1 //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Utility functions for Hexagon specific MCInst queries
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
14 #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
15
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/iterator.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cstddef>
23 #include <cstdint>
24
25 namespace llvm {
26
27 class HexagonMCChecker;
28 class MCContext;
29 class MCExpr;
30 class MCInstrDesc;
31 class MCInstrInfo;
32 class MCRegisterInfo;
33 class MCSubtargetInfo;
34
35 class DuplexCandidate {
36 public:
37 unsigned packetIndexI, packetIndexJ, iClass;
38
DuplexCandidate(unsigned i,unsigned j,unsigned iClass)39 DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
40 : packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
41 };
42
43 namespace Hexagon {
44
45 class PacketIterator
46 : public llvm::iterator_facade_base<
47 PacketIterator, std::forward_iterator_tag, const MCInst> {
48 MCInstrInfo const &MCII;
49 MCInst::const_iterator BundleCurrent;
50 MCInst::const_iterator BundleEnd;
51 MCInst::const_iterator DuplexCurrent;
52 MCInst::const_iterator DuplexEnd;
53
54 public:
55 PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst);
56 PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t);
57
58 PacketIterator &operator++();
59 MCInst const &operator*() const;
60 bool operator==(PacketIterator const &Other) const;
61 };
62
63 } // end namespace Hexagon
64
65 namespace HexagonMCInstrInfo {
66
67 constexpr size_t innerLoopOffset = 0;
68 constexpr int64_t innerLoopMask = 1 << innerLoopOffset;
69
70 constexpr size_t outerLoopOffset = 1;
71 constexpr int64_t outerLoopMask = 1 << outerLoopOffset;
72
73 // do not reorder memory load/stores by default load/stores are re-ordered
74 // and by default loads can be re-ordered
75 constexpr size_t memReorderDisabledOffset = 2;
76 constexpr int64_t memReorderDisabledMask = 1 << memReorderDisabledOffset;
77
78 constexpr size_t splitNoMemOrderOffset = 3;
79 constexpr int64_t splitNoMemorderMask = 1 << splitNoMemOrderOffset;
80
81 constexpr size_t noShuffleOffset = 4;
82 constexpr int64_t noShuffleMask = 1 << noShuffleOffset;
83
84 constexpr size_t bundleInstructionsOffset = 1;
85
86 void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
87 void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
88 MCInst const &MCI);
89
90 // Returns a iterator range of instructions in this bundle
91 iterator_range<Hexagon::PacketIterator>
92 bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI);
93 iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
94
95 // Returns the number of instructions in the bundle
96 size_t bundleSize(MCInst const &MCI);
97
98 // Put the packet in to canonical form, compound, duplex, pad, and shuffle
99 bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
100 MCContext &Context, MCInst &MCB,
101 HexagonMCChecker *Checker,
102 bool AttemptCompatibility = false);
103 bool IsABranchingInst(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
104 MCInst const &I);
105
106 // Create a duplex instruction given the two subinsts
107 MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
108 MCInst const &inst1);
109 MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
110 MCOperand const &MO);
111
112 // Convert this instruction in to a duplex subinst
113 MCInst deriveSubInst(MCInst const &Inst);
114
115 // Return the extender for instruction at Index or nullptr if none
116 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
117 void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
118 MCInst const &MCI);
119
120 // Return memory access size in bytes
121 unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI);
122
123 // Return memory access size
124 unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI);
125
126 MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
127
128 // Return which duplex group this instruction belongs to
129 unsigned getDuplexCandidateGroup(MCInst const &MI);
130
131 // Return a list of all possible instruction duplex combinations
132 SmallVector<DuplexCandidate, 8>
133 getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
134 MCInst const &MCB);
135 unsigned getDuplexRegisterNumbering(unsigned Reg);
136
137 MCExpr const &getExpr(MCExpr const &Expr);
138
139 // Return the index of the extendable operand
140 unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
141
142 // Return a reference to the extendable operand
143 MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
144 MCInst const &MCI);
145
146 // Return the implicit alignment of the extendable operand
147 unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);
148
149 // Return the number of logical bits of the extendable operand
150 unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);
151
152 // Check if the extendable operand is signed.
