1 /*
2 * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/ssl.h>
11 #include "internal/quic_record_rx.h"
12 #include "quic_record_shared.h"
13 #include "internal/common.h"
14 #include "internal/list.h"
15 #include "../ssl_local.h"
16
17 /*
18 * Mark a packet in a bitfield.
19 *
20 * pkt_idx: index of packet within datagram.
21 */
pkt_mark(uint64_t * bitf,size_t pkt_idx)22 static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx)
23 {
24 assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
25 *bitf |= ((uint64_t)1) << pkt_idx;
26 }
27
28 /* Returns 1 if a packet is in the bitfield. */
pkt_is_marked(const uint64_t * bitf,size_t pkt_idx)29 static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx)
30 {
31 assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
32 return (*bitf & (((uint64_t)1) << pkt_idx)) != 0;
33 }
34
35 /*
36 * RXE
37 * ===
38 *
39 * RX Entries (RXEs) store processed (i.e., decrypted) data received from the
40 * network. One RXE is used per received QUIC packet.
41 */
42 typedef struct rxe_st RXE;
43
44 struct rxe_st {
45 OSSL_QRX_PKT pkt;
46 OSSL_LIST_MEMBER(rxe, RXE);
47 size_t data_len, alloc_len, refcount;
48
49 /* Extra fields for per-packet information. */
50 QUIC_PKT_HDR hdr; /* data/len are decrypted payload */
51
52 /* Decoded packet number. */
53 QUIC_PN pn;
54
55 /* Addresses copied from URXE. */
56 BIO_ADDR peer, local;
57
58 /* Time we received the packet (not when we processed it). */
59 OSSL_TIME time;
60
61 /* Total length of the datagram which contained this packet. */
62 size_t datagram_len;
63
64 /*
65 * The key epoch the packet was received with. Always 0 for non-1-RTT
66 * packets.
67 */
68 uint64_t key_epoch;
69
70 /*
71 * Monotonically increases with each datagram received.
72 * For diagnostic use only.
73 */
74 uint64_t datagram_id;
75
76 /*
77 * alloc_len allocated bytes (of which data_len bytes are valid) follow this
78 * structure.
79 */
80 };
81
82 DEFINE_LIST_OF(rxe, RXE);
83 typedef OSSL_LIST(rxe) RXE_LIST;
84
rxe_data(const RXE * e)85 static ossl_inline unsigned char *rxe_data(const RXE *e)
86 {
87 return (unsigned char *)(e + 1);
88 }
89
90 /*
91 * QRL
92 * ===
93 */
94 struct ossl_qrx_st {
95 OSSL_LIB_CTX *libctx;
96 const char *propq;
97
98 /* Demux to receive datagrams from. */
99 QUIC_DEMUX *demux;
100
101 /* Length of connection IDs used in short-header packets in bytes. */
102 size_t short_conn_id_len;
103
104 /* Maximum number of deferred datagrams buffered at any one time. */
105 size_t max_deferred;
106
107 /* Current count of deferred datagrams. */
108 size_t num_deferred;
109
110 /*
111 * List of URXEs which are filled with received encrypted data.
112 * These are returned to the DEMUX's free list as they are processed.
113 */
114 QUIC_URXE_LIST urx_pending;
115
116 /*
117 * List of URXEs which we could not decrypt immediately and which are being
118 * kept in case they can be decrypted later.
119 */
120 QUIC_URXE_LIST urx_deferred;
121
122 /*
123 * List of RXEs which are not currently in use. These are moved
124 * to the pending list as they are filled.
125 */
126 RXE_LIST rx_free;
127
128 /*
129 * List of RXEs which are filled with decrypted packets ready to be passed
130 * to the user. A RXE is removed from all lists inside the QRL when passed
131 * to the user, then returned to the free list when the user returns it.
132 */
133 RXE_LIST rx_pending;
134
135 /* Largest PN we have received and processed in a given PN space. */
136 QUIC_PN largest_pn[QUIC_PN_SPACE_NUM];
137
138 /* Per encryption-level state. */
139 OSSL_QRL_ENC_LEVEL_SET el_set;
140
141 /* Bytes we have received since this counter was last cleared. */
142 uint64_t bytes_received;
143
144 /*
145 * Number of forged packets we have received since the QRX was instantiated.
146 * Note that as per RFC 9001, this is connection-level state; it is not per
147 * EL and is not reset by a key update.
148 */
149 uint64_t forged_pkt_count;
150
151 /*
152 * The PN the current key epoch started at, inclusive.
153 */
154 uint64_t cur_epoch_start_pn;
155
156 /* Validation callback. */
157 ossl_qrx_late_validation_cb *validation_cb;
158 void *validation_cb_arg;
159
160 /* Key update callback. */
161 ossl_qrx_key_update_cb *key_update_cb;
162 void *key_update_cb_arg;
163
164 /* Initial key phase. For debugging use only; always 0 in real use. */
165 unsigned char init_key_phase_bit;
166
167 /* Are we allowed to process 1-RTT packets yet? */
168 unsigned char allow_1rtt;
169
170 /* Message callback related arguments */
171 ossl_msg_cb msg_callback;
172 void *msg_callback_arg;
173 SSL *msg_callback_ssl;
174 };
175
176 static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len);
177 static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
178 const QUIC_CONN_ID *first_dcid);
179 static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
180 const unsigned char **pptr, size_t buf_len);
181 static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe);
182 static RXE *qrx_reserve_rxe(RXE_LIST *rxl, RXE *rxe, size_t n);
183 static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
184 const unsigned char *src,
185 size_t src_len, size_t *dec_len,
186 const unsigned char *aad, size_t aad_len,
187 QUIC_PN pn, uint32_t enc_level,
188 unsigned char key_phase_bit,
189 uint64_t *rx_key_epoch);
190 static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe);
191 static uint32_t rxe_determine_pn_space(RXE *rxe);
192 static void ignore_res(int x);
193
ossl_qrx_new(const OSSL_QRX_ARGS * args)194 OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args)
195 {
196 OSSL_QRX *qrx;
197 size_t i;
198
199 if (args->demux == NULL || args->max_deferred == 0)
200 return NULL;
201
202 qrx = OPENSSL_zalloc(sizeof(OSSL_QRX));
203 if (qrx == NULL)
204 return NULL;
205
206 for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i)
207 qrx->largest_pn[i] = args->init_largest_pn[i];
208
209 qrx->libctx = args->libctx;
210 qrx->propq = args->propq;
211 qrx->demux = args->demux;
212 qrx->short_conn_id_len = args->short_conn_id_len;
213 qrx->init_key_phase_bit = args->init_key_phase_bit;
214 qrx->max_deferred = args->max_deferred;
215 return qrx;
216 }
217
qrx_cleanup_rxl(RXE_LIST * l)218 static void qrx_cleanup_rxl(RXE_LIST *l)
219 {
220 RXE *e, *enext;
221
222 for (e = ossl_list_rxe_head(l); e != NULL; e = enext) {
223 enext = ossl_list_rxe_next(e);
224 ossl_list_rxe_remove(l, e);
225 OPENSSL_free(e);
226 }
227 }
228
qrx_cleanup_urxl(OSSL_QRX * qrx,QUIC_URXE_LIST * l)229 static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l)
230 {
231 QUIC_URXE *e, *enext;
232
233 for (e = ossl_list_urxe_head(l); e != NULL; e = enext) {
234 enext = ossl_list_urxe_next(e);
235 ossl_list_urxe_remove(l, e);
236 ossl_quic_demux_release_urxe(qrx->demux, e);
237 }
238 }
239
ossl_qrx_free(OSSL_QRX * qrx)240 void ossl_qrx_free(OSSL_QRX *qrx)
241 {
242 uint32_t i;
243
244 if (qrx == NULL)
245 return;
246
247 /* Free RXE queue data. */
248 qrx_cleanup_rxl(&qrx->rx_free);
249 qrx_cleanup_rxl(&qrx->rx_pending);
250 qrx_cleanup_urxl(qrx, &qrx->urx_pending);
251 qrx_cleanup_urxl(qrx, &qrx->urx_deferred);
252
253 /* Drop keying material and crypto resources. */
254 for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
255 ossl_qrl_enc_level_set_discard(&qrx->el_set, i);
256
257 OPENSSL_free(qrx);
258 }
259
ossl_qrx_inject_urxe(OSSL_QRX * qrx,QUIC_URXE * urxe)260 void ossl_qrx_inject_urxe(OSSL_QRX *qrx, QUIC_URXE *urxe)
261 {
262 /* Initialize our own fields inside the URXE and add to the pending list. */
263 urxe->processed = 0;
264 urxe->hpr_removed = 0;
265 urxe->deferred = 0;
266 ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe);
267
268 if (qrx->msg_callback != NULL)
269 qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_DATAGRAM, urxe + 1,
270 urxe->data_len, qrx->msg_callback_ssl,
271 qrx->msg_callback_arg);
272 }
273
ossl_qrx_inject_pkt(OSSL_QRX * qrx,OSSL_QRX_PKT * pkt)274 void ossl_qrx_inject_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT *pkt)
275 {
276 RXE *rxe = (RXE *)pkt;
277
278 /*
279 * port_default_packet_handler() uses ossl_qrx_read_pkt()
280 * to get pkt. Such packet has refcount 1.
