1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46
47 /*
48 * Virtual device management.
49 */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52 &vdev_root_ops,
53 &vdev_raidz_ops,
54 &vdev_mirror_ops,
55 &vdev_replacing_ops,
56 &vdev_spare_ops,
57 &vdev_disk_ops,
58 &vdev_file_ops,
59 &vdev_missing_ops,
60 &vdev_hole_ops,
61 NULL
62 };
63
64 /* maximum scrub/resilver I/O queue per leaf vdev */
65 int zfs_scrub_limit = 10;
66
67 /*
68 * When a vdev is added, it will be divided into approximately (but no
69 * more than) this number of metaslabs.
70 */
71 int metaslabs_per_vdev = 200;
72
73 /*
74 * Given a vdev type, return the appropriate ops vector.
75 */
76 static vdev_ops_t *
vdev_getops(const char * type)77 vdev_getops(const char *type)
78 {
79 vdev_ops_t *ops, **opspp;
80
81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82 if (strcmp(ops->vdev_op_type, type) == 0)
83 break;
84
85 return (ops);
86 }
87
88 /*
89 * Default asize function: return the MAX of psize with the asize of
90 * all children. This is what's used by anything other than RAID-Z.
91 */
92 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize)93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96 uint64_t csize;
97
98 for (int c = 0; c < vd->vdev_children; c++) {
99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100 asize = MAX(asize, csize);
101 }
102
103 return (asize);
104 }
105
106 /*
107 * Get the minimum allocatable size. We define the allocatable size as
108 * the vdev's asize rounded to the nearest metaslab. This allows us to
109 * replace or attach devices which don't have the same physical size but
110 * can still satisfy the same number of allocations.
111 */
112 uint64_t
vdev_get_min_asize(vdev_t * vd)113 vdev_get_min_asize(vdev_t *vd)
114 {
115 vdev_t *pvd = vd->vdev_parent;
116
117 /*
118 * If our parent is NULL (inactive spare or cache) or is the root,
119 * just return our own asize.
120 */
121 if (pvd == NULL)
122 return (vd->vdev_asize);
123
124 /*
125 * The top-level vdev just returns the allocatable size rounded
126 * to the nearest metaslab.
127 */
128 if (vd == vd->vdev_top)
129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131 /*
132 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133 * so each child must provide at least 1/Nth of its asize.
134 */
135 if (pvd->vdev_ops == &vdev_raidz_ops)
136 return (pvd->vdev_min_asize / pvd->vdev_children);
137
138 return (pvd->vdev_min_asize);
139 }
140
141 void
vdev_set_min_asize(vdev_t * vd)142 vdev_set_min_asize(vdev_t *vd)
143 {
144 vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146 for (int c = 0; c < vd->vdev_children; c++)
147 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 vdev_t *rvd = spa->spa_root_vdev;
154
155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
159 return (rvd->vdev_child[vdev]);
160 }
161
162 return (NULL);
163 }
164
165 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 vdev_t *mvd;
169
170 if (vd->vdev_guid == guid)
171 return (vd);
172
173 for (int c = 0; c < vd->vdev_children; c++)
174 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175 NULL)
176 return (mvd);
177
178 return (NULL);
179 }
180
181 static int
vdev_count_leaves_impl(vdev_t * vd)182 vdev_count_leaves_impl(vdev_t *vd)
183 {
184 int n = 0;
185
186 if (vd->vdev_ops->vdev_op_leaf)
187 return (1);
188
189 for (int c = 0; c < vd->vdev_children; c++)
190 n += vdev_count_leaves_impl(vd->vdev_child[c]);
191
192 return (n);
193 }
194
195 int
vdev_count_leaves(spa_t * spa)196 vdev_count_leaves(spa_t *spa)
197 {
198 return (vdev_count_leaves_impl(spa->spa_root_vdev));
199 }
200
201 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)202 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
203 {
204 size_t oldsize, newsize;
205 uint64_t id = cvd->vdev_id;
206 vdev_t **newchild;
207 spa_t *spa = cvd->vdev_spa;
208
209 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
210 ASSERT(cvd->vdev_parent == NULL);
211
212 cvd->vdev_parent = pvd;
213
214 if (pvd == NULL)
215 return;
216
217 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
218
219 oldsize = pvd->vdev_children * sizeof (vdev_t *);
220 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
221 newsize = pvd->vdev_children * sizeof (vdev_t *);
222
223 newchild = kmem_zalloc(newsize, KM_SLEEP);
224 if (pvd->vdev_child != NULL) {
225 bcopy(pvd->vdev_child, newchild, oldsize);
226 kmem_free(pvd->vdev_child, oldsize);
227 }
228
229 pvd->vdev_child = newchild;
230 pvd->vdev_child[id] = cvd;
231
232 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
233 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
234
235 /*
236 * Walk up all ancestors to update guid sum.
237 */
238 for (; pvd != NULL; pvd = pvd->vdev_parent)
239 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
240 }
241
242 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)243 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
244 {
245 int c;
246 uint_t id = cvd->vdev_id;
247
248 ASSERT(cvd->vdev_parent == pvd);
249
250 if (pvd == NULL)
251 return;
252
253 ASSERT(id < pvd->vdev_children);
254 ASSERT(pvd->vdev_child[id] == cvd);
255
256 pvd->vdev_child[id] = NULL;
257 cvd->vdev_parent = NULL;
258
259 for (c = 0; c < pvd->vdev_children; c++)
260 if (pvd->vdev_child[c])
261 break;
262
263 if (c == pvd->vdev_children) {
264 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
265 pvd->vdev_child = NULL;
266 pvd->vdev_children = 0;
267 }
268
269 /*
270 * Walk up all ancestors to update guid sum.
271 */
272 for (; pvd != NULL; pvd = pvd->vdev_parent)
273 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
274 }
275
276 /*
277 * Remove any holes in the child array.
278 */
279 void
vdev_compact_children(vdev_t * pvd)280 vdev_compact_children(vdev_t *pvd)
281 {
282 vdev_t **newchild, *cvd;
283 int oldc = pvd->vdev_children;
284 int newc;
285
286 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
287
288 for (int c = newc = 0; c < oldc; c++)
289 if (pvd->vdev_child[c])
290 newc++;
291
292 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
293
294 for (int c = newc = 0; c < oldc; c++) {
295 if ((cvd = pvd->vdev_child[c]) != NULL) {
296 newchild[newc] = cvd;
297 cvd->vdev_id = newc++;
298 }
299 }
300
301 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
302 pvd->vdev_child = newchild;
303 pvd->vdev_children = newc;
304 }
305
306 /*
307 * Allocate and minimally initialize a vdev_t.
308 */
309 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)310 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
311 {
312 vdev_t *vd;
313
314 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
315
316 if (spa->spa_root_vdev == NULL) {
317 ASSERT(ops == &vdev_root_ops);
318 spa->spa_root_vdev = vd;
319 spa->spa_load_guid = spa_generate_guid(NULL);
320 }
321
322 if (guid == 0 && ops != &vdev_hole_ops) {
323 if (spa->spa_root_vdev == vd) {
324 /*
325 * The root vdev's guid will also be the pool guid,
326 * which must be unique among all pools.
327 */
328 guid = spa_generate_guid(NULL);
329 } else {
330 /*
331 * Any other vdev's guid must be unique within the pool.
332 */
333 guid = spa_generate_guid(spa);
334 }
335 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
336 }
337
338 vd->vdev_spa = spa;
339 vd->vdev_id = id;
340 vd->vdev_guid = guid;
341 vd->vdev_guid_sum = guid;
342 vd->vdev_ops = ops;
343 vd->vdev_state = VDEV_STATE_CLOSED;
344 vd->vdev_ishole = (ops == &vdev_hole_ops);
345
346 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
347 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
348 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
349 for (int t = 0; t < DTL_TYPES; t++) {
350 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
351 &vd->vdev_dtl_lock);
352 }
353 txg_list_create(&vd->vdev_ms_list,
354 offsetof(struct metaslab, ms_txg_node));
355 txg_list_create(&vd->vdev_dtl_list,
356 offsetof(struct vdev, vdev_dtl_node));
357 vd->vdev_stat.vs_timestamp = gethrtime();
358 vdev_queue_init(vd);
359 vdev_cache_init(vd);
360
361 return (vd);
362 }
363
364 /*
365 * Allocate a new vdev. The 'alloctype' is used to control whether we are
366 * creating a new vdev or loading an existing one - the behavior is slightly
367 * different for each case.
368 */
369 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)370 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
371 int alloctype)
372 {
373 vdev_ops_t *ops;
374 char *type;
375 uint64_t guid = 0, islog, nparity;
376 vdev_t *vd;
377
378 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
379
380 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
381 return (SET_ERROR(EINVAL));
382
383 if ((ops = vdev_getops(type)) == NULL)
384 return (SET_ERROR(EINVAL));
385
386 /*
387 * If this is a load, get the vdev guid from the nvlist.
388 * Otherwise, vdev_alloc_common() will generate one for us.
389 */
390 if (alloctype == VDEV_ALLOC_LOAD) {
391 uint64_t label_id;
392
393 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
394 label_id != id)
395 return (SET_ERROR(EINVAL));
396
397 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
398 return (SET_ERROR(EINVAL));
399 } else if (alloctype == VDEV_ALLOC_SPARE) {
400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
401 return (SET_ERROR(EINVAL));
402 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
404 return (SET_ERROR(EINVAL));
405 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
407 return (SET_ERROR(EINVAL));
408 }
409
410 /*
411 * The first allocated vdev must be of type 'root'.
412 */
413 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
414 return (SET_ERROR(EINVAL));
415
416 /*
417 * Determine whether we're a log vdev.
418 */
419 islog = 0;
420 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
421 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
422 return (SET_ERROR(ENOTSUP));
423
424 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
425 return (SET_ERROR(ENOTSUP));
426
427 /*
428 * Set the nparity property for RAID-Z vdevs.
429 */
430 nparity = -1ULL;
431 if (ops == &vdev_raidz_ops) {
432 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
433 &nparity) == 0) {
434 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
435 return (SET_ERROR(EINVAL));
436 /*
437 * Previous versions could only support 1 or 2 parity
438 * device.
439 */
440 if (nparity > 1 &&
441 spa_version(spa) < SPA_VERSION_RAIDZ2)
442 return (SET_ERROR(ENOTSUP));
443 if (nparity > 2 &&
444 spa_version(spa) < SPA_VERSION_RAIDZ3)
445 return (SET_ERROR(ENOTSUP));
446 } else {
447 /*
448 * We require the parity to be specified for SPAs that
449 * support multiple parity levels.
450 */
451 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
452 return (SET_ERROR(EINVAL));
453 /*
454 * Otherwise, we default to 1 parity device for RAID-Z.
455 */
456 nparity = 1;
457 }
458 } else {
459 nparity = 0;
460 }
461 ASSERT(nparity != -1ULL);
462
463 vd = vdev_alloc_common(spa, id, guid, ops);
464
465 vd->vdev_islog = islog;
466 vd->vdev_nparity = nparity;
467
468 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
469 vd->vdev_path = spa_strdup(vd->vdev_path);
470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
471 vd->vdev_devid = spa_strdup(vd->vdev_devid);
472 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
473 &vd->vdev_physpath) == 0)
474 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
476 vd->vdev_fru = spa_strdup(vd->vdev_fru);
477
478 /*
479 * Set the whole_disk property. If it's not specified, leave the value
480 * as -1.
481 */
482 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
483 &vd->vdev_wholedisk) != 0)
484 vd->vdev_wholedisk = -1ULL;
485
486 /*
487 * Look for the 'not present' flag. This will only be set if the device
488 * was not present at the time of import.
489 */
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
491 &vd->vdev_not_present);
492
493 /*
494 * Get the alignment requirement.
495 */
496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
497
498 /*
499 * Retrieve the vdev creation time.
500 */
501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
502 &vd->vdev_crtxg);
503
504 /*
505 * If we're a top-level vdev, try to load the allocation parameters.
506 */
507 if (parent && !parent->vdev_parent &&
508 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
510 &vd->vdev_ms_array);
511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
512 &vd->vdev_ms_shift);
513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
514 &vd->vdev_asize);
515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
516 &vd->vdev_removing);
517 }
518
519 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
520 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
521 alloctype == VDEV_ALLOC_ADD ||
522 alloctype == VDEV_ALLOC_SPLIT ||
523 alloctype == VDEV_ALLOC_ROOTPOOL);
524 vd->vdev_mg = metaslab_group_create(islog ?
525 spa_log_class(spa) : spa_normal_class(spa), vd);
526 }
527
528 /*
529 * If we're a leaf vdev, try to load the DTL object and other state.
