1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 #define RAID5_MAX_REQ_STRIPES 256 65 66 static bool devices_handle_discard_safely = false; 67 module_param(devices_handle_discard_safely, bool, 0644); 68 MODULE_PARM_DESC(devices_handle_discard_safely, 69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 70 static struct workqueue_struct *raid5_wq; 71 72 static void raid5_quiesce(struct mddev *mddev, int quiesce); 73 stripe_hash(struct r5conf * conf,sector_t sect)74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 75 { 76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 77 return &conf->stripe_hashtbl[hash]; 78 } 79 stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 81 { 82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 83 } 84 lock_device_hash_lock(struct r5conf * conf,int hash)85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 86 __acquires(&conf->device_lock) 87 { 88 spin_lock_irq(conf->hash_locks + hash); 89 spin_lock(&conf->device_lock); 90 } 91 unlock_device_hash_lock(struct r5conf * conf,int hash)92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 93 __releases(&conf->device_lock) 94 { 95 spin_unlock(&conf->device_lock); 96 spin_unlock_irq(conf->hash_locks + hash); 97 } 98 lock_all_device_hash_locks_irq(struct r5conf * conf)99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 100 __acquires(&conf->device_lock) 101 { 102 int i; 103 spin_lock_irq(conf->hash_locks); 104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 106 spin_lock(&conf->device_lock); 107 } 108 unlock_all_device_hash_locks_irq(struct r5conf * conf)109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 110 __releases(&conf->device_lock) 111 { 112 int i; 113 spin_unlock(&conf->device_lock); 114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 115 spin_unlock(conf->hash_locks + i); 116 spin_unlock_irq(conf->hash_locks); 117 } 118 119 /* Find first data disk in a raid6 stripe */ raid6_d0(struct stripe_head * sh)120 static inline int raid6_d0(struct stripe_head *sh) 121 { 122 if (sh->ddf_layout) 123 /* ddf always start from first device */ 124 return 0; 125 /* md starts just after Q block */ 126 if (sh->qd_idx == sh->disks - 1) 127 return 0; 128 else 129 return sh->qd_idx + 1; 130 } raid6_next_disk(int disk,int raid_disks)131 static inline int raid6_next_disk(int disk, int raid_disks) 132 { 133 disk++; 134 return (disk < raid_disks) ? disk : 0; 135 } 136 137 /* When walking through the disks in a raid5, starting at raid6_d0, 138 * We need to map each disk to a 'slot', where the data disks are slot 139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 140 * is raid_disks-1. This help does that mapping. 141 */ raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 143 int *count, int syndrome_disks) 144 { 145 int slot = *count; 146 147 if (sh->ddf_layout) 148 (*count)++; 149 if (idx == sh->pd_idx) 150 return syndrome_disks; 151 if (idx == sh->qd_idx) 152 return syndrome_disks + 1; 153 if (!sh->ddf_layout) 154 (*count)++; 155 return slot; 156 } 157 158 static void print_raid5_conf(struct r5conf *conf); 159 stripe_operations_active(struct stripe_head * sh)160 static int stripe_operations_active(struct stripe_head *sh) 161 { 162 return sh->check_state || sh->reconstruct_state || 163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 164 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 165 } 166 stripe_is_lowprio(struct stripe_head * sh)167 static bool stripe_is_lowprio(struct stripe_head *sh) 168 { 169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 171 !test_bit(STRIPE_R5C_CACHING, &sh->state); 172 } 173 raid5_wakeup_stripe_thread(struct stripe_head * sh)174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 175 __must_hold(&sh->raid_conf->device_lock) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 __must_hold(&conf->device_lock) 224 { 225 int i; 226 int injournal = 0; /* number of date pages with R5_InJournal */ 227 228 BUG_ON(!list_empty(&sh->lru)); 229 BUG_ON(atomic_read(&conf->active_stripes)==0); 230 231 if (r5c_is_writeback(conf->log)) 232 for (i = sh->disks; i--; ) 233 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 234 injournal++; 235 /* 236 * In the following cases, the stripe cannot be released to cached 237 * lists. Therefore, we make the stripe write out and set 238 * STRIPE_HANDLE: 239 * 1. when quiesce in r5c write back; 240 * 2. when resync is requested fot the stripe. 241 */ 242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 243 (conf->quiesce && r5c_is_writeback(conf->log) && 244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 245 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 246 r5c_make_stripe_write_out(sh); 247 set_bit(STRIPE_HANDLE, &sh->state); 248 } 249 250 if (test_bit(STRIPE_HANDLE, &sh->state)) { 251 if (test_bit(STRIPE_DELAYED, &sh->state) && 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 253 list_add_tail(&sh->lru, &conf->delayed_list); 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 255 sh->bm_seq - conf->seq_write > 0) 256 list_add_tail(&sh->lru, &conf->bitmap_list); 257 else { 258 clear_bit(STRIPE_DELAYED, &sh->state); 259 clear_bit(STRIPE_BIT_DELAY, &sh->state); 260 if (conf->worker_cnt_per_group == 0) { 261 if (stripe_is_lowprio(sh)) 262 list_add_tail(&sh->lru, 263 &conf->loprio_list); 264 else 265 list_add_tail(&sh->lru, 266 &conf->handle_list); 267 } else { 268 raid5_wakeup_stripe_thread(sh); 269 return; 270 } 271 } 272 md_wakeup_thread(conf->mddev->thread); 273 } else { 274 BUG_ON(stripe_operations_active(sh)); 275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 276 if (atomic_dec_return(&conf->preread_active_stripes) 277 < IO_THRESHOLD) 278 md_wakeup_thread(conf->mddev->thread); 279 atomic_dec(&conf->active_stripes); 280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 281 if (!r5c_is_writeback(conf->log)) 282 list_add_tail(&sh->lru, temp_inactive_list); 283 else { 284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 285 if (injournal == 0) 286 list_add_tail(&sh->lru, temp_inactive_list); 287 else if (injournal == conf->raid_disks - conf->max_degraded) { 288 /* full stripe */ 289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 290 atomic_inc(&conf->r5c_cached_full_stripes); 291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 292 atomic_dec(&conf->r5c_cached_partial_stripes); 293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 294 r5c_check_cached_full_stripe(conf); 295 } else 296 /* 297 * STRIPE_R5C_PARTIAL_STRIPE is set in 298 * r5c_try_caching_write(). No need to 299 * set it again. 300 */ 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 302 } 303 } 304 } 305 } 306 __release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 308 struct list_head *temp_inactive_list) 309 __must_hold(&conf->device_lock) 310 { 311 if (atomic_dec_and_test(&sh->count)) 312 do_release_stripe(conf, sh, temp_inactive_list); 313 } 314 315 /* 316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 317 * 318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 319 * given time. Adding stripes only takes device lock, while deleting stripes 320 * only takes hash lock. 321 */ release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)322 static void release_inactive_stripe_list(struct r5conf *conf, 323 struct list_head *temp_inactive_list, 324 int hash) 325 { 326 int size; 327 bool do_wakeup = false; 328 unsigned long flags; 329 330 if (hash == NR_STRIPE_HASH_LOCKS) { 331 size = NR_STRIPE_HASH_LOCKS; 332 hash = NR_STRIPE_HASH_LOCKS - 1; 333 } else 334 size = 1; 335 while (size) { 336 struct list_head *list = &temp_inactive_list[size - 1]; 337 338 /* 339 * We don't hold any lock here yet, raid5_get_active_stripe() might 340 * remove stripes from the list 341 */ 342 if (!list_empty_careful(list)) { 343 spin_lock_irqsave(conf->hash_locks + hash, flags); 344 if (list_empty(conf->inactive_list + hash) && 345 !list_empty(list)) 346 atomic_dec(&conf->empty_inactive_list_nr); 347 list_splice_tail_init(list, conf->inactive_list + hash); 348 do_wakeup = true; 349 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 350 } 351 size--; 352 hash--; 353 } 354 355 if (do_wakeup) { 356 wake_up(&conf->wait_for_stripe); 357 if (atomic_read(&conf->active_stripes) == 0) 358 wake_up(&conf->wait_for_quiescent); 359 if (conf->retry_read_aligned) 360 md_wakeup_thread(conf->mddev->thread); 361 } 362 } 363 release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)364 static int release_stripe_list(struct r5conf *conf, 365 struct list_head *temp_inactive_list) 366 __must_hold(&conf->device_lock) 367 { 368 struct stripe_head *sh, *t; 369 int count = 0; 370 struct llist_node *head; 371 372 head = llist_del_all(&conf->released_stripes); 373 head = llist_reverse_order(head); 374 llist_for_each_entry_safe(sh, t, head, release_list) { 375 int hash; 376 377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 378 smp_mb(); 379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 380 /* 381 * Don't worry the bit is set here, because if the bit is set 382 * again, the count is always > 1. This is true for 383 * STRIPE_ON_UNPLUG_LIST bit too. 384 */ 385 hash = sh->hash_lock_index; 386 __release_stripe(conf, sh, &temp_inactive_list[hash]); 387 count++; 388 } 389 390 return count; 391 } 392 raid5_release_stripe(struct stripe_head * sh)393 void raid5_release_stripe(struct stripe_head *sh) 394 { 395 struct r5conf *conf = sh->raid_conf; 396 unsigned long flags; 397 struct list_head list; 398 int hash; 399 bool wakeup; 400 401 /* Avoid release_list until the last reference. 402 */ 403 if (atomic_add_unless(&sh->count, -1, 1)) 404 return; 405 406 if (unlikely(!conf->mddev->thread) || 407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 408 goto slow_path; 409 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 410 if (wakeup) 411 md_wakeup_thread(conf->mddev->thread); 412 return; 413 slow_path: 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 416 INIT_LIST_HEAD(&list); 417 hash = sh->hash_lock_index; 418 do_release_stripe(conf, sh, &list); 419 spin_unlock_irqrestore(&conf->device_lock, flags); 420 release_inactive_stripe_list(conf, &list, hash); 421 } 422 } 423 remove_hash(struct stripe_head * sh)424 static inline void remove_hash(struct stripe_head *sh) 425 { 426 pr_debug("remove_hash(), stripe %llu\n", 427 (unsigned long long)sh->sector); 428 429 hlist_del_init(&sh->hash); 430 } 431 insert_hash(struct r5conf * conf,struct stripe_head * sh)432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 433 { 434 struct hlist_head *hp = stripe_hash(conf, sh->sector); 435 436 pr_debug("insert_hash(), stripe %llu\n", 437 (unsigned long long)sh->sector); 438 439 hlist_add_head(&sh->hash, hp); 440 } 441 442 /* find an idle stripe, make sure it is unhashed, and return it. */ get_free_stripe(struct r5conf * conf,int hash)443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 444 { 445 struct stripe_head *sh = NULL; 446 struct list_head *first; 447 448 if (list_empty(conf->inactive_list + hash)) 449 goto out; 450 first = (conf->inactive_list + hash)->next; 451 sh = list_entry(first, struct stripe_head, lru); 452 list_del_init(first); 453 remove_hash(sh); 454 atomic_inc(&conf->active_stripes); 455 BUG_ON(hash != sh->hash_lock_index); 456 if (list_empty(conf->inactive_list + hash)) 457 atomic_inc(&conf->empty_inactive_list_nr); 458 out: 459 return sh; 460 } 461 462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE free_stripe_pages(struct stripe_head * sh)463 static void free_stripe_pages(struct stripe_head *sh) 464 { 465 int i; 466 struct page *p; 467 468 /* Have not allocate page pool */ 469 if (!sh->pages) 470 return; 471 472 for (i = 0; i < sh->nr_pages; i++) { 473 p = sh->pages[i]; 474 if (p) 475 put_page(p); 476 sh->pages[i] = NULL; 477 } 478 } 479 alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 481 { 482 int i; 483 struct page *p; 484 485 for (i = 0; i < sh->nr_pages; i++) { 486 /* The page have allocated. */ 487 if (sh->pages[i]) 488 continue; 489 490 p = alloc_page(gfp); 491 if (!p) { 492 free_stripe_pages(sh); 493 return -ENOMEM; 494 } 495 sh->pages[i] = p; 496 } 497 return 0; 498 } 499 500 static int init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 502 { 503 int nr_pages, cnt; 504 505 if (sh->pages) 506 return 0; 507 508 /* Each of the sh->dev[i] need one conf->stripe_size */ 509 cnt = PAGE_SIZE / conf->stripe_size; 510 nr_pages = (disks + cnt - 1) / cnt; 511 512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 513 if (!sh->pages) 514 return -ENOMEM; 515 sh->nr_pages = nr_pages; 516 sh->stripes_per_page = cnt; 517 return 0; 518 } 519 #endif 520 shrink_buffers(struct stripe_head * sh)521 static void shrink_buffers(struct stripe_head *sh) 522 { 523 int i; 524 int num = sh->raid_conf->pool_size; 525 526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 527 for (i = 0; i < num ; i++) { 528 struct page *p; 529 530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 531 p = sh->dev[i].page; 532 if (!p) 533 continue; 534 sh->dev[i].page = NULL; 535 put_page(p); 536 } 537 #else 538 for (i = 0; i < num; i++) 539 sh->dev[i].page = NULL; 540 free_stripe_pages(sh); /* Free pages */ 541 #endif 542 } 543 grow_buffers(struct stripe_head * sh,gfp_t gfp)544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 545 { 546 int i; 547 int num = sh->raid_conf->pool_size; 548 549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 550 for (i = 0; i < num; i++) { 551 struct page *page; 552 553 if (!(page = alloc_page(gfp))) { 554 return 1; 555 } 556 sh->dev[i].page = page; 557 sh->dev[i].orig_page = page; 558 sh->dev[i].offset = 0; 559 } 560 #else 561 if (alloc_stripe_pages(sh, gfp)) 562 return -ENOMEM; 563 564 for (i = 0; i < num; i++) { 565 sh->dev[i].page = raid5_get_dev_page(sh, i); 566 sh->dev[i].orig_page = sh->dev[i].page; 567 sh->dev[i].offset = raid5_get_page_offset(sh, i); 568 } 569 #endif 570 return 0; 571 } 572 573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 574 struct stripe_head *sh); 575 init_stripe(struct stripe_head * sh,sector_t sector,int previous)576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 577 { 578 struct r5conf *conf = sh->raid_conf; 579 int i, seq; 580 581 BUG_ON(atomic_read(&sh->count) != 0); 582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 583 BUG_ON(stripe_operations_active(sh)); 584 BUG_ON(sh->batch_head); 585 586 pr_debug("init_stripe called, stripe %llu\n", 587 (unsigned long long)sector); 588 retry: 589 seq = read_seqcount_begin(&conf->gen_lock); 590 sh->generation = conf->generation - previous; 591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 592 sh->sector = sector; 593 stripe_set_idx(sector, conf, previous, sh); 594 sh->state = 0; 595 596 for (i = sh->disks; i--; ) { 597 struct r5dev *dev = &sh->dev[i]; 598 599 if (dev->toread || dev->read || dev->towrite || dev->written || 600 test_bit(R5_LOCKED, &dev->flags)) { 601 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 602 (unsigned long long)sh->sector, i, dev->toread, 603 dev->read, dev->towrite, dev->written, 604 test_bit(R5_LOCKED, &dev->flags)); 605 WARN_ON(1); 606 } 607 dev->flags = 0; 608 dev->sector = raid5_compute_blocknr(sh, i, previous); 609 } 610 if (read_seqcount_retry(&conf->gen_lock, seq)) 611 goto retry; 612 sh->overwrite_disks = 0; 613 insert_hash(conf, sh); 614 sh->cpu = smp_processor_id(); 615 set_bit(STRIPE_BATCH_READY, &sh->state); 616 } 617 __find_stripe(struct r5conf * conf,sector_t sector,short generation)618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 619 short generation) 620 { 621 struct stripe_head *sh; 622 623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 625 if (sh->sector == sector && sh->generation == generation) 626 return sh; 627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 628 return NULL; 629 } 630 find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)631 static struct stripe_head *find_get_stripe(struct r5conf *conf, 632 sector_t sector, short generation, int hash) 633 { 634 int inc_empty_inactive_list_flag; 635 struct stripe_head *sh; 636 637 sh = __find_stripe(conf, sector, generation); 638 if (!sh) 639 return NULL; 640 641 if (atomic_inc_not_zero(&sh->count)) 642 return sh; 643 644 /* 645 * Slow path. The reference count is zero which means the stripe must 646 * be on a list (sh->lru). Must remove the stripe from the list that 647 * references it with the device_lock held. 648 */ 649 650 spin_lock(&conf->device_lock); 651 if (!atomic_read(&sh->count)) { 652 if (!test_bit(STRIPE_HANDLE, &sh->state)) 653 atomic_inc(&conf->active_stripes); 654 BUG_ON(list_empty(&sh->lru) && 655 !test_bit(STRIPE_EXPANDING, &sh->state)); 656 inc_empty_inactive_list_flag = 0; 657 if (!list_empty(conf->inactive_list + hash)) 658 inc_empty_inactive_list_flag = 1; 659 list_del_init(&sh->lru); 660 if (list_empty(conf->inactive_list + hash) && 661 inc_empty_inactive_list_flag) 662 atomic_inc(&conf->empty_inactive_list_nr); 663 if (sh->group) { 664 sh->group->stripes_cnt--; 665 sh->group = NULL; 666 } 667 } 668 atomic_inc(&sh->count); 669 spin_unlock(&conf->device_lock); 670 671 return sh; 672 } 673 674 /* 675 * Need to check if array has failed when deciding whether to: 676 * - start an array 677 * - remove non-faulty devices 678 * - add a spare 679 * - allow a reshape 680 * This determination is simple when no reshape is happening. 681 * However if there is a reshape, we need to carefully check 682 * both the before and after sections. 683 * This is because some failed devices may only affect one 684 * of the two sections, and some non-in_sync devices may 685 * be insync in the section most affected by failed devices. 686 * 687 * Most calls to this function hold &conf->device_lock. Calls 688 * in raid5_run() do not require the lock as no other threads 689 * have been started yet. 690 */ raid5_calc_degraded(struct r5conf * conf)691 int raid5_calc_degraded(struct r5conf *conf) 692 { 693 int degraded, degraded2; 694 int i; 695 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 699 700 if (rdev && test_bit(Faulty, &rdev->flags)) 701 rdev = READ_ONCE(conf->disks[i].replacement); 702 if (!rdev || test_bit(Faulty, &rdev->flags)) 703 degraded++; 704 else if (test_bit(In_sync, &rdev->flags)) 705 ; 706 else 707 /* not in-sync or faulty. 708 * If the reshape increases the number of devices, 709 * this is being recovered by the reshape, so 710 * this 'previous' section is not in_sync. 711 * If the number of devices is being reduced however, 712 * the device can only be part of the array if 713 * we are reverting a reshape, so this section will 714 * be in-sync. 715 */ 716 if (conf->raid_disks >= conf->previous_raid_disks) 717 degraded++; 718 } 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 degraded2 = 0; 722 for (i = 0; i < conf->raid_disks; i++) { 723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 724 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = READ_ONCE(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 if (degraded2 > degraded) 741 return degraded2; 742 return degraded; 743 } 744 has_failed(struct r5conf * conf)745 static bool has_failed(struct r5conf *conf) 746 { 747 int degraded = conf->mddev->degraded; 748 749 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 750 return true; 751 752 if (conf->mddev->reshape_position != MaxSector) 753 degraded = raid5_calc_degraded(conf); 754 755 return degraded > conf->max_degraded; 756 } 757 758 enum stripe_result { 759 STRIPE_SUCCESS = 0, 760 STRIPE_RETRY, 761 STRIPE_SCHEDULE_AND_RETRY, 762 STRIPE_FAIL, 763 STRIPE_WAIT_RESHAPE, 764 }; 765 766 struct stripe_request_ctx { 767 /* a reference to the last stripe_head for batching */ 768 struct stripe_head *batch_last; 769 770 /* first sector in the request */ 771 sector_t first_sector; 772 773 /* last sector in the request */ 774 sector_t last_sector; 775 776 /* 777 * bitmap to track stripe sectors that have been added to stripes 778 * add one to account for unaligned requests 779 */ 780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 781 782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 783 bool do_flush; 784 }; 785 786 /* 787 * Block until another thread clears R5_INACTIVE_BLOCKED or 788 * there are fewer than 3/4 the maximum number of active stripes 789 * and there is an inactive stripe available. 790 */ is_inactive_blocked(struct r5conf * conf,int hash)791 static bool is_inactive_blocked(struct r5conf *conf, int hash) 792 { 793 if (list_empty(conf->inactive_list + hash)) 794 return false; 795 796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 797 return true; 798 799 return (atomic_read(&conf->active_stripes) < 800 (conf->max_nr_stripes * 3 / 4)); 801 } 802 raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 804 struct stripe_request_ctx *ctx, sector_t sector, 805 unsigned int flags) 806 { 807 struct stripe_head *sh; 808 int hash = stripe_hash_locks_hash(conf, sector); 809 int previous = !!(flags & R5_GAS_PREVIOUS); 810 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 812 813 spin_lock_irq(conf->hash_locks + hash); 814 815 for (;;) { 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 817 /* 818 * Must release the reference to batch_last before 819 * waiting, on quiesce, otherwise the batch_last will 820 * hold a reference to a stripe and raid5_quiesce() 821 * will deadlock waiting for active_stripes to go to 822 * zero. 823 */ 824 if (ctx && ctx->batch_last) { 825 raid5_release_stripe(ctx->batch_last); 826 ctx->batch_last = NULL; 827 } 828 829 wait_event_lock_irq(conf->wait_for_quiescent, 830 !conf->quiesce, 831 *(conf->hash_locks + hash)); 832 } 833 834 sh = find_get_stripe(conf, sector, conf->generation - previous, 835 hash); 836 if (sh) 837 break; 838 839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 840 sh = get_free_stripe(conf, hash); 841 if (sh) { 842 r5c_check_stripe_cache_usage(conf); 843 init_stripe(sh, sector, previous); 844 atomic_inc(&sh->count); 845 break; 846 } 847 848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 849 set_bit(R5_ALLOC_MORE, &conf->cache_state); 850 } 851 852 if (flags & R5_GAS_NOBLOCK) 853 break; 854 855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 856 r5l_wake_reclaim(conf->log, 0); 857 858 /* release batch_last before wait to avoid risk of deadlock */ 859 if (ctx && ctx->batch_last) { 860 raid5_release_stripe(ctx->batch_last); 861 ctx->batch_last = NULL; 862 } 863 864 wait_event_lock_irq(conf->wait_for_stripe, 865 is_inactive_blocked(conf, hash), 866 *(conf->hash_locks + hash)); 867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 868 } 869 870 spin_unlock_irq(conf->hash_locks + hash); 871 return sh; 872 } 873 is_full_stripe_write(struct stripe_head * sh)874 static bool is_full_stripe_write(struct stripe_head *sh) 875 { 876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 878 } 879 lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 881 __acquires(&sh1->stripe_lock) 882 __acquires(&sh2->stripe_lock) 883 { 884 if (sh1 > sh2) { 885 spin_lock_irq(&sh2->stripe_lock); 886 spin_lock_nested(&sh1->stripe_lock, 1); 887 } else { 888 spin_lock_irq(&sh1->stripe_lock); 889 spin_lock_nested(&sh2->stripe_lock, 1); 890 } 891 } 892 unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 894 __releases(&sh1->stripe_lock) 895 __releases(&sh2->stripe_lock) 896 { 897 spin_unlock(&sh1->stripe_lock); 898 spin_unlock_irq(&sh2->stripe_lock); 899 } 900 901 /* Only freshly new full stripe normal write stripe can be added to a batch list */ stripe_can_batch(struct stripe_head * sh)902 static bool stripe_can_batch(struct stripe_head *sh) 903 { 904 struct r5conf *conf = sh->raid_conf; 905 906 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 907 return false; 908 return test_bit(STRIPE_BATCH_READY, &sh->state) && 909 is_full_stripe_write(sh); 910 } 911 912 /* we only do back search */ stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)913 static void stripe_add_to_batch_list(struct r5conf *conf, 914 struct stripe_head *sh, struct stripe_head *last_sh) 915 { 916 struct stripe_head *head; 917 sector_t head_sector, tmp_sec; 918 int hash; 919 int dd_idx; 920 921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 922 tmp_sec = sh->sector; 923 if (!sector_div(tmp_sec, conf->chunk_sectors)) 924 return; 925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 926 927 if (last_sh && head_sector == last_sh->sector) { 928 head = last_sh; 929 atomic_inc(&head->count); 930 } else { 931 hash = stripe_hash_locks_hash(conf, head_sector); 932 spin_lock_irq(conf->hash_locks + hash); 933 head = find_get_stripe(conf, head_sector, conf->generation, 934 hash); 935 spin_unlock_irq(conf->hash_locks + hash); 936 if (!head) 937 return; 938 if (!stripe_can_batch(head)) 939 goto out; 940 } 941 942 lock_two_stripes(head, sh); 943 /* clear_batch_ready clear the flag */ 944 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 945 goto unlock_out; 946 947 if (sh->batch_head) 948 goto unlock_out; 949 950 dd_idx = 0; 951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 952 dd_idx++; 953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 955 goto unlock_out; 956 957 if (head->batch_head) { 958 spin_lock(&head->batch_head->batch_lock); 959 /* This batch list is already running */ 960 if (!stripe_can_batch(head)) { 961 spin_unlock(&head->batch_head->batch_lock); 962 goto unlock_out; 963 } 964 /* 965 * We must assign batch_head of this stripe within the 966 * batch_lock, otherwise clear_batch_ready of batch head 967 * stripe could clear BATCH_READY bit of this stripe and 968 * this stripe->batch_head doesn't get assigned, which 969 * could confuse clear_batch_ready for this stripe 970 */ 971 sh->batch_head = head->batch_head; 972 973 /* 974 * at this point, head's BATCH_READY could be cleared, but we 975 * can still add the stripe to batch list 976 */ 977 list_add(&sh->batch_list, &head->batch_list); 978 spin_unlock(&head->batch_head->batch_lock); 979 } else { 980 head->batch_head = head; 981 sh->batch_head = head->batch_head; 982 spin_lock(&head->batch_lock); 983 list_add_tail(&sh->batch_list, &head->batch_list); 984 spin_unlock(&head->batch_lock); 985 } 986 987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 988 if (atomic_dec_return(&conf->preread_active_stripes) 989 < IO_THRESHOLD) 990 md_wakeup_thread(conf->mddev->thread); 991 992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 993 int seq = sh->bm_seq; 994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 995 sh->batch_head->bm_seq > seq) 996 seq = sh->batch_head->bm_seq; 997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 998 sh->batch_head->bm_seq = seq; 999 } 1000 1001 atomic_inc(&sh->count); 1002 unlock_out: 1003 unlock_two_stripes(head, sh); 1004 out: 1005 raid5_release_stripe(head); 1006 } 1007 1008 /* Determine if 'data_offset' or 'new_data_offset' should be used 1009 * in this stripe_head. 1010 */ use_new_offset(struct r5conf * conf,struct stripe_head * sh)1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1012 { 1013 sector_t progress = conf->reshape_progress; 1014 /* Need a memory barrier to make sure we see the value 1015 * of conf->generation, or ->data_offset that was set before 1016 * reshape_progress was updated. 1017 */ 1018 smp_rmb(); 1019 if (progress == MaxSector) 1020 return 0; 1021 if (sh->generation == conf->generation - 1) 1022 return 0; 1023 /* We are in a reshape, and this is a new-generation stripe, 1024 * so use new_data_offset. 1025 */ 1026 return 1; 1027 } 1028 dispatch_bio_list(struct bio_list * tmp)1029 static void dispatch_bio_list(struct bio_list *tmp) 1030 { 1031 struct bio *bio; 1032 1033 while ((bio = bio_list_pop(tmp))) 1034 submit_bio_noacct(bio); 1035 } 1036 cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1037 static int cmp_stripe(void *priv, const struct list_head *a, 1038 const struct list_head *b) 1039 { 1040 const struct r5pending_data *da = list_entry(a, 1041 struct r5pending_data, sibling); 1042 const struct r5pending_data *db = list_entry(b, 1043 struct r5pending_data, sibling); 1044 if (da->sector > db->sector) 1045 return 1; 1046 if (da->sector < db->sector) 1047 return -1; 1048 return 0; 1049 } 1050 dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1051 static void dispatch_defer_bios(struct r5conf *conf, int target, 1052 struct bio_list *list) 1053 { 1054 struct r5pending_data *data; 1055 struct list_head *first, *next = NULL; 1056 int cnt = 0; 1057 1058 if (conf->pending_data_cnt == 0) 1059 return; 1060 1061 list_sort(NULL, &conf->pending_list, cmp_stripe); 1062 1063 first = conf->pending_list.next; 1064 1065 /* temporarily move the head */ 1066 if (conf->next_pending_data) 1067 list_move_tail(&conf->pending_list, 1068 &conf->next_pending_data->sibling); 1069 1070 while (!list_empty(&conf->pending_list)) { 1071 data = list_first_entry(&conf->pending_list, 1072 struct r5pending_data, sibling); 1073 if (&data->sibling == first) 1074 first = data->sibling.next; 1075 next = data->sibling.next; 1076 1077 bio_list_merge(list, &data->bios); 1078 list_move(&data->sibling, &conf->free_list); 1079 cnt++; 1080 if (cnt >= target) 1081 break; 1082 } 1083 conf->pending_data_cnt -= cnt; 1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1085 1086 if (next != &conf->pending_list) 1087 conf->next_pending_data = list_entry(next, 1088 struct r5pending_data, sibling); 1089 else 1090 conf->next_pending_data = NULL; 1091 /* list isn't empty */ 1092 if (first != &conf->pending_list) 1093 list_move_tail(&conf->pending_list, first); 1094 } 1095 flush_deferred_bios(struct r5conf * conf)1096 static void flush_deferred_bios(struct r5conf *conf) 1097 { 1098 struct bio_list tmp = BIO_EMPTY_LIST; 1099 1100 if (conf->pending_data_cnt == 0) 1101 return; 1102 1103 spin_lock(&conf->pending_bios_lock); 1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1105 BUG_ON(conf->pending_data_cnt != 0); 1106 spin_unlock(&conf->pending_bios_lock); 1107 1108 dispatch_bio_list(&tmp); 1109 } 1110 defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1112 struct bio_list *bios) 1113 { 1114 struct bio_list tmp = BIO_EMPTY_LIST; 1115 struct r5pending_data *ent; 1116 1117 spin_lock(&conf->pending_bios_lock); 1118 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1119 sibling); 1120 list_move_tail(&ent->sibling, &conf->pending_list); 1121 ent->sector = sector; 1122 bio_list_init(&ent->bios); 1123 bio_list_merge(&ent->bios, bios); 1124 conf->pending_data_cnt++; 1125 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1127 1128 spin_unlock(&conf->pending_bios_lock); 1129 1130 dispatch_bio_list(&tmp); 1131 } 1132 1133 static void 1134 raid5_end_read_request(struct bio *bi); 1135 static void 1136 raid5_end_write_request(struct bio *bi); 1137 ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1139 { 1140 struct r5conf *conf = sh->raid_conf; 1141 int i, disks = sh->disks; 1142 struct stripe_head *head_sh = sh; 1143 struct bio_list pending_bios = BIO_EMPTY_LIST; 1144 struct r5dev *dev; 1145 bool should_defer; 1146 1147 might_sleep(); 1148 1149 if (log_stripe(sh, s) == 0) 1150 return; 1151 1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1153 1154 for (i = disks; i--; ) { 1155 enum req_op op; 1156 blk_opf_t op_flags = 0; 1157 int replace_only = 0; 1158 struct bio *bi, *rbi; 1159 struct md_rdev *rdev, *rrdev = NULL; 1160 1161 sh = head_sh; 1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1163 op = REQ_OP_WRITE; 1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1165 op_flags = REQ_FUA; 1166 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1167 op = REQ_OP_DISCARD; 1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1169 op = REQ_OP_READ; 1170 else if (test_and_clear_bit(R5_WantReplace, 1171 &sh->dev[i].flags)) { 1172 op = REQ_OP_WRITE; 1173 replace_only = 1; 1174 } else 1175 continue; 1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1177 op_flags |= REQ_SYNC; 1178 1179 again: 1180 dev = &sh->dev[i]; 1181 bi = &dev->req; 1182 rbi = &dev->rreq; /* For writing to replacement */ 1183 1184 rdev = conf->disks[i].rdev; 1185 rrdev = conf->disks[i].replacement; 1186 if (op_is_write(op)) { 1187 if (replace_only) 1188 rdev = NULL; 1189 if (rdev == rrdev) 1190 /* We raced and saw duplicates */ 1191 rrdev = NULL; 1192 } else { 1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1194 rdev = rrdev; 1195 rrdev = NULL; 1196 } 1197 1198 if (rdev && test_bit(Faulty, &rdev->flags)) 1199 rdev = NULL; 1200 if (rdev) 1201 atomic_inc(&rdev->nr_pending); 1202 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1203 rrdev = NULL; 1204 if (rrdev) 1205 atomic_inc(&rrdev->nr_pending); 1206 1207 /* We have already checked bad blocks for reads. Now 1208 * need to check for writes. We never accept write errors 1209 * on the replacement, so we don't to check rrdev. 1210 */ 1211 while (op_is_write(op) && rdev && 1212 test_bit(WriteErrorSeen, &rdev->flags)) { 1213 int bad = rdev_has_badblock(rdev, sh->sector, 1214 RAID5_STRIPE_SECTORS(conf)); 1215 if (!bad) 1216 break; 1217 1218 if (bad < 0) { 1219 set_bit(BlockedBadBlocks, &rdev->flags); 1220 if (!conf->mddev->external && 1221 conf->mddev->sb_flags) { 1222 /* It is very unlikely, but we might 1223 * still need to write out the 1224 * bad block log - better give it 1225 * a chance*/ 1226 md_check_recovery(conf->mddev); 1227 } 1228 /* 1229 * Because md_wait_for_blocked_rdev 1230 * will dec nr_pending, we must 1231 * increment it first. 