281 */
282 ossl_qrx_pkt_orphan(pkt);
283 if (ossl_assert(rxe->refcount == 0))
284 ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
285 }
286
287 /*
288 * qrx_validate_initial_pkt() is derived from qrx_process_pkt(). Unlike
289 * qrx_process_pkt() the qrx_validate_initial_pkt() function can process
290 * initial packet only. All other packets should be discarded. This allows
291 * port_default_packet_handler() to validate incoming packet. If packet
292 * is not valid, then port_default_packet_handler() must discard the
293 * packet instead of creating a new channel for it.
294 */
qrx_validate_initial_pkt(OSSL_QRX * qrx,QUIC_URXE * urxe,const QUIC_CONN_ID * first_dcid,size_t datagram_len)295 static int qrx_validate_initial_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
296 const QUIC_CONN_ID *first_dcid,
297 size_t datagram_len)
298 {
299 PACKET pkt, orig_pkt;
300 RXE *rxe;
301 size_t i = 0, aad_len = 0, dec_len = 0;
302 const unsigned char *sop;
303 unsigned char *dst;
304 QUIC_PKT_HDR_PTRS ptrs;
305 uint32_t pn_space;
306 OSSL_QRL_ENC_LEVEL *el = NULL;
307 uint64_t rx_key_epoch = UINT64_MAX;
308
309 if (!PACKET_buf_init(&pkt, ossl_quic_urxe_data(urxe), urxe->data_len))
310 return 0;
311
312 orig_pkt = pkt;
313 sop = PACKET_data(&pkt);
314
315 /*
316 * Get a free RXE. If we need to allocate a new one, use the packet length
317 * as a good ballpark figure.
318 */
319 rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(&pkt));
320 if (rxe == NULL)
321 return 0;
322
323 /*
324 * we expect INITIAL packet only, therefore it is OK to pass
325 * short_conn_id_len as 0.
326 */
327 if (!ossl_quic_wire_decode_pkt_hdr(&pkt,
328 0, /* short_conn_id_len */
329 1, /* need second decode */
330 0, /* nodata -> want to read data */
331 &rxe->hdr, &ptrs,
332 NULL))
333 goto malformed;
334
335 if (rxe->hdr.type != QUIC_PKT_TYPE_INITIAL)
336 goto malformed;
337
338 if (!qrx_validate_hdr_early(qrx, rxe, NULL))
339 goto malformed;
340
341 if (ossl_qrl_enc_level_set_have_el(&qrx->el_set, QUIC_ENC_LEVEL_INITIAL) != 1)
342 goto malformed;
343
344 if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) {
345 const unsigned char *token = rxe->hdr.token;
346
347 /*
348 * This may change the value of rxe and change the value of the token
349 * pointer as well. So we must make a temporary copy of the pointer to
350 * the token, and then copy it back into the new location of the rxe
351 */
352 if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len))
353 goto malformed;
354
355 rxe->hdr.token = token;
356 }
357
358 pkt = orig_pkt;
359
360 el = ossl_qrl_enc_level_set_get(&qrx->el_set, QUIC_ENC_LEVEL_INITIAL, 1);
361 assert(el != NULL); /* Already checked above */
362
363 if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
364 goto malformed;
365
366 /*
367 * We have removed header protection, so don't attempt to do it again if
368 * the packet gets deferred and processed again.
369 */
370 pkt_mark(&urxe->hpr_removed, 0);
371
372 /* Decode the now unprotected header. */
373 if (ossl_quic_wire_decode_pkt_hdr(&pkt, 0,
374 0, 0, &rxe->hdr, NULL, NULL) != 1)
375 goto malformed;
376
377 /* Validate header and decode PN. */
378 if (!qrx_validate_hdr(qrx, rxe))
379 goto malformed;
380
381 /*
382 * The AAD data is the entire (unprotected) packet header including the PN.
383 * The packet header has been unprotected in place, so we can just reuse the
384 * PACKET buffer. The header ends where the payload begins.
385 */
386 aad_len = rxe->hdr.data - sop;
387
388 /* Ensure the RXE buffer size is adequate for our payload. */
389 if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL)
390 goto malformed;
391
392 /*
393 * We decrypt the packet body to immediately after the token at the start of
394 * the RXE buffer (where present).
395 *
396 * Do the decryption from the PACKET (which points into URXE memory) to our
397 * RXE payload (single-copy decryption), then fixup the pointers in the
398 * header to point to our new buffer.
399 *
400 * If decryption fails this is considered a permanent error; we defer
401 * packets we don't yet have decryption keys for above, so if this fails,
402 * something has gone wrong with the handshake process or a packet has been
403 * corrupted.
404 */
405 dst = (unsigned char *)rxe_data(rxe) + i;
406 if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
407 &dec_len, sop, aad_len, rxe->pn, QUIC_ENC_LEVEL_INITIAL,
408 rxe->hdr.key_phase, &rx_key_epoch))
409 goto malformed;
410
411 /*
412 * -----------------------------------------------------
413 * IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED
414 * AND MUST BE TIMING-CHANNEL SAFE.
