xref: /freebsd/sys/contrib/openzfs/include/sys/dmu.h (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27  * Copyright 2014 HybridCluster. All rights reserved.
28  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
29  * Copyright 2013 Saso Kiselkov. All rights reserved.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32  * Copyright (c) 2025, Klara, Inc.
33  */
34 
35 /* Portions Copyright 2010 Robert Milkowski */
36 
37 #ifndef	_SYS_DMU_H
38 #define	_SYS_DMU_H
39 
40 /*
41  * This file describes the interface that the DMU provides for its
42  * consumers.
43  *
44  * The DMU also interacts with the SPA.  That interface is described in
45  * dmu_spa.h.
46  */
47 
48 #include <sys/zfs_context.h>
49 #include <sys/inttypes.h>
50 #include <sys/cred.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/zio_compress.h>
53 #include <sys/uio.h>
54 #include <sys/zfs_file.h>
55 
56 #ifdef	__cplusplus
57 extern "C" {
58 #endif
59 
60 struct page;
61 struct vnode;
62 struct spa;
63 struct zilog;
64 struct zio;
65 struct blkptr;
66 struct zap_cursor;
67 struct dsl_dataset;
68 struct dsl_pool;
69 struct dnode;
70 struct drr_begin;
71 struct drr_end;
72 struct zbookmark_phys;
73 struct spa;
74 struct nvlist;
75 struct arc_buf;
76 struct zio_prop;
77 struct sa_handle;
78 struct dsl_crypto_params;
79 struct locked_range;
80 
81 typedef struct objset objset_t;
82 typedef struct dmu_tx dmu_tx_t;
83 typedef struct dsl_dir dsl_dir_t;
84 typedef struct dnode dnode_t;
85 
86 typedef enum dmu_object_byteswap {
87 	DMU_BSWAP_UINT8,
88 	DMU_BSWAP_UINT16,
89 	DMU_BSWAP_UINT32,
90 	DMU_BSWAP_UINT64,
91 	DMU_BSWAP_ZAP,
92 	DMU_BSWAP_DNODE,
93 	DMU_BSWAP_OBJSET,
94 	DMU_BSWAP_ZNODE,
95 	DMU_BSWAP_OLDACL,
96 	DMU_BSWAP_ACL,
97 	/*
98 	 * Allocating a new byteswap type number makes the on-disk format
99 	 * incompatible with any other format that uses the same number.
100 	 *
101 	 * Data can usually be structured to work with one of the
102 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
103 	 */
104 	DMU_BSWAP_NUMFUNCS
105 } dmu_object_byteswap_t;
106 
107 #define	DMU_OT_NEWTYPE 0x80
108 #define	DMU_OT_METADATA 0x40
109 #define	DMU_OT_ENCRYPTED 0x20
110 #define	DMU_OT_BYTESWAP_MASK 0x1f
111 
112 /*
113  * Defines a uint8_t object type. Object types specify if the data
114  * in the object is metadata (boolean) and how to byteswap the data
115  * (dmu_object_byteswap_t). All of the types created by this method
116  * are cached in the dbuf metadata cache.
117  */
118 #define	DMU_OT(byteswap, metadata, encrypted) \
119 	(DMU_OT_NEWTYPE | \
120 	((metadata) ? DMU_OT_METADATA : 0) | \
121 	((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
122 	((byteswap) & DMU_OT_BYTESWAP_MASK))
123 
124 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
125 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
126 	(ot) < DMU_OT_NUMTYPES)
127 
128 #define	DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
129 	B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
130 
131 /*
132  * MDB doesn't have dmu_ot; it defines these macros itself.
133  */
134 #ifndef ZFS_MDB
135 #define	DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
136 #define	DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
137 #define	DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
138 #endif
139 
140 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
141 	(((ot) & DMU_OT_METADATA) != 0) : \
142 	DMU_OT_IS_METADATA_IMPL(ot))
143 
144 #define	DMU_OT_IS_DDT(ot) \
145 	((ot) == DMU_OT_DDT_ZAP)
146 
147 #define	DMU_OT_IS_CRITICAL(ot) \
148 	(DMU_OT_IS_METADATA(ot) && \
149 	(ot) != DMU_OT_DNODE && \
150 	(ot) != DMU_OT_DIRECTORY_CONTENTS && \
151 	(ot) != DMU_OT_SA)
152 
153 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
154 #define	DMU_OT_IS_FILE(ot) \
155 	((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
156 
157 #define	DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
158 	(((ot) & DMU_OT_ENCRYPTED) != 0) : \
159 	DMU_OT_IS_ENCRYPTED_IMPL(ot))
160 
161 /*
162  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
163  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
164  * is repurposed for embedded BPs.
