_ru.ru_msgrcv++;
3315 
3316 	/* Fill uio until full or current end of socket buffer is reached. */
3317 	len = min(uio->uio_resid, sbavail(sb));
3318 	if (mp0 != NULL) {
3319 		/* Dequeue as many mbufs as possible. */
3320 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3321 			if (*mp0 == NULL)
3322 				*mp0 = sb->sb_mb;
3323 			else
3324 				m_cat(*mp0, sb->sb_mb);
3325 			for (m = sb->sb_mb;
3326 			     m != NULL && m->m_len <= len;
3327 			     m = m->m_next) {
3328 				KASSERT(!(m->m_flags & M_NOTAVAIL),
3329 				    ("%s: m %p not available", __func__, m));
3330 				len -= m->m_len;
3331 				uio->uio_resid -= m->m_len;
3332 				sbfree(sb, m);
3333 				n = m;
3334 			}
3335 			n->m_next = NULL;
3336 			sb->sb_mb = m;
3337 			sb->sb_lastrecord = sb->sb_mb;
3338 			if (sb->sb_mb == NULL)
3339 				SB_EMPTY_FIXUP(sb);
3340 		}
3341 		/* Copy the remainder. */
3342 		if (len > 0) {
3343 			KASSERT(sb->sb_mb != NULL,
3344 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
3345 
3346 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3347 			if (m == NULL)
3348 				len = 0;	/* Don't flush data from sockbuf. */
3349 			else
3350 				uio->uio_resid -= len;
3351 			if (*mp0 != NULL)
3352 				m_cat(*mp0, m);
3353 			else
3354 				*mp0 = m;
3355 			if (*mp0 == NULL) {
3356 				error = ENOBUFS;
3357 				goto out;
3358 			}
3359 		}
3360 	} else {
3361 		/* NB: Must unlock socket buffer as uiomove may sleep. */
3362 		SOCKBUF_UNLOCK(sb);
3363 		error = m_mbuftouio(uio, sb->sb_mb, len);
3364 		SOCKBUF_LOCK(sb);
3365 		if (error)
3366 			goto out;
3367 	}
3368 	SBLASTRECORDCHK(sb);
3369 	SBLASTMBUFCHK(sb);
3370 
3371 	/*
3372 	 * Remove the delivered data from the socket buffer unless we
3373 	 * were only peeking.
3374 	 */
3375 	if (!(flags & MSG_PEEK)) {
3376 		if (len > 0)
3377 			sbdrop_locked(sb, len);
3378 
3379 		/* Notify protocol that we drained some data. */
3380 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3381 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3382 		     !(flags & MSG_SOCALLBCK))) {
3383 			SOCKBUF_UNLOCK(sb);
3384 			VNET_SO_ASSERT(so);
3385 			so->so_proto->pr_rcvd(so, flags);
3386 			SOCKBUF_LOCK(sb);
3387 		}
3388 	}
3389 
3390 	/*
3391 	 * For MSG_WAITALL we may have to loop again and wait for
3392 	 * more data to come in.
3393 	 */
3394 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3395 		goto restart;
3396 out:
3397 	SBLASTRECORDCHK(sb);
3398 	SBLASTMBUFCHK(sb);
3399 	SOCKBUF_UNLOCK(sb);
3400 	return (error);
3401 }
3402 
3403 int
3404 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3405     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3406 {
3407 	struct sockbuf *sb;
3408 	int error, flags;
3409 
3410 	sb = &so->so_rcv;
3411 
3412 	/* We only do stream sockets. */
3413 	if (so->so_type != SOCK_STREAM)
3414 		return (EINVAL);
3415 	if (psa != NULL)
3416 		*psa = NULL;
3417 	if (flagsp != NULL)
3418 		flags = *flagsp & ~MSG_EOR;
3419 	else
3420 		flags = 0;
3421 	if (controlp != NULL)
3422 		*controlp = NULL;
3423 	if (flags & MSG_OOB)
3424 		return (soreceive_rcvoob(so, uio, flags));
3425 	if (mp0 != NULL)
3426 		*mp0 = NULL;
3427 
3428 #ifdef KERN_TLS
3429 	/*
3430 	 * KTLS store TLS records as records with a control message to
3431 	 * describe the framing.
3432 	 *
3433 	 * We check once here before acquiring locks to optimize the
3434 	 * common case.
3435 	 */
3436 	if (sb->sb_tls_info != NULL)
3437 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3438 		    flagsp));
3439 #endif
3440 
3441 	/*
3442 	 * Prevent other threads from reading from the socket.  This lock may be
3443 	 * dropped in order to sleep waiting for data to arrive.
3444 	 */
3445 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3446 	if (error)
3447 		return (error);
3448 #ifdef KERN_TLS
3449 	if (__predict_false(sb->sb_tls_info != NULL)) {
3450 		SOCK_IO_RECV_UNLOCK(so);
3451 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3452 		    flagsp));
3453 	}
3454 #endif
3455 	error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3456 	SOCK_IO_RECV_UNLOCK(so);
3457 	return (error);
3458 }
3459 
3460 /*
3461  * Optimized version of soreceive() for simple datagram cases from userspace.
3462  * Unlike in the stream case, we're able to drop a datagram if copyout()
3463  * fails, and because we handle datagrams atomically, we don't need to use a
3464  * sleep lock to prevent I/O interlacing.
3465  */
3466 int
3467 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3468     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3469 {
3470 	struct mbuf *m, *m2;
3471 	int flags, error;
3472 	ssize_t len;
3473 	struct protosw *pr = so->so_proto;
3474 	struct mbuf *nextrecord;
3475 
3476 	if (psa != NULL)
3477 		*psa = NULL;
3478 	if (controlp != NULL)
3479 		*controlp = NULL;
3480 	if (flagsp != NULL)
3481 		flags = *flagsp &~ MSG_EOR;
3482 	else
3483 		flags = 0;
3484 
3485 	/*
3486 	 * For any complicated cases, fall back to the full
3487 	 * soreceive_generic().
3488 	 */
3489 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3490 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3491 		    flagsp));
3492 
3493 	/*
3494 	 * Enforce restrictions on use.
3495 	 */
3496 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3497 	    ("soreceive_dgram: wantrcvd"));
3498 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3499 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3500 	    ("soreceive_dgram: SBS_RCVATMARK"));
3501 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3502 	    ("soreceive_dgram: P_CONNREQUIRED"));
3503 
3504 	/*
3505 	 * Loop blocking while waiting for a datagram.