415 * -----------------------------------------------------
416 *
417 * At this point, we have successfully authenticated the AEAD tag and no
418 * longer need to worry about exposing the PN, PN length or Key Phase bit in
419 * timing channels. Invoke any configured validation callback to allow for
420 * rejection of duplicate PNs.
421 */
422 if (!qrx_validate_hdr_late(qrx, rxe))
423 goto malformed;
424
425 pkt_mark(&urxe->processed, 0);
426
427 /*
428 * Update header to point to the decrypted buffer, which may be shorter
429 * due to AEAD tags, block padding, etc.
430 */
431 rxe->hdr.data = dst;
432 rxe->hdr.len = dec_len;
433 rxe->data_len = dec_len;
434 rxe->datagram_len = datagram_len;
435 rxe->key_epoch = rx_key_epoch;
436
437 /* We processed the PN successfully, so update largest processed PN. */
438 pn_space = rxe_determine_pn_space(rxe);
439 if (rxe->pn > qrx->largest_pn[pn_space])
440 qrx->largest_pn[pn_space] = rxe->pn;
441
442 /* Copy across network addresses and RX time from URXE to RXE. */
443 rxe->peer = urxe->peer;
444 rxe->local = urxe->local;
445 rxe->time = urxe->time;
446 rxe->datagram_id = urxe->datagram_id;
447
448 /*
449 * The packet is decrypted, we are going to move it from
450 * rx_pending queue where it waits to be further processed
451 * by ch_rx().
452 */
453 ossl_list_rxe_remove(&qrx->rx_free, rxe);
454 ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
455
456 return 1;
457
458 malformed:
459 /* caller (port_default_packet_handler()) should discard urxe */
460 return 0;
461 }
462
ossl_qrx_validate_initial_packet(OSSL_QRX * qrx,QUIC_URXE * urxe,const QUIC_CONN_ID * dcid)463 int ossl_qrx_validate_initial_packet(OSSL_QRX *qrx, QUIC_URXE *urxe,
464 const QUIC_CONN_ID *dcid)
465 {
466 urxe->processed = 0;
467 urxe->hpr_removed = 0;
468 urxe->deferred = 0;
469
470 return qrx_validate_initial_pkt(qrx, urxe, dcid, urxe->data_len);
471 }
472
qrx_requeue_deferred(OSSL_QRX * qrx)473 static void qrx_requeue_deferred(OSSL_QRX *qrx)
474 {
475 QUIC_URXE *e;
476
477 while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) {
478 ossl_list_urxe_remove(&qrx->urx_deferred, e);
479 ossl_list_urxe_insert_tail(&qrx->urx_pending, e);
480 }
481 }
482
ossl_qrx_provide_secret(OSSL_QRX * qrx,uint32_t enc_level,uint32_t suite_id,EVP_MD * md,const unsigned char * secret,size_t secret_len)483 int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level,
484 uint32_t suite_id, EVP_MD *md,
485 const unsigned char *secret, size_t secret_len)
486 {
487 if (enc_level >= QUIC_ENC_LEVEL_NUM)
488 return 0;
489
490 if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set,
491 qrx->libctx,
492 qrx->propq,
493 enc_level,
494 suite_id,
495 md,
496 secret,
497 secret_len,
498 qrx->init_key_phase_bit,
499 /*is_tx=*/0))
500 return 0;
501
502 /*
503 * Any packets we previously could not decrypt, we may now be able to
504 * decrypt, so move any datagrams containing deferred packets from the
505 * deferred to the pending queue.
506 */
507 qrx_requeue_deferred(qrx);
508 return 1;
509 }
510
ossl_qrx_discard_enc_level(OSSL_QRX * qrx,uint32_t enc_level)511 int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level)
512 {
513 if (enc_level >= QUIC_ENC_LEVEL_NUM)
514 return 0;
515
516 ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level);
517 return 1;
518 }
519
520 /* Returns 1 if there are one or more pending RXEs. */
ossl_qrx_processed_read_pending(OSSL_QRX * qrx)521 int ossl_qrx_processed_read_pending(OSSL_QRX *qrx)
522 {
523 return !ossl_list_rxe_is_empty(&qrx->rx_pending);
524 }
525
526 /* Returns 1 if there are yet-unprocessed packets. */
ossl_qrx_unprocessed_read_pending(OSSL_QRX * qrx)527 int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx)
528 {
529 return !ossl_list_urxe_is_empty(&qrx->urx_pending)
530 || !ossl_list_urxe_is_empty(&qrx->urx_deferred);
531 }
532
533 /* Pop the next pending RXE. Returns NULL if no RXE is pending. */
qrx_pop_pending_rxe(OSSL_QRX * qrx)534 static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx)
535 {
536 RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending);
537
538 if (rxe == NULL)
539 return NULL;
540
541 ossl_list_rxe_remove(&qrx->rx_pending, rxe);
542 return rxe;
543 }
544
545 /* Allocate a new RXE. */
qrx_alloc_rxe(size_t alloc_len)546 static RXE *qrx_alloc_rxe(size_t alloc_len)
547 {
548 RXE *rxe;
549
550 if (alloc_len >= SIZE_MAX - sizeof(RXE))
551 return NULL;
552
553 rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len);
554 if (rxe == NULL)
555 return NULL;
556
557 ossl_list_rxe_init_elem(rxe);
558 rxe->alloc_len = alloc_len;
559 rxe->data_len = 0;
560 rxe->refcount = 0;
561 return rxe;
562 }
563
564 /*
565 * Ensures there is at least one RXE in the RX free list, allocating a new entry
566 * if necessary. The returned RXE is in the RX free list; it is not popped.
567 *
568 * alloc_len is a hint which may be used to determine the RXE size if allocation
569 * is necessary. Returns NULL on allocation failure.
570 */
qrx_ensure_free_rxe(OSSL_QRX * qrx,size_t alloc_len)571 static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len)
572 {
573 RXE *rxe;
574
575 if (ossl_list_rxe_head(&qrx->rx_free) != NULL)
576 return ossl_list_rxe_head(&qrx->rx_free);
577
578 rxe = qrx_alloc_rxe(alloc_len);
579 if (rxe == NULL)
580 return NULL;
581
582 ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
583 return rxe;
584 }
585
586 /*
587 * Resize the data buffer attached to an RXE to be n bytes in size. The address
588 * of the RXE might change; the new address is returned, or NULL on failure, in
589 * which case the original RXE remains valid.
590 */
qrx_resize_rxe(RXE_LIST * rxl,RXE * rxe,size_t n)591 static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n)
592 {
593 RXE *rxe2, *p;
594
595 /* Should never happen. */
596 if (rxe == NULL)
597 return NULL;
598
599 if (n >= SIZE_MAX - sizeof(RXE))
600 return NULL;
601
602 /* Remove the item from the list to avoid accessing freed memory */
603 p = ossl_list_rxe_prev(rxe);
604 ossl_list_rxe_remove(rxl, rxe);
605
606 /* Should never resize an RXE which has been handed out. */
607 if (!ossl_assert(rxe->refcount == 0))
608 return NULL;
609
610 /*
611 * NOTE: We do not clear old memory, although it does contain decrypted
612 * data.