530 */
531 if (vd->vdev_ops->vdev_op_leaf &&
532 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
533 alloctype == VDEV_ALLOC_ROOTPOOL)) {
534 if (alloctype == VDEV_ALLOC_LOAD) {
535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
536 &vd->vdev_dtl_object);
537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
538 &vd->vdev_unspare);
539 }
540
541 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
542 uint64_t spare = 0;
543
544 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
545 &spare) == 0 && spare)
546 spa_spare_add(vd);
547 }
548
549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
550 &vd->vdev_offline);
551
552 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
553 &vd->vdev_resilver_txg);
554
555 /*
556 * When importing a pool, we want to ignore the persistent fault
557 * state, as the diagnosis made on another system may not be
558 * valid in the current context. Local vdevs will
559 * remain in the faulted state.
560 */
561 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
562 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
563 &vd->vdev_faulted);
564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
565 &vd->vdev_degraded);
566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
567 &vd->vdev_removed);
568
569 if (vd->vdev_faulted || vd->vdev_degraded) {
570 char *aux;
571
572 vd->vdev_label_aux =
573 VDEV_AUX_ERR_EXCEEDED;
574 if (nvlist_lookup_string(nv,
575 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
576 strcmp(aux, "external") == 0)
577 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
578 }
579 }
580 }
581
582 /*
583 * Add ourselves to the parent's list of children.
584 */
585 vdev_add_child(parent, vd);
586
587 *vdp = vd;
588
589 return (0);
590 }
591
592 void
vdev_free(vdev_t * vd)593 vdev_free(vdev_t *vd)
594 {
595 spa_t *spa = vd->vdev_spa;
596
597 /*
598 * vdev_free() implies closing the vdev first. This is simpler than
599 * trying to ensure complicated semantics for all callers.
600 */
601 vdev_close(vd);
602
603 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
604 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
605
606 /*
607 * Free all children.
608 */
609 for (int c = 0; c < vd->vdev_children; c++)
610 vdev_free(vd->vdev_child[c]);
611
612 ASSERT(vd->vdev_child == NULL);
613 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
614
615 /*
616 * Discard allocation state.
617 */
618 if (vd->vdev_mg != NULL) {
619 vdev_metaslab_fini(vd);
620 metaslab_group_destroy(vd->vdev_mg);
621 }
622
623 ASSERT0(vd->vdev_stat.vs_space);
624 ASSERT0(vd->vdev_stat.vs_dspace);
625 ASSERT0(vd->vdev_stat.vs_alloc);
626
627 /*
628 * Remove this vdev from its parent's child list.
629 */
630 vdev_remove_child(vd->vdev_parent, vd);
631
632 ASSERT(vd->vdev_parent == NULL);
633
634 /*
635 * Clean up vdev structure.
636 */
637 vdev_queue_fini(vd);
638 vdev_cache_fini(vd);
639
640 if (vd->vdev_path)
641 spa_strfree(vd->vdev_path);
642 if (vd->vdev_devid)
643 spa_strfree(vd->vdev_devid);
644 if (vd->vdev_physpath)
645 spa_strfree(vd->vdev_physpath);
646 if (vd->vdev_fru)
647 spa_strfree(vd->vdev_fru);
648
649 if (vd->vdev_isspare)
650 spa_spare_remove(vd);
651 if (vd->vdev_isl2cache)
652 spa_l2cache_remove(vd);
653
654 txg_list_destroy(&vd->vdev_ms_list);
655 txg_list_destroy(&vd->vdev_dtl_list);
656
657 mutex_enter(&vd->vdev_dtl_lock);
658 space_map_close(vd->vdev_dtl_sm);
659 for (int t = 0; t < DTL_TYPES; t++) {
660 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
661 range_tree_destroy(vd->vdev_dtl[t]);
662 }
663 mutex_exit(&vd->vdev_dtl_lock);
664
665 mutex_destroy(&vd->vdev_dtl_lock);
666 mutex_destroy(&vd->vdev_stat_lock);
667 mutex_destroy(&vd->vdev_probe_lock);
668
669 if (vd == spa->spa_root_vdev)
670 spa->spa_root_vdev = NULL;
671
672 kmem_free(vd, sizeof (vdev_t));
673 }
674
675 /*
676 * Transfer top-level vdev state from svd to tvd.
677 */
678 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)679 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
680 {
681 spa_t *spa = svd->vdev_spa;
682 metaslab_t *msp;
683 vdev_t *vd;
684 int t;
685
686 ASSERT(tvd == tvd->vdev_top);
687
688 tvd->vdev_ms_array = svd->vdev_ms_array;
689 tvd->vdev_ms_shift = svd->vdev_ms_shift;
690 tvd->vdev_ms_count = svd->vdev_ms_count;
691
692 svd->vdev_ms_array = 0;
693 svd->vdev_ms_shift = 0;
694 svd->vdev_ms_count = 0;
695
696 if (tvd->vdev_mg)
697 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
698 tvd->vdev_mg = svd->vdev_mg;
699 tvd->vdev_ms = svd->vdev_ms;
700
701 svd->vdev_mg = NULL;
702 svd->vdev_ms = NULL;
703
704 if (tvd->vdev_mg != NULL)
705 tvd->vdev_mg->mg_vd = tvd;
706
707 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
708 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
709 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
710
711 svd->vdev_stat.vs_alloc = 0;
712 svd->vdev_stat.vs_space = 0;
713 svd->vdev_stat.vs_dspace = 0;
714
715 for (t = 0; t < TXG_SIZE; t++) {
716 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
717 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
718 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
719 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
720 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
721 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
722 }
723
724 if (list_link_active(&svd->vdev_config_dirty_node)) {
725 vdev_config_clean(svd);
726 vdev_config_dirty(tvd);
727 }
728
729 if (list_link_active(&svd->vdev_state_dirty_node)) {
730 vdev_state_clean(svd);
731 vdev_state_dirty(tvd);
732 }
733
734 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
735 svd->vdev_deflate_ratio = 0;
736
737 tvd->vdev_islog = svd->vdev_islog;
738 svd->vdev_islog = 0;
739 }
740
741 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)742 vdev_top_update(vdev_t *tvd, vdev_t *vd)
743 {
744 if (vd == NULL)
745 return;
746
747 vd->vdev_top = tvd;
748
749 for (int c = 0; c < vd->vdev_children; c++)
750 vdev_top_update(tvd, vd->vdev_child[c]);
751 }
752
753 /*
754 * Add a mirror/replacing vdev above an existing vdev.
755 */
756 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)757 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
758 {
759 spa_t *spa = cvd->vdev_spa;
760 vdev_t *pvd = cvd->vdev_parent;
761 vdev_t *mvd;
762
763 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
764
765 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
766
767 mvd->vdev_asize = cvd->vdev_asize;
768 mvd->vdev_min_asize = cvd->vdev_min_asize;
769 mvd->vdev_max_asize = cvd->vdev_max_asize;
770 mvd->vdev_ashift = cvd->vdev_ashift;
771 mvd->vdev_state = cvd->vdev_state;
772 mvd->vdev_crtxg = cvd->vdev_crtxg;
773
774 vdev_remove_child(pvd, cvd);
775 vdev_add_child(pvd, mvd);
776 cvd->vdev_id = mvd->vdev_children;
777 vdev_add_child(mvd, cvd);
778 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
779
780 if (mvd == mvd->vdev_top)
781 vdev_top_transfer(cvd, mvd);
782
783 return (mvd);
784 }
785
786 /*
787 * Remove a 1-way mirror/replacing vdev from the tree.
788 */
789 void
vdev_remove_parent(vdev_t * cvd)790 vdev_remove_parent(vdev_t *cvd)
791 {
792 vdev_t *mvd = cvd->vdev_parent;
793 vdev_t *pvd = mvd->vdev_parent;
794
795 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
796
797 ASSERT(mvd->vdev_children == 1);
798 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
799 mvd->vdev_ops == &vdev_replacing_ops ||
800 mvd->vdev_ops == &vdev_spare_ops);
801 cvd->vdev_ashift = mvd->vdev_ashift;
802
803 vdev_remove_child(mvd, cvd);
804 vdev_remove_child(pvd, mvd);
805
806 /*
807 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
808 * Otherwise, we could have detached an offline device, and when we
809 * go to import the pool we'll think we have two top-level vdevs,
810 * instead of a different version of the same top-level vdev.
811 */
812 if (mvd->vdev_top == mvd) {
813 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
814 cvd->vdev_orig_guid = cvd->vdev_guid;
815 cvd->vdev_guid += guid_delta;
816 cvd->vdev_guid_sum += guid_delta;
817 }
818 cvd->vdev_id = mvd->vdev_id;
819 vdev_add_child(pvd, cvd);
820 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
821
822 if (cvd == cvd->vdev_top)
823 vdev_top_transfer(mvd, cvd);
824
825 ASSERT(mvd->vdev_children == 0);
826 vdev_free(mvd);
827 }
828
829 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)830 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
831 {
832 spa_t *spa = vd->vdev_spa;
833 objset_t *mos = spa->spa_meta_objset;
834 uint64_t m;
835 uint64_t oldc = vd->vdev_ms_count;
836 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
837 metaslab_t **mspp;
838 int error;
839
840 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
841
842 /*
843 * This vdev is not being allocated from yet or is a hole.
844 */
845 if (vd->vdev_ms_shift == 0)
846 return (0);
847
848 ASSERT(!vd->vdev_ishole);
849
850 /*
851 * Compute the raidz-deflation ratio. Note, we hard-code
852 * in 128k (1 << 17) because it is the "typical" blocksize.
853 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
854 * otherwise it would inconsistently account for existing bp's.
855 */
856 vd->vdev_deflate_ratio = (1 << 17) /
857 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
858
859 ASSERT(oldc <= newc);
860
861 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
862
863 if (oldc != 0) {
864 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
865 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
866 }
867
868 vd->vdev_ms = mspp;
869 vd->vdev_ms_count = newc;
870
871 for (m = oldc; m < newc; m++) {
872 uint64_t object = 0;
873
874 if (txg == 0) {
875 error = dmu_read(mos, vd->vdev_ms_array,
876 m * sizeof (uint64_t), sizeof (uint64_t), &object,
877 DMU_READ_PREFETCH);
878 if (error)
879 return (error);
880 }
881
882 error = metaslab_init(vd->vdev_mg, m, object, txg,
883 &(vd->vdev_ms[m]));
884 if (error)
885 return (error);
886 }
887
888 if (txg == 0)
889 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
890
891 /*
892 * If the vdev is being removed we don't activate
893 * the metaslabs since we want to ensure that no new
894 * allocations are performed on this device.
895 */
896 if (oldc == 0 && !vd->vdev_removing)
897 metaslab_group_activate(vd->vdev_mg);
898
899 if (txg == 0)
900 spa_config_exit(spa, SCL_ALLOC, FTAG);
901
902 return (0);
903 }
904
905 void
vdev_metaslab_fini(vdev_t * vd)906 vdev_metaslab_fini(vdev_t *vd)
907 {
908 uint64_t m;
909 uint64_t count = vd->vdev_ms_count;
910
911 if (vd->vdev_ms != NULL) {
912 metaslab_group_passivate(vd->vdev_mg);
913 for (m = 0; m < count; m++) {
914 metaslab_t *msp = vd->vdev_ms[m];
915
916 if (msp != NULL)
917 metaslab_fini(msp);
918 }
919 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
920 vd->vdev_ms = NULL;
921 }
922 }
923
924 typedef struct vdev_probe_stats {
925 boolean_t vps_readable;
926 boolean_t vps_writeable;
927 int vps_flags;
928 } vdev_probe_stats_t;
929
930 static void
vdev_probe_done(zio_t * zio)931 vdev_probe_done(zio_t *zio)
932 {
933 spa_t *spa = zio->io_spa;
934 vdev_t *vd = zio->io_vd;
935 vdev_probe_stats_t *vps = zio->io_private;
936
937 ASSERT(vd->vdev_probe_zio != NULL);
938
939 if (zio->io_type == ZIO_TYPE_READ) {
940 if (zio->io_error == 0)
941 vps->vps_readable = 1;
942 if (zio->io_error == 0 && spa_writeable(spa)) {
943 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
944 zio->io_offset, zio->io_size, zio->io_data,
945 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
946 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
947 } else {
948 zio_buf_free(zio->io_data, zio->io_size);
949 }
950 } else if (zio->io_type == ZIO_TYPE_WRITE) {
951 if (zio->io_error == 0)
952 vps->vps_writeable = 1;
953 zio_buf_free(zio->io_data, zio->io_size);
954 } else if (zio->io_type == ZIO_TYPE_NULL) {
955 zio_t *pio;
956
957 vd->vdev_cant_read |= !vps->vps_readable;
958 vd->vdev_cant_write |= !vps->vps_writeable;
959
960 if (vdev_readable(vd) &&
961 (vdev_writeable(vd) || !spa_writeable(spa))) {
962 zio->io_error = 0;
963 } else {
964 ASSERT(zio->io_error != 0);
965 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
966 spa, vd, NULL, 0, 0);
967 zio->io_error = SET_ERROR(ENXIO);
968 }
969
970 mutex_enter(&vd->vdev_probe_lock);
971 ASSERT(vd->vdev_probe_zio == zio);
972 vd->vdev_probe_zio = NULL;
973 mutex_exit(&vd->vdev_probe_lock);
974
975 while ((pio = zio_walk_parents(zio)) != NULL)
976 if (!vdev_accessible(vd, pio))
977 pio->io_error = SET_ERROR(ENXIO);
978
979 kmem_free(vps, sizeof (*vps));
980 }
981 }
982
983 /*
984 * Determine whether this device is accessible.