3506 	 */
3507 	SOCKBUF_LOCK(&so->so_rcv);
3508 	while ((m = so->so_rcv.sb_mb) == NULL) {
3509 		KASSERT(sbavail(&so->so_rcv) == 0,
3510 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
3511 		    sbavail(&so->so_rcv)));
3512 		if (so->so_error) {
3513 			error = so->so_error;
3514 			so->so_error = 0;
3515 			SOCKBUF_UNLOCK(&so->so_rcv);
3516 			return (error);
3517 		}
3518 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3519 		    uio->uio_resid == 0) {
3520 			SOCKBUF_UNLOCK(&so->so_rcv);
3521 			return (0);
3522 		}
3523 		if ((so->so_state & SS_NBIO) ||
3524 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3525 			SOCKBUF_UNLOCK(&so->so_rcv);
3526 			return (EWOULDBLOCK);
3527 		}
3528 		SBLASTRECORDCHK(&so->so_rcv);
3529 		SBLASTMBUFCHK(&so->so_rcv);
3530 		error = sbwait(so, SO_RCV);
3531 		if (error) {
3532 			SOCKBUF_UNLOCK(&so->so_rcv);
3533 			return (error);
3534 		}
3535 	}
3536 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3537 
3538 	if (uio->uio_td)
3539 		uio->uio_td->td_ru.ru_msgrcv++;
3540 	SBLASTRECORDCHK(&so->so_rcv);
3541 	SBLASTMBUFCHK(&so->so_rcv);
3542 	nextrecord = m->m_nextpkt;
3543 	if (nextrecord == NULL) {
3544 		KASSERT(so->so_rcv.sb_lastrecord == m,
3545 		    ("soreceive_dgram: lastrecord != m"));
3546 	}
3547 
3548 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3549 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
3550 
3551 	/*
3552 	 * Pull 'm' and its chain off the front of the packet queue.
3553 	 */
3554 	so->so_rcv.sb_mb = NULL;
3555 	sockbuf_pushsync(&so->so_rcv, nextrecord);
3556 
3557 	/*
3558 	 * Walk 'm's chain and free that many bytes from the socket buffer.
3559 	 */
3560 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
3561 		sbfree(&so->so_rcv, m2);
3562 
3563 	/*
3564 	 * Do a few last checks before we let go of the lock.
3565 	 */
3566 	SBLASTRECORDCHK(&so->so_rcv);
3567 	SBLASTMBUFCHK(&so->so_rcv);
3568 	SOCKBUF_UNLOCK(&so->so_rcv);
3569 
3570 	if (pr->pr_flags & PR_ADDR) {
3571 		KASSERT(m->m_type == MT_SONAME,
3572 		    ("m->m_type == %d", m->m_type));
3573 		if (psa != NULL)
3574 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
3575 			    M_WAITOK);
3576 		m = m_free(m);
3577 	}
3578 	KASSERT(m, ("%s: no data or control after soname", __func__));
3579 
3580 	/*
3581 	 * Packet to copyout() is now in 'm' and it is disconnected from the
3582 	 * queue.
3583 	 *
3584 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
3585 	 * in the first mbuf chain on the socket buffer.  We call into the
3586 	 * protocol to perform externalization (or freeing if controlp ==
3587 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
3588 	 * MT_DATA mbufs.
3589 	 */
3590 	if (m->m_type == MT_CONTROL) {
3591 		struct mbuf *cm = NULL, *cmn;
3592 		struct mbuf **cme = &cm;
3593 
3594 		do {
3595 			m2 = m->m_next;
3596 			m->m_next = NULL;
3597 			*cme = m;
3598 			cme = &(*cme)->m_next;
3599 			m = m2;
3600 		} while (m != NULL && m->m_type == MT_CONTROL);
3601 		while (cm != NULL) {
3602 			cmn = cm->m_next;
3603 			cm->m_next = NULL;
3604 			if (pr->pr_domain->dom_externalize != NULL) {
3605 				error = (*pr->pr_domain->dom_externalize)
3606 				    (cm, controlp, flags);
3607 			} else if (controlp != NULL)
3608 				*controlp = cm;
3609 			else
3610 				m_freem(cm);
3611 			if (controlp != NULL) {
3612 				while (*controlp != NULL)
3613 					controlp = &(*controlp)->m_next;
3614 			}
3615 			cm = cmn;
3616 		}
3617 	}
3618 	KASSERT(m == NULL || m->m_type == MT_DATA,
3619 	    ("soreceive_dgram: !data"));
3620 	while (m != NULL && uio->uio_resid > 0) {
3621 		len = uio->uio_resid;
3622 		if (len > m->m_len)
3623 			len = m->m_len;
3624 		error = uiomove(mtod(m, char *), (int)len, uio);
3625 		if (error) {
3626 			m_freem(m);
3627 			return (error);
3628 		}
3629 		if (len == m->m_len)
3630 			m = m_free(m);
3631 		else {
3632 			m->m_data += len;
3633 			m->m_len -= len;
3634 		}
3635 	}
3636 	if (m != NULL) {
3637 		flags |= MSG_TRUNC;
3638 		m_freem(m);
3639 	}
3640 	if (flagsp != NULL)
3641 		*flagsp |= flags;
3642 	return (0);
3643 }
3644 
3645 int
3646 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3647     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3648 {
3649 	int error;
3650 
3651 	CURVNET_SET(so->so_vnet);
3652 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3653 	CURVNET_RESTORE();
3654 	return (error);
3655 }
3656 
3657 int
3658 soshutdown(struct socket *so, enum shutdown_how how)
3659 {
3660 	int error;
3661 
3662 	CURVNET_SET(so->so_vnet);
3663 	error = so->so_proto->pr_shutdown(so, how);
3664 	CURVNET_RESTORE();
3665 
3666 	return (error);
3667 }
3668 
3669 /*
3670  * Used by several pr_shutdown implementations that use generic socket buffers.
3671  */
3672 void
3673 sorflush(struct socket *so)
3674 {
3675 	int error;
3676 
3677 	VNET_SO_ASSERT(so);
3678 
3679 	/*
3680 	 * Dislodge threads currently blocked in receive and wait to acquire
3681 	 * a lock against other simultaneous readers before clearing the
3682 	 * socket buffer.  Don't let our acquire be interrupted by a signal
3683 	 * despite any existing socket disposition on interruptable waiting.
3684 	 *
3685 	 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3686 	 * methods that read the top of the socket buffer without acquisition
3687 	 * of the socket buffer mutex, assuming that top of the buffer
3688 	 * exclusively belongs to the read(2) syscall.  This is handy when
3689 	 * performing MSG_PEEK.
3690 	 */
3691 	socantrcvmore(so);
3692 
3693 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3694 	if (error != 0) {
3695 		KASSERT(SOLISTENING(so),
3696 		    ("%s: soiolock(%p) failed", __func__, so));
3697 		return;
3698 	}
3699 
3700 	sbrelease(so, SO_RCV);
3701 	SOCK_IO_RECV_UNLOCK(so);
3702 
3703 }
3704 
3705 int
3706 sosetfib(struct socket *so, int fibnum)
3707 {
3708 	if (fibnum < 0 || fibnum >= rt_numfibs)
3709 		return (EINVAL);
3710 
3711 	SOCK_LOCK(so);
3712 	so->so_fibnum = fibnum;
3713 	SOCK_UNLOCK(so);
3714 
3715 	return (0);
3716 }
3717 
3718 #ifdef SOCKET_HHOOK
3719 /*
3720  * Wrapper for Socket established helper hook.
3721  * Parameters: socket, context of the hook point, hook id.
3722  */
3723 static inline int
3724 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3725 {
3726 	struct socket_hhook_data hhook_data = {
3727 		.so = so,
3728 		.hctx = hctx,
3729 		.m = NULL,
3730 		.status = 0
3731 	};
3732 
3733 	CURVNET_SET(so->so_vnet);
3734 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3735 	CURVNET_RESTORE();
3736 
3737 	/* Ugly but needed, since hhooks return void for now */
3738 	return (hhook_data.status);
3739 }
3740 #endif
3741 
3742 /*
3743  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3744  * additional variant to handle the case where the option value needs to be
3745  * some kind of integer, but not a specific size.  In addition to their use
3746  * here, these functions are also called by the protocol-level pr_ctloutput()
3747  * routines.