1232 */ 1233 atomic_inc(&rdev->nr_pending); 1234 md_wait_for_blocked_rdev(rdev, conf->mddev); 1235 } else { 1236 /* Acknowledged bad block - skip the write */ 1237 rdev_dec_pending(rdev, conf->mddev); 1238 rdev = NULL; 1239 } 1240 } 1241 1242 if (rdev) { 1243 if (s->syncing || s->expanding || s->expanded 1244 || s->replacing) 1245 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1246 1247 set_bit(STRIPE_IO_STARTED, &sh->state); 1248 1249 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1250 bi->bi_end_io = op_is_write(op) 1251 ? raid5_end_write_request 1252 : raid5_end_read_request; 1253 bi->bi_private = sh; 1254 1255 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1256 __func__, (unsigned long long)sh->sector, 1257 bi->bi_opf, i); 1258 atomic_inc(&sh->count); 1259 if (sh != head_sh) 1260 atomic_inc(&head_sh->count); 1261 if (use_new_offset(conf, sh)) 1262 bi->bi_iter.bi_sector = (sh->sector 1263 + rdev->new_data_offset); 1264 else 1265 bi->bi_iter.bi_sector = (sh->sector 1266 + rdev->data_offset); 1267 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1268 bi->bi_opf |= REQ_NOMERGE; 1269 1270 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1271 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1272 1273 if (!op_is_write(op) && 1274 test_bit(R5_InJournal, &sh->dev[i].flags)) 1275 /* 1276 * issuing read for a page in journal, this 1277 * must be preparing for prexor in rmw; read 1278 * the data into orig_page 1279 */ 1280 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1281 else 1282 sh->dev[i].vec.bv_page = sh->dev[i].page; 1283 bi->bi_vcnt = 1; 1284 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1285 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1286 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1287 /* 1288 * If this is discard request, set bi_vcnt 0. We don't 1289 * want to confuse SCSI because SCSI will replace payload 1290 */ 1291 if (op == REQ_OP_DISCARD) 1292 bi->bi_vcnt = 0; 1293 if (rrdev) 1294 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1295 1296 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector); 1297 if (should_defer && op_is_write(op)) 1298 bio_list_add(&pending_bios, bi); 1299 else 1300 submit_bio_noacct(bi); 1301 } 1302 if (rrdev) { 1303 if (s->syncing || s->expanding || s->expanded 1304 || s->replacing) 1305 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1306 1307 set_bit(STRIPE_IO_STARTED, &sh->state); 1308 1309 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1310 BUG_ON(!op_is_write(op)); 1311 rbi->bi_end_io = raid5_end_write_request; 1312 rbi->bi_private = sh; 1313 1314 pr_debug("%s: for %llu schedule op %d on " 1315 "replacement disc %d\n", 1316 __func__, (unsigned long long)sh->sector, 1317 rbi->bi_opf, i); 1318 atomic_inc(&sh->count); 1319 if (sh != head_sh) 1320 atomic_inc(&head_sh->count); 1321 if (use_new_offset(conf, sh)) 1322 rbi->bi_iter.bi_sector = (sh->sector 1323 + rrdev->new_data_offset); 1324 else 1325 rbi->bi_iter.bi_sector = (sh->sector 1326 + rrdev->data_offset); 1327 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1328 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1329 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1330 rbi->bi_vcnt = 1; 1331 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1332 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1333 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1334 /* 1335 * If this is discard request, set bi_vcnt 0. We don't 1336 * want to confuse SCSI because SCSI will replace payload 1337 */ 1338 if (op == REQ_OP_DISCARD) 1339 rbi->bi_vcnt = 0; 1340 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector); 1341 if (should_defer && op_is_write(op)) 1342 bio_list_add(&pending_bios, rbi); 1343 else 1344 submit_bio_noacct(rbi); 1345 } 1346 if (!rdev && !rrdev) { 1347 pr_debug("skip op %d on disc %d for sector %llu\n", 1348 bi->bi_opf, i, (unsigned long long)sh->sector); 1349 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1350 set_bit(STRIPE_HANDLE, &sh->state); 1351 } 1352 1353 if (!head_sh->batch_head) 1354 continue; 1355 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1356 batch_list); 1357 if (sh != head_sh) 1358 goto again; 1359 } 1360 1361 if (should_defer && !bio_list_empty(&pending_bios)) 1362 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1363 } 1364 1365 static struct dma_async_tx_descriptor * async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1366 async_copy_data(int frombio, struct bio *bio, struct page **page, 1367 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1368 struct stripe_head *sh, int no_skipcopy) 1369 { 1370 struct bio_vec bvl; 1371 struct bvec_iter iter; 1372 struct page *bio_page; 1373 int page_offset; 1374 struct async_submit_ctl submit; 1375 enum async_tx_flags flags = 0; 1376 struct r5conf *conf = sh->raid_conf; 1377 1378 if (bio->bi_iter.bi_sector >= sector) 1379 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1380 else 1381 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1382 1383 if (frombio) 1384 flags |= ASYNC_TX_FENCE; 1385 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1386 1387 bio_for_each_segment(bvl, bio, iter) { 1388 int len = bvl.bv_len; 1389 int clen; 1390 int b_offset = 0; 1391 1392 if (page_offset < 0) { 1393 b_offset = -page_offset; 1394 page_offset += b_offset; 1395 len -= b_offset; 1396 } 1397 1398 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1399 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1400 else 1401 clen = len; 1402 1403 if (clen > 0) { 1404 b_offset += bvl.bv_offset; 1405 bio_page = bvl.bv_page; 1406 if (frombio) { 1407 if (conf->skip_copy && 1408 b_offset == 0 && page_offset == 0 && 1409 clen == RAID5_STRIPE_SIZE(conf) && 1410 !no_skipcopy) 1411 *page = bio_page; 1412 else 1413 tx = async_memcpy(*page, bio_page, page_offset + poff, 1414 b_offset, clen, &submit); 1415 } else 1416 tx = async_memcpy(bio_page, *page, b_offset, 1417 page_offset + poff, clen, &submit); 1418 } 1419 /* chain the operations */ 1420 submit.depend_tx = tx; 1421 1422 if (clen < len) /* hit end of page */ 1423 break; 1424 page_offset += len; 1425 } 1426 1427 return tx; 1428 } 1429 ops_complete_biofill(void * stripe_head_ref)1430 static void ops_complete_biofill(void *stripe_head_ref) 1431 { 1432 struct stripe_head *sh = stripe_head_ref; 1433 int i; 1434 struct r5conf *conf = sh->raid_conf; 1435 1436 pr_debug("%s: stripe %llu\n", __func__, 1437 (unsigned long long)sh->sector); 1438 1439 /* clear completed biofills */ 1440 for (i = sh->disks; i--; ) { 1441 struct r5dev *dev = &sh->dev[i]; 1442 1443 /* acknowledge completion of a biofill operation */ 1444 /* and check if we need to reply to a read request, 1445 * new R5_Wantfill requests are held off until 1446 * !STRIPE_BIOFILL_RUN 1447 */ 1448 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1449 struct bio *rbi, *rbi2; 1450 1451 BUG_ON(!dev->read); 1452 rbi = dev->read; 1453 dev->read = NULL; 1454 while (rbi && rbi->bi_iter.bi_sector < 1455 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1456 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1457 bio_endio(rbi); 1458 rbi = rbi2; 1459 } 1460 } 1461 } 1462 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1463 1464 set_bit(STRIPE_HANDLE, &sh->state); 1465 raid5_release_stripe(sh); 1466 } 1467 ops_run_biofill(struct stripe_head * sh)1468 static void ops_run_biofill(struct stripe_head *sh) 1469 { 1470 struct dma_async_tx_descriptor *tx = NULL; 1471 struct async_submit_ctl submit; 1472 int i; 1473 struct r5conf *conf = sh->raid_conf; 1474 1475 BUG_ON(sh->batch_head); 1476 pr_debug("%s: stripe %llu\n", __func__, 1477 (unsigned long long)sh->sector); 1478 1479 for (i = sh->disks; i--; ) { 1480 struct r5dev *dev = &sh->dev[i]; 1481 if (test_bit(R5_Wantfill, &dev->flags)) { 1482 struct bio *rbi; 1483 spin_lock_irq(&sh->stripe_lock); 1484 dev->read = rbi = dev->toread; 1485 dev->toread = NULL; 1486 spin_unlock_irq(&sh->stripe_lock); 1487 while (rbi && rbi->bi_iter.bi_sector < 1488 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1489 tx = async_copy_data(0, rbi, &dev->page, 1490 dev->offset, 1491 dev->sector, tx, sh, 0); 1492 rbi = r5_next_bio(conf, rbi, dev->sector); 1493 } 1494 } 1495 } 1496 1497 atomic_inc(&sh->count); 1498 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1499 async_trigger_callback(&submit); 1500 } 1501 mark_target_uptodate(struct stripe_head * sh,int target)1502 static void mark_target_uptodate(struct stripe_head *sh, int target) 1503 { 1504 struct r5dev *tgt; 1505 1506 if (target < 0) 1507 return; 1508 1509 tgt = &sh->dev[target]; 1510 set_bit(R5_UPTODATE, &tgt->flags); 1511 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1512 clear_bit(R5_Wantcompute, &tgt->flags); 1513 } 1514 ops_complete_compute(void * stripe_head_ref)1515 static void ops_complete_compute(void *stripe_head_ref) 1516 { 1517 struct stripe_head *sh = stripe_head_ref; 1518 1519 pr_debug("%s: stripe %llu\n", __func__, 1520 (unsigned long long)sh->sector); 1521 1522 /* mark the computed target(s) as uptodate */ 1523 mark_target_uptodate(sh, sh->ops.target); 1524 mark_target_uptodate(sh, sh->ops.target2); 1525 1526 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1527 if (sh->check_state == check_state_compute_run) 1528 sh->check_state = check_state_compute_result; 1529 set_bit(STRIPE_HANDLE, &sh->state); 1530 raid5_release_stripe(sh); 1531 } 1532 1533 /* return a pointer to the address conversion region of the scribble buffer */ to_addr_page(struct raid5_percpu * percpu,int i)1534 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1535 { 1536 return percpu->scribble + i * percpu->scribble_obj_size; 1537 } 1538 1539 /* return a pointer to the address conversion region of the scribble buffer */ to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1540 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1541 struct raid5_percpu *percpu, int i) 1542 { 1543 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1544 } 1545 1546 /* 1547 * Return a pointer to record offset address. 1548 */ 1549 static unsigned int * to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1550 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1551 { 1552 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1553 } 1554 1555 static struct dma_async_tx_descriptor * ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1556 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1557 { 1558 int disks = sh->disks; 1559 struct page **xor_srcs = to_addr_page(percpu, 0); 1560 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1561 int target = sh->ops.target; 1562 struct r5dev *tgt = &sh->dev[target]; 1563 struct page *xor_dest = tgt->page; 1564 unsigned int off_dest = tgt->offset; 1565 int count = 0; 1566 struct dma_async_tx_descriptor *tx; 1567 struct async_submit_ctl submit; 1568 int i; 1569 1570 BUG_ON(sh->batch_head); 1571 1572 pr_debug("%s: stripe %llu block: %d\n", 1573 __func__, (unsigned long long)sh->sector, target); 1574 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1575 1576 for (i = disks; i--; ) { 1577 if (i != target) { 1578 off_srcs[count] = sh->dev[i].offset; 1579 xor_srcs[count++] = sh->dev[i].page; 1580 } 1581 } 1582 1583 atomic_inc(&sh->count); 1584 1585 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1586 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1587 if (unlikely(count == 1)) 1588 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1589 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1590 else 1591 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1592 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1593 1594 return tx; 1595 } 1596 1597 /* set_syndrome_sources - populate source buffers for gen_syndrome 1598 * @srcs - (struct page *) array of size sh->disks 1599 * @offs - (unsigned int) array of offset for each page 1600 * @sh - stripe_head to parse 1601 * 1602 * Populates srcs in proper layout order for the stripe and returns the 1603 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1604 * destination buffer is recorded in srcs[count] and the Q destination 1605 * is recorded in srcs[count+1]]. 1606 */ set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1607 static int set_syndrome_sources(struct page **srcs, 1608 unsigned int *offs, 1609 struct stripe_head *sh, 1610 int srctype) 1611 { 1612 int disks = sh->disks; 1613 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1614 int d0_idx = raid6_d0(sh); 1615 int count; 1616 int i; 1617 1618 for (i = 0; i < disks; i++) 1619 srcs[i] = NULL; 1620 1621 count = 0; 1622 i = d0_idx; 1623 do { 1624 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1625 struct r5dev *dev = &sh->dev[i]; 1626 1627 if (i == sh->qd_idx || i == sh->pd_idx || 1628 (srctype == SYNDROME_SRC_ALL) || 1629 (srctype == SYNDROME_SRC_WANT_DRAIN && 1630 (test_bit(R5_Wantdrain, &dev->flags) || 1631 test_bit(R5_InJournal, &dev->flags))) || 1632 (srctype == SYNDROME_SRC_WRITTEN && 1633 (dev->written || 1634 test_bit(R5_InJournal, &dev->flags)))) { 1635 if (test_bit(R5_InJournal, &dev->flags)) 1636 srcs[slot] = sh->dev[i].orig_page; 1637 else 1638 srcs[slot] = sh->dev[i].page; 1639 /* 1640 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1641 * not shared page. In that case, dev[i].offset 1642 * is 0. 1643 */ 1644 offs[slot] = sh->dev[i].offset; 1645 } 1646 i = raid6_next_disk(i, disks); 1647 } while (i != d0_idx); 1648 1649 return syndrome_disks; 1650 } 1651 1652 static struct dma_async_tx_descriptor * ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1653 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1654 { 1655 int disks = sh->disks; 1656 struct page **blocks = to_addr_page(percpu, 0); 1657 unsigned int *offs = to_addr_offs(sh, percpu); 1658 int target; 1659 int qd_idx = sh->qd_idx; 1660 struct dma_async_tx_descriptor *tx; 1661 struct async_submit_ctl submit; 1662 struct r5dev *tgt; 1663 struct page *dest; 1664 unsigned int dest_off; 1665 int i; 1666 int count; 1667 1668 BUG_ON(sh->batch_head); 1669 if (sh->ops.target < 0) 1670 target = sh->ops.target2; 1671 else if (sh->ops.target2 < 0) 1672 target = sh->ops.target; 1673 else 1674 /* we should only have one valid target */ 1675 BUG(); 1676 BUG_ON(target < 0); 1677 pr_debug("%s: stripe %llu block: %d\n", 1678 __func__, (unsigned long long)sh->sector, target); 1679 1680 tgt = &sh->dev[target]; 1681 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1682 dest = tgt->page; 1683 dest_off = tgt->offset; 1684 1685 atomic_inc(&sh->count); 1686 1687 if (target == qd_idx) { 1688 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1689 blocks[count] = NULL; /* regenerating p is not necessary */ 1690 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1691 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1692 ops_complete_compute, sh, 1693 to_addr_conv(sh, percpu, 0)); 1694 tx = async_gen_syndrome(blocks, offs, count+2, 1695 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1696 } else { 1697 /* Compute any data- or p-drive using XOR */ 1698 count = 0; 1699 for (i = disks; i-- ; ) { 1700 if (i == target || i == qd_idx) 1701 continue; 1702 offs[count] = sh->dev[i].offset; 1703 blocks[count++] = sh->dev[i].page; 1704 } 1705 1706 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1707 NULL, ops_complete_compute, sh, 1708 to_addr_conv(sh, percpu, 0)); 1709 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1710 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1711 } 1712 1713 return tx; 1714 } 1715 1716 static struct dma_async_tx_descriptor * ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1717 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1718 { 1719 int i, count, disks = sh->disks; 1720 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1721 int d0_idx = raid6_d0(sh); 1722 int faila = -1, failb = -1; 1723 int target = sh->ops.target; 1724 int target2 = sh->ops.target2; 1725 struct r5dev *tgt = &sh->dev[target]; 1726 struct r5dev *tgt2 = &sh->dev[target2]; 1727 struct dma_async_tx_descriptor *tx; 1728 struct page **blocks = to_addr_page(percpu, 0); 1729 unsigned int *offs = to_addr_offs(sh, percpu); 1730 struct async_submit_ctl submit; 1731 1732 BUG_ON(sh->batch_head); 1733 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1734 __func__, (unsigned long long)sh->sector, target, target2); 1735 BUG_ON(target < 0 || target2 < 0); 1736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1737 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1738 1739 /* we need to open-code set_syndrome_sources to handle the 1740 * slot number conversion for 'faila' and 'failb' 1741 */ 1742 for (i = 0; i < disks ; i++) { 1743 offs[i] = 0; 1744 blocks[i] = NULL; 1745 } 1746 count = 0; 1747 i = d0_idx; 1748 do { 1749 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1750 1751 offs[slot] = sh->dev[i].offset; 1752 blocks[slot] = sh->dev[i].page; 1753 1754 if (i == target) 1755 faila = slot; 1756 if (i == target2) 1757 failb = slot; 1758 i = raid6_next_disk(i, disks); 1759 } while (i != d0_idx); 1760 1761 BUG_ON(faila == failb); 1762 if (failb < faila) 1763 swap(faila, failb); 1764 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1765 __func__, (unsigned long long)sh->sector, faila, failb); 1766 1767 atomic_inc(&sh->count); 1768 1769 if (failb == syndrome_disks+1) { 1770 /* Q disk is one of the missing disks */ 1771 if (faila == syndrome_disks) { 1772 /* Missing P+Q, just recompute */ 1773 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1774 ops_complete_compute, sh, 1775 to_addr_conv(sh, percpu, 0)); 1776 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1777 RAID5_STRIPE_SIZE(sh->raid_conf), 1778 &submit); 1779 } else { 1780 struct page *dest; 1781 unsigned int dest_off; 1782 int data_target; 1783 int qd_idx = sh->qd_idx; 1784 1785 /* Missing D+Q: recompute D from P, then recompute Q */ 1786 if (target == qd_idx) 1787 data_target = target2; 1788 else 1789 data_target = target; 1790 1791 count = 0; 1792 for (i = disks; i-- ; ) { 1793 if (i == data_target || i == qd_idx) 1794 continue; 1795 offs[count] = sh->dev[i].offset; 1796 blocks[count++] = sh->dev[i].page; 1797 } 1798 dest = sh->dev[data_target].page; 1799 dest_off = sh->dev[data_target].offset; 1800 init_async_submit(&submit, 1801 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1802 NULL, NULL, NULL, 1803 to_addr_conv(sh, percpu, 0)); 1804 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1805 RAID5_STRIPE_SIZE(sh->raid_conf), 1806 &submit); 1807 1808 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1809 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1810 ops_complete_compute, sh, 1811 to_addr_conv(sh, percpu, 0)); 1812 return async_gen_syndrome(blocks, offs, count+2, 1813 RAID5_STRIPE_SIZE(sh->raid_conf), 1814 &submit); 1815 } 1816 } else { 1817 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1818 ops_complete_compute, sh, 1819 to_addr_conv(sh, percpu, 0)); 1820 if (failb == syndrome_disks) { 1821 /* We're missing D+P. */ 1822 return async_raid6_datap_recov(syndrome_disks+2, 1823 RAID5_STRIPE_SIZE(sh->raid_conf), 1824 faila, 1825 blocks, offs, &submit); 1826 } else { 1827 /* We're missing D+D. */ 1828 return async_raid6_2data_recov(syndrome_disks+2, 1829 RAID5_STRIPE_SIZE(sh->raid_conf), 1830 faila, failb, 1831 blocks, offs, &submit); 1832 } 1833 } 1834 } 1835 ops_complete_prexor(void * stripe_head_ref)1836 static void ops_complete_prexor(void *stripe_head_ref) 1837 { 1838 struct stripe_head *sh = stripe_head_ref; 1839 1840 pr_debug("%s: stripe %llu\n", __func__, 1841 (unsigned long long)sh->sector); 1842 1843 if (r5c_is_writeback(sh->raid_conf->log)) 1844 /* 1845 * raid5-cache write back uses orig_page during prexor. 1846 * After prexor, it is time to free orig_page 1847 */ 1848 r5c_release_extra_page(sh); 1849 } 1850 1851 static struct dma_async_tx_descriptor * ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1852 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1853 struct dma_async_tx_descriptor *tx) 1854 { 1855 int disks = sh->disks; 1856 struct page **xor_srcs = to_addr_page(percpu, 0); 1857 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1858 int count = 0, pd_idx = sh->pd_idx, i; 1859 struct async_submit_ctl submit; 1860 1861 /* existing parity data subtracted */ 1862 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1863 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1864 1865 BUG_ON(sh->batch_head); 1866 pr_debug("%s: stripe %llu\n", __func__, 1867 (unsigned long long)sh->sector); 1868 1869 for (i = disks; i--; ) { 1870 struct r5dev *dev = &sh->dev[i]; 1871 /* Only process blocks that are known to be uptodate */ 1872 if (test_bit(R5_InJournal, &dev->flags)) { 1873 /* 1874 * For this case, PAGE_SIZE must be equal to 4KB and 1875 * page offset is zero. 1876 */ 1877 off_srcs[count] = dev->offset; 1878 xor_srcs[count++] = dev->orig_page; 1879 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1880 off_srcs[count] = dev->offset; 1881 xor_srcs[count++] = dev->page; 1882 } 1883 } 1884 1885 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1886 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1887 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1888 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1889 1890 return tx; 1891 } 1892 1893 static struct dma_async_tx_descriptor * ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1894 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1895 struct dma_async_tx_descriptor *tx) 1896 { 1897 struct page **blocks = to_addr_page(percpu, 0); 1898 unsigned int *offs = to_addr_offs(sh, percpu); 1899 int count; 1900 struct async_submit_ctl submit; 1901 1902 pr_debug("%s: stripe %llu\n", __func__, 1903 (unsigned long long)sh->sector); 1904 1905 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1906 1907 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1908 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1909 tx = async_gen_syndrome(blocks, offs, count+2, 1910 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1911 1912 return tx; 1913 } 1914 1915 static struct dma_async_tx_descriptor * ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1916 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1917 { 1918 struct r5conf *conf = sh->raid_conf; 1919 int disks = sh->disks; 1920 int i; 1921 struct stripe_head *head_sh = sh; 1922 1923 pr_debug("%s: stripe %llu\n", __func__, 1924 (unsigned long long)sh->sector); 1925 1926 for (i = disks; i--; ) { 1927 struct r5dev *dev; 1928 struct bio *chosen; 1929 1930 sh = head_sh; 1931 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1932 struct bio *wbi; 1933 1934 again: 1935 dev = &sh->dev[i]; 1936 /* 1937 * clear R5_InJournal, so when rewriting a page in 1938 * journal, it is not skipped by r5l_log_stripe() 1939 */ 1940 clear_bit(R5_InJournal, &dev->flags); 1941 spin_lock_irq(&sh->stripe_lock); 1942 chosen = dev->towrite; 1943 dev->towrite = NULL; 1944 sh->overwrite_disks = 0; 1945 BUG_ON(dev->written); 1946 wbi = dev->written = chosen; 1947 spin_unlock_irq(&sh->stripe_lock); 1948 WARN_ON(dev->page != dev->orig_page); 1949 1950 while (wbi && wbi->bi_iter.bi_sector < 1951 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1952 if (wbi->bi_opf & REQ_FUA) 1953 set_bit(R5_WantFUA, &dev->flags); 1954 if (wbi->bi_opf & REQ_SYNC) 1955 set_bit(R5_SyncIO, &dev->flags); 1956 if (bio_op(wbi) == REQ_OP_DISCARD) 1957 set_bit(R5_Discard, &dev->flags); 1958 else { 1959 tx = async_copy_data(1, wbi, &dev->page, 1960 dev->offset, 1961 dev->sector, tx, sh, 1962 r5c_is_writeback(conf->log)); 1963 if (dev->page != dev->orig_page && 1964 !r5c_is_writeback(conf->log)) { 1965 set_bit(R5_SkipCopy, &dev->flags); 1966 clear_bit(R5_UPTODATE, &dev->flags); 1967 clear_bit(R5_OVERWRITE, &dev->flags); 1968 } 1969 } 1970 wbi = r5_next_bio(conf, wbi, dev->sector); 1971 } 1972 1973 if (head_sh->batch_head) { 1974 sh = list_first_entry(&sh->batch_list, 1975 struct stripe_head, 1976 batch_list); 1977 if (sh == head_sh) 1978 continue; 1979 goto again; 1980 } 1981 } 1982 } 1983 1984 return tx; 1985 } 1986 ops_complete_reconstruct(void * stripe_head_ref)1987 static void ops_complete_reconstruct(void *stripe_head_ref) 1988 { 1989 struct stripe_head *sh = stripe_head_ref; 1990 int disks = sh->disks; 1991 int pd_idx = sh->pd_idx; 1992 int qd_idx = sh->qd_idx; 1993 int i; 1994 bool fua = false, sync = false, discard = false; 1995 1996 pr_debug("%s: stripe %llu\n", __func__, 1997 (unsigned long long)sh->sector); 1998 1999 for (i = disks; i--; ) { 2000 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2001 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2002 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2003 } 2004 2005 for (i = disks; i--; ) { 2006 struct r5dev *dev = &sh->dev[i]; 2007 2008 if (dev->written || i == pd_idx || i == qd_idx) { 2009 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2010 set_bit(R5_UPTODATE, &dev->flags); 2011 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2012 set_bit(R5_Expanded, &dev->flags); 2013 } 2014 if (fua) 2015 set_bit(R5_WantFUA, &dev->flags); 2016 if (sync) 2017 set_bit(R5_SyncIO, &dev->flags); 2018 } 2019 } 2020 2021 if (sh->reconstruct_state == reconstruct_state_drain_run) 2022 sh->reconstruct_state = reconstruct_state_drain_result; 2023 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2024 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2025 else { 2026 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2027 sh->reconstruct_state = reconstruct_state_result; 2028 } 2029 2030 set_bit(STRIPE_HANDLE, &sh->state); 2031 raid5_release_stripe(sh); 2032 } 2033 2034 static void ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2035 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2036 struct dma_async_tx_descriptor *tx) 2037 { 2038 int disks = sh->disks; 2039 struct page **xor_srcs; 2040 unsigned int *off_srcs; 2041 struct async_submit_ctl submit; 2042 int count, pd_idx = sh->pd_idx, i; 2043 struct page *xor_dest; 2044 unsigned int off_dest; 2045 int prexor = 0; 2046 unsigned long flags; 2047 int j = 0; 2048 struct stripe_head *head_sh = sh; 2049 int last_stripe; 2050 2051 pr_debug("%s: stripe %llu\n", __func__, 2052 (unsigned long long)sh->sector); 2053 2054 for (i = 0; i < sh->disks; i++) { 2055 if (pd_idx == i) 2056 continue; 2057 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2058 break; 2059 } 2060 if (i >= sh->disks) { 2061 atomic_inc(&sh->count); 2062 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2063 ops_complete_reconstruct(sh); 2064 return; 2065 } 2066 again: 2067 count = 0; 2068 xor_srcs = to_addr_page(percpu, j); 2069 off_srcs = to_addr_offs(sh, percpu); 2070 /* check if prexor is active which means only process blocks 2071 * that are part of a read-modify-write (written) 2072 */ 2073 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2074 prexor = 1; 2075 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2076 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2077 for (i = disks; i--; ) { 2078 struct r5dev *dev = &sh->dev[i]; 2079 if (head_sh->dev[i].written || 2080 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2081 off_srcs[count] = dev->offset; 2082 xor_srcs[count++] = dev->page; 2083 } 2084 } 2085 } else { 2086 xor_dest = sh->dev[pd_idx].page; 2087 off_dest = sh->dev[pd_idx].offset; 2088 for (i = disks; i--; ) { 2089 struct r5dev *dev = &sh->dev[i]; 2090 if (i != pd_idx) { 2091 off_srcs[count] = dev->offset; 2092 xor_srcs[count++] = dev->page; 2093 } 2094 } 2095 } 2096 2097 /* 1/ if we prexor'd then the dest is reused as a source 2098 * 2/ if we did not prexor then we are redoing the parity 2099 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2100 * for the synchronous xor case 2101 */ 2102 last_stripe = !head_sh->batch_head || 2103 list_first_entry(&sh->batch_list, 2104 struct stripe_head, batch_list) == head_sh; 2105 if (last_stripe) { 2106 flags = ASYNC_TX_ACK | 2107 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2108 2109 atomic_inc(&head_sh->count); 2110 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2111 to_addr_conv(sh, percpu, j)); 2112 } else { 2113 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2114 init_async_submit(&submit, flags, tx, NULL, NULL, 2115 to_addr_conv(sh, percpu, j)); 2116 } 2117 2118 if (unlikely(count == 1)) 2119 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2120 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2121 else 2122 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2123 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2124 if (!last_stripe) { 2125 j++; 2126 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2127 batch_list); 2128 goto again; 2129 } 2130 } 2131 2132 static void ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2133 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2134 struct dma_async_tx_descriptor *tx) 2135 { 2136 struct async_submit_ctl submit; 2137 struct page **blocks; 2138 unsigned int *offs; 2139 int count, i, j = 0; 2140 struct stripe_head *head_sh = sh; 2141 int last_stripe; 2142 int synflags; 2143 unsigned long txflags; 2144 2145 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2146 2147 for (i = 0; i < sh->disks; i++) { 2148 if (sh->pd_idx == i || sh->qd_idx == i) 2149 continue; 2150 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2151 break; 2152 } 2153 if (i >= sh->disks) { 2154 atomic_inc(&sh->count); 2155 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2156 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2157 ops_complete_reconstruct(sh); 2158 return; 2159 } 2160 2161 again: 2162 blocks = to_addr_page(percpu, j); 2163 offs = to_addr_offs(sh, percpu); 2164 2165 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2166 synflags = SYNDROME_SRC_WRITTEN; 2167 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2168 } else { 2169 synflags = SYNDROME_SRC_ALL; 2170 txflags = ASYNC_TX_ACK; 2171 } 2172 2173 count = set_syndrome_sources(blocks, offs, sh, synflags); 2174 last_stripe = !head_sh->batch_head || 2175 list_first_entry(&sh->batch_list, 2176 struct stripe_head, batch_list) == head_sh; 2177 2178 if (last_stripe) { 2179 atomic_inc(&head_sh->count); 2180 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2181 head_sh, to_addr_conv(sh, percpu, j)); 2182 } else 2183 init_async_submit(&submit, 0, tx, NULL, NULL, 2184 to_addr_conv(sh, percpu, j)); 2185 tx = async_gen_syndrome(blocks, offs, count+2, 2186 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2187 if (!last_stripe) { 2188 j++; 2189 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2190 batch_list); 2191 goto again; 2192 } 2193 } 2194 ops_complete_check(void * stripe_head_ref)2195 static void ops_complete_check(void *stripe_head_ref) 2196 { 2197 struct stripe_head *sh = stripe_head_ref; 2198 2199 pr_debug("%s: stripe %llu\n", __func__, 2200 (unsigned long long)sh->sector); 2201 2202 sh->check_state = check_state_check_result; 2203 set_bit(STRIPE_HANDLE, &sh->state); 2204 raid5_release_stripe(sh); 2205 } 2206 ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2207 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2208 { 2209 int disks = sh->disks; 2210 int pd_idx = sh->pd_idx; 2211 int qd_idx = sh->qd_idx; 2212 struct page *xor_dest; 2213 unsigned int off_dest; 2214 struct page **xor_srcs = to_addr_page(percpu, 0); 2215 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2216 struct dma_async_tx_descriptor *tx; 2217 struct async_submit_ctl submit; 2218 int count; 2219 int i; 2220 2221 pr_debug("%s: stripe %llu\n", __func__, 2222 (unsigned long long)sh->sector); 2223 2224 BUG_ON(sh->batch_head); 2225 count = 0; 2226 xor_dest = sh->dev[pd_idx].page; 2227 off_dest = sh->dev[pd_idx].offset; 2228 off_srcs[count] = off_dest; 2229 xor_srcs[count++] = xor_dest; 2230 for (i = disks; i--; ) { 2231 if (i == pd_idx || i == qd_idx) 2232 continue; 2233 off_srcs[count] = sh->dev[i].offset; 2234 xor_srcs[count++] = sh->dev[i].page; 2235 } 2236 2237 init_async_submit(&submit, 0, NULL, NULL, NULL, 2238 to_addr_conv(sh, percpu, 0)); 2239 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2240 RAID5_STRIPE_SIZE(sh->raid_conf), 2241 &sh->ops.zero_sum_result, &submit); 2242 2243 atomic_inc(&sh->count); 2244 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2245 tx = async_trigger_callback(&submit); 2246 } 2247 ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2248 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2249 { 2250 struct page **srcs = to_addr_page(percpu, 0); 2251 unsigned int *offs = to_addr_offs(sh, percpu); 2252 struct async_submit_ctl submit; 2253 int count; 2254 2255 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2256 (unsigned long long)sh->sector, checkp); 2257 2258 BUG_ON(sh->batch_head); 2259 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2260 if (!checkp) 2261 srcs[count] = NULL; 2262 2263 atomic_inc(&sh->count); 2264 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2265 sh, to_addr_conv(sh, percpu, 0)); 2266 async_syndrome_val(srcs, offs, count+2, 2267 RAID5_STRIPE_SIZE(sh->raid_conf), 2268 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2269 } 2270 raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2271 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2272 { 2273 int overlap_clear = 0, i, disks = sh->disks; 2274 struct dma_async_tx_descriptor *tx = NULL; 2275 struct r5conf *conf = sh->raid_conf; 2276 int level = conf->level; 2277 struct raid5_percpu *percpu; 2278 2279 local_lock(&conf->percpu->lock); 2280 percpu = this_cpu_ptr(conf->percpu); 2281 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2282 ops_run_biofill(sh); 2283 overlap_clear++; 2284 } 2285 2286 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2287 if (level < 6) 2288 tx = ops_run_compute5(sh, percpu); 2289 else { 2290 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2291 tx = ops_run_compute6_1(sh, percpu); 2292 else 2293 tx = ops_run_compute6_2(sh, percpu); 2294 } 2295 /* terminate the chain if reconstruct is not set to be run */ 2296 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2297 async_tx_ack(tx); 2298 } 2299 2300 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2301 if (level < 6) 2302 tx = ops_run_prexor5(sh, percpu, tx); 2303 else 2304 tx = ops_run_prexor6(sh, percpu, tx); 2305 } 2306 2307 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2308 tx = ops_run_partial_parity(sh, percpu, tx); 2309 2310 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2311 tx = ops_run_biodrain(sh, tx); 2312 overlap_clear++; 2313 } 2314 2315 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2316 if (level < 6) 2317 ops_run_reconstruct5(sh, percpu, tx); 2318 else 2319 ops_run_reconstruct6(sh, percpu, tx); 2320 } 2321 2322 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2323 if (sh->check_state == check_state_run) 2324 ops_run_check_p(sh, percpu); 2325 else if (sh->check_state == check_state_run_q) 2326 ops_run_check_pq(sh, percpu, 0); 2327 else if (sh->check_state == check_state_run_pq) 2328 ops_run_check_pq(sh, percpu, 1); 2329 else 2330 BUG(); 2331 } 2332 2333 if (overlap_clear && !sh->batch_head) { 2334 for (i = disks; i--; ) { 2335 struct r5dev *dev = &sh->dev[i]; 2336 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2337 wake_up_bit(&dev->flags, R5_Overlap); 2338 } 2339 } 2340 local_unlock(&conf->percpu->lock); 2341 } 2342 free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2343 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2344 { 2345 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2346 kfree(sh->pages); 2347 #endif 2348 if (sh->ppl_page) 2349 __free_page(sh->ppl_page); 2350 kmem_cache_free(sc, sh); 2351 } 2352 alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2353 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2354 int disks, struct r5conf *conf) 2355 { 2356 struct stripe_head *sh; 2357 2358 sh = kmem_cache_zalloc(sc, gfp); 2359 if (sh) { 2360 spin_lock_init(&sh->stripe_lock); 2361 spin_lock_init(&sh->batch_lock); 2362 INIT_LIST_HEAD(&sh->batch_list); 2363 INIT_LIST_HEAD(&sh->lru); 2364 INIT_LIST_HEAD(&sh->r5c); 2365 INIT_LIST_HEAD(&sh->log_list); 2366 atomic_set(&sh->count, 1); 2367 sh->raid_conf = conf; 2368 sh->log_start = MaxSector; 2369 2370 if (raid5_has_ppl(conf)) { 2371 sh->ppl_page = alloc_page(gfp); 2372 if (!sh->ppl_page) { 2373 free_stripe(sc, sh); 2374 return NULL; 2375 } 2376 } 2377 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2378 if (init_stripe_shared_pages(sh, conf, disks)) { 2379 free_stripe(sc, sh); 2380 return NULL; 2381 } 2382 #endif 2383 } 2384 return sh; 2385 } grow_one_stripe(struct r5conf * conf,gfp_t gfp)2386 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2387 { 2388 struct stripe_head *sh; 2389 2390 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2391 if (!sh) 2392 return 0; 2393 2394 if (grow_buffers(sh, gfp)) { 2395 shrink_buffers(sh); 2396 free_stripe(conf->slab_cache, sh); 2397 return 0; 2398 } 2399 sh->hash_lock_index = 2400 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2401 /* we just created an active stripe so... */ 2402 atomic_inc(&conf->active_stripes); 2403 2404 raid5_release_stripe(sh); 2405 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1); 2406 return 1; 2407 } 2408 grow_stripes(struct r5conf * conf,int num)2409 static int grow_stripes(struct r5conf *conf, int num) 2410 { 2411 struct kmem_cache *sc; 2412 size_t namelen = sizeof(conf->cache_name[0]); 2413 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2414 2415 if (mddev_is_dm(conf->mddev)) 2416 snprintf(conf->cache_name[0], namelen, 2417 "raid%d-%p", conf->level, conf->mddev); 2418 else 2419 snprintf(conf->cache_name[0], namelen, 2420 "raid%d-%s", conf->level, mdname(conf->mddev)); 2421 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2422 2423 conf->active_name = 0; 2424 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2425 struct_size_t(struct stripe_head, dev, devs), 2426 0, 0, NULL); 2427 if (!sc) 2428 return 1; 2429 conf->slab_cache = sc; 2430 conf->pool_size = devs; 2431 while (num--) 2432 if (!grow_one_stripe(conf, GFP_KERNEL)) 2433 return 1; 2434 2435 return 0; 2436 } 2437 2438 /** 2439 * scribble_alloc - allocate percpu scribble buffer for required size 2440 * of the scribble region 2441 * @percpu: from for_each_present_cpu() of the caller 2442 * @num: total number of disks in the array 2443 * @cnt: scribble objs count for required size of the scribble region 2444 * 2445 * The scribble buffer size must be enough to contain: 2446 * 1/ a struct page pointer for each device in the array +2 2447 * 2/ room to convert each entry in (1) to its corresponding dma 2448 * (dma_map_page()) or page (page_address()) address. 