985 *
986 * Read and write to several known locations: the pad regions of each
987 * vdev label but the first, which we leave alone in case it contains
988 * a VTOC.
989 */
990 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)991 vdev_probe(vdev_t *vd, zio_t *zio)
992 {
993 spa_t *spa = vd->vdev_spa;
994 vdev_probe_stats_t *vps = NULL;
995 zio_t *pio;
996
997 ASSERT(vd->vdev_ops->vdev_op_leaf);
998
999 /*
1000 * Don't probe the probe.
1001 */
1002 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1003 return (NULL);
1004
1005 /*
1006 * To prevent 'probe storms' when a device fails, we create
1007 * just one probe i/o at a time. All zios that want to probe
1008 * this vdev will become parents of the probe io.
1009 */
1010 mutex_enter(&vd->vdev_probe_lock);
1011
1012 if ((pio = vd->vdev_probe_zio) == NULL) {
1013 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1014
1015 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1016 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1017 ZIO_FLAG_TRYHARD;
1018
1019 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1020 /*
1021 * vdev_cant_read and vdev_cant_write can only
1022 * transition from TRUE to FALSE when we have the
1023 * SCL_ZIO lock as writer; otherwise they can only
1024 * transition from FALSE to TRUE. This ensures that
1025 * any zio looking at these values can assume that
1026 * failures persist for the life of the I/O. That's
1027 * important because when a device has intermittent
1028 * connectivity problems, we want to ensure that
1029 * they're ascribed to the device (ENXIO) and not
1030 * the zio (EIO).
1031 *
1032 * Since we hold SCL_ZIO as writer here, clear both
1033 * values so the probe can reevaluate from first
1034 * principles.
1035 */
1036 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1037 vd->vdev_cant_read = B_FALSE;
1038 vd->vdev_cant_write = B_FALSE;
1039 }
1040
1041 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1042 vdev_probe_done, vps,
1043 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1044
1045 /*
1046 * We can't change the vdev state in this context, so we
1047 * kick off an async task to do it on our behalf.
1048 */
1049 if (zio != NULL) {
1050 vd->vdev_probe_wanted = B_TRUE;
1051 spa_async_request(spa, SPA_ASYNC_PROBE);
1052 }
1053 }
1054
1055 if (zio != NULL)
1056 zio_add_child(zio, pio);
1057
1058 mutex_exit(&vd->vdev_probe_lock);
1059
1060 if (vps == NULL) {
1061 ASSERT(zio != NULL);
1062 return (NULL);
1063 }
1064
1065 for (int l = 1; l < VDEV_LABELS; l++) {
1066 zio_nowait(zio_read_phys(pio, vd,
1067 vdev_label_offset(vd->vdev_psize, l,
1068 offsetof(vdev_label_t, vl_pad2)),
1069 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1070 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1071 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1072 }
1073
1074 if (zio == NULL)
1075 return (pio);
1076
1077 zio_nowait(pio);
1078 return (NULL);
1079 }
1080
1081 static void
vdev_open_child(void * arg)1082 vdev_open_child(void *arg)
1083 {
1084 vdev_t *vd = arg;
1085
1086 vd->vdev_open_thread = curthread;
1087 vd->vdev_open_error = vdev_open(vd);
1088 vd->vdev_open_thread = NULL;
1089 }
1090
1091 boolean_t
vdev_uses_zvols(vdev_t * vd)1092 vdev_uses_zvols(vdev_t *vd)
1093 {
1094 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1095 strlen(ZVOL_DIR)) == 0)
1096 return (B_TRUE);
1097 for (int c = 0; c < vd->vdev_children; c++)
1098 if (vdev_uses_zvols(vd->vdev_child[c]))
1099 return (B_TRUE);
1100 return (B_FALSE);
1101 }
1102
1103 void
vdev_open_children(vdev_t * vd)1104 vdev_open_children(vdev_t *vd)
1105 {
1106 taskq_t *tq;
1107 int children = vd->vdev_children;
1108
1109 /*
1110 * in order to handle pools on top of zvols, do the opens
1111 * in a single thread so that the same thread holds the
1112 * spa_namespace_lock
1113 */
1114 if (vdev_uses_zvols(vd)) {
1115 for (int c = 0; c < children; c++)
1116 vd->vdev_child[c]->vdev_open_error =
1117 vdev_open(vd->vdev_child[c]);
1118 return;
1119 }
1120 tq = taskq_create("vdev_open", children, minclsyspri,
1121 children, children, TASKQ_PREPOPULATE);
1122
1123 for (int c = 0; c < children; c++)
1124 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1125 TQ_SLEEP) != NULL);
1126
1127 taskq_destroy(tq);
1128 }
1129
1130 /*
1131 * Prepare a virtual device for access.
1132 */
1133 int
vdev_open(vdev_t * vd)1134 vdev_open(vdev_t *vd)
1135 {
1136 spa_t *spa = vd->vdev_spa;
1137 int error;
1138 uint64_t osize = 0;
1139 uint64_t max_osize = 0;
1140 uint64_t asize, max_asize, psize;
1141 uint64_t ashift = 0;
1142
1143 ASSERT(vd->vdev_open_thread == curthread ||
1144 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1145 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1146 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1147 vd->vdev_state == VDEV_STATE_OFFLINE);
1148
1149 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1150 vd->vdev_cant_read = B_FALSE;
1151 vd->vdev_cant_write = B_FALSE;
1152 vd->vdev_min_asize = vdev_get_min_asize(vd);
1153
1154 /*
1155 * If this vdev is not removed, check its fault status. If it's
1156 * faulted, bail out of the open.
1157 */
1158 if (!vd->vdev_removed && vd->vdev_faulted) {
1159 ASSERT(vd->vdev_children == 0);
1160 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1161 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1162 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1163 vd->vdev_label_aux);
1164 return (SET_ERROR(ENXIO));
1165 } else if (vd->vdev_offline) {
1166 ASSERT(vd->vdev_children == 0);
1167 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1168 return (SET_ERROR(ENXIO));
1169 }
1170
1171 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1172
1173 /*
1174 * Reset the vdev_reopening flag so that we actually close
1175 * the vdev on error.
1176 */
1177 vd->vdev_reopening = B_FALSE;
1178 if (zio_injection_enabled && error == 0)
1179 error = zio_handle_device_injection(vd, NULL, ENXIO);
1180
1181 if (error) {
1182 if (vd->vdev_removed &&
1183 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1184 vd->vdev_removed = B_FALSE;
1185
1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1187 vd->vdev_stat.vs_aux);
1188 return (error);
1189 }
1190
1191 vd->vdev_removed = B_FALSE;
1192
1193 /*
1194 * Recheck the faulted flag now that we have confirmed that
1195 * the vdev is accessible. If we're faulted, bail.
1196 */
1197 if (vd->vdev_faulted) {
1198 ASSERT(vd->vdev_children == 0);
1199 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1200 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1202 vd->vdev_label_aux);
1203 return (SET_ERROR(ENXIO));
1204 }
1205
1206 if (vd->vdev_degraded) {
1207 ASSERT(vd->vdev_children == 0);
1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1209 VDEV_AUX_ERR_EXCEEDED);
1210 } else {
1211 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1212 }
1213
1214 /*
1215 * For hole or missing vdevs we just return success.
1216 */
1217 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1218 return (0);
1219
1220 for (int c = 0; c < vd->vdev_children; c++) {
1221 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1222 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1223 VDEV_AUX_NONE);
1224 break;
1225 }
1226 }
1227
1228 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1229 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1230
1231 if (vd->vdev_children == 0) {
1232 if (osize < SPA_MINDEVSIZE) {
1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1234 VDEV_AUX_TOO_SMALL);
1235 return (SET_ERROR(EOVERFLOW));
1236 }
1237 psize = osize;
1238 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1239 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1240 VDEV_LABEL_END_SIZE);
1241 } else {
1242 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1243 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245 VDEV_AUX_TOO_SMALL);
1246 return (SET_ERROR(EOVERFLOW));
1247 }
1248 psize = 0;
1249 asize = osize;
1250 max_asize = max_osize;
1251 }
1252
1253 vd->vdev_psize = psize;
1254
1255 /*
1256 * Make sure the allocatable size hasn't shrunk.
1257 */
1258 if (asize < vd->vdev_min_asize) {
1259 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1260 VDEV_AUX_BAD_LABEL);
1261 return (SET_ERROR(EINVAL));
1262 }
1263
1264 if (vd->vdev_asize == 0) {
1265 /*
1266 * This is the first-ever open, so use the computed values.
1267 * For testing purposes, a higher ashift can be requested.
1268 */
1269 vd->vdev_asize = asize;
1270 vd->vdev_max_asize = max_asize;
1271 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1272 } else {
1273 /*
1274 * Detect if the alignment requirement has increased.
1275 * We don't want to make the pool unavailable, just
1276 * issue a warning instead.
1277 */
1278 if (ashift > vd->vdev_top->vdev_ashift &&
1279 vd->vdev_ops->vdev_op_leaf) {
1280 cmn_err(CE_WARN,
1281 "Disk, '%s', has a block alignment that is "
1282 "larger than the pool's alignment\n",
1283 vd->vdev_path);
1284 }
1285 vd->vdev_max_asize = max_asize;
1286 }
1287
1288 /*
1289 * If all children are healthy and the asize has increased,
1290 * then we've experienced dynamic LUN growth. If automatic
1291 * expansion is enabled then use the additional space.
1292 */
1293 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1294 (vd->vdev_expanding || spa->spa_autoexpand))
1295 vd->vdev_asize = asize;
1296
1297 vdev_set_min_asize(vd);
1298
1299 /*
1300 * Ensure we can issue some IO before declaring the
1301 * vdev open for business.
1302 */
1303 if (vd->vdev_ops->vdev_op_leaf &&
1304 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1305 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1306 VDEV_AUX_ERR_EXCEEDED);
1307 return (error);
1308 }
1309
1310 /*
1311 * Track the min and max ashift values for normal data devices.
1312 */
1313 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1314 !vd->vdev_islog && vd->vdev_aux == NULL) {
1315 if (vd->vdev_ashift > spa->spa_max_ashift)
1316 spa->spa_max_ashift = vd->vdev_ashift;
1317 if (vd->vdev_ashift < spa->spa_min_ashift)
1318 spa->spa_min_ashift = vd->vdev_ashift;
1319 }
1320
1321 /*
1322 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1323 * resilver. But don't do this if we are doing a reopen for a scrub,
1324 * since this would just restart the scrub we are already doing.
1325 */
1326 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1327 vdev_resilver_needed(vd, NULL, NULL))
1328 spa_async_request(spa, SPA_ASYNC_RESILVER);
1329
1330 return (0);
1331 }
1332
1333 /*
1334 * Called once the vdevs are all opened, this routine validates the label
1335 * contents. This needs to be done before vdev_load() so that we don't
1336 * inadvertently do repair I/Os to the wrong device.
1337 *
1338 * If 'strict' is false ignore the spa guid check. This is necessary because
1339 * if the machine crashed during a re-guid the new guid might have been written
1340 * to all of the vdev labels, but not the cached config. The strict check
1341 * will be performed when the pool is opened again using the mos config.
1342 *
1343 * This function will only return failure if one of the vdevs indicates that it
1344 * has since been destroyed or exported. This is only possible if
1345 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1346 * will be updated but the function will return 0.
1347 */
1348 int
vdev_validate(vdev_t * vd,boolean_t strict)1349 vdev_validate(vdev_t *vd, boolean_t strict)
1350 {
1351 spa_t *spa = vd->vdev_spa;
1352 nvlist_t *label;
1353 uint64_t guid = 0, top_guid;
1354 uint64_t state;
1355
1356 for (int c = 0; c < vd->vdev_children; c++)
1357 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1358 return (SET_ERROR(EBADF));
1359
1360 /*
1361 * If the device has already failed, or was marked offline, don't do
1362 * any further validation. Otherwise, label I/O will fail and we will
1363 * overwrite the previous state.