3748  */
3749 int
3750 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3751 {
3752 	size_t	valsize;
3753 
3754 	/*
3755 	 * If the user gives us more than we wanted, we ignore it, but if we
3756 	 * don't get the minimum length the caller wants, we return EINVAL.
3757 	 * On success, sopt->sopt_valsize is set to however much we actually
3758 	 * retrieved.
3759 	 */
3760 	if ((valsize = sopt->sopt_valsize) < minlen)
3761 		return EINVAL;
3762 	if (valsize > len)
3763 		sopt->sopt_valsize = valsize = len;
3764 
3765 	if (sopt->sopt_td != NULL)
3766 		return (copyin(sopt->sopt_val, buf, valsize));
3767 
3768 	bcopy(sopt->sopt_val, buf, valsize);
3769 	return (0);
3770 }
3771 
3772 /*
3773  * Kernel version of setsockopt(2).
3774  *
3775  * XXX: optlen is size_t, not socklen_t
3776  */
3777 int
3778 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3779     size_t optlen)
3780 {
3781 	struct sockopt sopt;
3782 
3783 	sopt.sopt_level = level;
3784 	sopt.sopt_name = optname;
3785 	sopt.sopt_dir = SOPT_SET;
3786 	sopt.sopt_val = optval;
3787 	sopt.sopt_valsize = optlen;
3788 	sopt.sopt_td = NULL;
3789 	return (sosetopt(so, &sopt));
3790 }
3791 
3792 int
3793 sosetopt(struct socket *so, struct sockopt *sopt)
3794 {
3795 	int	error, optval;
3796 	struct	linger l;
3797 	struct	timeval tv;
3798 	sbintime_t val, *valp;
3799 	uint32_t val32;
3800 #ifdef MAC
3801 	struct mac extmac;
3802 #endif
3803 
3804 	CURVNET_SET(so->so_vnet);
3805 	error = 0;
3806 	if (sopt->sopt_level != SOL_SOCKET) {
3807 		if (so->so_proto->pr_ctloutput != NULL)
3808 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3809 		else
3810 			error = ENOPROTOOPT;
3811 	} else {
3812 		switch (sopt->sopt_name) {
3813 		case SO_ACCEPTFILTER:
3814 			error = accept_filt_setopt(so, sopt);
3815 			if (error)
3816 				goto bad;
3817 			break;
3818 
3819 		case SO_LINGER:
3820 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3821 			if (error)
3822 				goto bad;
3823 			if (l.l_linger < 0 ||
3824 			    l.l_linger > USHRT_MAX ||
3825 			    l.l_linger > (INT_MAX / hz)) {
3826 				error = EDOM;
3827 				goto bad;
3828 			}
3829 			SOCK_LOCK(so);
3830 			so->so_linger = l.l_linger;
3831 			if (l.l_onoff)
3832 				so->so_options |= SO_LINGER;
3833 			else
3834 				so->so_options &= ~SO_LINGER;
3835 			SOCK_UNLOCK(so);
3836 			break;
3837 
3838 		case SO_DEBUG:
3839 		case SO_KEEPALIVE:
3840 		case SO_DONTROUTE:
3841 		case SO_USELOOPBACK:
3842 		case SO_BROADCAST:
3843 		case SO_REUSEADDR:
3844 		case SO_REUSEPORT:
3845 		case SO_REUSEPORT_LB:
3846 		case SO_OOBINLINE:
3847 		case SO_TIMESTAMP:
3848 		case SO_BINTIME:
3849 		case SO_NOSIGPIPE:
3850 		case SO_NO_DDP:
3851 		case SO_NO_OFFLOAD:
3852 		case SO_RERROR:
3853 			error = sooptcopyin(sopt, &optval, sizeof optval,
3854 			    sizeof optval);
3855 			if (error)
3856 				goto bad;
3857 			SOCK_LOCK(so);
3858 			if (optval)
3859 				so->so_options |= sopt->sopt_name;
3860 			else
3861 				so->so_options &= ~sopt->sopt_name;
3862 			SOCK_UNLOCK(so);
3863 			break;
3864 
3865 		case SO_SETFIB:
3866 			error = so->so_proto->pr_ctloutput(so, sopt);
3867 			break;
3868 
3869 		case SO_USER_COOKIE:
3870 			error = sooptcopyin(sopt, &val32, sizeof val32,
3871 			    sizeof val32);
3872 			if (error)
3873 				goto bad;
3874 			so->so_user_cookie = val32;
3875 			break;
3876 
3877 		case SO_SNDBUF:
3878 		case SO_RCVBUF:
3879 		case SO_SNDLOWAT:
3880 		case SO_RCVLOWAT:
3881 			error = so->so_proto->pr_setsbopt(so, sopt);
3882 			if (error)
3883 				goto bad;
3884 			break;
3885 
3886 		case SO_SNDTIMEO:
3887 		case SO_RCVTIMEO:
3888 #ifdef COMPAT_FREEBSD32
3889 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3890 				struct timeval32 tv32;
3891 
3892 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3893 				    sizeof tv32);
3894 				CP(tv32, tv, tv_sec);
3895 				CP(tv32, tv, tv_usec);
3896 			} else
3897 #endif
3898 				error = sooptcopyin(sopt, &tv, sizeof tv,
3899 				    sizeof tv);
3900 			if (error)
3901 				goto bad;
3902 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3903 			    tv.tv_usec >= 1000000) {
3904 				error = EDOM;
3905 				goto bad;
3906 			}
3907 			if (tv.tv_sec > INT32_MAX)
3908 				val = SBT_MAX;
3909 			else
3910 				val = tvtosbt(tv);
3911 			SOCK_LOCK(so);
3912 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3913 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3914 			    &so->so_snd.sb_timeo) :
3915 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3916 			    &so->so_rcv.sb_timeo);
3917 			*valp = val;
3918 			SOCK_UNLOCK(so);
3919 			break;
3920 
3921 		case SO_LABEL:
3922 #ifdef MAC
3923 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3924 			    sizeof extmac);
3925 			if (error)
3926 				goto bad;
3927 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3928 			    so, &extmac);
3929 #else
3930 			error = EOPNOTSUPP;
3931 #endif
3932 			break;
3933 
3934 		case SO_TS_CLOCK:
3935 			error = sooptcopyin(sopt, &optval, sizeof optval,
3936 			    sizeof optval);
3937 			if (error)
3938 				goto bad;
3939 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3940 				error = EINVAL;
3941 				goto bad;
3942 			}
3943 			so->so_ts_clock = optval;
3944 			break;
3945 
3946 		case SO_MAX_PACING_RATE:
3947 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3948 			    sizeof(val32));
3949 			if (error)
3950 				goto bad;
3951 			so->so_max_pacing_rate = val32;
3952 			break;
3953 
3954 		case SO_SPLICE: {
3955 			struct splice splice;
3956 
3957 #ifdef COMPAT_FREEBSD32
3958 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3959 				struct splice32 splice32;
3960 
3961 				error = sooptcopyin(sopt, &splice32,
3962 				    sizeof(splice32), sizeof(splice32));
3963 				if (error == 0) {
3964 					splice.sp_fd = splice32.sp_fd;
3965 					splice.sp_max = splice32.sp_max;
3966 					CP(splice32.sp_idle, splice.sp_idle,
3967 					    tv_sec);
3968 					CP(splice32.sp_idle, splice.sp_idle,
3969 					    tv_usec);
3970 				}
3971 			} else
3972 #endif
3973 			{
3974 				error = sooptcopyin(sopt, &splice,
3975 				    sizeof(splice), sizeof(splice));
3976 			}
3977 			if (error)
3978 				goto bad;
3979 #ifdef KTRACE
3980 			if (KTRPOINT(curthread, KTR_STRUCT))
3981 				ktrsplice(&splice);
3982 #endif
3983 
3984 			error = splice_init();
3985 			if (error != 0)
3986 				goto bad;
3987 
3988 			if (splice.sp_fd >= 0) {
3989 				struct file *fp;
3990 				struct socket *so2;
3991 
3992 				if (!cap_rights_contains(sopt->sopt_rights,
3993 				    &cap_recv_rights)) {
3994 					error = ENOTCAPABLE;
3995 					goto bad;
3996 				}
3997 				error = getsock(sopt->sopt_td, splice.sp_fd,
3998 				    &cap_send_rights, &fp);
3999 				if (error != 0)
4000 					goto bad;
4001 				so2 = fp->f_data;
4002 
4003 				error = so_splice(so, so2, &splice);
4004 				fdrop(fp, sopt->sopt_td);
4005 			} else {
4006 				error = so_unsplice(so, false);
4007 			}
4008 			break;
4009 		}
4010 		default:
4011 #ifdef SOCKET_HHOOK
4012 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4013 				error = hhook_run_socket(so, sopt,
4014 				    HHOOK_SOCKET_OPT);
4015 			else
4016 #endif
4017 				error = ENOPROTOOPT;
4018 			break;
4019 		}
4020 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
4021 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
4022 	}
4023 bad:
4024 	CURVNET_RESTORE();
4025 	return (error);
4026 }
4027 
4028 /*
4029  * Helper routine for getsockopt.