613 */
614 rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n);
615 if (rxe2 == NULL) {
616 /* Resize failed, restore old allocation. */
617 if (p == NULL)
618 ossl_list_rxe_insert_head(rxl, rxe);
619 else
620 ossl_list_rxe_insert_after(rxl, p, rxe);
621 return NULL;
622 }
623
624 if (p == NULL)
625 ossl_list_rxe_insert_head(rxl, rxe2);
626 else
627 ossl_list_rxe_insert_after(rxl, p, rxe2);
628
629 rxe2->alloc_len = n;
630 return rxe2;
631 }
632
633 /*
634 * Ensure the data buffer attached to an RXE is at least n bytes in size.
635 * Returns NULL on failure.
636 */
qrx_reserve_rxe(RXE_LIST * rxl,RXE * rxe,size_t n)637 static RXE *qrx_reserve_rxe(RXE_LIST *rxl,
638 RXE *rxe, size_t n)
639 {
640 if (rxe->alloc_len >= n)
641 return rxe;
642
643 return qrx_resize_rxe(rxl, rxe, n);
644 }
645
646 /* Return a RXE handed out to the user back to our freelist. */
qrx_recycle_rxe(OSSL_QRX * qrx,RXE * rxe)647 static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe)
648 {
649 /* RXE should not be in any list */
650 assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
651 rxe->pkt.hdr = NULL;
652 rxe->pkt.peer = NULL;
653 rxe->pkt.local = NULL;
654 ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
655 }
656
657 /*
658 * Given a pointer to a pointer pointing to a buffer and the size of that
659 * buffer, copy the buffer into *prxe, expanding the RXE if necessary (its
660 * pointer may change due to realloc). *pi is the offset in bytes to copy the
661 * buffer to, and on success is updated to be the offset pointing after the
662 * copied buffer. *pptr is updated to point to the new location of the buffer.
663 */
qrx_relocate_buffer(OSSL_QRX * qrx,RXE ** prxe,size_t * pi,const unsigned char ** pptr,size_t buf_len)664 static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
665 const unsigned char **pptr, size_t buf_len)
666 {
667 RXE *rxe;
668 unsigned char *dst;
669
670 if (!buf_len)
671 return 1;
672
673 if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL)
674 return 0;
675
676 *prxe = rxe;
677 dst = (unsigned char *)rxe_data(rxe) + *pi;
678
679 memcpy(dst, *pptr, buf_len);
680 *pi += buf_len;
681 *pptr = dst;
682 return 1;
683 }
684
qrx_determine_enc_level(const QUIC_PKT_HDR * hdr)685 static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr)
686 {
687 switch (hdr->type) {
688 case QUIC_PKT_TYPE_INITIAL:
689 return QUIC_ENC_LEVEL_INITIAL;
690 case QUIC_PKT_TYPE_HANDSHAKE:
691 return QUIC_ENC_LEVEL_HANDSHAKE;
692 case QUIC_PKT_TYPE_0RTT:
693 return QUIC_ENC_LEVEL_0RTT;
694 case QUIC_PKT_TYPE_1RTT:
695 return QUIC_ENC_LEVEL_1RTT;
696
697 default:
698 assert(0);
699 case QUIC_PKT_TYPE_RETRY:
700 case QUIC_PKT_TYPE_VERSION_NEG:
701 return QUIC_ENC_LEVEL_INITIAL; /* not used */
702 }
703 }
704
rxe_determine_pn_space(RXE * rxe)705 static uint32_t rxe_determine_pn_space(RXE *rxe)
706 {
707 uint32_t enc_level;
708
709 enc_level = qrx_determine_enc_level(&rxe->hdr);
710 return ossl_quic_enc_level_to_pn_space(enc_level);
711 }
712
qrx_validate_hdr_early(OSSL_QRX * qrx,RXE * rxe,const QUIC_CONN_ID * first_dcid)713 static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
714 const QUIC_CONN_ID *first_dcid)
715 {
716 /* Ensure version is what we want. */
717 if (rxe->hdr.version != QUIC_VERSION_1
718 && rxe->hdr.version != QUIC_VERSION_NONE)
719 return 0;
720
721 /* Clients should never receive 0-RTT packets. */
722 if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT)
723 return 0;
724
725 /* Version negotiation and retry packets must be the first packet. */
726 if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type))
727 return 0;
728
729 /*
730 * If this is not the first packet in a datagram, the destination connection
731 * ID must match the one in that packet.
732 */
733 if (first_dcid != NULL) {
734 if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN)
735 || !ossl_quic_conn_id_eq(first_dcid,
736 &rxe->hdr.dst_conn_id))
737 return 0;
738 }
739
740 return 1;
741 }
742
743 /* Validate header and decode PN. */
qrx_validate_hdr(OSSL_QRX * qrx,RXE * rxe)744 static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe)
745 {
746 int pn_space = rxe_determine_pn_space(rxe);
747
748 if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len,
749 qrx->largest_pn[pn_space],
750 &rxe->pn))
751 return 0;
752
753 return 1;
754 }
755
756 /* Late packet header validation. */
qrx_validate_hdr_late(OSSL_QRX * qrx,RXE * rxe)757 static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe)
758 {
759 int pn_space = rxe_determine_pn_space(rxe);
760
761 /*
762 * Allow our user to decide whether to discard the packet before we try and
763 * decrypt it.
764 */
765 if (qrx->validation_cb != NULL
766 && !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg))
767 return 0;
768
769 return 1;
770 }
771
772 /*
773 * Retrieves the correct cipher context for an EL and key phase. Writes the key
774 * epoch number actually used for packet decryption to *rx_key_epoch.
775 */
qrx_get_cipher_ctx_idx(OSSL_QRX * qrx,OSSL_QRL_ENC_LEVEL * el,uint32_t enc_level,unsigned char key_phase_bit,uint64_t * rx_key_epoch,int * is_old_key)776 static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el,
777 uint32_t enc_level,
778 unsigned char key_phase_bit,
779 uint64_t *rx_key_epoch,
780 int *is_old_key)
781 {
782 size_t idx;
783
784 *is_old_key = 0;
785
786 if (enc_level != QUIC_ENC_LEVEL_1RTT) {
787 *rx_key_epoch = 0;
788 return 0;
789 }
790
791 if (!ossl_assert(key_phase_bit <= 1))
792 return SIZE_MAX;
793
794 /*
795 * RFC 9001 requires that we not create timing channels which could reveal
796 * the decrypted value of the Key Phase bit. We usually handle this by
797 * keeping the cipher contexts for both the current and next key epochs
798 * around, so that we just select a cipher context blindly using the key
799 * phase bit, which is time-invariant.
800 *
801 * In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001
802 * suggests an implementation strategy to avoid creating a timing channel in
803 * this case:
804 *
805 * Endpoints can use randomized packet protection keys in place of
806 * discarded keys when key updates are not yet permitted.
807 *
808 * Rather than use a randomised key, we simply use our existing key as it
809 * will fail AEAD verification anyway. This avoids the need to keep around a
810 * dedicated garbage key.
811 *
812 * Note: Accessing different cipher contexts is technically not
813 * timing-channel safe due to microarchitectural side channels, but this is
814 * the best we can reasonably do and appears to be directly suggested by the
815 * RFC.