2449 * 2450 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2451 * calculate over all devices (not just the data blocks), using zeros in place 2452 * of the P and Q blocks. 2453 */ scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2454 static int scribble_alloc(struct raid5_percpu *percpu, 2455 int num, int cnt) 2456 { 2457 size_t obj_size = 2458 sizeof(struct page *) * (num + 2) + 2459 sizeof(addr_conv_t) * (num + 2) + 2460 sizeof(unsigned int) * (num + 2); 2461 void *scribble; 2462 2463 /* 2464 * If here is in raid array suspend context, it is in memalloc noio 2465 * context as well, there is no potential recursive memory reclaim 2466 * I/Os with the GFP_KERNEL flag. 2467 */ 2468 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2469 if (!scribble) 2470 return -ENOMEM; 2471 2472 kvfree(percpu->scribble); 2473 2474 percpu->scribble = scribble; 2475 percpu->scribble_obj_size = obj_size; 2476 return 0; 2477 } 2478 resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2479 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2480 { 2481 unsigned long cpu; 2482 int err = 0; 2483 2484 /* Never shrink. */ 2485 if (conf->scribble_disks >= new_disks && 2486 conf->scribble_sectors >= new_sectors) 2487 return 0; 2488 2489 raid5_quiesce(conf->mddev, true); 2490 cpus_read_lock(); 2491 2492 for_each_present_cpu(cpu) { 2493 struct raid5_percpu *percpu; 2494 2495 percpu = per_cpu_ptr(conf->percpu, cpu); 2496 err = scribble_alloc(percpu, new_disks, 2497 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2498 if (err) 2499 break; 2500 } 2501 2502 cpus_read_unlock(); 2503 raid5_quiesce(conf->mddev, false); 2504 2505 if (!err) { 2506 conf->scribble_disks = new_disks; 2507 conf->scribble_sectors = new_sectors; 2508 } 2509 return err; 2510 } 2511 resize_stripes(struct r5conf * conf,int newsize)2512 static int resize_stripes(struct r5conf *conf, int newsize) 2513 { 2514 /* Make all the stripes able to hold 'newsize' devices. 2515 * New slots in each stripe get 'page' set to a new page. 2516 * 2517 * This happens in stages: 2518 * 1/ create a new kmem_cache and allocate the required number of 2519 * stripe_heads. 2520 * 2/ gather all the old stripe_heads and transfer the pages across 2521 * to the new stripe_heads. This will have the side effect of 2522 * freezing the array as once all stripe_heads have been collected, 2523 * no IO will be possible. Old stripe heads are freed once their 2524 * pages have been transferred over, and the old kmem_cache is 2525 * freed when all stripes are done. 2526 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2527 * we simple return a failure status - no need to clean anything up. 2528 * 4/ allocate new pages for the new slots in the new stripe_heads. 2529 * If this fails, we don't bother trying the shrink the 2530 * stripe_heads down again, we just leave them as they are. 2531 * As each stripe_head is processed the new one is released into 2532 * active service. 2533 * 2534 * Once step2 is started, we cannot afford to wait for a write, 2535 * so we use GFP_NOIO allocations. 2536 */ 2537 struct stripe_head *osh, *nsh; 2538 LIST_HEAD(newstripes); 2539 struct disk_info *ndisks; 2540 int err = 0; 2541 struct kmem_cache *sc; 2542 int i; 2543 int hash, cnt; 2544 2545 md_allow_write(conf->mddev); 2546 2547 /* Step 1 */ 2548 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2549 struct_size_t(struct stripe_head, dev, newsize), 2550 0, 0, NULL); 2551 if (!sc) 2552 return -ENOMEM; 2553 2554 /* Need to ensure auto-resizing doesn't interfere */ 2555 mutex_lock(&conf->cache_size_mutex); 2556 2557 for (i = conf->max_nr_stripes; i; i--) { 2558 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2559 if (!nsh) 2560 break; 2561 2562 list_add(&nsh->lru, &newstripes); 2563 } 2564 if (i) { 2565 /* didn't get enough, give up */ 2566 while (!list_empty(&newstripes)) { 2567 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2568 list_del(&nsh->lru); 2569 free_stripe(sc, nsh); 2570 } 2571 kmem_cache_destroy(sc); 2572 mutex_unlock(&conf->cache_size_mutex); 2573 return -ENOMEM; 2574 } 2575 /* Step 2 - Must use GFP_NOIO now. 2576 * OK, we have enough stripes, start collecting inactive 2577 * stripes and copying them over 2578 */ 2579 hash = 0; 2580 cnt = 0; 2581 list_for_each_entry(nsh, &newstripes, lru) { 2582 lock_device_hash_lock(conf, hash); 2583 wait_event_cmd(conf->wait_for_stripe, 2584 !list_empty(conf->inactive_list + hash), 2585 unlock_device_hash_lock(conf, hash), 2586 lock_device_hash_lock(conf, hash)); 2587 osh = get_free_stripe(conf, hash); 2588 unlock_device_hash_lock(conf, hash); 2589 2590 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2591 for (i = 0; i < osh->nr_pages; i++) { 2592 nsh->pages[i] = osh->pages[i]; 2593 osh->pages[i] = NULL; 2594 } 2595 #endif 2596 for(i=0; i<conf->pool_size; i++) { 2597 nsh->dev[i].page = osh->dev[i].page; 2598 nsh->dev[i].orig_page = osh->dev[i].page; 2599 nsh->dev[i].offset = osh->dev[i].offset; 2600 } 2601 nsh->hash_lock_index = hash; 2602 free_stripe(conf->slab_cache, osh); 2603 cnt++; 2604 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2605 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2606 hash++; 2607 cnt = 0; 2608 } 2609 } 2610 kmem_cache_destroy(conf->slab_cache); 2611 2612 /* Step 3. 2613 * At this point, we are holding all the stripes so the array 2614 * is completely stalled, so now is a good time to resize 2615 * conf->disks and the scribble region 2616 */ 2617 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2618 if (ndisks) { 2619 for (i = 0; i < conf->pool_size; i++) 2620 ndisks[i] = conf->disks[i]; 2621 2622 for (i = conf->pool_size; i < newsize; i++) { 2623 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2624 if (!ndisks[i].extra_page) 2625 err = -ENOMEM; 2626 } 2627 2628 if (err) { 2629 for (i = conf->pool_size; i < newsize; i++) 2630 if (ndisks[i].extra_page) 2631 put_page(ndisks[i].extra_page); 2632 kfree(ndisks); 2633 } else { 2634 kfree(conf->disks); 2635 conf->disks = ndisks; 2636 } 2637 } else 2638 err = -ENOMEM; 2639 2640 conf->slab_cache = sc; 2641 conf->active_name = 1-conf->active_name; 2642 2643 /* Step 4, return new stripes to service */ 2644 while(!list_empty(&newstripes)) { 2645 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2646 list_del_init(&nsh->lru); 2647 2648 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2649 for (i = 0; i < nsh->nr_pages; i++) { 2650 if (nsh->pages[i]) 2651 continue; 2652 nsh->pages[i] = alloc_page(GFP_NOIO); 2653 if (!nsh->pages[i]) 2654 err = -ENOMEM; 2655 } 2656 2657 for (i = conf->raid_disks; i < newsize; i++) { 2658 if (nsh->dev[i].page) 2659 continue; 2660 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2661 nsh->dev[i].orig_page = nsh->dev[i].page; 2662 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2663 } 2664 #else 2665 for (i=conf->raid_disks; i < newsize; i++) 2666 if (nsh->dev[i].page == NULL) { 2667 struct page *p = alloc_page(GFP_NOIO); 2668 nsh->dev[i].page = p; 2669 nsh->dev[i].orig_page = p; 2670 nsh->dev[i].offset = 0; 2671 if (!p) 2672 err = -ENOMEM; 2673 } 2674 #endif 2675 raid5_release_stripe(nsh); 2676 } 2677 /* critical section pass, GFP_NOIO no longer needed */ 2678 2679 if (!err) 2680 conf->pool_size = newsize; 2681 mutex_unlock(&conf->cache_size_mutex); 2682 2683 return err; 2684 } 2685 drop_one_stripe(struct r5conf * conf)2686 static int drop_one_stripe(struct r5conf *conf) 2687 { 2688 struct stripe_head *sh; 2689 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2690 2691 spin_lock_irq(conf->hash_locks + hash); 2692 sh = get_free_stripe(conf, hash); 2693 spin_unlock_irq(conf->hash_locks + hash); 2694 if (!sh) 2695 return 0; 2696 BUG_ON(atomic_read(&sh->count)); 2697 shrink_buffers(sh); 2698 free_stripe(conf->slab_cache, sh); 2699 atomic_dec(&conf->active_stripes); 2700 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1); 2701 return 1; 2702 } 2703 shrink_stripes(struct r5conf * conf)2704 static void shrink_stripes(struct r5conf *conf) 2705 { 2706 while (conf->max_nr_stripes && 2707 drop_one_stripe(conf)) 2708 ; 2709 2710 kmem_cache_destroy(conf->slab_cache); 2711 conf->slab_cache = NULL; 2712 } 2713 raid5_end_read_request(struct bio * bi)2714 static void raid5_end_read_request(struct bio * bi) 2715 { 2716 struct stripe_head *sh = bi->bi_private; 2717 struct r5conf *conf = sh->raid_conf; 2718 int disks = sh->disks, i; 2719 struct md_rdev *rdev = NULL; 2720 sector_t s; 2721 2722 for (i=0 ; i<disks; i++) 2723 if (bi == &sh->dev[i].req) 2724 break; 2725 2726 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2727 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2728 bi->bi_status); 2729 if (i == disks) { 2730 BUG(); 2731 return; 2732 } 2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2734 /* If replacement finished while this request was outstanding, 2735 * 'replacement' might be NULL already. 2736 * In that case it moved down to 'rdev'. 2737 * rdev is not removed until all requests are finished. 2738 */ 2739 rdev = conf->disks[i].replacement; 2740 if (!rdev) 2741 rdev = conf->disks[i].rdev; 2742 2743 if (use_new_offset(conf, sh)) 2744 s = sh->sector + rdev->new_data_offset; 2745 else 2746 s = sh->sector + rdev->data_offset; 2747 if (!bi->bi_status) { 2748 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2749 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2750 /* Note that this cannot happen on a 2751 * replacement device. We just fail those on 2752 * any error 2753 */ 2754 pr_info_ratelimited( 2755 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2756 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2757 (unsigned long long)s, 2758 rdev->bdev); 2759 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2760 clear_bit(R5_ReadError, &sh->dev[i].flags); 2761 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2762 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2763 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2764 2765 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2766 /* 2767 * end read for a page in journal, this 2768 * must be preparing for prexor in rmw 2769 */ 2770 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2771 2772 if (atomic_read(&rdev->read_errors)) 2773 atomic_set(&rdev->read_errors, 0); 2774 } else { 2775 int retry = 0; 2776 int set_bad = 0; 2777 2778 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2779 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2780 atomic_inc(&rdev->read_errors); 2781 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2782 pr_warn_ratelimited( 2783 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2784 mdname(conf->mddev), 2785 (unsigned long long)s, 2786 rdev->bdev); 2787 else if (conf->mddev->degraded >= conf->max_degraded) { 2788 set_bad = 1; 2789 pr_warn_ratelimited( 2790 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2791 mdname(conf->mddev), 2792 (unsigned long long)s, 2793 rdev->bdev); 2794 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2795 /* Oh, no!!! */ 2796 set_bad = 1; 2797 pr_warn_ratelimited( 2798 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2799 mdname(conf->mddev), 2800 (unsigned long long)s, 2801 rdev->bdev); 2802 } else if (atomic_read(&rdev->read_errors) 2803 > conf->max_nr_stripes) { 2804 if (!test_bit(Faulty, &rdev->flags)) { 2805 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2806 mdname(conf->mddev), 2807 atomic_read(&rdev->read_errors), 2808 conf->max_nr_stripes); 2809 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2810 mdname(conf->mddev), rdev->bdev); 2811 } 2812 } else 2813 retry = 1; 2814 if (set_bad && test_bit(In_sync, &rdev->flags) 2815 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2816 retry = 1; 2817 if (retry) 2818 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2819 set_bit(R5_ReadError, &sh->dev[i].flags); 2820 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2821 set_bit(R5_ReadError, &sh->dev[i].flags); 2822 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2823 } else 2824 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2825 else { 2826 clear_bit(R5_ReadError, &sh->dev[i].flags); 2827 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2828 if (!(set_bad 2829 && test_bit(In_sync, &rdev->flags) 2830 && rdev_set_badblocks( 2831 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2832 md_error(conf->mddev, rdev); 2833 } 2834 } 2835 rdev_dec_pending(rdev, conf->mddev); 2836 bio_uninit(bi); 2837 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2838 set_bit(STRIPE_HANDLE, &sh->state); 2839 raid5_release_stripe(sh); 2840 } 2841 raid5_end_write_request(struct bio * bi)2842 static void raid5_end_write_request(struct bio *bi) 2843 { 2844 struct stripe_head *sh = bi->bi_private; 2845 struct r5conf *conf = sh->raid_conf; 2846 int disks = sh->disks, i; 2847 struct md_rdev *rdev; 2848 int replacement = 0; 2849 2850 for (i = 0 ; i < disks; i++) { 2851 if (bi == &sh->dev[i].req) { 2852 rdev = conf->disks[i].rdev; 2853 break; 2854 } 2855 if (bi == &sh->dev[i].rreq) { 2856 rdev = conf->disks[i].replacement; 2857 if (rdev) 2858 replacement = 1; 2859 else 2860 /* rdev was removed and 'replacement' 2861 * replaced it. rdev is not removed 2862 * until all requests are finished. 2863 */ 2864 rdev = conf->disks[i].rdev; 2865 break; 2866 } 2867 } 2868 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2869 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2870 bi->bi_status); 2871 if (i == disks) { 2872 BUG(); 2873 return; 2874 } 2875 2876 if (replacement) { 2877 if (bi->bi_status) 2878 md_error(conf->mddev, rdev); 2879 else if (rdev_has_badblock(rdev, sh->sector, 2880 RAID5_STRIPE_SECTORS(conf))) 2881 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2882 } else { 2883 if (bi->bi_status) { 2884 set_bit(WriteErrorSeen, &rdev->flags); 2885 set_bit(R5_WriteError, &sh->dev[i].flags); 2886 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2887 set_bit(MD_RECOVERY_NEEDED, 2888 &rdev->mddev->recovery); 2889 } else if (rdev_has_badblock(rdev, sh->sector, 2890 RAID5_STRIPE_SECTORS(conf))) { 2891 set_bit(R5_MadeGood, &sh->dev[i].flags); 2892 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2893 /* That was a successful write so make 2894 * sure it looks like we already did 2895 * a re-write. 2896 */ 2897 set_bit(R5_ReWrite, &sh->dev[i].flags); 2898 } 2899 } 2900 rdev_dec_pending(rdev, conf->mddev); 2901 2902 if (sh->batch_head && bi->bi_status && !replacement) 2903 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2904 2905 bio_uninit(bi); 2906 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2907 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2908 set_bit(STRIPE_HANDLE, &sh->state); 2909 2910 if (sh->batch_head && sh != sh->batch_head) 2911 raid5_release_stripe(sh->batch_head); 2912 raid5_release_stripe(sh); 2913 } 2914 raid5_error(struct mddev * mddev,struct md_rdev * rdev)2915 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2916 { 2917 struct r5conf *conf = mddev->private; 2918 unsigned long flags; 2919 pr_debug("raid456: error called\n"); 2920 2921 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2922 mdname(mddev), rdev->bdev); 2923 2924 spin_lock_irqsave(&conf->device_lock, flags); 2925 set_bit(Faulty, &rdev->flags); 2926 clear_bit(In_sync, &rdev->flags); 2927 mddev->degraded = raid5_calc_degraded(conf); 2928 2929 if (has_failed(conf)) { 2930 set_bit(MD_BROKEN, &conf->mddev->flags); 2931 conf->recovery_disabled = mddev->recovery_disabled; 2932 2933 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2934 mdname(mddev), mddev->degraded, conf->raid_disks); 2935 } else { 2936 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2937 mdname(mddev), conf->raid_disks - mddev->degraded); 2938 } 2939 2940 spin_unlock_irqrestore(&conf->device_lock, flags); 2941 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2942 2943 set_bit(Blocked, &rdev->flags); 2944 set_mask_bits(&mddev->sb_flags, 0, 2945 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2946 r5c_update_on_rdev_error(mddev, rdev); 2947 } 2948 2949 /* 2950 * Input: a 'big' sector number, 2951 * Output: index of the data and parity disk, and the sector # in them. 2952 */ raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2953 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2954 int previous, int *dd_idx, 2955 struct stripe_head *sh) 2956 { 2957 sector_t stripe, stripe2; 2958 sector_t chunk_number; 2959 unsigned int chunk_offset; 2960 int pd_idx, qd_idx; 2961 int ddf_layout = 0; 2962 sector_t new_sector; 2963 int algorithm = previous ? conf->prev_algo 2964 : conf->algorithm; 2965 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2966 : conf->chunk_sectors; 2967 int raid_disks = previous ? conf->previous_raid_disks 2968 : conf->raid_disks; 2969 int data_disks = raid_disks - conf->max_degraded; 2970 2971 /* First compute the information on this sector */ 2972 2973 /* 2974 * Compute the chunk number and the sector offset inside the chunk 2975 */ 2976 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2977 chunk_number = r_sector; 2978 2979 /* 2980 * Compute the stripe number 2981 */ 2982 stripe = chunk_number; 2983 *dd_idx = sector_div(stripe, data_disks); 2984 stripe2 = stripe; 2985 /* 2986 * Select the parity disk based on the user selected algorithm. 2987 */ 2988 pd_idx = qd_idx = -1; 2989 switch(conf->level) { 2990 case 4: 2991 pd_idx = data_disks; 2992 break; 2993 case 5: 2994 switch (algorithm) { 2995 case ALGORITHM_LEFT_ASYMMETRIC: 2996 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2997 if (*dd_idx >= pd_idx) 2998 (*dd_idx)++; 2999 break; 3000 case ALGORITHM_RIGHT_ASYMMETRIC: 3001 pd_idx = sector_div(stripe2, raid_disks); 3002 if (*dd_idx >= pd_idx) 3003 (*dd_idx)++; 3004 break; 3005 case ALGORITHM_LEFT_SYMMETRIC: 3006 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3007 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3008 break; 3009 case ALGORITHM_RIGHT_SYMMETRIC: 3010 pd_idx = sector_div(stripe2, raid_disks); 3011 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3012 break; 3013 case ALGORITHM_PARITY_0: 3014 pd_idx = 0; 3015 (*dd_idx)++; 3016 break; 3017 case ALGORITHM_PARITY_N: 3018 pd_idx = data_disks; 3019 break; 3020 default: 3021 BUG(); 3022 } 3023 break; 3024 case 6: 3025 3026 switch (algorithm) { 3027 case ALGORITHM_LEFT_ASYMMETRIC: 3028 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3029 qd_idx = pd_idx + 1; 3030 if (pd_idx == raid_disks-1) { 3031 (*dd_idx)++; /* Q D D D P */ 3032 qd_idx = 0; 3033 } else if (*dd_idx >= pd_idx) 3034 (*dd_idx) += 2; /* D D P Q D */ 3035 break; 3036 case ALGORITHM_RIGHT_ASYMMETRIC: 3037 pd_idx = sector_div(stripe2, raid_disks); 3038 qd_idx = pd_idx + 1; 3039 if (pd_idx == raid_disks-1) { 3040 (*dd_idx)++; /* Q D D D P */ 3041 qd_idx = 0; 3042 } else if (*dd_idx >= pd_idx) 3043 (*dd_idx) += 2; /* D D P Q D */ 3044 break; 3045 case ALGORITHM_LEFT_SYMMETRIC: 3046 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3047 qd_idx = (pd_idx + 1) % raid_disks; 3048 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3049 break; 3050 case ALGORITHM_RIGHT_SYMMETRIC: 3051 pd_idx = sector_div(stripe2, raid_disks); 3052 qd_idx = (pd_idx + 1) % raid_disks; 3053 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3054 break; 3055 3056 case ALGORITHM_PARITY_0: 3057 pd_idx = 0; 3058 qd_idx = 1; 3059 (*dd_idx) += 2; 3060 break; 3061 case ALGORITHM_PARITY_N: 3062 pd_idx = data_disks; 3063 qd_idx = data_disks + 1; 3064 break; 3065 3066 case ALGORITHM_ROTATING_ZERO_RESTART: 3067 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3068 * of blocks for computing Q is different. 3069 */ 3070 pd_idx = sector_div(stripe2, raid_disks); 3071 qd_idx = pd_idx + 1; 3072 if (pd_idx == raid_disks-1) { 3073 (*dd_idx)++; /* Q D D D P */ 3074 qd_idx = 0; 3075 } else if (*dd_idx >= pd_idx) 3076 (*dd_idx) += 2; /* D D P Q D */ 3077 ddf_layout = 1; 3078 break; 3079 3080 case ALGORITHM_ROTATING_N_RESTART: 3081 /* Same a left_asymmetric, by first stripe is 3082 * D D D P Q rather than 3083 * Q D D D P 3084 */ 3085 stripe2 += 1; 3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3087 qd_idx = pd_idx + 1; 3088 if (pd_idx == raid_disks-1) { 3089 (*dd_idx)++; /* Q D D D P */ 3090 qd_idx = 0; 3091 } else if (*dd_idx >= pd_idx) 3092 (*dd_idx) += 2; /* D D P Q D */ 3093 ddf_layout = 1; 3094 break; 3095 3096 case ALGORITHM_ROTATING_N_CONTINUE: 3097 /* Same as left_symmetric but Q is before P */ 3098 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3099 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3100 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3101 ddf_layout = 1; 3102 break; 3103 3104 case ALGORITHM_LEFT_ASYMMETRIC_6: 3105 /* RAID5 left_asymmetric, with Q on last device */ 3106 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3107 if (*dd_idx >= pd_idx) 3108 (*dd_idx)++; 3109 qd_idx = raid_disks - 1; 3110 break; 3111 3112 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3113 pd_idx = sector_div(stripe2, raid_disks-1); 3114 if (*dd_idx >= pd_idx) 3115 (*dd_idx)++; 3116 qd_idx = raid_disks - 1; 3117 break; 3118 3119 case ALGORITHM_LEFT_SYMMETRIC_6: 3120 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3121 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3122 qd_idx = raid_disks - 1; 3123 break; 3124 3125 case ALGORITHM_RIGHT_SYMMETRIC_6: 3126 pd_idx = sector_div(stripe2, raid_disks-1); 3127 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3128 qd_idx = raid_disks - 1; 3129 break; 3130 3131 case ALGORITHM_PARITY_0_6: 3132 pd_idx = 0; 3133 (*dd_idx)++; 3134 qd_idx = raid_disks - 1; 3135 break; 3136 3137 default: 3138 BUG(); 3139 } 3140 break; 3141 } 3142 3143 if (sh) { 3144 sh->pd_idx = pd_idx; 3145 sh->qd_idx = qd_idx; 3146 sh->ddf_layout = ddf_layout; 3147 } 3148 /* 3149 * Finally, compute the new sector number 3150 */ 3151 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3152 return new_sector; 3153 } 3154 raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3155 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3156 { 3157 struct r5conf *conf = sh->raid_conf; 3158 int raid_disks = sh->disks; 3159 int data_disks = raid_disks - conf->max_degraded; 3160 sector_t new_sector = sh->sector, check; 3161 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3162 : conf->chunk_sectors; 3163 int algorithm = previous ? conf->prev_algo 3164 : conf->algorithm; 3165 sector_t stripe; 3166 int chunk_offset; 3167 sector_t chunk_number; 3168 int dummy1, dd_idx = i; 3169 sector_t r_sector; 3170 struct stripe_head sh2; 3171 3172 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3173 stripe = new_sector; 3174 3175 if (i == sh->pd_idx) 3176 return 0; 3177 switch(conf->level) { 3178 case 4: break; 3179 case 5: 3180 switch (algorithm) { 3181 case ALGORITHM_LEFT_ASYMMETRIC: 3182 case ALGORITHM_RIGHT_ASYMMETRIC: 3183 if (i > sh->pd_idx) 3184 i--; 3185 break; 3186 case ALGORITHM_LEFT_SYMMETRIC: 3187 case ALGORITHM_RIGHT_SYMMETRIC: 3188 if (i < sh->pd_idx) 3189 i += raid_disks; 3190 i -= (sh->pd_idx + 1); 3191 break; 3192 case ALGORITHM_PARITY_0: 3193 i -= 1; 3194 break; 3195 case ALGORITHM_PARITY_N: 3196 break; 3197 default: 3198 BUG(); 3199 } 3200 break; 3201 case 6: 3202 if (i == sh->qd_idx) 3203 return 0; /* It is the Q disk */ 3204 switch (algorithm) { 3205 case ALGORITHM_LEFT_ASYMMETRIC: 3206 case ALGORITHM_RIGHT_ASYMMETRIC: 3207 case ALGORITHM_ROTATING_ZERO_RESTART: 3208 case ALGORITHM_ROTATING_N_RESTART: 3209 if (sh->pd_idx == raid_disks-1) 3210 i--; /* Q D D D P */ 3211 else if (i > sh->pd_idx) 3212 i -= 2; /* D D P Q D */ 3213 break; 3214 case ALGORITHM_LEFT_SYMMETRIC: 3215 case ALGORITHM_RIGHT_SYMMETRIC: 3216 if (sh->pd_idx == raid_disks-1) 3217 i--; /* Q D D D P */ 3218 else { 3219 /* D D P Q D */ 3220 if (i < sh->pd_idx) 3221 i += raid_disks; 3222 i -= (sh->pd_idx + 2); 3223 } 3224 break; 3225 case ALGORITHM_PARITY_0: 3226 i -= 2; 3227 break; 3228 case ALGORITHM_PARITY_N: 3229 break; 3230 case ALGORITHM_ROTATING_N_CONTINUE: 3231 /* Like left_symmetric, but P is before Q */ 3232 if (sh->pd_idx == 0) 3233 i--; /* P D D D Q */ 3234 else { 3235 /* D D Q P D */ 3236 if (i < sh->pd_idx) 3237 i += raid_disks; 3238 i -= (sh->pd_idx + 1); 3239 } 3240 break; 3241 case ALGORITHM_LEFT_ASYMMETRIC_6: 3242 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3243 if (i > sh->pd_idx) 3244 i--; 3245 break; 3246 case ALGORITHM_LEFT_SYMMETRIC_6: 3247 case ALGORITHM_RIGHT_SYMMETRIC_6: 3248 if (i < sh->pd_idx) 3249 i += data_disks + 1; 3250 i -= (sh->pd_idx + 1); 3251 break; 3252 case ALGORITHM_PARITY_0_6: 3253 i -= 1; 3254 break; 3255 default: 3256 BUG(); 3257 } 3258 break; 3259 } 3260 3261 chunk_number = stripe * data_disks + i; 3262 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3263 3264 check = raid5_compute_sector(conf, r_sector, 3265 previous, &dummy1, &sh2); 3266 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3267 || sh2.qd_idx != sh->qd_idx) { 3268 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3269 mdname(conf->mddev)); 3270 return 0; 3271 } 3272 return r_sector; 3273 } 3274 3275 /* 3276 * There are cases where we want handle_stripe_dirtying() and 3277 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3278 * 3279 * This function checks whether we want to delay the towrite. Specifically, 3280 * we delay the towrite when: 3281 * 3282 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3283 * stripe has data in journal (for other devices). 3284 * 3285 * In this case, when reading data for the non-overwrite dev, it is 3286 * necessary to handle complex rmw of write back cache (prexor with 3287 * orig_page, and xor with page). To keep read path simple, we would 3288 * like to flush data in journal to RAID disks first, so complex rmw 3289 * is handled in the write patch (handle_stripe_dirtying). 3290 * 3291 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3292 * 3293 * It is important to be able to flush all stripes in raid5-cache. 3294 * Therefore, we need reserve some space on the journal device for 3295 * these flushes. If flush operation includes pending writes to the 3296 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3297 * for the flush out. If we exclude these pending writes from flush 3298 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3299 * Therefore, excluding pending writes in these cases enables more 3300 * efficient use of the journal device. 3301 * 3302 * Note: To make sure the stripe makes progress, we only delay 3303 * towrite for stripes with data already in journal (injournal > 0). 3304 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3305 * no_space_stripes list. 3306 * 3307 * 3. during journal failure 3308 * In journal failure, we try to flush all cached data to raid disks 3309 * based on data in stripe cache. The array is read-only to upper 3310 * layers, so we would skip all pending writes. 3311 * 3312 */ delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3313 static inline bool delay_towrite(struct r5conf *conf, 3314 struct r5dev *dev, 3315 struct stripe_head_state *s) 3316 { 3317 /* case 1 above */ 3318 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3319 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3320 return true; 3321 /* case 2 above */ 3322 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3323 s->injournal > 0) 3324 return true; 3325 /* case 3 above */ 3326 if (s->log_failed && s->injournal) 3327 return true; 3328 return false; 3329 } 3330 3331 static void schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3332 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3333 int rcw, int expand) 3334 { 3335 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3336 struct r5conf *conf = sh->raid_conf; 3337 int level = conf->level; 3338 3339 if (rcw) { 3340 /* 3341 * In some cases, handle_stripe_dirtying initially decided to 3342 * run rmw and allocates extra page for prexor. However, rcw is 3343 * cheaper later on. We need to free the extra page now, 3344 * because we won't be able to do that in ops_complete_prexor(). 3345 */ 3346 r5c_release_extra_page(sh); 3347 3348 for (i = disks; i--; ) { 3349 struct r5dev *dev = &sh->dev[i]; 3350 3351 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3352 set_bit(R5_LOCKED, &dev->flags); 3353 set_bit(R5_Wantdrain, &dev->flags); 3354 if (!expand) 3355 clear_bit(R5_UPTODATE, &dev->flags); 3356 s->locked++; 3357 } else if (test_bit(R5_InJournal, &dev->flags)) { 3358 set_bit(R5_LOCKED, &dev->flags); 3359 s->locked++; 3360 } 3361 } 3362 /* if we are not expanding this is a proper write request, and 3363 * there will be bios with new data to be drained into the 3364 * stripe cache 3365 */ 3366 if (!expand) { 3367 if (!s->locked) 3368 /* False alarm, nothing to do */ 3369 return; 3370 sh->reconstruct_state = reconstruct_state_drain_run; 3371 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3372 } else 3373 sh->reconstruct_state = reconstruct_state_run; 3374 3375 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3376 3377 if (s->locked + conf->max_degraded == disks) 3378 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3379 atomic_inc(&conf->pending_full_writes); 3380 } else { 3381 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3382 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3383 BUG_ON(level == 6 && 3384 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3385 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3386 3387 for (i = disks; i--; ) { 3388 struct r5dev *dev = &sh->dev[i]; 3389 if (i == pd_idx || i == qd_idx) 3390 continue; 3391 3392 if (dev->towrite && 3393 (test_bit(R5_UPTODATE, &dev->flags) || 3394 test_bit(R5_Wantcompute, &dev->flags))) { 3395 set_bit(R5_Wantdrain, &dev->flags); 3396 set_bit(R5_LOCKED, &dev->flags); 3397 clear_bit(R5_UPTODATE, &dev->flags); 3398 s->locked++; 3399 } else if (test_bit(R5_InJournal, &dev->flags)) { 3400 set_bit(R5_LOCKED, &dev->flags); 3401 s->locked++; 3402 } 3403 } 3404 if (!s->locked) 3405 /* False alarm - nothing to do */ 3406 return; 3407 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3408 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3409 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3410 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3411 } 3412 3413 /* keep the parity disk(s) locked while asynchronous operations 3414 * are in flight 3415 */ 3416 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3417 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3418 s->locked++; 3419 3420 if (level == 6) { 3421 int qd_idx = sh->qd_idx; 3422 struct r5dev *dev = &sh->dev[qd_idx]; 3423 3424 set_bit(R5_LOCKED, &dev->flags); 3425 clear_bit(R5_UPTODATE, &dev->flags); 3426 s->locked++; 3427 } 3428 3429 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3430 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3431 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3432 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3433 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3434 3435 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3436 __func__, (unsigned long long)sh->sector, 3437 s->locked, s->ops_request); 3438 } 3439 stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3440 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3441 int dd_idx, int forwrite) 3442 { 3443 struct r5conf *conf = sh->raid_conf; 3444 struct bio **bip; 3445 3446 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3447 bi->bi_iter.bi_sector, sh->sector); 3448 3449 /* Don't allow new IO added to stripes in batch list */ 3450 if (sh->batch_head) 3451 return true; 3452 3453 if (forwrite) 3454 bip = &sh->dev[dd_idx].towrite; 3455 else 3456 bip = &sh->dev[dd_idx].toread; 3457 3458 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3459 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3460 return true; 3461 bip = &(*bip)->bi_next; 3462 } 3463 3464 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3465 return true; 3466 3467 if (forwrite && raid5_has_ppl(conf)) { 3468 /* 3469 * With PPL only writes to consecutive data chunks within a 3470 * stripe are allowed because for a single stripe_head we can 3471 * only have one PPL entry at a time, which describes one data 3472 * range. Not really an overlap, but R5_Overlap can be 3473 * used to handle this. 3474 */ 3475 sector_t sector; 3476 sector_t first = 0; 3477 sector_t last = 0; 3478 int count = 0; 3479 int i; 3480 3481 for (i = 0; i < sh->disks; i++) { 3482 if (i != sh->pd_idx && 3483 (i == dd_idx || sh->dev[i].towrite)) { 3484 sector = sh->dev[i].sector; 3485 if (count == 0 || sector < first) 3486 first = sector; 3487 if (sector > last) 3488 last = sector; 3489 count++; 3490 } 3491 } 3492 3493 if (first + conf->chunk_sectors * (count - 1) != last) 3494 return true; 3495 } 3496 3497 return false; 3498 } 3499 __add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3500 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3501 int dd_idx, int forwrite, int previous) 3502 { 3503 struct r5conf *conf = sh->raid_conf; 3504 struct bio **bip; 3505 int firstwrite = 0; 3506 3507 if (forwrite) { 3508 bip = &sh->dev[dd_idx].towrite; 3509 if (!*bip) 3510 firstwrite = 1; 3511 } else { 3512 bip = &sh->dev[dd_idx].toread; 3513 } 3514 3515 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3516 bip = &(*bip)->bi_next; 3517 3518 if (!forwrite || previous) 3519 clear_bit(STRIPE_BATCH_READY, &sh->state); 3520 3521 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3522 if (*bip) 3523 bi->bi_next = *bip; 3524 *bip = bi; 3525 bio_inc_remaining(bi); 3526 md_write_inc(conf->mddev, bi); 3527 3528 if (forwrite) { 3529 /* check if page is covered */ 3530 sector_t sector = sh->dev[dd_idx].sector; 3531 for (bi=sh->dev[dd_idx].towrite; 3532 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3533 bi && bi->bi_iter.bi_sector <= sector; 3534 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3535 if (bio_end_sector(bi) >= sector) 3536 sector = bio_end_sector(bi); 3537 } 3538 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3539 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3540 sh->overwrite_disks++; 3541 } 3542 3543 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3544 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3545 sh->dev[dd_idx].sector); 3546 3547 if (conf->mddev->bitmap && firstwrite && !sh->batch_head) { 3548 sh->bm_seq = conf->seq_flush+1; 3549 set_bit(STRIPE_BIT_DELAY, &sh->state); 3550 } 3551 } 3552 3553 /* 3554 * Each stripe/dev can have one or more bios attached. 3555 * toread/towrite point to the first in a chain. 3556 * The bi_next chain must be in order. 