xref: /linux/drivers/md/raid5.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * raid5.c : Multiple Devices driver for Linux
4   *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5   *	   Copyright (C) 1999, 2000 Ingo Molnar
6   *	   Copyright (C) 2002, 2003 H. Peter Anvin
7   *
8   * RAID-4/5/6 management functions.
9   * Thanks to Penguin Computing for making the RAID-6 development possible
10   * by donating a test server!
11   */
12  
13  /*
14   * BITMAP UNPLUGGING:
15   *
16   * The sequencing for updating the bitmap reliably is a little
17   * subtle (and I got it wrong the first time) so it deserves some
18   * explanation.
19   *
20   * We group bitmap updates into batches.  Each batch has a number.
21   * We may write out several batches at once, but that isn't very important.
22   * conf->seq_write is the number of the last batch successfully written.
23   * conf->seq_flush is the number of the last batch that was closed to
24   *    new additions.
25   * When we discover that we will need to write to any block in a stripe
26   * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27   * the number of the batch it will be in. This is seq_flush+1.
28   * When we are ready to do a write, if that batch hasn't been written yet,
29   *   we plug the array and queue the stripe for later.
30   * When an unplug happens, we increment bm_flush, thus closing the current
31   *   batch.
32   * When we notice that bm_flush > bm_write, we write out all pending updates
33   * to the bitmap, and advance bm_write to where bm_flush was.
34   * This may occasionally write a bit out twice, but is sure never to
35   * miss any bits.
36   */
37  
38  #include <linux/blkdev.h>
39  #include <linux/kthread.h>
40  #include <linux/raid/pq.h>
41  #include <linux/async_tx.h>
42  #include <linux/module.h>
43  #include <linux/async.h>
44  #include <linux/seq_file.h>
45  #include <linux/cpu.h>
46  #include <linux/slab.h>
47  #include <linux/ratelimit.h>
48  #include <linux/nodemask.h>
49  
50  #include <trace/events/block.h>
51  #include <linux/list_sort.h>
52  
53  #include "md.h"
54  #include "raid5.h"
55  #include "raid0.h"
56  #include "md-bitmap.h"
57  #include "raid5-log.h"
58  
59  #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60  
61  #define cpu_to_group(cpu) cpu_to_node(cpu)
62  #define ANY_GROUP NUMA_NO_NODE
63  
64  #define RAID5_MAX_REQ_STRIPES 256
65  
66  static bool devices_handle_discard_safely = false;
67  module_param(devices_handle_discard_safely, bool, 0644);
68  MODULE_PARM_DESC(devices_handle_discard_safely,
69  		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70  static struct workqueue_struct *raid5_wq;
71  
72  static void raid5_quiesce(struct mddev *mddev, int quiesce);
73  
stripe_hash(struct r5conf * conf,sector_t sect)74  static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75  {
76  	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77  	return &conf->stripe_hashtbl[hash];
78  }
79  
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)80  static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81  {
82  	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83  }
84  
lock_device_hash_lock(struct r5conf * conf,int hash)85  static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86  	__acquires(&conf->device_lock)
87  {
88  	spin_lock_irq(conf->hash_locks + hash);
89  	spin_lock(&conf->device_lock);
90  }
91  
unlock_device_hash_lock(struct r5conf * conf,int hash)92  static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93  	__releases(&conf->device_lock)
94  {
95  	spin_unlock(&conf->device_lock);
96  	spin_unlock_irq(conf->hash_locks + hash);
97  }
98  
lock_all_device_hash_locks_irq(struct r5conf * conf)99  static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100  	__acquires(&conf->device_lock)
101  {
102  	int i;
103  	spin_lock_irq(conf->hash_locks);
104  	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105  		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106  	spin_lock(&conf->device_lock);
107  }
108  
unlock_all_device_hash_locks_irq(struct r5conf * conf)109  static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110  	__releases(&conf->device_lock)
111  {
112  	int i;
113  	spin_unlock(&conf->device_lock);
114  	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115  		spin_unlock(conf->hash_locks + i);
116  	spin_unlock_irq(conf->hash_locks);
117  }
118  
119  /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)120  static inline int raid6_d0(struct stripe_head *sh)
121  {
122  	if (sh->ddf_layout)
123  		/* ddf always start from first device */
124  		return 0;
125  	/* md starts just after Q block */
126  	if (sh->qd_idx == sh->disks - 1)
127  		return 0;
128  	else
129  		return sh->qd_idx + 1;
130  }
raid6_next_disk(int disk,int raid_disks)131  static inline int raid6_next_disk(int disk, int raid_disks)
132  {
133  	disk++;
134  	return (disk < raid_disks) ? disk : 0;
135  }
136  
137  /* When walking through the disks in a raid5, starting at raid6_d0,
138   * We need to map each disk to a 'slot', where the data disks are slot
139   * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140   * is raid_disks-1.  This help does that mapping.
141   */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)142  static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143  			     int *count, int syndrome_disks)
144  {
145  	int slot = *count;
146  
147  	if (sh->ddf_layout)
148  		(*count)++;
149  	if (idx == sh->pd_idx)
150  		return syndrome_disks;
151  	if (idx == sh->qd_idx)
152  		return syndrome_disks + 1;
153  	if (!sh->ddf_layout)
154  		(*count)++;
155  	return slot;
156  }
157  
158  static void print_raid5_conf(struct r5conf *conf);
159  
stripe_operations_active(struct stripe_head * sh)160  static int stripe_operations_active(struct stripe_head *sh)
161  {
162  	return sh->check_state || sh->reconstruct_state ||
163  	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164  	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165  }
166  
stripe_is_lowprio(struct stripe_head * sh)167  static bool stripe_is_lowprio(struct stripe_head *sh)
168  {
169  	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170  		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171  	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
172  }
173  
raid5_wakeup_stripe_thread(struct stripe_head * sh)174  static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175  	__must_hold(&sh->raid_conf->device_lock)
176  {
177  	struct r5conf *conf = sh->raid_conf;
178  	struct r5worker_group *group;
179  	int thread_cnt;
180  	int i, cpu = sh->cpu;
181  
182  	if (!cpu_online(cpu)) {
183  		cpu = cpumask_any(cpu_online_mask);
184  		sh->cpu = cpu;
185  	}
186  
187  	if (list_empty(&sh->lru)) {
188  		struct r5worker_group *group;
189  		group = conf->worker_groups + cpu_to_group(cpu);
190  		if (stripe_is_lowprio(sh))
191  			list_add_tail(&sh->lru, &group->loprio_list);
192  		else
193  			list_add_tail(&sh->lru, &group->handle_list);
194  		group->stripes_cnt++;
195  		sh->group = group;
196  	}
197  
198  	if (conf->worker_cnt_per_group == 0) {
199  		md_wakeup_thread(conf->mddev->thread);
200  		return;
201  	}
202  
203  	group = conf->worker_groups + cpu_to_group(sh->cpu);
204  
205  	group->workers[0].working = true;
206  	/* at least one worker should run to avoid race */
207  	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208  
209  	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210  	/* wakeup more workers */
211  	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212  		if (group->workers[i].working == false) {
213  			group->workers[i].working = true;
214  			queue_work_on(sh->cpu, raid5_wq,
215  				      &group->workers[i].work);
216  			thread_cnt--;
217  		}
218  	}
219  }
220  
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)221  static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222  			      struct list_head *temp_inactive_list)
223  	__must_hold(&conf->device_lock)
224  {
225  	int i;
226  	int injournal = 0;	/* number of date pages with R5_InJournal */
227  
228  	BUG_ON(!list_empty(&sh->lru));
229  	BUG_ON(atomic_read(&conf->active_stripes)==0);
230  
231  	if (r5c_is_writeback(conf->log))
232  		for (i = sh->disks; i--; )
233  			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234  				injournal++;
235  	/*
236  	 * In the following cases, the stripe cannot be released to cached
237  	 * lists. Therefore, we make the stripe write out and set
238  	 * STRIPE_HANDLE:
239  	 *   1. when quiesce in r5c write back;
240  	 *   2. when resync is requested fot the stripe.
241  	 */
242  	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243  	    (conf->quiesce && r5c_is_writeback(conf->log) &&
244  	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245  		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246  			r5c_make_stripe_write_out(sh);
247  		set_bit(STRIPE_HANDLE, &sh->state);
248  	}
249  
250  	if (test_bit(STRIPE_HANDLE, &sh->state)) {
251  		if (test_bit(STRIPE_DELAYED, &sh->state) &&
252  		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253  			list_add_tail(&sh->lru, &conf->delayed_list);
254  		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255  			   sh->bm_seq - conf->seq_write > 0)
256  			list_add_tail(&sh->lru, &conf->bitmap_list);
257  		else {
258  			clear_bit(STRIPE_DELAYED, &sh->state);
259  			clear_bit(STRIPE_BIT_DELAY, &sh->state);
260  			if (conf->worker_cnt_per_group == 0) {
261  				if (stripe_is_lowprio(sh))
262  					list_add_tail(&sh->lru,
263  							&conf->loprio_list);
264  				else
265  					list_add_tail(&sh->lru,
266  							&conf->handle_list);
267  			} else {
268  				raid5_wakeup_stripe_thread(sh);
269  				return;
270  			}
271  		}
272  		md_wakeup_thread(conf->mddev->thread);
273  	} else {
274  		BUG_ON(stripe_operations_active(sh));
275  		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276  			if (atomic_dec_return(&conf->preread_active_stripes)
277  			    < IO_THRESHOLD)
278  				md_wakeup_thread(conf->mddev->thread);
279  		atomic_dec(&conf->active_stripes);
280  		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281  			if (!r5c_is_writeback(conf->log))
282  				list_add_tail(&sh->lru, temp_inactive_list);
283  			else {
284  				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285  				if (injournal == 0)
286  					list_add_tail(&sh->lru, temp_inactive_list);
287  				else if (injournal == conf->raid_disks - conf->max_degraded) {
288  					/* full stripe */
289  					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290  						atomic_inc(&conf->r5c_cached_full_stripes);
291  					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292  						atomic_dec(&conf->r5c_cached_partial_stripes);
293  					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294  					r5c_check_cached_full_stripe(conf);
295  				} else
296  					/*
297  					 * STRIPE_R5C_PARTIAL_STRIPE is set in
298  					 * r5c_try_caching_write(). No need to
299  					 * set it again.
300  					 */
301  					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302  			}
303  		}
304  	}
305  }
306  
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)307  static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308  			     struct list_head *temp_inactive_list)
309  	__must_hold(&conf->device_lock)
310  {
311  	if (atomic_dec_and_test(&sh->count))
312  		do_release_stripe(conf, sh, temp_inactive_list);
313  }
314  
315  /*
316   * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317   *
318   * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319   * given time. Adding stripes only takes device lock, while deleting stripes
320   * only takes hash lock.
321   */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)322  static void release_inactive_stripe_list(struct r5conf *conf,
323  					 struct list_head *temp_inactive_list,
324  					 int hash)
325  {
326  	int size;
327  	bool do_wakeup = false;
328  	unsigned long flags;
329  
330  	if (hash == NR_STRIPE_HASH_LOCKS) {
331  		size = NR_STRIPE_HASH_LOCKS;
332  		hash = NR_STRIPE_HASH_LOCKS - 1;
333  	} else
334  		size = 1;
335  	while (size) {
336  		struct list_head *list = &temp_inactive_list[size - 1];
337  
338  		/*
339  		 * We don't hold any lock here yet, raid5_get_active_stripe() might
340  		 * remove stripes from the list
341  		 */
342  		if (!list_empty_careful(list)) {
343  			spin_lock_irqsave(conf->hash_locks + hash, flags);
344  			if (list_empty(conf->inactive_list + hash) &&
345  			    !list_empty(list))
346  				atomic_dec(&conf->empty_inactive_list_nr);
347  			list_splice_tail_init(list, conf->inactive_list + hash);
348  			do_wakeup = true;
349  			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350  		}
351  		size--;
352  		hash--;
353  	}
354  
355  	if (do_wakeup) {
356  		wake_up(&conf->wait_for_stripe);
357  		if (atomic_read(&conf->active_stripes) == 0)
358  			wake_up(&conf->wait_for_quiescent);
359  		if (conf->retry_read_aligned)
360  			md_wakeup_thread(conf->mddev->thread);
361  	}
362  }
363  
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)364  static int release_stripe_list(struct r5conf *conf,
365  			       struct list_head *temp_inactive_list)
366  	__must_hold(&conf->device_lock)
367  {
368  	struct stripe_head *sh, *t;
369  	int count = 0;
370  	struct llist_node *head;
371  
372  	head = llist_del_all(&conf->released_stripes);
373  	head = llist_reverse_order(head);
374  	llist_for_each_entry_safe(sh, t, head, release_list) {
375  		int hash;
376  
377  		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378  		smp_mb();
379  		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380  		/*
381  		 * Don't worry the bit is set here, because if the bit is set
382  		 * again, the count is always > 1. This is true for
383  		 * STRIPE_ON_UNPLUG_LIST bit too.
384  		 */
385  		hash = sh->hash_lock_index;
386  		__release_stripe(conf, sh, &temp_inactive_list[hash]);
387  		count++;
388  	}
389  
390  	return count;
391  }
392  
raid5_release_stripe(struct stripe_head * sh)393  void raid5_release_stripe(struct stripe_head *sh)
394  {
395  	struct r5conf *conf = sh->raid_conf;
396  	unsigned long flags;
397  	struct list_head list;
398  	int hash;
399  	bool wakeup;
400  
401  	/* Avoid release_list until the last reference.
402  	 */
403  	if (atomic_add_unless(&sh->count, -1, 1))
404  		return;
405  
406  	if (unlikely(!conf->mddev->thread) ||
407  		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408  		goto slow_path;
409  	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410  	if (wakeup)
411  		md_wakeup_thread(conf->mddev->thread);
412  	return;
413  slow_path:
414  	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415  	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416  		INIT_LIST_HEAD(&list);
417  		hash = sh->hash_lock_index;
418  		do_release_stripe(conf, sh, &list);
419  		spin_unlock_irqrestore(&conf->device_lock, flags);
420  		release_inactive_stripe_list(conf, &list, hash);
421  	}
422  }
423  
remove_hash(struct stripe_head * sh)424  static inline void remove_hash(struct stripe_head *sh)
425  {
426  	pr_debug("remove_hash(), stripe %llu\n",
427  		(unsigned long long)sh->sector);
428  
429  	hlist_del_init(&sh->hash);
430  }
431  
insert_hash(struct r5conf * conf,struct stripe_head * sh)432  static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433  {
434  	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435  
436  	pr_debug("insert_hash(), stripe %llu\n",
437  		(unsigned long long)sh->sector);
438  
439  	hlist_add_head(&sh->hash, hp);
440  }
441  
442  /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)443  static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444  {
445  	struct stripe_head *sh = NULL;
446  	struct list_head *first;
447  
448  	if (list_empty(conf->inactive_list + hash))
449  		goto out;
450  	first = (conf->inactive_list + hash)->next;
451  	sh = list_entry(first, struct stripe_head, lru);
452  	list_del_init(first);
453  	remove_hash(sh);
454  	atomic_inc(&conf->active_stripes);
455  	BUG_ON(hash != sh->hash_lock_index);
456  	if (list_empty(conf->inactive_list + hash))
457  		atomic_inc(&conf->empty_inactive_list_nr);
458  out:
459  	return sh;
460  }
461  
462  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)463  static void free_stripe_pages(struct stripe_head *sh)
464  {
465  	int i;
466  	struct page *p;
467  
468  	/* Have not allocate page pool */
469  	if (!sh->pages)
470  		return;
471  
472  	for (i = 0; i < sh->nr_pages; i++) {
473  		p = sh->pages[i];
474  		if (p)
475  			put_page(p);
476  		sh->pages[i] = NULL;
477  	}
478  }
479  
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)480  static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481  {
482  	int i;
483  	struct page *p;
484  
485  	for (i = 0; i < sh->nr_pages; i++) {
486  		/* The page have allocated. */
487  		if (sh->pages[i])
488  			continue;
489  
490  		p = alloc_page(gfp);
491  		if (!p) {
492  			free_stripe_pages(sh);
493  			return -ENOMEM;
494  		}
495  		sh->pages[i] = p;
496  	}
497  	return 0;
498  }
499  
500  static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)501  init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502  {
503  	int nr_pages, cnt;
504  
505  	if (sh->pages)
506  		return 0;
507  
508  	/* Each of the sh->dev[i] need one conf->stripe_size */
509  	cnt = PAGE_SIZE / conf->stripe_size;
510  	nr_pages = (disks + cnt - 1) / cnt;
511  
512  	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513  	if (!sh->pages)
514  		return -ENOMEM;
515  	sh->nr_pages = nr_pages;
516  	sh->stripes_per_page = cnt;
517  	return 0;
518  }
519  #endif
520  
shrink_buffers(struct stripe_head * sh)521  static void shrink_buffers(struct stripe_head *sh)
522  {
523  	int i;
524  	int num = sh->raid_conf->pool_size;
525  
526  #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527  	for (i = 0; i < num ; i++) {
528  		struct page *p;
529  
530  		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531  		p = sh->dev[i].page;
532  		if (!p)
533  			continue;
534  		sh->dev[i].page = NULL;
535  		put_page(p);
536  	}
537  #else
538  	for (i = 0; i < num; i++)
539  		sh->dev[i].page = NULL;
540  	free_stripe_pages(sh); /* Free pages */
541  #endif
542  }
543  
grow_buffers(struct stripe_head * sh,gfp_t gfp)544  static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545  {
546  	int i;
547  	int num = sh->raid_conf->pool_size;
548  
549  #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550  	for (i = 0; i < num; i++) {
551  		struct page *page;
552  
553  		if (!(page = alloc_page(gfp))) {
554  			return 1;
555  		}
556  		sh->dev[i].page = page;
557  		sh->dev[i].orig_page = page;
558  		sh->dev[i].offset = 0;
559  	}
560  #else
561  	if (alloc_stripe_pages(sh, gfp))
562  		return -ENOMEM;
563  
564  	for (i = 0; i < num; i++) {
565  		sh->dev[i].page = raid5_get_dev_page(sh, i);
566  		sh->dev[i].orig_page = sh->dev[i].page;
567  		sh->dev[i].offset = raid5_get_page_offset(sh, i);
568  	}
569  #endif
570  	return 0;
571  }
572  
573  static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574  			    struct stripe_head *sh);
575  
init_stripe(struct stripe_head * sh,sector_t sector,int previous)576  static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577  {
578  	struct r5conf *conf = sh->raid_conf;
579  	int i, seq;
580  
581  	BUG_ON(atomic_read(&sh->count) != 0);
582  	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583  	BUG_ON(stripe_operations_active(sh));
584  	BUG_ON(sh->batch_head);
585  
586  	pr_debug("init_stripe called, stripe %llu\n",
587  		(unsigned long long)sector);
588  retry:
589  	seq = read_seqcount_begin(&conf->gen_lock);
590  	sh->generation = conf->generation - previous;
591  	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592  	sh->sector = sector;
593  	stripe_set_idx(sector, conf, previous, sh);
594  	sh->state = 0;
595  
596  	for (i = sh->disks; i--; ) {
597  		struct r5dev *dev = &sh->dev[i];
598  
599  		if (dev->toread || dev->read || dev->towrite || dev->written ||
600  		    test_bit(R5_LOCKED, &dev->flags)) {
601  			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602  			       (unsigned long long)sh->sector, i, dev->toread,
603  			       dev->read, dev->towrite, dev->written,
604  			       test_bit(R5_LOCKED, &dev->flags));
605  			WARN_ON(1);
606  		}
607  		dev->flags = 0;
608  		dev->sector = raid5_compute_blocknr(sh, i, previous);
609  	}
610  	if (read_seqcount_retry(&conf->gen_lock, seq))
611  		goto retry;
612  	sh->overwrite_disks = 0;
613  	insert_hash(conf, sh);
614  	sh->cpu = smp_processor_id();
615  	set_bit(STRIPE_BATCH_READY, &sh->state);
616  }
617  
__find_stripe(struct r5conf * conf,sector_t sector,short generation)618  static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619  					 short generation)
620  {
621  	struct stripe_head *sh;
622  
623  	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624  	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625  		if (sh->sector == sector && sh->generation == generation)
626  			return sh;
627  	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628  	return NULL;
629  }
630  
find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)631  static struct stripe_head *find_get_stripe(struct r5conf *conf,
632  		sector_t sector, short generation, int hash)
633  {
634  	int inc_empty_inactive_list_flag;
635  	struct stripe_head *sh;
636  
637  	sh = __find_stripe(conf, sector, generation);
638  	if (!sh)
639  		return NULL;
640  
641  	if (atomic_inc_not_zero(&sh->count))
642  		return sh;
643  
644  	/*
645  	 * Slow path. The reference count is zero which means the stripe must
646  	 * be on a list (sh->lru). Must remove the stripe from the list that
647  	 * references it with the device_lock held.
648  	 */
649  
650  	spin_lock(&conf->device_lock);
651  	if (!atomic_read(&sh->count)) {
652  		if (!test_bit(STRIPE_HANDLE, &sh->state))
653  			atomic_inc(&conf->active_stripes);
654  		BUG_ON(list_empty(&sh->lru) &&
655  		       !test_bit(STRIPE_EXPANDING, &sh->state));
656  		inc_empty_inactive_list_flag = 0;
657  		if (!list_empty(conf->inactive_list + hash))
658  			inc_empty_inactive_list_flag = 1;
659  		list_del_init(&sh->lru);
660  		if (list_empty(conf->inactive_list + hash) &&
661  		    inc_empty_inactive_list_flag)
662  			atomic_inc(&conf->empty_inactive_list_nr);
663  		if (sh->group) {
664  			sh->group->stripes_cnt--;
665  			sh->group = NULL;
666  		}
667  	}
668  	atomic_inc(&sh->count);
669  	spin_unlock(&conf->device_lock);
670  
671  	return sh;
672  }
673  
674  /*
675   * Need to check if array has failed when deciding whether to:
676   *  - start an array
677   *  - remove non-faulty devices
678   *  - add a spare
679   *  - allow a reshape
680   * This determination is simple when no reshape is happening.
681   * However if there is a reshape, we need to carefully check
682   * both the before and after sections.
683   * This is because some failed devices may only affect one
684   * of the two sections, and some non-in_sync devices may
685   * be insync in the section most affected by failed devices.
686   *
687   * Most calls to this function hold &conf->device_lock. Calls
688   * in raid5_run() do not require the lock as no other threads
689   * have been started yet.
690   */
raid5_calc_degraded(struct r5conf * conf)691  int raid5_calc_degraded(struct r5conf *conf)
692  {
693  	int degraded, degraded2;
694  	int i;
695  
696  	degraded = 0;
697  	for (i = 0; i < conf->previous_raid_disks; i++) {
698  		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699  
700  		if (rdev && test_bit(Faulty, &rdev->flags))
701  			rdev = READ_ONCE(conf->disks[i].replacement);
702  		if (!rdev || test_bit(Faulty, &rdev->flags))
703  			degraded++;
704  		else if (test_bit(In_sync, &rdev->flags))
705  			;
706  		else
707  			/* not in-sync or faulty.
708  			 * If the reshape increases the number of devices,
709  			 * this is being recovered by the reshape, so
710  			 * this 'previous' section is not in_sync.
711  			 * If the number of devices is being reduced however,
712  			 * the device can only be part of the array if
713  			 * we are reverting a reshape, so this section will
714  			 * be in-sync.
715  			 */
716  			if (conf->raid_disks >= conf->previous_raid_disks)
717  				degraded++;
718  	}
719  	if (conf->raid_disks == conf->previous_raid_disks)
720  		return degraded;
721  	degraded2 = 0;
722  	for (i = 0; i < conf->raid_disks; i++) {
723  		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724  
725  		if (rdev && test_bit(Faulty, &rdev->flags))
726  			rdev = READ_ONCE(conf->disks[i].replacement);
727  		if (!rdev || test_bit(Faulty, &rdev->flags))
728  			degraded2++;
729  		else if (test_bit(In_sync, &rdev->flags))
730  			;
731  		else
732  			/* not in-sync or faulty.
733  			 * If reshape increases the number of devices, this
734  			 * section has already been recovered, else it
735  			 * almost certainly hasn't.
736  			 */
737  			if (conf->raid_disks <= conf->previous_raid_disks)
738  				degraded2++;
739  	}
740  	if (degraded2 > degraded)
741  		return degraded2;
742  	return degraded;
743  }
744  
has_failed(struct r5conf * conf)745  static bool has_failed(struct r5conf *conf)
746  {
747  	int degraded = conf->mddev->degraded;
748  
749  	if (test_bit(MD_BROKEN, &conf->mddev->flags))
750  		return true;
751  
752  	if (conf->mddev->reshape_position != MaxSector)
753  		degraded = raid5_calc_degraded(conf);
754  
755  	return degraded > conf->max_degraded;
756  }
757  
758  enum stripe_result {
759  	STRIPE_SUCCESS = 0,
760  	STRIPE_RETRY,
761  	STRIPE_SCHEDULE_AND_RETRY,
762  	STRIPE_FAIL,
763  	STRIPE_WAIT_RESHAPE,
764  };
765  
766  struct stripe_request_ctx {
767  	/* a reference to the last stripe_head for batching */
768  	struct stripe_head *batch_last;
769  
770  	/* first sector in the request */
771  	sector_t first_sector;
772  
773  	/* last sector in the request */
774  	sector_t last_sector;
775  
776  	/*
777  	 * bitmap to track stripe sectors that have been added to stripes
778  	 * add one to account for unaligned requests
779  	 */
780  	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781  
782  	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783  	bool do_flush;
784  };
785  
786  /*
787   * Block until another thread clears R5_INACTIVE_BLOCKED or
788   * there are fewer than 3/4 the maximum number of active stripes
789   * and there is an inactive stripe available.