816 */
817 idx = (el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1
818 : key_phase_bit);
819
820 /*
821 * We also need to determine the key epoch number which this index
822 * corresponds to. This is so we can report the key epoch number in the
823 * OSSL_QRX_PKT structure, which callers need to validate whether it was OK
824 * for a packet to be sent using a given key epoch's keys.
825 */
826 switch (el->state) {
827 case QRL_EL_STATE_PROV_NORMAL:
828 /*
829 * If we are in the NORMAL state, usually the KP bit will match the LSB
830 * of our key epoch, meaning no new key update is being signalled. If it
831 * does not match, this means the packet (purports to) belong to
832 * the next key epoch.
833 *
834 * IMPORTANT: The AEAD tag has not been verified yet when this function
835 * is called, so this code must be timing-channel safe, hence use of
836 * XOR. Moreover, the value output below is not yet authenticated.
837 */
838 *rx_key_epoch
839 = el->key_epoch + ((el->key_epoch & 1) ^ (uint64_t)key_phase_bit);
840 break;
841
842 case QRL_EL_STATE_PROV_UPDATING:
843 /*
844 * If we are in the UPDATING state, usually the KP bit will match the
845 * LSB of our key epoch. If it does not match, this means that the
846 * packet (purports to) belong to the previous key epoch.
847 *
848 * As above, must be timing-channel safe.
849 */
850 *is_old_key = (el->key_epoch & 1) ^ (uint64_t)key_phase_bit;
851 *rx_key_epoch = el->key_epoch - (uint64_t)*is_old_key;
852 break;
853
854 case QRL_EL_STATE_PROV_COOLDOWN:
855 /*
856 * If we are in COOLDOWN, there is only one key epoch we can possibly
857 * decrypt with, so just try that. If AEAD decryption fails, the
858 * value we output here isn't used anyway.
859 */
860 *rx_key_epoch = el->key_epoch;
861 break;
862 }
863
864 return idx;
865 }
866
867 /*
868 * Tries to decrypt a packet payload.
869 *
870 * Returns 1 on success or 0 on failure (which is permanent). The payload is
871 * decrypted from src and written to dst. The buffer dst must be of at least
872 * src_len bytes in length. The actual length of the output in bytes is written
873 * to *dec_len on success, which will always be equal to or less than (usually
874 * less than) src_len.
875 */
qrx_decrypt_pkt_body(OSSL_QRX * qrx,unsigned char * dst,const unsigned char * src,size_t src_len,size_t * dec_len,const unsigned char * aad,size_t aad_len,QUIC_PN pn,uint32_t enc_level,unsigned char key_phase_bit,uint64_t * rx_key_epoch)876 static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
877 const unsigned char *src,
878 size_t src_len, size_t *dec_len,
879 const unsigned char *aad, size_t aad_len,
880 QUIC_PN pn, uint32_t enc_level,
881 unsigned char key_phase_bit,
882 uint64_t *rx_key_epoch)
883 {
884 int l = 0, l2 = 0, is_old_key, nonce_len;
885 unsigned char nonce[EVP_MAX_IV_LENGTH];
886 size_t i, cctx_idx;
887 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
888 enc_level, 1);
889 EVP_CIPHER_CTX *cctx;
890
891 if (src_len > INT_MAX || aad_len > INT_MAX)
892 return 0;
893
894 /* We should not have been called if we do not have key material. */
895 if (!ossl_assert(el != NULL))
896 return 0;
897
898 if (el->tag_len >= src_len)
899 return 0;
900
901 /*
902 * If we have failed to authenticate a certain number of ciphertexts, refuse
903 * to decrypt any more ciphertexts.
904 */
905 if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id))
906 return 0;
907
908 cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit,
909 rx_key_epoch, &is_old_key);
910 if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx)))
911 return 0;
912
913 if (is_old_key && pn >= qrx->cur_epoch_start_pn)
914 /*
915 * RFC 9001 s. 5.5: Once an endpoint successfully receives a packet with
916 * a given PN, it MUST discard all packets in the same PN space with
917 * higher PNs if they cannot be successfully unprotected with the same
918 * key, or -- if there is a key update -- a subsequent packet protection
919 * key.
920 *
921 * In other words, once a PN x triggers a KU, it is invalid for us to
922 * receive a packet with a newer PN y (y > x) using the old keys.
923 */
924 return 0;
925
926 cctx = el->cctx[cctx_idx];
927
928 /* Construct nonce (nonce=IV ^ PN). */
929 nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
930 if (!ossl_assert(nonce_len >= (int)sizeof(QUIC_PN)))
931 return 0;
932
933 memcpy(nonce, el->iv[cctx_idx], nonce_len);
934 for (i = 0; i < sizeof(QUIC_PN); ++i)
935 nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));
936
937 /* type and key will already have been setup; feed the IV. */
938 if (EVP_CipherInit_ex(cctx, NULL,
939 NULL, NULL, nonce, /*enc=*/0) != 1)
940 return 0;
941
942 /* Feed the AEAD tag we got so the cipher can validate it. */
943 if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG,
944 el->tag_len,
945 (unsigned char *)src + src_len - el->tag_len) != 1)
946 return 0;
947
948 /* Feed AAD data. */
949 if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1)
950 return 0;
951
952 /* Feed encrypted packet body. */
953 if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1)
954 return 0;
955
956 #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
957 /*
958 * Throw away what we just decrypted and just use the ciphertext instead
959 * (which should be unencrypted)
960 */
961 memcpy(dst, src, l);
962
963 /* Pretend to authenticate the tag but ignore it */
964 if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
965 /* We don't care */
966 }
967 #else
968 /* Ensure authentication succeeded. */
969 if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
970 /* Authentication failed, increment failed auth counter. */
971 ++qrx->forged_pkt_count;
972 return 0;
973 }
974 #endif
975
976 *dec_len = l;
977 return 1;
978 }
979
ignore_res(int x)980 static ossl_inline void ignore_res(int x)
981 {
982 /* No-op. */
983 }
984
qrx_key_update_initiated(OSSL_QRX * qrx,QUIC_PN pn)985 static void qrx_key_update_initiated(OSSL_QRX *qrx, QUIC_PN pn)
986 {
987 if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT))
988 /* We are already in RXKU, so we don't call the callback again. */
989 return;
990
991 qrx->cur_epoch_start_pn = pn;
992
993 if (qrx->key_update_cb != NULL)
994 qrx->key_update_cb(pn, qrx->key_update_cb_arg);
995 }
996
997 /* Process a single packet in a datagram. */
qrx_process_pkt(OSSL_QRX * qrx,QUIC_URXE * urxe,PACKET * pkt,size_t pkt_idx,QUIC_CONN_ID * first_dcid,size_t datagram_len)998 static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
999 PACKET *pkt, size_t pkt_idx,
1000 QUIC_CONN_ID *first_dcid,
1001 size_t datagram_len)
1002 {
1003 RXE *rxe;
1004 const unsigned char *eop = NULL;
1005 size_t i, aad_len = 0, dec_len = 0;
1006 PACKET orig_pkt = *pkt;
1007 const unsigned char *sop = PACKET_data(pkt);
1008 unsigned char *dst;
1009 char need_second_decode = 0, already_processed = 0;
1010 QUIC_PKT_HDR_PTRS ptrs;
1011 uint32_t pn_space, enc_level;
1012 OSSL_QRL_ENC_LEVEL *el = NULL;
1013 uint64_t rx_key_epoch = UINT64_MAX;
1014
1015 /*
1016 * Get a free RXE. If we need to allocate a new one, use the packet length
1017 * as a good ballpark figure.