3557 */ add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3558 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3559 int dd_idx, int forwrite, int previous) 3560 { 3561 spin_lock_irq(&sh->stripe_lock); 3562 3563 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3564 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3565 spin_unlock_irq(&sh->stripe_lock); 3566 return false; 3567 } 3568 3569 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3570 spin_unlock_irq(&sh->stripe_lock); 3571 return true; 3572 } 3573 3574 static void end_reshape(struct r5conf *conf); 3575 stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3576 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3577 struct stripe_head *sh) 3578 { 3579 int sectors_per_chunk = 3580 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3581 int dd_idx; 3582 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3583 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3584 3585 raid5_compute_sector(conf, 3586 stripe * (disks - conf->max_degraded) 3587 *sectors_per_chunk + chunk_offset, 3588 previous, 3589 &dd_idx, sh); 3590 } 3591 3592 static void handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3593 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3594 struct stripe_head_state *s, int disks) 3595 { 3596 int i; 3597 BUG_ON(sh->batch_head); 3598 for (i = disks; i--; ) { 3599 struct bio *bi; 3600 3601 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3602 struct md_rdev *rdev = conf->disks[i].rdev; 3603 3604 if (rdev && test_bit(In_sync, &rdev->flags) && 3605 !test_bit(Faulty, &rdev->flags)) 3606 atomic_inc(&rdev->nr_pending); 3607 else 3608 rdev = NULL; 3609 if (rdev) { 3610 if (!rdev_set_badblocks( 3611 rdev, 3612 sh->sector, 3613 RAID5_STRIPE_SECTORS(conf), 0)) 3614 md_error(conf->mddev, rdev); 3615 rdev_dec_pending(rdev, conf->mddev); 3616 } 3617 } 3618 spin_lock_irq(&sh->stripe_lock); 3619 /* fail all writes first */ 3620 bi = sh->dev[i].towrite; 3621 sh->dev[i].towrite = NULL; 3622 sh->overwrite_disks = 0; 3623 spin_unlock_irq(&sh->stripe_lock); 3624 3625 log_stripe_write_finished(sh); 3626 3627 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3628 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 3629 3630 while (bi && bi->bi_iter.bi_sector < 3631 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3632 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3633 3634 md_write_end(conf->mddev); 3635 bio_io_error(bi); 3636 bi = nextbi; 3637 } 3638 /* and fail all 'written' */ 3639 bi = sh->dev[i].written; 3640 sh->dev[i].written = NULL; 3641 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3642 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3643 sh->dev[i].page = sh->dev[i].orig_page; 3644 } 3645 3646 while (bi && bi->bi_iter.bi_sector < 3647 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3648 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3649 3650 md_write_end(conf->mddev); 3651 bio_io_error(bi); 3652 bi = bi2; 3653 } 3654 3655 /* fail any reads if this device is non-operational and 3656 * the data has not reached the cache yet. 3657 */ 3658 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3659 s->failed > conf->max_degraded && 3660 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3661 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3662 spin_lock_irq(&sh->stripe_lock); 3663 bi = sh->dev[i].toread; 3664 sh->dev[i].toread = NULL; 3665 spin_unlock_irq(&sh->stripe_lock); 3666 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3667 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 3668 if (bi) 3669 s->to_read--; 3670 while (bi && bi->bi_iter.bi_sector < 3671 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3672 struct bio *nextbi = 3673 r5_next_bio(conf, bi, sh->dev[i].sector); 3674 3675 bio_io_error(bi); 3676 bi = nextbi; 3677 } 3678 } 3679 /* If we were in the middle of a write the parity block might 3680 * still be locked - so just clear all R5_LOCKED flags 3681 */ 3682 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3683 } 3684 s->to_write = 0; 3685 s->written = 0; 3686 3687 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3688 if (atomic_dec_and_test(&conf->pending_full_writes)) 3689 md_wakeup_thread(conf->mddev->thread); 3690 } 3691 3692 static void handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3693 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3694 struct stripe_head_state *s) 3695 { 3696 int abort = 0; 3697 int i; 3698 3699 BUG_ON(sh->batch_head); 3700 clear_bit(STRIPE_SYNCING, &sh->state); 3701 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3702 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap); 3703 s->syncing = 0; 3704 s->replacing = 0; 3705 /* There is nothing more to do for sync/check/repair. 3706 * Don't even need to abort as that is handled elsewhere 3707 * if needed, and not always wanted e.g. if there is a known 3708 * bad block here. 3709 * For recover/replace we need to record a bad block on all 3710 * non-sync devices, or abort the recovery 3711 */ 3712 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3713 /* During recovery devices cannot be removed, so 3714 * locking and refcounting of rdevs is not needed 3715 */ 3716 for (i = 0; i < conf->raid_disks; i++) { 3717 struct md_rdev *rdev = conf->disks[i].rdev; 3718 3719 if (rdev 3720 && !test_bit(Faulty, &rdev->flags) 3721 && !test_bit(In_sync, &rdev->flags) 3722 && !rdev_set_badblocks(rdev, sh->sector, 3723 RAID5_STRIPE_SECTORS(conf), 0)) 3724 abort = 1; 3725 rdev = conf->disks[i].replacement; 3726 3727 if (rdev 3728 && !test_bit(Faulty, &rdev->flags) 3729 && !test_bit(In_sync, &rdev->flags) 3730 && !rdev_set_badblocks(rdev, sh->sector, 3731 RAID5_STRIPE_SECTORS(conf), 0)) 3732 abort = 1; 3733 } 3734 if (abort) 3735 conf->recovery_disabled = 3736 conf->mddev->recovery_disabled; 3737 } 3738 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3739 } 3740 want_replace(struct stripe_head * sh,int disk_idx)3741 static int want_replace(struct stripe_head *sh, int disk_idx) 3742 { 3743 struct md_rdev *rdev; 3744 int rv = 0; 3745 3746 rdev = sh->raid_conf->disks[disk_idx].replacement; 3747 if (rdev 3748 && !test_bit(Faulty, &rdev->flags) 3749 && !test_bit(In_sync, &rdev->flags) 3750 && (rdev->recovery_offset <= sh->sector 3751 || rdev->mddev->recovery_cp <= sh->sector)) 3752 rv = 1; 3753 return rv; 3754 } 3755 need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3756 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3757 int disk_idx, int disks) 3758 { 3759 struct r5dev *dev = &sh->dev[disk_idx]; 3760 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3761 &sh->dev[s->failed_num[1]] }; 3762 int i; 3763 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3764 3765 3766 if (test_bit(R5_LOCKED, &dev->flags) || 3767 test_bit(R5_UPTODATE, &dev->flags)) 3768 /* No point reading this as we already have it or have 3769 * decided to get it. 3770 */ 3771 return 0; 3772 3773 if (dev->toread || 3774 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3775 /* We need this block to directly satisfy a request */ 3776 return 1; 3777 3778 if (s->syncing || s->expanding || 3779 (s->replacing && want_replace(sh, disk_idx))) 3780 /* When syncing, or expanding we read everything. 3781 * When replacing, we need the replaced block. 3782 */ 3783 return 1; 3784 3785 if ((s->failed >= 1 && fdev[0]->toread) || 3786 (s->failed >= 2 && fdev[1]->toread)) 3787 /* If we want to read from a failed device, then 3788 * we need to actually read every other device. 3789 */ 3790 return 1; 3791 3792 /* Sometimes neither read-modify-write nor reconstruct-write 3793 * cycles can work. In those cases we read every block we 3794 * can. Then the parity-update is certain to have enough to 3795 * work with. 3796 * This can only be a problem when we need to write something, 3797 * and some device has failed. If either of those tests 3798 * fail we need look no further. 3799 */ 3800 if (!s->failed || !s->to_write) 3801 return 0; 3802 3803 if (test_bit(R5_Insync, &dev->flags) && 3804 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3805 /* Pre-reads at not permitted until after short delay 3806 * to gather multiple requests. However if this 3807 * device is no Insync, the block could only be computed 3808 * and there is no need to delay that. 3809 */ 3810 return 0; 3811 3812 for (i = 0; i < s->failed && i < 2; i++) { 3813 if (fdev[i]->towrite && 3814 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3815 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3816 /* If we have a partial write to a failed 3817 * device, then we will need to reconstruct 3818 * the content of that device, so all other 3819 * devices must be read. 3820 */ 3821 return 1; 3822 3823 if (s->failed >= 2 && 3824 (fdev[i]->towrite || 3825 s->failed_num[i] == sh->pd_idx || 3826 s->failed_num[i] == sh->qd_idx) && 3827 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3828 /* In max degraded raid6, If the failed disk is P, Q, 3829 * or we want to read the failed disk, we need to do 3830 * reconstruct-write. 3831 */ 3832 force_rcw = true; 3833 } 3834 3835 /* If we are forced to do a reconstruct-write, because parity 3836 * cannot be trusted and we are currently recovering it, there 3837 * is extra need to be careful. 3838 * If one of the devices that we would need to read, because 3839 * it is not being overwritten (and maybe not written at all) 3840 * is missing/faulty, then we need to read everything we can. 3841 */ 3842 if (!force_rcw && 3843 sh->sector < sh->raid_conf->mddev->recovery_cp) 3844 /* reconstruct-write isn't being forced */ 3845 return 0; 3846 for (i = 0; i < s->failed && i < 2; i++) { 3847 if (s->failed_num[i] != sh->pd_idx && 3848 s->failed_num[i] != sh->qd_idx && 3849 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3850 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3851 return 1; 3852 } 3853 3854 return 0; 3855 } 3856 3857 /* fetch_block - checks the given member device to see if its data needs 3858 * to be read or computed to satisfy a request. 3859 * 3860 * Returns 1 when no more member devices need to be checked, otherwise returns 3861 * 0 to tell the loop in handle_stripe_fill to continue 3862 */ fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3863 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3864 int disk_idx, int disks) 3865 { 3866 struct r5dev *dev = &sh->dev[disk_idx]; 3867 3868 /* is the data in this block needed, and can we get it? */ 3869 if (need_this_block(sh, s, disk_idx, disks)) { 3870 /* we would like to get this block, possibly by computing it, 3871 * otherwise read it if the backing disk is insync 3872 */ 3873 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3874 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3875 BUG_ON(sh->batch_head); 3876 3877 /* 3878 * In the raid6 case if the only non-uptodate disk is P 3879 * then we already trusted P to compute the other failed 3880 * drives. It is safe to compute rather than re-read P. 3881 * In other cases we only compute blocks from failed 3882 * devices, otherwise check/repair might fail to detect 3883 * a real inconsistency. 3884 */ 3885 3886 if ((s->uptodate == disks - 1) && 3887 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3888 (s->failed && (disk_idx == s->failed_num[0] || 3889 disk_idx == s->failed_num[1])))) { 3890 /* have disk failed, and we're requested to fetch it; 3891 * do compute it 3892 */ 3893 pr_debug("Computing stripe %llu block %d\n", 3894 (unsigned long long)sh->sector, disk_idx); 3895 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3896 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3897 set_bit(R5_Wantcompute, &dev->flags); 3898 sh->ops.target = disk_idx; 3899 sh->ops.target2 = -1; /* no 2nd target */ 3900 s->req_compute = 1; 3901 /* Careful: from this point on 'uptodate' is in the eye 3902 * of raid_run_ops which services 'compute' operations 3903 * before writes. R5_Wantcompute flags a block that will 3904 * be R5_UPTODATE by the time it is needed for a 3905 * subsequent operation. 3906 */ 3907 s->uptodate++; 3908 return 1; 3909 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3910 /* Computing 2-failure is *very* expensive; only 3911 * do it if failed >= 2 3912 */ 3913 int other; 3914 for (other = disks; other--; ) { 3915 if (other == disk_idx) 3916 continue; 3917 if (!test_bit(R5_UPTODATE, 3918 &sh->dev[other].flags)) 3919 break; 3920 } 3921 BUG_ON(other < 0); 3922 pr_debug("Computing stripe %llu blocks %d,%d\n", 3923 (unsigned long long)sh->sector, 3924 disk_idx, other); 3925 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3926 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3927 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3928 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3929 sh->ops.target = disk_idx; 3930 sh->ops.target2 = other; 3931 s->uptodate += 2; 3932 s->req_compute = 1; 3933 return 1; 3934 } else if (test_bit(R5_Insync, &dev->flags)) { 3935 set_bit(R5_LOCKED, &dev->flags); 3936 set_bit(R5_Wantread, &dev->flags); 3937 s->locked++; 3938 pr_debug("Reading block %d (sync=%d)\n", 3939 disk_idx, s->syncing); 3940 } 3941 } 3942 3943 return 0; 3944 } 3945 3946 /* 3947 * handle_stripe_fill - read or compute data to satisfy pending requests. 3948 */ handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3949 static void handle_stripe_fill(struct stripe_head *sh, 3950 struct stripe_head_state *s, 3951 int disks) 3952 { 3953 int i; 3954 3955 /* look for blocks to read/compute, skip this if a compute 3956 * is already in flight, or if the stripe contents are in the 3957 * midst of changing due to a write 3958 */ 3959 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3960 !sh->reconstruct_state) { 3961 3962 /* 3963 * For degraded stripe with data in journal, do not handle 3964 * read requests yet, instead, flush the stripe to raid 3965 * disks first, this avoids handling complex rmw of write 3966 * back cache (prexor with orig_page, and then xor with 3967 * page) in the read path 3968 */ 3969 if (s->to_read && s->injournal && s->failed) { 3970 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3971 r5c_make_stripe_write_out(sh); 3972 goto out; 3973 } 3974 3975 for (i = disks; i--; ) 3976 if (fetch_block(sh, s, i, disks)) 3977 break; 3978 } 3979 out: 3980 set_bit(STRIPE_HANDLE, &sh->state); 3981 } 3982 3983 static void break_stripe_batch_list(struct stripe_head *head_sh, 3984 unsigned long handle_flags); 3985 /* handle_stripe_clean_event 3986 * any written block on an uptodate or failed drive can be returned. 3987 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3988 * never LOCKED, so we don't need to test 'failed' directly. 3989 */ handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)3990 static void handle_stripe_clean_event(struct r5conf *conf, 3991 struct stripe_head *sh, int disks) 3992 { 3993 int i; 3994 struct r5dev *dev; 3995 int discard_pending = 0; 3996 struct stripe_head *head_sh = sh; 3997 bool do_endio = false; 3998 3999 for (i = disks; i--; ) 4000 if (sh->dev[i].written) { 4001 dev = &sh->dev[i]; 4002 if (!test_bit(R5_LOCKED, &dev->flags) && 4003 (test_bit(R5_UPTODATE, &dev->flags) || 4004 test_bit(R5_Discard, &dev->flags) || 4005 test_bit(R5_SkipCopy, &dev->flags))) { 4006 /* We can return any write requests */ 4007 struct bio *wbi, *wbi2; 4008 pr_debug("Return write for disc %d\n", i); 4009 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4010 clear_bit(R5_UPTODATE, &dev->flags); 4011 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4012 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4013 } 4014 do_endio = true; 4015 4016 returnbi: 4017 dev->page = dev->orig_page; 4018 wbi = dev->written; 4019 dev->written = NULL; 4020 while (wbi && wbi->bi_iter.bi_sector < 4021 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4022 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4023 md_write_end(conf->mddev); 4024 bio_endio(wbi); 4025 wbi = wbi2; 4026 } 4027 4028 if (head_sh->batch_head) { 4029 sh = list_first_entry(&sh->batch_list, 4030 struct stripe_head, 4031 batch_list); 4032 if (sh != head_sh) { 4033 dev = &sh->dev[i]; 4034 goto returnbi; 4035 } 4036 } 4037 sh = head_sh; 4038 dev = &sh->dev[i]; 4039 } else if (test_bit(R5_Discard, &dev->flags)) 4040 discard_pending = 1; 4041 } 4042 4043 log_stripe_write_finished(sh); 4044 4045 if (!discard_pending && 4046 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4047 int hash; 4048 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4049 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4050 if (sh->qd_idx >= 0) { 4051 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4052 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4053 } 4054 /* now that discard is done we can proceed with any sync */ 4055 clear_bit(STRIPE_DISCARD, &sh->state); 4056 /* 4057 * SCSI discard will change some bio fields and the stripe has 4058 * no updated data, so remove it from hash list and the stripe 4059 * will be reinitialized 4060 */ 4061 unhash: 4062 hash = sh->hash_lock_index; 4063 spin_lock_irq(conf->hash_locks + hash); 4064 remove_hash(sh); 4065 spin_unlock_irq(conf->hash_locks + hash); 4066 if (head_sh->batch_head) { 4067 sh = list_first_entry(&sh->batch_list, 4068 struct stripe_head, batch_list); 4069 if (sh != head_sh) 4070 goto unhash; 4071 } 4072 sh = head_sh; 4073 4074 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4075 set_bit(STRIPE_HANDLE, &sh->state); 4076 4077 } 4078 4079 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4080 if (atomic_dec_and_test(&conf->pending_full_writes)) 4081 md_wakeup_thread(conf->mddev->thread); 4082 4083 if (head_sh->batch_head && do_endio) 4084 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4085 } 4086 4087 /* 4088 * For RMW in write back cache, we need extra page in prexor to store the 4089 * old data. This page is stored in dev->orig_page. 4090 * 4091 * This function checks whether we have data for prexor. The exact logic 4092 * is: 4093 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4094 */ uptodate_for_rmw(struct r5dev * dev)4095 static inline bool uptodate_for_rmw(struct r5dev *dev) 4096 { 4097 return (test_bit(R5_UPTODATE, &dev->flags)) && 4098 (!test_bit(R5_InJournal, &dev->flags) || 4099 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4100 } 4101 handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4102 static int handle_stripe_dirtying(struct r5conf *conf, 4103 struct stripe_head *sh, 4104 struct stripe_head_state *s, 4105 int disks) 4106 { 4107 int rmw = 0, rcw = 0, i; 4108 sector_t recovery_cp = conf->mddev->recovery_cp; 4109 4110 /* Check whether resync is now happening or should start. 4111 * If yes, then the array is dirty (after unclean shutdown or 4112 * initial creation), so parity in some stripes might be inconsistent. 4113 * In this case, we need to always do reconstruct-write, to ensure 4114 * that in case of drive failure or read-error correction, we 4115 * generate correct data from the parity. 4116 */ 4117 if (conf->rmw_level == PARITY_DISABLE_RMW || 4118 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4119 s->failed == 0)) { 4120 /* Calculate the real rcw later - for now make it 4121 * look like rcw is cheaper 4122 */ 4123 rcw = 1; rmw = 2; 4124 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4125 conf->rmw_level, (unsigned long long)recovery_cp, 4126 (unsigned long long)sh->sector); 4127 } else for (i = disks; i--; ) { 4128 /* would I have to read this buffer for read_modify_write */ 4129 struct r5dev *dev = &sh->dev[i]; 4130 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4131 i == sh->pd_idx || i == sh->qd_idx || 4132 test_bit(R5_InJournal, &dev->flags)) && 4133 !test_bit(R5_LOCKED, &dev->flags) && 4134 !(uptodate_for_rmw(dev) || 4135 test_bit(R5_Wantcompute, &dev->flags))) { 4136 if (test_bit(R5_Insync, &dev->flags)) 4137 rmw++; 4138 else 4139 rmw += 2*disks; /* cannot read it */ 4140 } 4141 /* Would I have to read this buffer for reconstruct_write */ 4142 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4143 i != sh->pd_idx && i != sh->qd_idx && 4144 !test_bit(R5_LOCKED, &dev->flags) && 4145 !(test_bit(R5_UPTODATE, &dev->flags) || 4146 test_bit(R5_Wantcompute, &dev->flags))) { 4147 if (test_bit(R5_Insync, &dev->flags)) 4148 rcw++; 4149 else 4150 rcw += 2*disks; 4151 } 4152 } 4153 4154 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4155 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4156 set_bit(STRIPE_HANDLE, &sh->state); 4157 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4158 /* prefer read-modify-write, but need to get some data */ 4159 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d", 4160 sh->sector, rmw); 4161 4162 for (i = disks; i--; ) { 4163 struct r5dev *dev = &sh->dev[i]; 4164 if (test_bit(R5_InJournal, &dev->flags) && 4165 dev->page == dev->orig_page && 4166 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4167 /* alloc page for prexor */ 4168 struct page *p = alloc_page(GFP_NOIO); 4169 4170 if (p) { 4171 dev->orig_page = p; 4172 continue; 4173 } 4174 4175 /* 4176 * alloc_page() failed, try use 4177 * disk_info->extra_page 4178 */ 4179 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4180 &conf->cache_state)) { 4181 r5c_use_extra_page(sh); 4182 break; 4183 } 4184 4185 /* extra_page in use, add to delayed_list */ 4186 set_bit(STRIPE_DELAYED, &sh->state); 4187 s->waiting_extra_page = 1; 4188 return -EAGAIN; 4189 } 4190 } 4191 4192 for (i = disks; i--; ) { 4193 struct r5dev *dev = &sh->dev[i]; 4194 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4195 i == sh->pd_idx || i == sh->qd_idx || 4196 test_bit(R5_InJournal, &dev->flags)) && 4197 !test_bit(R5_LOCKED, &dev->flags) && 4198 !(uptodate_for_rmw(dev) || 4199 test_bit(R5_Wantcompute, &dev->flags)) && 4200 test_bit(R5_Insync, &dev->flags)) { 4201 if (test_bit(STRIPE_PREREAD_ACTIVE, 4202 &sh->state)) { 4203 pr_debug("Read_old block %d for r-m-w\n", 4204 i); 4205 set_bit(R5_LOCKED, &dev->flags); 4206 set_bit(R5_Wantread, &dev->flags); 4207 s->locked++; 4208 } else 4209 set_bit(STRIPE_DELAYED, &sh->state); 4210 } 4211 } 4212 } 4213 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4214 /* want reconstruct write, but need to get some data */ 4215 int qread =0; 4216 rcw = 0; 4217 for (i = disks; i--; ) { 4218 struct r5dev *dev = &sh->dev[i]; 4219 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4220 i != sh->pd_idx && i != sh->qd_idx && 4221 !test_bit(R5_LOCKED, &dev->flags) && 4222 !(test_bit(R5_UPTODATE, &dev->flags) || 4223 test_bit(R5_Wantcompute, &dev->flags))) { 4224 rcw++; 4225 if (test_bit(R5_Insync, &dev->flags) && 4226 test_bit(STRIPE_PREREAD_ACTIVE, 4227 &sh->state)) { 4228 pr_debug("Read_old block " 4229 "%d for Reconstruct\n", i); 4230 set_bit(R5_LOCKED, &dev->flags); 4231 set_bit(R5_Wantread, &dev->flags); 4232 s->locked++; 4233 qread++; 4234 } else 4235 set_bit(STRIPE_DELAYED, &sh->state); 4236 } 4237 } 4238 if (rcw && !mddev_is_dm(conf->mddev)) 4239 blk_add_trace_msg(conf->mddev->gendisk->queue, 4240 "raid5 rcw %llu %d %d %d", 4241 (unsigned long long)sh->sector, rcw, qread, 4242 test_bit(STRIPE_DELAYED, &sh->state)); 4243 } 4244 4245 if (rcw > disks && rmw > disks && 4246 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4247 set_bit(STRIPE_DELAYED, &sh->state); 4248 4249 /* now if nothing is locked, and if we have enough data, 4250 * we can start a write request 4251 */ 4252 /* since handle_stripe can be called at any time we need to handle the 4253 * case where a compute block operation has been submitted and then a 4254 * subsequent call wants to start a write request. raid_run_ops only 4255 * handles the case where compute block and reconstruct are requested 4256 * simultaneously. If this is not the case then new writes need to be 4257 * held off until the compute completes. 4258 */ 4259 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4260 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4261 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4262 schedule_reconstruction(sh, s, rcw == 0, 0); 4263 return 0; 4264 } 4265 handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4266 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4267 struct stripe_head_state *s, int disks) 4268 { 4269 struct r5dev *dev = NULL; 4270 4271 BUG_ON(sh->batch_head); 4272 set_bit(STRIPE_HANDLE, &sh->state); 4273 4274 switch (sh->check_state) { 4275 case check_state_idle: 4276 /* start a new check operation if there are no failures */ 4277 if (s->failed == 0) { 4278 BUG_ON(s->uptodate != disks); 4279 sh->check_state = check_state_run; 4280 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4281 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4282 s->uptodate--; 4283 break; 4284 } 4285 dev = &sh->dev[s->failed_num[0]]; 4286 fallthrough; 4287 case check_state_compute_result: 4288 sh->check_state = check_state_idle; 4289 if (!dev) 4290 dev = &sh->dev[sh->pd_idx]; 4291 4292 /* check that a write has not made the stripe insync */ 4293 if (test_bit(STRIPE_INSYNC, &sh->state)) 4294 break; 4295 4296 /* either failed parity check, or recovery is happening */ 4297 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4298 BUG_ON(s->uptodate != disks); 4299 4300 set_bit(R5_LOCKED, &dev->flags); 4301 s->locked++; 4302 set_bit(R5_Wantwrite, &dev->flags); 4303 4304 set_bit(STRIPE_INSYNC, &sh->state); 4305 break; 4306 case check_state_run: 4307 break; /* we will be called again upon completion */ 4308 case check_state_check_result: 4309 sh->check_state = check_state_idle; 4310 4311 /* if a failure occurred during the check operation, leave 4312 * STRIPE_INSYNC not set and let the stripe be handled again 4313 */ 4314 if (s->failed) 4315 break; 4316 4317 /* handle a successful check operation, if parity is correct 4318 * we are done. Otherwise update the mismatch count and repair 4319 * parity if !MD_RECOVERY_CHECK 4320 */ 4321 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4322 /* parity is correct (on disc, 4323 * not in buffer any more) 4324 */ 4325 set_bit(STRIPE_INSYNC, &sh->state); 4326 else { 4327 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4328 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4329 /* don't try to repair!! */ 4330 set_bit(STRIPE_INSYNC, &sh->state); 4331 pr_warn_ratelimited("%s: mismatch sector in range " 4332 "%llu-%llu\n", mdname(conf->mddev), 4333 (unsigned long long) sh->sector, 4334 (unsigned long long) sh->sector + 4335 RAID5_STRIPE_SECTORS(conf)); 4336 } else { 4337 sh->check_state = check_state_compute_run; 4338 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4339 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4340 set_bit(R5_Wantcompute, 4341 &sh->dev[sh->pd_idx].flags); 4342 sh->ops.target = sh->pd_idx; 4343 sh->ops.target2 = -1; 4344 s->uptodate++; 4345 } 4346 } 4347 break; 4348 case check_state_compute_run: 4349 break; 4350 default: 4351 pr_err("%s: unknown check_state: %d sector: %llu\n", 4352 __func__, sh->check_state, 4353 (unsigned long long) sh->sector); 4354 BUG(); 4355 } 4356 } 4357 handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4358 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4359 struct stripe_head_state *s, 4360 int disks) 4361 { 4362 int pd_idx = sh->pd_idx; 4363 int qd_idx = sh->qd_idx; 4364 struct r5dev *dev; 4365 4366 BUG_ON(sh->batch_head); 4367 set_bit(STRIPE_HANDLE, &sh->state); 4368 4369 BUG_ON(s->failed > 2); 4370 4371 /* Want to check and possibly repair P and Q. 4372 * However there could be one 'failed' device, in which 4373 * case we can only check one of them, possibly using the 4374 * other to generate missing data 4375 */ 4376 4377 switch (sh->check_state) { 4378 case check_state_idle: 4379 /* start a new check operation if there are < 2 failures */ 4380 if (s->failed == s->q_failed) { 4381 /* The only possible failed device holds Q, so it 4382 * makes sense to check P (If anything else were failed, 4383 * we would have used P to recreate it). 4384 */ 4385 sh->check_state = check_state_run; 4386 } 4387 if (!s->q_failed && s->failed < 2) { 4388 /* Q is not failed, and we didn't use it to generate 4389 * anything, so it makes sense to check it 4390 */ 4391 if (sh->check_state == check_state_run) 4392 sh->check_state = check_state_run_pq; 4393 else 4394 sh->check_state = check_state_run_q; 4395 } 4396 4397 /* discard potentially stale zero_sum_result */ 4398 sh->ops.zero_sum_result = 0; 4399 4400 if (sh->check_state == check_state_run) { 4401 /* async_xor_zero_sum destroys the contents of P */ 4402 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4403 s->uptodate--; 4404 } 4405 if (sh->check_state >= check_state_run && 4406 sh->check_state <= check_state_run_pq) { 4407 /* async_syndrome_zero_sum preserves P and Q, so 4408 * no need to mark them !uptodate here 4409 */ 4410 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4411 break; 4412 } 4413 4414 /* we have 2-disk failure */ 4415 BUG_ON(s->failed != 2); 4416 fallthrough; 4417 case check_state_compute_result: 4418 sh->check_state = check_state_idle; 4419 4420 /* check that a write has not made the stripe insync */ 4421 if (test_bit(STRIPE_INSYNC, &sh->state)) 4422 break; 4423 4424 /* now write out any block on a failed drive, 4425 * or P or Q if they were recomputed 4426 */ 4427 dev = NULL; 4428 if (s->failed == 2) { 4429 dev = &sh->dev[s->failed_num[1]]; 4430 s->locked++; 4431 set_bit(R5_LOCKED, &dev->flags); 4432 set_bit(R5_Wantwrite, &dev->flags); 4433 } 4434 if (s->failed >= 1) { 4435 dev = &sh->dev[s->failed_num[0]]; 4436 s->locked++; 4437 set_bit(R5_LOCKED, &dev->flags); 4438 set_bit(R5_Wantwrite, &dev->flags); 4439 } 4440 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4441 dev = &sh->dev[pd_idx]; 4442 s->locked++; 4443 set_bit(R5_LOCKED, &dev->flags); 4444 set_bit(R5_Wantwrite, &dev->flags); 4445 } 4446 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4447 dev = &sh->dev[qd_idx]; 4448 s->locked++; 4449 set_bit(R5_LOCKED, &dev->flags); 4450 set_bit(R5_Wantwrite, &dev->flags); 4451 } 4452 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4453 "%s: disk%td not up to date\n", 4454 mdname(conf->mddev), 4455 dev - (struct r5dev *) &sh->dev)) { 4456 clear_bit(R5_LOCKED, &dev->flags); 4457 clear_bit(R5_Wantwrite, &dev->flags); 4458 s->locked--; 4459 } 4460 4461 set_bit(STRIPE_INSYNC, &sh->state); 4462 break; 4463 case check_state_run: 4464 case check_state_run_q: 4465 case check_state_run_pq: 4466 break; /* we will be called again upon completion */ 4467 case check_state_check_result: 4468 sh->check_state = check_state_idle; 4469 4470 /* handle a successful check operation, if parity is correct 4471 * we are done. Otherwise update the mismatch count and repair 4472 * parity if !MD_RECOVERY_CHECK 4473 */ 4474 if (sh->ops.zero_sum_result == 0) { 4475 /* both parities are correct */ 4476 if (!s->failed) 4477 set_bit(STRIPE_INSYNC, &sh->state); 4478 else { 4479 /* in contrast to the raid5 case we can validate 4480 * parity, but still have a failure to write 4481 * back 4482 */ 4483 sh->check_state = check_state_compute_result; 4484 /* Returning at this point means that we may go 4485 * off and bring p and/or q uptodate again so 4486 * we make sure to check zero_sum_result again 4487 * to verify if p or q need writeback 4488 */ 4489 } 4490 } else { 4491 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4492 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4493 /* don't try to repair!! */ 4494 set_bit(STRIPE_INSYNC, &sh->state); 4495 pr_warn_ratelimited("%s: mismatch sector in range " 4496 "%llu-%llu\n", mdname(conf->mddev), 4497 (unsigned long long) sh->sector, 4498 (unsigned long long) sh->sector + 4499 RAID5_STRIPE_SECTORS(conf)); 4500 } else { 4501 int *target = &sh->ops.target; 4502 4503 sh->ops.target = -1; 4504 sh->ops.target2 = -1; 4505 sh->check_state = check_state_compute_run; 4506 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4507 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4508 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4509 set_bit(R5_Wantcompute, 4510 &sh->dev[pd_idx].flags); 4511 *target = pd_idx; 4512 target = &sh->ops.target2; 4513 s->uptodate++; 4514 } 4515 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4516 set_bit(R5_Wantcompute, 4517 &sh->dev[qd_idx].flags); 4518 *target = qd_idx; 4519 s->uptodate++; 4520 } 4521 } 4522 } 4523 break; 4524 case check_state_compute_run: 4525 break; 4526 default: 4527 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4528 __func__, sh->check_state, 4529 (unsigned long long) sh->sector); 4530 BUG(); 4531 } 4532 } 4533 handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4534 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4535 { 4536 int i; 4537 4538 /* We have read all the blocks in this stripe and now we need to 4539 * copy some of them into a target stripe for expand. 4540 */ 4541 struct dma_async_tx_descriptor *tx = NULL; 4542 BUG_ON(sh->batch_head); 4543 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4544 for (i = 0; i < sh->disks; i++) 4545 if (i != sh->pd_idx && i != sh->qd_idx) { 4546 int dd_idx, j; 4547 struct stripe_head *sh2; 4548 struct async_submit_ctl submit; 4549 4550 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4551 sector_t s = raid5_compute_sector(conf, bn, 0, 4552 &dd_idx, NULL); 4553 sh2 = raid5_get_active_stripe(conf, NULL, s, 4554 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4555 if (sh2 == NULL) 4556 /* so far only the early blocks of this stripe 4557 * have been requested. When later blocks 4558 * get requested, we will try again 4559 */ 4560 continue; 4561 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4562 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4563 /* must have already done this block */ 4564 raid5_release_stripe(sh2); 4565 continue; 4566 } 4567 4568 /* place all the copies on one channel */ 4569 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4570 tx = async_memcpy(sh2->dev[dd_idx].page, 4571 sh->dev[i].page, sh2->dev[dd_idx].offset, 4572 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4573 &submit); 4574 4575 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4576 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4577 for (j = 0; j < conf->raid_disks; j++) 4578 if (j != sh2->pd_idx && 4579 j != sh2->qd_idx && 4580 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4581 break; 4582 if (j == conf->raid_disks) { 4583 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4584 set_bit(STRIPE_HANDLE, &sh2->state); 4585 } 4586 raid5_release_stripe(sh2); 4587 4588 } 4589 /* done submitting copies, wait for them to complete */ 4590 async_tx_quiesce(&tx); 4591 } 4592 4593 /* 4594 * handle_stripe - do things to a stripe. 4595 * 4596 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4597 * state of various bits to see what needs to be done. 4598 * Possible results: 4599 * return some read requests which now have data 4600 * return some write requests which are safely on storage 4601 * schedule a read on some buffers 4602 * schedule a write of some buffers 4603 * return confirmation of parity correctness 4604 * 4605 */ 4606 analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4607 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4608 { 4609 struct r5conf *conf = sh->raid_conf; 4610 int disks = sh->disks; 4611 struct r5dev *dev; 4612 int i; 4613 int do_recovery = 0; 4614 4615 memset(s, 0, sizeof(*s)); 4616 4617 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4618 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4619 s->failed_num[0] = -1; 4620 s->failed_num[1] = -1; 4621 s->log_failed = r5l_log_disk_error(conf); 4622 4623 /* Now to look around and see what can be done */ 4624 for (i=disks; i--; ) { 4625 struct md_rdev *rdev; 4626 int is_bad = 0; 4627 4628 dev = &sh->dev[i]; 4629 4630 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4631 i, dev->flags, 4632 dev->toread, dev->towrite, dev->written); 4633 /* maybe we can reply to a read 4634 * 4635 * new wantfill requests are only permitted while 4636 * ops_complete_biofill is guaranteed to be inactive 4637 */ 4638 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4639 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4640 set_bit(R5_Wantfill, &dev->flags); 4641 4642 /* now count some things */ 4643 if (test_bit(R5_LOCKED, &dev->flags)) 4644 s->locked++; 4645 if (test_bit(R5_UPTODATE, &dev->flags)) 4646 s->uptodate++; 4647 if (test_bit(R5_Wantcompute, &dev->flags)) { 4648 s->compute++; 4649 BUG_ON(s->compute > 2); 4650 } 4651 4652 if (test_bit(R5_Wantfill, &dev->flags)) 4653 s->to_fill++; 4654 else if (dev->toread) 4655 s->to_read++; 4656 if (dev->towrite) { 4657 s->to_write++; 4658 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4659 s->non_overwrite++; 4660 } 4661 if (dev->written) 4662 s->written++; 4663 /* Prefer to use the replacement for reads, but only 4664 * if it is recovered enough and has no bad blocks. 