165  */
166 #define	DMU_OT_HAS_FILL(ot) \
167 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
168 
169 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
170 	((ot) & DMU_OT_BYTESWAP_MASK) : \
171 	DMU_OT_BYTESWAP_IMPL(ot))
172 
173 typedef enum dmu_object_type {
174 	DMU_OT_NONE,
175 	/* general: */
176 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
177 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
178 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
179 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
180 	DMU_OT_BPOBJ,			/* UINT64 */
181 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
182 	/* spa: */
183 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
184 	DMU_OT_SPACE_MAP,		/* UINT64 */
185 	/* zil: */
186 	DMU_OT_INTENT_LOG,		/* UINT64 */
187 	/* dmu: */
188 	DMU_OT_DNODE,			/* DNODE */
189 	DMU_OT_OBJSET,			/* OBJSET */
190 	/* dsl: */
191 	DMU_OT_DSL_DIR,			/* UINT64 */
192 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
193 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
194 	DMU_OT_DSL_PROPS,		/* ZAP */
195 	DMU_OT_DSL_DATASET,		/* UINT64 */
196 	/* zpl: */
197 	DMU_OT_ZNODE,			/* ZNODE */
198 	DMU_OT_OLDACL,			/* Old ACL */
199 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
200 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
201 	DMU_OT_MASTER_NODE,		/* ZAP */
202 	DMU_OT_UNLINKED_SET,		/* ZAP */
203 	/* zvol: */
204 	DMU_OT_ZVOL,			/* UINT8 */
205 	DMU_OT_ZVOL_PROP,		/* ZAP */
206 	/* other; for testing only! */
207 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
208 	DMU_OT_UINT64_OTHER,		/* UINT64 */
209 	DMU_OT_ZAP_OTHER,		/* ZAP */
210 	/* new object types: */
211 	DMU_OT_ERROR_LOG,		/* ZAP */
212 	DMU_OT_SPA_HISTORY,		/* UINT8 */
213 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
214 	DMU_OT_POOL_PROPS,		/* ZAP */
215 	DMU_OT_DSL_PERMS,		/* ZAP */
216 	DMU_OT_ACL,			/* ACL */
217 	DMU_OT_SYSACL,			/* SYSACL */
218 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
219 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
220 	DMU_OT_NEXT_CLONES,		/* ZAP */
221 	DMU_OT_SCAN_QUEUE,		/* ZAP */
222 	DMU_OT_USERGROUP_USED,		/* ZAP */
223 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
224 	DMU_OT_USERREFS,		/* ZAP */
225 	DMU_OT_DDT_ZAP,			/* ZAP */
226 	DMU_OT_DDT_STATS,		/* ZAP */
227 	DMU_OT_SA,			/* System attr */
228 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
229 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
230 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
231 	DMU_OT_SCAN_XLATE,		/* ZAP */
232 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
233 	DMU_OT_DEADLIST,		/* ZAP */
234 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
235 	DMU_OT_DSL_CLONES,		/* ZAP */
236 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
237 	/*
238 	 * Do not allocate new object types here. Doing so makes the on-disk
239 	 * format incompatible with any other format that uses the same object
240 	 * type number.
241 	 *
242 	 * When creating an object which does not have one of the above types
243 	 * use the DMU_OTN_* type with the correct byteswap and metadata
244 	 * values.
245 	 *
246 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
247 	 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
248 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
249 	 * and DMU_OTN_* types).
250 	 */
251 	DMU_OT_NUMTYPES,
252 
253 	/*
254 	 * Names for valid types declared with DMU_OT().
255 	 */
256 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
257 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
258 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
259 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
260 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
261 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
262 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
263 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
264 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
265 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
266 
267 	DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
268 	DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
269 	DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
270 	DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
271 	DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
272 	DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
273 	DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
274 	DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
275 	DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
276 	DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
277 } dmu_object_type_t;
278 
279 /*
280  * These flags are for the dmu_tx_assign() function and describe what to do if
281  * the transaction is full. See the comment above dmu_tx_assign() for more
282  * details on the meaning of these flags.
283  */
284 #define	DMU_TX_NOWAIT		(0ULL)
285 #define	DMU_TX_WAIT		(1ULL<<0)
286 #define	DMU_TX_NOTHROTTLE	(1ULL<<1)
287 
288 void byteswap_uint64_array(void *buf, size_t size);
289 void byteswap_uint32_array(void *buf, size_t size);
290 void byteswap_uint16_array(void *buf, size_t size);
291 void byteswap_uint8_array(void *buf, size_t size);
292 void zap_byteswap(void *buf, size_t size);
293 void zfs_oldacl_byteswap(void *buf, size_t size);
294 void zfs_acl_byteswap(void *buf, size_t size);
295 void zfs_znode_byteswap(void *buf, size_t size);
296 
297 #define	DS_FIND_SNAPSHOTS	(1<<0)
298 #define	DS_FIND_CHILDREN	(1<<1)
299 #define	DS_FIND_SERIALIZE	(1<<2)
300 
301 /*
302  * The maximum number of bytes that can be accessed as part of one
303  * operation, including metadata.