1018 */
1019 rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt));
1020 if (rxe == NULL)
1021 return 0;
1022
1023 /* Have we already processed this packet? */
1024 if (pkt_is_marked(&urxe->processed, pkt_idx))
1025 already_processed = 1;
1026
1027 /*
1028 * Decode the header into the RXE structure. We first decrypt and read the
1029 * unprotected part of the packet header (unless we already removed header
1030 * protection, in which case we decode all of it).
1031 */
1032 need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx);
1033 if (!ossl_quic_wire_decode_pkt_hdr(pkt,
1034 qrx->short_conn_id_len,
1035 need_second_decode, 0, &rxe->hdr, &ptrs,
1036 NULL))
1037 goto malformed;
1038
1039 /*
1040 * Our successful decode above included an intelligible length and the
1041 * PACKET is now pointing to the end of the QUIC packet.
1042 */
1043 eop = PACKET_data(pkt);
1044
1045 /*
1046 * Make a note of the first packet's DCID so we can later ensure the
1047 * destination connection IDs of all packets in a datagram match.
1048 */
1049 if (pkt_idx == 0)
1050 *first_dcid = rxe->hdr.dst_conn_id;
1051
1052 /*
1053 * Early header validation. Since we now know the packet length, we can also
1054 * now skip over it if we already processed it.
1055 */
1056 if (already_processed
1057 || !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid))
1058 /*
1059 * Already processed packets are handled identically to malformed
1060 * packets; i.e., they are ignored.
1061 */
1062 goto malformed;
1063
1064 if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) {
1065 /*
1066 * Version negotiation and retry packets are a special case. They do not
1067 * contain a payload which needs decrypting and have no header
1068 * protection.
1069 */
1070
1071 /* Just copy the payload from the URXE to the RXE. */
1072 if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL)
1073 /*
1074 * Allocation failure. EOP will be pointing to the end of the
1075 * datagram so processing of this datagram will end here.
1076 */
1077 goto malformed;
1078
1079 /* We are now committed to returning the packet. */
1080 memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len);
1081 pkt_mark(&urxe->processed, pkt_idx);
1082
1083 rxe->hdr.data = rxe_data(rxe);
1084 rxe->pn = QUIC_PN_INVALID;
1085
1086 rxe->data_len = rxe->hdr.len;
1087 rxe->datagram_len = datagram_len;
1088 rxe->key_epoch = 0;
1089 rxe->peer = urxe->peer;
1090 rxe->local = urxe->local;
1091 rxe->time = urxe->time;
1092 rxe->datagram_id = urxe->datagram_id;
1093
1094 /* Move RXE to pending. */
1095 ossl_list_rxe_remove(&qrx->rx_free, rxe);
1096 ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
1097 return 0; /* success, did not defer */
1098 }
1099
1100 /* Determine encryption level of packet. */
1101 enc_level = qrx_determine_enc_level(&rxe->hdr);
1102
1103 /* If we do not have keying material for this encryption level yet, defer. */
1104 switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) {
1105 case 1:
1106 /* We have keys. */
1107 if (enc_level == QUIC_ENC_LEVEL_1RTT && !qrx->allow_1rtt)
1108 /*
1109 * But we cannot process 1-RTT packets until the handshake is
1110 * completed (RFC 9000 s. 5.7).
1111 */
1112 goto cannot_decrypt;
1113
1114 break;
1115 case 0:
1116 /* No keys yet. */
1117 goto cannot_decrypt;
1118 default:
1119 /* We already discarded keys for this EL, we will never process this.*/
1120 goto malformed;
1121 }
1122
1123 /*
1124 * We will copy any token included in the packet to the start of our RXE
1125 * data buffer (so that we don't reference the URXE buffer any more and can
1126 * recycle it). Track our position in the RXE buffer by index instead of
1127 * pointer as the pointer may change as reallocs occur.
1128 */
1129 i = 0;
1130
1131 /*
1132 * rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr
1133 * also has fields pointing into the PACKET buffer which will be going away
1134 * soon (the URXE will be reused for another incoming packet).
1135 *
1136 * Firstly, relocate some of these fields into the RXE as needed.
1137 *
1138 * Relocate token buffer and fix pointer.
1139 */
1140 if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) {
1141 const unsigned char *token = rxe->hdr.token;
1142
1143 /*
1144 * This may change the value of rxe and change the value of the token
1145 * pointer as well. So we must make a temporary copy of the pointer to
1146 * the token, and then copy it back into the new location of the rxe
1147 */
1148 if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len))
1149 goto malformed;
1150
1151 rxe->hdr.token = token;
1152 }
1153
1154 /* Now remove header protection. */
1155 *pkt = orig_pkt;
1156
1157 el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1);
1158 assert(el != NULL); /* Already checked above */
1159
1160 if (need_second_decode) {
1161 if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
1162 goto malformed;
1163
1164 /*
1165 * We have removed header protection, so don't attempt to do it again if
1166 * the packet gets deferred and processed again.
1167 */
1168 pkt_mark(&urxe->hpr_removed, pkt_idx);
1169
1170 /* Decode the now unprotected header. */
1171 if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len,
1172 0, 0, &rxe->hdr, NULL, NULL) != 1)
1173 goto malformed;
1174 }
1175
1176 /* Validate header and decode PN. */
1177 if (!qrx_validate_hdr(qrx, rxe))
1178 goto malformed;
1179
1180 if (qrx->msg_callback != NULL)
1181 qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_PACKET, sop,
1182 eop - sop - rxe->hdr.len, qrx->msg_callback_ssl,
1183 qrx->msg_callback_arg);
1184
1185 /*
1186 * The AAD data is the entire (unprotected) packet header including the PN.
1187 * The packet header has been unprotected in place, so we can just reuse the
1188 * PACKET buffer. The header ends where the payload begins.
1189 */
1190 aad_len = rxe->hdr.data - sop;
1191
1192 /* Ensure the RXE buffer size is adequate for our payload. */
1193 if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) {
1194 /*
1195 * Allocation failure, treat as malformed and do not bother processing
1196 * any further packets in the datagram as they are likely to also
1197 * encounter allocation failures.
1198 */
1199 eop = NULL;
1200 goto malformed;
1201 }
1202
1203 /*
1204 * We decrypt the packet body to immediately after the token at the start of
1205 * the RXE buffer (where present).
1206 *
1207 * Do the decryption from the PACKET (which points into URXE memory) to our
1208 * RXE payload (single-copy decryption), then fixup the pointers in the
1209 * header to point to our new buffer.
1210 *
1211 * If decryption fails this is considered a permanent error; we defer
1212 * packets we don't yet have decryption keys for above, so if this fails,
1213 * something has gone wrong with the handshake process or a packet has been
1214 * corrupted.