790   */
is_inactive_blocked(struct r5conf * conf,int hash)791  static bool is_inactive_blocked(struct r5conf *conf, int hash)
792  {
793  	if (list_empty(conf->inactive_list + hash))
794  		return false;
795  
796  	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797  		return true;
798  
799  	return (atomic_read(&conf->active_stripes) <
800  		(conf->max_nr_stripes * 3 / 4));
801  }
802  
raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)803  struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804  		struct stripe_request_ctx *ctx, sector_t sector,
805  		unsigned int flags)
806  {
807  	struct stripe_head *sh;
808  	int hash = stripe_hash_locks_hash(conf, sector);
809  	int previous = !!(flags & R5_GAS_PREVIOUS);
810  
811  	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812  
813  	spin_lock_irq(conf->hash_locks + hash);
814  
815  	for (;;) {
816  		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817  			/*
818  			 * Must release the reference to batch_last before
819  			 * waiting, on quiesce, otherwise the batch_last will
820  			 * hold a reference to a stripe and raid5_quiesce()
821  			 * will deadlock waiting for active_stripes to go to
822  			 * zero.
823  			 */
824  			if (ctx && ctx->batch_last) {
825  				raid5_release_stripe(ctx->batch_last);
826  				ctx->batch_last = NULL;
827  			}
828  
829  			wait_event_lock_irq(conf->wait_for_quiescent,
830  					    !conf->quiesce,
831  					    *(conf->hash_locks + hash));
832  		}
833  
834  		sh = find_get_stripe(conf, sector, conf->generation - previous,
835  				     hash);
836  		if (sh)
837  			break;
838  
839  		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840  			sh = get_free_stripe(conf, hash);
841  			if (sh) {
842  				r5c_check_stripe_cache_usage(conf);
843  				init_stripe(sh, sector, previous);
844  				atomic_inc(&sh->count);
845  				break;
846  			}
847  
848  			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849  				set_bit(R5_ALLOC_MORE, &conf->cache_state);
850  		}
851  
852  		if (flags & R5_GAS_NOBLOCK)
853  			break;
854  
855  		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856  		r5l_wake_reclaim(conf->log, 0);
857  
858  		/* release batch_last before wait to avoid risk of deadlock */
859  		if (ctx && ctx->batch_last) {
860  			raid5_release_stripe(ctx->batch_last);
861  			ctx->batch_last = NULL;
862  		}
863  
864  		wait_event_lock_irq(conf->wait_for_stripe,
865  				    is_inactive_blocked(conf, hash),
866  				    *(conf->hash_locks + hash));
867  		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868  	}
869  
870  	spin_unlock_irq(conf->hash_locks + hash);
871  	return sh;
872  }
873  
is_full_stripe_write(struct stripe_head * sh)874  static bool is_full_stripe_write(struct stripe_head *sh)
875  {
876  	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877  	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878  }
879  
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)880  static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881  		__acquires(&sh1->stripe_lock)
882  		__acquires(&sh2->stripe_lock)
883  {
884  	if (sh1 > sh2) {
885  		spin_lock_irq(&sh2->stripe_lock);
886  		spin_lock_nested(&sh1->stripe_lock, 1);
887  	} else {
888  		spin_lock_irq(&sh1->stripe_lock);
889  		spin_lock_nested(&sh2->stripe_lock, 1);
890  	}
891  }
892  
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)893  static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894  		__releases(&sh1->stripe_lock)
895  		__releases(&sh2->stripe_lock)
896  {
897  	spin_unlock(&sh1->stripe_lock);
898  	spin_unlock_irq(&sh2->stripe_lock);
899  }
900  
901  /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)902  static bool stripe_can_batch(struct stripe_head *sh)
903  {
904  	struct r5conf *conf = sh->raid_conf;
905  
906  	if (raid5_has_log(conf) || raid5_has_ppl(conf))
907  		return false;
908  	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909  	       is_full_stripe_write(sh);
910  }
911  
912  /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)913  static void stripe_add_to_batch_list(struct r5conf *conf,
914  		struct stripe_head *sh, struct stripe_head *last_sh)
915  {
916  	struct stripe_head *head;
917  	sector_t head_sector, tmp_sec;
918  	int hash;
919  	int dd_idx;
920  
921  	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922  	tmp_sec = sh->sector;
923  	if (!sector_div(tmp_sec, conf->chunk_sectors))
924  		return;
925  	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926  
927  	if (last_sh && head_sector == last_sh->sector) {
928  		head = last_sh;
929  		atomic_inc(&head->count);
930  	} else {
931  		hash = stripe_hash_locks_hash(conf, head_sector);
932  		spin_lock_irq(conf->hash_locks + hash);
933  		head = find_get_stripe(conf, head_sector, conf->generation,
934  				       hash);
935  		spin_unlock_irq(conf->hash_locks + hash);
936  		if (!head)
937  			return;
938  		if (!stripe_can_batch(head))
939  			goto out;
940  	}
941  
942  	lock_two_stripes(head, sh);
943  	/* clear_batch_ready clear the flag */
944  	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945  		goto unlock_out;
946  
947  	if (sh->batch_head)
948  		goto unlock_out;
949  
950  	dd_idx = 0;
951  	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952  		dd_idx++;
953  	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954  	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955  		goto unlock_out;
956  
957  	if (head->batch_head) {
958  		spin_lock(&head->batch_head->batch_lock);
959  		/* This batch list is already running */
960  		if (!stripe_can_batch(head)) {
961  			spin_unlock(&head->batch_head->batch_lock);
962  			goto unlock_out;
963  		}
964  		/*
965  		 * We must assign batch_head of this stripe within the
966  		 * batch_lock, otherwise clear_batch_ready of batch head
967  		 * stripe could clear BATCH_READY bit of this stripe and
968  		 * this stripe->batch_head doesn't get assigned, which
969  		 * could confuse clear_batch_ready for this stripe
970  		 */
971  		sh->batch_head = head->batch_head;
972  
973  		/*
974  		 * at this point, head's BATCH_READY could be cleared, but we
975  		 * can still add the stripe to batch list
976  		 */
977  		list_add(&sh->batch_list, &head->batch_list);
978  		spin_unlock(&head->batch_head->batch_lock);
979  	} else {
980  		head->batch_head = head;
981  		sh->batch_head = head->batch_head;
982  		spin_lock(&head->batch_lock);
983  		list_add_tail(&sh->batch_list, &head->batch_list);
984  		spin_unlock(&head->batch_lock);
985  	}
986  
987  	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988  		if (atomic_dec_return(&conf->preread_active_stripes)
989  		    < IO_THRESHOLD)
990  			md_wakeup_thread(conf->mddev->thread);
991  
992  	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993  		int seq = sh->bm_seq;
994  		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995  		    sh->batch_head->bm_seq > seq)
996  			seq = sh->batch_head->bm_seq;
997  		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998  		sh->batch_head->bm_seq = seq;
999  	}
1000  
1001  	atomic_inc(&sh->count);
1002  unlock_out:
1003  	unlock_two_stripes(head, sh);
1004  out:
1005  	raid5_release_stripe(head);
1006  }
1007  
1008  /* Determine if 'data_offset' or 'new_data_offset' should be used
1009   * in this stripe_head.
1010   */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)1011  static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012  {
1013  	sector_t progress = conf->reshape_progress;
1014  	/* Need a memory barrier to make sure we see the value
1015  	 * of conf->generation, or ->data_offset that was set before
1016  	 * reshape_progress was updated.
1017  	 */
1018  	smp_rmb();
1019  	if (progress == MaxSector)
1020  		return 0;
1021  	if (sh->generation == conf->generation - 1)
1022  		return 0;
1023  	/* We are in a reshape, and this is a new-generation stripe,
1024  	 * so use new_data_offset.
1025  	 */
1026  	return 1;
1027  }
1028  
dispatch_bio_list(struct bio_list * tmp)1029  static void dispatch_bio_list(struct bio_list *tmp)
1030  {
1031  	struct bio *bio;
1032  
1033  	while ((bio = bio_list_pop(tmp)))
1034  		submit_bio_noacct(bio);
1035  }
1036  
cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1037  static int cmp_stripe(void *priv, const struct list_head *a,
1038  		      const struct list_head *b)
1039  {
1040  	const struct r5pending_data *da = list_entry(a,
1041  				struct r5pending_data, sibling);
1042  	const struct r5pending_data *db = list_entry(b,
1043  				struct r5pending_data, sibling);
1044  	if (da->sector > db->sector)
1045  		return 1;
1046  	if (da->sector < db->sector)
1047  		return -1;
1048  	return 0;
1049  }
1050  
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1051  static void dispatch_defer_bios(struct r5conf *conf, int target,
1052  				struct bio_list *list)
1053  {
1054  	struct r5pending_data *data;
1055  	struct list_head *first, *next = NULL;
1056  	int cnt = 0;
1057  
1058  	if (conf->pending_data_cnt == 0)
1059  		return;
1060  
1061  	list_sort(NULL, &conf->pending_list, cmp_stripe);
1062  
1063  	first = conf->pending_list.next;
1064  
1065  	/* temporarily move the head */
1066  	if (conf->next_pending_data)
1067  		list_move_tail(&conf->pending_list,
1068  				&conf->next_pending_data->sibling);
1069  
1070  	while (!list_empty(&conf->pending_list)) {
1071  		data = list_first_entry(&conf->pending_list,
1072  			struct r5pending_data, sibling);
1073  		if (&data->sibling == first)
1074  			first = data->sibling.next;
1075  		next = data->sibling.next;
1076  
1077  		bio_list_merge(list, &data->bios);
1078  		list_move(&data->sibling, &conf->free_list);
1079  		cnt++;
1080  		if (cnt >= target)
1081  			break;
1082  	}
1083  	conf->pending_data_cnt -= cnt;
1084  	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085  
1086  	if (next != &conf->pending_list)
1087  		conf->next_pending_data = list_entry(next,
1088  				struct r5pending_data, sibling);
1089  	else
1090  		conf->next_pending_data = NULL;
1091  	/* list isn't empty */
1092  	if (first != &conf->pending_list)
1093  		list_move_tail(&conf->pending_list, first);
1094  }
1095  
flush_deferred_bios(struct r5conf * conf)1096  static void flush_deferred_bios(struct r5conf *conf)
1097  {
1098  	struct bio_list tmp = BIO_EMPTY_LIST;
1099  
1100  	if (conf->pending_data_cnt == 0)
1101  		return;
1102  
1103  	spin_lock(&conf->pending_bios_lock);
1104  	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105  	BUG_ON(conf->pending_data_cnt != 0);
1106  	spin_unlock(&conf->pending_bios_lock);
1107  
1108  	dispatch_bio_list(&tmp);
1109  }
1110  
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1111  static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112  				struct bio_list *bios)
1113  {
1114  	struct bio_list tmp = BIO_EMPTY_LIST;
1115  	struct r5pending_data *ent;
1116  
1117  	spin_lock(&conf->pending_bios_lock);
1118  	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119  							sibling);
1120  	list_move_tail(&ent->sibling, &conf->pending_list);
1121  	ent->sector = sector;
1122  	bio_list_init(&ent->bios);
1123  	bio_list_merge(&ent->bios, bios);
1124  	conf->pending_data_cnt++;
1125  	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126  		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127  
1128  	spin_unlock(&conf->pending_bios_lock);
1129  
1130  	dispatch_bio_list(&tmp);
1131  }
1132  
1133  static void
1134  raid5_end_read_request(struct bio *bi);
1135  static void
1136  raid5_end_write_request(struct bio *bi);
1137  
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1138  static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139  {
1140  	struct r5conf *conf = sh->raid_conf;
1141  	int i, disks = sh->disks;
1142  	struct stripe_head *head_sh = sh;
1143  	struct bio_list pending_bios = BIO_EMPTY_LIST;
1144  	struct r5dev *dev;
1145  	bool should_defer;
1146  
1147  	might_sleep();
1148  
1149  	if (log_stripe(sh, s) == 0)
1150  		return;
1151  
1152  	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153  
1154  	for (i = disks; i--; ) {
1155  		enum req_op op;
1156  		blk_opf_t op_flags = 0;
1157  		int replace_only = 0;
1158  		struct bio *bi, *rbi;
1159  		struct md_rdev *rdev, *rrdev = NULL;
1160  
1161  		sh = head_sh;
1162  		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163  			op = REQ_OP_WRITE;
1164  			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165  				op_flags = REQ_FUA;
1166  			if (test_bit(R5_Discard, &sh->dev[i].flags))
1167  				op = REQ_OP_DISCARD;
1168  		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169  			op = REQ_OP_READ;
1170  		else if (test_and_clear_bit(R5_WantReplace,
1171  					    &sh->dev[i].flags)) {
1172  			op = REQ_OP_WRITE;
1173  			replace_only = 1;
1174  		} else
1175  			continue;
1176  		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177  			op_flags |= REQ_SYNC;
1178  
1179  again:
1180  		dev = &sh->dev[i];
1181  		bi = &dev->req;
1182  		rbi = &dev->rreq; /* For writing to replacement */
1183  
1184  		rdev = conf->disks[i].rdev;
1185  		rrdev = conf->disks[i].replacement;
1186  		if (op_is_write(op)) {
1187  			if (replace_only)
1188  				rdev = NULL;
1189  			if (rdev == rrdev)
1190  				/* We raced and saw duplicates */
1191  				rrdev = NULL;
1192  		} else {
1193  			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194  				rdev = rrdev;
1195  			rrdev = NULL;
1196  		}
1197  
1198  		if (rdev && test_bit(Faulty, &rdev->flags))
1199  			rdev = NULL;
1200  		if (rdev)
1201  			atomic_inc(&rdev->nr_pending);
1202  		if (rrdev && test_bit(Faulty, &rrdev->flags))
1203  			rrdev = NULL;
1204  		if (rrdev)
1205  			atomic_inc(&rrdev->nr_pending);
1206  
1207  		/* We have already checked bad blocks for reads.  Now
1208  		 * need to check for writes.  We never accept write errors
1209  		 * on the replacement, so we don't to check rrdev.
1210  		 */
1211  		while (op_is_write(op) && rdev &&
1212  		       test_bit(WriteErrorSeen, &rdev->flags)) {
1213  			int bad = rdev_has_badblock(rdev, sh->sector,
1214  						    RAID5_STRIPE_SECTORS(conf));
1215  			if (!bad)
1216  				break;
1217  
1218  			if (bad < 0) {
1219  				set_bit(BlockedBadBlocks, &rdev->flags);
1220  				if (!conf->mddev->external &&
1221  				    conf->mddev->sb_flags) {
1222  					/* It is very unlikely, but we might
1223  					 * still need to write out the
1224  					 * bad block log - better give it
1225  					 * a chance*/
1226  					md_check_recovery(conf->mddev);
1227  				}
1228  				/*
1229  				 * Because md_wait_for_blocked_rdev
1230  				 * will dec nr_pending, we must
1231  				 * increment it first.
1232  				 */
1233  				atomic_inc(&rdev->nr_pending);
1234  				md_wait_for_blocked_rdev(rdev, conf->mddev);
1235  			} else {
1236  				/* Acknowledged bad block - skip the write */
1237  				rdev_dec_pending(rdev, conf->mddev);
1238  				rdev = NULL;
1239  			}
1240  		}
1241  
1242  		if (rdev) {
1243  			if (s->syncing || s->expanding || s->expanded
1244  			    || s->replacing)
1245  				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1246  
1247  			set_bit(STRIPE_IO_STARTED, &sh->state);
1248  
1249  			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1250  			bi->bi_end_io = op_is_write(op)
1251  				? raid5_end_write_request
1252  				: raid5_end_read_request;
1253  			bi->bi_private = sh;
1254  
1255  			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1256  				__func__, (unsigned long long)sh->sector,
1257  				bi->bi_opf, i);
1258  			atomic_inc(&sh->count);
1259  			if (sh != head_sh)
1260  				atomic_inc(&head_sh->count);
1261  			if (use_new_offset(conf, sh))
1262  				bi->bi_iter.bi_sector = (sh->sector
1263  						 + rdev->new_data_offset);
1264  			else
1265  				bi->bi_iter.bi_sector = (sh->sector
1266  						 + rdev->data_offset);
1267  			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1268  				bi->bi_opf |= REQ_NOMERGE;
1269  
1270  			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1271  				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1272  
1273  			if (!op_is_write(op) &&
1274  			    test_bit(R5_InJournal, &sh->dev[i].flags))
1275  				/*
1276  				 * issuing read for a page in journal, this
1277  				 * must be preparing for prexor in rmw; read
1278  				 * the data into orig_page
1279  				 */
1280  				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1281  			else
1282  				sh->dev[i].vec.bv_page = sh->dev[i].page;
1283  			bi->bi_vcnt = 1;
1284  			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1285  			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1286  			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1287  			/*
1288  			 * If this is discard request, set bi_vcnt 0. We don't
1289  			 * want to confuse SCSI because SCSI will replace payload
1290  			 */
1291  			if (op == REQ_OP_DISCARD)
1292  				bi->bi_vcnt = 0;
1293  			if (rrdev)
1294  				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1295  
1296  			mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1297  			if (should_defer && op_is_write(op))
1298  				bio_list_add(&pending_bios, bi);
1299  			else
1300  				submit_bio_noacct(bi);
1301  		}
1302  		if (rrdev) {
1303  			if (s->syncing || s->expanding || s->expanded
1304  			    || s->replacing)
1305  				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1306  
1307  			set_bit(STRIPE_IO_STARTED, &sh->state);
1308  
1309  			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1310  			BUG_ON(!op_is_write(op));
1311  			rbi->bi_end_io = raid5_end_write_request;
1312  			rbi->bi_private = sh;
1313  
1314  			pr_debug("%s: for %llu schedule op %d on "
1315  				 "replacement disc %d\n",
1316  				__func__, (unsigned long long)sh->sector,
1317  				rbi->bi_opf, i);
1318  			atomic_inc(&sh->count);
1319  			if (sh != head_sh)
1320  				atomic_inc(&head_sh->count);
1321  			if (use_new_offset(conf, sh))
1322  				rbi->bi_iter.bi_sector = (sh->sector
1323  						  + rrdev->new_data_offset);
1324  			else
1325  				rbi->bi_iter.bi_sector = (sh->sector
1326  						  + rrdev->data_offset);
1327  			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1328  				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1329  			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1330  			rbi->bi_vcnt = 1;
1331  			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1332  			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1333  			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1334  			/*
1335  			 * If this is discard request, set bi_vcnt 0. We don't
1336  			 * want to confuse SCSI because SCSI will replace payload
1337  			 */
1338  			if (op == REQ_OP_DISCARD)
1339  				rbi->bi_vcnt = 0;
1340  			mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1341  			if (should_defer && op_is_write(op))
1342  				bio_list_add(&pending_bios, rbi);
1343  			else
1344  				submit_bio_noacct(rbi);
1345  		}
1346  		if (!rdev && !rrdev) {
1347  			pr_debug("skip op %d on disc %d for sector %llu\n",
1348  				bi->bi_opf, i, (unsigned long long)sh->sector);
1349  			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1350  			set_bit(STRIPE_HANDLE, &sh->state);
1351  		}
1352  
1353  		if (!head_sh->batch_head)
1354  			continue;
1355  		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1356  				      batch_list);
1357  		if (sh != head_sh)
1358  			goto again;
1359  	}
1360  
1361  	if (should_defer && !bio_list_empty(&pending_bios))
1362  		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1363  }
1364  
1365  static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1366  async_copy_data(int frombio, struct bio *bio, struct page **page,
1367  	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1368  	struct stripe_head *sh, int no_skipcopy)
1369  {
1370  	struct bio_vec bvl;
1371  	struct bvec_iter iter;
1372  	struct page *bio_page;
1373  	int page_offset;
1374  	struct async_submit_ctl submit;
1375  	enum async_tx_flags flags = 0;
1376  	struct r5conf *conf = sh->raid_conf;
1377  
1378  	if (bio->bi_iter.bi_sector >= sector)
1379  		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1380  	else
1381  		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1382  
1383  	if (frombio)
1384  		flags |= ASYNC_TX_FENCE;
1385  	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1386  
1387  	bio_for_each_segment(bvl, bio, iter) {
1388  		int len = bvl.bv_len;
1389  		int clen;
1390  		int b_offset = 0;
1391  
1392  		if (page_offset < 0) {
1393  			b_offset = -page_offset;
1394  			page_offset += b_offset;
1395  			len -= b_offset;
1396  		}
1397  
1398  		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1399  			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1400  		else
1401  			clen = len;
1402  
1403  		if (clen > 0) {
1404  			b_offset += bvl.bv_offset;
1405  			bio_page = bvl.bv_page;
1406  			if (frombio) {
1407  				if (conf->skip_copy &&
1408  				    b_offset == 0 && page_offset == 0 &&
1409  				    clen == RAID5_STRIPE_SIZE(conf) &&
1410  				    !no_skipcopy)
1411  					*page = bio_page;
1412  				else
1413  					tx = async_memcpy(*page, bio_page, page_offset + poff,
1414  						  b_offset, clen, &submit);
1415  			} else
1416  				tx = async_memcpy(bio_page, *page, b_offset,
1417  						  page_offset + poff, clen, &submit);
1418  		}
1419  		/* chain the operations */
1420  		submit.depend_tx = tx;
1421  
1422  		if (clen < len) /* hit end of page */
1423  			break;
1424  		page_offset +=  len;
1425  	}
1426  
1427  	return tx;
1428  }
1429  
ops_complete_biofill(void * stripe_head_ref)1430  static void ops_complete_biofill(void *stripe_head_ref)
1431  {
1432  	struct stripe_head *sh = stripe_head_ref;
1433  	int i;
1434  	struct r5conf *conf = sh->raid_conf;
1435  
1436  	pr_debug("%s: stripe %llu\n", __func__,
1437  		(unsigned long long)sh->sector);
1438  
1439  	/* clear completed biofills */
1440  	for (i = sh->disks; i--; ) {
1441  		struct r5dev *dev = &sh->dev[i];
1442  
1443  		/* acknowledge completion of a biofill operation */
1444  		/* and check if we need to reply to a read request,
1445  		 * new R5_Wantfill requests are held off until
1446  		 * !STRIPE_BIOFILL_RUN
1447  		 */
1448  		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1449  			struct bio *rbi, *rbi2;
1450  
1451  			BUG_ON(!dev->read);
1452  			rbi = dev->read;
1453  			dev->read = NULL;
1454  			while (rbi && rbi->bi_iter.bi_sector <
1455  				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1456  				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1457  				bio_endio(rbi);
1458  				rbi = rbi2;
1459  			}
1460  		}
1461  	}
1462  	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1463  
1464  	set_bit(STRIPE_HANDLE, &sh->state);
1465  	raid5_release_stripe(sh);
1466  }
1467  
ops_run_biofill(struct stripe_head * sh)1468  static void ops_run_biofill(struct stripe_head *sh)
1469  {
1470  	struct dma_async_tx_descriptor *tx = NULL;
1471  	struct async_submit_ctl submit;
1472  	int i;
1473  	struct r5conf *conf = sh->raid_conf;
1474  
1475  	BUG_ON(sh->batch_head);
1476  	pr_debug("%s: stripe %llu\n", __func__,
1477  		(unsigned long long)sh->sector);
1478  
1479  	for (i = sh->disks; i--; ) {
1480  		struct r5dev *dev = &sh->dev[i];
1481  		if (test_bit(R5_Wantfill, &dev->flags)) {
1482  			struct bio *rbi;
1483  			spin_lock_irq(&sh->stripe_lock);
1484  			dev->read = rbi = dev->toread;
1485  			dev->toread = NULL;
1486  			spin_unlock_irq(&sh->stripe_lock);
1487  			while (rbi && rbi->bi_iter.bi_sector <
1488  				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1489  				tx = async_copy_data(0, rbi, &dev->page,
1490  						     dev->offset,
1491  						     dev->sector, tx, sh, 0);
1492  				rbi = r5_next_bio(conf, rbi, dev->sector);
1493  			}
1494  		}
1495  	}
1496  
1497  	atomic_inc(&sh->count);
1498  	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1499  	async_trigger_callback(&submit);
1500  }
1501  
mark_target_uptodate(struct stripe_head * sh,int target)1502  static void mark_target_uptodate(struct stripe_head *sh, int target)
1503  {
1504  	struct r5dev *tgt;
1505  
1506  	if (target < 0)
1507  		return;
1508  
1509  	tgt = &sh->dev[target];
1510  	set_bit(R5_UPTODATE, &tgt->flags);
1511  	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1512  	clear_bit(R5_Wantcompute, &tgt->flags);
1513  }
1514  
ops_complete_compute(void * stripe_head_ref)1515  static void ops_complete_compute(void *stripe_head_ref)
1516  {
1517  	struct stripe_head *sh = stripe_head_ref;
1518  
1519  	pr_debug("%s: stripe %llu\n", __func__,
1520  		(unsigned long long)sh->sector);
1521  
1522  	/* mark the computed target(s) as uptodate */
1523  	mark_target_uptodate(sh, sh->ops.target);
1524  	mark_target_uptodate(sh, sh->ops.target2);
1525  
1526  	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1527  	if (sh->check_state == check_state_compute_run)
1528  		sh->check_state = check_state_compute_result;
1529  	set_bit(STRIPE_HANDLE, &sh->state);
1530  	raid5_release_stripe(sh);
1531  }
1532  
1533  /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1534  static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1535  {
1536  	return percpu->scribble + i * percpu->scribble_obj_size;
1537  }
1538  
1539  /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1540  static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1541  				 struct raid5_percpu *percpu, int i)
1542  {
1543  	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1544  }
1545  
1546  /*
1547   * Return a pointer to record offset address.