1364 */
1365 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1366 uint64_t aux_guid = 0;
1367 nvlist_t *nvl;
1368 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1369 spa_last_synced_txg(spa) : -1ULL;
1370
1371 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1372 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1373 VDEV_AUX_BAD_LABEL);
1374 return (0);
1375 }
1376
1377 /*
1378 * Determine if this vdev has been split off into another
1379 * pool. If so, then refuse to open it.
1380 */
1381 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1382 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1383 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1384 VDEV_AUX_SPLIT_POOL);
1385 nvlist_free(label);
1386 return (0);
1387 }
1388
1389 if (strict && (nvlist_lookup_uint64(label,
1390 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1391 guid != spa_guid(spa))) {
1392 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1393 VDEV_AUX_CORRUPT_DATA);
1394 nvlist_free(label);
1395 return (0);
1396 }
1397
1398 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1399 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1400 &aux_guid) != 0)
1401 aux_guid = 0;
1402
1403 /*
1404 * If this vdev just became a top-level vdev because its
1405 * sibling was detached, it will have adopted the parent's
1406 * vdev guid -- but the label may or may not be on disk yet.
1407 * Fortunately, either version of the label will have the
1408 * same top guid, so if we're a top-level vdev, we can
1409 * safely compare to that instead.
1410 *
1411 * If we split this vdev off instead, then we also check the
1412 * original pool's guid. We don't want to consider the vdev
1413 * corrupt if it is partway through a split operation.
1414 */
1415 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1416 &guid) != 0 ||
1417 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1418 &top_guid) != 0 ||
1419 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1420 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1421 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1422 VDEV_AUX_CORRUPT_DATA);
1423 nvlist_free(label);
1424 return (0);
1425 }
1426
1427 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1428 &state) != 0) {
1429 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1430 VDEV_AUX_CORRUPT_DATA);
1431 nvlist_free(label);
1432 return (0);
1433 }
1434
1435 nvlist_free(label);
1436
1437 /*
1438 * If this is a verbatim import, no need to check the
1439 * state of the pool.
1440 */
1441 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1442 spa_load_state(spa) == SPA_LOAD_OPEN &&
1443 state != POOL_STATE_ACTIVE)
1444 return (SET_ERROR(EBADF));
1445
1446 /*
1447 * If we were able to open and validate a vdev that was
1448 * previously marked permanently unavailable, clear that state
1449 * now.
1450 */
1451 if (vd->vdev_not_present)
1452 vd->vdev_not_present = 0;
1453 }
1454
1455 return (0);
1456 }
1457
1458 /*
1459 * Close a virtual device.
1460 */
1461 void
vdev_close(vdev_t * vd)1462 vdev_close(vdev_t *vd)
1463 {
1464 spa_t *spa = vd->vdev_spa;
1465 vdev_t *pvd = vd->vdev_parent;
1466
1467 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1468
1469 /*
1470 * If our parent is reopening, then we are as well, unless we are
1471 * going offline.
1472 */
1473 if (pvd != NULL && pvd->vdev_reopening)
1474 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1475
1476 vd->vdev_ops->vdev_op_close(vd);
1477
1478 vdev_cache_purge(vd);
1479
1480 /*
1481 * We record the previous state before we close it, so that if we are
1482 * doing a reopen(), we don't generate FMA ereports if we notice that
1483 * it's still faulted.
1484 */
1485 vd->vdev_prevstate = vd->vdev_state;
1486
1487 if (vd->vdev_offline)
1488 vd->vdev_state = VDEV_STATE_OFFLINE;
1489 else
1490 vd->vdev_state = VDEV_STATE_CLOSED;
1491 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1492 }
1493
1494 void
vdev_hold(vdev_t * vd)1495 vdev_hold(vdev_t *vd)
1496 {
1497 spa_t *spa = vd->vdev_spa;
1498
1499 ASSERT(spa_is_root(spa));
1500 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1501 return;
1502
1503 for (int c = 0; c < vd->vdev_children; c++)
1504 vdev_hold(vd->vdev_child[c]);
1505
1506 if (vd->vdev_ops->vdev_op_leaf)
1507 vd->vdev_ops->vdev_op_hold(vd);
1508 }
1509
1510 void
vdev_rele(vdev_t * vd)1511 vdev_rele(vdev_t *vd)
1512 {
1513 spa_t *spa = vd->vdev_spa;
1514
1515 ASSERT(spa_is_root(spa));
1516 for (int c = 0; c < vd->vdev_children; c++)
1517 vdev_rele(vd->vdev_child[c]);
1518
1519 if (vd->vdev_ops->vdev_op_leaf)
1520 vd->vdev_ops->vdev_op_rele(vd);
1521 }
1522
1523 /*
1524 * Reopen all interior vdevs and any unopened leaves. We don't actually
1525 * reopen leaf vdevs which had previously been opened as they might deadlock
1526 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1527 * If the leaf has never been opened then open it, as usual.
1528 */
1529 void
vdev_reopen(vdev_t * vd)1530 vdev_reopen(vdev_t *vd)
1531 {
1532 spa_t *spa = vd->vdev_spa;
1533
1534 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1535
1536 /* set the reopening flag unless we're taking the vdev offline */
1537 vd->vdev_reopening = !vd->vdev_offline;
1538 vdev_close(vd);
1539 (void) vdev_open(vd);
1540
1541 /*
1542 * Call vdev_validate() here to make sure we have the same device.
1543 * Otherwise, a device with an invalid label could be successfully
1544 * opened in response to vdev_reopen().
1545 */
1546 if (vd->vdev_aux) {
1547 (void) vdev_validate_aux(vd);
1548 if (vdev_readable(vd) && vdev_writeable(vd) &&
1549 vd->vdev_aux == &spa->spa_l2cache &&
1550 !l2arc_vdev_present(vd)) {
1551 /*
1552 * When reopening we can assume persistent L2ARC is
1553 * supported, since we've already opened the device
1554 * in the past and prepended an L2ARC uberblock.
1555 */
1556 l2arc_add_vdev(spa, vd, B_TRUE);
1557 }
1558 } else {
1559 (void) vdev_validate(vd, B_TRUE);
1560 }
1561
1562 /*
1563 * Reassess parent vdev's health.
1564 */
1565 vdev_propagate_state(vd);
1566 }
1567
1568 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)1569 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1570 {
1571 int error;
1572
1573 /*
1574 * Normally, partial opens (e.g. of a mirror) are allowed.
1575 * For a create, however, we want to fail the request if
1576 * there are any components we can't open.
1577 */
1578 error = vdev_open(vd);
1579
1580 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1581 vdev_close(vd);
1582 return (error ? error : ENXIO);
1583 }
1584
1585 /*
1586 * Recursively load DTLs and initialize all labels.
1587 */
1588 if ((error = vdev_dtl_load(vd)) != 0 ||
1589 (error = vdev_label_init(vd, txg, isreplacing ?
1590 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1591 vdev_close(vd);
1592 return (error);
1593 }
1594
1595 return (0);
1596 }
1597
1598 void
vdev_metaslab_set_size(vdev_t * vd)1599 vdev_metaslab_set_size(vdev_t *vd)
1600 {
1601 /*
1602 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1603 */
1604 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1605 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1606 }
1607
1608 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)1609 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1610 {
1611 ASSERT(vd == vd->vdev_top);
1612 ASSERT(!vd->vdev_ishole);
1613 ASSERT(ISP2(flags));
1614 ASSERT(spa_writeable(vd->vdev_spa));
1615
1616 if (flags & VDD_METASLAB)
1617 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1618
1619 if (flags & VDD_DTL)
1620 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1621
1622 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1623 }
1624
1625 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)1626 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1627 {
1628 for (int c = 0; c < vd->vdev_children; c++)
1629 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1630
1631 if (vd->vdev_ops->vdev_op_leaf)
1632 vdev_dirty(vd->vdev_top, flags, vd, txg);
1633 }
1634
1635 /*
1636 * DTLs.
1637 *
1638 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1639 * the vdev has less than perfect replication. There are four kinds of DTL:
1640 *
1641 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1642 *
1643 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1644 *
1645 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1646 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1647 * txgs that was scrubbed.
1648 *
1649 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1650 * persistent errors or just some device being offline.
1651 * Unlike the other three, the DTL_OUTAGE map is not generally
1652 * maintained; it's only computed when needed, typically to
1653 * determine whether a device can be detached.
1654 *
1655 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1656 * either has the data or it doesn't.
1657 *
1658 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1659 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1660 * if any child is less than fully replicated, then so is its parent.
1661 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1662 * comprising only those txgs which appear in 'maxfaults' or more children;
1663 * those are the txgs we don't have enough replication to read. For example,
1664 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1665 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1666 * two child DTL_MISSING maps.
1667 *
1668 * It should be clear from the above that to compute the DTLs and outage maps
1669 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1670 * Therefore, that is all we keep on disk. When loading the pool, or after
1671 * a configuration change, we generate all other DTLs from first principles.
1672 */
1673 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1674 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1675 {
1676 range_tree_t *rt = vd->vdev_dtl[t];
1677
1678 ASSERT(t < DTL_TYPES);
1679 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1680 ASSERT(spa_writeable(vd->vdev_spa));
1681
1682 mutex_enter(rt->rt_lock);
1683 if (!range_tree_contains(rt, txg, size))
1684 range_tree_add(rt, txg, size);
1685 mutex_exit(rt->rt_lock);
1686 }
1687
1688 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1689 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1690 {
1691 range_tree_t *rt = vd->vdev_dtl[t];
1692 boolean_t dirty = B_FALSE;
1693
1694 ASSERT(t < DTL_TYPES);
1695 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1696
1697 mutex_enter(rt->rt_lock);
1698 if (range_tree_space(rt) != 0)
1699 dirty = range_tree_contains(rt, txg, size);
1700 mutex_exit(rt->rt_lock);
1701
1702 return (dirty);
1703 }
1704
1705 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)1706 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1707 {
1708 range_tree_t *rt = vd->vdev_dtl[t];
1709 boolean_t empty;
1710
1711 mutex_enter(rt->rt_lock);
1712 empty = (range_tree_space(rt) == 0);
1713 mutex_exit(rt->rt_lock);
1714
1715 return (empty);
1716 }
1717
1718 /*
1719 * Returns the lowest txg in the DTL range.
1720 */
1721 static uint64_t
vdev_dtl_min(vdev_t * vd)1722 vdev_dtl_min(vdev_t *vd)
1723 {
1724 range_seg_t *rs;
1725
1726 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1727 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1728 ASSERT0(vd->vdev_children);
1729
1730 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1731 return (rs->rs_start - 1);
1732 }
1733
1734 /*
1735 * Returns the highest txg in the DTL.
1736 */
1737 static uint64_t
vdev_dtl_max(vdev_t * vd)1738 vdev_dtl_max(vdev_t *vd)
1739 {
1740 range_seg_t *rs;
1741
1742 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1743 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1744 ASSERT0(vd->vdev_children);
1745
1746 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1747 return (rs->rs_end);
1748 }
1749
1750 /*
1751 * Determine if a resilvering vdev should remove any DTL entries from
1752 * its range. If the vdev was resilvering for the entire duration of the
1753 * scan then it should excise that range from its DTLs. Otherwise, this
1754 * vdev is considered partially resilvered and should leave its DTL
1755 * entries intact. The comment in vdev_dtl_reassess() describes how we
1756 * excise the DTLs.
1757 */
1758 static boolean_t
vdev_dtl_should_excise(vdev_t * vd)1759 vdev_dtl_should_excise(vdev_t *vd)
1760 {
1761 spa_t *spa = vd->vdev_spa;
1762 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1763
1764 ASSERT0(scn->scn_phys.scn_errors);
1765 ASSERT0(vd->vdev_children);
1766
1767 if (vd->vdev_resilver_txg == 0 ||
1768 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1769 return (B_TRUE);
1770
1771 /*
1772 * When a resilver is initiated the scan will assign the scn_max_txg
1773 * value to the highest txg value that exists in all DTLs. If this
1774 * device's max DTL is not part of this scan (i.e. it is not in
1775 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1776 * for excision.
1777 */
1778 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1779 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1780 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1781 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1782 return (B_TRUE);
1783 }
1784 return (B_FALSE);
1785 }
1786
1787 /*
1788 * Reassess DTLs after a config change or scrub completion.