304  */
305 #define	DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
306 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
307 
308 #define	DMU_USERUSED_OBJECT	(-1ULL)
309 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
310 #define	DMU_PROJECTUSED_OBJECT	(-3ULL)
311 
312 /*
313  * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
314  */
315 #define	DMU_OBJACCT_PREFIX	"obj-"
316 #define	DMU_OBJACCT_PREFIX_LEN	4
317 
318 /*
319  * artificial blkids for bonus buffer and spill blocks
320  */
321 #define	DMU_BONUS_BLKID		(-1ULL)
322 #define	DMU_SPILL_BLKID		(-2ULL)
323 
324 /*
325  * Public routines to create, destroy, open, and close objsets.
326  */
327 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
328     cred_t *cr, dmu_tx_t *tx);
329 
330 int dmu_objset_hold(const char *name, const void *tag, objset_t **osp);
331 int dmu_objset_own(const char *name, dmu_objset_type_t type,
332     boolean_t readonly, boolean_t key_required, const void *tag,
333     objset_t **osp);
334 void dmu_objset_rele(objset_t *os, const void *tag);
335 void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag);
336 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
337 
338 void dmu_objset_evict_dbufs(objset_t *os);
339 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
340     struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
341     void *arg);
342 int dmu_objset_clone(const char *name, const char *origin);
343 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
344     struct nvlist *errlist);
345 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
346 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
347     int flags);
348 void dmu_objset_byteswap(void *buf, size_t size);
349 int dsl_dataset_rename_snapshot(const char *fsname,
350     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
351 
352 typedef struct dmu_buf {
353 	uint64_t db_object;		/* object that this buffer is part of */
354 	uint64_t db_offset;		/* byte offset in this object */
355 	uint64_t db_size;		/* size of buffer in bytes */
356 	void *db_data;			/* data in buffer */
357 } dmu_buf_t;
358 
359 /*
360  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
361  */
362 #define	DMU_POOL_DIRECTORY_OBJECT	1
363 #define	DMU_POOL_CONFIG			"config"
364 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
365 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
366 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
367 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
368 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
369 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
370 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
371 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
372 #define	DMU_POOL_SPARES			"spares"
373 #define	DMU_POOL_DEFLATE		"deflate"
374 #define	DMU_POOL_HISTORY		"history"
375 #define	DMU_POOL_PROPS			"pool_props"
376 #define	DMU_POOL_L2CACHE		"l2cache"
377 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
378 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
379 #define	DMU_POOL_DDT_LOG		"DDT-log-%s-%u"
380 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
381 #define	DMU_POOL_DDT_DIR		"DDT-%s"
382 #define	DMU_POOL_CREATION_VERSION	"creation_version"
383 #define	DMU_POOL_SCAN			"scan"
384 #define	DMU_POOL_ERRORSCRUB		"error_scrub"
385 #define	DMU_POOL_LAST_SCRUBBED_TXG	"last_scrubbed_txg"
386 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
387 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
388 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
389 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
390 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
391 #define	DMU_POOL_REMOVING		"com.delphix:removing"
392 #define	DMU_POOL_OBSOLETE_BPOBJ		"com.delphix:obsolete_bpobj"
393 #define	DMU_POOL_CONDENSING_INDIRECT	"com.delphix:condensing_indirect"
394 #define	DMU_POOL_ZPOOL_CHECKPOINT	"com.delphix:zpool_checkpoint"
395 #define	DMU_POOL_LOG_SPACEMAP_ZAP	"com.delphix:log_spacemap_zap"
396 #define	DMU_POOL_DELETED_CLONES		"com.delphix:deleted_clones"
397 
398 /*
399  * Allocate an object from this objset.  The range of object numbers
400  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
401  *
402  * The transaction must be assigned to a txg.  The newly allocated
403  * object will be "held" in the transaction (ie. you can modify the
404  * newly allocated object in this transaction).
405  *
406  * dmu_object_alloc() chooses an object and returns it in *objectp.
407  *
408  * dmu_object_claim() allocates a specific object number.  If that
409  * number is already allocated, it fails and returns EEXIST.
410  *
411  * Return 0 on success, or ENOSPC or EEXIST as specified above.
412  */
413 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
414     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
415 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
416     int indirect_blockshift,
417     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
418 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
419     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
420     int dnodesize, dmu_tx_t *tx);
421 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
422     int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
423     int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag,
424     dmu_tx_t *tx);
425 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
426     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
427 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
428     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
429     int dnodesize, dmu_tx_t *tx);
430 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
431     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
432 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
433     dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
434     int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
435 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
436 
437 /*
438  * Free an object from this objset.