1548   */
1549  static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1550  to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1551  {
1552  	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1553  }
1554  
1555  static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1556  ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1557  {
1558  	int disks = sh->disks;
1559  	struct page **xor_srcs = to_addr_page(percpu, 0);
1560  	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1561  	int target = sh->ops.target;
1562  	struct r5dev *tgt = &sh->dev[target];
1563  	struct page *xor_dest = tgt->page;
1564  	unsigned int off_dest = tgt->offset;
1565  	int count = 0;
1566  	struct dma_async_tx_descriptor *tx;
1567  	struct async_submit_ctl submit;
1568  	int i;
1569  
1570  	BUG_ON(sh->batch_head);
1571  
1572  	pr_debug("%s: stripe %llu block: %d\n",
1573  		__func__, (unsigned long long)sh->sector, target);
1574  	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575  
1576  	for (i = disks; i--; ) {
1577  		if (i != target) {
1578  			off_srcs[count] = sh->dev[i].offset;
1579  			xor_srcs[count++] = sh->dev[i].page;
1580  		}
1581  	}
1582  
1583  	atomic_inc(&sh->count);
1584  
1585  	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1586  			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1587  	if (unlikely(count == 1))
1588  		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1589  				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1590  	else
1591  		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1592  				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1593  
1594  	return tx;
1595  }
1596  
1597  /* set_syndrome_sources - populate source buffers for gen_syndrome
1598   * @srcs - (struct page *) array of size sh->disks
1599   * @offs - (unsigned int) array of offset for each page
1600   * @sh - stripe_head to parse
1601   *
1602   * Populates srcs in proper layout order for the stripe and returns the
1603   * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1604   * destination buffer is recorded in srcs[count] and the Q destination
1605   * is recorded in srcs[count+1]].
1606   */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1607  static int set_syndrome_sources(struct page **srcs,
1608  				unsigned int *offs,
1609  				struct stripe_head *sh,
1610  				int srctype)
1611  {
1612  	int disks = sh->disks;
1613  	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1614  	int d0_idx = raid6_d0(sh);
1615  	int count;
1616  	int i;
1617  
1618  	for (i = 0; i < disks; i++)
1619  		srcs[i] = NULL;
1620  
1621  	count = 0;
1622  	i = d0_idx;
1623  	do {
1624  		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1625  		struct r5dev *dev = &sh->dev[i];
1626  
1627  		if (i == sh->qd_idx || i == sh->pd_idx ||
1628  		    (srctype == SYNDROME_SRC_ALL) ||
1629  		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1630  		     (test_bit(R5_Wantdrain, &dev->flags) ||
1631  		      test_bit(R5_InJournal, &dev->flags))) ||
1632  		    (srctype == SYNDROME_SRC_WRITTEN &&
1633  		     (dev->written ||
1634  		      test_bit(R5_InJournal, &dev->flags)))) {
1635  			if (test_bit(R5_InJournal, &dev->flags))
1636  				srcs[slot] = sh->dev[i].orig_page;
1637  			else
1638  				srcs[slot] = sh->dev[i].page;
1639  			/*
1640  			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1641  			 * not shared page. In that case, dev[i].offset
1642  			 * is 0.
1643  			 */
1644  			offs[slot] = sh->dev[i].offset;
1645  		}
1646  		i = raid6_next_disk(i, disks);
1647  	} while (i != d0_idx);
1648  
1649  	return syndrome_disks;
1650  }
1651  
1652  static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1653  ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1654  {
1655  	int disks = sh->disks;
1656  	struct page **blocks = to_addr_page(percpu, 0);
1657  	unsigned int *offs = to_addr_offs(sh, percpu);
1658  	int target;
1659  	int qd_idx = sh->qd_idx;
1660  	struct dma_async_tx_descriptor *tx;
1661  	struct async_submit_ctl submit;
1662  	struct r5dev *tgt;
1663  	struct page *dest;
1664  	unsigned int dest_off;
1665  	int i;
1666  	int count;
1667  
1668  	BUG_ON(sh->batch_head);
1669  	if (sh->ops.target < 0)
1670  		target = sh->ops.target2;
1671  	else if (sh->ops.target2 < 0)
1672  		target = sh->ops.target;
1673  	else
1674  		/* we should only have one valid target */
1675  		BUG();
1676  	BUG_ON(target < 0);
1677  	pr_debug("%s: stripe %llu block: %d\n",
1678  		__func__, (unsigned long long)sh->sector, target);
1679  
1680  	tgt = &sh->dev[target];
1681  	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1682  	dest = tgt->page;
1683  	dest_off = tgt->offset;
1684  
1685  	atomic_inc(&sh->count);
1686  
1687  	if (target == qd_idx) {
1688  		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1689  		blocks[count] = NULL; /* regenerating p is not necessary */
1690  		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1691  		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1692  				  ops_complete_compute, sh,
1693  				  to_addr_conv(sh, percpu, 0));
1694  		tx = async_gen_syndrome(blocks, offs, count+2,
1695  				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1696  	} else {
1697  		/* Compute any data- or p-drive using XOR */
1698  		count = 0;
1699  		for (i = disks; i-- ; ) {
1700  			if (i == target || i == qd_idx)
1701  				continue;
1702  			offs[count] = sh->dev[i].offset;
1703  			blocks[count++] = sh->dev[i].page;
1704  		}
1705  
1706  		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1707  				  NULL, ops_complete_compute, sh,
1708  				  to_addr_conv(sh, percpu, 0));
1709  		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1710  				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1711  	}
1712  
1713  	return tx;
1714  }
1715  
1716  static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1717  ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1718  {
1719  	int i, count, disks = sh->disks;
1720  	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1721  	int d0_idx = raid6_d0(sh);
1722  	int faila = -1, failb = -1;
1723  	int target = sh->ops.target;
1724  	int target2 = sh->ops.target2;
1725  	struct r5dev *tgt = &sh->dev[target];
1726  	struct r5dev *tgt2 = &sh->dev[target2];
1727  	struct dma_async_tx_descriptor *tx;
1728  	struct page **blocks = to_addr_page(percpu, 0);
1729  	unsigned int *offs = to_addr_offs(sh, percpu);
1730  	struct async_submit_ctl submit;
1731  
1732  	BUG_ON(sh->batch_head);
1733  	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1734  		 __func__, (unsigned long long)sh->sector, target, target2);
1735  	BUG_ON(target < 0 || target2 < 0);
1736  	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1737  	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1738  
1739  	/* we need to open-code set_syndrome_sources to handle the
1740  	 * slot number conversion for 'faila' and 'failb'
1741  	 */
1742  	for (i = 0; i < disks ; i++) {
1743  		offs[i] = 0;
1744  		blocks[i] = NULL;
1745  	}
1746  	count = 0;
1747  	i = d0_idx;
1748  	do {
1749  		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1750  
1751  		offs[slot] = sh->dev[i].offset;
1752  		blocks[slot] = sh->dev[i].page;
1753  
1754  		if (i == target)
1755  			faila = slot;
1756  		if (i == target2)
1757  			failb = slot;
1758  		i = raid6_next_disk(i, disks);
1759  	} while (i != d0_idx);
1760  
1761  	BUG_ON(faila == failb);
1762  	if (failb < faila)
1763  		swap(faila, failb);
1764  	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1765  		 __func__, (unsigned long long)sh->sector, faila, failb);
1766  
1767  	atomic_inc(&sh->count);
1768  
1769  	if (failb == syndrome_disks+1) {
1770  		/* Q disk is one of the missing disks */
1771  		if (faila == syndrome_disks) {
1772  			/* Missing P+Q, just recompute */
1773  			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1774  					  ops_complete_compute, sh,
1775  					  to_addr_conv(sh, percpu, 0));
1776  			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1777  						  RAID5_STRIPE_SIZE(sh->raid_conf),
1778  						  &submit);
1779  		} else {
1780  			struct page *dest;
1781  			unsigned int dest_off;
1782  			int data_target;
1783  			int qd_idx = sh->qd_idx;
1784  
1785  			/* Missing D+Q: recompute D from P, then recompute Q */
1786  			if (target == qd_idx)
1787  				data_target = target2;
1788  			else
1789  				data_target = target;
1790  
1791  			count = 0;
1792  			for (i = disks; i-- ; ) {
1793  				if (i == data_target || i == qd_idx)
1794  					continue;
1795  				offs[count] = sh->dev[i].offset;
1796  				blocks[count++] = sh->dev[i].page;
1797  			}
1798  			dest = sh->dev[data_target].page;
1799  			dest_off = sh->dev[data_target].offset;
1800  			init_async_submit(&submit,
1801  					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1802  					  NULL, NULL, NULL,
1803  					  to_addr_conv(sh, percpu, 0));
1804  			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1805  				       RAID5_STRIPE_SIZE(sh->raid_conf),
1806  				       &submit);
1807  
1808  			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1809  			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1810  					  ops_complete_compute, sh,
1811  					  to_addr_conv(sh, percpu, 0));
1812  			return async_gen_syndrome(blocks, offs, count+2,
1813  						  RAID5_STRIPE_SIZE(sh->raid_conf),
1814  						  &submit);
1815  		}
1816  	} else {
1817  		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1818  				  ops_complete_compute, sh,
1819  				  to_addr_conv(sh, percpu, 0));
1820  		if (failb == syndrome_disks) {
1821  			/* We're missing D+P. */
1822  			return async_raid6_datap_recov(syndrome_disks+2,
1823  						RAID5_STRIPE_SIZE(sh->raid_conf),
1824  						faila,
1825  						blocks, offs, &submit);
1826  		} else {
1827  			/* We're missing D+D. */
1828  			return async_raid6_2data_recov(syndrome_disks+2,
1829  						RAID5_STRIPE_SIZE(sh->raid_conf),
1830  						faila, failb,
1831  						blocks, offs, &submit);
1832  		}
1833  	}
1834  }
1835  
ops_complete_prexor(void * stripe_head_ref)1836  static void ops_complete_prexor(void *stripe_head_ref)
1837  {
1838  	struct stripe_head *sh = stripe_head_ref;
1839  
1840  	pr_debug("%s: stripe %llu\n", __func__,
1841  		(unsigned long long)sh->sector);
1842  
1843  	if (r5c_is_writeback(sh->raid_conf->log))
1844  		/*
1845  		 * raid5-cache write back uses orig_page during prexor.
1846  		 * After prexor, it is time to free orig_page
1847  		 */
1848  		r5c_release_extra_page(sh);
1849  }
1850  
1851  static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1852  ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853  		struct dma_async_tx_descriptor *tx)
1854  {
1855  	int disks = sh->disks;
1856  	struct page **xor_srcs = to_addr_page(percpu, 0);
1857  	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1858  	int count = 0, pd_idx = sh->pd_idx, i;
1859  	struct async_submit_ctl submit;
1860  
1861  	/* existing parity data subtracted */
1862  	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1863  	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1864  
1865  	BUG_ON(sh->batch_head);
1866  	pr_debug("%s: stripe %llu\n", __func__,
1867  		(unsigned long long)sh->sector);
1868  
1869  	for (i = disks; i--; ) {
1870  		struct r5dev *dev = &sh->dev[i];
1871  		/* Only process blocks that are known to be uptodate */
1872  		if (test_bit(R5_InJournal, &dev->flags)) {
1873  			/*
1874  			 * For this case, PAGE_SIZE must be equal to 4KB and
1875  			 * page offset is zero.
1876  			 */
1877  			off_srcs[count] = dev->offset;
1878  			xor_srcs[count++] = dev->orig_page;
1879  		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1880  			off_srcs[count] = dev->offset;
1881  			xor_srcs[count++] = dev->page;
1882  		}
1883  	}
1884  
1885  	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1886  			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1887  	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1888  			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1889  
1890  	return tx;
1891  }
1892  
1893  static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1894  ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1895  		struct dma_async_tx_descriptor *tx)
1896  {
1897  	struct page **blocks = to_addr_page(percpu, 0);
1898  	unsigned int *offs = to_addr_offs(sh, percpu);
1899  	int count;
1900  	struct async_submit_ctl submit;
1901  
1902  	pr_debug("%s: stripe %llu\n", __func__,
1903  		(unsigned long long)sh->sector);
1904  
1905  	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1906  
1907  	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1908  			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1909  	tx = async_gen_syndrome(blocks, offs, count+2,
1910  			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1911  
1912  	return tx;
1913  }
1914  
1915  static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1916  ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1917  {
1918  	struct r5conf *conf = sh->raid_conf;
1919  	int disks = sh->disks;
1920  	int i;
1921  	struct stripe_head *head_sh = sh;
1922  
1923  	pr_debug("%s: stripe %llu\n", __func__,
1924  		(unsigned long long)sh->sector);
1925  
1926  	for (i = disks; i--; ) {
1927  		struct r5dev *dev;
1928  		struct bio *chosen;
1929  
1930  		sh = head_sh;
1931  		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1932  			struct bio *wbi;
1933  
1934  again:
1935  			dev = &sh->dev[i];
1936  			/*
1937  			 * clear R5_InJournal, so when rewriting a page in
1938  			 * journal, it is not skipped by r5l_log_stripe()
1939  			 */
1940  			clear_bit(R5_InJournal, &dev->flags);
1941  			spin_lock_irq(&sh->stripe_lock);
1942  			chosen = dev->towrite;
1943  			dev->towrite = NULL;
1944  			sh->overwrite_disks = 0;
1945  			BUG_ON(dev->written);
1946  			wbi = dev->written = chosen;
1947  			spin_unlock_irq(&sh->stripe_lock);
1948  			WARN_ON(dev->page != dev->orig_page);
1949  
1950  			while (wbi && wbi->bi_iter.bi_sector <
1951  				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1952  				if (wbi->bi_opf & REQ_FUA)
1953  					set_bit(R5_WantFUA, &dev->flags);
1954  				if (wbi->bi_opf & REQ_SYNC)
1955  					set_bit(R5_SyncIO, &dev->flags);
1956  				if (bio_op(wbi) == REQ_OP_DISCARD)
1957  					set_bit(R5_Discard, &dev->flags);
1958  				else {
1959  					tx = async_copy_data(1, wbi, &dev->page,
1960  							     dev->offset,
1961  							     dev->sector, tx, sh,
1962  							     r5c_is_writeback(conf->log));
1963  					if (dev->page != dev->orig_page &&
1964  					    !r5c_is_writeback(conf->log)) {
1965  						set_bit(R5_SkipCopy, &dev->flags);
1966  						clear_bit(R5_UPTODATE, &dev->flags);
1967  						clear_bit(R5_OVERWRITE, &dev->flags);
1968  					}
1969  				}
1970  				wbi = r5_next_bio(conf, wbi, dev->sector);
1971  			}
1972  
1973  			if (head_sh->batch_head) {
1974  				sh = list_first_entry(&sh->batch_list,
1975  						      struct stripe_head,
1976  						      batch_list);
1977  				if (sh == head_sh)
1978  					continue;
1979  				goto again;
1980  			}
1981  		}
1982  	}
1983  
1984  	return tx;
1985  }
1986  
ops_complete_reconstruct(void * stripe_head_ref)1987  static void ops_complete_reconstruct(void *stripe_head_ref)
1988  {
1989  	struct stripe_head *sh = stripe_head_ref;
1990  	int disks = sh->disks;
1991  	int pd_idx = sh->pd_idx;
1992  	int qd_idx = sh->qd_idx;
1993  	int i;
1994  	bool fua = false, sync = false, discard = false;
1995  
1996  	pr_debug("%s: stripe %llu\n", __func__,
1997  		(unsigned long long)sh->sector);
1998  
1999  	for (i = disks; i--; ) {
2000  		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2001  		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2002  		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2003  	}
2004  
2005  	for (i = disks; i--; ) {
2006  		struct r5dev *dev = &sh->dev[i];
2007  
2008  		if (dev->written || i == pd_idx || i == qd_idx) {
2009  			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2010  				set_bit(R5_UPTODATE, &dev->flags);
2011  				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2012  					set_bit(R5_Expanded, &dev->flags);
2013  			}
2014  			if (fua)
2015  				set_bit(R5_WantFUA, &dev->flags);
2016  			if (sync)
2017  				set_bit(R5_SyncIO, &dev->flags);
2018  		}
2019  	}
2020  
2021  	if (sh->reconstruct_state == reconstruct_state_drain_run)
2022  		sh->reconstruct_state = reconstruct_state_drain_result;
2023  	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2024  		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2025  	else {
2026  		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2027  		sh->reconstruct_state = reconstruct_state_result;
2028  	}
2029  
2030  	set_bit(STRIPE_HANDLE, &sh->state);
2031  	raid5_release_stripe(sh);
2032  }
2033  
2034  static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2035  ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2036  		     struct dma_async_tx_descriptor *tx)
2037  {
2038  	int disks = sh->disks;
2039  	struct page **xor_srcs;
2040  	unsigned int *off_srcs;
2041  	struct async_submit_ctl submit;
2042  	int count, pd_idx = sh->pd_idx, i;
2043  	struct page *xor_dest;
2044  	unsigned int off_dest;
2045  	int prexor = 0;
2046  	unsigned long flags;
2047  	int j = 0;
2048  	struct stripe_head *head_sh = sh;
2049  	int last_stripe;
2050  
2051  	pr_debug("%s: stripe %llu\n", __func__,
2052  		(unsigned long long)sh->sector);
2053  
2054  	for (i = 0; i < sh->disks; i++) {
2055  		if (pd_idx == i)
2056  			continue;
2057  		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2058  			break;
2059  	}
2060  	if (i >= sh->disks) {
2061  		atomic_inc(&sh->count);
2062  		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2063  		ops_complete_reconstruct(sh);
2064  		return;
2065  	}
2066  again:
2067  	count = 0;
2068  	xor_srcs = to_addr_page(percpu, j);
2069  	off_srcs = to_addr_offs(sh, percpu);
2070  	/* check if prexor is active which means only process blocks
2071  	 * that are part of a read-modify-write (written)
2072  	 */
2073  	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2074  		prexor = 1;
2075  		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2076  		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2077  		for (i = disks; i--; ) {
2078  			struct r5dev *dev = &sh->dev[i];
2079  			if (head_sh->dev[i].written ||
2080  			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2081  				off_srcs[count] = dev->offset;
2082  				xor_srcs[count++] = dev->page;
2083  			}
2084  		}
2085  	} else {
2086  		xor_dest = sh->dev[pd_idx].page;
2087  		off_dest = sh->dev[pd_idx].offset;
2088  		for (i = disks; i--; ) {
2089  			struct r5dev *dev = &sh->dev[i];
2090  			if (i != pd_idx) {
2091  				off_srcs[count] = dev->offset;
2092  				xor_srcs[count++] = dev->page;
2093  			}
2094  		}
2095  	}
2096  
2097  	/* 1/ if we prexor'd then the dest is reused as a source
2098  	 * 2/ if we did not prexor then we are redoing the parity
2099  	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2100  	 * for the synchronous xor case
2101  	 */
2102  	last_stripe = !head_sh->batch_head ||
2103  		list_first_entry(&sh->batch_list,
2104  				 struct stripe_head, batch_list) == head_sh;
2105  	if (last_stripe) {
2106  		flags = ASYNC_TX_ACK |
2107  			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2108  
2109  		atomic_inc(&head_sh->count);
2110  		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2111  				  to_addr_conv(sh, percpu, j));
2112  	} else {
2113  		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2114  		init_async_submit(&submit, flags, tx, NULL, NULL,
2115  				  to_addr_conv(sh, percpu, j));
2116  	}
2117  
2118  	if (unlikely(count == 1))
2119  		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2120  				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2121  	else
2122  		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2123  				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2124  	if (!last_stripe) {
2125  		j++;
2126  		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2127  				      batch_list);
2128  		goto again;
2129  	}
2130  }
2131  
2132  static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2133  ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2134  		     struct dma_async_tx_descriptor *tx)
2135  {
2136  	struct async_submit_ctl submit;
2137  	struct page **blocks;
2138  	unsigned int *offs;
2139  	int count, i, j = 0;
2140  	struct stripe_head *head_sh = sh;
2141  	int last_stripe;
2142  	int synflags;
2143  	unsigned long txflags;
2144  
2145  	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2146  
2147  	for (i = 0; i < sh->disks; i++) {
2148  		if (sh->pd_idx == i || sh->qd_idx == i)
2149  			continue;
2150  		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2151  			break;
2152  	}
2153  	if (i >= sh->disks) {
2154  		atomic_inc(&sh->count);
2155  		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2156  		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2157  		ops_complete_reconstruct(sh);
2158  		return;
2159  	}
2160  
2161  again:
2162  	blocks = to_addr_page(percpu, j);
2163  	offs = to_addr_offs(sh, percpu);
2164  
2165  	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2166  		synflags = SYNDROME_SRC_WRITTEN;
2167  		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2168  	} else {
2169  		synflags = SYNDROME_SRC_ALL;
2170  		txflags = ASYNC_TX_ACK;
2171  	}
2172  
2173  	count = set_syndrome_sources(blocks, offs, sh, synflags);
2174  	last_stripe = !head_sh->batch_head ||
2175  		list_first_entry(&sh->batch_list,
2176  				 struct stripe_head, batch_list) == head_sh;
2177  
2178  	if (last_stripe) {
2179  		atomic_inc(&head_sh->count);
2180  		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2181  				  head_sh, to_addr_conv(sh, percpu, j));
2182  	} else
2183  		init_async_submit(&submit, 0, tx, NULL, NULL,
2184  				  to_addr_conv(sh, percpu, j));
2185  	tx = async_gen_syndrome(blocks, offs, count+2,
2186  			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2187  	if (!last_stripe) {
2188  		j++;
2189  		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2190  				      batch_list);
2191  		goto again;
2192  	}
2193  }
2194  
ops_complete_check(void * stripe_head_ref)2195  static void ops_complete_check(void *stripe_head_ref)
2196  {
2197  	struct stripe_head *sh = stripe_head_ref;
2198  
2199  	pr_debug("%s: stripe %llu\n", __func__,
2200  		(unsigned long long)sh->sector);
2201  
2202  	sh->check_state = check_state_check_result;
2203  	set_bit(STRIPE_HANDLE, &sh->state);
2204  	raid5_release_stripe(sh);
2205  }
2206  
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2207  static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2208  {
2209  	int disks = sh->disks;
2210  	int pd_idx = sh->pd_idx;
2211  	int qd_idx = sh->qd_idx;
2212  	struct page *xor_dest;
2213  	unsigned int off_dest;
2214  	struct page **xor_srcs = to_addr_page(percpu, 0);
2215  	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2216  	struct dma_async_tx_descriptor *tx;
2217  	struct async_submit_ctl submit;
2218  	int count;
2219  	int i;
2220  
2221  	pr_debug("%s: stripe %llu\n", __func__,
2222  		(unsigned long long)sh->sector);
2223  
2224  	BUG_ON(sh->batch_head);
2225  	count = 0;
2226  	xor_dest = sh->dev[pd_idx].page;
2227  	off_dest = sh->dev[pd_idx].offset;
2228  	off_srcs[count] = off_dest;
2229  	xor_srcs[count++] = xor_dest;
2230  	for (i = disks; i--; ) {
2231  		if (i == pd_idx || i == qd_idx)
2232  			continue;
2233  		off_srcs[count] = sh->dev[i].offset;
2234  		xor_srcs[count++] = sh->dev[i].page;
2235  	}
2236  
2237  	init_async_submit(&submit, 0, NULL, NULL, NULL,
2238  			  to_addr_conv(sh, percpu, 0));
2239  	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2240  			   RAID5_STRIPE_SIZE(sh->raid_conf),
2241  			   &sh->ops.zero_sum_result, &submit);
2242  
2243  	atomic_inc(&sh->count);
2244  	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2245  	tx = async_trigger_callback(&submit);
2246  }
2247  
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2248  static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2249  {
2250  	struct page **srcs = to_addr_page(percpu, 0);
2251  	unsigned int *offs = to_addr_offs(sh, percpu);
2252  	struct async_submit_ctl submit;
2253  	int count;
2254  
2255  	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2256  		(unsigned long long)sh->sector, checkp);
2257  
2258  	BUG_ON(sh->batch_head);
2259  	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2260  	if (!checkp)
2261  		srcs[count] = NULL;
2262  
2263  	atomic_inc(&sh->count);
2264  	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2265  			  sh, to_addr_conv(sh, percpu, 0));
2266  	async_syndrome_val(srcs, offs, count+2,
2267  			   RAID5_STRIPE_SIZE(sh->raid_conf),
2268  			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2269  }
2270  
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2271  static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2272  {
2273  	int overlap_clear = 0, i, disks = sh->disks;
2274  	struct dma_async_tx_descriptor *tx = NULL;
2275  	struct r5conf *conf = sh->raid_conf;
2276  	int level = conf->level;
2277  	struct raid5_percpu *percpu;
2278  
2279  	local_lock(&conf->percpu->lock);
2280  	percpu = this_cpu_ptr(conf->percpu);
2281  	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2282  		ops_run_biofill(sh);
2283  		overlap_clear++;
2284  	}
2285  
2286  	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2287  		if (level < 6)
2288  			tx = ops_run_compute5(sh, percpu);
2289  		else {
2290  			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2291  				tx = ops_run_compute6_1(sh, percpu);
2292  			else
2293  				tx = ops_run_compute6_2(sh, percpu);
2294  		}
2295  		/* terminate the chain if reconstruct is not set to be run */
2296  		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2297  			async_tx_ack(tx);
2298  	}
2299  
2300  	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2301  		if (level < 6)
2302  			tx = ops_run_prexor5(sh, percpu, tx);
2303  		else
2304  			tx = ops_run_prexor6(sh, percpu, tx);
2305  	}
2306  
2307  	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2308  		tx = ops_run_partial_parity(sh, percpu, tx);
2309  
2310  	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2311  		tx = ops_run_biodrain(sh, tx);
2312  		overlap_clear++;
2313  	}
2314  
2315  	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2316  		if (level < 6)
2317  			ops_run_reconstruct5(sh, percpu, tx);
2318  		else
2319  			ops_run_reconstruct6(sh, percpu, tx);
2320  	}
2321  
2322  	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2323  		if (sh->check_state == check_state_run)
2324  			ops_run_check_p(sh, percpu);
2325  		else if (sh->check_state == check_state_run_q)
2326  			ops_run_check_pq(sh, percpu, 0);
2327  		else if (sh->check_state == check_state_run_pq)
2328  			ops_run_check_pq(sh, percpu, 1);
2329  		else
2330  			BUG();
2331  	}
2332  
2333  	if (overlap_clear && !sh->batch_head) {
2334  		for (i = disks; i--; ) {
2335  			struct r5dev *dev = &sh->dev[i];
2336  			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2337  				wake_up_bit(&dev->flags, R5_Overlap);
2338  		}
2339  	}
2340  	local_unlock(&conf->percpu->lock);
2341  }
2342  
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2343  static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2344  {
2345  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2346  	kfree(sh->pages);
2347  #endif
2348  	if (sh->ppl_page)
2349  		__free_page(sh->ppl_page);
2350  	kmem_cache_free(sc, sh);
2351  }
2352  
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2353  static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2354  	int disks, struct r5conf *conf)
2355  {
2356  	struct stripe_head *sh;
2357  
2358  	sh = kmem_cache_zalloc(sc, gfp);
2359  	if (sh) {
2360  		spin_lock_init(&sh->stripe_lock);
2361  		spin_lock_init(&sh->batch_lock);
2362  		INIT_LIST_HEAD(&sh->batch_list);
2363  		INIT_LIST_HEAD(&sh->lru);
2364  		INIT_LIST_HEAD(&sh->r5c);
2365  		INIT_LIST_HEAD(&sh->log_list);
2366  		atomic_set(&sh->count, 1);
2367  		sh->raid_conf = conf;
2368  		sh->log_start = MaxSector;
2369  
2370  		if (raid5_has_ppl(conf)) {
2371  			sh->ppl_page = alloc_page(gfp);
2372  			if (!sh->ppl_page) {
2373  				free_stripe(sc, sh);
2374  				return NULL;
2375  			}
2376  		}
2377  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2378  		if (init_stripe_shared_pages(sh, conf, disks)) {
2379  			free_stripe(sc, sh);
2380  			return NULL;
2381  		}
2382  #endif
2383  	}
2384  	return sh;
2385  }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2386  static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2387  {
2388  	struct stripe_head *sh;
2389  
2390  	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2391  	if (!sh)
2392  		return 0;
2393  
2394  	if (grow_buffers(sh, gfp)) {
2395  		shrink_buffers(sh);
2396  		free_stripe(conf->slab_cache, sh);
2397  		return 0;
2398  	}
2399  	sh->hash_lock_index =
2400  		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2401  	/* we just created an active stripe so... */
2402  	atomic_inc(&conf->active_stripes);
2403  
2404  	raid5_release_stripe(sh);
2405  	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2406  	return 1;
2407  }
2408  
grow_stripes(struct r5conf * conf,int num)2409  static int grow_stripes(struct r5conf *conf, int num)
2410  {
2411  	struct kmem_cache *sc;
2412  	size_t namelen = sizeof(conf->cache_name[0]);
2413  	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2414  
2415  	if (mddev_is_dm(conf->mddev))
2416  		snprintf(conf->cache_name[0], namelen,
2417  			"raid%d-%p", conf->level, conf->mddev);
2418  	else
2419  		snprintf(conf->cache_name[0], namelen,
2420  			"raid%d-%s", conf->level, mdname(conf->mddev));
2421  	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2422  
2423  	conf->active_name = 0;
2424  	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2425  			       struct_size_t(struct stripe_head, dev, devs),
2426  			       0, 0, NULL);
2427  	if (!sc)
2428  		return 1;
2429  	conf->slab_cache = sc;
2430  	conf->pool_size = devs;
2431  	while (num--)
2432  		if (!grow_one_stripe(conf, GFP_KERNEL))
2433  			return 1;
2434  
2435  	return 0;
2436  }
2437  
2438  /**
2439   * scribble_alloc - allocate percpu scribble buffer for required size
2440   *		    of the scribble region
2441   * @percpu: from for_each_present_cpu() of the caller
2442   * @num: total number of disks in the array
2443   * @cnt: scribble objs count for required size of the scribble region
2444   *
2445   * The scribble buffer size must be enough to contain:
2446   * 1/ a struct page pointer for each device in the array +2
2447   * 2/ room to convert each entry in (1) to its corresponding dma
2448   *    (dma_map_page()) or page (page_address()) address.