4030  */
4031 int
4032 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4033 {
4034 	int	error;
4035 	size_t	valsize;
4036 
4037 	error = 0;
4038 
4039 	/*
4040 	 * Documented get behavior is that we always return a value, possibly
4041 	 * truncated to fit in the user's buffer.  Traditional behavior is
4042 	 * that we always tell the user precisely how much we copied, rather
4043 	 * than something useful like the total amount we had available for
4044 	 * her.  Note that this interface is not idempotent; the entire
4045 	 * answer must be generated ahead of time.
4046 	 */
4047 	valsize = min(len, sopt->sopt_valsize);
4048 	sopt->sopt_valsize = valsize;
4049 	if (sopt->sopt_val != NULL) {
4050 		if (sopt->sopt_td != NULL)
4051 			error = copyout(buf, sopt->sopt_val, valsize);
4052 		else
4053 			bcopy(buf, sopt->sopt_val, valsize);
4054 	}
4055 	return (error);
4056 }
4057 
4058 int
4059 sogetopt(struct socket *so, struct sockopt *sopt)
4060 {
4061 	int	error, optval;
4062 	struct	linger l;
4063 	struct	timeval tv;
4064 #ifdef MAC
4065 	struct mac extmac;
4066 #endif
4067 
4068 	CURVNET_SET(so->so_vnet);
4069 	error = 0;
4070 	if (sopt->sopt_level != SOL_SOCKET) {
4071 		if (so->so_proto->pr_ctloutput != NULL)
4072 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
4073 		else
4074 			error = ENOPROTOOPT;
4075 		CURVNET_RESTORE();
4076 		return (error);
4077 	} else {
4078 		switch (sopt->sopt_name) {
4079 		case SO_ACCEPTFILTER:
4080 			error = accept_filt_getopt(so, sopt);
4081 			break;
4082 
4083 		case SO_LINGER:
4084 			SOCK_LOCK(so);
4085 			l.l_onoff = so->so_options & SO_LINGER;
4086 			l.l_linger = so->so_linger;
4087 			SOCK_UNLOCK(so);
4088 			error = sooptcopyout(sopt, &l, sizeof l);
4089 			break;
4090 
4091 		case SO_USELOOPBACK:
4092 		case SO_DONTROUTE:
4093 		case SO_DEBUG:
4094 		case SO_KEEPALIVE:
4095 		case SO_REUSEADDR:
4096 		case SO_REUSEPORT:
4097 		case SO_REUSEPORT_LB:
4098 		case SO_BROADCAST:
4099 		case SO_OOBINLINE:
4100 		case SO_ACCEPTCONN:
4101 		case SO_TIMESTAMP:
4102 		case SO_BINTIME:
4103 		case SO_NOSIGPIPE:
4104 		case SO_NO_DDP:
4105 		case SO_NO_OFFLOAD:
4106 		case SO_RERROR:
4107 			optval = so->so_options & sopt->sopt_name;
4108 integer:
4109 			error = sooptcopyout(sopt, &optval, sizeof optval);
4110 			break;
4111 
4112 		case SO_FIB:
4113 			SOCK_LOCK(so);
4114 			optval = so->so_fibnum;
4115 			SOCK_UNLOCK(so);
4116 			goto integer;
4117 
4118 		case SO_DOMAIN:
4119 			optval = so->so_proto->pr_domain->dom_family;
4120 			goto integer;
4121 
4122 		case SO_TYPE:
4123 			optval = so->so_type;
4124 			goto integer;
4125 
4126 		case SO_PROTOCOL:
4127 			optval = so->so_proto->pr_protocol;
4128 			goto integer;
4129 
4130 		case SO_ERROR:
4131 			SOCK_LOCK(so);
4132 			if (so->so_error) {
4133 				optval = so->so_error;
4134 				so->so_error = 0;
4135 			} else {
4136 				optval = so->so_rerror;
4137 				so->so_rerror = 0;
4138 			}
4139 			SOCK_UNLOCK(so);
4140 			goto integer;
4141 
4142 		case SO_SNDBUF:
4143 			SOCK_LOCK(so);
4144 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4145 			    so->so_snd.sb_hiwat;
4146 			SOCK_UNLOCK(so);
4147 			goto integer;
4148 
4149 		case SO_RCVBUF:
4150 			SOCK_LOCK(so);
4151 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4152 			    so->so_rcv.sb_hiwat;
4153 			SOCK_UNLOCK(so);
4154 			goto integer;
4155 
4156 		case SO_SNDLOWAT:
4157 			SOCK_LOCK(so);
4158 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4159 			    so->so_snd.sb_lowat;
4160 			SOCK_UNLOCK(so);
4161 			goto integer;
4162 
4163 		case SO_RCVLOWAT:
4164 			SOCK_LOCK(so);
4165 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4166 			    so->so_rcv.sb_lowat;
4167 			SOCK_UNLOCK(so);
4168 			goto integer;
4169 
4170 		case SO_SNDTIMEO:
4171 		case SO_RCVTIMEO:
4172 			SOCK_LOCK(so);
4173 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4174 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4175 			    so->so_snd.sb_timeo) :
4176 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4177 			    so->so_rcv.sb_timeo));
4178 			SOCK_UNLOCK(so);
4179 #ifdef COMPAT_FREEBSD32
4180 			if (SV_CURPROC_FLAG(SV_ILP32)) {
4181 				struct timeval32 tv32;
4182 
4183 				CP(tv, tv32, tv_sec);
4184 				CP(tv, tv32, tv_usec);
4185 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
4186 			} else
4187 #endif
4188 				error = sooptcopyout(sopt, &tv, sizeof tv);
4189 			break;
4190 
4191 		case SO_LABEL:
4192 #ifdef MAC
4193 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4194 			    sizeof(extmac));
4195 			if (error)
4196 				goto bad;
4197 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4198 			    so, &extmac);
4199 			if (error)
4200 				goto bad;
4201 			/* Don't copy out extmac, it is unchanged. */
4202 #else
4203 			error = EOPNOTSUPP;
4204 #endif
4205 			break;
4206 
4207 		case SO_PEERLABEL:
4208 #ifdef MAC
4209 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4210 			    sizeof(extmac));
4211 			if (error)
4212 				goto bad;
4213 			error = mac_getsockopt_peerlabel(
4214 			    sopt->sopt_td->td_ucred, so, &extmac);