439  *
440  * The object's data will be freed as well (ie. you don't need to call
441  * dmu_free(object, 0, -1, tx)).
442  *
443  * The object need not be held in the transaction.
444  *
445  * If there are any holds on this object's buffers (via dmu_buf_hold()),
446  * or tx holds on the object (via dmu_tx_hold_object()), you can not
447  * free it; it fails and returns EBUSY.
448  *
449  * If the object is not allocated, it fails and returns ENOENT.
450  *
451  * Return 0 on success, or EBUSY or ENOENT as specified above.
452  */
453 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
454 
455 /*
456  * Find the next allocated or free object.
457  *
458  * The objectp parameter is in-out.  It will be updated to be the next
459  * object which is allocated.  Ignore objects which have not been
460  * modified since txg.
461  *
462  * XXX Can only be called on a objset with no dirty data.
463  *
464  * Returns 0 on success, or ENOENT if there are no more objects.
465  */
466 int dmu_object_next(objset_t *os, uint64_t *objectp,
467     boolean_t hole, uint64_t txg);
468 
469 /*
470  * Set the number of levels on a dnode. nlevels must be greater than the
471  * current number of levels or an EINVAL will be returned.
472  */
473 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
474     dmu_tx_t *tx);
475 
476 /*
477  * Set the data blocksize for an object.
478  *
479  * The object cannot have any blocks allocated beyond the first.  If
480  * the first block is allocated already, the new size must be greater
481  * than the current block size.  If these conditions are not met,
482  * ENOTSUP will be returned.
483  *
484  * Returns 0 on success, or EBUSY if there are any holds on the object
485  * contents, or ENOTSUP as described above.
486  */
487 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
488     int ibs, dmu_tx_t *tx);
489 
490 /*
491  * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
492  * to accommodate the change. When calling this function, the caller must
493  * ensure that the object's nlevels can sufficiently support the new maxblkid.
494  */
495 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
496     dmu_tx_t *tx);
497 
498 /*
499  * Set the checksum property on a dnode.  The new checksum algorithm will
500  * apply to all newly written blocks; existing blocks will not be affected.
501  */
502 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
503     dmu_tx_t *tx);
504 
505 /*
506  * Set the compress property on a dnode.  The new compression algorithm will
507  * apply to all newly written blocks; existing blocks will not be affected.
508  */
509 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
510     dmu_tx_t *tx);
511 
512 /*
513  * Get an estimated cache size for an object. Caller must expect races.
514  */
515 int dmu_object_cached_size(objset_t *os, uint64_t object,
516     uint64_t *l1sz, uint64_t *l2sz);
517 
518 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
519     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
520     int compressed_size, int byteorder, dmu_tx_t *tx);
521 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
522     dmu_tx_t *tx);
523 
524 /*
525  * Decide how to write a block: checksum, compression, number of copies, etc.
526  */
527 #define	WP_NOFILL	0x1
528 #define	WP_DMU_SYNC	0x2
529 #define	WP_SPILL	0x4
530 #define	WP_DIRECT_WR	0x8
531 
532 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
533     struct zio_prop *zp);
534 
535 /*
536  * The bonus data is accessed more or less like a regular buffer.
537  * You must dmu_bonus_hold() to get the buffer, which will give you a
538  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
539  * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
540  * before modifying it, and the
541  * object must be held in an assigned transaction before calling
542  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
543  * buffer as well.  You must release what you hold with dmu_buf_rele().
544  *
545  * Returns ENOENT, EIO, or 0.
546  */
547 int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag,
548     dmu_buf_t **dbp);
549 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
550     uint32_t flags);
551 int dmu_bonus_max(void);
552 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
553 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
554 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
555 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
556 
557 /*
558  * Special spill buffer support used by "SA" framework
559  */
560 
561 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
562     dmu_buf_t **dbp);
563 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
564     const void *tag, dmu_buf_t **dbp);
565 int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp);
566 
567 /*
568  * Obtain the DMU buffer from the specified object which contains the
569  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
570  * that it will remain in memory.  You must release the hold with
571  * dmu_buf_rele().  You must not access the dmu_buf_t after releasing
572  * what you hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
573  *
574  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
575  * on the returned buffer before reading or writing the buffer's
576  * db_data.  The comments for those routines describe what particular
577  * operations are valid after calling them.
578  *
579  * The object number must be a valid, allocated object number.