2449   *
2450   * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2451   * calculate over all devices (not just the data blocks), using zeros in place
2452   * of the P and Q blocks.
2453   */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2454  static int scribble_alloc(struct raid5_percpu *percpu,
2455  			  int num, int cnt)
2456  {
2457  	size_t obj_size =
2458  		sizeof(struct page *) * (num + 2) +
2459  		sizeof(addr_conv_t) * (num + 2) +
2460  		sizeof(unsigned int) * (num + 2);
2461  	void *scribble;
2462  
2463  	/*
2464  	 * If here is in raid array suspend context, it is in memalloc noio
2465  	 * context as well, there is no potential recursive memory reclaim
2466  	 * I/Os with the GFP_KERNEL flag.
2467  	 */
2468  	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2469  	if (!scribble)
2470  		return -ENOMEM;
2471  
2472  	kvfree(percpu->scribble);
2473  
2474  	percpu->scribble = scribble;
2475  	percpu->scribble_obj_size = obj_size;
2476  	return 0;
2477  }
2478  
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2479  static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2480  {
2481  	unsigned long cpu;
2482  	int err = 0;
2483  
2484  	/* Never shrink. */
2485  	if (conf->scribble_disks >= new_disks &&
2486  	    conf->scribble_sectors >= new_sectors)
2487  		return 0;
2488  
2489  	raid5_quiesce(conf->mddev, true);
2490  	cpus_read_lock();
2491  
2492  	for_each_present_cpu(cpu) {
2493  		struct raid5_percpu *percpu;
2494  
2495  		percpu = per_cpu_ptr(conf->percpu, cpu);
2496  		err = scribble_alloc(percpu, new_disks,
2497  				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2498  		if (err)
2499  			break;
2500  	}
2501  
2502  	cpus_read_unlock();
2503  	raid5_quiesce(conf->mddev, false);
2504  
2505  	if (!err) {
2506  		conf->scribble_disks = new_disks;
2507  		conf->scribble_sectors = new_sectors;
2508  	}
2509  	return err;
2510  }
2511  
resize_stripes(struct r5conf * conf,int newsize)2512  static int resize_stripes(struct r5conf *conf, int newsize)
2513  {
2514  	/* Make all the stripes able to hold 'newsize' devices.
2515  	 * New slots in each stripe get 'page' set to a new page.
2516  	 *
2517  	 * This happens in stages:
2518  	 * 1/ create a new kmem_cache and allocate the required number of
2519  	 *    stripe_heads.
2520  	 * 2/ gather all the old stripe_heads and transfer the pages across
2521  	 *    to the new stripe_heads.  This will have the side effect of
2522  	 *    freezing the array as once all stripe_heads have been collected,
2523  	 *    no IO will be possible.  Old stripe heads are freed once their
2524  	 *    pages have been transferred over, and the old kmem_cache is
2525  	 *    freed when all stripes are done.
2526  	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2527  	 *    we simple return a failure status - no need to clean anything up.
2528  	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2529  	 *    If this fails, we don't bother trying the shrink the
2530  	 *    stripe_heads down again, we just leave them as they are.
2531  	 *    As each stripe_head is processed the new one is released into
2532  	 *    active service.
2533  	 *
2534  	 * Once step2 is started, we cannot afford to wait for a write,
2535  	 * so we use GFP_NOIO allocations.
2536  	 */
2537  	struct stripe_head *osh, *nsh;
2538  	LIST_HEAD(newstripes);
2539  	struct disk_info *ndisks;
2540  	int err = 0;
2541  	struct kmem_cache *sc;
2542  	int i;
2543  	int hash, cnt;
2544  
2545  	md_allow_write(conf->mddev);
2546  
2547  	/* Step 1 */
2548  	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2549  			       struct_size_t(struct stripe_head, dev, newsize),
2550  			       0, 0, NULL);
2551  	if (!sc)
2552  		return -ENOMEM;
2553  
2554  	/* Need to ensure auto-resizing doesn't interfere */
2555  	mutex_lock(&conf->cache_size_mutex);
2556  
2557  	for (i = conf->max_nr_stripes; i; i--) {
2558  		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2559  		if (!nsh)
2560  			break;
2561  
2562  		list_add(&nsh->lru, &newstripes);
2563  	}
2564  	if (i) {
2565  		/* didn't get enough, give up */
2566  		while (!list_empty(&newstripes)) {
2567  			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2568  			list_del(&nsh->lru);
2569  			free_stripe(sc, nsh);
2570  		}
2571  		kmem_cache_destroy(sc);
2572  		mutex_unlock(&conf->cache_size_mutex);
2573  		return -ENOMEM;
2574  	}
2575  	/* Step 2 - Must use GFP_NOIO now.
2576  	 * OK, we have enough stripes, start collecting inactive
2577  	 * stripes and copying them over
2578  	 */
2579  	hash = 0;
2580  	cnt = 0;
2581  	list_for_each_entry(nsh, &newstripes, lru) {
2582  		lock_device_hash_lock(conf, hash);
2583  		wait_event_cmd(conf->wait_for_stripe,
2584  				    !list_empty(conf->inactive_list + hash),
2585  				    unlock_device_hash_lock(conf, hash),
2586  				    lock_device_hash_lock(conf, hash));
2587  		osh = get_free_stripe(conf, hash);
2588  		unlock_device_hash_lock(conf, hash);
2589  
2590  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2591  	for (i = 0; i < osh->nr_pages; i++) {
2592  		nsh->pages[i] = osh->pages[i];
2593  		osh->pages[i] = NULL;
2594  	}
2595  #endif
2596  		for(i=0; i<conf->pool_size; i++) {
2597  			nsh->dev[i].page = osh->dev[i].page;
2598  			nsh->dev[i].orig_page = osh->dev[i].page;
2599  			nsh->dev[i].offset = osh->dev[i].offset;
2600  		}
2601  		nsh->hash_lock_index = hash;
2602  		free_stripe(conf->slab_cache, osh);
2603  		cnt++;
2604  		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2605  		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2606  			hash++;
2607  			cnt = 0;
2608  		}
2609  	}
2610  	kmem_cache_destroy(conf->slab_cache);
2611  
2612  	/* Step 3.
2613  	 * At this point, we are holding all the stripes so the array
2614  	 * is completely stalled, so now is a good time to resize
2615  	 * conf->disks and the scribble region
2616  	 */
2617  	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2618  	if (ndisks) {
2619  		for (i = 0; i < conf->pool_size; i++)
2620  			ndisks[i] = conf->disks[i];
2621  
2622  		for (i = conf->pool_size; i < newsize; i++) {
2623  			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2624  			if (!ndisks[i].extra_page)
2625  				err = -ENOMEM;
2626  		}
2627  
2628  		if (err) {
2629  			for (i = conf->pool_size; i < newsize; i++)
2630  				if (ndisks[i].extra_page)
2631  					put_page(ndisks[i].extra_page);
2632  			kfree(ndisks);
2633  		} else {
2634  			kfree(conf->disks);
2635  			conf->disks = ndisks;
2636  		}
2637  	} else
2638  		err = -ENOMEM;
2639  
2640  	conf->slab_cache = sc;
2641  	conf->active_name = 1-conf->active_name;
2642  
2643  	/* Step 4, return new stripes to service */
2644  	while(!list_empty(&newstripes)) {
2645  		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2646  		list_del_init(&nsh->lru);
2647  
2648  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2649  		for (i = 0; i < nsh->nr_pages; i++) {
2650  			if (nsh->pages[i])
2651  				continue;
2652  			nsh->pages[i] = alloc_page(GFP_NOIO);
2653  			if (!nsh->pages[i])
2654  				err = -ENOMEM;
2655  		}
2656  
2657  		for (i = conf->raid_disks; i < newsize; i++) {
2658  			if (nsh->dev[i].page)
2659  				continue;
2660  			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2661  			nsh->dev[i].orig_page = nsh->dev[i].page;
2662  			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2663  		}
2664  #else
2665  		for (i=conf->raid_disks; i < newsize; i++)
2666  			if (nsh->dev[i].page == NULL) {
2667  				struct page *p = alloc_page(GFP_NOIO);
2668  				nsh->dev[i].page = p;
2669  				nsh->dev[i].orig_page = p;
2670  				nsh->dev[i].offset = 0;
2671  				if (!p)
2672  					err = -ENOMEM;
2673  			}
2674  #endif
2675  		raid5_release_stripe(nsh);
2676  	}
2677  	/* critical section pass, GFP_NOIO no longer needed */
2678  
2679  	if (!err)
2680  		conf->pool_size = newsize;
2681  	mutex_unlock(&conf->cache_size_mutex);
2682  
2683  	return err;
2684  }
2685  
drop_one_stripe(struct r5conf * conf)2686  static int drop_one_stripe(struct r5conf *conf)
2687  {
2688  	struct stripe_head *sh;
2689  	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2690  
2691  	spin_lock_irq(conf->hash_locks + hash);
2692  	sh = get_free_stripe(conf, hash);
2693  	spin_unlock_irq(conf->hash_locks + hash);
2694  	if (!sh)
2695  		return 0;
2696  	BUG_ON(atomic_read(&sh->count));
2697  	shrink_buffers(sh);
2698  	free_stripe(conf->slab_cache, sh);
2699  	atomic_dec(&conf->active_stripes);
2700  	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2701  	return 1;
2702  }
2703  
shrink_stripes(struct r5conf * conf)2704  static void shrink_stripes(struct r5conf *conf)
2705  {
2706  	while (conf->max_nr_stripes &&
2707  	       drop_one_stripe(conf))
2708  		;
2709  
2710  	kmem_cache_destroy(conf->slab_cache);
2711  	conf->slab_cache = NULL;
2712  }
2713  
raid5_end_read_request(struct bio * bi)2714  static void raid5_end_read_request(struct bio * bi)
2715  {
2716  	struct stripe_head *sh = bi->bi_private;
2717  	struct r5conf *conf = sh->raid_conf;
2718  	int disks = sh->disks, i;
2719  	struct md_rdev *rdev = NULL;
2720  	sector_t s;
2721  
2722  	for (i=0 ; i<disks; i++)
2723  		if (bi == &sh->dev[i].req)
2724  			break;
2725  
2726  	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2727  		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2728  		bi->bi_status);
2729  	if (i == disks) {
2730  		BUG();
2731  		return;
2732  	}
2733  	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734  		/* If replacement finished while this request was outstanding,
2735  		 * 'replacement' might be NULL already.
2736  		 * In that case it moved down to 'rdev'.
2737  		 * rdev is not removed until all requests are finished.
2738  		 */
2739  		rdev = conf->disks[i].replacement;
2740  	if (!rdev)
2741  		rdev = conf->disks[i].rdev;
2742  
2743  	if (use_new_offset(conf, sh))
2744  		s = sh->sector + rdev->new_data_offset;
2745  	else
2746  		s = sh->sector + rdev->data_offset;
2747  	if (!bi->bi_status) {
2748  		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2749  		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2750  			/* Note that this cannot happen on a
2751  			 * replacement device.  We just fail those on
2752  			 * any error
2753  			 */
2754  			pr_info_ratelimited(
2755  				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2756  				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2757  				(unsigned long long)s,
2758  				rdev->bdev);
2759  			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2760  			clear_bit(R5_ReadError, &sh->dev[i].flags);
2761  			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2762  		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2763  			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2764  
2765  		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2766  			/*
2767  			 * end read for a page in journal, this
2768  			 * must be preparing for prexor in rmw
2769  			 */
2770  			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2771  
2772  		if (atomic_read(&rdev->read_errors))
2773  			atomic_set(&rdev->read_errors, 0);
2774  	} else {
2775  		int retry = 0;
2776  		int set_bad = 0;
2777  
2778  		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2779  		if (!(bi->bi_status == BLK_STS_PROTECTION))
2780  			atomic_inc(&rdev->read_errors);
2781  		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2782  			pr_warn_ratelimited(
2783  				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2784  				mdname(conf->mddev),
2785  				(unsigned long long)s,
2786  				rdev->bdev);
2787  		else if (conf->mddev->degraded >= conf->max_degraded) {
2788  			set_bad = 1;
2789  			pr_warn_ratelimited(
2790  				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2791  				mdname(conf->mddev),
2792  				(unsigned long long)s,
2793  				rdev->bdev);
2794  		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2795  			/* Oh, no!!! */
2796  			set_bad = 1;
2797  			pr_warn_ratelimited(
2798  				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2799  				mdname(conf->mddev),
2800  				(unsigned long long)s,
2801  				rdev->bdev);
2802  		} else if (atomic_read(&rdev->read_errors)
2803  			 > conf->max_nr_stripes) {
2804  			if (!test_bit(Faulty, &rdev->flags)) {
2805  				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2806  				    mdname(conf->mddev),
2807  				    atomic_read(&rdev->read_errors),
2808  				    conf->max_nr_stripes);
2809  				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2810  				    mdname(conf->mddev), rdev->bdev);
2811  			}
2812  		} else
2813  			retry = 1;
2814  		if (set_bad && test_bit(In_sync, &rdev->flags)
2815  		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2816  			retry = 1;
2817  		if (retry)
2818  			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2819  				set_bit(R5_ReadError, &sh->dev[i].flags);
2820  			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2821  				set_bit(R5_ReadError, &sh->dev[i].flags);
2822  				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2823  			} else
2824  				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2825  		else {
2826  			clear_bit(R5_ReadError, &sh->dev[i].flags);
2827  			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2828  			if (!(set_bad
2829  			      && test_bit(In_sync, &rdev->flags)
2830  			      && rdev_set_badblocks(
2831  				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2832  				md_error(conf->mddev, rdev);
2833  		}
2834  	}
2835  	rdev_dec_pending(rdev, conf->mddev);
2836  	bio_uninit(bi);
2837  	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2838  	set_bit(STRIPE_HANDLE, &sh->state);
2839  	raid5_release_stripe(sh);
2840  }
2841  
raid5_end_write_request(struct bio * bi)2842  static void raid5_end_write_request(struct bio *bi)
2843  {
2844  	struct stripe_head *sh = bi->bi_private;
2845  	struct r5conf *conf = sh->raid_conf;
2846  	int disks = sh->disks, i;
2847  	struct md_rdev *rdev;
2848  	int replacement = 0;
2849  
2850  	for (i = 0 ; i < disks; i++) {
2851  		if (bi == &sh->dev[i].req) {
2852  			rdev = conf->disks[i].rdev;
2853  			break;
2854  		}
2855  		if (bi == &sh->dev[i].rreq) {
2856  			rdev = conf->disks[i].replacement;
2857  			if (rdev)
2858  				replacement = 1;
2859  			else
2860  				/* rdev was removed and 'replacement'
2861  				 * replaced it.  rdev is not removed
2862  				 * until all requests are finished.
2863  				 */
2864  				rdev = conf->disks[i].rdev;
2865  			break;
2866  		}
2867  	}
2868  	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2869  		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2870  		bi->bi_status);
2871  	if (i == disks) {
2872  		BUG();
2873  		return;
2874  	}
2875  
2876  	if (replacement) {
2877  		if (bi->bi_status)
2878  			md_error(conf->mddev, rdev);
2879  		else if (rdev_has_badblock(rdev, sh->sector,
2880  					   RAID5_STRIPE_SECTORS(conf)))
2881  			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2882  	} else {
2883  		if (bi->bi_status) {
2884  			set_bit(WriteErrorSeen, &rdev->flags);
2885  			set_bit(R5_WriteError, &sh->dev[i].flags);
2886  			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2887  				set_bit(MD_RECOVERY_NEEDED,
2888  					&rdev->mddev->recovery);
2889  		} else if (rdev_has_badblock(rdev, sh->sector,
2890  					     RAID5_STRIPE_SECTORS(conf))) {
2891  			set_bit(R5_MadeGood, &sh->dev[i].flags);
2892  			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2893  				/* That was a successful write so make
2894  				 * sure it looks like we already did
2895  				 * a re-write.
2896  				 */
2897  				set_bit(R5_ReWrite, &sh->dev[i].flags);
2898  		}
2899  	}
2900  	rdev_dec_pending(rdev, conf->mddev);
2901  
2902  	if (sh->batch_head && bi->bi_status && !replacement)
2903  		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2904  
2905  	bio_uninit(bi);
2906  	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2907  		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2908  	set_bit(STRIPE_HANDLE, &sh->state);
2909  
2910  	if (sh->batch_head && sh != sh->batch_head)
2911  		raid5_release_stripe(sh->batch_head);
2912  	raid5_release_stripe(sh);
2913  }
2914  
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2915  static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2916  {
2917  	struct r5conf *conf = mddev->private;
2918  	unsigned long flags;
2919  	pr_debug("raid456: error called\n");
2920  
2921  	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2922  		mdname(mddev), rdev->bdev);
2923  
2924  	spin_lock_irqsave(&conf->device_lock, flags);
2925  	set_bit(Faulty, &rdev->flags);
2926  	clear_bit(In_sync, &rdev->flags);
2927  	mddev->degraded = raid5_calc_degraded(conf);
2928  
2929  	if (has_failed(conf)) {
2930  		set_bit(MD_BROKEN, &conf->mddev->flags);
2931  		conf->recovery_disabled = mddev->recovery_disabled;
2932  
2933  		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2934  			mdname(mddev), mddev->degraded, conf->raid_disks);
2935  	} else {
2936  		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2937  			mdname(mddev), conf->raid_disks - mddev->degraded);
2938  	}
2939  
2940  	spin_unlock_irqrestore(&conf->device_lock, flags);
2941  	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2942  
2943  	set_bit(Blocked, &rdev->flags);
2944  	set_mask_bits(&mddev->sb_flags, 0,
2945  		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2946  	r5c_update_on_rdev_error(mddev, rdev);
2947  }
2948  
2949  /*
2950   * Input: a 'big' sector number,
2951   * Output: index of the data and parity disk, and the sector # in them.
2952   */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2953  sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2954  			      int previous, int *dd_idx,
2955  			      struct stripe_head *sh)
2956  {
2957  	sector_t stripe, stripe2;
2958  	sector_t chunk_number;
2959  	unsigned int chunk_offset;
2960  	int pd_idx, qd_idx;
2961  	int ddf_layout = 0;
2962  	sector_t new_sector;
2963  	int algorithm = previous ? conf->prev_algo
2964  				 : conf->algorithm;
2965  	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2966  					 : conf->chunk_sectors;
2967  	int raid_disks = previous ? conf->previous_raid_disks
2968  				  : conf->raid_disks;
2969  	int data_disks = raid_disks - conf->max_degraded;
2970  
2971  	/* First compute the information on this sector */
2972  
2973  	/*
2974  	 * Compute the chunk number and the sector offset inside the chunk
2975  	 */
2976  	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2977  	chunk_number = r_sector;
2978  
2979  	/*
2980  	 * Compute the stripe number
2981  	 */
2982  	stripe = chunk_number;
2983  	*dd_idx = sector_div(stripe, data_disks);
2984  	stripe2 = stripe;
2985  	/*
2986  	 * Select the parity disk based on the user selected algorithm.
2987  	 */
2988  	pd_idx = qd_idx = -1;
2989  	switch(conf->level) {
2990  	case 4:
2991  		pd_idx = data_disks;
2992  		break;
2993  	case 5:
2994  		switch (algorithm) {
2995  		case ALGORITHM_LEFT_ASYMMETRIC:
2996  			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2997  			if (*dd_idx >= pd_idx)
2998  				(*dd_idx)++;
2999  			break;
3000  		case ALGORITHM_RIGHT_ASYMMETRIC:
3001  			pd_idx = sector_div(stripe2, raid_disks);
3002  			if (*dd_idx >= pd_idx)
3003  				(*dd_idx)++;
3004  			break;
3005  		case ALGORITHM_LEFT_SYMMETRIC:
3006  			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3007  			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3008  			break;
3009  		case ALGORITHM_RIGHT_SYMMETRIC:
3010  			pd_idx = sector_div(stripe2, raid_disks);
3011  			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3012  			break;
3013  		case ALGORITHM_PARITY_0:
3014  			pd_idx = 0;
3015  			(*dd_idx)++;
3016  			break;
3017  		case ALGORITHM_PARITY_N:
3018  			pd_idx = data_disks;
3019  			break;
3020  		default:
3021  			BUG();
3022  		}
3023  		break;
3024  	case 6:
3025  
3026  		switch (algorithm) {
3027  		case ALGORITHM_LEFT_ASYMMETRIC:
3028  			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3029  			qd_idx = pd_idx + 1;
3030  			if (pd_idx == raid_disks-1) {
3031  				(*dd_idx)++;	/* Q D D D P */
3032  				qd_idx = 0;
3033  			} else if (*dd_idx >= pd_idx)
3034  				(*dd_idx) += 2; /* D D P Q D */
3035  			break;
3036  		case ALGORITHM_RIGHT_ASYMMETRIC:
3037  			pd_idx = sector_div(stripe2, raid_disks);
3038  			qd_idx = pd_idx + 1;
3039  			if (pd_idx == raid_disks-1) {
3040  				(*dd_idx)++;	/* Q D D D P */
3041  				qd_idx = 0;
3042  			} else if (*dd_idx >= pd_idx)
3043  				(*dd_idx) += 2; /* D D P Q D */
3044  			break;
3045  		case ALGORITHM_LEFT_SYMMETRIC:
3046  			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3047  			qd_idx = (pd_idx + 1) % raid_disks;
3048  			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3049  			break;
3050  		case ALGORITHM_RIGHT_SYMMETRIC:
3051  			pd_idx = sector_div(stripe2, raid_disks);
3052  			qd_idx = (pd_idx + 1) % raid_disks;
3053  			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3054  			break;
3055  
3056  		case ALGORITHM_PARITY_0:
3057  			pd_idx = 0;
3058  			qd_idx = 1;
3059  			(*dd_idx) += 2;
3060  			break;
3061  		case ALGORITHM_PARITY_N:
3062  			pd_idx = data_disks;
3063  			qd_idx = data_disks + 1;
3064  			break;
3065  
3066  		case ALGORITHM_ROTATING_ZERO_RESTART:
3067  			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3068  			 * of blocks for computing Q is different.