4215 			if (error)
4216 				goto bad;
4217 			/* Don't copy out extmac, it is unchanged. */
4218 #else
4219 			error = EOPNOTSUPP;
4220 #endif
4221 			break;
4222 
4223 		case SO_LISTENQLIMIT:
4224 			SOCK_LOCK(so);
4225 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4226 			SOCK_UNLOCK(so);
4227 			goto integer;
4228 
4229 		case SO_LISTENQLEN:
4230 			SOCK_LOCK(so);
4231 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
4232 			SOCK_UNLOCK(so);
4233 			goto integer;
4234 
4235 		case SO_LISTENINCQLEN:
4236 			SOCK_LOCK(so);
4237 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4238 			SOCK_UNLOCK(so);
4239 			goto integer;
4240 
4241 		case SO_TS_CLOCK:
4242 			optval = so->so_ts_clock;
4243 			goto integer;
4244 
4245 		case SO_MAX_PACING_RATE:
4246 			optval = so->so_max_pacing_rate;
4247 			goto integer;
4248 
4249 		case SO_SPLICE: {
4250 			off_t n;
4251 
4252 			/*
4253 			 * Acquire the I/O lock to serialize with
4254 			 * so_splice_xfer().  This is not required for
4255 			 * correctness, but makes testing simpler: once a byte
4256 			 * has been transmitted to the sink and observed (e.g.,
4257 			 * by reading from the socket to which the sink is
4258 			 * connected), a subsequent getsockopt(SO_SPLICE) will
4259 			 * return an up-to-date value.
4260 			 */
4261 			error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4262 			if (error != 0)
4263 				goto bad;
4264 			SOCK_LOCK(so);
4265 			if (SOLISTENING(so)) {
4266 				n = 0;
4267 			} else {
4268 				n = so->so_splice_sent;
4269 			}
4270 			SOCK_UNLOCK(so);
4271 			SOCK_IO_RECV_UNLOCK(so);
4272 			error = sooptcopyout(sopt, &n, sizeof(n));
4273 			break;
4274 		}
4275 
4276 		default:
4277 #ifdef SOCKET_HHOOK
4278 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4279 				error = hhook_run_socket(so, sopt,
4280 				    HHOOK_SOCKET_OPT);
4281 			else
4282 #endif
4283 				error = ENOPROTOOPT;
4284 			break;
4285 		}
4286 	}
4287 bad:
4288 	CURVNET_RESTORE();
4289 	return (error);
4290 }
4291 
4292 int
4293 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4294 {
4295 	struct mbuf *m, *m_prev;
4296 	int sopt_size = sopt->sopt_valsize;
4297 
4298 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4299 	if (m == NULL)
4300 		return ENOBUFS;
4301 	if (sopt_size > MLEN) {
4302 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4303 		if ((m->m_flags & M_EXT) == 0) {
4304 			m_free(m);
4305 			return ENOBUFS;
4306 		}
4307 		m->m_len = min(MCLBYTES, sopt_size);
4308 	} else {
4309 		m->m_len = min(MLEN, sopt_size);
4310 	}
4311 	sopt_size -= m->m_len;
4312 	*mp = m;
4313 	m_prev = m;
4314 
4315 	while (sopt_size) {
4316 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4317 		if (m == NULL) {
4318 			m_freem(*mp);
4319 			return ENOBUFS;
4320 		}
4321 		if (sopt_size > MLEN) {
4322 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4323 			    M_NOWAIT);
4324 			if ((m->m_flags & M_EXT) == 0) {
4325 				m_freem(m);
4326 				m_freem(*mp);
4327 				return ENOBUFS;
4328 			}
4329 			m->m_len = min(MCLBYTES, sopt_size);
4330 		} else {
4331 			m->m_len = min(MLEN, sopt_size);
4332 		}
4333 		sopt_size -= m->m_len;
4334 		m_prev->m_next = m;
4335 		m_prev = m;
4336 	}
4337 	return (0);
4338 }
4339 
4340 int
4341 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4342 {
4343 	struct mbuf *m0 = m;
4344 
4345 	if (sopt->sopt_val == NULL)
4346 		return (0);
4347 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4348 		if (sopt->sopt_td != NULL) {
4349 			int error;
4350 
4351 			error = copyin(sopt->sopt_val, mtod(m, char *),
4352 			    m->m_len);
4353 			if (error != 0) {
4354 				m_freem(m0);
4355 				return(error);
4356 			}
4357 		} else
4358 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4359 		sopt->sopt_valsize -= m->m_len;
4360 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4361 		m = m->m_next;
4362 	}
4363 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4364 		panic("ip6_sooptmcopyin");
4365 	return (0);
4366 }
4367 
4368 int
4369 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4370 {
4371 	struct mbuf *m0 = m;
4372 	size_t valsize = 0;
4373 
4374 	if (sopt->sopt_val == NULL)
4375 		return (0);
4376 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4377 		if (sopt->sopt_td != NULL) {
4378 			int error;
4379 
4380 			error = copyout(mtod(m, char *), sopt->sopt_val,
4381 			    m->m_len);
4382 			if (error != 0) {
4383 				m_freem(m0);
4384 				return(error);
4385 			}
4386 		} else
4387 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4388 		sopt->sopt_valsize -= m->m_len;
4389 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4390 		valsize += m->m_len;
4391 		m = m->m_next;
4392 	}
4393 	if (m != NULL) {
4394 		/* enough soopt buffer should be given from user-land */
4395 		m_freem(m0);
4396 		return(EINVAL);
4397 	}
4398 	sopt->sopt_valsize = valsize;
4399 	return (0);
4400 }
4401 
4402 /*
4403  * sohasoutofband(): protocol notifies socket layer of the arrival of new
4404  * out-of-band data, which will then notify socket consumers.