580  */
581 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
582     const void *tag, dmu_buf_t **, int flags);
583 int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
584     uint64_t length, int read, const void *tag, int *numbufsp,
585     dmu_buf_t ***dbpp);
586 int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
587     const void *tag, dmu_buf_t **dbp);
588 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
589     const void *tag, dmu_buf_t **dbp, int flags);
590 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
591     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
592     dmu_buf_t ***dbpp, uint32_t flags);
593 int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, const void *tag,
594     dmu_buf_t **dbp);
595 
596 /*
597  * Add a reference to a dmu buffer that has already been held via
598  * dmu_buf_hold() in the current context.
599  */
600 void dmu_buf_add_ref(dmu_buf_t *db, const void *tag);
601 
602 /*
603  * Attempt to add a reference to a dmu buffer that is in an unknown state,
604  * using a pointer that may have been invalidated by eviction processing.
605  * The request will succeed if the passed in dbuf still represents the
606  * same os/object/blkid, is ineligible for eviction, and has at least
607  * one hold by a user other than the syncer.
608  */
609 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
610     uint64_t blkid, const void *tag);
611 
612 void dmu_buf_rele(dmu_buf_t *db, const void *tag);
613 uint64_t dmu_buf_refcount(dmu_buf_t *db);
614 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
615 
616 /*
617  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
618  * range of an object.  A pointer to an array of dmu_buf_t*'s is
619  * returned (in *dbpp).
620  *
621  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
622  * frees the array.  The hold on the array of buffers MUST be released
623  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
624  * individually with dmu_buf_rele.
625  */
626 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
627     uint64_t length, boolean_t read, const void *tag,
628     int *numbufsp, dmu_buf_t ***dbpp);
629 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag);
630 
631 typedef void dmu_buf_evict_func_t(void *user_ptr);
632 
633 /*
634  * A DMU buffer user object may be associated with a dbuf for the
635  * duration of its lifetime.  This allows the user of a dbuf (client)
636  * to attach private data to a dbuf (e.g. in-core only data such as a
637  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
638  * when that dbuf has been evicted.  Clients typically respond to the
639  * eviction notification by freeing their private data, thus ensuring
640  * the same lifetime for both dbuf and private data.
641  *
642  * The mapping from a dmu_buf_user_t to any client private data is the
643  * client's responsibility.  All current consumers of the API with private
644  * data embed a dmu_buf_user_t as the first member of the structure for
645  * their private data.  This allows conversions between the two types
646  * with a simple cast.  Since the DMU buf user API never needs access
647  * to the private data, other strategies can be employed if necessary
648  * or convenient for the client (e.g. using container_of() to do the
649  * conversion for private data that cannot have the dmu_buf_user_t as
650  * its first member).
651  *
652  * Eviction callbacks are executed without the dbuf mutex held or any
653  * other type of mechanism to guarantee that the dbuf is still available.
654  * For this reason, users must assume the dbuf has already been freed
655  * and not reference the dbuf from the callback context.
656  *
657  * Users requesting "immediate eviction" are notified as soon as the dbuf
658  * is only referenced by dirty records (dirties == holds).  Otherwise the
659  * notification occurs after eviction processing for the dbuf begins.
660  */
661 typedef struct dmu_buf_user {
662 	/*
663 	 * Asynchronous user eviction callback state.
664 	 */
665 	taskq_ent_t	dbu_tqent;
666 
667 	/* Size of user data, for inclusion in dbuf_cache accounting. */
668 	uint64_t	dbu_size;
669 
670 	/*
671 	 * This instance's eviction function pointers.
672 	 *
673 	 * dbu_evict_func_sync is called synchronously and then
674 	 * dbu_evict_func_async is executed asynchronously on a taskq.
675 	 */
676 	dmu_buf_evict_func_t *dbu_evict_func_sync;
677 	dmu_buf_evict_func_t *dbu_evict_func_async;
678 #ifdef ZFS_DEBUG
679 	/*
680 	 * Pointer to user's dbuf pointer.  NULL for clients that do
681 	 * not associate a dbuf with their user data.
682 	 *
683 	 * The dbuf pointer is cleared upon eviction so as to catch
684 	 * use-after-evict bugs in clients.
685 	 */
686 	dmu_buf_t **dbu_clear_on_evict_dbufp;
687 #endif
688 } dmu_buf_user_t;
689 
690 /*
691  * Initialize the given dmu_buf_user_t instance with the eviction function
692  * evict_func, to be called when the user is evicted.
693  *
694  * NOTE: This function should only be called once on a given dmu_buf_user_t.
695  *       To allow enforcement of this, dbu must already be zeroed on entry.