4665 */ 4666 rdev = conf->disks[i].replacement; 4667 if (rdev && !test_bit(Faulty, &rdev->flags) && 4668 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4669 !rdev_has_badblock(rdev, sh->sector, 4670 RAID5_STRIPE_SECTORS(conf))) 4671 set_bit(R5_ReadRepl, &dev->flags); 4672 else { 4673 if (rdev && !test_bit(Faulty, &rdev->flags)) 4674 set_bit(R5_NeedReplace, &dev->flags); 4675 else 4676 clear_bit(R5_NeedReplace, &dev->flags); 4677 rdev = conf->disks[i].rdev; 4678 clear_bit(R5_ReadRepl, &dev->flags); 4679 } 4680 if (rdev && test_bit(Faulty, &rdev->flags)) 4681 rdev = NULL; 4682 if (rdev) { 4683 is_bad = rdev_has_badblock(rdev, sh->sector, 4684 RAID5_STRIPE_SECTORS(conf)); 4685 if (s->blocked_rdev == NULL) { 4686 if (is_bad < 0) 4687 set_bit(BlockedBadBlocks, &rdev->flags); 4688 if (rdev_blocked(rdev)) { 4689 s->blocked_rdev = rdev; 4690 atomic_inc(&rdev->nr_pending); 4691 } 4692 } 4693 } 4694 clear_bit(R5_Insync, &dev->flags); 4695 if (!rdev) 4696 /* Not in-sync */; 4697 else if (is_bad) { 4698 /* also not in-sync */ 4699 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4700 test_bit(R5_UPTODATE, &dev->flags)) { 4701 /* treat as in-sync, but with a read error 4702 * which we can now try to correct 4703 */ 4704 set_bit(R5_Insync, &dev->flags); 4705 set_bit(R5_ReadError, &dev->flags); 4706 } 4707 } else if (test_bit(In_sync, &rdev->flags)) 4708 set_bit(R5_Insync, &dev->flags); 4709 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4710 /* in sync if before recovery_offset */ 4711 set_bit(R5_Insync, &dev->flags); 4712 else if (test_bit(R5_UPTODATE, &dev->flags) && 4713 test_bit(R5_Expanded, &dev->flags)) 4714 /* If we've reshaped into here, we assume it is Insync. 4715 * We will shortly update recovery_offset to make 4716 * it official. 4717 */ 4718 set_bit(R5_Insync, &dev->flags); 4719 4720 if (test_bit(R5_WriteError, &dev->flags)) { 4721 /* This flag does not apply to '.replacement' 4722 * only to .rdev, so make sure to check that*/ 4723 struct md_rdev *rdev2 = conf->disks[i].rdev; 4724 4725 if (rdev2 == rdev) 4726 clear_bit(R5_Insync, &dev->flags); 4727 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4728 s->handle_bad_blocks = 1; 4729 atomic_inc(&rdev2->nr_pending); 4730 } else 4731 clear_bit(R5_WriteError, &dev->flags); 4732 } 4733 if (test_bit(R5_MadeGood, &dev->flags)) { 4734 /* This flag does not apply to '.replacement' 4735 * only to .rdev, so make sure to check that*/ 4736 struct md_rdev *rdev2 = conf->disks[i].rdev; 4737 4738 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4739 s->handle_bad_blocks = 1; 4740 atomic_inc(&rdev2->nr_pending); 4741 } else 4742 clear_bit(R5_MadeGood, &dev->flags); 4743 } 4744 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4745 struct md_rdev *rdev2 = conf->disks[i].replacement; 4746 4747 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4748 s->handle_bad_blocks = 1; 4749 atomic_inc(&rdev2->nr_pending); 4750 } else 4751 clear_bit(R5_MadeGoodRepl, &dev->flags); 4752 } 4753 if (!test_bit(R5_Insync, &dev->flags)) { 4754 /* The ReadError flag will just be confusing now */ 4755 clear_bit(R5_ReadError, &dev->flags); 4756 clear_bit(R5_ReWrite, &dev->flags); 4757 } 4758 if (test_bit(R5_ReadError, &dev->flags)) 4759 clear_bit(R5_Insync, &dev->flags); 4760 if (!test_bit(R5_Insync, &dev->flags)) { 4761 if (s->failed < 2) 4762 s->failed_num[s->failed] = i; 4763 s->failed++; 4764 if (rdev && !test_bit(Faulty, &rdev->flags)) 4765 do_recovery = 1; 4766 else if (!rdev) { 4767 rdev = conf->disks[i].replacement; 4768 if (rdev && !test_bit(Faulty, &rdev->flags)) 4769 do_recovery = 1; 4770 } 4771 } 4772 4773 if (test_bit(R5_InJournal, &dev->flags)) 4774 s->injournal++; 4775 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4776 s->just_cached++; 4777 } 4778 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4779 /* If there is a failed device being replaced, 4780 * we must be recovering. 4781 * else if we are after recovery_cp, we must be syncing 4782 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4783 * else we can only be replacing 4784 * sync and recovery both need to read all devices, and so 4785 * use the same flag. 4786 */ 4787 if (do_recovery || 4788 sh->sector >= conf->mddev->recovery_cp || 4789 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4790 s->syncing = 1; 4791 else 4792 s->replacing = 1; 4793 } 4794 } 4795 4796 /* 4797 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4798 * a head which can now be handled. 4799 */ clear_batch_ready(struct stripe_head * sh)4800 static int clear_batch_ready(struct stripe_head *sh) 4801 { 4802 struct stripe_head *tmp; 4803 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4804 return (sh->batch_head && sh->batch_head != sh); 4805 spin_lock(&sh->stripe_lock); 4806 if (!sh->batch_head) { 4807 spin_unlock(&sh->stripe_lock); 4808 return 0; 4809 } 4810 4811 /* 4812 * this stripe could be added to a batch list before we check 4813 * BATCH_READY, skips it 4814 */ 4815 if (sh->batch_head != sh) { 4816 spin_unlock(&sh->stripe_lock); 4817 return 1; 4818 } 4819 spin_lock(&sh->batch_lock); 4820 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4821 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4822 spin_unlock(&sh->batch_lock); 4823 spin_unlock(&sh->stripe_lock); 4824 4825 /* 4826 * BATCH_READY is cleared, no new stripes can be added. 4827 * batch_list can be accessed without lock 4828 */ 4829 return 0; 4830 } 4831 break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4832 static void break_stripe_batch_list(struct stripe_head *head_sh, 4833 unsigned long handle_flags) 4834 { 4835 struct stripe_head *sh, *next; 4836 int i; 4837 4838 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4839 4840 list_del_init(&sh->batch_list); 4841 4842 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4843 (1 << STRIPE_SYNCING) | 4844 (1 << STRIPE_REPLACED) | 4845 (1 << STRIPE_DELAYED) | 4846 (1 << STRIPE_BIT_DELAY) | 4847 (1 << STRIPE_FULL_WRITE) | 4848 (1 << STRIPE_BIOFILL_RUN) | 4849 (1 << STRIPE_COMPUTE_RUN) | 4850 (1 << STRIPE_DISCARD) | 4851 (1 << STRIPE_BATCH_READY) | 4852 (1 << STRIPE_BATCH_ERR)), 4853 "stripe state: %lx\n", sh->state); 4854 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4855 (1 << STRIPE_REPLACED)), 4856 "head stripe state: %lx\n", head_sh->state); 4857 4858 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4859 (1 << STRIPE_PREREAD_ACTIVE) | 4860 (1 << STRIPE_ON_UNPLUG_LIST)), 4861 head_sh->state & (1 << STRIPE_INSYNC)); 4862 4863 sh->check_state = head_sh->check_state; 4864 sh->reconstruct_state = head_sh->reconstruct_state; 4865 spin_lock_irq(&sh->stripe_lock); 4866 sh->batch_head = NULL; 4867 spin_unlock_irq(&sh->stripe_lock); 4868 for (i = 0; i < sh->disks; i++) { 4869 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4870 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 4871 sh->dev[i].flags = head_sh->dev[i].flags & 4872 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4873 } 4874 if (handle_flags == 0 || 4875 sh->state & handle_flags) 4876 set_bit(STRIPE_HANDLE, &sh->state); 4877 raid5_release_stripe(sh); 4878 } 4879 spin_lock_irq(&head_sh->stripe_lock); 4880 head_sh->batch_head = NULL; 4881 spin_unlock_irq(&head_sh->stripe_lock); 4882 for (i = 0; i < head_sh->disks; i++) 4883 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4884 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap); 4885 if (head_sh->state & handle_flags) 4886 set_bit(STRIPE_HANDLE, &head_sh->state); 4887 } 4888 handle_stripe(struct stripe_head * sh)4889 static void handle_stripe(struct stripe_head *sh) 4890 { 4891 struct stripe_head_state s; 4892 struct r5conf *conf = sh->raid_conf; 4893 int i; 4894 int prexor; 4895 int disks = sh->disks; 4896 struct r5dev *pdev, *qdev; 4897 4898 clear_bit(STRIPE_HANDLE, &sh->state); 4899 4900 /* 4901 * handle_stripe should not continue handle the batched stripe, only 4902 * the head of batch list or lone stripe can continue. Otherwise we 4903 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4904 * is set for the batched stripe. 4905 */ 4906 if (clear_batch_ready(sh)) 4907 return; 4908 4909 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4910 /* already being handled, ensure it gets handled 4911 * again when current action finishes */ 4912 set_bit(STRIPE_HANDLE, &sh->state); 4913 return; 4914 } 4915 4916 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4917 break_stripe_batch_list(sh, 0); 4918 4919 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4920 spin_lock(&sh->stripe_lock); 4921 /* 4922 * Cannot process 'sync' concurrently with 'discard'. 4923 * Flush data in r5cache before 'sync'. 4924 */ 4925 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4926 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4927 !test_bit(STRIPE_DISCARD, &sh->state) && 4928 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4929 set_bit(STRIPE_SYNCING, &sh->state); 4930 clear_bit(STRIPE_INSYNC, &sh->state); 4931 clear_bit(STRIPE_REPLACED, &sh->state); 4932 } 4933 spin_unlock(&sh->stripe_lock); 4934 } 4935 clear_bit(STRIPE_DELAYED, &sh->state); 4936 4937 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4938 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4939 (unsigned long long)sh->sector, sh->state, 4940 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4941 sh->check_state, sh->reconstruct_state); 4942 4943 analyse_stripe(sh, &s); 4944 4945 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4946 goto finish; 4947 4948 if (s.handle_bad_blocks || 4949 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4950 set_bit(STRIPE_HANDLE, &sh->state); 4951 goto finish; 4952 } 4953 4954 if (unlikely(s.blocked_rdev)) { 4955 if (s.syncing || s.expanding || s.expanded || 4956 s.replacing || s.to_write || s.written) { 4957 set_bit(STRIPE_HANDLE, &sh->state); 4958 goto finish; 4959 } 4960 /* There is nothing for the blocked_rdev to block */ 4961 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4962 s.blocked_rdev = NULL; 4963 } 4964 4965 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4966 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4967 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4968 } 4969 4970 pr_debug("locked=%d uptodate=%d to_read=%d" 4971 " to_write=%d failed=%d failed_num=%d,%d\n", 4972 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4973 s.failed_num[0], s.failed_num[1]); 4974 /* 4975 * check if the array has lost more than max_degraded devices and, 4976 * if so, some requests might need to be failed. 4977 * 4978 * When journal device failed (log_failed), we will only process 4979 * the stripe if there is data need write to raid disks 4980 */ 4981 if (s.failed > conf->max_degraded || 4982 (s.log_failed && s.injournal == 0)) { 4983 sh->check_state = 0; 4984 sh->reconstruct_state = 0; 4985 break_stripe_batch_list(sh, 0); 4986 if (s.to_read+s.to_write+s.written) 4987 handle_failed_stripe(conf, sh, &s, disks); 4988 if (s.syncing + s.replacing) 4989 handle_failed_sync(conf, sh, &s); 4990 } 4991 4992 /* Now we check to see if any write operations have recently 4993 * completed 4994 */ 4995 prexor = 0; 4996 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4997 prexor = 1; 4998 if (sh->reconstruct_state == reconstruct_state_drain_result || 4999 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5000 sh->reconstruct_state = reconstruct_state_idle; 5001 5002 /* All the 'written' buffers and the parity block are ready to 5003 * be written back to disk 5004 */ 5005 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5006 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5007 BUG_ON(sh->qd_idx >= 0 && 5008 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5009 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5010 for (i = disks; i--; ) { 5011 struct r5dev *dev = &sh->dev[i]; 5012 if (test_bit(R5_LOCKED, &dev->flags) && 5013 (i == sh->pd_idx || i == sh->qd_idx || 5014 dev->written || test_bit(R5_InJournal, 5015 &dev->flags))) { 5016 pr_debug("Writing block %d\n", i); 5017 set_bit(R5_Wantwrite, &dev->flags); 5018 if (prexor) 5019 continue; 5020 if (s.failed > 1) 5021 continue; 5022 if (!test_bit(R5_Insync, &dev->flags) || 5023 ((i == sh->pd_idx || i == sh->qd_idx) && 5024 s.failed == 0)) 5025 set_bit(STRIPE_INSYNC, &sh->state); 5026 } 5027 } 5028 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5029 s.dec_preread_active = 1; 5030 } 5031 5032 /* 5033 * might be able to return some write requests if the parity blocks 5034 * are safe, or on a failed drive 5035 */ 5036 pdev = &sh->dev[sh->pd_idx]; 5037 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5038 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5039 qdev = &sh->dev[sh->qd_idx]; 5040 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5041 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5042 || conf->level < 6; 5043 5044 if (s.written && 5045 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5046 && !test_bit(R5_LOCKED, &pdev->flags) 5047 && (test_bit(R5_UPTODATE, &pdev->flags) || 5048 test_bit(R5_Discard, &pdev->flags))))) && 5049 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5050 && !test_bit(R5_LOCKED, &qdev->flags) 5051 && (test_bit(R5_UPTODATE, &qdev->flags) || 5052 test_bit(R5_Discard, &qdev->flags)))))) 5053 handle_stripe_clean_event(conf, sh, disks); 5054 5055 if (s.just_cached) 5056 r5c_handle_cached_data_endio(conf, sh, disks); 5057 log_stripe_write_finished(sh); 5058 5059 /* Now we might consider reading some blocks, either to check/generate 5060 * parity, or to satisfy requests 5061 * or to load a block that is being partially written. 5062 */ 5063 if (s.to_read || s.non_overwrite 5064 || (s.to_write && s.failed) 5065 || (s.syncing && (s.uptodate + s.compute < disks)) 5066 || s.replacing 5067 || s.expanding) 5068 handle_stripe_fill(sh, &s, disks); 5069 5070 /* 5071 * When the stripe finishes full journal write cycle (write to journal 5072 * and raid disk), this is the clean up procedure so it is ready for 5073 * next operation. 5074 */ 5075 r5c_finish_stripe_write_out(conf, sh, &s); 5076 5077 /* 5078 * Now to consider new write requests, cache write back and what else, 5079 * if anything should be read. We do not handle new writes when: 5080 * 1/ A 'write' operation (copy+xor) is already in flight. 5081 * 2/ A 'check' operation is in flight, as it may clobber the parity 5082 * block. 5083 * 3/ A r5c cache log write is in flight. 5084 */ 5085 5086 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5087 if (!r5c_is_writeback(conf->log)) { 5088 if (s.to_write) 5089 handle_stripe_dirtying(conf, sh, &s, disks); 5090 } else { /* write back cache */ 5091 int ret = 0; 5092 5093 /* First, try handle writes in caching phase */ 5094 if (s.to_write) 5095 ret = r5c_try_caching_write(conf, sh, &s, 5096 disks); 5097 /* 5098 * If caching phase failed: ret == -EAGAIN 5099 * OR 5100 * stripe under reclaim: !caching && injournal 5101 * 5102 * fall back to handle_stripe_dirtying() 5103 */ 5104 if (ret == -EAGAIN || 5105 /* stripe under reclaim: !caching && injournal */ 5106 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5107 s.injournal > 0)) { 5108 ret = handle_stripe_dirtying(conf, sh, &s, 5109 disks); 5110 if (ret == -EAGAIN) 5111 goto finish; 5112 } 5113 } 5114 } 5115 5116 /* maybe we need to check and possibly fix the parity for this stripe 5117 * Any reads will already have been scheduled, so we just see if enough 5118 * data is available. The parity check is held off while parity 5119 * dependent operations are in flight. 5120 */ 5121 if (sh->check_state || 5122 (s.syncing && s.locked == 0 && 5123 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5124 !test_bit(STRIPE_INSYNC, &sh->state))) { 5125 if (conf->level == 6) 5126 handle_parity_checks6(conf, sh, &s, disks); 5127 else 5128 handle_parity_checks5(conf, sh, &s, disks); 5129 } 5130 5131 if ((s.replacing || s.syncing) && s.locked == 0 5132 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5133 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5134 /* Write out to replacement devices where possible */ 5135 for (i = 0; i < conf->raid_disks; i++) 5136 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5137 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5138 set_bit(R5_WantReplace, &sh->dev[i].flags); 5139 set_bit(R5_LOCKED, &sh->dev[i].flags); 5140 s.locked++; 5141 } 5142 if (s.replacing) 5143 set_bit(STRIPE_INSYNC, &sh->state); 5144 set_bit(STRIPE_REPLACED, &sh->state); 5145 } 5146 if ((s.syncing || s.replacing) && s.locked == 0 && 5147 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5148 test_bit(STRIPE_INSYNC, &sh->state)) { 5149 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5150 clear_bit(STRIPE_SYNCING, &sh->state); 5151 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5152 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap); 5153 } 5154 5155 /* If the failed drives are just a ReadError, then we might need 5156 * to progress the repair/check process 5157 */ 5158 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5159 for (i = 0; i < s.failed; i++) { 5160 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5161 if (test_bit(R5_ReadError, &dev->flags) 5162 && !test_bit(R5_LOCKED, &dev->flags) 5163 && test_bit(R5_UPTODATE, &dev->flags) 5164 ) { 5165 if (!test_bit(R5_ReWrite, &dev->flags)) { 5166 set_bit(R5_Wantwrite, &dev->flags); 5167 set_bit(R5_ReWrite, &dev->flags); 5168 } else 5169 /* let's read it back */ 5170 set_bit(R5_Wantread, &dev->flags); 5171 set_bit(R5_LOCKED, &dev->flags); 5172 s.locked++; 5173 } 5174 } 5175 5176 /* Finish reconstruct operations initiated by the expansion process */ 5177 if (sh->reconstruct_state == reconstruct_state_result) { 5178 struct stripe_head *sh_src 5179 = raid5_get_active_stripe(conf, NULL, sh->sector, 5180 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5181 R5_GAS_NOQUIESCE); 5182 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5183 /* sh cannot be written until sh_src has been read. 5184 * so arrange for sh to be delayed a little 5185 */ 5186 set_bit(STRIPE_DELAYED, &sh->state); 5187 set_bit(STRIPE_HANDLE, &sh->state); 5188 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5189 &sh_src->state)) 5190 atomic_inc(&conf->preread_active_stripes); 5191 raid5_release_stripe(sh_src); 5192 goto finish; 5193 } 5194 if (sh_src) 5195 raid5_release_stripe(sh_src); 5196 5197 sh->reconstruct_state = reconstruct_state_idle; 5198 clear_bit(STRIPE_EXPANDING, &sh->state); 5199 for (i = conf->raid_disks; i--; ) { 5200 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5201 set_bit(R5_LOCKED, &sh->dev[i].flags); 5202 s.locked++; 5203 } 5204 } 5205 5206 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5207 !sh->reconstruct_state) { 5208 /* Need to write out all blocks after computing parity */ 5209 sh->disks = conf->raid_disks; 5210 stripe_set_idx(sh->sector, conf, 0, sh); 5211 schedule_reconstruction(sh, &s, 1, 1); 5212 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5213 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5214 atomic_dec(&conf->reshape_stripes); 5215 wake_up(&conf->wait_for_reshape); 5216 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5217 } 5218 5219 if (s.expanding && s.locked == 0 && 5220 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5221 handle_stripe_expansion(conf, sh); 5222 5223 finish: 5224 /* wait for this device to become unblocked */ 5225 if (unlikely(s.blocked_rdev)) { 5226 if (conf->mddev->external) 5227 md_wait_for_blocked_rdev(s.blocked_rdev, 5228 conf->mddev); 5229 else 5230 /* Internal metadata will immediately 5231 * be written by raid5d, so we don't 5232 * need to wait here. 5233 */ 5234 rdev_dec_pending(s.blocked_rdev, 5235 conf->mddev); 5236 } 5237 5238 if (s.handle_bad_blocks) 5239 for (i = disks; i--; ) { 5240 struct md_rdev *rdev; 5241 struct r5dev *dev = &sh->dev[i]; 5242 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5243 /* We own a safe reference to the rdev */ 5244 rdev = conf->disks[i].rdev; 5245 if (!rdev_set_badblocks(rdev, sh->sector, 5246 RAID5_STRIPE_SECTORS(conf), 0)) 5247 md_error(conf->mddev, rdev); 5248 rdev_dec_pending(rdev, conf->mddev); 5249 } 5250 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5251 rdev = conf->disks[i].rdev; 5252 rdev_clear_badblocks(rdev, sh->sector, 5253 RAID5_STRIPE_SECTORS(conf), 0); 5254 rdev_dec_pending(rdev, conf->mddev); 5255 } 5256 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5257 rdev = conf->disks[i].replacement; 5258 if (!rdev) 5259 /* rdev have been moved down */ 5260 rdev = conf->disks[i].rdev; 5261 rdev_clear_badblocks(rdev, sh->sector, 5262 RAID5_STRIPE_SECTORS(conf), 0); 5263 rdev_dec_pending(rdev, conf->mddev); 5264 } 5265 } 5266 5267 if (s.ops_request) 5268 raid_run_ops(sh, s.ops_request); 5269 5270 ops_run_io(sh, &s); 5271 5272 if (s.dec_preread_active) { 5273 /* We delay this until after ops_run_io so that if make_request 5274 * is waiting on a flush, it won't continue until the writes 5275 * have actually been submitted. 5276 */ 5277 atomic_dec(&conf->preread_active_stripes); 5278 if (atomic_read(&conf->preread_active_stripes) < 5279 IO_THRESHOLD) 5280 md_wakeup_thread(conf->mddev->thread); 5281 } 5282 5283 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5284 } 5285 raid5_activate_delayed(struct r5conf * conf)5286 static void raid5_activate_delayed(struct r5conf *conf) 5287 __must_hold(&conf->device_lock) 5288 { 5289 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5290 while (!list_empty(&conf->delayed_list)) { 5291 struct list_head *l = conf->delayed_list.next; 5292 struct stripe_head *sh; 5293 sh = list_entry(l, struct stripe_head, lru); 5294 list_del_init(l); 5295 clear_bit(STRIPE_DELAYED, &sh->state); 5296 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5297 atomic_inc(&conf->preread_active_stripes); 5298 list_add_tail(&sh->lru, &conf->hold_list); 5299 raid5_wakeup_stripe_thread(sh); 5300 } 5301 } 5302 } 5303 activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5304 static void activate_bit_delay(struct r5conf *conf, 5305 struct list_head *temp_inactive_list) 5306 __must_hold(&conf->device_lock) 5307 { 5308 struct list_head head; 5309 list_add(&head, &conf->bitmap_list); 5310 list_del_init(&conf->bitmap_list); 5311 while (!list_empty(&head)) { 5312 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5313 int hash; 5314 list_del_init(&sh->lru); 5315 atomic_inc(&sh->count); 5316 hash = sh->hash_lock_index; 5317 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5318 } 5319 } 5320 in_chunk_boundary(struct mddev * mddev,struct bio * bio)5321 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5322 { 5323 struct r5conf *conf = mddev->private; 5324 sector_t sector = bio->bi_iter.bi_sector; 5325 unsigned int chunk_sectors; 5326 unsigned int bio_sectors = bio_sectors(bio); 5327 5328 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5329 return chunk_sectors >= 5330 ((sector & (chunk_sectors - 1)) + bio_sectors); 5331 } 5332 5333 /* 5334 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5335 * later sampled by raid5d. 5336 */ add_bio_to_retry(struct bio * bi,struct r5conf * conf)5337 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5338 { 5339 unsigned long flags; 5340 5341 spin_lock_irqsave(&conf->device_lock, flags); 5342 5343 bi->bi_next = conf->retry_read_aligned_list; 5344 conf->retry_read_aligned_list = bi; 5345 5346 spin_unlock_irqrestore(&conf->device_lock, flags); 5347 md_wakeup_thread(conf->mddev->thread); 5348 } 5349 remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5350 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5351 unsigned int *offset) 5352 { 5353 struct bio *bi; 5354 5355 bi = conf->retry_read_aligned; 5356 if (bi) { 5357 *offset = conf->retry_read_offset; 5358 conf->retry_read_aligned = NULL; 5359 return bi; 5360 } 5361 bi = conf->retry_read_aligned_list; 5362 if(bi) { 5363 conf->retry_read_aligned_list = bi->bi_next; 5364 bi->bi_next = NULL; 5365 *offset = 0; 5366 } 5367 5368 return bi; 5369 } 5370 5371 /* 5372 * The "raid5_align_endio" should check if the read succeeded and if it 5373 * did, call bio_endio on the original bio (having bio_put the new bio 5374 * first). 5375 * If the read failed.. 5376 */ raid5_align_endio(struct bio * bi)5377 static void raid5_align_endio(struct bio *bi) 5378 { 5379 struct bio *raid_bi = bi->bi_private; 5380 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5381 struct mddev *mddev = rdev->mddev; 5382 struct r5conf *conf = mddev->private; 5383 blk_status_t error = bi->bi_status; 5384 5385 bio_put(bi); 5386 raid_bi->bi_next = NULL; 5387 rdev_dec_pending(rdev, conf->mddev); 5388 5389 if (!error) { 5390 bio_endio(raid_bi); 5391 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5392 wake_up(&conf->wait_for_quiescent); 5393 return; 5394 } 5395 5396 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5397 5398 add_bio_to_retry(raid_bi, conf); 5399 } 5400 raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5401 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5402 { 5403 struct r5conf *conf = mddev->private; 5404 struct bio *align_bio; 5405 struct md_rdev *rdev; 5406 sector_t sector, end_sector; 5407 int dd_idx; 5408 bool did_inc; 5409 5410 if (!in_chunk_boundary(mddev, raid_bio)) { 5411 pr_debug("%s: non aligned\n", __func__); 5412 return 0; 5413 } 5414 5415 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5416 &dd_idx, NULL); 5417 end_sector = sector + bio_sectors(raid_bio); 5418 5419 if (r5c_big_stripe_cached(conf, sector)) 5420 return 0; 5421 5422 rdev = conf->disks[dd_idx].replacement; 5423 if (!rdev || test_bit(Faulty, &rdev->flags) || 5424 rdev->recovery_offset < end_sector) { 5425 rdev = conf->disks[dd_idx].rdev; 5426 if (!rdev) 5427 return 0; 5428 if (test_bit(Faulty, &rdev->flags) || 5429 !(test_bit(In_sync, &rdev->flags) || 5430 rdev->recovery_offset >= end_sector)) 5431 return 0; 5432 } 5433 5434 atomic_inc(&rdev->nr_pending); 5435 5436 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) { 5437 rdev_dec_pending(rdev, mddev); 5438 return 0; 5439 } 5440 5441 md_account_bio(mddev, &raid_bio); 5442 raid_bio->bi_next = (void *)rdev; 5443 5444 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5445 &mddev->bio_set); 5446 align_bio->bi_end_io = raid5_align_endio; 5447 align_bio->bi_private = raid_bio; 5448 align_bio->bi_iter.bi_sector = sector; 5449 5450 /* No reshape active, so we can trust rdev->data_offset */ 5451 align_bio->bi_iter.bi_sector += rdev->data_offset; 5452 5453 did_inc = false; 5454 if (conf->quiesce == 0) { 5455 atomic_inc(&conf->active_aligned_reads); 5456 did_inc = true; 5457 } 5458 /* need a memory barrier to detect the race with raid5_quiesce() */ 5459 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5460 /* quiesce is in progress, so we need to undo io activation and wait 5461 * for it to finish 5462 */ 5463 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5464 wake_up(&conf->wait_for_quiescent); 5465 spin_lock_irq(&conf->device_lock); 5466 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5467 conf->device_lock); 5468 atomic_inc(&conf->active_aligned_reads); 5469 spin_unlock_irq(&conf->device_lock); 5470 } 5471 5472 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector); 5473 submit_bio_noacct(align_bio); 5474 return 1; 5475 } 5476 chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5477 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5478 { 5479 struct bio *split; 5480 sector_t sector = raid_bio->bi_iter.bi_sector; 5481 unsigned chunk_sects = mddev->chunk_sectors; 5482 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5483 5484 if (sectors < bio_sectors(raid_bio)) { 5485 struct r5conf *conf = mddev->private; 5486 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5487 bio_chain(split, raid_bio); 5488 submit_bio_noacct(raid_bio); 5489 raid_bio = split; 5490 } 5491 5492 if (!raid5_read_one_chunk(mddev, raid_bio)) 5493 return raid_bio; 5494 5495 return NULL; 5496 } 5497 5498 /* __get_priority_stripe - get the next stripe to process 5499 * 5500 * Full stripe writes are allowed to pass preread active stripes up until 5501 * the bypass_threshold is exceeded. In general the bypass_count 5502 * increments when the handle_list is handled before the hold_list; however, it 5503 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5504 * stripe with in flight i/o. The bypass_count will be reset when the 5505 * head of the hold_list has changed, i.e. the head was promoted to the 5506 * handle_list. 5507 */ __get_priority_stripe(struct r5conf * conf,int group)5508 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5509 __must_hold(&conf->device_lock) 5510 { 5511 struct stripe_head *sh, *tmp; 5512 struct list_head *handle_list = NULL; 5513 struct r5worker_group *wg; 5514 bool second_try = !r5c_is_writeback(conf->log) && 5515 !r5l_log_disk_error(conf); 5516 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5517 r5l_log_disk_error(conf); 5518 5519 again: 5520 wg = NULL; 5521 sh = NULL; 5522 if (conf->worker_cnt_per_group == 0) { 5523 handle_list = try_loprio ? &conf->loprio_list : 5524 &conf->handle_list; 5525 } else if (group != ANY_GROUP) { 5526 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5527 &conf->worker_groups[group].handle_list; 5528 wg = &conf->worker_groups[group]; 5529 } else { 5530 int i; 5531 for (i = 0; i < conf->group_cnt; i++) { 5532 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5533 &conf->worker_groups[i].handle_list; 5534 wg = &conf->worker_groups[i]; 5535 if (!list_empty(handle_list)) 5536 break; 5537 } 5538 } 5539 5540 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5541 __func__, 5542 list_empty(handle_list) ? "empty" : "busy", 5543 list_empty(&conf->hold_list) ? "empty" : "busy", 5544 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5545 5546 if (!list_empty(handle_list)) { 5547 sh = list_entry(handle_list->next, typeof(*sh), lru); 5548 5549 if (list_empty(&conf->hold_list)) 5550 conf->bypass_count = 0; 5551 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5552 if (conf->hold_list.next == conf->last_hold) 5553 conf->bypass_count++; 5554 else { 5555 conf->last_hold = conf->hold_list.next; 5556 conf->bypass_count -= conf->bypass_threshold; 5557 if (conf->bypass_count < 0) 5558 conf->bypass_count = 0; 5559 } 5560 } 5561 } else if (!list_empty(&conf->hold_list) && 5562 ((conf->bypass_threshold && 5563 conf->bypass_count > conf->bypass_threshold) || 5564 atomic_read(&conf->pending_full_writes) == 0)) { 5565 5566 list_for_each_entry(tmp, &conf->hold_list, lru) { 5567 if (conf->worker_cnt_per_group == 0 || 5568 group == ANY_GROUP || 5569 !cpu_online(tmp->cpu) || 5570 cpu_to_group(tmp->cpu) == group) { 5571 sh = tmp; 5572 break; 5573 } 5574 } 5575 5576 if (sh) { 5577 conf->bypass_count -= conf->bypass_threshold; 5578 if (conf->bypass_count < 0) 5579 conf->bypass_count = 0; 5580 } 5581 wg = NULL; 5582 } 5583 5584 if (!sh) { 5585 if (second_try) 5586 return NULL; 5587 second_try = true; 5588 try_loprio = !try_loprio; 5589 goto again; 5590 } 5591 5592 if (wg) { 5593 wg->stripes_cnt--; 5594 sh->group = NULL; 5595 } 5596 list_del_init(&sh->lru); 5597 BUG_ON(atomic_inc_return(&sh->count) != 1); 5598 return sh; 5599 } 5600 5601 struct raid5_plug_cb { 5602 struct blk_plug_cb cb; 5603 struct list_head list; 5604 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5605 }; 5606 raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5607 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5608 { 5609 struct raid5_plug_cb *cb = container_of( 5610 blk_cb, struct raid5_plug_cb, cb); 5611 struct stripe_head *sh; 5612 struct mddev *mddev = cb->cb.data; 5613 struct r5conf *conf = mddev->private; 5614 int cnt = 0; 5615 int hash; 5616 5617 if (cb->list.next && !list_empty(&cb->list)) { 5618 spin_lock_irq(&conf->device_lock); 5619 while (!list_empty(&cb->list)) { 5620 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5621 list_del_init(&sh->lru); 5622 /* 5623 * avoid race release_stripe_plug() sees 5624 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5625 * is still in our list 5626 */ 5627 smp_mb__before_atomic(); 5628 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5629 /* 5630 * STRIPE_ON_RELEASE_LIST could be set here. In that 5631 * case, the count is always > 1 here 5632 */ 5633 hash = sh->hash_lock_index; 5634 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5635 cnt++; 5636 } 5637 spin_unlock_irq(&conf->device_lock); 5638 } 5639 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5640 NR_STRIPE_HASH_LOCKS); 5641 if (!mddev_is_dm(mddev)) 5642 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule); 5643 kfree(cb); 5644 } 5645 release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5646 static void release_stripe_plug(struct mddev *mddev, 5647 struct stripe_head *sh) 5648 { 5649 struct blk_plug_cb *blk_cb = blk_check_plugged( 5650 raid5_unplug, mddev, 5651 sizeof(struct raid5_plug_cb)); 5652 struct raid5_plug_cb *cb; 5653 5654 if (!blk_cb) { 5655 raid5_release_stripe(sh); 5656 return; 5657 } 5658 5659 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5660 5661 if (cb->list.next == NULL) { 5662 int i; 5663 INIT_LIST_HEAD(&cb->list); 5664 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5665 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5666 } 5667 5668 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5669 list_add_tail(&sh->lru, &cb->list); 5670 else 5671 raid5_release_stripe(sh); 5672 } 5673 make_discard_request(struct mddev * mddev,struct bio * bi)5674 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5675 { 5676 struct r5conf *conf = mddev->private; 5677 sector_t logical_sector, last_sector; 5678 struct stripe_head *sh; 5679 int stripe_sectors; 5680 5681 /* We need to handle this when io_uring supports discard/trim */ 5682 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5683 return; 5684 5685 if (mddev->reshape_position != MaxSector) 5686 /* Skip discard while reshape is happening */ 5687 return; 5688 5689 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5690 last_sector = bio_end_sector(bi); 5691 5692 bi->bi_next = NULL; 5693 5694 stripe_sectors = conf->chunk_sectors * 5695 (conf->raid_disks - conf->max_degraded); 5696 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5697 stripe_sectors); 5698 sector_div(last_sector, stripe_sectors); 5699 5700 logical_sector *= conf->chunk_sectors; 5701 last_sector *= conf->chunk_sectors; 5702 5703 for (; logical_sector < last_sector; 5704 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5705 DEFINE_WAIT(w); 5706 int d; 5707 again: 5708 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5709 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5710 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5711 raid5_release_stripe(sh); 5712 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap, 5713 TASK_UNINTERRUPTIBLE); 5714 goto again; 5715 } 5716 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5717 spin_lock_irq(&sh->stripe_lock); 5718 for (d = 0; d < conf->raid_disks; d++) { 5719 if (d == sh->pd_idx || d == sh->qd_idx) 5720 continue; 5721 if (sh->dev[d].towrite || sh->dev[d].toread) { 5722 set_bit(R5_Overlap, &sh->dev[d].flags); 5723 spin_unlock_irq(&sh->stripe_lock); 5724 raid5_release_stripe(sh); 5725 wait_on_bit(&sh->dev[d].flags, R5_Overlap, 5726 TASK_UNINTERRUPTIBLE); 5727 goto again; 5728 } 5729 } 5730 set_bit(STRIPE_DISCARD, &sh->state); 5731 sh->overwrite_disks = 0; 5732 for (d = 0; d < conf->raid_disks; d++) { 5733 if (d == sh->pd_idx || d == sh->qd_idx) 5734 continue; 5735 sh->dev[d].towrite = bi; 5736 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5737 bio_inc_remaining(bi); 5738 md_write_inc(mddev, bi); 5739 sh->overwrite_disks++; 5740 } 5741 spin_unlock_irq(&sh->stripe_lock); 5742 if (conf->mddev->bitmap) { 5743 sh->bm_seq = conf->seq_flush + 1; 5744 set_bit(STRIPE_BIT_DELAY, &sh->state); 5745 } 5746 5747 set_bit(STRIPE_HANDLE, &sh->state); 5748 clear_bit(STRIPE_DELAYED, &sh->state); 5749 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5750 atomic_inc(&conf->preread_active_stripes); 5751 release_stripe_plug(mddev, sh); 5752 } 5753 5754 bio_endio(bi); 5755 } 5756 ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5757 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5758 sector_t reshape_sector) 5759 { 5760 return mddev->reshape_backwards ? sector < reshape_sector : 5761 sector >= reshape_sector; 5762 } 5763 range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5764 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5765 sector_t max, sector_t reshape_sector) 5766 { 5767 return mddev->reshape_backwards ? max < reshape_sector : 5768 min >= reshape_sector; 5769 } 5770 stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5771 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5772 struct stripe_head *sh) 5773 { 5774 sector_t max_sector = 0, min_sector = MaxSector; 5775 bool ret = false; 5776 int dd_idx; 5777 5778 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5779 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5780 continue; 5781 5782 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5783 max_sector = max(max_sector, sh->dev[dd_idx].sector); 5784 } 5785 5786 spin_lock_irq(&conf->device_lock); 5787 5788 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5789 conf->reshape_progress)) 5790 /* mismatch, need to try again */ 5791 ret = true; 5792 5793 spin_unlock_irq(&conf->device_lock); 5794 5795 return ret; 5796 } 5797 add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5798 static int add_all_stripe_bios(struct r5conf *conf, 5799 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5800 struct bio *bi, int forwrite, int previous) 5801 { 5802 int dd_idx; 5803 5804 spin_lock_irq(&sh->stripe_lock); 5805 5806 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5807 struct r5dev *dev = &sh->dev[dd_idx]; 5808 5809 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5810 continue; 5811 5812 if (dev->sector < ctx->first_sector || 5813 dev->sector >= ctx->last_sector) 5814 continue; 5815 5816 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5817 set_bit(R5_Overlap, &dev->flags); 5818 spin_unlock_irq(&sh->stripe_lock); 5819 raid5_release_stripe(sh); 5820 /* release batch_last before wait to avoid risk of deadlock */ 5821 if (ctx->batch_last) { 5822 raid5_release_stripe(ctx->batch_last); 5823 ctx->batch_last = NULL; 5824 } 5825 md_wakeup_thread(conf->mddev->thread); 5826 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE); 5827 return 0; 5828 } 5829 } 5830 5831 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5832 struct r5dev *dev = &sh->dev[dd_idx]; 5833 5834 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5835 continue; 5836 5837 if (dev->sector < ctx->first_sector || 5838 dev->sector >= ctx->last_sector) 5839 continue; 5840 5841 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5842 clear_bit((dev->sector - ctx->first_sector) >> 5843 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5844 } 5845 5846 spin_unlock_irq(&sh->stripe_lock); 5847 return 1; 5848 } 5849 5850 enum reshape_loc { 5851 LOC_NO_RESHAPE, 5852 LOC_AHEAD_OF_RESHAPE, 5853 LOC_INSIDE_RESHAPE, 5854 LOC_BEHIND_RESHAPE, 5855 }; 5856 get_reshape_loc(struct mddev * mddev,struct r5conf * conf,sector_t logical_sector)5857 static enum reshape_loc get_reshape_loc(struct mddev *mddev, 5858 struct r5conf *conf, sector_t logical_sector) 5859 { 5860 sector_t reshape_progress, reshape_safe; 5861 5862 if (likely(conf->reshape_progress == MaxSector)) 5863 return LOC_NO_RESHAPE; 5864 /* 5865 * Spinlock is needed as reshape_progress may be 5866 * 64bit on a 32bit platform, and so it might be 5867 * possible to see a half-updated value 5868 * Of course reshape_progress could change after 5869 * the lock is dropped, so once we get a reference 5870 * to the stripe that we think it is, we will have 5871 * to check again. 