4405  */
4406 void
4407 sohasoutofband(struct socket *so)
4408 {
4409 
4410 	if (so->so_sigio != NULL)
4411 		pgsigio(&so->so_sigio, SIGURG, 0);
4412 	selwakeuppri(&so->so_rdsel, PSOCK);
4413 }
4414 
4415 int
4416 sopoll_generic(struct socket *so, int events, struct thread *td)
4417 {
4418 	int revents;
4419 
4420 	SOCK_LOCK(so);
4421 	if (SOLISTENING(so)) {
4422 		if (!(events & (POLLIN | POLLRDNORM)))
4423 			revents = 0;
4424 		else if (!TAILQ_EMPTY(&so->sol_comp))
4425 			revents = events & (POLLIN | POLLRDNORM);
4426 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4427 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4428 		else {
4429 			selrecord(td, &so->so_rdsel);
4430 			revents = 0;
4431 		}
4432 	} else {
4433 		revents = 0;
4434 		SOCK_SENDBUF_LOCK(so);
4435 		SOCK_RECVBUF_LOCK(so);
4436 		if (events & (POLLIN | POLLRDNORM))
4437 			if (soreadabledata(so) && !isspliced(so))
4438 				revents |= events & (POLLIN | POLLRDNORM);
4439 		if (events & (POLLOUT | POLLWRNORM))
4440 			if (sowriteable(so) && !issplicedback(so))
4441 				revents |= events & (POLLOUT | POLLWRNORM);
4442 		if (events & (POLLPRI | POLLRDBAND))
4443 			if (so->so_oobmark ||
4444 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
4445 				revents |= events & (POLLPRI | POLLRDBAND);
4446 		if ((events & POLLINIGNEOF) == 0) {
4447 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4448 				revents |= events & (POLLIN | POLLRDNORM);
4449 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4450 					revents |= POLLHUP;
4451 			}
4452 		}
4453 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4454 			revents |= events & POLLRDHUP;
4455 		if (revents == 0) {
4456 			if (events &
4457 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4458 				selrecord(td, &so->so_rdsel);
4459 				so->so_rcv.sb_flags |= SB_SEL;
4460 			}
4461 			if (events & (POLLOUT | POLLWRNORM)) {
4462 				selrecord(td, &so->so_wrsel);
4463 				so->so_snd.sb_flags |= SB_SEL;
4464 			}
4465 		}
4466 		SOCK_RECVBUF_UNLOCK(so);
4467 		SOCK_SENDBUF_UNLOCK(so);
4468 	}
4469 	SOCK_UNLOCK(so);
4470 	return (revents);
4471 }
4472 
4473 int
4474 soo_kqfilter(struct file *fp, struct knote *kn)
4475 {
4476 	struct socket *so = kn->kn_fp->f_data;
4477 	struct sockbuf *sb;
4478 	sb_which which;
4479 	struct knlist *knl;
4480 
4481 	switch (kn->kn_filter) {
4482 	case EVFILT_READ:
4483 		kn->kn_fop = &soread_filtops;
4484 		knl = &so->so_rdsel.si_note;
4485 		sb = &so->so_rcv;
4486 		which = SO_RCV;
4487 		break;
4488 	case EVFILT_WRITE:
4489 		kn->kn_fop = &sowrite_filtops;
4490 		knl = &so->so_wrsel.si_note;
4491 		sb = &so->so_snd;
4492 		which = SO_SND;
4493 		break;
4494 	case EVFILT_EMPTY:
4495 		kn->kn_fop = &soempty_filtops;
4496 		knl = &so->so_wrsel.si_note;
4497 		sb = &so->so_snd;
4498 		which = SO_SND;
4499 		break;
4500 	default:
4501 		return (EINVAL);
4502 	}
4503 
4504 	SOCK_LOCK(so);
4505 	if (SOLISTENING(so)) {
4506 		knlist_add(knl, kn, 1);
4507 	} else {
4508 		SOCK_BUF_LOCK(so, which);
4509 		knlist_add(knl, kn, 1);
4510 		sb->sb_flags |= SB_KNOTE;
4511 		SOCK_BUF_UNLOCK(so, which);
4512 	}
4513 	SOCK_UNLOCK(so);
4514 	return (0);
4515 }
4516 
4517 static void
4518 filt_sordetach(struct knote *kn)
4519 {
4520 	struct socket *so = kn->kn_fp->f_data;
4521 
4522 	so_rdknl_lock(so);
4523 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
4524 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4525 		so->so_rcv.sb_flags &= ~SB_KNOTE;
4526 	so_rdknl_unlock(so);
4527 }
4528 
4529 /*ARGSUSED*/
4530 static int
4531 filt_soread(struct knote *kn, long hint)
4532 {
4533 	struct socket *so;
4534 
4535 	so = kn->kn_fp->f_data;
4536 
4537 	if (SOLISTENING(so)) {
4538 		SOCK_LOCK_ASSERT(so);
4539 		kn->kn_data = so->sol_qlen;
4540 		if (so->so_error) {
4541 			kn->kn_flags |= EV_EOF;
4542 			kn->kn_fflags = so->so_error;
4543 			return (1);
4544 		}
4545 		return (!TAILQ_EMPTY(&so->sol_comp));
4546 	}
4547 
4548 	if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4549 		return (0);
4550 
4551 	SOCK_RECVBUF_LOCK_ASSERT(so);
4552 
4553 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4554 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4555 		kn->kn_flags |= EV_EOF;
4556 		kn->kn_fflags = so->so_error;
4557 		return (1);
4558 	} else if (so->so_error || so->so_rerror)
4559 		return (1);
4560 
4561 	if (kn->kn_sfflags & NOTE_LOWAT) {
4562 		if (kn->kn_data >= kn->kn_sdata)
4563 			return (1);
4564 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4565 		return (1);
4566 
4567 #ifdef SOCKET_HHOOK
4568 	/* This hook returning non-zero indicates an event, not error */
4569 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4570 #else
4571 	return (0);
4572 #endif
4573 }
4574 
4575 static void
4576 filt_sowdetach(struct knote *kn)
4577 {
4578 	struct socket *so = kn->kn_fp->f_data;
4579 
4580 	so_wrknl_lock(so);
4581 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
4582 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4583 		so->so_snd.sb_flags &= ~SB_KNOTE;
4584 	so_wrknl_unlock(so);
4585 }
4586 
4587 /*ARGSUSED*/
4588 static int
4589 filt_sowrite(struct knote *kn, long hint)
4590 {
4591 	struct socket *so;
4592 
4593 	so = kn->kn_fp->f_data;
4594 
4595 	if (SOLISTENING(so))
4596 		return (0);
4597 
4598 	SOCK_SENDBUF_LOCK_ASSERT(so);
4599 	kn->kn_data = sbspace(&so->so_snd);
4600 
4601 #ifdef SOCKET_HHOOK
4602 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4603 #endif
4604 
4605 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4606 		kn->kn_flags |= EV_EOF;
4607 		kn->kn_fflags = so->so_error;
4608 		return (1);
4609 	} else if (so->so_error)	/* temporary udp error */
4610 		return (1);
4611 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4612 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
4613 		return (0);
4614 	else if (kn->kn_sfflags & NOTE_LOWAT)
4615 		return (kn->kn_data >= kn->kn_sdata);
4616 	else
4617 		return (kn->kn_data >= so->so_snd.sb_lowat);
4618 }
4619 
4620 static int
4621 filt_soempty(struct knote *kn, long hint)
4622 {
4623 	struct socket *so;
4624 
4625 	so = kn->kn_fp->f_data;
4626 
4627 	if (SOLISTENING(so))
4628 		return (1);
4629 
4630 	SOCK_SENDBUF_LOCK_ASSERT(so);
4631 	kn->kn_data = sbused(&so->so_snd);
4632 
4633 	if (kn->kn_data == 0)
4634 		return (1);
4635 	else
4636 		return (0);
4637 }
4638 
4639 int
4640 socheckuid(struct socket *so, uid_t uid)
4641 {
4642 
4643 	if (so == NULL)
4644 		return (EPERM);
4645 	if (so->so_cred->cr_uid != uid)
4646 		return (EPERM);
4647 	return (0);
4648 }
4649 
4650 /*
4651  * These functions are used by protocols to notify the socket layer (and its
4652  * consumers) of state changes in the sockets driven by protocol-side events.