3069  			 */
3070  			pd_idx = sector_div(stripe2, raid_disks);
3071  			qd_idx = pd_idx + 1;
3072  			if (pd_idx == raid_disks-1) {
3073  				(*dd_idx)++;	/* Q D D D P */
3074  				qd_idx = 0;
3075  			} else if (*dd_idx >= pd_idx)
3076  				(*dd_idx) += 2; /* D D P Q D */
3077  			ddf_layout = 1;
3078  			break;
3079  
3080  		case ALGORITHM_ROTATING_N_RESTART:
3081  			/* Same a left_asymmetric, by first stripe is
3082  			 * D D D P Q  rather than
3083  			 * Q D D D P
3084  			 */
3085  			stripe2 += 1;
3086  			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3087  			qd_idx = pd_idx + 1;
3088  			if (pd_idx == raid_disks-1) {
3089  				(*dd_idx)++;	/* Q D D D P */
3090  				qd_idx = 0;
3091  			} else if (*dd_idx >= pd_idx)
3092  				(*dd_idx) += 2; /* D D P Q D */
3093  			ddf_layout = 1;
3094  			break;
3095  
3096  		case ALGORITHM_ROTATING_N_CONTINUE:
3097  			/* Same as left_symmetric but Q is before P */
3098  			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3099  			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3100  			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3101  			ddf_layout = 1;
3102  			break;
3103  
3104  		case ALGORITHM_LEFT_ASYMMETRIC_6:
3105  			/* RAID5 left_asymmetric, with Q on last device */
3106  			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3107  			if (*dd_idx >= pd_idx)
3108  				(*dd_idx)++;
3109  			qd_idx = raid_disks - 1;
3110  			break;
3111  
3112  		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3113  			pd_idx = sector_div(stripe2, raid_disks-1);
3114  			if (*dd_idx >= pd_idx)
3115  				(*dd_idx)++;
3116  			qd_idx = raid_disks - 1;
3117  			break;
3118  
3119  		case ALGORITHM_LEFT_SYMMETRIC_6:
3120  			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3121  			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3122  			qd_idx = raid_disks - 1;
3123  			break;
3124  
3125  		case ALGORITHM_RIGHT_SYMMETRIC_6:
3126  			pd_idx = sector_div(stripe2, raid_disks-1);
3127  			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3128  			qd_idx = raid_disks - 1;
3129  			break;
3130  
3131  		case ALGORITHM_PARITY_0_6:
3132  			pd_idx = 0;
3133  			(*dd_idx)++;
3134  			qd_idx = raid_disks - 1;
3135  			break;
3136  
3137  		default:
3138  			BUG();
3139  		}
3140  		break;
3141  	}
3142  
3143  	if (sh) {
3144  		sh->pd_idx = pd_idx;
3145  		sh->qd_idx = qd_idx;
3146  		sh->ddf_layout = ddf_layout;
3147  	}
3148  	/*
3149  	 * Finally, compute the new sector number
3150  	 */
3151  	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3152  	return new_sector;
3153  }
3154  
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3155  sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3156  {
3157  	struct r5conf *conf = sh->raid_conf;
3158  	int raid_disks = sh->disks;
3159  	int data_disks = raid_disks - conf->max_degraded;
3160  	sector_t new_sector = sh->sector, check;
3161  	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3162  					 : conf->chunk_sectors;
3163  	int algorithm = previous ? conf->prev_algo
3164  				 : conf->algorithm;
3165  	sector_t stripe;
3166  	int chunk_offset;
3167  	sector_t chunk_number;
3168  	int dummy1, dd_idx = i;
3169  	sector_t r_sector;
3170  	struct stripe_head sh2;
3171  
3172  	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3173  	stripe = new_sector;
3174  
3175  	if (i == sh->pd_idx)
3176  		return 0;
3177  	switch(conf->level) {
3178  	case 4: break;
3179  	case 5:
3180  		switch (algorithm) {
3181  		case ALGORITHM_LEFT_ASYMMETRIC:
3182  		case ALGORITHM_RIGHT_ASYMMETRIC:
3183  			if (i > sh->pd_idx)
3184  				i--;
3185  			break;
3186  		case ALGORITHM_LEFT_SYMMETRIC:
3187  		case ALGORITHM_RIGHT_SYMMETRIC:
3188  			if (i < sh->pd_idx)
3189  				i += raid_disks;
3190  			i -= (sh->pd_idx + 1);
3191  			break;
3192  		case ALGORITHM_PARITY_0:
3193  			i -= 1;
3194  			break;
3195  		case ALGORITHM_PARITY_N:
3196  			break;
3197  		default:
3198  			BUG();
3199  		}
3200  		break;
3201  	case 6:
3202  		if (i == sh->qd_idx)
3203  			return 0; /* It is the Q disk */
3204  		switch (algorithm) {
3205  		case ALGORITHM_LEFT_ASYMMETRIC:
3206  		case ALGORITHM_RIGHT_ASYMMETRIC:
3207  		case ALGORITHM_ROTATING_ZERO_RESTART:
3208  		case ALGORITHM_ROTATING_N_RESTART:
3209  			if (sh->pd_idx == raid_disks-1)
3210  				i--;	/* Q D D D P */
3211  			else if (i > sh->pd_idx)
3212  				i -= 2; /* D D P Q D */
3213  			break;
3214  		case ALGORITHM_LEFT_SYMMETRIC:
3215  		case ALGORITHM_RIGHT_SYMMETRIC:
3216  			if (sh->pd_idx == raid_disks-1)
3217  				i--; /* Q D D D P */
3218  			else {
3219  				/* D D P Q D */
3220  				if (i < sh->pd_idx)
3221  					i += raid_disks;
3222  				i -= (sh->pd_idx + 2);
3223  			}
3224  			break;
3225  		case ALGORITHM_PARITY_0:
3226  			i -= 2;
3227  			break;
3228  		case ALGORITHM_PARITY_N:
3229  			break;
3230  		case ALGORITHM_ROTATING_N_CONTINUE:
3231  			/* Like left_symmetric, but P is before Q */
3232  			if (sh->pd_idx == 0)
3233  				i--;	/* P D D D Q */
3234  			else {
3235  				/* D D Q P D */
3236  				if (i < sh->pd_idx)
3237  					i += raid_disks;
3238  				i -= (sh->pd_idx + 1);
3239  			}
3240  			break;
3241  		case ALGORITHM_LEFT_ASYMMETRIC_6:
3242  		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3243  			if (i > sh->pd_idx)
3244  				i--;
3245  			break;
3246  		case ALGORITHM_LEFT_SYMMETRIC_6:
3247  		case ALGORITHM_RIGHT_SYMMETRIC_6:
3248  			if (i < sh->pd_idx)
3249  				i += data_disks + 1;
3250  			i -= (sh->pd_idx + 1);
3251  			break;
3252  		case ALGORITHM_PARITY_0_6:
3253  			i -= 1;
3254  			break;
3255  		default:
3256  			BUG();
3257  		}
3258  		break;
3259  	}
3260  
3261  	chunk_number = stripe * data_disks + i;
3262  	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3263  
3264  	check = raid5_compute_sector(conf, r_sector,
3265  				     previous, &dummy1, &sh2);
3266  	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3267  		|| sh2.qd_idx != sh->qd_idx) {
3268  		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3269  			mdname(conf->mddev));
3270  		return 0;
3271  	}
3272  	return r_sector;
3273  }
3274  
3275  /*
3276   * There are cases where we want handle_stripe_dirtying() and
3277   * schedule_reconstruction() to delay towrite to some dev of a stripe.
3278   *
3279   * This function checks whether we want to delay the towrite. Specifically,
3280   * we delay the towrite when:
3281   *
3282   *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3283   *      stripe has data in journal (for other devices).
3284   *
3285   *      In this case, when reading data for the non-overwrite dev, it is
3286   *      necessary to handle complex rmw of write back cache (prexor with
3287   *      orig_page, and xor with page). To keep read path simple, we would
3288   *      like to flush data in journal to RAID disks first, so complex rmw
3289   *      is handled in the write patch (handle_stripe_dirtying).
3290   *
3291   *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3292   *
3293   *      It is important to be able to flush all stripes in raid5-cache.
3294   *      Therefore, we need reserve some space on the journal device for
3295   *      these flushes. If flush operation includes pending writes to the
3296   *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3297   *      for the flush out. If we exclude these pending writes from flush
3298   *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3299   *      Therefore, excluding pending writes in these cases enables more
3300   *      efficient use of the journal device.
3301   *
3302   *      Note: To make sure the stripe makes progress, we only delay
3303   *      towrite for stripes with data already in journal (injournal > 0).
3304   *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3305   *      no_space_stripes list.
3306   *
3307   *   3. during journal failure
3308   *      In journal failure, we try to flush all cached data to raid disks
3309   *      based on data in stripe cache. The array is read-only to upper
3310   *      layers, so we would skip all pending writes.
3311   *
3312   */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3313  static inline bool delay_towrite(struct r5conf *conf,
3314  				 struct r5dev *dev,
3315  				 struct stripe_head_state *s)
3316  {
3317  	/* case 1 above */
3318  	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3319  	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3320  		return true;
3321  	/* case 2 above */
3322  	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3323  	    s->injournal > 0)
3324  		return true;
3325  	/* case 3 above */
3326  	if (s->log_failed && s->injournal)
3327  		return true;
3328  	return false;
3329  }
3330  
3331  static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3332  schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3333  			 int rcw, int expand)
3334  {
3335  	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3336  	struct r5conf *conf = sh->raid_conf;
3337  	int level = conf->level;
3338  
3339  	if (rcw) {
3340  		/*
3341  		 * In some cases, handle_stripe_dirtying initially decided to
3342  		 * run rmw and allocates extra page for prexor. However, rcw is
3343  		 * cheaper later on. We need to free the extra page now,
3344  		 * because we won't be able to do that in ops_complete_prexor().
3345  		 */
3346  		r5c_release_extra_page(sh);
3347  
3348  		for (i = disks; i--; ) {
3349  			struct r5dev *dev = &sh->dev[i];
3350  
3351  			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3352  				set_bit(R5_LOCKED, &dev->flags);
3353  				set_bit(R5_Wantdrain, &dev->flags);
3354  				if (!expand)
3355  					clear_bit(R5_UPTODATE, &dev->flags);
3356  				s->locked++;
3357  			} else if (test_bit(R5_InJournal, &dev->flags)) {
3358  				set_bit(R5_LOCKED, &dev->flags);
3359  				s->locked++;
3360  			}
3361  		}
3362  		/* if we are not expanding this is a proper write request, and
3363  		 * there will be bios with new data to be drained into the
3364  		 * stripe cache
3365  		 */
3366  		if (!expand) {
3367  			if (!s->locked)
3368  				/* False alarm, nothing to do */
3369  				return;
3370  			sh->reconstruct_state = reconstruct_state_drain_run;
3371  			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372  		} else
3373  			sh->reconstruct_state = reconstruct_state_run;
3374  
3375  		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3376  
3377  		if (s->locked + conf->max_degraded == disks)
3378  			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3379  				atomic_inc(&conf->pending_full_writes);
3380  	} else {
3381  		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3382  			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3383  		BUG_ON(level == 6 &&
3384  			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3385  			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3386  
3387  		for (i = disks; i--; ) {
3388  			struct r5dev *dev = &sh->dev[i];
3389  			if (i == pd_idx || i == qd_idx)
3390  				continue;
3391  
3392  			if (dev->towrite &&
3393  			    (test_bit(R5_UPTODATE, &dev->flags) ||
3394  			     test_bit(R5_Wantcompute, &dev->flags))) {
3395  				set_bit(R5_Wantdrain, &dev->flags);
3396  				set_bit(R5_LOCKED, &dev->flags);
3397  				clear_bit(R5_UPTODATE, &dev->flags);
3398  				s->locked++;
3399  			} else if (test_bit(R5_InJournal, &dev->flags)) {
3400  				set_bit(R5_LOCKED, &dev->flags);
3401  				s->locked++;
3402  			}
3403  		}
3404  		if (!s->locked)
3405  			/* False alarm - nothing to do */
3406  			return;
3407  		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3408  		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3409  		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3410  		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3411  	}
3412  
3413  	/* keep the parity disk(s) locked while asynchronous operations
3414  	 * are in flight
3415  	 */
3416  	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3417  	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3418  	s->locked++;
3419  
3420  	if (level == 6) {
3421  		int qd_idx = sh->qd_idx;
3422  		struct r5dev *dev = &sh->dev[qd_idx];
3423  
3424  		set_bit(R5_LOCKED, &dev->flags);
3425  		clear_bit(R5_UPTODATE, &dev->flags);
3426  		s->locked++;
3427  	}
3428  
3429  	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3430  	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3431  	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3432  	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3433  		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3434  
3435  	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3436  		__func__, (unsigned long long)sh->sector,
3437  		s->locked, s->ops_request);
3438  }
3439  
stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3440  static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3441  				int dd_idx, int forwrite)
3442  {
3443  	struct r5conf *conf = sh->raid_conf;
3444  	struct bio **bip;
3445  
3446  	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3447  		 bi->bi_iter.bi_sector, sh->sector);
3448  
3449  	/* Don't allow new IO added to stripes in batch list */
3450  	if (sh->batch_head)
3451  		return true;
3452  
3453  	if (forwrite)
3454  		bip = &sh->dev[dd_idx].towrite;
3455  	else
3456  		bip = &sh->dev[dd_idx].toread;
3457  
3458  	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3459  		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3460  			return true;
3461  		bip = &(*bip)->bi_next;
3462  	}
3463  
3464  	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3465  		return true;
3466  
3467  	if (forwrite && raid5_has_ppl(conf)) {
3468  		/*
3469  		 * With PPL only writes to consecutive data chunks within a
3470  		 * stripe are allowed because for a single stripe_head we can
3471  		 * only have one PPL entry at a time, which describes one data
3472  		 * range. Not really an overlap, but R5_Overlap can be
3473  		 * used to handle this.
3474  		 */
3475  		sector_t sector;
3476  		sector_t first = 0;
3477  		sector_t last = 0;
3478  		int count = 0;
3479  		int i;
3480  
3481  		for (i = 0; i < sh->disks; i++) {
3482  			if (i != sh->pd_idx &&
3483  			    (i == dd_idx || sh->dev[i].towrite)) {
3484  				sector = sh->dev[i].sector;
3485  				if (count == 0 || sector < first)
3486  					first = sector;
3487  				if (sector > last)
3488  					last = sector;
3489  				count++;
3490  			}
3491  		}
3492  
3493  		if (first + conf->chunk_sectors * (count - 1) != last)
3494  			return true;
3495  	}
3496  
3497  	return false;
3498  }
3499  
__add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3500  static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3501  			     int dd_idx, int forwrite, int previous)
3502  {
3503  	struct r5conf *conf = sh->raid_conf;
3504  	struct bio **bip;
3505  	int firstwrite = 0;
3506  
3507  	if (forwrite) {
3508  		bip = &sh->dev[dd_idx].towrite;
3509  		if (!*bip)
3510  			firstwrite = 1;
3511  	} else {
3512  		bip = &sh->dev[dd_idx].toread;
3513  	}
3514  
3515  	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3516  		bip = &(*bip)->bi_next;
3517  
3518  	if (!forwrite || previous)
3519  		clear_bit(STRIPE_BATCH_READY, &sh->state);
3520  
3521  	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3522  	if (*bip)
3523  		bi->bi_next = *bip;
3524  	*bip = bi;
3525  	bio_inc_remaining(bi);
3526  	md_write_inc(conf->mddev, bi);
3527  
3528  	if (forwrite) {
3529  		/* check if page is covered */
3530  		sector_t sector = sh->dev[dd_idx].sector;
3531  		for (bi=sh->dev[dd_idx].towrite;
3532  		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3533  			     bi && bi->bi_iter.bi_sector <= sector;
3534  		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3535  			if (bio_end_sector(bi) >= sector)
3536  				sector = bio_end_sector(bi);
3537  		}
3538  		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3539  			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3540  				sh->overwrite_disks++;
3541  	}
3542  
3543  	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3544  		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3545  		 sh->dev[dd_idx].sector);
3546  
3547  	if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3548  		sh->bm_seq = conf->seq_flush+1;
3549  		set_bit(STRIPE_BIT_DELAY, &sh->state);
3550  	}
3551  }
3552  
3553  /*
3554   * Each stripe/dev can have one or more bios attached.
3555   * toread/towrite point to the first in a chain.
3556   * The bi_next chain must be in order.
3557   */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3558  static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3559  			   int dd_idx, int forwrite, int previous)
3560  {
3561  	spin_lock_irq(&sh->stripe_lock);
3562  
3563  	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3564  		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3565  		spin_unlock_irq(&sh->stripe_lock);
3566  		return false;
3567  	}
3568  
3569  	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3570  	spin_unlock_irq(&sh->stripe_lock);
3571  	return true;
3572  }
3573  
3574  static void end_reshape(struct r5conf *conf);
3575  
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3576  static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3577  			    struct stripe_head *sh)
3578  {
3579  	int sectors_per_chunk =
3580  		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3581  	int dd_idx;
3582  	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3583  	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3584  
3585  	raid5_compute_sector(conf,
3586  			     stripe * (disks - conf->max_degraded)
3587  			     *sectors_per_chunk + chunk_offset,
3588  			     previous,
3589  			     &dd_idx, sh);
3590  }
3591  
3592  static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3593  handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3594  		     struct stripe_head_state *s, int disks)
3595  {
3596  	int i;
3597  	BUG_ON(sh->batch_head);
3598  	for (i = disks; i--; ) {
3599  		struct bio *bi;
3600  
3601  		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3602  			struct md_rdev *rdev = conf->disks[i].rdev;
3603  
3604  			if (rdev && test_bit(In_sync, &rdev->flags) &&
3605  			    !test_bit(Faulty, &rdev->flags))
3606  				atomic_inc(&rdev->nr_pending);
3607  			else
3608  				rdev = NULL;
3609  			if (rdev) {
3610  				if (!rdev_set_badblocks(
3611  					    rdev,
3612  					    sh->sector,
3613  					    RAID5_STRIPE_SECTORS(conf), 0))
3614  					md_error(conf->mddev, rdev);
3615  				rdev_dec_pending(rdev, conf->mddev);
3616  			}
3617  		}
3618  		spin_lock_irq(&sh->stripe_lock);
3619  		/* fail all writes first */
3620  		bi = sh->dev[i].towrite;
3621  		sh->dev[i].towrite = NULL;
3622  		sh->overwrite_disks = 0;
3623  		spin_unlock_irq(&sh->stripe_lock);
3624  
3625  		log_stripe_write_finished(sh);
3626  
3627  		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3628  			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3629  
3630  		while (bi && bi->bi_iter.bi_sector <
3631  			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3632  			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3633  
3634  			md_write_end(conf->mddev);
3635  			bio_io_error(bi);
3636  			bi = nextbi;
3637  		}
3638  		/* and fail all 'written' */
3639  		bi = sh->dev[i].written;
3640  		sh->dev[i].written = NULL;
3641  		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3642  			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3643  			sh->dev[i].page = sh->dev[i].orig_page;
3644  		}
3645  
3646  		while (bi && bi->bi_iter.bi_sector <
3647  		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3648  			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3649  
3650  			md_write_end(conf->mddev);
3651  			bio_io_error(bi);
3652  			bi = bi2;
3653  		}
3654  
3655  		/* fail any reads if this device is non-operational and
3656  		 * the data has not reached the cache yet.
3657  		 */
3658  		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3659  		    s->failed > conf->max_degraded &&
3660  		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3661  		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3662  			spin_lock_irq(&sh->stripe_lock);
3663  			bi = sh->dev[i].toread;
3664  			sh->dev[i].toread = NULL;
3665  			spin_unlock_irq(&sh->stripe_lock);
3666  			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3667  				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3668  			if (bi)
3669  				s->to_read--;
3670  			while (bi && bi->bi_iter.bi_sector <
3671  			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3672  				struct bio *nextbi =
3673  					r5_next_bio(conf, bi, sh->dev[i].sector);
3674  
3675  				bio_io_error(bi);
3676  				bi = nextbi;
3677  			}
3678  		}
3679  		/* If we were in the middle of a write the parity block might
3680  		 * still be locked - so just clear all R5_LOCKED flags
3681  		 */
3682  		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3683  	}
3684  	s->to_write = 0;
3685  	s->written = 0;
3686  
3687  	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3688  		if (atomic_dec_and_test(&conf->pending_full_writes))
3689  			md_wakeup_thread(conf->mddev->thread);
3690  }
3691  
3692  static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3693  handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3694  		   struct stripe_head_state *s)
3695  {
3696  	int abort = 0;
3697  	int i;
3698  
3699  	BUG_ON(sh->batch_head);
3700  	clear_bit(STRIPE_SYNCING, &sh->state);
3701  	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3702  		wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3703  	s->syncing = 0;
3704  	s->replacing = 0;
3705  	/* There is nothing more to do for sync/check/repair.
3706  	 * Don't even need to abort as that is handled elsewhere
3707  	 * if needed, and not always wanted e.g. if there is a known
3708  	 * bad block here.
3709  	 * For recover/replace we need to record a bad block on all
3710  	 * non-sync devices, or abort the recovery
3711  	 */
3712  	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3713  		/* During recovery devices cannot be removed, so
3714  		 * locking and refcounting of rdevs is not needed
3715  		 */
3716  		for (i = 0; i < conf->raid_disks; i++) {
3717  			struct md_rdev *rdev = conf->disks[i].rdev;
3718  
3719  			if (rdev
3720  			    && !test_bit(Faulty, &rdev->flags)
3721  			    && !test_bit(In_sync, &rdev->flags)
3722  			    && !rdev_set_badblocks(rdev, sh->sector,
3723  						   RAID5_STRIPE_SECTORS(conf), 0))
3724  				abort = 1;
3725  			rdev = conf->disks[i].replacement;
3726  
3727  			if (rdev
3728  			    && !test_bit(Faulty, &rdev->flags)
3729  			    && !test_bit(In_sync, &rdev->flags)
3730  			    && !rdev_set_badblocks(rdev, sh->sector,
3731  						   RAID5_STRIPE_SECTORS(conf), 0))
3732  				abort = 1;
3733  		}
3734  		if (abort)
3735  			conf->recovery_disabled =
3736  				conf->mddev->recovery_disabled;
3737  	}
3738  	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3739  }
3740  
want_replace(struct stripe_head * sh,int disk_idx)3741  static int want_replace(struct stripe_head *sh, int disk_idx)
3742  {
3743  	struct md_rdev *rdev;
3744  	int rv = 0;
3745  
3746  	rdev = sh->raid_conf->disks[disk_idx].replacement;
3747  	if (rdev
3748  	    && !test_bit(Faulty, &rdev->flags)
3749  	    && !test_bit(In_sync, &rdev->flags)
3750  	    && (rdev->recovery_offset <= sh->sector
3751  		|| rdev->mddev->recovery_cp <= sh->sector))
3752  		rv = 1;
3753  	return rv;
3754  }
3755  
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3756  static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3757  			   int disk_idx, int disks)
3758  {
3759  	struct r5dev *dev = &sh->dev[disk_idx];
3760  	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3761  				  &sh->dev[s->failed_num[1]] };
3762  	int i;
3763  	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3764  
3765  
3766  	if (test_bit(R5_LOCKED, &dev->flags) ||
3767  	    test_bit(R5_UPTODATE, &dev->flags))
3768  		/* No point reading this as we already have it or have
3769  		 * decided to get it.
3770  		 */
3771  		return 0;
3772  
3773  	if (dev->toread ||
3774  	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3775  		/* We need this block to directly satisfy a request */
3776  		return 1;
3777  
3778  	if (s->syncing || s->expanding ||
3779  	    (s->replacing && want_replace(sh, disk_idx)))
3780  		/* When syncing, or expanding we read everything.
3781  		 * When replacing, we need the replaced block.
3782  		 */
3783  		return 1;
3784  
3785  	if ((s->failed >= 1 && fdev[0]->toread) ||
3786  	    (s->failed >= 2 && fdev[1]->toread))
3787  		/* If we want to read from a failed device, then
3788  		 * we need to actually read every other device.
3789  		 */
3790  		return 1;
3791  
3792  	/* Sometimes neither read-modify-write nor reconstruct-write
3793  	 * cycles can work.  In those cases we read every block we
3794  	 * can.  Then the parity-update is certain to have enough to
3795  	 * work with.
3796  	 * This can only be a problem when we need to write something,
3797  	 * and some device has failed.  If either of those tests
3798  	 * fail we need look no further.
3799  	 */
3800  	if (!s->failed || !s->to_write)
3801  		return 0;
3802  
3803  	if (test_bit(R5_Insync, &dev->flags) &&
3804  	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3805  		/* Pre-reads at not permitted until after short delay
3806  		 * to gather multiple requests.  However if this
3807  		 * device is no Insync, the block could only be computed
3808  		 * and there is no need to delay that.