153 bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI);
154
155 // Return the max value that a constant extendable operand can have
156 // without being extended.
157 int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);
158
159 // Return the min value that a constant extendable operand can have
160 // without being extended.
161 int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);
162
163 // Return instruction name
164 StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI);
165
166 // Return the operand index for the new value.
167 unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
168
169 // Return the operand that consumes or produces a new value.
170 MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
171 unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
172 MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
173 MCInst const &MCI);
174
175 // Return the Hexagon ISA class for the insn.
176 unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
177
178 /// Return the resources used by this instruction
179 unsigned getCVIResources(MCInstrInfo const &MCII,
180 MCSubtargetInfo const &STI,
181 MCInst const &MCI);
182
183 /// Return the slots used by the insn.
184 unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
185 MCInst const &MCI);
186 unsigned getOtherReservedSlots(MCInstrInfo const &MCII,
187 MCSubtargetInfo const &STI, MCInst const &MCI);
188 bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
189
190 // Does the packet have an extender for the instruction at Index
191 bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
192
193 bool hasImmExt(MCInst const &MCI);
194
195 // Return whether the instruction is a legal new-value producer.
196 bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
197 bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
198 bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI);
199 bool hasHvxTmp(MCInstrInfo const &MCII, MCInst const &MCI);
200 unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
201
202 int64_t minConstant(MCInst const &MCI, size_t Index);
203 template <unsigned N, unsigned S>
inRange(MCInst const & MCI,size_t Index)204 bool inRange(MCInst const &MCI, size_t Index) {
205 return isShiftedUInt<N, S>(minConstant(MCI, Index));
206 }
207 template <unsigned N, unsigned S>
inSRange(MCInst const & MCI,size_t Index)208 bool inSRange(MCInst const &MCI, size_t Index) {
209 return isShiftedInt<N, S>(minConstant(MCI, Index));
210 }
inRange(MCInst const & MCI,size_t Index)211 template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
212 return isUInt<N>(minConstant(MCI, Index));
213 }
214
215 // Return the instruction at Index
216 MCInst const &instruction(MCInst const &MCB, size_t Index);
217 bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI);
218
219 // Returns whether this MCInst is a wellformed bundle
220 bool isBundle(MCInst const &MCI);
221
222 // Return whether the insn is an actual insn.
223 bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
224 bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI);
225 bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI);
226 bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI);
227 bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
228
229 // Return whether the instruction needs to be constant extended.
230 bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
231 bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI);
232
233 // Is this double register suitable for use in a duplex subinst
234 bool isDblRegForSubInst(unsigned Reg);
235
236 // Is this a duplex instruction
237 bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
238
239 // Can these instructions be duplexed
240 bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
241
242 // Can these duplex classes be combine in to a duplex instruction
243 bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
244
245 // Return true if the insn may be extended based on the operand value.
246 bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
247
248 // Return whether the instruction must be always extended.
249 bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);
250
251 /// Return whether it is a floating-point insn.
252 bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);
253
254 bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI);
255
256 // Returns whether this instruction is an immediate extender
257 bool isImmext(MCInst const &MCI);
258
259 // Returns whether this bundle is an endloop0
260 bool isInnerLoop(MCInst const &MCI);
261
262 // Is this an integer register
263 bool isIntReg(unsigned Reg);
264
265 // Is this register suitable for use in a duplex subinst
266 bool isIntRegForSubInst(unsigned Reg);
267 bool isMemReorderDisabled(MCInst const &MCI);
268
269 // Return whether the insn is a new-value consumer.
270 bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
271 /// Return true if the operand is a new-value store insn.
272 bool isNewValueStore(MCInstrInfo const &MCII, MCInst const &MCI);
273 bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short);
274
275 // Can these two instructions be duplexed
276 bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
277 bool ExtendedA, MCInst const &MIb, bool ExtendedB,
278 bool bisReversable, MCSubtargetInfo const &STI);
279
280 // Returns whether this bundle is an endloop1
281 bool isOuterLoop(MCInst const &MCI);
282
283 // Return whether this instruction is predicated
284 bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
285 bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
286 bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
287
288 // Return whether the predicate sense is true
289 bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
290
291 // Return true if this is a scalar predicate register.