4653  */
4654 
4655 /*
4656  * Procedures to manipulate state flags of socket and do appropriate wakeups.
4657  *
4658  * Normal sequence from the active (originating) side is that
4659  * soisconnecting() is called during processing of connect() call, resulting
4660  * in an eventual call to soisconnected() if/when the connection is
4661  * established.  When the connection is torn down soisdisconnecting() is
4662  * called during processing of disconnect() call, and soisdisconnected() is
4663  * called when the connection to the peer is totally severed.  The semantics
4664  * of these routines are such that connectionless protocols can call
4665  * soisconnected() and soisdisconnected() only, bypassing the in-progress
4666  * calls when setting up a ``connection'' takes no time.
4667  *
4668  * From the passive side, a socket is created with two queues of sockets:
4669  * so_incomp for connections in progress and so_comp for connections already
4670  * made and awaiting user acceptance.  As a protocol is preparing incoming
4671  * connections, it creates a socket structure queued on so_incomp by calling
4672  * sonewconn().  When the connection is established, soisconnected() is
4673  * called, and transfers the socket structure to so_comp, making it available
4674  * to accept().
4675  *
4676  * If a socket is closed with sockets on either so_incomp or so_comp, these
4677  * sockets are dropped.
4678  *
4679  * If higher-level protocols are implemented in the kernel, the wakeups done
4680  * here will sometimes cause software-interrupt process scheduling.
4681  */
4682 void
4683 soisconnecting(struct socket *so)
4684 {
4685 
4686 	SOCK_LOCK(so);
4687 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4688 	so->so_state |= SS_ISCONNECTING;
4689 	SOCK_UNLOCK(so);
4690 }
4691 
4692 void
4693 soisconnected(struct socket *so)
4694 {
4695 	bool last __diagused;
4696 
4697 	SOCK_LOCK(so);
4698 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4699 	so->so_state |= SS_ISCONNECTED;
4700 
4701 	if (so->so_qstate == SQ_INCOMP) {
4702 		struct socket *head = so->so_listen;
4703 		int ret;
4704 
4705 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4706 		/*
4707 		 * Promoting a socket from incomplete queue to complete, we
4708 		 * need to go through reverse order of locking.  We first do
4709 		 * trylock, and if that doesn't succeed, we go the hard way
4710 		 * leaving a reference and rechecking consistency after proper
4711 		 * locking.
4712 		 */
4713 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4714 			soref(head);
4715 			SOCK_UNLOCK(so);
4716 			SOLISTEN_LOCK(head);
4717 			SOCK_LOCK(so);
4718 			if (__predict_false(head != so->so_listen)) {
4719 				/*
4720 				 * The socket went off the listen queue,
4721 				 * should be lost race to close(2) of sol.
4722 				 * The socket is about to soabort().
4723 				 */
4724 				SOCK_UNLOCK(so);
4725 				sorele_locked(head);
4726 				return;
4727 			}
4728 			last = refcount_release(&head->so_count);
4729 			KASSERT(!last, ("%s: released last reference for %p",
4730 			    __func__, head));
4731 		}
4732 again:
4733 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4734 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4735 			head->sol_incqlen--;
4736 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4737 			head->sol_qlen++;
4738 			so->so_qstate = SQ_COMP;
4739 			SOCK_UNLOCK(so);
4740 			solisten_wakeup(head);	/* unlocks */
4741 		} else {
4742 			SOCK_RECVBUF_LOCK(so);
4743 			soupcall_set(so, SO_RCV,
4744 			    head->sol_accept_filter->accf_callback,
4745 			    head->sol_accept_filter_arg);
4746 			so->so_options &= ~SO_ACCEPTFILTER;
4747 			ret = head->sol_accept_filter->accf_callback(so,
4748 			    head->sol_accept_filter_arg, M_NOWAIT);
4749 			if (ret == SU_ISCONNECTED) {
4750 				soupcall_clear(so, SO_RCV);
4751 				SOCK_RECVBUF_UNLOCK(so);
4752 				goto again;
4753 			}
4754 			SOCK_RECVBUF_UNLOCK(so);
4755 			SOCK_UNLOCK(so);
4756 			SOLISTEN_UNLOCK(head);
4757 		}
4758 		return;
4759 	}
4760 	SOCK_UNLOCK(so);
4761 	wakeup(&so->so_timeo);
4762 	sorwakeup(so);
4763 	sowwakeup(so);
4764 }
4765 
4766 void
4767 soisdisconnecting(struct socket *so)
4768 {
4769 
4770 	SOCK_LOCK(so);
4771 	so->so_state &= ~SS_ISCONNECTING;
4772 	so->so_state |= SS_ISDISCONNECTING;
4773 
4774 	if (!SOLISTENING(so)) {
4775 		SOCK_RECVBUF_LOCK(so);
4776 		socantrcvmore_locked(so);
4777 		SOCK_SENDBUF_LOCK(so);
4778 		socantsendmore_locked(so);
4779 	}
4780 	SOCK_UNLOCK(so);
4781 	wakeup(&so->so_timeo);
4782 }
4783 
4784 void
4785 soisdisconnected(struct socket *so)
4786 {
4787 
4788 	SOCK_LOCK(so);
4789 
4790 	/*
4791 	 * There is at least one reader of so_state that does not
4792 	 * acquire socket lock, namely soreceive_generic().  Ensure
4793 	 * that it never sees all flags that track connection status
4794 	 * cleared, by ordering the update with a barrier semantic of
4795 	 * our release thread fence.
4796 	 */
4797 	so->so_state |= SS_ISDISCONNECTED;
4798 	atomic_thread_fence_rel();
4799 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4800 
4801 	if (!SOLISTENING(so)) {
4802 		SOCK_UNLOCK(so);
4803 		SOCK_RECVBUF_LOCK(so);
4804 		socantrcvmore_locked(so);
4805 		SOCK_SENDBUF_LOCK(so);
4806 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4807 		socantsendmore_locked(so);
4808 	} else
4809 		SOCK_UNLOCK(so);
4810 	wakeup(&so->so_timeo);
4811 }
4812 
4813 int
4814 soiolock(struct socket *so, struct sx *sx, int flags)
4815 {
4816 	int error;
4817 
4818 	KASSERT((flags & SBL_VALID) == flags,
4819 	    ("soiolock: invalid flags %#x", flags));
4820 
4821 	if ((flags & SBL_WAIT) != 0) {
4822 		if ((flags & SBL_NOINTR) != 0) {
4823 			sx_xlock(sx);
4824 		} else {
4825 			error = sx_xlock_sig(sx);
4826 			if (error != 0)
4827 				return (error);
4828 		}
4829 	} else if (!sx_try_xlock(sx)) {
4830 		return (EWOULDBLOCK);
4831 	}
4832 
4833 	if (__predict_false(SOLISTENING(so))) {
4834 		sx_xunlock(sx);
4835 		return (ENOTCONN);
4836 	}
4837 	return (0);
4838 }
4839 
4840 void
4841 soiounlock(struct sx *sx)
4842 {
4843 	sx_xunlock(sx);
4844 }
4845 
4846 /*
4847  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4848  */
4849 struct sockaddr *
4850 sodupsockaddr(const struct sockaddr *sa, int mflags)
4851 {
4852 	struct sockaddr *sa2;
4853 
4854 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4855 	if (sa2)
4856 		bcopy(sa, sa2, sa->sa_len);
4857 	return sa2;
4858 }
4859 
4860 /*
4861  * Register per-socket destructor.