696  */
697 static inline void
dmu_buf_init_user(dmu_buf_user_t * dbu,dmu_buf_evict_func_t * evict_func_sync,dmu_buf_evict_func_t * evict_func_async,dmu_buf_t ** clear_on_evict_dbufp __maybe_unused)698 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
699     dmu_buf_evict_func_t *evict_func_async,
700     dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
701 {
702 	ASSERT(dbu->dbu_evict_func_sync == NULL);
703 	ASSERT(dbu->dbu_evict_func_async == NULL);
704 
705 	/* must have at least one evict func */
706 	IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
707 	dbu->dbu_evict_func_sync = evict_func_sync;
708 	dbu->dbu_evict_func_async = evict_func_async;
709 	taskq_init_ent(&dbu->dbu_tqent);
710 #ifdef ZFS_DEBUG
711 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
712 #endif
713 }
714 
715 /*
716  * Attach user data to a dbuf and mark it for normal (when the dbuf's
717  * data is cleared or its reference count goes to zero) eviction processing.
718  *
719  * Returns NULL on success, or the existing user if another user currently
720  * owns the buffer.
721  */
722 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
723 
724 /*
725  * Attach user data to a dbuf and mark it for immediate (its dirty and
726  * reference counts are equal) eviction processing.
727  *
728  * Returns NULL on success, or the existing user if another user currently
729  * owns the buffer.
730  */
731 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
732 
733 /*
734  * Replace the current user of a dbuf.
735  *
736  * If given the current user of a dbuf, replaces the dbuf's user with
737  * "new_user" and returns the user data pointer that was replaced.
738  * Otherwise returns the current, and unmodified, dbuf user pointer.
739  */
740 void *dmu_buf_replace_user(dmu_buf_t *db,
741     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
742 
743 /*
744  * Remove the specified user data for a DMU buffer.
745  *
746  * Returns the user that was removed on success, or the current user if
747  * another user currently owns the buffer.
748  */
749 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
750 
751 /*
752  * User data size accounting. This can be used to artifically inflate the size
753  * of the dbuf during cache accounting, so that dbuf_evict_thread evicts enough
754  * to satisfy memory reclaim requests. It's not used for anything else, and
755  * defaults to 0.
756  */
757 uint64_t dmu_buf_user_size(dmu_buf_t *db);
758 void dmu_buf_add_user_size(dmu_buf_t *db, uint64_t nadd);
759 void dmu_buf_sub_user_size(dmu_buf_t *db, uint64_t nsub);
760 
761 /*
762  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
763  */
764 void *dmu_buf_get_user(dmu_buf_t *db);
765 
766 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
767 
768 /* Block until any in-progress dmu buf user evictions complete. */
769 void dmu_buf_user_evict_wait(void);
770 
771 /*
772  * Returns the blkptr associated with this dbuf, or NULL if not set.
773  */
774 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
775 
776 /*
777  * Indicate that you are going to modify the buffer's data (db_data).
778  *
779  * The transaction (tx) must be assigned to a txg (ie. you've called
780  * dmu_tx_assign()).  The buffer's object must be held in the tx
781  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
782  */
783 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
784 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
785 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
786     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
787 
788 /*
789  * You must create a transaction, then hold the objects which you will
790  * (or might) modify as part of this transaction.  Then you must assign
791  * the transaction to a transaction group.  Once the transaction has
792  * been assigned, you can modify buffers which belong to held objects as
793  * part of this transaction.  You can't modify buffers before the
794  * transaction has been assigned; you can't modify buffers which don't
795  * belong to objects which this transaction holds; you can't hold
796  * objects once the transaction has been assigned.  You may hold an
797  * object which you are going to free (with dmu_object_free()), but you
798  * don't have to.
799  *
800  * You can abort the transaction before it has been assigned.
801  *
802  * Note that you may hold buffers (with dmu_buf_hold) at any time,
803  * regardless of transaction state.
804  */
805 
806 #define	DMU_NEW_OBJECT	(-1ULL)
807 #define	DMU_OBJECT_END	(-1ULL)
808 
809 dmu_tx_t *dmu_tx_create(objset_t *os);
810 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
811 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
812     int len);
813 void dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
814 void dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
815     int len);
816 void dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
817     int len);
818 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
819     uint64_t len);
820 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
821     uint64_t len);
822 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
823 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
824     const char *name);
825 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
826 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
827 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
828 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
829 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
830 void dmu_tx_abort(dmu_tx_t *tx);
831 int dmu_tx_assign(dmu_tx_t *tx, uint64_t flags);
832 void dmu_tx_wait(dmu_tx_t *tx);
833 void dmu_tx_commit(dmu_tx_t *tx);
834 void dmu_tx_mark_netfree(dmu_tx_t *tx);
835 
836 /*
837  * To register a commit callback, dmu_tx_callback_register() must be called.
838  *
839  * dcb_data is a pointer to caller private data that is passed on as a
840  * callback parameter. The caller is responsible for properly allocating and
841  * freeing it.
842  *
843  * When registering a callback, the transaction must be already created, but
844  * it cannot be committed or aborted. It can be assigned to a txg or not.