3809  		 */
3810  		return 0;
3811  
3812  	for (i = 0; i < s->failed && i < 2; i++) {
3813  		if (fdev[i]->towrite &&
3814  		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3815  		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3816  			/* If we have a partial write to a failed
3817  			 * device, then we will need to reconstruct
3818  			 * the content of that device, so all other
3819  			 * devices must be read.
3820  			 */
3821  			return 1;
3822  
3823  		if (s->failed >= 2 &&
3824  		    (fdev[i]->towrite ||
3825  		     s->failed_num[i] == sh->pd_idx ||
3826  		     s->failed_num[i] == sh->qd_idx) &&
3827  		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3828  			/* In max degraded raid6, If the failed disk is P, Q,
3829  			 * or we want to read the failed disk, we need to do
3830  			 * reconstruct-write.
3831  			 */
3832  			force_rcw = true;
3833  	}
3834  
3835  	/* If we are forced to do a reconstruct-write, because parity
3836  	 * cannot be trusted and we are currently recovering it, there
3837  	 * is extra need to be careful.
3838  	 * If one of the devices that we would need to read, because
3839  	 * it is not being overwritten (and maybe not written at all)
3840  	 * is missing/faulty, then we need to read everything we can.
3841  	 */
3842  	if (!force_rcw &&
3843  	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3844  		/* reconstruct-write isn't being forced */
3845  		return 0;
3846  	for (i = 0; i < s->failed && i < 2; i++) {
3847  		if (s->failed_num[i] != sh->pd_idx &&
3848  		    s->failed_num[i] != sh->qd_idx &&
3849  		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3850  		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3851  			return 1;
3852  	}
3853  
3854  	return 0;
3855  }
3856  
3857  /* fetch_block - checks the given member device to see if its data needs
3858   * to be read or computed to satisfy a request.
3859   *
3860   * Returns 1 when no more member devices need to be checked, otherwise returns
3861   * 0 to tell the loop in handle_stripe_fill to continue
3862   */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3863  static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3864  		       int disk_idx, int disks)
3865  {
3866  	struct r5dev *dev = &sh->dev[disk_idx];
3867  
3868  	/* is the data in this block needed, and can we get it? */
3869  	if (need_this_block(sh, s, disk_idx, disks)) {
3870  		/* we would like to get this block, possibly by computing it,
3871  		 * otherwise read it if the backing disk is insync
3872  		 */
3873  		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3874  		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3875  		BUG_ON(sh->batch_head);
3876  
3877  		/*
3878  		 * In the raid6 case if the only non-uptodate disk is P
3879  		 * then we already trusted P to compute the other failed
3880  		 * drives. It is safe to compute rather than re-read P.
3881  		 * In other cases we only compute blocks from failed
3882  		 * devices, otherwise check/repair might fail to detect
3883  		 * a real inconsistency.
3884  		 */
3885  
3886  		if ((s->uptodate == disks - 1) &&
3887  		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3888  		    (s->failed && (disk_idx == s->failed_num[0] ||
3889  				   disk_idx == s->failed_num[1])))) {
3890  			/* have disk failed, and we're requested to fetch it;
3891  			 * do compute it
3892  			 */
3893  			pr_debug("Computing stripe %llu block %d\n",
3894  			       (unsigned long long)sh->sector, disk_idx);
3895  			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3896  			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3897  			set_bit(R5_Wantcompute, &dev->flags);
3898  			sh->ops.target = disk_idx;
3899  			sh->ops.target2 = -1; /* no 2nd target */
3900  			s->req_compute = 1;
3901  			/* Careful: from this point on 'uptodate' is in the eye
3902  			 * of raid_run_ops which services 'compute' operations
3903  			 * before writes. R5_Wantcompute flags a block that will
3904  			 * be R5_UPTODATE by the time it is needed for a
3905  			 * subsequent operation.
3906  			 */
3907  			s->uptodate++;
3908  			return 1;
3909  		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3910  			/* Computing 2-failure is *very* expensive; only
3911  			 * do it if failed >= 2
3912  			 */
3913  			int other;
3914  			for (other = disks; other--; ) {
3915  				if (other == disk_idx)
3916  					continue;
3917  				if (!test_bit(R5_UPTODATE,
3918  				      &sh->dev[other].flags))
3919  					break;
3920  			}
3921  			BUG_ON(other < 0);
3922  			pr_debug("Computing stripe %llu blocks %d,%d\n",
3923  			       (unsigned long long)sh->sector,
3924  			       disk_idx, other);
3925  			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3926  			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3927  			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3928  			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3929  			sh->ops.target = disk_idx;
3930  			sh->ops.target2 = other;
3931  			s->uptodate += 2;
3932  			s->req_compute = 1;
3933  			return 1;
3934  		} else if (test_bit(R5_Insync, &dev->flags)) {
3935  			set_bit(R5_LOCKED, &dev->flags);
3936  			set_bit(R5_Wantread, &dev->flags);
3937  			s->locked++;
3938  			pr_debug("Reading block %d (sync=%d)\n",
3939  				disk_idx, s->syncing);
3940  		}
3941  	}
3942  
3943  	return 0;
3944  }
3945  
3946  /*
3947   * handle_stripe_fill - read or compute data to satisfy pending requests.
3948   */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3949  static void handle_stripe_fill(struct stripe_head *sh,
3950  			       struct stripe_head_state *s,
3951  			       int disks)
3952  {
3953  	int i;
3954  
3955  	/* look for blocks to read/compute, skip this if a compute
3956  	 * is already in flight, or if the stripe contents are in the
3957  	 * midst of changing due to a write
3958  	 */
3959  	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3960  	    !sh->reconstruct_state) {
3961  
3962  		/*
3963  		 * For degraded stripe with data in journal, do not handle
3964  		 * read requests yet, instead, flush the stripe to raid
3965  		 * disks first, this avoids handling complex rmw of write
3966  		 * back cache (prexor with orig_page, and then xor with
3967  		 * page) in the read path
3968  		 */
3969  		if (s->to_read && s->injournal && s->failed) {
3970  			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3971  				r5c_make_stripe_write_out(sh);
3972  			goto out;
3973  		}
3974  
3975  		for (i = disks; i--; )
3976  			if (fetch_block(sh, s, i, disks))
3977  				break;
3978  	}
3979  out:
3980  	set_bit(STRIPE_HANDLE, &sh->state);
3981  }
3982  
3983  static void break_stripe_batch_list(struct stripe_head *head_sh,
3984  				    unsigned long handle_flags);
3985  /* handle_stripe_clean_event
3986   * any written block on an uptodate or failed drive can be returned.
3987   * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3988   * never LOCKED, so we don't need to test 'failed' directly.
3989   */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)3990  static void handle_stripe_clean_event(struct r5conf *conf,
3991  	struct stripe_head *sh, int disks)
3992  {
3993  	int i;
3994  	struct r5dev *dev;
3995  	int discard_pending = 0;
3996  	struct stripe_head *head_sh = sh;
3997  	bool do_endio = false;
3998  
3999  	for (i = disks; i--; )
4000  		if (sh->dev[i].written) {
4001  			dev = &sh->dev[i];
4002  			if (!test_bit(R5_LOCKED, &dev->flags) &&
4003  			    (test_bit(R5_UPTODATE, &dev->flags) ||
4004  			     test_bit(R5_Discard, &dev->flags) ||
4005  			     test_bit(R5_SkipCopy, &dev->flags))) {
4006  				/* We can return any write requests */
4007  				struct bio *wbi, *wbi2;
4008  				pr_debug("Return write for disc %d\n", i);
4009  				if (test_and_clear_bit(R5_Discard, &dev->flags))
4010  					clear_bit(R5_UPTODATE, &dev->flags);
4011  				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4012  					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4013  				}
4014  				do_endio = true;
4015  
4016  returnbi:
4017  				dev->page = dev->orig_page;
4018  				wbi = dev->written;
4019  				dev->written = NULL;
4020  				while (wbi && wbi->bi_iter.bi_sector <
4021  					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4022  					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4023  					md_write_end(conf->mddev);
4024  					bio_endio(wbi);
4025  					wbi = wbi2;
4026  				}
4027  
4028  				if (head_sh->batch_head) {
4029  					sh = list_first_entry(&sh->batch_list,
4030  							      struct stripe_head,
4031  							      batch_list);
4032  					if (sh != head_sh) {
4033  						dev = &sh->dev[i];
4034  						goto returnbi;
4035  					}
4036  				}
4037  				sh = head_sh;
4038  				dev = &sh->dev[i];
4039  			} else if (test_bit(R5_Discard, &dev->flags))
4040  				discard_pending = 1;
4041  		}
4042  
4043  	log_stripe_write_finished(sh);
4044  
4045  	if (!discard_pending &&
4046  	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4047  		int hash;
4048  		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4049  		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4050  		if (sh->qd_idx >= 0) {
4051  			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4052  			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4053  		}
4054  		/* now that discard is done we can proceed with any sync */
4055  		clear_bit(STRIPE_DISCARD, &sh->state);
4056  		/*
4057  		 * SCSI discard will change some bio fields and the stripe has
4058  		 * no updated data, so remove it from hash list and the stripe
4059  		 * will be reinitialized
4060  		 */
4061  unhash:
4062  		hash = sh->hash_lock_index;
4063  		spin_lock_irq(conf->hash_locks + hash);
4064  		remove_hash(sh);
4065  		spin_unlock_irq(conf->hash_locks + hash);
4066  		if (head_sh->batch_head) {
4067  			sh = list_first_entry(&sh->batch_list,
4068  					      struct stripe_head, batch_list);
4069  			if (sh != head_sh)
4070  					goto unhash;
4071  		}
4072  		sh = head_sh;
4073  
4074  		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4075  			set_bit(STRIPE_HANDLE, &sh->state);
4076  
4077  	}
4078  
4079  	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4080  		if (atomic_dec_and_test(&conf->pending_full_writes))
4081  			md_wakeup_thread(conf->mddev->thread);
4082  
4083  	if (head_sh->batch_head && do_endio)
4084  		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4085  }
4086  
4087  /*
4088   * For RMW in write back cache, we need extra page in prexor to store the
4089   * old data. This page is stored in dev->orig_page.
4090   *
4091   * This function checks whether we have data for prexor. The exact logic
4092   * is:
4093   *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4094   */
uptodate_for_rmw(struct r5dev * dev)4095  static inline bool uptodate_for_rmw(struct r5dev *dev)
4096  {
4097  	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4098  		(!test_bit(R5_InJournal, &dev->flags) ||
4099  		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4100  }
4101  
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4102  static int handle_stripe_dirtying(struct r5conf *conf,
4103  				  struct stripe_head *sh,
4104  				  struct stripe_head_state *s,
4105  				  int disks)
4106  {
4107  	int rmw = 0, rcw = 0, i;
4108  	sector_t recovery_cp = conf->mddev->recovery_cp;
4109  
4110  	/* Check whether resync is now happening or should start.
4111  	 * If yes, then the array is dirty (after unclean shutdown or
4112  	 * initial creation), so parity in some stripes might be inconsistent.
4113  	 * In this case, we need to always do reconstruct-write, to ensure
4114  	 * that in case of drive failure or read-error correction, we
4115  	 * generate correct data from the parity.
4116  	 */
4117  	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4118  	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4119  	     s->failed == 0)) {
4120  		/* Calculate the real rcw later - for now make it
4121  		 * look like rcw is cheaper
4122  		 */
4123  		rcw = 1; rmw = 2;
4124  		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4125  			 conf->rmw_level, (unsigned long long)recovery_cp,
4126  			 (unsigned long long)sh->sector);
4127  	} else for (i = disks; i--; ) {
4128  		/* would I have to read this buffer for read_modify_write */
4129  		struct r5dev *dev = &sh->dev[i];
4130  		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4131  		     i == sh->pd_idx || i == sh->qd_idx ||
4132  		     test_bit(R5_InJournal, &dev->flags)) &&
4133  		    !test_bit(R5_LOCKED, &dev->flags) &&
4134  		    !(uptodate_for_rmw(dev) ||
4135  		      test_bit(R5_Wantcompute, &dev->flags))) {
4136  			if (test_bit(R5_Insync, &dev->flags))
4137  				rmw++;
4138  			else
4139  				rmw += 2*disks;  /* cannot read it */
4140  		}
4141  		/* Would I have to read this buffer for reconstruct_write */
4142  		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4143  		    i != sh->pd_idx && i != sh->qd_idx &&
4144  		    !test_bit(R5_LOCKED, &dev->flags) &&
4145  		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4146  		      test_bit(R5_Wantcompute, &dev->flags))) {
4147  			if (test_bit(R5_Insync, &dev->flags))
4148  				rcw++;
4149  			else
4150  				rcw += 2*disks;
4151  		}
4152  	}
4153  
4154  	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4155  		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4156  	set_bit(STRIPE_HANDLE, &sh->state);
4157  	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4158  		/* prefer read-modify-write, but need to get some data */
4159  		mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4160  				sh->sector, rmw);
4161  
4162  		for (i = disks; i--; ) {
4163  			struct r5dev *dev = &sh->dev[i];
4164  			if (test_bit(R5_InJournal, &dev->flags) &&
4165  			    dev->page == dev->orig_page &&
4166  			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4167  				/* alloc page for prexor */
4168  				struct page *p = alloc_page(GFP_NOIO);
4169  
4170  				if (p) {
4171  					dev->orig_page = p;
4172  					continue;
4173  				}
4174  
4175  				/*
4176  				 * alloc_page() failed, try use
4177  				 * disk_info->extra_page
4178  				 */
4179  				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4180  						      &conf->cache_state)) {
4181  					r5c_use_extra_page(sh);
4182  					break;
4183  				}
4184  
4185  				/* extra_page in use, add to delayed_list */
4186  				set_bit(STRIPE_DELAYED, &sh->state);
4187  				s->waiting_extra_page = 1;
4188  				return -EAGAIN;
4189  			}
4190  		}
4191  
4192  		for (i = disks; i--; ) {
4193  			struct r5dev *dev = &sh->dev[i];
4194  			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4195  			     i == sh->pd_idx || i == sh->qd_idx ||
4196  			     test_bit(R5_InJournal, &dev->flags)) &&
4197  			    !test_bit(R5_LOCKED, &dev->flags) &&
4198  			    !(uptodate_for_rmw(dev) ||
4199  			      test_bit(R5_Wantcompute, &dev->flags)) &&
4200  			    test_bit(R5_Insync, &dev->flags)) {
4201  				if (test_bit(STRIPE_PREREAD_ACTIVE,
4202  					     &sh->state)) {
4203  					pr_debug("Read_old block %d for r-m-w\n",
4204  						 i);
4205  					set_bit(R5_LOCKED, &dev->flags);
4206  					set_bit(R5_Wantread, &dev->flags);
4207  					s->locked++;
4208  				} else
4209  					set_bit(STRIPE_DELAYED, &sh->state);
4210  			}
4211  		}
4212  	}
4213  	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4214  		/* want reconstruct write, but need to get some data */
4215  		int qread =0;
4216  		rcw = 0;
4217  		for (i = disks; i--; ) {
4218  			struct r5dev *dev = &sh->dev[i];
4219  			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4220  			    i != sh->pd_idx && i != sh->qd_idx &&
4221  			    !test_bit(R5_LOCKED, &dev->flags) &&
4222  			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4223  			      test_bit(R5_Wantcompute, &dev->flags))) {
4224  				rcw++;
4225  				if (test_bit(R5_Insync, &dev->flags) &&
4226  				    test_bit(STRIPE_PREREAD_ACTIVE,
4227  					     &sh->state)) {
4228  					pr_debug("Read_old block "
4229  						"%d for Reconstruct\n", i);
4230  					set_bit(R5_LOCKED, &dev->flags);
4231  					set_bit(R5_Wantread, &dev->flags);
4232  					s->locked++;
4233  					qread++;
4234  				} else
4235  					set_bit(STRIPE_DELAYED, &sh->state);
4236  			}
4237  		}
4238  		if (rcw && !mddev_is_dm(conf->mddev))
4239  			blk_add_trace_msg(conf->mddev->gendisk->queue,
4240  				"raid5 rcw %llu %d %d %d",
4241  				(unsigned long long)sh->sector, rcw, qread,
4242  				test_bit(STRIPE_DELAYED, &sh->state));
4243  	}
4244  
4245  	if (rcw > disks && rmw > disks &&
4246  	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4247  		set_bit(STRIPE_DELAYED, &sh->state);
4248  
4249  	/* now if nothing is locked, and if we have enough data,
4250  	 * we can start a write request
4251  	 */
4252  	/* since handle_stripe can be called at any time we need to handle the
4253  	 * case where a compute block operation has been submitted and then a
4254  	 * subsequent call wants to start a write request.  raid_run_ops only
4255  	 * handles the case where compute block and reconstruct are requested
4256  	 * simultaneously.  If this is not the case then new writes need to be
4257  	 * held off until the compute completes.
4258  	 */
4259  	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4260  	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4261  	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4262  		schedule_reconstruction(sh, s, rcw == 0, 0);
4263  	return 0;
4264  }
4265  
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4266  static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4267  				struct stripe_head_state *s, int disks)
4268  {
4269  	struct r5dev *dev = NULL;
4270  
4271  	BUG_ON(sh->batch_head);
4272  	set_bit(STRIPE_HANDLE, &sh->state);
4273  
4274  	switch (sh->check_state) {
4275  	case check_state_idle:
4276  		/* start a new check operation if there are no failures */
4277  		if (s->failed == 0) {
4278  			BUG_ON(s->uptodate != disks);
4279  			sh->check_state = check_state_run;
4280  			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4281  			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4282  			s->uptodate--;
4283  			break;
4284  		}
4285  		dev = &sh->dev[s->failed_num[0]];
4286  		fallthrough;
4287  	case check_state_compute_result:
4288  		sh->check_state = check_state_idle;
4289  		if (!dev)
4290  			dev = &sh->dev[sh->pd_idx];
4291  
4292  		/* check that a write has not made the stripe insync */
4293  		if (test_bit(STRIPE_INSYNC, &sh->state))
4294  			break;
4295  
4296  		/* either failed parity check, or recovery is happening */
4297  		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4298  		BUG_ON(s->uptodate != disks);
4299  
4300  		set_bit(R5_LOCKED, &dev->flags);
4301  		s->locked++;
4302  		set_bit(R5_Wantwrite, &dev->flags);
4303  
4304  		set_bit(STRIPE_INSYNC, &sh->state);
4305  		break;
4306  	case check_state_run:
4307  		break; /* we will be called again upon completion */
4308  	case check_state_check_result:
4309  		sh->check_state = check_state_idle;
4310  
4311  		/* if a failure occurred during the check operation, leave
4312  		 * STRIPE_INSYNC not set and let the stripe be handled again
4313  		 */
4314  		if (s->failed)
4315  			break;
4316  
4317  		/* handle a successful check operation, if parity is correct
4318  		 * we are done.  Otherwise update the mismatch count and repair
4319  		 * parity if !MD_RECOVERY_CHECK
4320  		 */
4321  		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4322  			/* parity is correct (on disc,
4323  			 * not in buffer any more)
4324  			 */
4325  			set_bit(STRIPE_INSYNC, &sh->state);
4326  		else {
4327  			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4328  			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4329  				/* don't try to repair!! */
4330  				set_bit(STRIPE_INSYNC, &sh->state);
4331  				pr_warn_ratelimited("%s: mismatch sector in range "
4332  						    "%llu-%llu\n", mdname(conf->mddev),
4333  						    (unsigned long long) sh->sector,
4334  						    (unsigned long long) sh->sector +
4335  						    RAID5_STRIPE_SECTORS(conf));
4336  			} else {
4337  				sh->check_state = check_state_compute_run;
4338  				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4339  				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4340  				set_bit(R5_Wantcompute,
4341  					&sh->dev[sh->pd_idx].flags);
4342  				sh->ops.target = sh->pd_idx;
4343  				sh->ops.target2 = -1;
4344  				s->uptodate++;
4345  			}
4346  		}
4347  		break;
4348  	case check_state_compute_run:
4349  		break;
4350  	default:
4351  		pr_err("%s: unknown check_state: %d sector: %llu\n",
4352  		       __func__, sh->check_state,
4353  		       (unsigned long long) sh->sector);
4354  		BUG();
4355  	}
4356  }
4357  
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4358  static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4359  				  struct stripe_head_state *s,
4360  				  int disks)
4361  {
4362  	int pd_idx = sh->pd_idx;
4363  	int qd_idx = sh->qd_idx;
4364  	struct r5dev *dev;
4365  
4366  	BUG_ON(sh->batch_head);
4367  	set_bit(STRIPE_HANDLE, &sh->state);
4368  
4369  	BUG_ON(s->failed > 2);
4370  
4371  	/* Want to check and possibly repair P and Q.
4372  	 * However there could be one 'failed' device, in which
4373  	 * case we can only check one of them, possibly using the
4374  	 * other to generate missing data
4375  	 */
4376  
4377  	switch (sh->check_state) {
4378  	case check_state_idle:
4379  		/* start a new check operation if there are < 2 failures */
4380  		if (s->failed == s->q_failed) {
4381  			/* The only possible failed device holds Q, so it
4382  			 * makes sense to check P (If anything else were failed,
4383  			 * we would have used P to recreate it).
4384  			 */
4385  			sh->check_state = check_state_run;
4386  		}
4387  		if (!s->q_failed && s->failed < 2) {
4388  			/* Q is not failed, and we didn't use it to generate
4389  			 * anything, so it makes sense to check it
4390  			 */
4391  			if (sh->check_state == check_state_run)
4392  				sh->check_state = check_state_run_pq;
4393  			else
4394  				sh->check_state = check_state_run_q;
4395  		}
4396  
4397  		/* discard potentially stale zero_sum_result */
4398  		sh->ops.zero_sum_result = 0;
4399  
4400  		if (sh->check_state == check_state_run) {
4401  			/* async_xor_zero_sum destroys the contents of P */
4402  			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4403  			s->uptodate--;
4404  		}
4405  		if (sh->check_state >= check_state_run &&
4406  		    sh->check_state <= check_state_run_pq) {
4407  			/* async_syndrome_zero_sum preserves P and Q, so
4408  			 * no need to mark them !uptodate here
4409  			 */
4410  			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4411  			break;
4412  		}
4413  
4414  		/* we have 2-disk failure */
4415  		BUG_ON(s->failed != 2);
4416  		fallthrough;
4417  	case check_state_compute_result:
4418  		sh->check_state = check_state_idle;
4419  
4420  		/* check that a write has not made the stripe insync */
4421  		if (test_bit(STRIPE_INSYNC, &sh->state))
4422  			break;
4423  
4424  		/* now write out any block on a failed drive,
4425  		 * or P or Q if they were recomputed
4426  		 */
4427  		dev = NULL;
4428  		if (s->failed == 2) {
4429  			dev = &sh->dev[s->failed_num[1]];
4430  			s->locked++;
4431  			set_bit(R5_LOCKED, &dev->flags);
4432  			set_bit(R5_Wantwrite, &dev->flags);
4433  		}
4434  		if (s->failed >= 1) {
4435  			dev = &sh->dev[s->failed_num[0]];
4436  			s->locked++;
4437  			set_bit(R5_LOCKED, &dev->flags);
4438  			set_bit(R5_Wantwrite, &dev->flags);
4439  		}
4440  		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4441  			dev = &sh->dev[pd_idx];
4442  			s->locked++;
4443  			set_bit(R5_LOCKED, &dev->flags);
4444  			set_bit(R5_Wantwrite, &dev->flags);
4445  		}
4446  		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4447  			dev = &sh->dev[qd_idx];
4448  			s->locked++;
4449  			set_bit(R5_LOCKED, &dev->flags);
4450  			set_bit(R5_Wantwrite, &dev->flags);
4451  		}
4452  		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4453  			      "%s: disk%td not up to date\n",
4454  			      mdname(conf->mddev),
4455  			      dev - (struct r5dev *) &sh->dev)) {
4456  			clear_bit(R5_LOCKED, &dev->flags);
4457  			clear_bit(R5_Wantwrite, &dev->flags);
4458  			s->locked--;
4459  		}
4460  
4461  		set_bit(STRIPE_INSYNC, &sh->state);
4462  		break;
4463  	case check_state_run:
4464  	case check_state_run_q:
4465  	case check_state_run_pq:
4466  		break; /* we will be called again upon completion */
4467  	case check_state_check_result:
4468  		sh->check_state = check_state_idle;
4469  
4470  		/* handle a successful check operation, if parity is correct
4471  		 * we are done.  Otherwise update the mismatch count and repair
4472  		 * parity if !MD_RECOVERY_CHECK
4473  		 */
4474  		if (sh->ops.zero_sum_result == 0) {
4475  			/* both parities are correct */
4476  			if (!s->failed)
4477  				set_bit(STRIPE_INSYNC, &sh->state);
4478  			else {
4479  				/* in contrast to the raid5 case we can validate
4480  				 * parity, but still have a failure to write
4481  				 * back
4482  				 */
4483  				sh->check_state = check_state_compute_result;
4484  				/* Returning at this point means that we may go
4485  				 * off and bring p and/or q uptodate again so
4486  				 * we make sure to check zero_sum_result again
4487  				 * to verify if p or q need writeback
4488  				 */
4489  			}
4490  		} else {
4491  			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4492  			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4493  				/* don't try to repair!! */
4494  				set_bit(STRIPE_INSYNC, &sh->state);
4495  				pr_warn_ratelimited("%s: mismatch sector in range "
4496  						    "%llu-%llu\n", mdname(conf->mddev),
4497  						    (unsigned long long) sh->sector,
4498  						    (unsigned long long) sh->sector +
4499  						    RAID5_STRIPE_SECTORS(conf));
4500  			} else {
4501  				int *target = &sh->ops.target;
4502  
4503  				sh->ops.target = -1;
4504  				sh->ops.target2 = -1;
4505  				sh->check_state = check_state_compute_run;
4506  				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4507  				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4508  				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4509  					set_bit(R5_Wantcompute,
4510  						&sh->dev[pd_idx].flags);
4511  					*target = pd_idx;
4512  					target = &sh->ops.target2;
4513  					s->uptodate++;
4514  				}
4515  				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4516  					set_bit(R5_Wantcompute,
4517  						&sh->dev[qd_idx].flags);
4518  					*target = qd_idx;
4519  					s->uptodate++;
4520  				}
4521  			}
4522  		}
4523  		break;
4524  	case check_state_compute_run:
4525  		break;
4526  	default:
4527  		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4528  			__func__, sh->check_state,
4529  			(unsigned long long) sh->sector);
4530  		BUG();
4531  	}
4532  }
4533  
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4534  static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4535  {
4536  	int i;
4537  
4538  	/* We have read all the blocks in this stripe and now we need to
4539  	 * copy some of them into a target stripe for expand.