5872 */ 5873 spin_lock_irq(&conf->device_lock); 5874 reshape_progress = conf->reshape_progress; 5875 reshape_safe = conf->reshape_safe; 5876 spin_unlock_irq(&conf->device_lock); 5877 if (reshape_progress == MaxSector) 5878 return LOC_NO_RESHAPE; 5879 if (ahead_of_reshape(mddev, logical_sector, reshape_progress)) 5880 return LOC_AHEAD_OF_RESHAPE; 5881 if (ahead_of_reshape(mddev, logical_sector, reshape_safe)) 5882 return LOC_INSIDE_RESHAPE; 5883 return LOC_BEHIND_RESHAPE; 5884 } 5885 raid5_bitmap_sector(struct mddev * mddev,sector_t * offset,unsigned long * sectors)5886 static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset, 5887 unsigned long *sectors) 5888 { 5889 struct r5conf *conf = mddev->private; 5890 sector_t start = *offset; 5891 sector_t end = start + *sectors; 5892 sector_t prev_start = start; 5893 sector_t prev_end = end; 5894 int sectors_per_chunk; 5895 enum reshape_loc loc; 5896 int dd_idx; 5897 5898 sectors_per_chunk = conf->chunk_sectors * 5899 (conf->raid_disks - conf->max_degraded); 5900 start = round_down(start, sectors_per_chunk); 5901 end = round_up(end, sectors_per_chunk); 5902 5903 start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL); 5904 end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL); 5905 5906 /* 5907 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make 5908 * progress, hence it's the same as LOC_BEHIND_RESHAPE. 5909 */ 5910 loc = get_reshape_loc(mddev, conf, prev_start); 5911 if (likely(loc != LOC_AHEAD_OF_RESHAPE)) { 5912 *offset = start; 5913 *sectors = end - start; 5914 return; 5915 } 5916 5917 sectors_per_chunk = conf->prev_chunk_sectors * 5918 (conf->previous_raid_disks - conf->max_degraded); 5919 prev_start = round_down(prev_start, sectors_per_chunk); 5920 prev_end = round_down(prev_end, sectors_per_chunk); 5921 5922 prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL); 5923 prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL); 5924 5925 /* 5926 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO 5927 * is handled in make_stripe_request(), we can't know this here hence 5928 * we set bits for both. 5929 */ 5930 *offset = min(start, prev_start); 5931 *sectors = max(end, prev_end) - *offset; 5932 } 5933 make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5934 static enum stripe_result make_stripe_request(struct mddev *mddev, 5935 struct r5conf *conf, struct stripe_request_ctx *ctx, 5936 sector_t logical_sector, struct bio *bi) 5937 { 5938 const int rw = bio_data_dir(bi); 5939 enum stripe_result ret; 5940 struct stripe_head *sh; 5941 enum reshape_loc loc; 5942 sector_t new_sector; 5943 int previous = 0, flags = 0; 5944 int seq, dd_idx; 5945 5946 seq = read_seqcount_begin(&conf->gen_lock); 5947 loc = get_reshape_loc(mddev, conf, logical_sector); 5948 if (loc == LOC_INSIDE_RESHAPE) { 5949 ret = STRIPE_SCHEDULE_AND_RETRY; 5950 goto out; 5951 } 5952 if (loc == LOC_AHEAD_OF_RESHAPE) 5953 previous = 1; 5954 5955 new_sector = raid5_compute_sector(conf, logical_sector, previous, 5956 &dd_idx, NULL); 5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 5958 new_sector, logical_sector); 5959 5960 if (previous) 5961 flags |= R5_GAS_PREVIOUS; 5962 if (bi->bi_opf & REQ_RAHEAD) 5963 flags |= R5_GAS_NOBLOCK; 5964 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 5965 if (unlikely(!sh)) { 5966 /* cannot get stripe, just give-up */ 5967 bi->bi_status = BLK_STS_IOERR; 5968 return STRIPE_FAIL; 5969 } 5970 5971 if (unlikely(previous) && 5972 stripe_ahead_of_reshape(mddev, conf, sh)) { 5973 /* 5974 * Expansion moved on while waiting for a stripe. 5975 * Expansion could still move past after this 5976 * test, but as we are holding a reference to 5977 * 'sh', we know that if that happens, 5978 * STRIPE_EXPANDING will get set and the expansion 5979 * won't proceed until we finish with the stripe. 5980 */ 5981 ret = STRIPE_SCHEDULE_AND_RETRY; 5982 goto out_release; 5983 } 5984 5985 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5986 /* Might have got the wrong stripe_head by accident */ 5987 ret = STRIPE_RETRY; 5988 goto out_release; 5989 } 5990 5991 if (test_bit(STRIPE_EXPANDING, &sh->state)) { 5992 md_wakeup_thread(mddev->thread); 5993 ret = STRIPE_SCHEDULE_AND_RETRY; 5994 goto out_release; 5995 } 5996 5997 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 5998 ret = STRIPE_RETRY; 5999 goto out; 6000 } 6001 6002 if (stripe_can_batch(sh)) { 6003 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 6004 if (ctx->batch_last) 6005 raid5_release_stripe(ctx->batch_last); 6006 atomic_inc(&sh->count); 6007 ctx->batch_last = sh; 6008 } 6009 6010 if (ctx->do_flush) { 6011 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6012 /* we only need flush for one stripe */ 6013 ctx->do_flush = false; 6014 } 6015 6016 set_bit(STRIPE_HANDLE, &sh->state); 6017 clear_bit(STRIPE_DELAYED, &sh->state); 6018 if ((!sh->batch_head || sh == sh->batch_head) && 6019 (bi->bi_opf & REQ_SYNC) && 6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6021 atomic_inc(&conf->preread_active_stripes); 6022 6023 release_stripe_plug(mddev, sh); 6024 return STRIPE_SUCCESS; 6025 6026 out_release: 6027 raid5_release_stripe(sh); 6028 out: 6029 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) { 6030 bi->bi_status = BLK_STS_RESOURCE; 6031 ret = STRIPE_WAIT_RESHAPE; 6032 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress"); 6033 } 6034 return ret; 6035 } 6036 6037 /* 6038 * If the bio covers multiple data disks, find sector within the bio that has 6039 * the lowest chunk offset in the first chunk. 6040 */ raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6041 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6042 struct bio *bi) 6043 { 6044 int sectors_per_chunk = conf->chunk_sectors; 6045 int raid_disks = conf->raid_disks; 6046 int dd_idx; 6047 struct stripe_head sh; 6048 unsigned int chunk_offset; 6049 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6050 sector_t sector; 6051 6052 /* We pass in fake stripe_head to get back parity disk numbers */ 6053 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6054 chunk_offset = sector_div(sector, sectors_per_chunk); 6055 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6056 return r_sector; 6057 /* 6058 * Bio crosses to the next data disk. Check whether it's in the same 6059 * chunk. 6060 */ 6061 dd_idx++; 6062 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6063 dd_idx++; 6064 if (dd_idx >= raid_disks) 6065 return r_sector; 6066 return r_sector + sectors_per_chunk - chunk_offset; 6067 } 6068 raid5_make_request(struct mddev * mddev,struct bio * bi)6069 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6070 { 6071 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6072 bool on_wq; 6073 struct r5conf *conf = mddev->private; 6074 sector_t logical_sector; 6075 struct stripe_request_ctx ctx = {}; 6076 const int rw = bio_data_dir(bi); 6077 enum stripe_result res; 6078 int s, stripe_cnt; 6079 6080 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6081 int ret = log_handle_flush_request(conf, bi); 6082 6083 if (ret == 0) 6084 return true; 6085 if (ret == -ENODEV) { 6086 if (md_flush_request(mddev, bi)) 6087 return true; 6088 } 6089 /* ret == -EAGAIN, fallback */ 6090 /* 6091 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6092 * we need to flush journal device 6093 */ 6094 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6095 } 6096 6097 md_write_start(mddev, bi); 6098 /* 6099 * If array is degraded, better not do chunk aligned read because 6100 * later we might have to read it again in order to reconstruct 6101 * data on failed drives. 6102 */ 6103 if (rw == READ && mddev->degraded == 0 && 6104 mddev->reshape_position == MaxSector) { 6105 bi = chunk_aligned_read(mddev, bi); 6106 if (!bi) 6107 return true; 6108 } 6109 6110 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6111 make_discard_request(mddev, bi); 6112 md_write_end(mddev); 6113 return true; 6114 } 6115 6116 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6117 ctx.first_sector = logical_sector; 6118 ctx.last_sector = bio_end_sector(bi); 6119 bi->bi_next = NULL; 6120 6121 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6122 RAID5_STRIPE_SECTORS(conf)); 6123 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6124 6125 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6126 bi->bi_iter.bi_sector, ctx.last_sector); 6127 6128 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6129 if ((bi->bi_opf & REQ_NOWAIT) && 6130 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) { 6131 bio_wouldblock_error(bi); 6132 if (rw == WRITE) 6133 md_write_end(mddev); 6134 return true; 6135 } 6136 md_account_bio(mddev, &bi); 6137 6138 /* 6139 * Lets start with the stripe with the lowest chunk offset in the first 6140 * chunk. That has the best chances of creating IOs adjacent to 6141 * previous IOs in case of sequential IO and thus creates the most 6142 * sequential IO pattern. We don't bother with the optimization when 6143 * reshaping as the performance benefit is not worth the complexity. 6144 */ 6145 if (likely(conf->reshape_progress == MaxSector)) { 6146 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6147 on_wq = false; 6148 } else { 6149 add_wait_queue(&conf->wait_for_reshape, &wait); 6150 on_wq = true; 6151 } 6152 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6153 6154 while (1) { 6155 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6156 bi); 6157 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE) 6158 break; 6159 6160 if (res == STRIPE_RETRY) 6161 continue; 6162 6163 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6164 WARN_ON_ONCE(!on_wq); 6165 /* 6166 * Must release the reference to batch_last before 6167 * scheduling and waiting for work to be done, 6168 * otherwise the batch_last stripe head could prevent 6169 * raid5_activate_delayed() from making progress 6170 * and thus deadlocking. 6171 */ 6172 if (ctx.batch_last) { 6173 raid5_release_stripe(ctx.batch_last); 6174 ctx.batch_last = NULL; 6175 } 6176 6177 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6178 MAX_SCHEDULE_TIMEOUT); 6179 continue; 6180 } 6181 6182 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6183 if (s == stripe_cnt) 6184 break; 6185 6186 logical_sector = ctx.first_sector + 6187 (s << RAID5_STRIPE_SHIFT(conf)); 6188 } 6189 if (unlikely(on_wq)) 6190 remove_wait_queue(&conf->wait_for_reshape, &wait); 6191 6192 if (ctx.batch_last) 6193 raid5_release_stripe(ctx.batch_last); 6194 6195 if (rw == WRITE) 6196 md_write_end(mddev); 6197 if (res == STRIPE_WAIT_RESHAPE) { 6198 md_free_cloned_bio(bi); 6199 return false; 6200 } 6201 6202 bio_endio(bi); 6203 return true; 6204 } 6205 6206 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6207 reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6208 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6209 { 6210 /* reshaping is quite different to recovery/resync so it is 6211 * handled quite separately ... here. 6212 * 6213 * On each call to sync_request, we gather one chunk worth of 6214 * destination stripes and flag them as expanding. 6215 * Then we find all the source stripes and request reads. 6216 * As the reads complete, handle_stripe will copy the data 6217 * into the destination stripe and release that stripe. 6218 */ 6219 struct r5conf *conf = mddev->private; 6220 struct stripe_head *sh; 6221 struct md_rdev *rdev; 6222 sector_t first_sector, last_sector; 6223 int raid_disks = conf->previous_raid_disks; 6224 int data_disks = raid_disks - conf->max_degraded; 6225 int new_data_disks = conf->raid_disks - conf->max_degraded; 6226 int i; 6227 int dd_idx; 6228 sector_t writepos, readpos, safepos; 6229 sector_t stripe_addr; 6230 int reshape_sectors; 6231 struct list_head stripes; 6232 sector_t retn; 6233 6234 if (sector_nr == 0) { 6235 /* If restarting in the middle, skip the initial sectors */ 6236 if (mddev->reshape_backwards && 6237 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6238 sector_nr = raid5_size(mddev, 0, 0) 6239 - conf->reshape_progress; 6240 } else if (mddev->reshape_backwards && 6241 conf->reshape_progress == MaxSector) { 6242 /* shouldn't happen, but just in case, finish up.*/ 6243 sector_nr = MaxSector; 6244 } else if (!mddev->reshape_backwards && 6245 conf->reshape_progress > 0) 6246 sector_nr = conf->reshape_progress; 6247 sector_div(sector_nr, new_data_disks); 6248 if (sector_nr) { 6249 mddev->curr_resync_completed = sector_nr; 6250 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6251 *skipped = 1; 6252 retn = sector_nr; 6253 goto finish; 6254 } 6255 } 6256 6257 /* We need to process a full chunk at a time. 6258 * If old and new chunk sizes differ, we need to process the 6259 * largest of these 6260 */ 6261 6262 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6263 6264 /* We update the metadata at least every 10 seconds, or when 6265 * the data about to be copied would over-write the source of 6266 * the data at the front of the range. i.e. one new_stripe 6267 * along from reshape_progress new_maps to after where 6268 * reshape_safe old_maps to 6269 */ 6270 writepos = conf->reshape_progress; 6271 sector_div(writepos, new_data_disks); 6272 readpos = conf->reshape_progress; 6273 sector_div(readpos, data_disks); 6274 safepos = conf->reshape_safe; 6275 sector_div(safepos, data_disks); 6276 if (mddev->reshape_backwards) { 6277 if (WARN_ON(writepos < reshape_sectors)) 6278 return MaxSector; 6279 6280 writepos -= reshape_sectors; 6281 readpos += reshape_sectors; 6282 safepos += reshape_sectors; 6283 } else { 6284 writepos += reshape_sectors; 6285 /* readpos and safepos are worst-case calculations. 6286 * A negative number is overly pessimistic, and causes 6287 * obvious problems for unsigned storage. So clip to 0. 6288 */ 6289 readpos -= min_t(sector_t, reshape_sectors, readpos); 6290 safepos -= min_t(sector_t, reshape_sectors, safepos); 6291 } 6292 6293 /* Having calculated the 'writepos' possibly use it 6294 * to set 'stripe_addr' which is where we will write to. 6295 */ 6296 if (mddev->reshape_backwards) { 6297 if (WARN_ON(conf->reshape_progress == 0)) 6298 return MaxSector; 6299 6300 stripe_addr = writepos; 6301 if (WARN_ON((mddev->dev_sectors & 6302 ~((sector_t)reshape_sectors - 1)) - 6303 reshape_sectors - stripe_addr != sector_nr)) 6304 return MaxSector; 6305 } else { 6306 if (WARN_ON(writepos != sector_nr + reshape_sectors)) 6307 return MaxSector; 6308 6309 stripe_addr = sector_nr; 6310 } 6311 6312 /* 'writepos' is the most advanced device address we might write. 6313 * 'readpos' is the least advanced device address we might read. 6314 * 'safepos' is the least address recorded in the metadata as having 6315 * been reshaped. 6316 * If there is a min_offset_diff, these are adjusted either by 6317 * increasing the safepos/readpos if diff is negative, or 6318 * increasing writepos if diff is positive. 6319 * If 'readpos' is then behind 'writepos', there is no way that we can 6320 * ensure safety in the face of a crash - that must be done by userspace 6321 * making a backup of the data. So in that case there is no particular 6322 * rush to update metadata. 6323 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6324 * update the metadata to advance 'safepos' to match 'readpos' so that 6325 * we can be safe in the event of a crash. 6326 * So we insist on updating metadata if safepos is behind writepos and 6327 * readpos is beyond writepos. 6328 * In any case, update the metadata every 10 seconds. 6329 * Maybe that number should be configurable, but I'm not sure it is 6330 * worth it.... maybe it could be a multiple of safemode_delay??? 6331 */ 6332 if (conf->min_offset_diff < 0) { 6333 safepos += -conf->min_offset_diff; 6334 readpos += -conf->min_offset_diff; 6335 } else 6336 writepos += conf->min_offset_diff; 6337 6338 if ((mddev->reshape_backwards 6339 ? (safepos > writepos && readpos < writepos) 6340 : (safepos < writepos && readpos > writepos)) || 6341 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6342 /* Cannot proceed until we've updated the superblock... */ 6343 wait_event(conf->wait_for_reshape, 6344 atomic_read(&conf->reshape_stripes)==0 6345 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6346 if (atomic_read(&conf->reshape_stripes) != 0) 6347 return 0; 6348 mddev->reshape_position = conf->reshape_progress; 6349 mddev->curr_resync_completed = sector_nr; 6350 if (!mddev->reshape_backwards) 6351 /* Can update recovery_offset */ 6352 rdev_for_each(rdev, mddev) 6353 if (rdev->raid_disk >= 0 && 6354 !test_bit(Journal, &rdev->flags) && 6355 !test_bit(In_sync, &rdev->flags) && 6356 rdev->recovery_offset < sector_nr) 6357 rdev->recovery_offset = sector_nr; 6358 6359 conf->reshape_checkpoint = jiffies; 6360 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6361 md_wakeup_thread(mddev->thread); 6362 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6363 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6364 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6365 return 0; 6366 spin_lock_irq(&conf->device_lock); 6367 conf->reshape_safe = mddev->reshape_position; 6368 spin_unlock_irq(&conf->device_lock); 6369 wake_up(&conf->wait_for_reshape); 6370 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6371 } 6372 6373 INIT_LIST_HEAD(&stripes); 6374 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6375 int j; 6376 int skipped_disk = 0; 6377 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6378 R5_GAS_NOQUIESCE); 6379 set_bit(STRIPE_EXPANDING, &sh->state); 6380 atomic_inc(&conf->reshape_stripes); 6381 /* If any of this stripe is beyond the end of the old 6382 * array, then we need to zero those blocks 6383 */ 6384 for (j=sh->disks; j--;) { 6385 sector_t s; 6386 if (j == sh->pd_idx) 6387 continue; 6388 if (conf->level == 6 && 6389 j == sh->qd_idx) 6390 continue; 6391 s = raid5_compute_blocknr(sh, j, 0); 6392 if (s < raid5_size(mddev, 0, 0)) { 6393 skipped_disk = 1; 6394 continue; 6395 } 6396 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6397 set_bit(R5_Expanded, &sh->dev[j].flags); 6398 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6399 } 6400 if (!skipped_disk) { 6401 set_bit(STRIPE_EXPAND_READY, &sh->state); 6402 set_bit(STRIPE_HANDLE, &sh->state); 6403 } 6404 list_add(&sh->lru, &stripes); 6405 } 6406 spin_lock_irq(&conf->device_lock); 6407 if (mddev->reshape_backwards) 6408 conf->reshape_progress -= reshape_sectors * new_data_disks; 6409 else 6410 conf->reshape_progress += reshape_sectors * new_data_disks; 6411 spin_unlock_irq(&conf->device_lock); 6412 /* Ok, those stripe are ready. We can start scheduling 6413 * reads on the source stripes. 6414 * The source stripes are determined by mapping the first and last 6415 * block on the destination stripes. 6416 */ 6417 first_sector = 6418 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6419 1, &dd_idx, NULL); 6420 last_sector = 6421 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6422 * new_data_disks - 1), 6423 1, &dd_idx, NULL); 6424 if (last_sector >= mddev->dev_sectors) 6425 last_sector = mddev->dev_sectors - 1; 6426 while (first_sector <= last_sector) { 6427 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6428 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6429 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6430 set_bit(STRIPE_HANDLE, &sh->state); 6431 raid5_release_stripe(sh); 6432 first_sector += RAID5_STRIPE_SECTORS(conf); 6433 } 6434 /* Now that the sources are clearly marked, we can release 6435 * the destination stripes 6436 */ 6437 while (!list_empty(&stripes)) { 6438 sh = list_entry(stripes.next, struct stripe_head, lru); 6439 list_del_init(&sh->lru); 6440 raid5_release_stripe(sh); 6441 } 6442 /* If this takes us to the resync_max point where we have to pause, 6443 * then we need to write out the superblock. 6444 */ 6445 sector_nr += reshape_sectors; 6446 retn = reshape_sectors; 6447 finish: 6448 if (mddev->curr_resync_completed > mddev->resync_max || 6449 (sector_nr - mddev->curr_resync_completed) * 2 6450 >= mddev->resync_max - mddev->curr_resync_completed) { 6451 /* Cannot proceed until we've updated the superblock... */ 6452 wait_event(conf->wait_for_reshape, 6453 atomic_read(&conf->reshape_stripes) == 0 6454 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6455 if (atomic_read(&conf->reshape_stripes) != 0) 6456 goto ret; 6457 mddev->reshape_position = conf->reshape_progress; 6458 mddev->curr_resync_completed = sector_nr; 6459 if (!mddev->reshape_backwards) 6460 /* Can update recovery_offset */ 6461 rdev_for_each(rdev, mddev) 6462 if (rdev->raid_disk >= 0 && 6463 !test_bit(Journal, &rdev->flags) && 6464 !test_bit(In_sync, &rdev->flags) && 6465 rdev->recovery_offset < sector_nr) 6466 rdev->recovery_offset = sector_nr; 6467 conf->reshape_checkpoint = jiffies; 6468 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6469 md_wakeup_thread(mddev->thread); 6470 wait_event(mddev->sb_wait, 6471 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6472 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6473 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6474 goto ret; 6475 spin_lock_irq(&conf->device_lock); 6476 conf->reshape_safe = mddev->reshape_position; 6477 spin_unlock_irq(&conf->device_lock); 6478 wake_up(&conf->wait_for_reshape); 6479 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6480 } 6481 ret: 6482 return retn; 6483 } 6484 raid5_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)6485 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6486 sector_t max_sector, int *skipped) 6487 { 6488 struct r5conf *conf = mddev->private; 6489 struct stripe_head *sh; 6490 sector_t sync_blocks; 6491 bool still_degraded = false; 6492 int i; 6493 6494 if (sector_nr >= max_sector) { 6495 /* just being told to finish up .. nothing much to do */ 6496 6497 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6498 end_reshape(conf); 6499 return 0; 6500 } 6501 6502 if (mddev->curr_resync < max_sector) /* aborted */ 6503 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, 6504 &sync_blocks); 6505 else /* completed sync */ 6506 conf->fullsync = 0; 6507 mddev->bitmap_ops->close_sync(mddev); 6508 6509 return 0; 6510 } 6511 6512 /* Allow raid5_quiesce to complete */ 6513 wait_event(conf->wait_for_reshape, conf->quiesce != 2); 6514 6515 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6516 return reshape_request(mddev, sector_nr, skipped); 6517 6518 /* No need to check resync_max as we never do more than one 6519 * stripe, and as resync_max will always be on a chunk boundary, 6520 * if the check in md_do_sync didn't fire, there is no chance 6521 * of overstepping resync_max here 6522 */ 6523 6524 /* if there is too many failed drives and we are trying 6525 * to resync, then assert that we are finished, because there is 6526 * nothing we can do. 6527 */ 6528 if (mddev->degraded >= conf->max_degraded && 6529 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6530 sector_t rv = mddev->dev_sectors - sector_nr; 6531 *skipped = 1; 6532 return rv; 6533 } 6534 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6535 !conf->fullsync && 6536 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, 6537 true) && 6538 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6539 /* we can skip this block, and probably more */ 6540 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6541 *skipped = 1; 6542 /* keep things rounded to whole stripes */ 6543 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6544 } 6545 6546 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false); 6547 6548 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6549 R5_GAS_NOBLOCK); 6550 if (sh == NULL) { 6551 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6552 /* make sure we don't swamp the stripe cache if someone else 6553 * is trying to get access 6554 */ 6555 schedule_timeout_uninterruptible(1); 6556 } 6557 /* Need to check if array will still be degraded after recovery/resync 6558 * Note in case of > 1 drive failures it's possible we're rebuilding 6559 * one drive while leaving another faulty drive in array. 6560 */ 6561 for (i = 0; i < conf->raid_disks; i++) { 6562 struct md_rdev *rdev = conf->disks[i].rdev; 6563 6564 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6565 still_degraded = true; 6566 } 6567 6568 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, 6569 still_degraded); 6570 6571 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6572 set_bit(STRIPE_HANDLE, &sh->state); 6573 6574 raid5_release_stripe(sh); 6575 6576 return RAID5_STRIPE_SECTORS(conf); 6577 } 6578 retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6579 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6580 unsigned int offset) 6581 { 6582 /* We may not be able to submit a whole bio at once as there 6583 * may not be enough stripe_heads available. 6584 * We cannot pre-allocate enough stripe_heads as we may need 6585 * more than exist in the cache (if we allow ever large chunks). 6586 * So we do one stripe head at a time and record in 6587 * ->bi_hw_segments how many have been done. 6588 * 6589 * We *know* that this entire raid_bio is in one chunk, so 6590 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6591 */ 6592 struct stripe_head *sh; 6593 int dd_idx; 6594 sector_t sector, logical_sector, last_sector; 6595 int scnt = 0; 6596 int handled = 0; 6597 6598 logical_sector = raid_bio->bi_iter.bi_sector & 6599 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6600 sector = raid5_compute_sector(conf, logical_sector, 6601 0, &dd_idx, NULL); 6602 last_sector = bio_end_sector(raid_bio); 6603 6604 for (; logical_sector < last_sector; 6605 logical_sector += RAID5_STRIPE_SECTORS(conf), 6606 sector += RAID5_STRIPE_SECTORS(conf), 6607 scnt++) { 6608 6609 if (scnt < offset) 6610 /* already done this stripe */ 6611 continue; 6612 6613 sh = raid5_get_active_stripe(conf, NULL, sector, 6614 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6615 if (!sh) { 6616 /* failed to get a stripe - must wait */ 6617 conf->retry_read_aligned = raid_bio; 6618 conf->retry_read_offset = scnt; 6619 return handled; 6620 } 6621 6622 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6623 raid5_release_stripe(sh); 6624 conf->retry_read_aligned = raid_bio; 6625 conf->retry_read_offset = scnt; 6626 return handled; 6627 } 6628 6629 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6630 handle_stripe(sh); 6631 raid5_release_stripe(sh); 6632 handled++; 6633 } 6634 6635 bio_endio(raid_bio); 6636 6637 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6638 wake_up(&conf->wait_for_quiescent); 6639 return handled; 6640 } 6641 handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6642 static int handle_active_stripes(struct r5conf *conf, int group, 6643 struct r5worker *worker, 6644 struct list_head *temp_inactive_list) 6645 __must_hold(&conf->device_lock) 6646 { 6647 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6648 int i, batch_size = 0, hash; 6649 bool release_inactive = false; 6650 6651 while (batch_size < MAX_STRIPE_BATCH && 6652 (sh = __get_priority_stripe(conf, group)) != NULL) 6653 batch[batch_size++] = sh; 6654 6655 if (batch_size == 0) { 6656 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6657 if (!list_empty(temp_inactive_list + i)) 6658 break; 6659 if (i == NR_STRIPE_HASH_LOCKS) { 6660 spin_unlock_irq(&conf->device_lock); 6661 log_flush_stripe_to_raid(conf); 6662 spin_lock_irq(&conf->device_lock); 6663 return batch_size; 6664 } 6665 release_inactive = true; 6666 } 6667 spin_unlock_irq(&conf->device_lock); 6668 6669 release_inactive_stripe_list(conf, temp_inactive_list, 6670 NR_STRIPE_HASH_LOCKS); 6671 6672 r5l_flush_stripe_to_raid(conf->log); 6673 if (release_inactive) { 6674 spin_lock_irq(&conf->device_lock); 6675 return 0; 6676 } 6677 6678 for (i = 0; i < batch_size; i++) 6679 handle_stripe(batch[i]); 6680 log_write_stripe_run(conf); 6681 6682 cond_resched(); 6683 6684 spin_lock_irq(&conf->device_lock); 6685 for (i = 0; i < batch_size; i++) { 6686 hash = batch[i]->hash_lock_index; 6687 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6688 } 6689 return batch_size; 6690 } 6691 raid5_do_work(struct work_struct * work)6692 static void raid5_do_work(struct work_struct *work) 6693 { 6694 struct r5worker *worker = container_of(work, struct r5worker, work); 6695 struct r5worker_group *group = worker->group; 6696 struct r5conf *conf = group->conf; 6697 struct mddev *mddev = conf->mddev; 6698 int group_id = group - conf->worker_groups; 6699 int handled; 6700 struct blk_plug plug; 6701 6702 pr_debug("+++ raid5worker active\n"); 6703 6704 blk_start_plug(&plug); 6705 handled = 0; 6706 spin_lock_irq(&conf->device_lock); 6707 while (1) { 6708 int batch_size, released; 6709 6710 released = release_stripe_list(conf, worker->temp_inactive_list); 6711 6712 batch_size = handle_active_stripes(conf, group_id, worker, 6713 worker->temp_inactive_list); 6714 worker->working = false; 6715 if (!batch_size && !released) 6716 break; 6717 handled += batch_size; 6718 wait_event_lock_irq(mddev->sb_wait, 6719 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6720 conf->device_lock); 6721 } 6722 pr_debug("%d stripes handled\n", handled); 6723 6724 spin_unlock_irq(&conf->device_lock); 6725 6726 flush_deferred_bios(conf); 6727 6728 r5l_flush_stripe_to_raid(conf->log); 6729 6730 async_tx_issue_pending_all(); 6731 blk_finish_plug(&plug); 6732 6733 pr_debug("--- raid5worker inactive\n"); 6734 } 6735 6736 /* 6737 * This is our raid5 kernel thread. 6738 * 6739 * We scan the hash table for stripes which can be handled now. 6740 * During the scan, completed stripes are saved for us by the interrupt 6741 * handler, so that they will not have to wait for our next wakeup. 