4862  */
4863 void
4864 sodtor_set(struct socket *so, so_dtor_t *func)
4865 {
4866 
4867 	SOCK_LOCK_ASSERT(so);
4868 	so->so_dtor = func;
4869 }
4870 
4871 /*
4872  * Register per-socket buffer upcalls.
4873  */
4874 void
4875 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4876 {
4877 	struct sockbuf *sb;
4878 
4879 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4880 
4881 	switch (which) {
4882 	case SO_RCV:
4883 		sb = &so->so_rcv;
4884 		break;
4885 	case SO_SND:
4886 		sb = &so->so_snd;
4887 		break;
4888 	}
4889 	SOCK_BUF_LOCK_ASSERT(so, which);
4890 	sb->sb_upcall = func;
4891 	sb->sb_upcallarg = arg;
4892 	sb->sb_flags |= SB_UPCALL;
4893 }
4894 
4895 void
4896 soupcall_clear(struct socket *so, sb_which which)
4897 {
4898 	struct sockbuf *sb;
4899 
4900 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4901 
4902 	switch (which) {
4903 	case SO_RCV:
4904 		sb = &so->so_rcv;
4905 		break;
4906 	case SO_SND:
4907 		sb = &so->so_snd;
4908 		break;
4909 	}
4910 	SOCK_BUF_LOCK_ASSERT(so, which);
4911 	KASSERT(sb->sb_upcall != NULL,
4912 	    ("%s: so %p no upcall to clear", __func__, so));
4913 	sb->sb_upcall = NULL;
4914 	sb->sb_upcallarg = NULL;
4915 	sb->sb_flags &= ~SB_UPCALL;
4916 }
4917 
4918 void
4919 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4920 {
4921 
4922 	SOLISTEN_LOCK_ASSERT(so);
4923 	so->sol_upcall = func;
4924 	so->sol_upcallarg = arg;
4925 }
4926 
4927 static void
4928 so_rdknl_lock(void *arg)
4929 {
4930 	struct socket *so = arg;
4931 
4932 retry:
4933 	if (SOLISTENING(so)) {
4934 		SOLISTEN_LOCK(so);
4935 	} else {
4936 		SOCK_RECVBUF_LOCK(so);
4937 		if (__predict_false(SOLISTENING(so))) {
4938 			SOCK_RECVBUF_UNLOCK(so);
4939 			goto retry;
4940 		}
4941 	}
4942 }
4943 
4944 static void
4945 so_rdknl_unlock(void *arg)
4946 {
4947 	struct socket *so = arg;
4948 
4949 	if (SOLISTENING(so))
4950 		SOLISTEN_UNLOCK(so);
4951 	else
4952 		SOCK_RECVBUF_UNLOCK(so);
4953 }
4954 
4955 static void
4956 so_rdknl_assert_lock(void *arg, int what)
4957 {
4958 	struct socket *so = arg;
4959 
4960 	if (what == LA_LOCKED) {
4961 		if (SOLISTENING(so))
4962 			SOLISTEN_LOCK_ASSERT(so);
4963 		else
4964 			SOCK_RECVBUF_LOCK_ASSERT(so);
4965 	} else {
4966 		if (SOLISTENING(so))
4967 			SOLISTEN_UNLOCK_ASSERT(so);
4968 		else
4969 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4970 	}
4971 }
4972 
4973 static void
4974 so_wrknl_lock(void *arg)
4975 {
4976 	struct socket *so = arg;
4977 
4978 retry:
4979 	if (SOLISTENING(so)) {
4980 		SOLISTEN_LOCK(so);
4981 	} else {
4982 		SOCK_SENDBUF_LOCK(so);
4983 		if (__predict_false(SOLISTENING(so))) {
4984 			SOCK_SENDBUF_UNLOCK(so);
4985 			goto retry;
4986 		}
4987 	}
4988 }
4989 
4990 static void
4991 so_wrknl_unlock(void *arg)
4992 {
4993 	struct socket *so = arg;
4994 
4995 	if (SOLISTENING(so))
4996 		SOLISTEN_UNLOCK(so);
4997 	else
4998 		SOCK_SENDBUF_UNLOCK(so);
4999 }
5000 
5001 static void
5002 so_wrknl_assert_lock(void *arg, int what)
5003 {
5004 	struct socket *so = arg;
5005 
5006 	if (what == LA_LOCKED) {
5007 		if (SOLISTENING(so))
5008 			SOLISTEN_LOCK_ASSERT(so);
5009 		else
5010 			SOCK_SENDBUF_LOCK_ASSERT(so);
5011 	} else {
5012 		if (SOLISTENING(so))
5013 			SOLISTEN_UNLOCK_ASSERT(so);
5014 		else
5015 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
5016 	}
5017 }
5018 
5019 /*
5020  * Create an external-format (``xsocket'') structure using the information in
5021  * the kernel-format socket structure pointed to by so.  This is done to
5022  * reduce the spew of irrelevant information over this interface, to isolate
5023  * user code from changes in the kernel structure, and potentially to provide
5024  * information-hiding if we decide that some of this information should be
5025  * hidden from users.
5026  */
5027 void
5028 sotoxsocket(struct socket *so, struct xsocket *xso)
5029 {
5030 
5031 	bzero(xso, sizeof(*xso));
5032 	xso->xso_len = sizeof *xso;
5033 	xso->xso_so = (uintptr_t)so;
5034 	xso->so_type = so->so_type;
5035 	xso->so_options = so->so_options;
5036 	xso->so_linger = so->so_linger;
5037 	xso->so_state = so->so_state;
5038 	xso->so_pcb = (uintptr_t)so->so_pcb;
5039 	xso->xso_protocol = so->so_proto->pr_protocol;
5040 	xso->xso_family = so->so_proto->pr_domain->dom_family;
5041 	xso->so_timeo = so->so_timeo;
5042 	xso->so_error = so->so_error;
5043 	xso->so_uid = so->so_cred->cr_uid;
5044 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5045 	SOCK_LOCK(so);
5046 	xso->so_fibnum = so->so_fibnum;
5047 	if (SOLISTENING(so)) {
5048 		xso->so_qlen = so->sol_qlen;
5049 		xso->so_incqlen = so->sol_incqlen;
5050 		xso->so_qlimit = so->sol_qlimit;
5051 		xso->so_oobmark = 0;
5052 	} else {
5053 		xso->so_state |= so->so_qstate;
5054 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5055 		xso->so_oobmark = so->so_oobmark;
5056 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5057 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5058 		if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5059 			xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5060 	}
5061 	SOCK_UNLOCK(so);
5062 }
5063 
5064 int
5065 so_options_get(const struct socket *so)
5066 {
5067 
5068 	return (so->so_options);
5069 }
5070 
5071 void
5072 so_options_set(struct socket *so, int val)
5073 {
5074 
5075 	so->so_options = val;
5076 }
5077 
5078 int
5079 so_error_get(const struct socket *so)
5080 {
5081 
5082 	return (so->so_error);
5083 }
5084 
5085 void
5086 so_error_set(struct socket *so, int val)
5087 {
5088 
5089 	so->so_error = val;
5090 }
5091