1215 */
1216 dst = (unsigned char *)rxe_data(rxe) + i;
1217 if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
1218 &dec_len, sop, aad_len, rxe->pn, enc_level,
1219 rxe->hdr.key_phase, &rx_key_epoch))
1220 goto malformed;
1221
1222 /*
1223 * -----------------------------------------------------
1224 * IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED
1225 * AND MUST BE TIMING-CHANNEL SAFE.
1226 * -----------------------------------------------------
1227 *
1228 * At this point, we have successfully authenticated the AEAD tag and no
1229 * longer need to worry about exposing the PN, PN length or Key Phase bit in
1230 * timing channels. Invoke any configured validation callback to allow for
1231 * rejection of duplicate PNs.
1232 */
1233 if (!qrx_validate_hdr_late(qrx, rxe))
1234 goto malformed;
1235
1236 /* Check for a Key Phase bit differing from our expectation. */
1237 if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT
1238 && rxe->hdr.key_phase != (el->key_epoch & 1))
1239 qrx_key_update_initiated(qrx, rxe->pn);
1240
1241 /*
1242 * We have now successfully decrypted the packet payload. If there are
1243 * additional packets in the datagram, it is possible we will fail to
1244 * decrypt them and need to defer them until we have some key material we
1245 * don't currently possess. If this happens, the URXE will be moved to the
1246 * deferred queue. Since a URXE corresponds to one datagram, which may
1247 * contain multiple packets, we must ensure any packets we have already
1248 * processed in the URXE are not processed again (this is an RFC
1249 * requirement). We do this by marking the nth packet in the datagram as
1250 * processed.
1251 *
1252 * We are now committed to returning this decrypted packet to the user,
1253 * meaning we now consider the packet processed and must mark it
1254 * accordingly.
1255 */
1256 pkt_mark(&urxe->processed, pkt_idx);
1257
1258 /*
1259 * Update header to point to the decrypted buffer, which may be shorter
1260 * due to AEAD tags, block padding, etc.
1261 */
1262 rxe->hdr.data = dst;
1263 rxe->hdr.len = dec_len;
1264 rxe->data_len = dec_len;
1265 rxe->datagram_len = datagram_len;
1266 rxe->key_epoch = rx_key_epoch;
1267
1268 /* We processed the PN successfully, so update largest processed PN. */
1269 pn_space = rxe_determine_pn_space(rxe);
1270 if (rxe->pn > qrx->largest_pn[pn_space])
1271 qrx->largest_pn[pn_space] = rxe->pn;
1272
1273 /* Copy across network addresses and RX time from URXE to RXE. */
1274 rxe->peer = urxe->peer;
1275 rxe->local = urxe->local;
1276 rxe->time = urxe->time;
1277 rxe->datagram_id = urxe->datagram_id;
1278
1279 /* Move RXE to pending. */
1280 ossl_list_rxe_remove(&qrx->rx_free, rxe);
1281 ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
1282 return 0; /* success, did not defer; not distinguished from failure */
1283
1284 cannot_decrypt:
1285 /*
1286 * We cannot process this packet right now (but might be able to later). We
1287 * MUST attempt to process any other packets in the datagram, so defer it
1288 * and skip over it.
1289 */
1290 assert(eop != NULL && eop >= PACKET_data(pkt));
1291 /*
1292 * We don't care if this fails as it will just result in the packet being at
1293 * the end of the datagram buffer.
1294 */
1295 ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
1296 return 1; /* deferred */
1297
1298 malformed:
1299 if (eop != NULL) {
1300 /*
1301 * This packet cannot be processed and will never be processable. We
1302 * were at least able to decode its header and determine its length, so
1303 * we can skip over it and try to process any subsequent packets in the
1304 * datagram.
1305 *
1306 * Mark as processed as an optimization.
1307 */
1308 assert(eop >= PACKET_data(pkt));
1309 pkt_mark(&urxe->processed, pkt_idx);
1310 /* We don't care if this fails (see above) */
1311 ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
1312 } else {
1313 /*
1314 * This packet cannot be processed and will never be processable.
1315 * Because even its header is not intelligible, we cannot examine any
1316 * further packets in the datagram because its length cannot be
1317 * discerned.
1318 *
1319 * Advance over the entire remainder of the datagram, and mark it as
1320 * processed as an optimization.
1321 */
1322 pkt_mark(&urxe->processed, pkt_idx);
1323 /* We don't care if this fails (see above) */
1324 ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt)));
1325 }
1326 return 0; /* failure, did not defer; not distinguished from success */
1327 }
1328
1329 /* Process a datagram which was received. */
qrx_process_datagram(OSSL_QRX * qrx,QUIC_URXE * e,const unsigned char * data,size_t data_len)1330 static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e,
1331 const unsigned char *data,
1332 size_t data_len)
1333 {
1334 int have_deferred = 0;
1335 PACKET pkt;
1336 size_t pkt_idx = 0;
1337 QUIC_CONN_ID first_dcid = { 255 };
1338
1339 qrx->bytes_received += data_len;
1340
1341 if (!PACKET_buf_init(&pkt, data, data_len))
1342 return 0;
1343
1344 for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) {
1345 /*
1346 * A packet smaller than the minimum possible QUIC packet size is not
1347 * considered valid. We also ignore more than a certain number of
1348 * packets within the same datagram.
1349 */
1350 if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN
1351 || pkt_idx >= QUIC_MAX_PKT_PER_URXE)
1352 break;
1353
1354 /*
1355 * We note whether packet processing resulted in a deferral since
1356 * this means we need to move the URXE to the deferred list rather
1357 * than the free list after we're finished dealing with it for now.
1358 *
1359 * However, we don't otherwise care here whether processing succeeded or
1360 * failed, as the RFC says even if a packet in a datagram is malformed,
1361 * we should still try to process any packets following it.
1362 *
1363 * In the case where the packet is so malformed we can't determine its
1364 * length, qrx_process_pkt will take care of advancing to the end of
1365 * the packet, so we will exit the loop automatically in this case.
1366 */
1367 if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len))
1368 have_deferred = 1;
1369 }
1370
1371 /* Only report whether there were any deferrals. */
1372 return have_deferred;
1373 }
1374
1375 /* Process a single pending URXE. */
qrx_process_one_urxe(OSSL_QRX * qrx,QUIC_URXE * e)1376 static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e)
1377 {
1378 int was_deferred;
1379
1380 /* The next URXE we process should be at the head of the pending list. */
1381 if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending)))
1382 return 0;
1383
1384 /*
1385 * Attempt to process the datagram. The return value indicates only if
1386 * processing of the datagram was deferred. If we failed to process the
1387 * datagram, we do not attempt to process it again and silently eat the
1388 * error.
1389 */
1390 was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e),
1391 e->data_len);
1392
1393 /*
1394 * Remove the URXE from the pending list and return it to
1395 * either the free or deferred list.