1789 */
1790 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,int scrub_done)1791 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1792 {
1793 spa_t *spa = vd->vdev_spa;
1794 avl_tree_t reftree;
1795 int minref;
1796
1797 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1798
1799 for (int c = 0; c < vd->vdev_children; c++)
1800 vdev_dtl_reassess(vd->vdev_child[c], txg,
1801 scrub_txg, scrub_done);
1802
1803 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1804 return;
1805
1806 if (vd->vdev_ops->vdev_op_leaf) {
1807 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1808
1809 mutex_enter(&vd->vdev_dtl_lock);
1810
1811 /*
1812 * If we've completed a scan cleanly then determine
1813 * if this vdev should remove any DTLs. We only want to
1814 * excise regions on vdevs that were available during
1815 * the entire duration of this scan.
1816 */
1817 if (scrub_txg != 0 &&
1818 (spa->spa_scrub_started ||
1819 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1820 vdev_dtl_should_excise(vd)) {
1821 /*
1822 * We completed a scrub up to scrub_txg. If we
1823 * did it without rebooting, then the scrub dtl
1824 * will be valid, so excise the old region and
1825 * fold in the scrub dtl. Otherwise, leave the
1826 * dtl as-is if there was an error.
1827 *
1828 * There's little trick here: to excise the beginning
1829 * of the DTL_MISSING map, we put it into a reference
1830 * tree and then add a segment with refcnt -1 that
1831 * covers the range [0, scrub_txg). This means
1832 * that each txg in that range has refcnt -1 or 0.
1833 * We then add DTL_SCRUB with a refcnt of 2, so that
1834 * entries in the range [0, scrub_txg) will have a
1835 * positive refcnt -- either 1 or 2. We then convert
1836 * the reference tree into the new DTL_MISSING map.
1837 */
1838 space_reftree_create(&reftree);
1839 space_reftree_add_map(&reftree,
1840 vd->vdev_dtl[DTL_MISSING], 1);
1841 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1842 space_reftree_add_map(&reftree,
1843 vd->vdev_dtl[DTL_SCRUB], 2);
1844 space_reftree_generate_map(&reftree,
1845 vd->vdev_dtl[DTL_MISSING], 1);
1846 space_reftree_destroy(&reftree);
1847 }
1848 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1849 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1850 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1851 if (scrub_done)
1852 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1853 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1854 if (!vdev_readable(vd))
1855 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1856 else
1857 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1858 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1859
1860 /*
1861 * If the vdev was resilvering and no longer has any
1862 * DTLs then reset its resilvering flag.
1863 */
1864 if (vd->vdev_resilver_txg != 0 &&
1865 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1866 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1867 vd->vdev_resilver_txg = 0;
1868
1869 mutex_exit(&vd->vdev_dtl_lock);
1870
1871 if (txg != 0)
1872 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1873 return;
1874 }
1875
1876 mutex_enter(&vd->vdev_dtl_lock);
1877 for (int t = 0; t < DTL_TYPES; t++) {
1878 /* account for child's outage in parent's missing map */
1879 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1880 if (t == DTL_SCRUB)
1881 continue; /* leaf vdevs only */
1882 if (t == DTL_PARTIAL)
1883 minref = 1; /* i.e. non-zero */
1884 else if (vd->vdev_nparity != 0)
1885 minref = vd->vdev_nparity + 1; /* RAID-Z */
1886 else
1887 minref = vd->vdev_children; /* any kind of mirror */
1888 space_reftree_create(&reftree);
1889 for (int c = 0; c < vd->vdev_children; c++) {
1890 vdev_t *cvd = vd->vdev_child[c];
1891 mutex_enter(&cvd->vdev_dtl_lock);
1892 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1893 mutex_exit(&cvd->vdev_dtl_lock);
1894 }
1895 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1896 space_reftree_destroy(&reftree);
1897 }
1898 mutex_exit(&vd->vdev_dtl_lock);
1899 }
1900
1901 int
vdev_dtl_load(vdev_t * vd)1902 vdev_dtl_load(vdev_t *vd)
1903 {
1904 spa_t *spa = vd->vdev_spa;
1905 objset_t *mos = spa->spa_meta_objset;
1906 int error = 0;
1907
1908 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1909 ASSERT(!vd->vdev_ishole);
1910
1911 error = space_map_open(&vd->vdev_dtl_sm, mos,
1912 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1913 if (error)
1914 return (error);
1915 ASSERT(vd->vdev_dtl_sm != NULL);
1916
1917 mutex_enter(&vd->vdev_dtl_lock);
1918
1919 /*
1920 * Now that we've opened the space_map we need to update
1921 * the in-core DTL.
1922 */
1923 space_map_update(vd->vdev_dtl_sm);
1924
1925 error = space_map_load(vd->vdev_dtl_sm,
1926 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1927 mutex_exit(&vd->vdev_dtl_lock);
1928
1929 return (error);
1930 }
1931
1932 for (int c = 0; c < vd->vdev_children; c++) {
1933 error = vdev_dtl_load(vd->vdev_child[c]);
1934 if (error != 0)
1935 break;
1936 }
1937
1938 return (error);
1939 }
1940
1941 void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)1942 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1943 {
1944 spa_t *spa = vd->vdev_spa;
1945 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1946 objset_t *mos = spa->spa_meta_objset;
1947 range_tree_t *rtsync;
1948 kmutex_t rtlock;
1949 dmu_tx_t *tx;
1950 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1951
1952 ASSERT(!vd->vdev_ishole);
1953 ASSERT(vd->vdev_ops->vdev_op_leaf);
1954
1955 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1956
1957 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1958 mutex_enter(&vd->vdev_dtl_lock);
1959 space_map_free(vd->vdev_dtl_sm, tx);
1960 space_map_close(vd->vdev_dtl_sm);
1961 vd->vdev_dtl_sm = NULL;
1962 mutex_exit(&vd->vdev_dtl_lock);
1963 dmu_tx_commit(tx);
1964 return;
1965 }
1966
1967 if (vd->vdev_dtl_sm == NULL) {
1968 uint64_t new_object;
1969
1970 new_object = space_map_alloc(mos, tx);
1971 VERIFY3U(new_object, !=, 0);
1972
1973 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1974 0, -1ULL, 0, &vd->vdev_dtl_lock));
1975 ASSERT(vd->vdev_dtl_sm != NULL);
1976 }
1977
1978 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1979
1980 rtsync = range_tree_create(NULL, NULL, &rtlock);
1981
1982 mutex_enter(&rtlock);
1983
1984 mutex_enter(&vd->vdev_dtl_lock);
1985 range_tree_walk(rt, range_tree_add, rtsync);
1986 mutex_exit(&vd->vdev_dtl_lock);
1987
1988 space_map_truncate(vd->vdev_dtl_sm, tx);
1989 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1990 range_tree_vacate(rtsync, NULL, NULL);
1991
1992 range_tree_destroy(rtsync);
1993
1994 mutex_exit(&rtlock);
1995 mutex_destroy(&rtlock);
1996
1997 /*
1998 * If the object for the space map has changed then dirty
1999 * the top level so that we update the config.
2000 */
2001 if (object != space_map_object(vd->vdev_dtl_sm)) {
2002 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2003 "new object %llu", txg, spa_name(spa), object,
2004 space_map_object(vd->vdev_dtl_sm));
2005 vdev_config_dirty(vd->vdev_top);
2006 }
2007
2008 dmu_tx_commit(tx);
2009
2010 mutex_enter(&vd->vdev_dtl_lock);
2011 space_map_update(vd->vdev_dtl_sm);
2012 mutex_exit(&vd->vdev_dtl_lock);
2013 }
2014
2015 /*
2016 * Determine whether the specified vdev can be offlined/detached/removed
2017 * without losing data.
2018 */
2019 boolean_t
vdev_dtl_required(vdev_t * vd)2020 vdev_dtl_required(vdev_t *vd)
2021 {
2022 spa_t *spa = vd->vdev_spa;
2023 vdev_t *tvd = vd->vdev_top;
2024 uint8_t cant_read = vd->vdev_cant_read;
2025 boolean_t required;
2026
2027 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2028
2029 if (vd == spa->spa_root_vdev || vd == tvd)
2030 return (B_TRUE);
2031
2032 /*
2033 * Temporarily mark the device as unreadable, and then determine
2034 * whether this results in any DTL outages in the top-level vdev.
2035 * If not, we can safely offline/detach/remove the device.
2036 */
2037 vd->vdev_cant_read = B_TRUE;
2038 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2039 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2040 vd->vdev_cant_read = cant_read;
2041 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2042
2043 if (!required && zio_injection_enabled)
2044 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2045
2046 return (required);
2047 }
2048
2049 /*
2050 * Determine if resilver is needed, and if so the txg range.
2051 */
2052 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)2053 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2054 {
2055 boolean_t needed = B_FALSE;
2056 uint64_t thismin = UINT64_MAX;
2057 uint64_t thismax = 0;
2058
2059 if (vd->vdev_children == 0) {
2060 mutex_enter(&vd->vdev_dtl_lock);
2061 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2062 vdev_writeable(vd)) {
2063
2064 thismin = vdev_dtl_min(vd);
2065 thismax = vdev_dtl_max(vd);
2066 needed = B_TRUE;
2067 }
2068 mutex_exit(&vd->vdev_dtl_lock);
2069 } else {
2070 for (int c = 0; c < vd->vdev_children; c++) {
2071 vdev_t *cvd = vd->vdev_child[c];
2072 uint64_t cmin, cmax;
2073
2074 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2075 thismin = MIN(thismin, cmin);
2076 thismax = MAX(thismax, cmax);
2077 needed = B_TRUE;
2078 }
2079 }
2080 }
2081
2082 if (needed && minp) {
2083 *minp = thismin;
2084 *maxp = thismax;
2085 }
2086 return (needed);
2087 }
2088
2089 void
vdev_load(vdev_t * vd)2090 vdev_load(vdev_t *vd)
2091 {
2092 /*
2093 * Recursively load all children.
2094 */
2095 for (int c = 0; c < vd->vdev_children; c++)
2096 vdev_load(vd->vdev_child[c]);
2097
2098 /*
2099 * If this is a top-level vdev, initialize its metaslabs.
2100 */
2101 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2102 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2103 vdev_metaslab_init(vd, 0) != 0))
2104 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2105 VDEV_AUX_CORRUPT_DATA);
2106
2107 /*
2108 * If this is a leaf vdev, load its DTL.
2109 */
2110 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2111 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2112 VDEV_AUX_CORRUPT_DATA);
2113 }
2114
2115 /*
2116 * The special vdev case is used for hot spares and l2cache devices. Its
2117 * sole purpose it to set the vdev state for the associated vdev. To do this,
2118 * we make sure that we can open the underlying device, then try to read the
2119 * label, and make sure that the label is sane and that it hasn't been
2120 * repurposed to another pool.
2121 */
2122 int
vdev_validate_aux(vdev_t * vd)2123 vdev_validate_aux(vdev_t *vd)
2124 {
2125 nvlist_t *label;
2126 uint64_t guid, version;
2127 uint64_t state;
2128
2129 if (!vdev_readable(vd))
2130 return (0);
2131
2132 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2133 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2134 VDEV_AUX_CORRUPT_DATA);
2135 return (-1);
2136 }
2137
2138 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2139 !SPA_VERSION_IS_SUPPORTED(version) ||
2140 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2141 guid != vd->vdev_guid ||
2142 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2143 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2144 VDEV_AUX_CORRUPT_DATA);
2145 nvlist_free(label);
2146 return (-1);
2147 }
2148
2149 /*
2150 * We don't actually check the pool state here. If it's in fact in
2151 * use by another pool, we update this fact on the fly when requested.
2152 */
2153 nvlist_free(label);
2154 return (0);
2155 }
2156
2157 void
vdev_remove(vdev_t * vd,uint64_t txg)2158 vdev_remove(vdev_t *vd, uint64_t txg)
2159 {
2160 spa_t *spa = vd->vdev_spa;
2161 objset_t *mos = spa->spa_meta_objset;
2162 dmu_tx_t *tx;
2163
2164 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2165
2166 if (vd->vdev_ms != NULL) {
2167 metaslab_group_t *mg = vd->vdev_mg;
2168
2169 metaslab_group_histogram_verify(mg);
2170 metaslab_class_histogram_verify(mg->mg_class);
2171
2172 for (int m = 0; m < vd->vdev_ms_count; m++) {
2173 metaslab_t *msp = vd->vdev_ms[m];
2174
2175 if (msp == NULL || msp->ms_sm == NULL)
2176 continue;
2177
2178 mutex_enter(&msp->ms_lock);
2179 /*
2180 * If the metaslab was not loaded when the vdev
2181 * was removed then the histogram accounting may
2182 * not be accurate. Update the histogram information
2183 * here so that we ensure that the metaslab group
2184 * and metaslab class are up-to-date.