4540  	 */
4541  	struct dma_async_tx_descriptor *tx = NULL;
4542  	BUG_ON(sh->batch_head);
4543  	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4544  	for (i = 0; i < sh->disks; i++)
4545  		if (i != sh->pd_idx && i != sh->qd_idx) {
4546  			int dd_idx, j;
4547  			struct stripe_head *sh2;
4548  			struct async_submit_ctl submit;
4549  
4550  			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4551  			sector_t s = raid5_compute_sector(conf, bn, 0,
4552  							  &dd_idx, NULL);
4553  			sh2 = raid5_get_active_stripe(conf, NULL, s,
4554  				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4555  			if (sh2 == NULL)
4556  				/* so far only the early blocks of this stripe
4557  				 * have been requested.  When later blocks
4558  				 * get requested, we will try again
4559  				 */
4560  				continue;
4561  			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4562  			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4563  				/* must have already done this block */
4564  				raid5_release_stripe(sh2);
4565  				continue;
4566  			}
4567  
4568  			/* place all the copies on one channel */
4569  			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4570  			tx = async_memcpy(sh2->dev[dd_idx].page,
4571  					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4572  					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4573  					  &submit);
4574  
4575  			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4576  			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4577  			for (j = 0; j < conf->raid_disks; j++)
4578  				if (j != sh2->pd_idx &&
4579  				    j != sh2->qd_idx &&
4580  				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4581  					break;
4582  			if (j == conf->raid_disks) {
4583  				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4584  				set_bit(STRIPE_HANDLE, &sh2->state);
4585  			}
4586  			raid5_release_stripe(sh2);
4587  
4588  		}
4589  	/* done submitting copies, wait for them to complete */
4590  	async_tx_quiesce(&tx);
4591  }
4592  
4593  /*
4594   * handle_stripe - do things to a stripe.
4595   *
4596   * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4597   * state of various bits to see what needs to be done.
4598   * Possible results:
4599   *    return some read requests which now have data
4600   *    return some write requests which are safely on storage
4601   *    schedule a read on some buffers
4602   *    schedule a write of some buffers
4603   *    return confirmation of parity correctness
4604   *
4605   */
4606  
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4607  static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4608  {
4609  	struct r5conf *conf = sh->raid_conf;
4610  	int disks = sh->disks;
4611  	struct r5dev *dev;
4612  	int i;
4613  	int do_recovery = 0;
4614  
4615  	memset(s, 0, sizeof(*s));
4616  
4617  	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4618  	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4619  	s->failed_num[0] = -1;
4620  	s->failed_num[1] = -1;
4621  	s->log_failed = r5l_log_disk_error(conf);
4622  
4623  	/* Now to look around and see what can be done */
4624  	for (i=disks; i--; ) {
4625  		struct md_rdev *rdev;
4626  		int is_bad = 0;
4627  
4628  		dev = &sh->dev[i];
4629  
4630  		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4631  			 i, dev->flags,
4632  			 dev->toread, dev->towrite, dev->written);
4633  		/* maybe we can reply to a read
4634  		 *
4635  		 * new wantfill requests are only permitted while
4636  		 * ops_complete_biofill is guaranteed to be inactive
4637  		 */
4638  		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4639  		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4640  			set_bit(R5_Wantfill, &dev->flags);
4641  
4642  		/* now count some things */
4643  		if (test_bit(R5_LOCKED, &dev->flags))
4644  			s->locked++;
4645  		if (test_bit(R5_UPTODATE, &dev->flags))
4646  			s->uptodate++;
4647  		if (test_bit(R5_Wantcompute, &dev->flags)) {
4648  			s->compute++;
4649  			BUG_ON(s->compute > 2);
4650  		}
4651  
4652  		if (test_bit(R5_Wantfill, &dev->flags))
4653  			s->to_fill++;
4654  		else if (dev->toread)
4655  			s->to_read++;
4656  		if (dev->towrite) {
4657  			s->to_write++;
4658  			if (!test_bit(R5_OVERWRITE, &dev->flags))
4659  				s->non_overwrite++;
4660  		}
4661  		if (dev->written)
4662  			s->written++;
4663  		/* Prefer to use the replacement for reads, but only
4664  		 * if it is recovered enough and has no bad blocks.
4665  		 */
4666  		rdev = conf->disks[i].replacement;
4667  		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4668  		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4669  		    !rdev_has_badblock(rdev, sh->sector,
4670  				       RAID5_STRIPE_SECTORS(conf)))
4671  			set_bit(R5_ReadRepl, &dev->flags);
4672  		else {
4673  			if (rdev && !test_bit(Faulty, &rdev->flags))
4674  				set_bit(R5_NeedReplace, &dev->flags);
4675  			else
4676  				clear_bit(R5_NeedReplace, &dev->flags);
4677  			rdev = conf->disks[i].rdev;
4678  			clear_bit(R5_ReadRepl, &dev->flags);
4679  		}
4680  		if (rdev && test_bit(Faulty, &rdev->flags))
4681  			rdev = NULL;
4682  		if (rdev) {
4683  			is_bad = rdev_has_badblock(rdev, sh->sector,
4684  						   RAID5_STRIPE_SECTORS(conf));
4685  			if (s->blocked_rdev == NULL) {
4686  				if (is_bad < 0)
4687  					set_bit(BlockedBadBlocks, &rdev->flags);
4688  				if (rdev_blocked(rdev)) {
4689  					s->blocked_rdev = rdev;
4690  					atomic_inc(&rdev->nr_pending);
4691  				}
4692  			}
4693  		}
4694  		clear_bit(R5_Insync, &dev->flags);
4695  		if (!rdev)
4696  			/* Not in-sync */;
4697  		else if (is_bad) {
4698  			/* also not in-sync */
4699  			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4700  			    test_bit(R5_UPTODATE, &dev->flags)) {
4701  				/* treat as in-sync, but with a read error
4702  				 * which we can now try to correct
4703  				 */
4704  				set_bit(R5_Insync, &dev->flags);
4705  				set_bit(R5_ReadError, &dev->flags);
4706  			}
4707  		} else if (test_bit(In_sync, &rdev->flags))
4708  			set_bit(R5_Insync, &dev->flags);
4709  		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4710  			/* in sync if before recovery_offset */
4711  			set_bit(R5_Insync, &dev->flags);
4712  		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4713  			 test_bit(R5_Expanded, &dev->flags))
4714  			/* If we've reshaped into here, we assume it is Insync.
4715  			 * We will shortly update recovery_offset to make
4716  			 * it official.
4717  			 */
4718  			set_bit(R5_Insync, &dev->flags);
4719  
4720  		if (test_bit(R5_WriteError, &dev->flags)) {
4721  			/* This flag does not apply to '.replacement'
4722  			 * only to .rdev, so make sure to check that*/
4723  			struct md_rdev *rdev2 = conf->disks[i].rdev;
4724  
4725  			if (rdev2 == rdev)
4726  				clear_bit(R5_Insync, &dev->flags);
4727  			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4728  				s->handle_bad_blocks = 1;
4729  				atomic_inc(&rdev2->nr_pending);
4730  			} else
4731  				clear_bit(R5_WriteError, &dev->flags);
4732  		}
4733  		if (test_bit(R5_MadeGood, &dev->flags)) {
4734  			/* This flag does not apply to '.replacement'
4735  			 * only to .rdev, so make sure to check that*/
4736  			struct md_rdev *rdev2 = conf->disks[i].rdev;
4737  
4738  			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4739  				s->handle_bad_blocks = 1;
4740  				atomic_inc(&rdev2->nr_pending);
4741  			} else
4742  				clear_bit(R5_MadeGood, &dev->flags);
4743  		}
4744  		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4745  			struct md_rdev *rdev2 = conf->disks[i].replacement;
4746  
4747  			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4748  				s->handle_bad_blocks = 1;
4749  				atomic_inc(&rdev2->nr_pending);
4750  			} else
4751  				clear_bit(R5_MadeGoodRepl, &dev->flags);
4752  		}
4753  		if (!test_bit(R5_Insync, &dev->flags)) {
4754  			/* The ReadError flag will just be confusing now */
4755  			clear_bit(R5_ReadError, &dev->flags);
4756  			clear_bit(R5_ReWrite, &dev->flags);
4757  		}
4758  		if (test_bit(R5_ReadError, &dev->flags))
4759  			clear_bit(R5_Insync, &dev->flags);
4760  		if (!test_bit(R5_Insync, &dev->flags)) {
4761  			if (s->failed < 2)
4762  				s->failed_num[s->failed] = i;
4763  			s->failed++;
4764  			if (rdev && !test_bit(Faulty, &rdev->flags))
4765  				do_recovery = 1;
4766  			else if (!rdev) {
4767  				rdev = conf->disks[i].replacement;
4768  				if (rdev && !test_bit(Faulty, &rdev->flags))
4769  					do_recovery = 1;
4770  			}
4771  		}
4772  
4773  		if (test_bit(R5_InJournal, &dev->flags))
4774  			s->injournal++;
4775  		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4776  			s->just_cached++;
4777  	}
4778  	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4779  		/* If there is a failed device being replaced,
4780  		 *     we must be recovering.
4781  		 * else if we are after recovery_cp, we must be syncing
4782  		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4783  		 * else we can only be replacing
4784  		 * sync and recovery both need to read all devices, and so
4785  		 * use the same flag.
4786  		 */
4787  		if (do_recovery ||
4788  		    sh->sector >= conf->mddev->recovery_cp ||
4789  		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4790  			s->syncing = 1;
4791  		else
4792  			s->replacing = 1;
4793  	}
4794  }
4795  
4796  /*
4797   * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4798   * a head which can now be handled.
4799   */
clear_batch_ready(struct stripe_head * sh)4800  static int clear_batch_ready(struct stripe_head *sh)
4801  {
4802  	struct stripe_head *tmp;
4803  	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4804  		return (sh->batch_head && sh->batch_head != sh);
4805  	spin_lock(&sh->stripe_lock);
4806  	if (!sh->batch_head) {
4807  		spin_unlock(&sh->stripe_lock);
4808  		return 0;
4809  	}
4810  
4811  	/*
4812  	 * this stripe could be added to a batch list before we check
4813  	 * BATCH_READY, skips it
4814  	 */
4815  	if (sh->batch_head != sh) {
4816  		spin_unlock(&sh->stripe_lock);
4817  		return 1;
4818  	}
4819  	spin_lock(&sh->batch_lock);
4820  	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4821  		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4822  	spin_unlock(&sh->batch_lock);
4823  	spin_unlock(&sh->stripe_lock);
4824  
4825  	/*
4826  	 * BATCH_READY is cleared, no new stripes can be added.
4827  	 * batch_list can be accessed without lock
4828  	 */
4829  	return 0;
4830  }
4831  
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4832  static void break_stripe_batch_list(struct stripe_head *head_sh,
4833  				    unsigned long handle_flags)
4834  {
4835  	struct stripe_head *sh, *next;
4836  	int i;
4837  
4838  	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4839  
4840  		list_del_init(&sh->batch_list);
4841  
4842  		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4843  					  (1 << STRIPE_SYNCING) |
4844  					  (1 << STRIPE_REPLACED) |
4845  					  (1 << STRIPE_DELAYED) |
4846  					  (1 << STRIPE_BIT_DELAY) |
4847  					  (1 << STRIPE_FULL_WRITE) |
4848  					  (1 << STRIPE_BIOFILL_RUN) |
4849  					  (1 << STRIPE_COMPUTE_RUN)  |
4850  					  (1 << STRIPE_DISCARD) |
4851  					  (1 << STRIPE_BATCH_READY) |
4852  					  (1 << STRIPE_BATCH_ERR)),
4853  			"stripe state: %lx\n", sh->state);
4854  		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4855  					      (1 << STRIPE_REPLACED)),
4856  			"head stripe state: %lx\n", head_sh->state);
4857  
4858  		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4859  					    (1 << STRIPE_PREREAD_ACTIVE) |
4860  					    (1 << STRIPE_ON_UNPLUG_LIST)),
4861  			      head_sh->state & (1 << STRIPE_INSYNC));
4862  
4863  		sh->check_state = head_sh->check_state;
4864  		sh->reconstruct_state = head_sh->reconstruct_state;
4865  		spin_lock_irq(&sh->stripe_lock);
4866  		sh->batch_head = NULL;
4867  		spin_unlock_irq(&sh->stripe_lock);
4868  		for (i = 0; i < sh->disks; i++) {
4869  			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4870  				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4871  			sh->dev[i].flags = head_sh->dev[i].flags &
4872  				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4873  		}
4874  		if (handle_flags == 0 ||
4875  		    sh->state & handle_flags)
4876  			set_bit(STRIPE_HANDLE, &sh->state);
4877  		raid5_release_stripe(sh);
4878  	}
4879  	spin_lock_irq(&head_sh->stripe_lock);
4880  	head_sh->batch_head = NULL;
4881  	spin_unlock_irq(&head_sh->stripe_lock);
4882  	for (i = 0; i < head_sh->disks; i++)
4883  		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4884  			wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4885  	if (head_sh->state & handle_flags)
4886  		set_bit(STRIPE_HANDLE, &head_sh->state);
4887  }
4888  
handle_stripe(struct stripe_head * sh)4889  static void handle_stripe(struct stripe_head *sh)
4890  {
4891  	struct stripe_head_state s;
4892  	struct r5conf *conf = sh->raid_conf;
4893  	int i;
4894  	int prexor;
4895  	int disks = sh->disks;
4896  	struct r5dev *pdev, *qdev;
4897  
4898  	clear_bit(STRIPE_HANDLE, &sh->state);
4899  
4900  	/*
4901  	 * handle_stripe should not continue handle the batched stripe, only
4902  	 * the head of batch list or lone stripe can continue. Otherwise we
4903  	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4904  	 * is set for the batched stripe.
4905  	 */
4906  	if (clear_batch_ready(sh))
4907  		return;
4908  
4909  	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4910  		/* already being handled, ensure it gets handled
4911  		 * again when current action finishes */
4912  		set_bit(STRIPE_HANDLE, &sh->state);
4913  		return;
4914  	}
4915  
4916  	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4917  		break_stripe_batch_list(sh, 0);
4918  
4919  	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4920  		spin_lock(&sh->stripe_lock);
4921  		/*
4922  		 * Cannot process 'sync' concurrently with 'discard'.
4923  		 * Flush data in r5cache before 'sync'.
4924  		 */
4925  		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4926  		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4927  		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4928  		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4929  			set_bit(STRIPE_SYNCING, &sh->state);
4930  			clear_bit(STRIPE_INSYNC, &sh->state);
4931  			clear_bit(STRIPE_REPLACED, &sh->state);
4932  		}
4933  		spin_unlock(&sh->stripe_lock);
4934  	}
4935  	clear_bit(STRIPE_DELAYED, &sh->state);
4936  
4937  	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4938  		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4939  	       (unsigned long long)sh->sector, sh->state,
4940  	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4941  	       sh->check_state, sh->reconstruct_state);
4942  
4943  	analyse_stripe(sh, &s);
4944  
4945  	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4946  		goto finish;
4947  
4948  	if (s.handle_bad_blocks ||
4949  	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4950  		set_bit(STRIPE_HANDLE, &sh->state);
4951  		goto finish;
4952  	}
4953  
4954  	if (unlikely(s.blocked_rdev)) {
4955  		if (s.syncing || s.expanding || s.expanded ||
4956  		    s.replacing || s.to_write || s.written) {
4957  			set_bit(STRIPE_HANDLE, &sh->state);
4958  			goto finish;
4959  		}
4960  		/* There is nothing for the blocked_rdev to block */
4961  		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4962  		s.blocked_rdev = NULL;
4963  	}
4964  
4965  	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4966  		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4967  		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4968  	}
4969  
4970  	pr_debug("locked=%d uptodate=%d to_read=%d"
4971  	       " to_write=%d failed=%d failed_num=%d,%d\n",
4972  	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4973  	       s.failed_num[0], s.failed_num[1]);
4974  	/*
4975  	 * check if the array has lost more than max_degraded devices and,
4976  	 * if so, some requests might need to be failed.
4977  	 *
4978  	 * When journal device failed (log_failed), we will only process
4979  	 * the stripe if there is data need write to raid disks
4980  	 */
4981  	if (s.failed > conf->max_degraded ||
4982  	    (s.log_failed && s.injournal == 0)) {
4983  		sh->check_state = 0;
4984  		sh->reconstruct_state = 0;
4985  		break_stripe_batch_list(sh, 0);
4986  		if (s.to_read+s.to_write+s.written)
4987  			handle_failed_stripe(conf, sh, &s, disks);
4988  		if (s.syncing + s.replacing)
4989  			handle_failed_sync(conf, sh, &s);
4990  	}
4991  
4992  	/* Now we check to see if any write operations have recently
4993  	 * completed
4994  	 */
4995  	prexor = 0;
4996  	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4997  		prexor = 1;
4998  	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4999  	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5000  		sh->reconstruct_state = reconstruct_state_idle;
5001  
5002  		/* All the 'written' buffers and the parity block are ready to
5003  		 * be written back to disk
5004  		 */
5005  		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5006  		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5007  		BUG_ON(sh->qd_idx >= 0 &&
5008  		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5009  		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5010  		for (i = disks; i--; ) {
5011  			struct r5dev *dev = &sh->dev[i];
5012  			if (test_bit(R5_LOCKED, &dev->flags) &&
5013  				(i == sh->pd_idx || i == sh->qd_idx ||
5014  				 dev->written || test_bit(R5_InJournal,
5015  							  &dev->flags))) {
5016  				pr_debug("Writing block %d\n", i);
5017  				set_bit(R5_Wantwrite, &dev->flags);
5018  				if (prexor)
5019  					continue;
5020  				if (s.failed > 1)
5021  					continue;
5022  				if (!test_bit(R5_Insync, &dev->flags) ||
5023  				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5024  				     s.failed == 0))
5025  					set_bit(STRIPE_INSYNC, &sh->state);
5026  			}
5027  		}
5028  		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5029  			s.dec_preread_active = 1;
5030  	}
5031  
5032  	/*
5033  	 * might be able to return some write requests if the parity blocks
5034  	 * are safe, or on a failed drive
5035  	 */
5036  	pdev = &sh->dev[sh->pd_idx];
5037  	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5038  		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5039  	qdev = &sh->dev[sh->qd_idx];
5040  	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5041  		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5042  		|| conf->level < 6;
5043  
5044  	if (s.written &&
5045  	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5046  			     && !test_bit(R5_LOCKED, &pdev->flags)
5047  			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5048  				 test_bit(R5_Discard, &pdev->flags))))) &&
5049  	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5050  			     && !test_bit(R5_LOCKED, &qdev->flags)
5051  			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5052  				 test_bit(R5_Discard, &qdev->flags))))))
5053  		handle_stripe_clean_event(conf, sh, disks);
5054  
5055  	if (s.just_cached)
5056  		r5c_handle_cached_data_endio(conf, sh, disks);
5057  	log_stripe_write_finished(sh);
5058  
5059  	/* Now we might consider reading some blocks, either to check/generate
5060  	 * parity, or to satisfy requests
5061  	 * or to load a block that is being partially written.
5062  	 */
5063  	if (s.to_read || s.non_overwrite
5064  	    || (s.to_write && s.failed)
5065  	    || (s.syncing && (s.uptodate + s.compute < disks))
5066  	    || s.replacing
5067  	    || s.expanding)
5068  		handle_stripe_fill(sh, &s, disks);
5069  
5070  	/*
5071  	 * When the stripe finishes full journal write cycle (write to journal
5072  	 * and raid disk), this is the clean up procedure so it is ready for
5073  	 * next operation.
5074  	 */
5075  	r5c_finish_stripe_write_out(conf, sh, &s);
5076  
5077  	/*
5078  	 * Now to consider new write requests, cache write back and what else,
5079  	 * if anything should be read.  We do not handle new writes when:
5080  	 * 1/ A 'write' operation (copy+xor) is already in flight.
5081  	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5082  	 *    block.
5083  	 * 3/ A r5c cache log write is in flight.
5084  	 */
5085  
5086  	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5087  		if (!r5c_is_writeback(conf->log)) {
5088  			if (s.to_write)
5089  				handle_stripe_dirtying(conf, sh, &s, disks);
5090  		} else { /* write back cache */
5091  			int ret = 0;
5092  
5093  			/* First, try handle writes in caching phase */
5094  			if (s.to_write)
5095  				ret = r5c_try_caching_write(conf, sh, &s,
5096  							    disks);
5097  			/*
5098  			 * If caching phase failed: ret == -EAGAIN
5099  			 *    OR
5100  			 * stripe under reclaim: !caching && injournal
5101  			 *
5102  			 * fall back to handle_stripe_dirtying()
5103  			 */
5104  			if (ret == -EAGAIN ||
5105  			    /* stripe under reclaim: !caching && injournal */
5106  			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5107  			     s.injournal > 0)) {
5108  				ret = handle_stripe_dirtying(conf, sh, &s,
5109  							     disks);
5110  				if (ret == -EAGAIN)
5111  					goto finish;
5112  			}
5113  		}
5114  	}
5115  
5116  	/* maybe we need to check and possibly fix the parity for this stripe
5117  	 * Any reads will already have been scheduled, so we just see if enough
5118  	 * data is available.  The parity check is held off while parity
5119  	 * dependent operations are in flight.
5120  	 */
5121  	if (sh->check_state ||
5122  	    (s.syncing && s.locked == 0 &&
5123  	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5124  	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5125  		if (conf->level == 6)
5126  			handle_parity_checks6(conf, sh, &s, disks);
5127  		else
5128  			handle_parity_checks5(conf, sh, &s, disks);
5129  	}
5130  
5131  	if ((s.replacing || s.syncing) && s.locked == 0
5132  	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5133  	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5134  		/* Write out to replacement devices where possible */
5135  		for (i = 0; i < conf->raid_disks; i++)
5136  			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5137  				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5138  				set_bit(R5_WantReplace, &sh->dev[i].flags);
5139  				set_bit(R5_LOCKED, &sh->dev[i].flags);
5140  				s.locked++;
5141  			}
5142  		if (s.replacing)
5143  			set_bit(STRIPE_INSYNC, &sh->state);
5144  		set_bit(STRIPE_REPLACED, &sh->state);
5145  	}
5146  	if ((s.syncing || s.replacing) && s.locked == 0 &&
5147  	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5148  	    test_bit(STRIPE_INSYNC, &sh->state)) {
5149  		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5150  		clear_bit(STRIPE_SYNCING, &sh->state);
5151  		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5152  			wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5153  	}
5154  
5155  	/* If the failed drives are just a ReadError, then we might need
5156  	 * to progress the repair/check process
5157  	 */
5158  	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5159  		for (i = 0; i < s.failed; i++) {
5160  			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5161  			if (test_bit(R5_ReadError, &dev->flags)
5162  			    && !test_bit(R5_LOCKED, &dev->flags)
5163  			    && test_bit(R5_UPTODATE, &dev->flags)
5164  				) {
5165  				if (!test_bit(R5_ReWrite, &dev->flags)) {
5166  					set_bit(R5_Wantwrite, &dev->flags);
5167  					set_bit(R5_ReWrite, &dev->flags);
5168  				} else
5169  					/* let's read it back */
5170  					set_bit(R5_Wantread, &dev->flags);
5171  				set_bit(R5_LOCKED, &dev->flags);
5172  				s.locked++;
5173  			}
5174  		}
5175  
5176  	/* Finish reconstruct operations initiated by the expansion process */
5177  	if (sh->reconstruct_state == reconstruct_state_result) {
5178  		struct stripe_head *sh_src
5179  			= raid5_get_active_stripe(conf, NULL, sh->sector,
5180  					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5181  					R5_GAS_NOQUIESCE);
5182  		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5183  			/* sh cannot be written until sh_src has been read.