6742 */ raid5d(struct md_thread * thread)6743 static void raid5d(struct md_thread *thread) 6744 { 6745 struct mddev *mddev = thread->mddev; 6746 struct r5conf *conf = mddev->private; 6747 int handled; 6748 struct blk_plug plug; 6749 6750 pr_debug("+++ raid5d active\n"); 6751 6752 md_check_recovery(mddev); 6753 6754 blk_start_plug(&plug); 6755 handled = 0; 6756 spin_lock_irq(&conf->device_lock); 6757 while (1) { 6758 struct bio *bio; 6759 int batch_size, released; 6760 unsigned int offset; 6761 6762 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6763 break; 6764 6765 released = release_stripe_list(conf, conf->temp_inactive_list); 6766 if (released) 6767 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6768 6769 if ( 6770 !list_empty(&conf->bitmap_list)) { 6771 /* Now is a good time to flush some bitmap updates */ 6772 conf->seq_flush++; 6773 spin_unlock_irq(&conf->device_lock); 6774 mddev->bitmap_ops->unplug(mddev, true); 6775 spin_lock_irq(&conf->device_lock); 6776 conf->seq_write = conf->seq_flush; 6777 activate_bit_delay(conf, conf->temp_inactive_list); 6778 } 6779 raid5_activate_delayed(conf); 6780 6781 while ((bio = remove_bio_from_retry(conf, &offset))) { 6782 int ok; 6783 spin_unlock_irq(&conf->device_lock); 6784 ok = retry_aligned_read(conf, bio, offset); 6785 spin_lock_irq(&conf->device_lock); 6786 if (!ok) 6787 break; 6788 handled++; 6789 } 6790 6791 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6792 conf->temp_inactive_list); 6793 if (!batch_size && !released) 6794 break; 6795 handled += batch_size; 6796 6797 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6798 spin_unlock_irq(&conf->device_lock); 6799 md_check_recovery(mddev); 6800 spin_lock_irq(&conf->device_lock); 6801 } 6802 } 6803 pr_debug("%d stripes handled\n", handled); 6804 6805 spin_unlock_irq(&conf->device_lock); 6806 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6807 mutex_trylock(&conf->cache_size_mutex)) { 6808 grow_one_stripe(conf, __GFP_NOWARN); 6809 /* Set flag even if allocation failed. This helps 6810 * slow down allocation requests when mem is short 6811 */ 6812 set_bit(R5_DID_ALLOC, &conf->cache_state); 6813 mutex_unlock(&conf->cache_size_mutex); 6814 } 6815 6816 flush_deferred_bios(conf); 6817 6818 r5l_flush_stripe_to_raid(conf->log); 6819 6820 async_tx_issue_pending_all(); 6821 blk_finish_plug(&plug); 6822 6823 pr_debug("--- raid5d inactive\n"); 6824 } 6825 6826 static ssize_t raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6827 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6828 { 6829 struct r5conf *conf; 6830 int ret = 0; 6831 spin_lock(&mddev->lock); 6832 conf = mddev->private; 6833 if (conf) 6834 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6835 spin_unlock(&mddev->lock); 6836 return ret; 6837 } 6838 6839 int raid5_set_cache_size(struct mddev * mddev,int size)6840 raid5_set_cache_size(struct mddev *mddev, int size) 6841 { 6842 int result = 0; 6843 struct r5conf *conf = mddev->private; 6844 6845 if (size <= 16 || size > 32768) 6846 return -EINVAL; 6847 6848 WRITE_ONCE(conf->min_nr_stripes, size); 6849 mutex_lock(&conf->cache_size_mutex); 6850 while (size < conf->max_nr_stripes && 6851 drop_one_stripe(conf)) 6852 ; 6853 mutex_unlock(&conf->cache_size_mutex); 6854 6855 md_allow_write(mddev); 6856 6857 mutex_lock(&conf->cache_size_mutex); 6858 while (size > conf->max_nr_stripes) 6859 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6860 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes); 6861 result = -ENOMEM; 6862 break; 6863 } 6864 mutex_unlock(&conf->cache_size_mutex); 6865 6866 return result; 6867 } 6868 EXPORT_SYMBOL(raid5_set_cache_size); 6869 6870 static ssize_t raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6871 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6872 { 6873 struct r5conf *conf; 6874 unsigned long new; 6875 int err; 6876 6877 if (len >= PAGE_SIZE) 6878 return -EINVAL; 6879 if (kstrtoul(page, 10, &new)) 6880 return -EINVAL; 6881 err = mddev_lock(mddev); 6882 if (err) 6883 return err; 6884 conf = mddev->private; 6885 if (!conf) 6886 err = -ENODEV; 6887 else 6888 err = raid5_set_cache_size(mddev, new); 6889 mddev_unlock(mddev); 6890 6891 return err ?: len; 6892 } 6893 6894 static struct md_sysfs_entry 6895 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6896 raid5_show_stripe_cache_size, 6897 raid5_store_stripe_cache_size); 6898 6899 static ssize_t raid5_show_rmw_level(struct mddev * mddev,char * page)6900 raid5_show_rmw_level(struct mddev *mddev, char *page) 6901 { 6902 struct r5conf *conf = mddev->private; 6903 if (conf) 6904 return sprintf(page, "%d\n", conf->rmw_level); 6905 else 6906 return 0; 6907 } 6908 6909 static ssize_t raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6910 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6911 { 6912 struct r5conf *conf = mddev->private; 6913 unsigned long new; 6914 6915 if (!conf) 6916 return -ENODEV; 6917 6918 if (len >= PAGE_SIZE) 6919 return -EINVAL; 6920 6921 if (kstrtoul(page, 10, &new)) 6922 return -EINVAL; 6923 6924 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6925 return -EINVAL; 6926 6927 if (new != PARITY_DISABLE_RMW && 6928 new != PARITY_ENABLE_RMW && 6929 new != PARITY_PREFER_RMW) 6930 return -EINVAL; 6931 6932 conf->rmw_level = new; 6933 return len; 6934 } 6935 6936 static struct md_sysfs_entry 6937 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6938 raid5_show_rmw_level, 6939 raid5_store_rmw_level); 6940 6941 static ssize_t raid5_show_stripe_size(struct mddev * mddev,char * page)6942 raid5_show_stripe_size(struct mddev *mddev, char *page) 6943 { 6944 struct r5conf *conf; 6945 int ret = 0; 6946 6947 spin_lock(&mddev->lock); 6948 conf = mddev->private; 6949 if (conf) 6950 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6951 spin_unlock(&mddev->lock); 6952 return ret; 6953 } 6954 6955 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6956 static ssize_t raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6957 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6958 { 6959 struct r5conf *conf; 6960 unsigned long new; 6961 int err; 6962 int size; 6963 6964 if (len >= PAGE_SIZE) 6965 return -EINVAL; 6966 if (kstrtoul(page, 10, &new)) 6967 return -EINVAL; 6968 6969 /* 6970 * The value should not be bigger than PAGE_SIZE. It requires to 6971 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6972 * of two. 6973 */ 6974 if (new % DEFAULT_STRIPE_SIZE != 0 || 6975 new > PAGE_SIZE || new == 0 || 6976 new != roundup_pow_of_two(new)) 6977 return -EINVAL; 6978 6979 err = mddev_suspend_and_lock(mddev); 6980 if (err) 6981 return err; 6982 6983 conf = mddev->private; 6984 if (!conf) { 6985 err = -ENODEV; 6986 goto out_unlock; 6987 } 6988 6989 if (new == conf->stripe_size) 6990 goto out_unlock; 6991 6992 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6993 conf->stripe_size, new); 6994 6995 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6996 mddev->reshape_position != MaxSector || mddev->sysfs_active) { 6997 err = -EBUSY; 6998 goto out_unlock; 6999 } 7000 7001 mutex_lock(&conf->cache_size_mutex); 7002 size = conf->max_nr_stripes; 7003 7004 shrink_stripes(conf); 7005 7006 conf->stripe_size = new; 7007 conf->stripe_shift = ilog2(new) - 9; 7008 conf->stripe_sectors = new >> 9; 7009 if (grow_stripes(conf, size)) { 7010 pr_warn("md/raid:%s: couldn't allocate buffers\n", 7011 mdname(mddev)); 7012 err = -ENOMEM; 7013 } 7014 mutex_unlock(&conf->cache_size_mutex); 7015 7016 out_unlock: 7017 mddev_unlock_and_resume(mddev); 7018 return err ?: len; 7019 } 7020 7021 static struct md_sysfs_entry 7022 raid5_stripe_size = __ATTR(stripe_size, 0644, 7023 raid5_show_stripe_size, 7024 raid5_store_stripe_size); 7025 #else 7026 static struct md_sysfs_entry 7027 raid5_stripe_size = __ATTR(stripe_size, 0444, 7028 raid5_show_stripe_size, 7029 NULL); 7030 #endif 7031 7032 static ssize_t raid5_show_preread_threshold(struct mddev * mddev,char * page)7033 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7034 { 7035 struct r5conf *conf; 7036 int ret = 0; 7037 spin_lock(&mddev->lock); 7038 conf = mddev->private; 7039 if (conf) 7040 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7041 spin_unlock(&mddev->lock); 7042 return ret; 7043 } 7044 7045 static ssize_t raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7046 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7047 { 7048 struct r5conf *conf; 7049 unsigned long new; 7050 int err; 7051 7052 if (len >= PAGE_SIZE) 7053 return -EINVAL; 7054 if (kstrtoul(page, 10, &new)) 7055 return -EINVAL; 7056 7057 err = mddev_lock(mddev); 7058 if (err) 7059 return err; 7060 conf = mddev->private; 7061 if (!conf) 7062 err = -ENODEV; 7063 else if (new > conf->min_nr_stripes) 7064 err = -EINVAL; 7065 else 7066 conf->bypass_threshold = new; 7067 mddev_unlock(mddev); 7068 return err ?: len; 7069 } 7070 7071 static struct md_sysfs_entry 7072 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7073 S_IRUGO | S_IWUSR, 7074 raid5_show_preread_threshold, 7075 raid5_store_preread_threshold); 7076 7077 static ssize_t raid5_show_skip_copy(struct mddev * mddev,char * page)7078 raid5_show_skip_copy(struct mddev *mddev, char *page) 7079 { 7080 struct r5conf *conf; 7081 int ret = 0; 7082 spin_lock(&mddev->lock); 7083 conf = mddev->private; 7084 if (conf) 7085 ret = sprintf(page, "%d\n", conf->skip_copy); 7086 spin_unlock(&mddev->lock); 7087 return ret; 7088 } 7089 7090 static ssize_t raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7091 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7092 { 7093 struct r5conf *conf; 7094 unsigned long new; 7095 int err; 7096 7097 if (len >= PAGE_SIZE) 7098 return -EINVAL; 7099 if (kstrtoul(page, 10, &new)) 7100 return -EINVAL; 7101 new = !!new; 7102 7103 err = mddev_suspend_and_lock(mddev); 7104 if (err) 7105 return err; 7106 conf = mddev->private; 7107 if (!conf) 7108 err = -ENODEV; 7109 else if (new != conf->skip_copy) { 7110 struct request_queue *q = mddev->gendisk->queue; 7111 struct queue_limits lim = queue_limits_start_update(q); 7112 7113 conf->skip_copy = new; 7114 if (new) 7115 lim.features |= BLK_FEAT_STABLE_WRITES; 7116 else 7117 lim.features &= ~BLK_FEAT_STABLE_WRITES; 7118 err = queue_limits_commit_update(q, &lim); 7119 } 7120 mddev_unlock_and_resume(mddev); 7121 return err ?: len; 7122 } 7123 7124 static struct md_sysfs_entry 7125 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7126 raid5_show_skip_copy, 7127 raid5_store_skip_copy); 7128 7129 static ssize_t stripe_cache_active_show(struct mddev * mddev,char * page)7130 stripe_cache_active_show(struct mddev *mddev, char *page) 7131 { 7132 struct r5conf *conf = mddev->private; 7133 if (conf) 7134 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7135 else 7136 return 0; 7137 } 7138 7139 static struct md_sysfs_entry 7140 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7141 7142 static ssize_t raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7143 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7144 { 7145 struct r5conf *conf; 7146 int ret = 0; 7147 spin_lock(&mddev->lock); 7148 conf = mddev->private; 7149 if (conf) 7150 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7151 spin_unlock(&mddev->lock); 7152 return ret; 7153 } 7154 7155 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7156 int *group_cnt, 7157 struct r5worker_group **worker_groups); 7158 static ssize_t raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7159 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7160 { 7161 struct r5conf *conf; 7162 unsigned int new; 7163 int err; 7164 struct r5worker_group *new_groups, *old_groups; 7165 int group_cnt; 7166 7167 if (len >= PAGE_SIZE) 7168 return -EINVAL; 7169 if (kstrtouint(page, 10, &new)) 7170 return -EINVAL; 7171 /* 8192 should be big enough */ 7172 if (new > 8192) 7173 return -EINVAL; 7174 7175 err = mddev_suspend_and_lock(mddev); 7176 if (err) 7177 return err; 7178 raid5_quiesce(mddev, true); 7179 7180 conf = mddev->private; 7181 if (!conf) 7182 err = -ENODEV; 7183 else if (new != conf->worker_cnt_per_group) { 7184 old_groups = conf->worker_groups; 7185 if (old_groups) 7186 flush_workqueue(raid5_wq); 7187 7188 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7189 if (!err) { 7190 spin_lock_irq(&conf->device_lock); 7191 conf->group_cnt = group_cnt; 7192 conf->worker_cnt_per_group = new; 7193 conf->worker_groups = new_groups; 7194 spin_unlock_irq(&conf->device_lock); 7195 7196 if (old_groups) 7197 kfree(old_groups[0].workers); 7198 kfree(old_groups); 7199 } 7200 } 7201 7202 raid5_quiesce(mddev, false); 7203 mddev_unlock_and_resume(mddev); 7204 7205 return err ?: len; 7206 } 7207 7208 static struct md_sysfs_entry 7209 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7210 raid5_show_group_thread_cnt, 7211 raid5_store_group_thread_cnt); 7212 7213 static struct attribute *raid5_attrs[] = { 7214 &raid5_stripecache_size.attr, 7215 &raid5_stripecache_active.attr, 7216 &raid5_preread_bypass_threshold.attr, 7217 &raid5_group_thread_cnt.attr, 7218 &raid5_skip_copy.attr, 7219 &raid5_rmw_level.attr, 7220 &raid5_stripe_size.attr, 7221 &r5c_journal_mode.attr, 7222 &ppl_write_hint.attr, 7223 NULL, 7224 }; 7225 static const struct attribute_group raid5_attrs_group = { 7226 .name = NULL, 7227 .attrs = raid5_attrs, 7228 }; 7229 alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7230 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7231 struct r5worker_group **worker_groups) 7232 { 7233 int i, j, k; 7234 ssize_t size; 7235 struct r5worker *workers; 7236 7237 if (cnt == 0) { 7238 *group_cnt = 0; 7239 *worker_groups = NULL; 7240 return 0; 7241 } 7242 *group_cnt = num_possible_nodes(); 7243 size = sizeof(struct r5worker) * cnt; 7244 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7245 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7246 GFP_NOIO); 7247 if (!*worker_groups || !workers) { 7248 kfree(workers); 7249 kfree(*worker_groups); 7250 return -ENOMEM; 7251 } 7252 7253 for (i = 0; i < *group_cnt; i++) { 7254 struct r5worker_group *group; 7255 7256 group = &(*worker_groups)[i]; 7257 INIT_LIST_HEAD(&group->handle_list); 7258 INIT_LIST_HEAD(&group->loprio_list); 7259 group->conf = conf; 7260 group->workers = workers + i * cnt; 7261 7262 for (j = 0; j < cnt; j++) { 7263 struct r5worker *worker = group->workers + j; 7264 worker->group = group; 7265 INIT_WORK(&worker->work, raid5_do_work); 7266 7267 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7268 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7269 } 7270 } 7271 7272 return 0; 7273 } 7274 free_thread_groups(struct r5conf * conf)7275 static void free_thread_groups(struct r5conf *conf) 7276 { 7277 if (conf->worker_groups) 7278 kfree(conf->worker_groups[0].workers); 7279 kfree(conf->worker_groups); 7280 conf->worker_groups = NULL; 7281 } 7282 7283 static sector_t raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7284 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7285 { 7286 struct r5conf *conf = mddev->private; 7287 7288 if (!sectors) 7289 sectors = mddev->dev_sectors; 7290 if (!raid_disks) 7291 /* size is defined by the smallest of previous and new size */ 7292 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7293 7294 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7295 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7296 return sectors * (raid_disks - conf->max_degraded); 7297 } 7298 free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7299 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7300 { 7301 safe_put_page(percpu->spare_page); 7302 percpu->spare_page = NULL; 7303 kvfree(percpu->scribble); 7304 percpu->scribble = NULL; 7305 } 7306 alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7307 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7308 { 7309 if (conf->level == 6 && !percpu->spare_page) { 7310 percpu->spare_page = alloc_page(GFP_KERNEL); 7311 if (!percpu->spare_page) 7312 return -ENOMEM; 7313 } 7314 7315 if (scribble_alloc(percpu, 7316 max(conf->raid_disks, 7317 conf->previous_raid_disks), 7318 max(conf->chunk_sectors, 7319 conf->prev_chunk_sectors) 7320 / RAID5_STRIPE_SECTORS(conf))) { 7321 free_scratch_buffer(conf, percpu); 7322 return -ENOMEM; 7323 } 7324 7325 local_lock_init(&percpu->lock); 7326 return 0; 7327 } 7328 raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7329 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7330 { 7331 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7332 7333 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7334 return 0; 7335 } 7336 raid5_free_percpu(struct r5conf * conf)7337 static void raid5_free_percpu(struct r5conf *conf) 7338 { 7339 if (!conf->percpu) 7340 return; 7341 7342 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7343 free_percpu(conf->percpu); 7344 } 7345 free_conf(struct r5conf * conf)7346 static void free_conf(struct r5conf *conf) 7347 { 7348 int i; 7349 7350 log_exit(conf); 7351 7352 shrinker_free(conf->shrinker); 7353 free_thread_groups(conf); 7354 shrink_stripes(conf); 7355 raid5_free_percpu(conf); 7356 for (i = 0; i < conf->pool_size; i++) 7357 if (conf->disks[i].extra_page) 7358 put_page(conf->disks[i].extra_page); 7359 kfree(conf->disks); 7360 bioset_exit(&conf->bio_split); 7361 kfree(conf->stripe_hashtbl); 7362 kfree(conf->pending_data); 7363 kfree(conf); 7364 } 7365 raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7366 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7367 { 7368 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7369 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7370 7371 if (alloc_scratch_buffer(conf, percpu)) { 7372 pr_warn("%s: failed memory allocation for cpu%u\n", 7373 __func__, cpu); 7374 return -ENOMEM; 7375 } 7376 return 0; 7377 } 7378 raid5_alloc_percpu(struct r5conf * conf)7379 static int raid5_alloc_percpu(struct r5conf *conf) 7380 { 7381 int err = 0; 7382 7383 conf->percpu = alloc_percpu(struct raid5_percpu); 7384 if (!conf->percpu) 7385 return -ENOMEM; 7386 7387 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7388 if (!err) { 7389 conf->scribble_disks = max(conf->raid_disks, 7390 conf->previous_raid_disks); 7391 conf->scribble_sectors = max(conf->chunk_sectors, 7392 conf->prev_chunk_sectors); 7393 } 7394 return err; 7395 } 7396 raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7397 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7398 struct shrink_control *sc) 7399 { 7400 struct r5conf *conf = shrink->private_data; 7401 unsigned long ret = SHRINK_STOP; 7402 7403 if (mutex_trylock(&conf->cache_size_mutex)) { 7404 ret= 0; 7405 while (ret < sc->nr_to_scan && 7406 conf->max_nr_stripes > conf->min_nr_stripes) { 7407 if (drop_one_stripe(conf) == 0) { 7408 ret = SHRINK_STOP; 7409 break; 7410 } 7411 ret++; 7412 } 7413 mutex_unlock(&conf->cache_size_mutex); 7414 } 7415 return ret; 7416 } 7417 raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7418 static unsigned long raid5_cache_count(struct shrinker *shrink, 7419 struct shrink_control *sc) 7420 { 7421 struct r5conf *conf = shrink->private_data; 7422 int max_stripes = READ_ONCE(conf->max_nr_stripes); 7423 int min_stripes = READ_ONCE(conf->min_nr_stripes); 7424 7425 if (max_stripes < min_stripes) 7426 /* unlikely, but not impossible */ 7427 return 0; 7428 return max_stripes - min_stripes; 7429 } 7430 setup_conf(struct mddev * mddev)7431 static struct r5conf *setup_conf(struct mddev *mddev) 7432 { 7433 struct r5conf *conf; 7434 int raid_disk, memory, max_disks; 7435 struct md_rdev *rdev; 7436 struct disk_info *disk; 7437 char pers_name[6]; 7438 int i; 7439 int group_cnt; 7440 struct r5worker_group *new_group; 7441 int ret = -ENOMEM; 7442 7443 if (mddev->new_level != 5 7444 && mddev->new_level != 4 7445 && mddev->new_level != 6) { 7446 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7447 mdname(mddev), mddev->new_level); 7448 return ERR_PTR(-EIO); 7449 } 7450 if ((mddev->new_level == 5 7451 && !algorithm_valid_raid5(mddev->new_layout)) || 7452 (mddev->new_level == 6 7453 && !algorithm_valid_raid6(mddev->new_layout))) { 7454 pr_warn("md/raid:%s: layout %d not supported\n", 7455 mdname(mddev), mddev->new_layout); 7456 return ERR_PTR(-EIO); 7457 } 7458 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7459 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7460 mdname(mddev), mddev->raid_disks); 7461 return ERR_PTR(-EINVAL); 7462 } 7463 7464 if (!mddev->new_chunk_sectors || 7465 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7466 !is_power_of_2(mddev->new_chunk_sectors)) { 7467 pr_warn("md/raid:%s: invalid chunk size %d\n", 7468 mdname(mddev), mddev->new_chunk_sectors << 9); 7469 return ERR_PTR(-EINVAL); 7470 } 7471 7472 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7473 if (conf == NULL) 7474 goto abort; 7475 7476 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7477 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7478 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7479 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7480 #endif 7481 INIT_LIST_HEAD(&conf->free_list); 7482 INIT_LIST_HEAD(&conf->pending_list); 7483 conf->pending_data = kcalloc(PENDING_IO_MAX, 7484 sizeof(struct r5pending_data), 7485 GFP_KERNEL); 7486 if (!conf->pending_data) 7487 goto abort; 7488 for (i = 0; i < PENDING_IO_MAX; i++) 7489 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7490 /* Don't enable multi-threading by default*/ 7491 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7492 conf->group_cnt = group_cnt; 7493 conf->worker_cnt_per_group = 0; 7494 conf->worker_groups = new_group; 7495 } else 7496 goto abort; 7497 spin_lock_init(&conf->device_lock); 7498 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7499 mutex_init(&conf->cache_size_mutex); 7500 7501 init_waitqueue_head(&conf->wait_for_quiescent); 7502 init_waitqueue_head(&conf->wait_for_stripe); 7503 init_waitqueue_head(&conf->wait_for_reshape); 7504 INIT_LIST_HEAD(&conf->handle_list); 7505 INIT_LIST_HEAD(&conf->loprio_list); 7506 INIT_LIST_HEAD(&conf->hold_list); 7507 INIT_LIST_HEAD(&conf->delayed_list); 7508 INIT_LIST_HEAD(&conf->bitmap_list); 7509 init_llist_head(&conf->released_stripes); 7510 atomic_set(&conf->active_stripes, 0); 7511 atomic_set(&conf->preread_active_stripes, 0); 7512 atomic_set(&conf->active_aligned_reads, 0); 7513 spin_lock_init(&conf->pending_bios_lock); 7514 conf->batch_bio_dispatch = true; 7515 rdev_for_each(rdev, mddev) { 7516 if (test_bit(Journal, &rdev->flags)) 7517 continue; 7518 if (bdev_nonrot(rdev->bdev)) { 7519 conf->batch_bio_dispatch = false; 7520 break; 7521 } 7522 } 7523 7524 conf->bypass_threshold = BYPASS_THRESHOLD; 7525 conf->recovery_disabled = mddev->recovery_disabled - 1; 7526 7527 conf->raid_disks = mddev->raid_disks; 7528 if (mddev->reshape_position == MaxSector) 7529 conf->previous_raid_disks = mddev->raid_disks; 7530 else 7531 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7532 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7533 7534 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7535 GFP_KERNEL); 7536 7537 if (!conf->disks) 7538 goto abort; 7539 7540 for (i = 0; i < max_disks; i++) { 7541 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7542 if (!conf->disks[i].extra_page) 7543 goto abort; 7544 } 7545 7546 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7547 if (ret) 7548 goto abort; 7549 conf->mddev = mddev; 7550 7551 ret = -ENOMEM; 7552 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7553 if (!conf->stripe_hashtbl) 7554 goto abort; 7555 7556 /* We init hash_locks[0] separately to that it can be used 7557 * as the reference lock in the spin_lock_nest_lock() call 7558 * in lock_all_device_hash_locks_irq in order to convince 7559 * lockdep that we know what we are doing. 7560 */ 7561 spin_lock_init(conf->hash_locks); 7562 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7563 spin_lock_init(conf->hash_locks + i); 7564 7565 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7566 INIT_LIST_HEAD(conf->inactive_list + i); 7567 7568 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7569 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7570 7571 atomic_set(&conf->r5c_cached_full_stripes, 0); 7572 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7573 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7574 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7575 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7576 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7577 7578 conf->level = mddev->new_level; 7579 conf->chunk_sectors = mddev->new_chunk_sectors; 7580 ret = raid5_alloc_percpu(conf); 7581 if (ret) 7582 goto abort; 7583 7584 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7585 7586 ret = -EIO; 7587 rdev_for_each(rdev, mddev) { 7588 raid_disk = rdev->raid_disk; 7589 if (raid_disk >= max_disks 7590 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7591 continue; 7592 disk = conf->disks + raid_disk; 7593 7594 if (test_bit(Replacement, &rdev->flags)) { 7595 if (disk->replacement) 7596 goto abort; 7597 disk->replacement = rdev; 7598 } else { 7599 if (disk->rdev) 7600 goto abort; 7601 disk->rdev = rdev; 7602 } 7603 7604 if (test_bit(In_sync, &rdev->flags)) { 7605 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7606 mdname(mddev), rdev->bdev, raid_disk); 7607 } else if (rdev->saved_raid_disk != raid_disk) 7608 /* Cannot rely on bitmap to complete recovery */ 7609 conf->fullsync = 1; 7610 } 7611 7612 conf->level = mddev->new_level; 7613 if (conf->level == 6) { 7614 conf->max_degraded = 2; 7615 if (raid6_call.xor_syndrome) 7616 conf->rmw_level = PARITY_ENABLE_RMW; 7617 else 7618 conf->rmw_level = PARITY_DISABLE_RMW; 7619 } else { 7620 conf->max_degraded = 1; 7621 conf->rmw_level = PARITY_ENABLE_RMW; 7622 } 7623 conf->algorithm = mddev->new_layout; 7624 conf->reshape_progress = mddev->reshape_position; 7625 if (conf->reshape_progress != MaxSector) { 7626 conf->prev_chunk_sectors = mddev->chunk_sectors; 7627 conf->prev_algo = mddev->layout; 7628 } else { 7629 conf->prev_chunk_sectors = conf->chunk_sectors; 7630 conf->prev_algo = conf->algorithm; 7631 } 7632 7633 conf->min_nr_stripes = NR_STRIPES; 7634 if (mddev->reshape_position != MaxSector) { 7635 int stripes = max_t(int, 7636 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7637 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7638 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7639 if (conf->min_nr_stripes != NR_STRIPES) 7640 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7641 mdname(mddev), conf->min_nr_stripes); 7642 } 7643 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7644 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7645 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7646 if (grow_stripes(conf, conf->min_nr_stripes)) { 7647 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7648 mdname(mddev), memory); 7649 ret = -ENOMEM; 7650 goto abort; 7651 } else 7652 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7653 /* 7654 * Losing a stripe head costs more than the time to refill it, 7655 * it reduces the queue depth and so can hurt throughput. 7656 * So set it rather large, scaled by number of devices. 7657 */ 7658 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev)); 7659 if (!conf->shrinker) { 7660 ret = -ENOMEM; 7661 pr_warn("md/raid:%s: couldn't allocate shrinker.\n", 7662 mdname(mddev)); 7663 goto abort; 7664 } 7665 7666 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7667 conf->shrinker->scan_objects = raid5_cache_scan; 7668 conf->shrinker->count_objects = raid5_cache_count; 7669 conf->shrinker->batch = 128; 7670 conf->shrinker->private_data = conf; 7671 7672 shrinker_register(conf->shrinker); 7673 7674 sprintf(pers_name, "raid%d", mddev->new_level); 7675 rcu_assign_pointer(conf->thread, 7676 md_register_thread(raid5d, mddev, pers_name)); 7677 if (!conf->thread) { 7678 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7679 mdname(mddev)); 7680 ret = -ENOMEM; 7681 goto abort; 7682 } 7683 7684 return conf; 7685 7686 abort: 7687 if (conf) 7688 free_conf(conf); 7689 return ERR_PTR(ret); 7690 } 7691 only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7692 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7693 { 7694 switch (algo) { 7695 case ALGORITHM_PARITY_0: 7696 if (raid_disk < max_degraded) 7697 return 1; 7698 break; 7699 case ALGORITHM_PARITY_N: 7700 if (raid_disk >= raid_disks - max_degraded) 7701 return 1; 7702 break; 7703 case ALGORITHM_PARITY_0_6: 7704 if (raid_disk == 0 || 7705 raid_disk == raid_disks - 1) 7706 return 1; 7707 break; 7708 case ALGORITHM_LEFT_ASYMMETRIC_6: 7709 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7710 case ALGORITHM_LEFT_SYMMETRIC_6: 7711 case ALGORITHM_RIGHT_SYMMETRIC_6: 7712 if (raid_disk == raid_disks - 1) 7713 return 1; 7714 } 7715 return 0; 7716 } 7717 raid5_set_limits(struct mddev * mddev)7718 static int raid5_set_limits(struct mddev *mddev) 7719 { 7720 struct r5conf *conf = mddev->private; 7721 struct queue_limits lim; 7722 int data_disks, stripe; 7723 struct md_rdev *rdev; 7724 7725 /* 7726 * The read-ahead size must cover two whole stripes, which is 7727 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices. 7728 */ 7729 data_disks = conf->previous_raid_disks - conf->max_degraded; 7730 7731 /* 7732 * We can only discard a whole stripe. It doesn't make sense to 7733 * discard data disk but write parity disk 7734 */ 7735 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9)); 7736 7737 md_init_stacking_limits(&lim); 7738 lim.io_min = mddev->chunk_sectors << 9; 7739 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded); 7740 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE; 7741 lim.discard_granularity = stripe; 7742 lim.max_write_zeroes_sectors = 0; 7743 mddev_stack_rdev_limits(mddev, &lim, 0); 7744 rdev_for_each(rdev, mddev) 7745 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset, 7746 mddev->gendisk->disk_name); 7747 7748 /* 7749 * Zeroing is required for discard, otherwise data could be lost. 7750 * 7751 * Consider a scenario: discard a stripe (the stripe could be 7752 * inconsistent if discard_zeroes_data is 0); write one disk of the 7753 * stripe (the stripe could be inconsistent again depending on which 7754 * disks are used to calculate parity); the disk is broken; The stripe 7755 * data of this disk is lost. 7756 * 7757 * We only allow DISCARD if the sysadmin has confirmed that only safe 7758 * devices are in use by setting a module parameter. A better idea 7759 * might be to turn DISCARD into WRITE_ZEROES requests, as that is 7760 * required to be safe. 7761 */ 7762 if (!devices_handle_discard_safely || 7763 lim.max_discard_sectors < (stripe >> 9) || 7764 lim.discard_granularity < stripe) 7765 lim.max_hw_discard_sectors = 0; 7766 7767 /* 7768 * Requests require having a bitmap for each stripe. 7769 * Limit the max sectors based on this. 7770 */ 7771 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf); 7772 7773 /* No restrictions on the number of segments in the request */ 7774 lim.max_segments = USHRT_MAX; 7775 7776 return queue_limits_set(mddev->gendisk->queue, &lim); 7777 } 7778 raid5_run(struct mddev * mddev)7779 static int raid5_run(struct mddev *mddev) 7780 { 7781 struct r5conf *conf; 7782 int dirty_parity_disks = 0; 7783 struct md_rdev *rdev; 7784 struct md_rdev *journal_dev = NULL; 7785 sector_t reshape_offset = 0; 7786 int i; 7787 long long min_offset_diff = 0; 7788 int first = 1; 7789 int ret = -EIO; 7790 7791 if (mddev->recovery_cp != MaxSector) 7792 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7793 mdname(mddev)); 7794 7795 rdev_for_each(rdev, mddev) { 7796 long long diff; 7797 7798 if (test_bit(Journal, &rdev->flags)) { 7799 journal_dev = rdev; 7800 continue; 7801 } 7802 if (rdev->raid_disk < 0) 7803 continue; 7804 diff = (rdev->new_data_offset - rdev->data_offset); 7805 if (first) { 7806 min_offset_diff = diff; 7807 first = 0; 7808 } else if (mddev->reshape_backwards && 7809 diff < min_offset_diff) 7810 min_offset_diff = diff; 7811 else if (!mddev->reshape_backwards && 7812 diff > min_offset_diff) 7813 min_offset_diff = diff; 7814 } 7815 7816 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7817 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7818 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7819 mdname(mddev)); 7820 return -EINVAL; 7821 } 7822 7823 if (mddev->reshape_position != MaxSector) { 7824 /* Check that we can continue the reshape. 7825 * Difficulties arise if the stripe we would write to 7826 * next is at or after the stripe we would read from next. 7827 * For a reshape that changes the number of devices, this 7828 * is only possible for a very short time, and mdadm makes 7829 * sure that time appears to have past before assembling 7830 * the array. So we fail if that time hasn't passed. 7831 * For a reshape that keeps the number of devices the same 7832 * mdadm must be monitoring the reshape can keeping the 7833 * critical areas read-only and backed up. It will start 7834 * the array in read-only mode, so we check for that. 7835 */ 7836 sector_t here_new, here_old; 7837 int old_disks; 7838 int max_degraded = (mddev->level == 6 ? 2 : 1); 7839 int chunk_sectors; 7840 int new_data_disks; 7841 7842 if (journal_dev) { 7843 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7844 mdname(mddev)); 7845 return -EINVAL; 7846 } 7847 7848 if (mddev->new_level != mddev->level) { 7849 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7850 mdname(mddev)); 7851 return -EINVAL; 7852 } 7853 old_disks = mddev->raid_disks - mddev->delta_disks; 7854 /* reshape_position must be on a new-stripe boundary, and one 7855 * further up in new geometry must map after here in old 7856 * geometry. 7857 * If the chunk sizes are different, then as we perform reshape 7858 * in units of the largest of the two, reshape_position needs 7859 * be a multiple of the largest chunk size times new data disks. 7860 */ 7861 here_new = mddev->reshape_position; 7862 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7863 new_data_disks = mddev->raid_disks - max_degraded; 7864 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7865 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7866 mdname(mddev)); 7867 return -EINVAL; 7868 } 7869 reshape_offset = here_new * chunk_sectors; 7870 /* here_new is the stripe we will write to */ 7871 here_old = mddev->reshape_position; 7872 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7873 /* here_old is the first stripe that we might need to read 7874 * from */ 7875 if (mddev->delta_disks == 0) { 7876 /* We cannot be sure it is safe to start an in-place 7877 * reshape. It is only safe if user-space is monitoring 7878 * and taking constant backups. 7879 * mdadm always starts a situation like this in 7880 * readonly mode so it can take control before 7881 * allowing any writes. So just check for that. 7882 */ 7883 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7884 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7885 /* not really in-place - so OK */; 7886 else if (mddev->ro == 0) { 7887 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7888 mdname(mddev)); 7889 return -EINVAL; 7890 } 7891 } else if (mddev->reshape_backwards 7892 ? (here_new * chunk_sectors + min_offset_diff <= 7893 here_old * chunk_sectors) 7894 : (here_new * chunk_sectors >= 7895 here_old * chunk_sectors + (-min_offset_diff))) { 7896 /* Reading from the same stripe as writing to - bad */ 7897 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7898 mdname(mddev)); 7899 return -EINVAL; 7900 } 7901 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7902 /* OK, we should be able to continue; */ 7903 } else { 7904 BUG_ON(mddev->level != mddev->new_level); 7905 BUG_ON(mddev->layout != mddev->new_layout); 7906 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7907 BUG_ON(mddev->delta_disks != 0); 7908 } 7909 7910 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7911 test_bit(MD_HAS_PPL, &mddev->flags)) { 7912 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7913 mdname(mddev)); 7914 clear_bit(MD_HAS_PPL, &mddev->flags); 7915 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7916 } 7917 7918 if (mddev->private == NULL) 7919 conf = setup_conf(mddev); 7920 else 7921 conf = mddev->private; 7922 7923 if (IS_ERR(conf)) 7924 return PTR_ERR(conf); 7925 7926 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7927 if (!journal_dev) { 7928 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7929 mdname(mddev)); 7930 mddev->ro = 1; 7931 set_disk_ro(mddev->gendisk, 1); 7932 } else if (mddev->recovery_cp == MaxSector) 7933 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7934 } 7935 7936 conf->min_offset_diff = min_offset_diff; 7937 rcu_assign_pointer(mddev->thread, conf->thread); 7938 rcu_assign_pointer(conf->thread, NULL); 7939 mddev->private = conf; 7940 7941 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7942 i++) { 7943 rdev = conf->disks[i].rdev; 7944 if (!rdev) 7945 continue; 7946 if (conf->disks[i].replacement && 7947 conf->reshape_progress != MaxSector) { 7948 /* replacements and reshape simply do not mix. */ 7949 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7950 goto abort; 7951 } 7952 if (test_bit(In_sync, &rdev->flags)) 7953 continue; 7954 /* This disc is not fully in-sync. However if it 7955 * just stored parity (beyond the recovery_offset), 7956 * when we don't need to be concerned about the 7957 * array being dirty. 