2185 */
2186 metaslab_group_histogram_remove(mg, msp);
2187
2188 VERIFY0(space_map_allocated(msp->ms_sm));
2189 space_map_free(msp->ms_sm, tx);
2190 space_map_close(msp->ms_sm);
2191 msp->ms_sm = NULL;
2192 mutex_exit(&msp->ms_lock);
2193 }
2194
2195 metaslab_group_histogram_verify(mg);
2196 metaslab_class_histogram_verify(mg->mg_class);
2197 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2198 ASSERT0(mg->mg_histogram[i]);
2199
2200 }
2201
2202 if (vd->vdev_ms_array) {
2203 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2204 vd->vdev_ms_array = 0;
2205 }
2206 dmu_tx_commit(tx);
2207 }
2208
2209 void
vdev_sync_done(vdev_t * vd,uint64_t txg)2210 vdev_sync_done(vdev_t *vd, uint64_t txg)
2211 {
2212 metaslab_t *msp;
2213 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2214
2215 ASSERT(!vd->vdev_ishole);
2216
2217 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2218 metaslab_sync_done(msp, txg);
2219
2220 if (reassess)
2221 metaslab_sync_reassess(vd->vdev_mg);
2222 }
2223
2224 void
vdev_sync(vdev_t * vd,uint64_t txg)2225 vdev_sync(vdev_t *vd, uint64_t txg)
2226 {
2227 spa_t *spa = vd->vdev_spa;
2228 vdev_t *lvd;
2229 metaslab_t *msp;
2230 dmu_tx_t *tx;
2231
2232 ASSERT(!vd->vdev_ishole);
2233
2234 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2235 ASSERT(vd == vd->vdev_top);
2236 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2237 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2238 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2239 ASSERT(vd->vdev_ms_array != 0);
2240 vdev_config_dirty(vd);
2241 dmu_tx_commit(tx);
2242 }
2243
2244 /*
2245 * Remove the metadata associated with this vdev once it's empty.
2246 */
2247 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2248 vdev_remove(vd, txg);
2249
2250 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2251 metaslab_sync(msp, txg);
2252 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2253 }
2254
2255 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2256 vdev_dtl_sync(lvd, txg);
2257
2258 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2259 }
2260
2261 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)2262 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2263 {
2264 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2265 }
2266
2267 /*
2268 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2269 * not be opened, and no I/O is attempted.
2270 */
2271 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)2272 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2273 {
2274 vdev_t *vd, *tvd;
2275
2276 spa_vdev_state_enter(spa, SCL_NONE);
2277
2278 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2279 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2280
2281 if (!vd->vdev_ops->vdev_op_leaf)
2282 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2283
2284 tvd = vd->vdev_top;
2285
2286 /*
2287 * We don't directly use the aux state here, but if we do a
2288 * vdev_reopen(), we need this value to be present to remember why we
2289 * were faulted.
2290 */
2291 vd->vdev_label_aux = aux;
2292
2293 /*
2294 * Faulted state takes precedence over degraded.
2295 */
2296 vd->vdev_delayed_close = B_FALSE;
2297 vd->vdev_faulted = 1ULL;
2298 vd->vdev_degraded = 0ULL;
2299 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2300
2301 /*
2302 * If this device has the only valid copy of the data, then
2303 * back off and simply mark the vdev as degraded instead.
2304 */
2305 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2306 vd->vdev_degraded = 1ULL;
2307 vd->vdev_faulted = 0ULL;
2308
2309 /*
2310 * If we reopen the device and it's not dead, only then do we
2311 * mark it degraded.
2312 */
2313 vdev_reopen(tvd);
2314
2315 if (vdev_readable(vd))
2316 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2317 }
2318
2319 return (spa_vdev_state_exit(spa, vd, 0));
2320 }
2321
2322 /*
2323 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2324 * user that something is wrong. The vdev continues to operate as normal as far
2325 * as I/O is concerned.
2326 */
2327 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)2328 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2329 {
2330 vdev_t *vd;
2331
2332 spa_vdev_state_enter(spa, SCL_NONE);
2333
2334 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2335 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2336
2337 if (!vd->vdev_ops->vdev_op_leaf)
2338 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2339
2340 /*
2341 * If the vdev is already faulted, then don't do anything.
2342 */
2343 if (vd->vdev_faulted || vd->vdev_degraded)
2344 return (spa_vdev_state_exit(spa, NULL, 0));
2345
2346 vd->vdev_degraded = 1ULL;
2347 if (!vdev_is_dead(vd))
2348 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2349 aux);
2350
2351 return (spa_vdev_state_exit(spa, vd, 0));
2352 }
2353
2354 /*
2355 * Online the given vdev.
2356 *
2357 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2358 * spare device should be detached when the device finishes resilvering.
2359 * Second, the online should be treated like a 'test' online case, so no FMA
2360 * events are generated if the device fails to open.
2361 */
2362 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)2363 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2364 {
2365 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2366
2367 spa_vdev_state_enter(spa, SCL_NONE);
2368
2369 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2370 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2371
2372 if (!vd->vdev_ops->vdev_op_leaf)
2373 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2374
2375 tvd = vd->vdev_top;
2376 vd->vdev_offline = B_FALSE;
2377 vd->vdev_tmpoffline = B_FALSE;
2378 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2379 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2380
2381 /* XXX - L2ARC 1.0 does not support expansion */
2382 if (!vd->vdev_aux) {
2383 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2384 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2385 }
2386
2387 vdev_reopen(tvd);
2388 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2389
2390 if (!vd->vdev_aux) {
2391 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2392 pvd->vdev_expanding = B_FALSE;
2393 }
2394
2395 if (newstate)
2396 *newstate = vd->vdev_state;
2397 if ((flags & ZFS_ONLINE_UNSPARE) &&
2398 !vdev_is_dead(vd) && vd->vdev_parent &&
2399 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2400 vd->vdev_parent->vdev_child[0] == vd)
2401 vd->vdev_unspare = B_TRUE;
2402
2403 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2404
2405 /* XXX - L2ARC 1.0 does not support expansion */
2406 if (vd->vdev_aux)
2407 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2408 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2409 }
2410 return (spa_vdev_state_exit(spa, vd, 0));
2411 }
2412
2413 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)2414 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2415 {
2416 vdev_t *vd, *tvd;
2417 int error = 0;
2418 uint64_t generation;
2419 metaslab_group_t *mg;
2420
2421 top:
2422 spa_vdev_state_enter(spa, SCL_ALLOC);
2423
2424 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2425 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2426
2427 if (!vd->vdev_ops->vdev_op_leaf)
2428 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2429
2430 tvd = vd->vdev_top;
2431 mg = tvd->vdev_mg;
2432 generation = spa->spa_config_generation + 1;
2433
2434 /*
2435 * If the device isn't already offline, try to offline it.
2436 */
2437 if (!vd->vdev_offline) {
2438 /*
2439 * If this device has the only valid copy of some data,
2440 * don't allow it to be offlined. Log devices are always
2441 * expendable.
2442 */
2443 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2444 vdev_dtl_required(vd))
2445 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2446
2447 /*
2448 * If the top-level is a slog and it has had allocations
2449 * then proceed. We check that the vdev's metaslab group
2450 * is not NULL since it's possible that we may have just
2451 * added this vdev but not yet initialized its metaslabs.
2452 */
2453 if (tvd->vdev_islog && mg != NULL) {
2454 /*
2455 * Prevent any future allocations.
2456 */
2457 metaslab_group_passivate(mg);
2458 (void) spa_vdev_state_exit(spa, vd, 0);
2459
2460 error = spa_offline_log(spa);
2461
2462 spa_vdev_state_enter(spa, SCL_ALLOC);
2463
2464 /*
2465 * Check to see if the config has changed.
2466 */
2467 if (error || generation != spa->spa_config_generation) {
2468 metaslab_group_activate(mg);
2469 if (error)
2470 return (spa_vdev_state_exit(spa,
2471 vd, error));
2472 (void) spa_vdev_state_exit(spa, vd, 0);
2473 goto top;
2474 }
2475 ASSERT0(tvd->vdev_stat.vs_alloc);
2476 }
2477
2478 /*
2479 * Offline this device and reopen its top-level vdev.
2480 * If the top-level vdev is a log device then just offline
2481 * it. Otherwise, if this action results in the top-level
2482 * vdev becoming unusable, undo it and fail the request.
2483 */
2484 vd->vdev_offline = B_TRUE;
2485 vdev_reopen(tvd);
2486
2487 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2488 vdev_is_dead(tvd)) {
2489 vd->vdev_offline = B_FALSE;
2490 vdev_reopen(tvd);
2491 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2492 }
2493
2494 /*
2495 * Add the device back into the metaslab rotor so that
2496 * once we online the device it's open for business.
2497 */
2498 if (tvd->vdev_islog && mg != NULL)
2499 metaslab_group_activate(mg);
2500 }
2501
2502 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2503
2504 return (spa_vdev_state_exit(spa, vd, 0));
2505 }
2506
2507 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)2508 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2509 {
2510 int error;
2511
2512 mutex_enter(&spa->spa_vdev_top_lock);
2513 error = vdev_offline_locked(spa, guid, flags);
2514 mutex_exit(&spa->spa_vdev_top_lock);
2515
2516 return (error);
2517 }
2518
2519 /*
2520 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2521 * vdev_offline(), we assume the spa config is locked. We also clear all
2522 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2523 */
2524 void
vdev_clear(spa_t * spa,vdev_t * vd)2525 vdev_clear(spa_t *spa, vdev_t *vd)
2526 {
2527 vdev_t *rvd = spa->spa_root_vdev;
2528
2529 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2530
2531 if (vd == NULL)
2532 vd = rvd;
2533
2534 vd->vdev_stat.vs_read_errors = 0;
2535 vd->vdev_stat.vs_write_errors = 0;
2536 vd->vdev_stat.vs_checksum_errors = 0;
2537
2538 for (int c = 0; c < vd->vdev_children; c++)
2539 vdev_clear(spa, vd->vdev_child[c]);
2540
2541 /*
2542 * If we're in the FAULTED state or have experienced failed I/O, then
2543 * clear the persistent state and attempt to reopen the device. We
2544 * also mark the vdev config dirty, so that the new faulted state is
2545 * written out to disk.
2546 */
2547 if (vd->vdev_faulted || vd->vdev_degraded ||
2548 !vdev_readable(vd) || !vdev_writeable(vd)) {
2549
2550 /*
2551 * When reopening in reponse to a clear event, it may be due to
2552 * a fmadm repair request. In this case, if the device is
2553 * still broken, we want to still post the ereport again.
2554 */
2555 vd->vdev_forcefault = B_TRUE;
2556
2557 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2558 vd->vdev_cant_read = B_FALSE;
2559 vd->vdev_cant_write = B_FALSE;
2560
2561 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2562
2563 vd->vdev_forcefault = B_FALSE;
2564
2565 if (vd != rvd && vdev_writeable(vd->vdev_top))
2566 vdev_state_dirty(vd->vdev_top);
2567
2568 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2569 spa_async_request(spa, SPA_ASYNC_RESILVER);
2570
2571 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2572 }
2573
2574 /*
2575 * When clearing a FMA-diagnosed fault, we always want to
2576 * unspare the device, as we assume that the original spare was
2577 * done in response to the FMA fault.
2578 */
2579 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2580 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2581 vd->vdev_parent->vdev_child[0] == vd)
2582 vd->vdev_unspare = B_TRUE;
2583 }
2584
2585 boolean_t
vdev_is_dead(vdev_t * vd)2586 vdev_is_dead(vdev_t *vd)
2587 {
2588 /*
2589 * Holes and missing devices are always considered "dead".
2590 * This simplifies the code since we don't have to check for
2591 * these types of devices in the various code paths.
2592 * Instead we rely on the fact that we skip over dead devices
2593 * before issuing I/O to them.
2594 */
2595 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2596 vd->vdev_ops == &vdev_missing_ops);
2597 }
2598
2599 boolean_t
vdev_readable(vdev_t * vd)2600 vdev_readable(vdev_t *vd)
2601 {
2602 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2603 }
2604
2605 boolean_t
vdev_writeable(vdev_t * vd)2606 vdev_writeable(vdev_t *vd)
2607 {
2608 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2609 }
2610
2611 boolean_t
vdev_allocatable(vdev_t * vd)2612 vdev_allocatable(vdev_t *vd)
2613 {
2614 uint64_t state = vd->vdev_state;
2615
2616 /*
2617 * We currently allow allocations from vdevs which may be in the
2618 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2619 * fails to reopen then we'll catch it later when we're holding
2620 * the proper locks. Note that we have to get the vdev state
2621 * in a local variable because although it changes atomically,
2622 * we're asking two separate questions about it.