845  *
846  * The callback will be called after the transaction has been safely written
847  * to stable storage and will also be called if the dmu_tx is aborted.
848  * If there is any error which prevents the transaction from being committed to
849  * disk, the callback will be called with a value of error != 0.
850  *
851  * When multiple callbacks are registered to the transaction, the callbacks
852  * will be called in reverse order to let Lustre, the only user of commit
853  * callback currently, take the fast path of its commit callback handling.
854  */
855 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
856 
857 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
858     void *dcb_data);
859 void dmu_tx_do_callbacks(list_t *cb_list, int error);
860 
861 /*
862  * Free up the data blocks for a defined range of a file.  If size is
863  * -1, the range from offset to end-of-file is freed.
864  */
865 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
866     uint64_t size, dmu_tx_t *tx);
867 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
868     uint64_t size);
869 int dmu_free_long_object(objset_t *os, uint64_t object);
870 
871 /*
872  * Convenience functions.
873  *
874  * Canfail routines will return 0 on success, or an errno if there is a
875  * nonrecoverable I/O error.
876  */
877 #define	DMU_READ_PREFETCH	0 /* prefetch */
878 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
879 #define	DMU_READ_NO_DECRYPT	2 /* don't decrypt */
880 #define	DMU_DIRECTIO		4 /* use Direct I/O */
881 
882 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
883     void *buf, uint32_t flags);
884 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
885     uint32_t flags);
886 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
887     const void *buf, dmu_tx_t *tx);
888 int dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
889     const void *buf, dmu_tx_t *tx);
890 int dmu_write_by_dnode_flags(dnode_t *dn, uint64_t offset, uint64_t size,
891     const void *buf, dmu_tx_t *tx, uint32_t flags);
892 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
893     dmu_tx_t *tx);
894 #ifdef _KERNEL
895 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
896 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
897 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
898 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
899 	dmu_tx_t *tx);
900 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
901 	dmu_tx_t *tx);
902 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
903 	dmu_tx_t *tx);
904 #endif
905 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
906 void dmu_return_arcbuf(struct arc_buf *buf);
907 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
908     struct arc_buf *buf, dmu_tx_t *tx);
909 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
910     struct arc_buf *buf, dmu_tx_t *tx);
911 #define	dmu_assign_arcbuf	dmu_assign_arcbuf_by_dbuf
912 extern uint_t zfs_max_recordsize;
913 
914 /*
915  * Asynchronously try to read in the data.
916  */
917 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
918 	uint64_t len, enum zio_priority pri);
919 void dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
920 	uint64_t len, enum zio_priority pri);
921 void dmu_prefetch_dnode(objset_t *os, uint64_t object, enum zio_priority pri);
922 int dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset,
923     uint64_t size);
924 
925 typedef struct dmu_object_info {
926 	/* All sizes are in bytes unless otherwise indicated. */
927 	uint32_t doi_data_block_size;
928 	uint32_t doi_metadata_block_size;
929 	dmu_object_type_t doi_type;
930 	dmu_object_type_t doi_bonus_type;
931 	uint64_t doi_bonus_size;
932 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
933 	uint8_t doi_checksum;
934 	uint8_t doi_compress;
935 	uint8_t doi_nblkptr;
936 	uint8_t doi_pad[4];
937 	uint64_t doi_dnodesize;
938 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
939 	uint64_t doi_max_offset;
940 	uint64_t doi_fill_count;		/* number of non-empty blocks */
941 } dmu_object_info_t;
942 
943 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
944 
945 typedef struct dmu_object_type_info {
946 	dmu_object_byteswap_t	ot_byteswap;
947 	boolean_t		ot_metadata;
948 	boolean_t		ot_dbuf_metadata_cache;
949 	boolean_t		ot_encrypt;
950 	const char		*ot_name;
951 } dmu_object_type_info_t;
952 
953 typedef const struct dmu_object_byteswap_info {
954 	arc_byteswap_func_t	 ob_func;
955 	const char		*ob_name;
956 } dmu_object_byteswap_info_t;
957 
958 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
959 extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
960 
961 /*
962  * Get information on a DMU object.
963  *
964  * Return 0 on success or ENOENT if object is not allocated.
965  *
966  * If doi is NULL, just indicates whether the object exists.
967  */
968 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
969 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
970 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
971 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
972 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
973 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
974 /*
975  * Like dmu_object_info_from_db, but faster still when you only care about
976  * the size.
977  */
978 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
979     u_longlong_t *nblk512);
980 
981 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
982 
983 typedef struct dmu_objset_stats {
984 	uint64_t dds_num_clones; /* number of clones of this */
985 	uint64_t dds_creation_txg;
986 	uint64_t dds_guid;
987 	dmu_objset_type_t dds_type;
988 	uint8_t dds_is_snapshot;
989 	uint8_t dds_inconsistent;
990 	uint8_t dds_redacted;
991 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
992 } dmu_objset_stats_t;
993 
994 /*
995  * Get stats on a dataset.