7958 * When reshape goes 'backwards', we never have 7959 * partially completed devices, so we only need 7960 * to worry about reshape going forwards. 7961 */ 7962 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7963 if (mddev->major_version == 0 && 7964 mddev->minor_version > 90) 7965 rdev->recovery_offset = reshape_offset; 7966 7967 if (rdev->recovery_offset < reshape_offset) { 7968 /* We need to check old and new layout */ 7969 if (!only_parity(rdev->raid_disk, 7970 conf->algorithm, 7971 conf->raid_disks, 7972 conf->max_degraded)) 7973 continue; 7974 } 7975 if (!only_parity(rdev->raid_disk, 7976 conf->prev_algo, 7977 conf->previous_raid_disks, 7978 conf->max_degraded)) 7979 continue; 7980 dirty_parity_disks++; 7981 } 7982 7983 /* 7984 * 0 for a fully functional array, 1 or 2 for a degraded array. 7985 */ 7986 mddev->degraded = raid5_calc_degraded(conf); 7987 7988 if (has_failed(conf)) { 7989 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7990 mdname(mddev), mddev->degraded, conf->raid_disks); 7991 goto abort; 7992 } 7993 7994 /* device size must be a multiple of chunk size */ 7995 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7996 mddev->resync_max_sectors = mddev->dev_sectors; 7997 7998 if (mddev->degraded > dirty_parity_disks && 7999 mddev->recovery_cp != MaxSector) { 8000 if (test_bit(MD_HAS_PPL, &mddev->flags)) 8001 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 8002 mdname(mddev)); 8003 else if (mddev->ok_start_degraded) 8004 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 8005 mdname(mddev)); 8006 else { 8007 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 8008 mdname(mddev)); 8009 goto abort; 8010 } 8011 } 8012 8013 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 8014 mdname(mddev), conf->level, 8015 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 8016 mddev->new_layout); 8017 8018 print_raid5_conf(conf); 8019 8020 if (conf->reshape_progress != MaxSector) { 8021 conf->reshape_safe = conf->reshape_progress; 8022 atomic_set(&conf->reshape_stripes, 0); 8023 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8024 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8025 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8026 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8027 } 8028 8029 /* Ok, everything is just fine now */ 8030 if (mddev->to_remove == &raid5_attrs_group) 8031 mddev->to_remove = NULL; 8032 else if (mddev->kobj.sd && 8033 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8034 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8035 mdname(mddev)); 8036 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8037 8038 if (!mddev_is_dm(mddev)) { 8039 ret = raid5_set_limits(mddev); 8040 if (ret) 8041 goto abort; 8042 } 8043 8044 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8045 goto abort; 8046 8047 return 0; 8048 abort: 8049 md_unregister_thread(mddev, &mddev->thread); 8050 print_raid5_conf(conf); 8051 free_conf(conf); 8052 mddev->private = NULL; 8053 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8054 return ret; 8055 } 8056 raid5_free(struct mddev * mddev,void * priv)8057 static void raid5_free(struct mddev *mddev, void *priv) 8058 { 8059 struct r5conf *conf = priv; 8060 8061 free_conf(conf); 8062 mddev->to_remove = &raid5_attrs_group; 8063 } 8064 raid5_status(struct seq_file * seq,struct mddev * mddev)8065 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8066 { 8067 struct r5conf *conf = mddev->private; 8068 int i; 8069 8070 lockdep_assert_held(&mddev->lock); 8071 8072 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8073 conf->chunk_sectors / 2, mddev->layout); 8074 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8075 for (i = 0; i < conf->raid_disks; i++) { 8076 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 8077 8078 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8079 } 8080 seq_printf (seq, "]"); 8081 } 8082 print_raid5_conf(struct r5conf * conf)8083 static void print_raid5_conf(struct r5conf *conf) 8084 { 8085 struct md_rdev *rdev; 8086 int i; 8087 8088 pr_debug("RAID conf printout:\n"); 8089 if (!conf) { 8090 pr_debug("(conf==NULL)\n"); 8091 return; 8092 } 8093 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8094 conf->raid_disks, 8095 conf->raid_disks - conf->mddev->degraded); 8096 8097 for (i = 0; i < conf->raid_disks; i++) { 8098 rdev = conf->disks[i].rdev; 8099 if (rdev) 8100 pr_debug(" disk %d, o:%d, dev:%pg\n", 8101 i, !test_bit(Faulty, &rdev->flags), 8102 rdev->bdev); 8103 } 8104 } 8105 raid5_spare_active(struct mddev * mddev)8106 static int raid5_spare_active(struct mddev *mddev) 8107 { 8108 int i; 8109 struct r5conf *conf = mddev->private; 8110 struct md_rdev *rdev, *replacement; 8111 int count = 0; 8112 unsigned long flags; 8113 8114 for (i = 0; i < conf->raid_disks; i++) { 8115 rdev = conf->disks[i].rdev; 8116 replacement = conf->disks[i].replacement; 8117 if (replacement 8118 && replacement->recovery_offset == MaxSector 8119 && !test_bit(Faulty, &replacement->flags) 8120 && !test_and_set_bit(In_sync, &replacement->flags)) { 8121 /* Replacement has just become active. */ 8122 if (!rdev 8123 || !test_and_clear_bit(In_sync, &rdev->flags)) 8124 count++; 8125 if (rdev) { 8126 /* Replaced device not technically faulty, 8127 * but we need to be sure it gets removed 8128 * and never re-added. 8129 */ 8130 set_bit(Faulty, &rdev->flags); 8131 sysfs_notify_dirent_safe( 8132 rdev->sysfs_state); 8133 } 8134 sysfs_notify_dirent_safe(replacement->sysfs_state); 8135 } else if (rdev 8136 && rdev->recovery_offset == MaxSector 8137 && !test_bit(Faulty, &rdev->flags) 8138 && !test_and_set_bit(In_sync, &rdev->flags)) { 8139 count++; 8140 sysfs_notify_dirent_safe(rdev->sysfs_state); 8141 } 8142 } 8143 spin_lock_irqsave(&conf->device_lock, flags); 8144 mddev->degraded = raid5_calc_degraded(conf); 8145 spin_unlock_irqrestore(&conf->device_lock, flags); 8146 print_raid5_conf(conf); 8147 return count; 8148 } 8149 raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8150 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8151 { 8152 struct r5conf *conf = mddev->private; 8153 int err = 0; 8154 int number = rdev->raid_disk; 8155 struct md_rdev **rdevp; 8156 struct disk_info *p; 8157 struct md_rdev *tmp; 8158 8159 print_raid5_conf(conf); 8160 if (test_bit(Journal, &rdev->flags) && conf->log) { 8161 /* 8162 * we can't wait pending write here, as this is called in 8163 * raid5d, wait will deadlock. 8164 * neilb: there is no locking about new writes here, 8165 * so this cannot be safe. 8166 */ 8167 if (atomic_read(&conf->active_stripes) || 8168 atomic_read(&conf->r5c_cached_full_stripes) || 8169 atomic_read(&conf->r5c_cached_partial_stripes)) { 8170 return -EBUSY; 8171 } 8172 log_exit(conf); 8173 return 0; 8174 } 8175 if (unlikely(number >= conf->pool_size)) 8176 return 0; 8177 p = conf->disks + number; 8178 if (rdev == p->rdev) 8179 rdevp = &p->rdev; 8180 else if (rdev == p->replacement) 8181 rdevp = &p->replacement; 8182 else 8183 return 0; 8184 8185 if (number >= conf->raid_disks && 8186 conf->reshape_progress == MaxSector) 8187 clear_bit(In_sync, &rdev->flags); 8188 8189 if (test_bit(In_sync, &rdev->flags) || 8190 atomic_read(&rdev->nr_pending)) { 8191 err = -EBUSY; 8192 goto abort; 8193 } 8194 /* Only remove non-faulty devices if recovery 8195 * isn't possible. 8196 */ 8197 if (!test_bit(Faulty, &rdev->flags) && 8198 mddev->recovery_disabled != conf->recovery_disabled && 8199 !has_failed(conf) && 8200 (!p->replacement || p->replacement == rdev) && 8201 number < conf->raid_disks) { 8202 err = -EBUSY; 8203 goto abort; 8204 } 8205 WRITE_ONCE(*rdevp, NULL); 8206 if (!err) { 8207 err = log_modify(conf, rdev, false); 8208 if (err) 8209 goto abort; 8210 } 8211 8212 tmp = p->replacement; 8213 if (tmp) { 8214 /* We must have just cleared 'rdev' */ 8215 WRITE_ONCE(p->rdev, tmp); 8216 clear_bit(Replacement, &tmp->flags); 8217 WRITE_ONCE(p->replacement, NULL); 8218 8219 if (!err) 8220 err = log_modify(conf, tmp, true); 8221 } 8222 8223 clear_bit(WantReplacement, &rdev->flags); 8224 abort: 8225 8226 print_raid5_conf(conf); 8227 return err; 8228 } 8229 raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8230 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8231 { 8232 struct r5conf *conf = mddev->private; 8233 int ret, err = -EEXIST; 8234 int disk; 8235 struct disk_info *p; 8236 struct md_rdev *tmp; 8237 int first = 0; 8238 int last = conf->raid_disks - 1; 8239 8240 if (test_bit(Journal, &rdev->flags)) { 8241 if (conf->log) 8242 return -EBUSY; 8243 8244 rdev->raid_disk = 0; 8245 /* 8246 * The array is in readonly mode if journal is missing, so no 8247 * write requests running. We should be safe 8248 */ 8249 ret = log_init(conf, rdev, false); 8250 if (ret) 8251 return ret; 8252 8253 ret = r5l_start(conf->log); 8254 if (ret) 8255 return ret; 8256 8257 return 0; 8258 } 8259 if (mddev->recovery_disabled == conf->recovery_disabled) 8260 return -EBUSY; 8261 8262 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8263 /* no point adding a device */ 8264 return -EINVAL; 8265 8266 if (rdev->raid_disk >= 0) 8267 first = last = rdev->raid_disk; 8268 8269 /* 8270 * find the disk ... but prefer rdev->saved_raid_disk 8271 * if possible. 8272 */ 8273 if (rdev->saved_raid_disk >= first && 8274 rdev->saved_raid_disk <= last && 8275 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8276 first = rdev->saved_raid_disk; 8277 8278 for (disk = first; disk <= last; disk++) { 8279 p = conf->disks + disk; 8280 if (p->rdev == NULL) { 8281 clear_bit(In_sync, &rdev->flags); 8282 rdev->raid_disk = disk; 8283 if (rdev->saved_raid_disk != disk) 8284 conf->fullsync = 1; 8285 WRITE_ONCE(p->rdev, rdev); 8286 8287 err = log_modify(conf, rdev, true); 8288 8289 goto out; 8290 } 8291 } 8292 for (disk = first; disk <= last; disk++) { 8293 p = conf->disks + disk; 8294 tmp = p->rdev; 8295 if (test_bit(WantReplacement, &tmp->flags) && 8296 mddev->reshape_position == MaxSector && 8297 p->replacement == NULL) { 8298 clear_bit(In_sync, &rdev->flags); 8299 set_bit(Replacement, &rdev->flags); 8300 rdev->raid_disk = disk; 8301 err = 0; 8302 conf->fullsync = 1; 8303 WRITE_ONCE(p->replacement, rdev); 8304 break; 8305 } 8306 } 8307 out: 8308 print_raid5_conf(conf); 8309 return err; 8310 } 8311 raid5_resize(struct mddev * mddev,sector_t sectors)8312 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8313 { 8314 /* no resync is happening, and there is enough space 8315 * on all devices, so we can resize. 8316 * We need to make sure resync covers any new space. 8317 * If the array is shrinking we should possibly wait until 8318 * any io in the removed space completes, but it hardly seems 8319 * worth it. 8320 */ 8321 sector_t newsize; 8322 struct r5conf *conf = mddev->private; 8323 int ret; 8324 8325 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8326 return -EINVAL; 8327 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8328 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8329 if (mddev->external_size && 8330 mddev->array_sectors > newsize) 8331 return -EINVAL; 8332 8333 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false); 8334 if (ret) 8335 return ret; 8336 8337 md_set_array_sectors(mddev, newsize); 8338 if (sectors > mddev->dev_sectors && 8339 mddev->recovery_cp > mddev->dev_sectors) { 8340 mddev->recovery_cp = mddev->dev_sectors; 8341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8342 } 8343 mddev->dev_sectors = sectors; 8344 mddev->resync_max_sectors = sectors; 8345 return 0; 8346 } 8347 check_stripe_cache(struct mddev * mddev)8348 static int check_stripe_cache(struct mddev *mddev) 8349 { 8350 /* Can only proceed if there are plenty of stripe_heads. 8351 * We need a minimum of one full stripe,, and for sensible progress 8352 * it is best to have about 4 times that. 8353 * If we require 4 times, then the default 256 4K stripe_heads will 8354 * allow for chunk sizes up to 256K, which is probably OK. 8355 * If the chunk size is greater, user-space should request more 8356 * stripe_heads first. 8357 */ 8358 struct r5conf *conf = mddev->private; 8359 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8360 > conf->min_nr_stripes || 8361 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8362 > conf->min_nr_stripes) { 8363 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8364 mdname(mddev), 8365 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8366 / RAID5_STRIPE_SIZE(conf))*4); 8367 return 0; 8368 } 8369 return 1; 8370 } 8371 check_reshape(struct mddev * mddev)8372 static int check_reshape(struct mddev *mddev) 8373 { 8374 struct r5conf *conf = mddev->private; 8375 8376 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8377 return -EINVAL; 8378 if (mddev->delta_disks == 0 && 8379 mddev->new_layout == mddev->layout && 8380 mddev->new_chunk_sectors == mddev->chunk_sectors) 8381 return 0; /* nothing to do */ 8382 if (has_failed(conf)) 8383 return -EINVAL; 8384 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8385 /* We might be able to shrink, but the devices must 8386 * be made bigger first. 8387 * For raid6, 4 is the minimum size. 8388 * Otherwise 2 is the minimum 8389 */ 8390 int min = 2; 8391 if (mddev->level == 6) 8392 min = 4; 8393 if (mddev->raid_disks + mddev->delta_disks < min) 8394 return -EINVAL; 8395 } 8396 8397 if (!check_stripe_cache(mddev)) 8398 return -ENOSPC; 8399 8400 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8401 mddev->delta_disks > 0) 8402 if (resize_chunks(conf, 8403 conf->previous_raid_disks 8404 + max(0, mddev->delta_disks), 8405 max(mddev->new_chunk_sectors, 8406 mddev->chunk_sectors) 8407 ) < 0) 8408 return -ENOMEM; 8409 8410 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8411 return 0; /* never bother to shrink */ 8412 return resize_stripes(conf, (conf->previous_raid_disks 8413 + mddev->delta_disks)); 8414 } 8415 raid5_start_reshape(struct mddev * mddev)8416 static int raid5_start_reshape(struct mddev *mddev) 8417 { 8418 struct r5conf *conf = mddev->private; 8419 struct md_rdev *rdev; 8420 int spares = 0; 8421 int i; 8422 unsigned long flags; 8423 8424 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8425 return -EBUSY; 8426 8427 if (!check_stripe_cache(mddev)) 8428 return -ENOSPC; 8429 8430 if (has_failed(conf)) 8431 return -EINVAL; 8432 8433 /* raid5 can't handle concurrent reshape and recovery */ 8434 if (mddev->recovery_cp < MaxSector) 8435 return -EBUSY; 8436 for (i = 0; i < conf->raid_disks; i++) 8437 if (conf->disks[i].replacement) 8438 return -EBUSY; 8439 8440 rdev_for_each(rdev, mddev) { 8441 if (!test_bit(In_sync, &rdev->flags) 8442 && !test_bit(Faulty, &rdev->flags)) 8443 spares++; 8444 } 8445 8446 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8447 /* Not enough devices even to make a degraded array 8448 * of that size 8449 */ 8450 return -EINVAL; 8451 8452 /* Refuse to reduce size of the array. Any reductions in 8453 * array size must be through explicit setting of array_size 8454 * attribute. 8455 */ 8456 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8457 < mddev->array_sectors) { 8458 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8459 mdname(mddev)); 8460 return -EINVAL; 8461 } 8462 8463 atomic_set(&conf->reshape_stripes, 0); 8464 spin_lock_irq(&conf->device_lock); 8465 write_seqcount_begin(&conf->gen_lock); 8466 conf->previous_raid_disks = conf->raid_disks; 8467 conf->raid_disks += mddev->delta_disks; 8468 conf->prev_chunk_sectors = conf->chunk_sectors; 8469 conf->chunk_sectors = mddev->new_chunk_sectors; 8470 conf->prev_algo = conf->algorithm; 8471 conf->algorithm = mddev->new_layout; 8472 conf->generation++; 8473 /* Code that selects data_offset needs to see the generation update 8474 * if reshape_progress has been set - so a memory barrier needed. 8475 */ 8476 smp_mb(); 8477 if (mddev->reshape_backwards) 8478 conf->reshape_progress = raid5_size(mddev, 0, 0); 8479 else 8480 conf->reshape_progress = 0; 8481 conf->reshape_safe = conf->reshape_progress; 8482 write_seqcount_end(&conf->gen_lock); 8483 spin_unlock_irq(&conf->device_lock); 8484 8485 /* Now make sure any requests that proceeded on the assumption 8486 * the reshape wasn't running - like Discard or Read - have 8487 * completed. 8488 */ 8489 raid5_quiesce(mddev, true); 8490 raid5_quiesce(mddev, false); 8491 8492 /* Add some new drives, as many as will fit. 8493 * We know there are enough to make the newly sized array work. 8494 * Don't add devices if we are reducing the number of 8495 * devices in the array. This is because it is not possible 8496 * to correctly record the "partially reconstructed" state of 8497 * such devices during the reshape and confusion could result. 8498 */ 8499 if (mddev->delta_disks >= 0) { 8500 rdev_for_each(rdev, mddev) 8501 if (rdev->raid_disk < 0 && 8502 !test_bit(Faulty, &rdev->flags)) { 8503 if (raid5_add_disk(mddev, rdev) == 0) { 8504 if (rdev->raid_disk 8505 >= conf->previous_raid_disks) 8506 set_bit(In_sync, &rdev->flags); 8507 else 8508 rdev->recovery_offset = 0; 8509 8510 /* Failure here is OK */ 8511 sysfs_link_rdev(mddev, rdev); 8512 } 8513 } else if (rdev->raid_disk >= conf->previous_raid_disks 8514 && !test_bit(Faulty, &rdev->flags)) { 8515 /* This is a spare that was manually added */ 8516 set_bit(In_sync, &rdev->flags); 8517 } 8518 8519 /* When a reshape changes the number of devices, 8520 * ->degraded is measured against the larger of the 8521 * pre and post number of devices. 8522 */ 8523 spin_lock_irqsave(&conf->device_lock, flags); 8524 mddev->degraded = raid5_calc_degraded(conf); 8525 spin_unlock_irqrestore(&conf->device_lock, flags); 8526 } 8527 mddev->raid_disks = conf->raid_disks; 8528 mddev->reshape_position = conf->reshape_progress; 8529 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8530 8531 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8532 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8533 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8534 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8535 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8536 conf->reshape_checkpoint = jiffies; 8537 md_new_event(); 8538 return 0; 8539 } 8540 8541 /* This is called from the reshape thread and should make any 8542 * changes needed in 'conf' 8543 */ end_reshape(struct r5conf * conf)8544 static void end_reshape(struct r5conf *conf) 8545 { 8546 8547 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8548 struct md_rdev *rdev; 8549 8550 spin_lock_irq(&conf->device_lock); 8551 conf->previous_raid_disks = conf->raid_disks; 8552 md_finish_reshape(conf->mddev); 8553 smp_wmb(); 8554 conf->reshape_progress = MaxSector; 8555 conf->mddev->reshape_position = MaxSector; 8556 rdev_for_each(rdev, conf->mddev) 8557 if (rdev->raid_disk >= 0 && 8558 !test_bit(Journal, &rdev->flags) && 8559 !test_bit(In_sync, &rdev->flags)) 8560 rdev->recovery_offset = MaxSector; 8561 spin_unlock_irq(&conf->device_lock); 8562 wake_up(&conf->wait_for_reshape); 8563 8564 mddev_update_io_opt(conf->mddev, 8565 conf->raid_disks - conf->max_degraded); 8566 } 8567 } 8568 8569 /* This is called from the raid5d thread with mddev_lock held. 8570 * It makes config changes to the device. 8571 */ raid5_finish_reshape(struct mddev * mddev)8572 static void raid5_finish_reshape(struct mddev *mddev) 8573 { 8574 struct r5conf *conf = mddev->private; 8575 struct md_rdev *rdev; 8576 8577 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8578 8579 if (mddev->delta_disks <= 0) { 8580 int d; 8581 spin_lock_irq(&conf->device_lock); 8582 mddev->degraded = raid5_calc_degraded(conf); 8583 spin_unlock_irq(&conf->device_lock); 8584 for (d = conf->raid_disks ; 8585 d < conf->raid_disks - mddev->delta_disks; 8586 d++) { 8587 rdev = conf->disks[d].rdev; 8588 if (rdev) 8589 clear_bit(In_sync, &rdev->flags); 8590 rdev = conf->disks[d].replacement; 8591 if (rdev) 8592 clear_bit(In_sync, &rdev->flags); 8593 } 8594 } 8595 mddev->layout = conf->algorithm; 8596 mddev->chunk_sectors = conf->chunk_sectors; 8597 mddev->reshape_position = MaxSector; 8598 mddev->delta_disks = 0; 8599 mddev->reshape_backwards = 0; 8600 } 8601 } 8602 raid5_quiesce(struct mddev * mddev,int quiesce)8603 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8604 { 8605 struct r5conf *conf = mddev->private; 8606 8607 if (quiesce) { 8608 /* stop all writes */ 8609 lock_all_device_hash_locks_irq(conf); 8610 /* '2' tells resync/reshape to pause so that all 8611 * active stripes can drain 8612 */ 8613 r5c_flush_cache(conf, INT_MAX); 8614 /* need a memory barrier to make sure read_one_chunk() sees 8615 * quiesce started and reverts to slow (locked) path. 8616 */ 8617 smp_store_release(&conf->quiesce, 2); 8618 wait_event_cmd(conf->wait_for_quiescent, 8619 atomic_read(&conf->active_stripes) == 0 && 8620 atomic_read(&conf->active_aligned_reads) == 0, 8621 unlock_all_device_hash_locks_irq(conf), 8622 lock_all_device_hash_locks_irq(conf)); 8623 conf->quiesce = 1; 8624 unlock_all_device_hash_locks_irq(conf); 8625 /* allow reshape to continue */ 8626 wake_up(&conf->wait_for_reshape); 8627 } else { 8628 /* re-enable writes */ 8629 lock_all_device_hash_locks_irq(conf); 8630 conf->quiesce = 0; 8631 wake_up(&conf->wait_for_quiescent); 8632 wake_up(&conf->wait_for_reshape); 8633 unlock_all_device_hash_locks_irq(conf); 8634 } 8635 log_quiesce(conf, quiesce); 8636 } 8637 raid45_takeover_raid0(struct mddev * mddev,int level)8638 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8639 { 8640 struct r0conf *raid0_conf = mddev->private; 8641 sector_t sectors; 8642 8643 /* for raid0 takeover only one zone is supported */ 8644 if (raid0_conf->nr_strip_zones > 1) { 8645 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8646 mdname(mddev)); 8647 return ERR_PTR(-EINVAL); 8648 } 8649 8650 sectors = raid0_conf->strip_zone[0].zone_end; 8651 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8652 mddev->dev_sectors = sectors; 8653 mddev->new_level = level; 8654 mddev->new_layout = ALGORITHM_PARITY_N; 8655 mddev->new_chunk_sectors = mddev->chunk_sectors; 8656 mddev->raid_disks += 1; 8657 mddev->delta_disks = 1; 8658 /* make sure it will be not marked as dirty */ 8659 mddev->recovery_cp = MaxSector; 8660 8661 return setup_conf(mddev); 8662 } 8663 raid5_takeover_raid1(struct mddev * mddev)8664 static void *raid5_takeover_raid1(struct mddev *mddev) 8665 { 8666 int chunksect; 8667 void *ret; 8668 8669 if (mddev->raid_disks != 2 || 8670 mddev->degraded > 1) 8671 return ERR_PTR(-EINVAL); 8672 8673 /* Should check if there are write-behind devices? */ 8674 8675 chunksect = 64*2; /* 64K by default */ 8676 8677 /* The array must be an exact multiple of chunksize */ 8678 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8679 chunksect >>= 1; 8680 8681 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8682 /* array size does not allow a suitable chunk size */ 8683 return ERR_PTR(-EINVAL); 8684 8685 mddev->new_level = 5; 8686 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8687 mddev->new_chunk_sectors = chunksect; 8688 8689 ret = setup_conf(mddev); 8690 if (!IS_ERR(ret)) 8691 mddev_clear_unsupported_flags(mddev, 8692 UNSUPPORTED_MDDEV_FLAGS); 8693 return ret; 8694 } 8695 raid5_takeover_raid6(struct mddev * mddev)8696 static void *raid5_takeover_raid6(struct mddev *mddev) 8697 { 8698 int new_layout; 8699 8700 switch (mddev->layout) { 8701 case ALGORITHM_LEFT_ASYMMETRIC_6: 8702 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8703 break; 8704 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8705 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8706 break; 8707 case ALGORITHM_LEFT_SYMMETRIC_6: 8708 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8709 break; 8710 case ALGORITHM_RIGHT_SYMMETRIC_6: 8711 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8712 break; 8713 case ALGORITHM_PARITY_0_6: 8714 new_layout = ALGORITHM_PARITY_0; 8715 break; 8716 case ALGORITHM_PARITY_N: 8717 new_layout = ALGORITHM_PARITY_N; 8718 break; 8719 default: 8720 return ERR_PTR(-EINVAL); 8721 } 8722 mddev->new_level = 5; 8723 mddev->new_layout = new_layout; 8724 mddev->delta_disks = -1; 8725 mddev->raid_disks -= 1; 8726 return setup_conf(mddev); 8727 } 8728 raid5_check_reshape(struct mddev * mddev)8729 static int raid5_check_reshape(struct mddev *mddev) 8730 { 8731 /* For a 2-drive array, the layout and chunk size can be changed 8732 * immediately as not restriping is needed. 8733 * For larger arrays we record the new value - after validation 8734 * to be used by a reshape pass. 8735 */ 8736 struct r5conf *conf = mddev->private; 8737 int new_chunk = mddev->new_chunk_sectors; 8738 8739 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8740 return -EINVAL; 8741 if (new_chunk > 0) { 8742 if (!is_power_of_2(new_chunk)) 8743 return -EINVAL; 8744 if (new_chunk < (PAGE_SIZE>>9)) 8745 return -EINVAL; 8746 if (mddev->array_sectors & (new_chunk-1)) 8747 /* not factor of array size */ 8748 return -EINVAL; 8749 } 8750 8751 /* They look valid */ 8752 8753 if (mddev->raid_disks == 2) { 8754 /* can make the change immediately */ 8755 if (mddev->new_layout >= 0) { 8756 conf->algorithm = mddev->new_layout; 8757 mddev->layout = mddev->new_layout; 8758 } 8759 if (new_chunk > 0) { 8760 conf->chunk_sectors = new_chunk ; 8761 mddev->chunk_sectors = new_chunk; 8762 } 8763 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8764 md_wakeup_thread(mddev->thread); 8765 } 8766 return check_reshape(mddev); 8767 } 8768 raid6_check_reshape(struct mddev * mddev)8769 static int raid6_check_reshape(struct mddev *mddev) 8770 { 8771 int new_chunk = mddev->new_chunk_sectors; 8772 8773 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8774 return -EINVAL; 8775 if (new_chunk > 0) { 8776 if (!is_power_of_2(new_chunk)) 8777 return -EINVAL; 8778 if (new_chunk < (PAGE_SIZE >> 9)) 8779 return -EINVAL; 8780 if (mddev->array_sectors & (new_chunk-1)) 8781 /* not factor of array size */ 8782 return -EINVAL; 8783 } 8784 8785 /* They look valid */ 8786 return check_reshape(mddev); 8787 } 8788 raid5_takeover(struct mddev * mddev)8789 static void *raid5_takeover(struct mddev *mddev) 8790 { 8791 /* raid5 can take over: 8792 * raid0 - if there is only one strip zone - make it a raid4 layout 8793 * raid1 - if there are two drives. We need to know the chunk size 8794 * raid4 - trivial - just use a raid4 layout. 8795 * raid6 - Providing it is a *_6 layout 8796 */ 8797 if (mddev->level == 0) 8798 return raid45_takeover_raid0(mddev, 5); 8799 if (mddev->level == 1) 8800 return raid5_takeover_raid1(mddev); 8801 if (mddev->level == 4) { 8802 mddev->new_layout = ALGORITHM_PARITY_N; 8803 mddev->new_level = 5; 8804 return setup_conf(mddev); 8805 } 8806 if (mddev->level == 6) 8807 return raid5_takeover_raid6(mddev); 8808 8809 return ERR_PTR(-EINVAL); 8810 } 8811 raid4_takeover(struct mddev * mddev)8812 static void *raid4_takeover(struct mddev *mddev) 8813 { 8814 /* raid4 can take over: 8815 * raid0 - if there is only one strip zone 8816 * raid5 - if layout is right 8817 */ 8818 if (mddev->level == 0) 8819 return raid45_takeover_raid0(mddev, 4); 8820 if (mddev->level == 5 && 8821 mddev->layout == ALGORITHM_PARITY_N) { 8822 mddev->new_layout = 0; 8823 mddev->new_level = 4; 8824 return setup_conf(mddev); 8825 } 8826 return ERR_PTR(-EINVAL); 8827 } 8828 8829 static struct md_personality raid5_personality; 8830 raid6_takeover(struct mddev * mddev)8831 static void *raid6_takeover(struct mddev *mddev) 8832 { 8833 /* Currently can only take over a raid5. We map the 8834 * personality to an equivalent raid6 personality 8835 * with the Q block at the end. 8836 */ 8837 int new_layout; 8838 8839 if (mddev->pers != &raid5_personality) 8840 return ERR_PTR(-EINVAL); 8841 if (mddev->degraded > 1) 8842 return ERR_PTR(-EINVAL); 8843 if (mddev->raid_disks > 253) 8844 return ERR_PTR(-EINVAL); 8845 if (mddev->raid_disks < 3) 8846 return ERR_PTR(-EINVAL); 8847 8848 switch (mddev->layout) { 8849 case ALGORITHM_LEFT_ASYMMETRIC: 8850 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8851 break; 8852 case ALGORITHM_RIGHT_ASYMMETRIC: 8853 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8854 break; 8855 case ALGORITHM_LEFT_SYMMETRIC: 8856 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8857 break; 8858 case ALGORITHM_RIGHT_SYMMETRIC: 8859 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8860 break; 8861 case ALGORITHM_PARITY_0: 8862 new_layout = ALGORITHM_PARITY_0_6; 8863 break; 8864 case ALGORITHM_PARITY_N: 8865 new_layout = ALGORITHM_PARITY_N; 8866 break; 8867 default: 8868 return ERR_PTR(-EINVAL); 8869 } 8870 mddev->new_level = 6; 8871 mddev->new_layout = new_layout; 8872 mddev->delta_disks = 1; 8873 mddev->raid_disks += 1; 8874 return setup_conf(mddev); 8875 } 8876 raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8877 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8878 { 8879 struct r5conf *conf; 8880 int err; 8881 8882 err = mddev_suspend_and_lock(mddev); 8883 if (err) 8884 return err; 8885 conf = mddev->private; 8886 if (!conf) { 8887 mddev_unlock_and_resume(mddev); 8888 return -ENODEV; 8889 } 8890 8891 if (strncmp(buf, "ppl", 3) == 0) { 8892 /* ppl only works with RAID 5 */ 8893 if (!raid5_has_ppl(conf) && conf->level == 5) { 8894 err = log_init(conf, NULL, true); 8895 if (!err) { 8896 err = resize_stripes(conf, conf->pool_size); 8897 if (err) 8898 log_exit(conf); 8899 } 8900 } else 8901 err = -EINVAL; 8902 } else if (strncmp(buf, "resync", 6) == 0) { 8903 if (raid5_has_ppl(conf)) { 8904 log_exit(conf); 8905 err = resize_stripes(conf, conf->pool_size); 8906 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8907 r5l_log_disk_error(conf)) { 8908 bool journal_dev_exists = false; 8909 struct md_rdev *rdev; 8910 8911 rdev_for_each(rdev, mddev) 8912 if (test_bit(Journal, &rdev->flags)) { 8913 journal_dev_exists = true; 8914 break; 8915 } 8916 8917 if (!journal_dev_exists) 8918 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8919 else /* need remove journal device first */ 8920 err = -EBUSY; 8921 } else 8922 err = -EINVAL; 8923 } else { 8924 err = -EINVAL; 8925 } 8926 8927 if (!err) 8928 md_update_sb(mddev, 1); 8929 8930 mddev_unlock_and_resume(mddev); 8931 8932 return err; 8933 } 8934 raid5_start(struct mddev * mddev)8935 static int raid5_start(struct mddev *mddev) 8936 { 8937 struct r5conf *conf = mddev->private; 8938 8939 return r5l_start(conf->log); 8940 } 8941 8942 /* 8943 * This is only used for dm-raid456, caller already frozen sync_thread, hence 8944 * if rehsape is still in progress, io that is waiting for reshape can never be 8945 * done now, hence wake up and handle those IO. 8946 */ raid5_prepare_suspend(struct mddev * mddev)8947 static void raid5_prepare_suspend(struct mddev *mddev) 8948 { 8949 struct r5conf *conf = mddev->private; 8950 8951 wake_up(&conf->wait_for_reshape); 8952 } 8953 8954 static struct md_personality raid6_personality = 8955 { 8956 .head = { 8957 .type = MD_PERSONALITY, 8958 .id = ID_RAID6, 8959 .name = "raid6", 8960 .owner = THIS_MODULE, 8961 }, 8962 8963 .make_request = raid5_make_request, 8964 .run = raid5_run, 8965 .start = raid5_start, 8966 .free = raid5_free, 8967 .status = raid5_status, 8968 .error_handler = raid5_error, 8969 .hot_add_disk = raid5_add_disk, 8970 .hot_remove_disk= raid5_remove_disk, 8971 .spare_active = raid5_spare_active, 8972 .sync_request = raid5_sync_request, 8973 .resize = raid5_resize, 8974 .size = raid5_size, 8975 .check_reshape = raid6_check_reshape, 8976 .start_reshape = raid5_start_reshape, 8977 .finish_reshape = raid5_finish_reshape, 8978 .quiesce = raid5_quiesce, 8979 .takeover = raid6_takeover, 8980 .change_consistency_policy = raid5_change_consistency_policy, 8981 .prepare_suspend = raid5_prepare_suspend, 8982 .bitmap_sector = raid5_bitmap_sector, 8983 }; 8984 static struct md_personality raid5_personality = 8985 { 8986 .head = { 8987 .type = MD_PERSONALITY, 8988 .id = ID_RAID5, 8989 .name = "raid5", 8990 .owner = THIS_MODULE, 8991 }, 8992 8993 .make_request = raid5_make_request, 8994 .run = raid5_run, 8995 .start = raid5_start, 8996 .free = raid5_free, 8997 .status = raid5_status, 8998 .error_handler = raid5_error, 8999 .hot_add_disk = raid5_add_disk, 9000 .hot_remove_disk= raid5_remove_disk, 9001 .spare_active = raid5_spare_active, 9002 .sync_request = raid5_sync_request, 9003 .resize = raid5_resize, 9004 .size = raid5_size, 9005 .check_reshape = raid5_check_reshape, 9006 .start_reshape = raid5_start_reshape, 9007 .finish_reshape = raid5_finish_reshape, 9008 .quiesce = raid5_quiesce, 9009 .takeover = raid5_takeover, 9010 .change_consistency_policy = raid5_change_consistency_policy, 9011 .prepare_suspend = raid5_prepare_suspend, 9012 .bitmap_sector = raid5_bitmap_sector, 9013 }; 9014 9015 static struct md_personality raid4_personality = 9016 { 9017 .head = { 9018 .type = MD_PERSONALITY, 9019 .id = ID_RAID4, 9020 .name = "raid4", 9021 .owner = THIS_MODULE, 9022 }, 9023 9024 .make_request = raid5_make_request, 9025 .run = raid5_run, 9026 .start = raid5_start, 9027 .free = raid5_free, 9028 .status = raid5_status, 9029 .error_handler = raid5_error, 9030 .hot_add_disk = raid5_add_disk, 9031 .hot_remove_disk= raid5_remove_disk, 9032 .spare_active = raid5_spare_active, 9033 .sync_request = raid5_sync_request, 9034 .resize = raid5_resize, 9035 .size = raid5_size, 9036 .check_reshape = raid5_check_reshape, 9037 .start_reshape = raid5_start_reshape, 9038 .finish_reshape = raid5_finish_reshape, 9039 .quiesce = raid5_quiesce, 9040 .takeover = raid4_takeover, 9041 .change_consistency_policy = raid5_change_consistency_policy, 9042 .prepare_suspend = raid5_prepare_suspend, 9043 .bitmap_sector = raid5_bitmap_sector, 9044 }; 9045 raid5_init(void)9046 static int __init raid5_init(void) 9047 { 9048 int ret; 9049 9050 raid5_wq = alloc_workqueue("raid5wq", 9051 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9052 if (!raid5_wq) 9053 return -ENOMEM; 9054 9055 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9056 "md/raid5:prepare", 9057 raid456_cpu_up_prepare, 9058 raid456_cpu_dead); 9059 if (ret) 9060 goto err_destroy_wq; 9061 9062 ret = register_md_submodule(&raid6_personality.head); 9063 if (ret) 9064 goto err_cpuhp_remove; 9065 9066 ret = register_md_submodule(&raid5_personality.head); 9067 if (ret) 9068 goto err_unregister_raid6; 9069 9070 ret = register_md_submodule(&raid4_personality.head); 9071 if (ret) 9072 goto err_unregister_raid5; 9073 9074 return 0; 9075 9076 err_unregister_raid5: 9077 unregister_md_submodule(&raid5_personality.head); 9078 err_unregister_raid6: 9079 unregister_md_submodule(&raid6_personality.head); 9080 err_cpuhp_remove: 9081 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9082 err_destroy_wq: 9083 destroy_workqueue(raid5_wq); 9084 return ret; 9085 } 9086 raid5_exit(void)9087 static void __exit raid5_exit(void) 9088 { 9089 unregister_md_submodule(&raid6_personality.head); 9090 unregister_md_submodule(&raid5_personality.head); 9091 unregister_md_submodule(&raid4_personality.head); 9092 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9093 destroy_workqueue(raid5_wq); 9094 } 9095 9096 module_init(raid5_init); 9097 module_exit(raid5_exit); 9098 MODULE_LICENSE("GPL"); 9099 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9100 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9101 MODULE_ALIAS("md-raid5"); 9102 MODULE_ALIAS("md-raid4"); 9103 MODULE_ALIAS("md-level-5"); 9104 MODULE_ALIAS("md-level-4"); 9105 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9106 MODULE_ALIAS("md-raid6"); 9107 MODULE_ALIAS("md-level-6"); 9108 9109 /* This used to be two separate modules, they were: */ 9110 MODULE_ALIAS("raid5"); 9111 MODULE_ALIAS("raid6"); 9112