1396 */
1397 ossl_list_urxe_remove(&qrx->urx_pending, e);
1398 if (was_deferred > 0 &&
1399 (e->deferred || qrx->num_deferred < qrx->max_deferred)) {
1400 ossl_list_urxe_insert_tail(&qrx->urx_deferred, e);
1401 if (!e->deferred) {
1402 e->deferred = 1;
1403 ++qrx->num_deferred;
1404 }
1405 } else {
1406 if (e->deferred) {
1407 e->deferred = 0;
1408 --qrx->num_deferred;
1409 }
1410 ossl_quic_demux_release_urxe(qrx->demux, e);
1411 }
1412
1413 return 1;
1414 }
1415
1416 /* Process any pending URXEs to generate pending RXEs. */
qrx_process_pending_urxl(OSSL_QRX * qrx)1417 static int qrx_process_pending_urxl(OSSL_QRX *qrx)
1418 {
1419 QUIC_URXE *e;
1420
1421 while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL)
1422 if (!qrx_process_one_urxe(qrx, e))
1423 return 0;
1424
1425 return 1;
1426 }
1427
ossl_qrx_read_pkt(OSSL_QRX * qrx,OSSL_QRX_PKT ** ppkt)1428 int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt)
1429 {
1430 RXE *rxe;
1431
1432 if (!ossl_qrx_processed_read_pending(qrx)) {
1433 if (!qrx_process_pending_urxl(qrx))
1434 return 0;
1435
1436 if (!ossl_qrx_processed_read_pending(qrx))
1437 return 0;
1438 }
1439
1440 rxe = qrx_pop_pending_rxe(qrx);
1441 if (!ossl_assert(rxe != NULL))
1442 return 0;
1443
1444 assert(rxe->refcount == 0);
1445 rxe->refcount = 1;
1446
1447 rxe->pkt.hdr = &rxe->hdr;
1448 rxe->pkt.pn = rxe->pn;
1449 rxe->pkt.time = rxe->time;
1450 rxe->pkt.datagram_len = rxe->datagram_len;
1451 rxe->pkt.peer
1452 = BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL;
1453 rxe->pkt.local
1454 = BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL;
1455 rxe->pkt.key_epoch = rxe->key_epoch;
1456 rxe->pkt.datagram_id = rxe->datagram_id;
1457 rxe->pkt.qrx = qrx;
1458 *ppkt = &rxe->pkt;
1459
1460 return 1;
1461 }
1462
ossl_qrx_pkt_release(OSSL_QRX_PKT * pkt)1463 void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt)
1464 {
1465 RXE *rxe;
1466
1467 if (pkt == NULL)
1468 return;
1469
1470 rxe = (RXE *)pkt;
1471 assert(rxe->refcount > 0);
1472 if (--rxe->refcount == 0)
1473 qrx_recycle_rxe(pkt->qrx, rxe);
1474 }
1475
ossl_qrx_pkt_orphan(OSSL_QRX_PKT * pkt)1476 void ossl_qrx_pkt_orphan(OSSL_QRX_PKT *pkt)
1477 {
1478 RXE *rxe;
1479
1480 if (pkt == NULL)
1481 return;
1482 rxe = (RXE *)pkt;
1483 assert(rxe->refcount > 0);
1484 rxe->refcount--;
1485 assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
1486 return;
1487 }
1488
ossl_qrx_pkt_up_ref(OSSL_QRX_PKT * pkt)1489 void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt)
1490 {
1491 RXE *rxe = (RXE *)pkt;
1492
1493 assert(rxe->refcount > 0);
1494 ++rxe->refcount;
1495 }
1496
ossl_qrx_get_bytes_received(OSSL_QRX * qrx,int clear)1497 uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear)
1498 {
1499 uint64_t v = qrx->bytes_received;
1500
1501 if (clear)
1502 qrx->bytes_received = 0;
1503
1504 return v;
1505 }
1506
ossl_qrx_set_late_validation_cb(OSSL_QRX * qrx,ossl_qrx_late_validation_cb * cb,void * cb_arg)1507 int ossl_qrx_set_late_validation_cb(OSSL_QRX *qrx,
1508 ossl_qrx_late_validation_cb *cb,
1509 void *cb_arg)
1510 {
1511 qrx->validation_cb = cb;
1512 qrx->validation_cb_arg = cb_arg;
1513 return 1;
1514 }
1515
ossl_qrx_set_key_update_cb(OSSL_QRX * qrx,ossl_qrx_key_update_cb * cb,void * cb_arg)1516 int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx,
1517 ossl_qrx_key_update_cb *cb,
1518 void *cb_arg)
1519 {
1520 qrx->key_update_cb = cb;
1521 qrx->key_update_cb_arg = cb_arg;
1522 return 1;
1523 }
1524
ossl_qrx_get_key_epoch(OSSL_QRX * qrx)1525 uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx)
1526 {
1527 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
1528 QUIC_ENC_LEVEL_1RTT, 1);
1529
1530 return el == NULL ? UINT64_MAX : el->key_epoch;
1531 }
1532
ossl_qrx_key_update_timeout(OSSL_QRX * qrx,int normal)1533 int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal)
1534 {
1535 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
1536 QUIC_ENC_LEVEL_1RTT, 1);
1537
1538 if (el == NULL)
1539 return 0;
1540
1541 if (el->state == QRL_EL_STATE_PROV_UPDATING
1542 && !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set,
1543 QUIC_ENC_LEVEL_1RTT))
1544 return 0;
1545
1546 if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN
1547 && !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set,
1548 QUIC_ENC_LEVEL_1RTT))
1549 return 0;
1550
1551 return 1;
1552 }
1553
ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX * qrx)1554 uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx)
1555 {
1556 return qrx->forged_pkt_count;
1557 }
1558
ossl_qrx_get_max_forged_pkt_count(OSSL_QRX * qrx,uint32_t enc_level)1559 uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx,
1560 uint32_t enc_level)
1561 {
1562 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
1563 enc_level, 1);
1564
1565 return el == NULL ? UINT64_MAX
1566 : ossl_qrl_get_suite_max_forged_pkt(el->suite_id);
1567 }
1568
ossl_qrx_allow_1rtt_processing(OSSL_QRX * qrx)1569 void ossl_qrx_allow_1rtt_processing(OSSL_QRX *qrx)
1570 {
1571 if (qrx->allow_1rtt)
1572 return;
1573
1574 qrx->allow_1rtt = 1;
1575 qrx_requeue_deferred(qrx);
1576 }
1577
ossl_qrx_set_msg_callback(OSSL_QRX * qrx,ossl_msg_cb msg_callback,SSL * msg_callback_ssl)1578 void ossl_qrx_set_msg_callback(OSSL_QRX *qrx, ossl_msg_cb msg_callback,
1579 SSL *msg_callback_ssl)
1580 {
1581 qrx->msg_callback = msg_callback;
1582 qrx->msg_callback_ssl = msg_callback_ssl;
1583 }
1584
ossl_qrx_set_msg_callback_arg(OSSL_QRX * qrx,void * msg_callback_arg)1585 void ossl_qrx_set_msg_callback_arg(OSSL_QRX *qrx, void *msg_callback_arg)
1586 {
1587 qrx->msg_callback_arg = msg_callback_arg;
1588 }
1589
ossl_qrx_get_short_hdr_conn_id_len(OSSL_QRX * qrx)1590 size_t ossl_qrx_get_short_hdr_conn_id_len(OSSL_QRX *qrx)
1591 {
1592 return qrx->short_conn_id_len;
1593 }
1594