996  */
997 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
998 
999 /*
1000  * Add entries to the nvlist for all the objset's properties.  See
1001  * zfs_prop_table[] and zfs(1m) for details on the properties.
1002  */
1003 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
1004 
1005 /*
1006  * Get the space usage statistics for statvfs().
1007  *
1008  * refdbytes is the amount of space "referenced" by this objset.
1009  * availbytes is the amount of space available to this objset, taking
1010  * into account quotas & reservations, assuming that no other objsets
1011  * use the space first.  These values correspond to the 'referenced' and
1012  * 'available' properties, described in the zfs(1m) manpage.
1013  *
1014  * usedobjs and availobjs are the number of objects currently allocated,
1015  * and available.
1016  */
1017 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
1018     uint64_t *usedobjsp, uint64_t *availobjsp);
1019 
1020 /*
1021  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
1022  * (Contrast with the ds_guid which is a 64-bit ID that will never
1023  * change, so there is a small probability that it will collide.)
1024  */
1025 uint64_t dmu_objset_fsid_guid(objset_t *os);
1026 
1027 /*
1028  * Get the [cm]time for an objset's snapshot dir
1029  */
1030 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
1031 
1032 int dmu_objset_is_snapshot(objset_t *os);
1033 
1034 extern struct spa *dmu_objset_spa(objset_t *os);
1035 extern struct zilog *dmu_objset_zil(objset_t *os);
1036 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
1037 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
1038 extern void dmu_objset_name(objset_t *os, char *buf);
1039 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
1040 extern uint64_t dmu_objset_id(objset_t *os);
1041 extern uint64_t dmu_objset_dnodesize(objset_t *os);
1042 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
1043 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
1044 extern int dmu_objset_blksize(objset_t *os);
1045 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1046     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
1047 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
1048 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
1049     int maxlen, boolean_t *conflict);
1050 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
1051     uint64_t *idp, uint64_t *offp);
1052 
1053 typedef struct zfs_file_info {
1054 	uint64_t zfi_user;
1055 	uint64_t zfi_group;
1056 	uint64_t zfi_project;
1057 	uint64_t zfi_generation;
1058 } zfs_file_info_t;
1059 
1060 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
1061     struct zfs_file_info *zoi);
1062 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1063     file_info_cb_t *cb);
1064 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1065 extern void *dmu_objset_get_user(objset_t *os);
1066 
1067 /*
1068  * Return the txg number for the given assigned transaction.
1069  */
1070 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1071 
1072 /*
1073  * Synchronous write.
1074  * If a parent zio is provided this function initiates a write on the
1075  * provided buffer as a child of the parent zio.
1076  * In the absence of a parent zio, the write is completed synchronously.
1077  * At write completion, blk is filled with the bp of the written block.
1078  * Note that while the data covered by this function will be on stable
1079  * storage when the write completes this new data does not become a
1080  * permanent part of the file until the associated transaction commits.
1081  */
1082 
1083 /*
1084  * {zfs,zvol,ztest}_get_done() args
1085  */
1086 typedef struct zgd {
1087 	struct lwb	*zgd_lwb;
1088 	struct blkptr	*zgd_bp;
1089 	dmu_buf_t	*zgd_db;
1090 	struct zfs_locked_range *zgd_lr;
1091 	void		*zgd_private;
1092 } zgd_t;
1093 
1094 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1095 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1096 
1097 /*
1098  * Find the next hole or data block in file starting at *off
1099  * Return found offset in *off. Return ESRCH for end of file.
1100  */
1101 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1102     uint64_t *off);
1103 
1104 int dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset,
1105     uint64_t length, struct blkptr *bps, size_t *nbpsp);
1106 int dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset,
1107     uint64_t length, dmu_tx_t *tx, const struct blkptr *bps, size_t nbps);
1108 
1109 /*
1110  * Initial setup and final teardown.
1111  */
1112 extern void dmu_init(void);
1113 extern void dmu_fini(void);
1114 
1115 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1116     uint64_t object, uint64_t offset, int len);
1117 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1118     dmu_traverse_cb_t cb, void *arg);
1119 
1120 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1121     zfs_file_t *fp, offset_t *offp);
1122 
1123 /* CRC64 table */
1124 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
1125 extern uint64_t zfs_crc64_table[256];
1126 
1127 extern uint_t dmu_prefetch_max;
1128 
1129 #ifdef	__cplusplus
1130 }
1131 #endif
1132 
1133 #endif	/* _SYS_DMU_H */
1134