2623 */
2624 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2625 !vd->vdev_cant_write && !vd->vdev_ishole);
2626 }
2627
2628 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)2629 vdev_accessible(vdev_t *vd, zio_t *zio)
2630 {
2631 ASSERT(zio->io_vd == vd);
2632
2633 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2634 return (B_FALSE);
2635
2636 if (zio->io_type == ZIO_TYPE_READ)
2637 return (!vd->vdev_cant_read);
2638
2639 if (zio->io_type == ZIO_TYPE_WRITE)
2640 return (!vd->vdev_cant_write);
2641
2642 return (B_TRUE);
2643 }
2644
2645 /*
2646 * Get statistics for the given vdev.
2647 */
2648 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)2649 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2650 {
2651 spa_t *spa = vd->vdev_spa;
2652 vdev_t *rvd = spa->spa_root_vdev;
2653
2654 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2655
2656 mutex_enter(&vd->vdev_stat_lock);
2657 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2658 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2659 vs->vs_state = vd->vdev_state;
2660 vs->vs_rsize = vdev_get_min_asize(vd);
2661 if (vd->vdev_ops->vdev_op_leaf)
2662 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2663 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2664 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2665 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2666 }
2667
2668 /*
2669 * If we're getting stats on the root vdev, aggregate the I/O counts
2670 * over all top-level vdevs (i.e. the direct children of the root).
2671 */
2672 if (vd == rvd) {
2673 for (int c = 0; c < rvd->vdev_children; c++) {
2674 vdev_t *cvd = rvd->vdev_child[c];
2675 vdev_stat_t *cvs = &cvd->vdev_stat;
2676
2677 for (int t = 0; t < ZIO_TYPES; t++) {
2678 vs->vs_ops[t] += cvs->vs_ops[t];
2679 vs->vs_bytes[t] += cvs->vs_bytes[t];
2680 }
2681 cvs->vs_scan_removing = cvd->vdev_removing;
2682 }
2683 }
2684 mutex_exit(&vd->vdev_stat_lock);
2685 }
2686
2687 void
vdev_clear_stats(vdev_t * vd)2688 vdev_clear_stats(vdev_t *vd)
2689 {
2690 mutex_enter(&vd->vdev_stat_lock);
2691 vd->vdev_stat.vs_space = 0;
2692 vd->vdev_stat.vs_dspace = 0;
2693 vd->vdev_stat.vs_alloc = 0;
2694 mutex_exit(&vd->vdev_stat_lock);
2695 }
2696
2697 void
vdev_scan_stat_init(vdev_t * vd)2698 vdev_scan_stat_init(vdev_t *vd)
2699 {
2700 vdev_stat_t *vs = &vd->vdev_stat;
2701
2702 for (int c = 0; c < vd->vdev_children; c++)
2703 vdev_scan_stat_init(vd->vdev_child[c]);
2704
2705 mutex_enter(&vd->vdev_stat_lock);
2706 vs->vs_scan_processed = 0;
2707 mutex_exit(&vd->vdev_stat_lock);
2708 }
2709
2710 void
vdev_stat_update(zio_t * zio,uint64_t psize)2711 vdev_stat_update(zio_t *zio, uint64_t psize)
2712 {
2713 spa_t *spa = zio->io_spa;
2714 vdev_t *rvd = spa->spa_root_vdev;
2715 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2716 vdev_t *pvd;
2717 uint64_t txg = zio->io_txg;
2718 vdev_stat_t *vs = &vd->vdev_stat;
2719 zio_type_t type = zio->io_type;
2720 int flags = zio->io_flags;
2721
2722 /*
2723 * If this i/o is a gang leader, it didn't do any actual work.
2724 */
2725 if (zio->io_gang_tree)
2726 return;
2727
2728 if (zio->io_error == 0) {
2729 /*
2730 * If this is a root i/o, don't count it -- we've already
2731 * counted the top-level vdevs, and vdev_get_stats() will
2732 * aggregate them when asked. This reduces contention on
2733 * the root vdev_stat_lock and implicitly handles blocks
2734 * that compress away to holes, for which there is no i/o.
2735 * (Holes never create vdev children, so all the counters
2736 * remain zero, which is what we want.)
2737 *
2738 * Note: this only applies to successful i/o (io_error == 0)
2739 * because unlike i/o counts, errors are not additive.
2740 * When reading a ditto block, for example, failure of
2741 * one top-level vdev does not imply a root-level error.
2742 */
2743 if (vd == rvd)
2744 return;
2745
2746 ASSERT(vd == zio->io_vd);
2747
2748 if (flags & ZIO_FLAG_IO_BYPASS)
2749 return;
2750
2751 mutex_enter(&vd->vdev_stat_lock);
2752
2753 if (flags & ZIO_FLAG_IO_REPAIR) {
2754 if (flags & ZIO_FLAG_SCAN_THREAD) {
2755 dsl_scan_phys_t *scn_phys =
2756 &spa->spa_dsl_pool->dp_scan->scn_phys;
2757 uint64_t *processed = &scn_phys->scn_processed;
2758
2759 /* XXX cleanup? */
2760 if (vd->vdev_ops->vdev_op_leaf)
2761 atomic_add_64(processed, psize);
2762 vs->vs_scan_processed += psize;
2763 }
2764
2765 if (flags & ZIO_FLAG_SELF_HEAL)
2766 vs->vs_self_healed += psize;
2767 }
2768
2769 vs->vs_ops[type]++;
2770 vs->vs_bytes[type] += psize;
2771
2772 mutex_exit(&vd->vdev_stat_lock);
2773 return;
2774 }
2775
2776 if (flags & ZIO_FLAG_SPECULATIVE)
2777 return;
2778
2779 /*
2780 * If this is an I/O error that is going to be retried, then ignore the
2781 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2782 * hard errors, when in reality they can happen for any number of
2783 * innocuous reasons (bus resets, MPxIO link failure, etc).
2784 */
2785 if (zio->io_error == EIO &&
2786 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2787 return;
2788
2789 /*
2790 * Intent logs writes won't propagate their error to the root
2791 * I/O so don't mark these types of failures as pool-level
2792 * errors.
2793 */
2794 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2795 return;
2796
2797 mutex_enter(&vd->vdev_stat_lock);
2798 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2799 if (zio->io_error == ECKSUM)
2800 vs->vs_checksum_errors++;
2801 else
2802 vs->vs_read_errors++;
2803 }
2804 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2805 vs->vs_write_errors++;
2806 mutex_exit(&vd->vdev_stat_lock);
2807
2808 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2809 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2810 (flags & ZIO_FLAG_SCAN_THREAD) ||
2811 spa->spa_claiming)) {
2812 /*
2813 * This is either a normal write (not a repair), or it's
2814 * a repair induced by the scrub thread, or it's a repair
2815 * made by zil_claim() during spa_load() in the first txg.
2816 * In the normal case, we commit the DTL change in the same
2817 * txg as the block was born. In the scrub-induced repair
2818 * case, we know that scrubs run in first-pass syncing context,
2819 * so we commit the DTL change in spa_syncing_txg(spa).
2820 * In the zil_claim() case, we commit in spa_first_txg(spa).
2821 *
2822 * We currently do not make DTL entries for failed spontaneous
2823 * self-healing writes triggered by normal (non-scrubbing)
2824 * reads, because we have no transactional context in which to
2825 * do so -- and it's not clear that it'd be desirable anyway.
2826 */
2827 if (vd->vdev_ops->vdev_op_leaf) {
2828 uint64_t commit_txg = txg;
2829 if (flags & ZIO_FLAG_SCAN_THREAD) {
2830 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2831 ASSERT(spa_sync_pass(spa) == 1);
2832 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2833 commit_txg = spa_syncing_txg(spa);
2834 } else if (spa->spa_claiming) {
2835 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2836 commit_txg = spa_first_txg(spa);
2837 }
2838 ASSERT(commit_txg >= spa_syncing_txg(spa));
2839 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2840 return;
2841 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2842 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2843 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2844 }
2845 if (vd != rvd)
2846 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2847 }
2848 }
2849
2850 /*
2851 * Update the in-core space usage stats for this vdev, its metaslab class,
2852 * and the root vdev.
2853 */
2854 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2855 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2856 int64_t space_delta)
2857 {
2858 int64_t dspace_delta = space_delta;
2859 spa_t *spa = vd->vdev_spa;
2860 vdev_t *rvd = spa->spa_root_vdev;
2861 metaslab_group_t *mg = vd->vdev_mg;
2862 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2863
2864 ASSERT(vd == vd->vdev_top);
2865
2866 /*
2867 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2868 * factor. We must calculate this here and not at the root vdev
2869 * because the root vdev's psize-to-asize is simply the max of its
2870 * childrens', thus not accurate enough for us.
2871 */
2872 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2873 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2874 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2875 vd->vdev_deflate_ratio;
2876
2877 mutex_enter(&vd->vdev_stat_lock);
2878 vd->vdev_stat.vs_alloc += alloc_delta;
2879 vd->vdev_stat.vs_space += space_delta;
2880 vd->vdev_stat.vs_dspace += dspace_delta;
2881 mutex_exit(&vd->vdev_stat_lock);
2882
2883 if (mc == spa_normal_class(spa)) {
2884 mutex_enter(&rvd->vdev_stat_lock);
2885 rvd->vdev_stat.vs_alloc += alloc_delta;
2886 rvd->vdev_stat.vs_space += space_delta;
2887 rvd->vdev_stat.vs_dspace += dspace_delta;
2888 mutex_exit(&rvd->vdev_stat_lock);
2889 }
2890
2891 if (mc != NULL) {
2892 ASSERT(rvd == vd->vdev_parent);
2893 ASSERT(vd->vdev_ms_count != 0);
2894
2895 metaslab_class_space_update(mc,
2896 alloc_delta, defer_delta, space_delta, dspace_delta);
2897 }
2898 }
2899
2900 /*
2901 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2902 * so that it will be written out next time the vdev configuration is synced.
2903 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2904 */
2905 void
vdev_config_dirty(vdev_t * vd)2906 vdev_config_dirty(vdev_t *vd)
2907 {
2908 spa_t *spa = vd->vdev_spa;
2909 vdev_t *rvd = spa->spa_root_vdev;
2910 int c;
2911
2912 ASSERT(spa_writeable(spa));
2913
2914 /*
2915 * If this is an aux vdev (as with l2cache and spare devices), then we
2916 * update the vdev config manually and set the sync flag.
2917 */
2918 if (vd->vdev_aux != NULL) {
2919 spa_aux_vdev_t *sav = vd->vdev_aux;
2920 nvlist_t **aux;
2921 uint_t naux;
2922
2923 for (c = 0; c < sav->sav_count; c++) {
2924 if (sav->sav_vdevs[c] == vd)
2925 break;
2926 }
2927
2928 if (c == sav->sav_count) {
2929 /*
2930 * We're being removed. There's nothing more to do.
2931 */
2932 ASSERT(sav->sav_sync == B_TRUE);
2933 return;
2934 }
2935
2936 sav->sav_sync = B_TRUE;
2937
2938 if (nvlist_lookup_nvlist_array(sav->sav_config,
2939 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2940 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2941 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2942 }
2943
2944 ASSERT(c < naux);
2945
2946 /*
2947 * Setting the nvlist in the middle if the array is a little
2948 * sketchy, but it will work.
2949 */
2950 nvlist_free(aux[c]);
2951 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2952
2953 return;
2954 }
2955
2956 /*
2957 * The dirty list is protected by the SCL_CONFIG lock. The caller
2958 * must either hold SCL_CONFIG as writer, or must be the sync thread
2959 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2960 * so this is sufficient to ensure mutual exclusion.
2961 */
2962 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2963 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2964 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2965
2966 if (vd == rvd) {
2967 for (c = 0; c < rvd->vdev_children; c++)
2968 vdev_config_dirty(rvd->vdev_child[c]);
2969 } else {
2970 ASSERT(vd == vd->vdev_top);
2971
2972 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2973 !vd->vdev_ishole)
2974 list_insert_head(&spa->spa_config_dirty_list, vd);
2975 }
2976 }
2977
2978 void
vdev_config_clean(vdev_t * vd)2979 vdev_config_clean(vdev_t *vd)
2980 {
2981 spa_t *spa = vd->vdev_spa;
2982
2983 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2984 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2985 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2986
2987 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2988 list_remove(&spa->spa_config_dirty_list, vd);
2989 }
2990
2991 /*
2992 * Mark a top-level vdev's state as dirty, so that the next pass of
2993 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2994 * the state changes from larger config changes because they require
2995 * much less locking, and are often needed for administrative actions.