292 bool isPredReg(MCRegisterInfo const &MRI, unsigned Reg);
293
294 // Returns true if the Ith operand is a predicate register.
295 bool isPredRegister(MCInstrInfo const &MCII, MCInst const &Inst, unsigned I);
296
297 // Return whether the insn is a prefix.
298 bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
299
300 // Return whether the insn is solo, i.e., cannot be in a packet.
301 bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);
302
303 /// Return whether the insn can be packaged only with A and X-type insns.
304 bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
305
306 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
307 bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI);
308 bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI);
309 bool isSubInstruction(MCInst const &MCI);
310 bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
311 bool mustExtend(MCExpr const &Expr);
312 bool mustNotExtend(MCExpr const &Expr);
313
314 // Returns true if this instruction requires a slot to execute.
315 bool requiresSlot(MCSubtargetInfo const &STI, MCInst const &MCI);
316
317
318 // Returns true if \a MCB would require endloop padding.
319 bool LoopNeedsPadding(MCInst const &MCB);
320
321 unsigned packetSize(StringRef CPU);
322
323 // Returns the maximum number of slots available in the given
324 // subtarget's packets.
325 unsigned packetSizeSlots(MCSubtargetInfo const &STI);
326
327 // Returns the number of slots consumed by this packet, considering duplexed
328 // and compound instructions.
329 unsigned slotsConsumed(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
330 MCInst const &MCI);
331
332 // Pad the bundle with nops to satisfy endloop requirements.
333 void padEndloop(MCInst &MCI, MCContext &Context);
334 class PredicateInfo {
335 public:
PredicateInfo()336 PredicateInfo() : Register(0), Operand(0), PredicatedTrue(false) {}
PredicateInfo(unsigned Register,unsigned Operand,bool PredicatedTrue)337 PredicateInfo(unsigned Register, unsigned Operand, bool PredicatedTrue)
338 : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {}
339 bool isPredicated() const;
340 unsigned Register;
341 unsigned Operand;
342 bool PredicatedTrue;
343 };
344 PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI);
345 bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
346
347 // Replace the instructions inside MCB, represented by Candidate
348 void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate);
349
350 bool s27_2_reloc(MCExpr const &Expr);
351 // Marks a bundle as endloop0
352 void setInnerLoop(MCInst &MCI);
353 void setMemReorderDisabled(MCInst &MCI);
354 void setMustExtend(MCExpr const &Expr, bool Val = true);
355 void setMustNotExtend(MCExpr const &Expr, bool Val = true);
356 void setS27_2_reloc(MCExpr const &Expr, bool Val = true);
357
358 // Marks a bundle as endloop1
359 void setOuterLoop(MCInst &MCI);
360
361 // Would duplexing this instruction create a requirement to extend
362 bool subInstWouldBeExtended(MCInst const &potentialDuplex);
363 unsigned SubregisterBit(unsigned Consumer, unsigned Producer,
364 unsigned Producer2);
365
366 bool IsVecRegSingle(unsigned VecReg);
367 bool IsVecRegPair(unsigned VecReg);
368 bool IsReverseVecRegPair(unsigned VecReg);
369 bool IsSingleConsumerRefPairProducer(unsigned Producer, unsigned Consumer);
370
371 /// Returns an ordered pair of the constituent register ordinals for
372 /// each of the elements of \a VecRegPair. For example, Hexagon::W0 ("v0:1")
373 /// returns { 0, 1 } and Hexagon::W1 ("v3:2") returns { 3, 2 }.
374 std::pair<unsigned, unsigned> GetVecRegPairIndices(unsigned VecRegPair);
375
376 // Attempt to find and replace compound pairs
377 void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
378 MCContext &Context, MCInst &MCI);
379
380 } // end namespace HexagonMCInstrInfo
381
382 } // end namespace llvm
383
384 #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
385