2996 */
2997 void
vdev_state_dirty(vdev_t * vd)2998 vdev_state_dirty(vdev_t *vd)
2999 {
3000 spa_t *spa = vd->vdev_spa;
3001
3002 ASSERT(spa_writeable(spa));
3003 ASSERT(vd == vd->vdev_top);
3004
3005 /*
3006 * The state list is protected by the SCL_STATE lock. The caller
3007 * must either hold SCL_STATE as writer, or must be the sync thread
3008 * (which holds SCL_STATE as reader). There's only one sync thread,
3009 * so this is sufficient to ensure mutual exclusion.
3010 */
3011 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3012 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3013 spa_config_held(spa, SCL_STATE, RW_READER)));
3014
3015 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3016 list_insert_head(&spa->spa_state_dirty_list, vd);
3017 }
3018
3019 void
vdev_state_clean(vdev_t * vd)3020 vdev_state_clean(vdev_t *vd)
3021 {
3022 spa_t *spa = vd->vdev_spa;
3023
3024 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3025 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3026 spa_config_held(spa, SCL_STATE, RW_READER)));
3027
3028 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3029 list_remove(&spa->spa_state_dirty_list, vd);
3030 }
3031
3032 /*
3033 * Propagate vdev state up from children to parent.
3034 */
3035 void
vdev_propagate_state(vdev_t * vd)3036 vdev_propagate_state(vdev_t *vd)
3037 {
3038 spa_t *spa = vd->vdev_spa;
3039 vdev_t *rvd = spa->spa_root_vdev;
3040 int degraded = 0, faulted = 0;
3041 int corrupted = 0;
3042 vdev_t *child;
3043
3044 if (vd->vdev_children > 0) {
3045 for (int c = 0; c < vd->vdev_children; c++) {
3046 child = vd->vdev_child[c];
3047
3048 /*
3049 * Don't factor holes into the decision.
3050 */
3051 if (child->vdev_ishole)
3052 continue;
3053
3054 if (!vdev_readable(child) ||
3055 (!vdev_writeable(child) && spa_writeable(spa))) {
3056 /*
3057 * Root special: if there is a top-level log
3058 * device, treat the root vdev as if it were
3059 * degraded.
3060 */
3061 if (child->vdev_islog && vd == rvd)
3062 degraded++;
3063 else
3064 faulted++;
3065 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3066 degraded++;
3067 }
3068
3069 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3070 corrupted++;
3071 }
3072
3073 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3074
3075 /*
3076 * Root special: if there is a top-level vdev that cannot be
3077 * opened due to corrupted metadata, then propagate the root
3078 * vdev's aux state as 'corrupt' rather than 'insufficient
3079 * replicas'.
3080 */
3081 if (corrupted && vd == rvd &&
3082 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3083 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3084 VDEV_AUX_CORRUPT_DATA);
3085 }
3086
3087 if (vd->vdev_parent)
3088 vdev_propagate_state(vd->vdev_parent);
3089 }
3090
3091 /*
3092 * Set a vdev's state. If this is during an open, we don't update the parent
3093 * state, because we're in the process of opening children depth-first.
3094 * Otherwise, we propagate the change to the parent.
3095 *
3096 * If this routine places a device in a faulted state, an appropriate ereport is
3097 * generated.
3098 */
3099 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)3100 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3101 {
3102 uint64_t save_state;
3103 spa_t *spa = vd->vdev_spa;
3104
3105 if (state == vd->vdev_state) {
3106 vd->vdev_stat.vs_aux = aux;
3107 return;
3108 }
3109
3110 save_state = vd->vdev_state;
3111
3112 vd->vdev_state = state;
3113 vd->vdev_stat.vs_aux = aux;
3114
3115 /*
3116 * If we are setting the vdev state to anything but an open state, then
3117 * always close the underlying device unless the device has requested
3118 * a delayed close (i.e. we're about to remove or fault the device).
3119 * Otherwise, we keep accessible but invalid devices open forever.
3120 * We don't call vdev_close() itself, because that implies some extra
3121 * checks (offline, etc) that we don't want here. This is limited to
3122 * leaf devices, because otherwise closing the device will affect other
3123 * children.
3124 */
3125 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3126 vd->vdev_ops->vdev_op_leaf)
3127 vd->vdev_ops->vdev_op_close(vd);
3128
3129 /*
3130 * If we have brought this vdev back into service, we need
3131 * to notify fmd so that it can gracefully repair any outstanding
3132 * cases due to a missing device. We do this in all cases, even those
3133 * that probably don't correlate to a repaired fault. This is sure to
3134 * catch all cases, and we let the zfs-retire agent sort it out. If
3135 * this is a transient state it's OK, as the retire agent will
3136 * double-check the state of the vdev before repairing it.
3137 */
3138 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3139 vd->vdev_prevstate != state)
3140 zfs_post_state_change(spa, vd);
3141
3142 if (vd->vdev_removed &&
3143 state == VDEV_STATE_CANT_OPEN &&
3144 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3145 /*
3146 * If the previous state is set to VDEV_STATE_REMOVED, then this
3147 * device was previously marked removed and someone attempted to
3148 * reopen it. If this failed due to a nonexistent device, then
3149 * keep the device in the REMOVED state. We also let this be if
3150 * it is one of our special test online cases, which is only
3151 * attempting to online the device and shouldn't generate an FMA
3152 * fault.
3153 */
3154 vd->vdev_state = VDEV_STATE_REMOVED;
3155 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3156 } else if (state == VDEV_STATE_REMOVED) {
3157 vd->vdev_removed = B_TRUE;
3158 } else if (state == VDEV_STATE_CANT_OPEN) {
3159 /*
3160 * If we fail to open a vdev during an import or recovery, we
3161 * mark it as "not available", which signifies that it was
3162 * never there to begin with. Failure to open such a device
3163 * is not considered an error.
3164 */
3165 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3166 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3167 vd->vdev_ops->vdev_op_leaf)
3168 vd->vdev_not_present = 1;
3169
3170 /*
3171 * Post the appropriate ereport. If the 'prevstate' field is
3172 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3173 * that this is part of a vdev_reopen(). In this case, we don't
3174 * want to post the ereport if the device was already in the
3175 * CANT_OPEN state beforehand.
3176 *
3177 * If the 'checkremove' flag is set, then this is an attempt to
3178 * online the device in response to an insertion event. If we
3179 * hit this case, then we have detected an insertion event for a
3180 * faulted or offline device that wasn't in the removed state.
3181 * In this scenario, we don't post an ereport because we are
3182 * about to replace the device, or attempt an online with
3183 * vdev_forcefault, which will generate the fault for us.
3184 */
3185 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3186 !vd->vdev_not_present && !vd->vdev_checkremove &&
3187 vd != spa->spa_root_vdev) {
3188 const char *class;
3189
3190 switch (aux) {
3191 case VDEV_AUX_OPEN_FAILED:
3192 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3193 break;
3194 case VDEV_AUX_CORRUPT_DATA:
3195 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3196 break;
3197 case VDEV_AUX_NO_REPLICAS:
3198 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3199 break;
3200 case VDEV_AUX_BAD_GUID_SUM:
3201 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3202 break;
3203 case VDEV_AUX_TOO_SMALL:
3204 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3205 break;
3206 case VDEV_AUX_BAD_LABEL:
3207 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3208 break;
3209 default:
3210 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3211 }
3212
3213 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3214 }
3215
3216 /* Erase any notion of persistent removed state */
3217 vd->vdev_removed = B_FALSE;
3218 } else {
3219 vd->vdev_removed = B_FALSE;
3220 }
3221
3222 if (!isopen && vd->vdev_parent)
3223 vdev_propagate_state(vd->vdev_parent);
3224 }
3225
3226 /*
3227 * Check the vdev configuration to ensure that it's capable of supporting
3228 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3229 * In addition, only a single top-level vdev is allowed and none of the leaves
3230 * can be wholedisks.
3231 */
3232 boolean_t
vdev_is_bootable(vdev_t * vd)3233 vdev_is_bootable(vdev_t *vd)
3234 {
3235 if (!vd->vdev_ops->vdev_op_leaf) {
3236 char *vdev_type = vd->vdev_ops->vdev_op_type;
3237
3238 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3239 vd->vdev_children > 1) {
3240 return (B_FALSE);
3241 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3242 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3243 return (B_FALSE);
3244 }
3245 }
3246
3247 for (int c = 0; c < vd->vdev_children; c++) {
3248 if (!vdev_is_bootable(vd->vdev_child[c]))
3249 return (B_FALSE);
3250 }
3251 return (B_TRUE);
3252 }
3253
3254 /*
3255 * Load the state from the original vdev tree (ovd) which
3256 * we've retrieved from the MOS config object. If the original
3257 * vdev was offline or faulted then we transfer that state to the
3258 * device in the current vdev tree (nvd).
3259 */
3260 void
vdev_load_log_state(vdev_t * nvd,vdev_t * ovd)3261 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3262 {
3263 spa_t *spa = nvd->vdev_spa;
3264
3265 ASSERT(nvd->vdev_top->vdev_islog);
3266 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3267 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3268
3269 for (int c = 0; c < nvd->vdev_children; c++)
3270 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3271
3272 if (nvd->vdev_ops->vdev_op_leaf) {
3273 /*
3274 * Restore the persistent vdev state
3275 */
3276 nvd->vdev_offline = ovd->vdev_offline;
3277 nvd->vdev_faulted = ovd->vdev_faulted;
3278 nvd->vdev_degraded = ovd->vdev_degraded;
3279 nvd->vdev_removed = ovd->vdev_removed;
3280 }
3281 }
3282
3283 /*
3284 * Determine if a log device has valid content. If the vdev was
3285 * removed or faulted in the MOS config then we know that
3286 * the content on the log device has already been written to the pool.
3287 */
3288 boolean_t
vdev_log_state_valid(vdev_t * vd)3289 vdev_log_state_valid(vdev_t *vd)
3290 {
3291 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3292 !vd->vdev_removed)
3293 return (B_TRUE);
3294
3295 for (int c = 0; c < vd->vdev_children; c++)
3296 if (vdev_log_state_valid(vd->vdev_child[c]))
3297 return (B_TRUE);
3298
3299 return (B_FALSE);
3300 }
3301
3302 /*
3303 * Expand a vdev if possible.
3304 */
3305 void
vdev_expand(vdev_t * vd,uint64_t txg)3306 vdev_expand(vdev_t *vd, uint64_t txg)
3307 {
3308 ASSERT(vd->vdev_top == vd);
3309 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3310
3311 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3312 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3313 vdev_config_dirty(vd);
3314 }
3315 }
3316
3317 /*
3318 * Split a vdev.
3319 */
3320 void
vdev_split(vdev_t * vd)3321 vdev_split(vdev_t *vd)
3322 {
3323 vdev_t *cvd, *pvd = vd->vdev_parent;
3324
3325 vdev_remove_child(pvd, vd);
3326 vdev_compact_children(pvd);
3327
3328 cvd = pvd->vdev_child[0];
3329 if (pvd->vdev_children == 1) {
3330 vdev_remove_parent(cvd);
3331 cvd->vdev_splitting = B_TRUE;
3332 }
3333 vdev_propagate_state(cvd);
3334 }
3335
3336 void
vdev_deadman(vdev_t * vd)3337 vdev_deadman(vdev_t *vd)
3338 {
3339 for (int c = 0; c < vd->vdev_children; c++) {
3340 vdev_t *cvd = vd->vdev_child[c];
3341
3342 vdev_deadman(cvd);
3343 }
3344
3345 if (vd->vdev_ops->vdev_op_leaf) {
3346 vdev_queue_t *vq = &vd->vdev_queue;
3347
3348 mutex_enter(&vq->vq_lock);
3349 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3350 spa_t *spa = vd->vdev_spa;
3351 zio_t *fio;
3352 uint64_t delta;
3353
3354 /*
3355 * Look at the head of all the pending queues,
3356 * if any I/O has been outstanding for longer than
3357 * the spa_deadman_synctime we panic the system.
3358 */
3359 fio = avl_first(&vq->vq_active_tree);
3360 delta = gethrtime() - fio->io_timestamp;
3361 if (delta > spa_deadman_synctime(spa)) {
3362 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3363 "delta %lluns, last io %lluns",
3364 fio->io_timestamp, delta,
3365 vq->vq_io_complete_ts);
3366 fm_panic("I/O to pool '%s' appears to be "
3367 "hung.", spa_name(spa));
3368 }
3369 }
3370 mutex_exit(&vq->vq_lock);
3371 }
3372 }
3373