5184  			 * so arrange for sh to be delayed a little
5185  			 */
5186  			set_bit(STRIPE_DELAYED, &sh->state);
5187  			set_bit(STRIPE_HANDLE, &sh->state);
5188  			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5189  					      &sh_src->state))
5190  				atomic_inc(&conf->preread_active_stripes);
5191  			raid5_release_stripe(sh_src);
5192  			goto finish;
5193  		}
5194  		if (sh_src)
5195  			raid5_release_stripe(sh_src);
5196  
5197  		sh->reconstruct_state = reconstruct_state_idle;
5198  		clear_bit(STRIPE_EXPANDING, &sh->state);
5199  		for (i = conf->raid_disks; i--; ) {
5200  			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5201  			set_bit(R5_LOCKED, &sh->dev[i].flags);
5202  			s.locked++;
5203  		}
5204  	}
5205  
5206  	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5207  	    !sh->reconstruct_state) {
5208  		/* Need to write out all blocks after computing parity */
5209  		sh->disks = conf->raid_disks;
5210  		stripe_set_idx(sh->sector, conf, 0, sh);
5211  		schedule_reconstruction(sh, &s, 1, 1);
5212  	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5213  		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5214  		atomic_dec(&conf->reshape_stripes);
5215  		wake_up(&conf->wait_for_reshape);
5216  		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5217  	}
5218  
5219  	if (s.expanding && s.locked == 0 &&
5220  	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5221  		handle_stripe_expansion(conf, sh);
5222  
5223  finish:
5224  	/* wait for this device to become unblocked */
5225  	if (unlikely(s.blocked_rdev)) {
5226  		if (conf->mddev->external)
5227  			md_wait_for_blocked_rdev(s.blocked_rdev,
5228  						 conf->mddev);
5229  		else
5230  			/* Internal metadata will immediately
5231  			 * be written by raid5d, so we don't
5232  			 * need to wait here.
5233  			 */
5234  			rdev_dec_pending(s.blocked_rdev,
5235  					 conf->mddev);
5236  	}
5237  
5238  	if (s.handle_bad_blocks)
5239  		for (i = disks; i--; ) {
5240  			struct md_rdev *rdev;
5241  			struct r5dev *dev = &sh->dev[i];
5242  			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5243  				/* We own a safe reference to the rdev */
5244  				rdev = conf->disks[i].rdev;
5245  				if (!rdev_set_badblocks(rdev, sh->sector,
5246  							RAID5_STRIPE_SECTORS(conf), 0))
5247  					md_error(conf->mddev, rdev);
5248  				rdev_dec_pending(rdev, conf->mddev);
5249  			}
5250  			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5251  				rdev = conf->disks[i].rdev;
5252  				rdev_clear_badblocks(rdev, sh->sector,
5253  						     RAID5_STRIPE_SECTORS(conf), 0);
5254  				rdev_dec_pending(rdev, conf->mddev);
5255  			}
5256  			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5257  				rdev = conf->disks[i].replacement;
5258  				if (!rdev)
5259  					/* rdev have been moved down */
5260  					rdev = conf->disks[i].rdev;
5261  				rdev_clear_badblocks(rdev, sh->sector,
5262  						     RAID5_STRIPE_SECTORS(conf), 0);
5263  				rdev_dec_pending(rdev, conf->mddev);
5264  			}
5265  		}
5266  
5267  	if (s.ops_request)
5268  		raid_run_ops(sh, s.ops_request);
5269  
5270  	ops_run_io(sh, &s);
5271  
5272  	if (s.dec_preread_active) {
5273  		/* We delay this until after ops_run_io so that if make_request
5274  		 * is waiting on a flush, it won't continue until the writes
5275  		 * have actually been submitted.
5276  		 */
5277  		atomic_dec(&conf->preread_active_stripes);
5278  		if (atomic_read(&conf->preread_active_stripes) <
5279  		    IO_THRESHOLD)
5280  			md_wakeup_thread(conf->mddev->thread);
5281  	}
5282  
5283  	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5284  }
5285  
raid5_activate_delayed(struct r5conf * conf)5286  static void raid5_activate_delayed(struct r5conf *conf)
5287  	__must_hold(&conf->device_lock)
5288  {
5289  	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5290  		while (!list_empty(&conf->delayed_list)) {
5291  			struct list_head *l = conf->delayed_list.next;
5292  			struct stripe_head *sh;
5293  			sh = list_entry(l, struct stripe_head, lru);
5294  			list_del_init(l);
5295  			clear_bit(STRIPE_DELAYED, &sh->state);
5296  			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5297  				atomic_inc(&conf->preread_active_stripes);
5298  			list_add_tail(&sh->lru, &conf->hold_list);
5299  			raid5_wakeup_stripe_thread(sh);
5300  		}
5301  	}
5302  }
5303  
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5304  static void activate_bit_delay(struct r5conf *conf,
5305  		struct list_head *temp_inactive_list)
5306  	__must_hold(&conf->device_lock)
5307  {
5308  	struct list_head head;
5309  	list_add(&head, &conf->bitmap_list);
5310  	list_del_init(&conf->bitmap_list);
5311  	while (!list_empty(&head)) {
5312  		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5313  		int hash;
5314  		list_del_init(&sh->lru);
5315  		atomic_inc(&sh->count);
5316  		hash = sh->hash_lock_index;
5317  		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5318  	}
5319  }
5320  
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5321  static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5322  {
5323  	struct r5conf *conf = mddev->private;
5324  	sector_t sector = bio->bi_iter.bi_sector;
5325  	unsigned int chunk_sectors;
5326  	unsigned int bio_sectors = bio_sectors(bio);
5327  
5328  	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5329  	return  chunk_sectors >=
5330  		((sector & (chunk_sectors - 1)) + bio_sectors);
5331  }
5332  
5333  /*
5334   *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5335   *  later sampled by raid5d.
5336   */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5337  static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5338  {
5339  	unsigned long flags;
5340  
5341  	spin_lock_irqsave(&conf->device_lock, flags);
5342  
5343  	bi->bi_next = conf->retry_read_aligned_list;
5344  	conf->retry_read_aligned_list = bi;
5345  
5346  	spin_unlock_irqrestore(&conf->device_lock, flags);
5347  	md_wakeup_thread(conf->mddev->thread);
5348  }
5349  
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5350  static struct bio *remove_bio_from_retry(struct r5conf *conf,
5351  					 unsigned int *offset)
5352  {
5353  	struct bio *bi;
5354  
5355  	bi = conf->retry_read_aligned;
5356  	if (bi) {
5357  		*offset = conf->retry_read_offset;
5358  		conf->retry_read_aligned = NULL;
5359  		return bi;
5360  	}
5361  	bi = conf->retry_read_aligned_list;
5362  	if(bi) {
5363  		conf->retry_read_aligned_list = bi->bi_next;
5364  		bi->bi_next = NULL;
5365  		*offset = 0;
5366  	}
5367  
5368  	return bi;
5369  }
5370  
5371  /*
5372   *  The "raid5_align_endio" should check if the read succeeded and if it
5373   *  did, call bio_endio on the original bio (having bio_put the new bio
5374   *  first).
5375   *  If the read failed..
5376   */
raid5_align_endio(struct bio * bi)5377  static void raid5_align_endio(struct bio *bi)
5378  {
5379  	struct bio *raid_bi = bi->bi_private;
5380  	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5381  	struct mddev *mddev = rdev->mddev;
5382  	struct r5conf *conf = mddev->private;
5383  	blk_status_t error = bi->bi_status;
5384  
5385  	bio_put(bi);
5386  	raid_bi->bi_next = NULL;
5387  	rdev_dec_pending(rdev, conf->mddev);
5388  
5389  	if (!error) {
5390  		bio_endio(raid_bi);
5391  		if (atomic_dec_and_test(&conf->active_aligned_reads))
5392  			wake_up(&conf->wait_for_quiescent);
5393  		return;
5394  	}
5395  
5396  	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5397  
5398  	add_bio_to_retry(raid_bi, conf);
5399  }
5400  
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5401  static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5402  {
5403  	struct r5conf *conf = mddev->private;
5404  	struct bio *align_bio;
5405  	struct md_rdev *rdev;
5406  	sector_t sector, end_sector;
5407  	int dd_idx;
5408  	bool did_inc;
5409  
5410  	if (!in_chunk_boundary(mddev, raid_bio)) {
5411  		pr_debug("%s: non aligned\n", __func__);
5412  		return 0;
5413  	}
5414  
5415  	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5416  				      &dd_idx, NULL);
5417  	end_sector = sector + bio_sectors(raid_bio);
5418  
5419  	if (r5c_big_stripe_cached(conf, sector))
5420  		return 0;
5421  
5422  	rdev = conf->disks[dd_idx].replacement;
5423  	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5424  	    rdev->recovery_offset < end_sector) {
5425  		rdev = conf->disks[dd_idx].rdev;
5426  		if (!rdev)
5427  			return 0;
5428  		if (test_bit(Faulty, &rdev->flags) ||
5429  		    !(test_bit(In_sync, &rdev->flags) ||
5430  		      rdev->recovery_offset >= end_sector))
5431  			return 0;
5432  	}
5433  
5434  	atomic_inc(&rdev->nr_pending);
5435  
5436  	if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5437  		rdev_dec_pending(rdev, mddev);
5438  		return 0;
5439  	}
5440  
5441  	md_account_bio(mddev, &raid_bio);
5442  	raid_bio->bi_next = (void *)rdev;
5443  
5444  	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5445  				    &mddev->bio_set);
5446  	align_bio->bi_end_io = raid5_align_endio;
5447  	align_bio->bi_private = raid_bio;
5448  	align_bio->bi_iter.bi_sector = sector;
5449  
5450  	/* No reshape active, so we can trust rdev->data_offset */
5451  	align_bio->bi_iter.bi_sector += rdev->data_offset;
5452  
5453  	did_inc = false;
5454  	if (conf->quiesce == 0) {
5455  		atomic_inc(&conf->active_aligned_reads);
5456  		did_inc = true;
5457  	}
5458  	/* need a memory barrier to detect the race with raid5_quiesce() */
5459  	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5460  		/* quiesce is in progress, so we need to undo io activation and wait
5461  		 * for it to finish
5462  		 */
5463  		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5464  			wake_up(&conf->wait_for_quiescent);
5465  		spin_lock_irq(&conf->device_lock);
5466  		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5467  				    conf->device_lock);
5468  		atomic_inc(&conf->active_aligned_reads);
5469  		spin_unlock_irq(&conf->device_lock);
5470  	}
5471  
5472  	mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5473  	submit_bio_noacct(align_bio);
5474  	return 1;
5475  }
5476  
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5477  static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5478  {
5479  	struct bio *split;
5480  	sector_t sector = raid_bio->bi_iter.bi_sector;
5481  	unsigned chunk_sects = mddev->chunk_sectors;
5482  	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5483  
5484  	if (sectors < bio_sectors(raid_bio)) {
5485  		struct r5conf *conf = mddev->private;
5486  		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5487  		bio_chain(split, raid_bio);
5488  		submit_bio_noacct(raid_bio);
5489  		raid_bio = split;
5490  	}
5491  
5492  	if (!raid5_read_one_chunk(mddev, raid_bio))
5493  		return raid_bio;
5494  
5495  	return NULL;
5496  }
5497  
5498  /* __get_priority_stripe - get the next stripe to process
5499   *
5500   * Full stripe writes are allowed to pass preread active stripes up until
5501   * the bypass_threshold is exceeded.  In general the bypass_count
5502   * increments when the handle_list is handled before the hold_list; however, it
5503   * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5504   * stripe with in flight i/o.  The bypass_count will be reset when the
5505   * head of the hold_list has changed, i.e. the head was promoted to the
5506   * handle_list.
5507   */
__get_priority_stripe(struct r5conf * conf,int group)5508  static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5509  	__must_hold(&conf->device_lock)
5510  {
5511  	struct stripe_head *sh, *tmp;
5512  	struct list_head *handle_list = NULL;
5513  	struct r5worker_group *wg;
5514  	bool second_try = !r5c_is_writeback(conf->log) &&
5515  		!r5l_log_disk_error(conf);
5516  	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5517  		r5l_log_disk_error(conf);
5518  
5519  again:
5520  	wg = NULL;
5521  	sh = NULL;
5522  	if (conf->worker_cnt_per_group == 0) {
5523  		handle_list = try_loprio ? &conf->loprio_list :
5524  					&conf->handle_list;
5525  	} else if (group != ANY_GROUP) {
5526  		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5527  				&conf->worker_groups[group].handle_list;
5528  		wg = &conf->worker_groups[group];
5529  	} else {
5530  		int i;
5531  		for (i = 0; i < conf->group_cnt; i++) {
5532  			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5533  				&conf->worker_groups[i].handle_list;
5534  			wg = &conf->worker_groups[i];
5535  			if (!list_empty(handle_list))
5536  				break;
5537  		}
5538  	}
5539  
5540  	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5541  		  __func__,
5542  		  list_empty(handle_list) ? "empty" : "busy",
5543  		  list_empty(&conf->hold_list) ? "empty" : "busy",
5544  		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5545  
5546  	if (!list_empty(handle_list)) {
5547  		sh = list_entry(handle_list->next, typeof(*sh), lru);
5548  
5549  		if (list_empty(&conf->hold_list))
5550  			conf->bypass_count = 0;
5551  		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5552  			if (conf->hold_list.next == conf->last_hold)
5553  				conf->bypass_count++;
5554  			else {
5555  				conf->last_hold = conf->hold_list.next;
5556  				conf->bypass_count -= conf->bypass_threshold;
5557  				if (conf->bypass_count < 0)
5558  					conf->bypass_count = 0;
5559  			}
5560  		}
5561  	} else if (!list_empty(&conf->hold_list) &&
5562  		   ((conf->bypass_threshold &&
5563  		     conf->bypass_count > conf->bypass_threshold) ||
5564  		    atomic_read(&conf->pending_full_writes) == 0)) {
5565  
5566  		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5567  			if (conf->worker_cnt_per_group == 0 ||
5568  			    group == ANY_GROUP ||
5569  			    !cpu_online(tmp->cpu) ||
5570  			    cpu_to_group(tmp->cpu) == group) {
5571  				sh = tmp;
5572  				break;
5573  			}
5574  		}
5575  
5576  		if (sh) {
5577  			conf->bypass_count -= conf->bypass_threshold;
5578  			if (conf->bypass_count < 0)
5579  				conf->bypass_count = 0;
5580  		}
5581  		wg = NULL;
5582  	}
5583  
5584  	if (!sh) {
5585  		if (second_try)
5586  			return NULL;
5587  		second_try = true;
5588  		try_loprio = !try_loprio;
5589  		goto again;
5590  	}
5591  
5592  	if (wg) {
5593  		wg->stripes_cnt--;
5594  		sh->group = NULL;
5595  	}
5596  	list_del_init(&sh->lru);
5597  	BUG_ON(atomic_inc_return(&sh->count) != 1);
5598  	return sh;
5599  }
5600  
5601  struct raid5_plug_cb {
5602  	struct blk_plug_cb	cb;
5603  	struct list_head	list;
5604  	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5605  };
5606  
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5607  static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5608  {
5609  	struct raid5_plug_cb *cb = container_of(
5610  		blk_cb, struct raid5_plug_cb, cb);
5611  	struct stripe_head *sh;
5612  	struct mddev *mddev = cb->cb.data;
5613  	struct r5conf *conf = mddev->private;
5614  	int cnt = 0;
5615  	int hash;
5616  
5617  	if (cb->list.next && !list_empty(&cb->list)) {
5618  		spin_lock_irq(&conf->device_lock);
5619  		while (!list_empty(&cb->list)) {
5620  			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5621  			list_del_init(&sh->lru);
5622  			/*
5623  			 * avoid race release_stripe_plug() sees
5624  			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5625  			 * is still in our list
5626  			 */
5627  			smp_mb__before_atomic();
5628  			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5629  			/*
5630  			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5631  			 * case, the count is always > 1 here
5632  			 */
5633  			hash = sh->hash_lock_index;
5634  			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5635  			cnt++;
5636  		}
5637  		spin_unlock_irq(&conf->device_lock);
5638  	}
5639  	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5640  				     NR_STRIPE_HASH_LOCKS);
5641  	if (!mddev_is_dm(mddev))
5642  		trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5643  	kfree(cb);
5644  }
5645  
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5646  static void release_stripe_plug(struct mddev *mddev,
5647  				struct stripe_head *sh)
5648  {
5649  	struct blk_plug_cb *blk_cb = blk_check_plugged(
5650  		raid5_unplug, mddev,
5651  		sizeof(struct raid5_plug_cb));
5652  	struct raid5_plug_cb *cb;
5653  
5654  	if (!blk_cb) {
5655  		raid5_release_stripe(sh);
5656  		return;
5657  	}
5658  
5659  	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5660  
5661  	if (cb->list.next == NULL) {
5662  		int i;
5663  		INIT_LIST_HEAD(&cb->list);
5664  		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5665  			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5666  	}
5667  
5668  	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5669  		list_add_tail(&sh->lru, &cb->list);
5670  	else
5671  		raid5_release_stripe(sh);
5672  }
5673  
make_discard_request(struct mddev * mddev,struct bio * bi)5674  static void make_discard_request(struct mddev *mddev, struct bio *bi)
5675  {
5676  	struct r5conf *conf = mddev->private;
5677  	sector_t logical_sector, last_sector;
5678  	struct stripe_head *sh;
5679  	int stripe_sectors;
5680  
5681  	/* We need to handle this when io_uring supports discard/trim */
5682  	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5683  		return;
5684  
5685  	if (mddev->reshape_position != MaxSector)
5686  		/* Skip discard while reshape is happening */
5687  		return;
5688  
5689  	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5690  	last_sector = bio_end_sector(bi);
5691  
5692  	bi->bi_next = NULL;
5693  
5694  	stripe_sectors = conf->chunk_sectors *
5695  		(conf->raid_disks - conf->max_degraded);
5696  	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5697  					       stripe_sectors);
5698  	sector_div(last_sector, stripe_sectors);
5699  
5700  	logical_sector *= conf->chunk_sectors;
5701  	last_sector *= conf->chunk_sectors;
5702  
5703  	for (; logical_sector < last_sector;
5704  	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5705  		DEFINE_WAIT(w);
5706  		int d;
5707  	again:
5708  		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5709  		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5710  		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5711  			raid5_release_stripe(sh);
5712  			wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5713  				    TASK_UNINTERRUPTIBLE);
5714  			goto again;
5715  		}
5716  		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5717  		spin_lock_irq(&sh->stripe_lock);
5718  		for (d = 0; d < conf->raid_disks; d++) {
5719  			if (d == sh->pd_idx || d == sh->qd_idx)
5720  				continue;
5721  			if (sh->dev[d].towrite || sh->dev[d].toread) {
5722  				set_bit(R5_Overlap, &sh->dev[d].flags);
5723  				spin_unlock_irq(&sh->stripe_lock);
5724  				raid5_release_stripe(sh);
5725  				wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5726  					    TASK_UNINTERRUPTIBLE);
5727  				goto again;
5728  			}
5729  		}
5730  		set_bit(STRIPE_DISCARD, &sh->state);
5731  		sh->overwrite_disks = 0;
5732  		for (d = 0; d < conf->raid_disks; d++) {
5733  			if (d == sh->pd_idx || d == sh->qd_idx)
5734  				continue;
5735  			sh->dev[d].towrite = bi;
5736  			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5737  			bio_inc_remaining(bi);
5738  			md_write_inc(mddev, bi);
5739  			sh->overwrite_disks++;
5740  		}
5741  		spin_unlock_irq(&sh->stripe_lock);
5742  		if (conf->mddev->bitmap) {
5743  			sh->bm_seq = conf->seq_flush + 1;
5744  			set_bit(STRIPE_BIT_DELAY, &sh->state);
5745  		}
5746  
5747  		set_bit(STRIPE_HANDLE, &sh->state);
5748  		clear_bit(STRIPE_DELAYED, &sh->state);
5749  		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5750  			atomic_inc(&conf->preread_active_stripes);
5751  		release_stripe_plug(mddev, sh);
5752  	}
5753  
5754  	bio_endio(bi);
5755  }
5756  
ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5757  static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5758  			     sector_t reshape_sector)
5759  {
5760  	return mddev->reshape_backwards ? sector < reshape_sector :
5761  					  sector >= reshape_sector;
5762  }
5763  
range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5764  static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5765  				   sector_t max, sector_t reshape_sector)
5766  {
5767  	return mddev->reshape_backwards ? max < reshape_sector :
5768  					  min >= reshape_sector;
5769  }
5770  
stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5771  static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5772  				    struct stripe_head *sh)
5773  {
5774  	sector_t max_sector = 0, min_sector = MaxSector;
5775  	bool ret = false;
5776  	int dd_idx;
5777  
5778  	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5779  		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5780  			continue;
5781  
5782  		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5783  		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5784  	}
5785  
5786  	spin_lock_irq(&conf->device_lock);
5787  
5788  	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5789  				     conf->reshape_progress))
5790  		/* mismatch, need to try again */
5791  		ret = true;
5792  
5793  	spin_unlock_irq(&conf->device_lock);
5794  
5795  	return ret;
5796  }
5797  
add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5798  static int add_all_stripe_bios(struct r5conf *conf,
5799  		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5800  		struct bio *bi, int forwrite, int previous)
5801  {
5802  	int dd_idx;
5803  
5804  	spin_lock_irq(&sh->stripe_lock);
5805  
5806  	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5807  		struct r5dev *dev = &sh->dev[dd_idx];
5808  
5809  		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5810  			continue;
5811  
5812  		if (dev->sector < ctx->first_sector ||
5813  		    dev->sector >= ctx->last_sector)
5814  			continue;
5815  
5816  		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5817  			set_bit(R5_Overlap, &dev->flags);
5818  			spin_unlock_irq(&sh->stripe_lock);
5819  			raid5_release_stripe(sh);
5820  			/* release batch_last before wait to avoid risk of deadlock */
5821  			if (ctx->batch_last) {
5822  				raid5_release_stripe(ctx->batch_last);
5823  				ctx->batch_last = NULL;
5824  			}
5825  			md_wakeup_thread(conf->mddev->thread);
5826  			wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5827  			return 0;
5828  		}
5829  	}
5830  
5831  	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5832  		struct r5dev *dev = &sh->dev[dd_idx];
5833  
5834  		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5835  			continue;
5836  
5837  		if (dev->sector < ctx->first_sector ||
5838  		    dev->sector >= ctx->last_sector)
5839  			continue;
5840  
5841  		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5842  		clear_bit((dev->sector - ctx->first_sector) >>
5843  			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5844  	}
5845  
5846  	spin_unlock_irq(&sh->stripe_lock);
5847  	return 1;
5848  }
5849  
5850  enum reshape_loc {
5851  	LOC_NO_RESHAPE,
5852  	LOC_AHEAD_OF_RESHAPE,
5853  	LOC_INSIDE_RESHAPE,
5854  	LOC_BEHIND_RESHAPE,
5855  };
5856  
get_reshape_loc(struct mddev * mddev,struct r5conf * conf,sector_t logical_sector)5857  static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5858  		struct r5conf *conf, sector_t logical_sector)
5859  {
5860  	sector_t reshape_progress, reshape_safe;
5861  
5862  	if (likely(conf->reshape_progress == MaxSector))
5863  		return LOC_NO_RESHAPE;
5864  	/*
5865  	 * Spinlock is needed as reshape_progress may be
5866  	 * 64bit on a 32bit platform, and so it might be
5867  	 * possible to see a half-updated value
5868  	 * Of course reshape_progress could change after
5869  	 * the lock is dropped, so once we get a reference
5870  	 * to the stripe that we think it is, we will have
5871  	 * to check again.
5872  	 */
5873  	spin_lock_irq(&conf->device_lock);
5874  	reshape_progress = conf->reshape_progress;
5875  	reshape_safe = conf->reshape_safe;
5876  	spin_unlock_irq(&conf->device_lock);
5877  	if (reshape_progress == MaxSector)
5878  		return LOC_NO_RESHAPE;
5879  	if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5880  		return LOC_AHEAD_OF_RESHAPE;
5881  	if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5882  		return LOC_INSIDE_RESHAPE;
5883  	return LOC_BEHIND_RESHAPE;
5884  }
5885  
raid5_bitmap_sector(struct mddev * mddev,sector_t * offset,unsigned long * sectors)5886  static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5887  				unsigned long *sectors)
5888  {
5889  	struct r5conf *conf = mddev->private;
5890  	sector_t start = *offset;
5891  	sector_t end = start + *sectors;
5892  	sector_t prev_start = start;
5893  	sector_t prev_end = end;
5894  	int sectors_per_chunk;
5895  	enum reshape_loc loc;
5896  	int dd_idx;
5897  
5898  	sectors_per_chunk = conf->chunk_sectors *
5899  		(conf->raid_disks - conf->max_degraded);
5900  	start = round_down(start, sectors_per_chunk);
5901  	end = round_up(end, sectors_per_chunk);
5902  
5903  	start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5904  	end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5905  
5906  	/*
5907  	 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5908  	 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5909  	 */
5910  	loc = get_reshape_loc(mddev, conf, prev_start);
5911  	if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5912  		*offset = start;
5913  		*sectors = end - start;
5914  		return;
5915  	}
5916  
5917  	sectors_per_chunk = conf->prev_chunk_sectors *
5918  		(conf->previous_raid_disks - conf->max_degraded);
5919  	prev_start = round_down(prev_start, sectors_per_chunk);
5920  	prev_end = round_down(prev_end, sectors_per_chunk);
5921  
5922  	prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5923  	prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5924  
5925  	/*
5926  	 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5927  	 * is handled in make_stripe_request(), we can't know this here hence
5928  	 * we set bits for both.
5929  	 */
5930  	*offset = min(start, prev_start);
5931  	*sectors = max(end, prev_end) - *offset;
5932  }
5933  
make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5934  static enum stripe_result make_stripe_request(struct mddev *mddev,
5935  		struct r5conf *conf, struct stripe_request_ctx *ctx,
5936  		sector_t logical_sector, struct bio *bi)
5937  {
5938  	const int rw = bio_data_dir(bi);
5939  	enum stripe_result ret;
5940  	struct stripe_head *sh;
5941  	enum reshape_loc loc;
5942  	sector_t new_sector;
5943  	int previous = 0, flags = 0;
5944  	int seq, dd_idx;
5945  
5946  	seq = read_seqcount_begin(&conf->gen_lock);
5947  	loc = get_reshape_loc(mddev, conf, logical_sector);
5948  	if (loc == LOC_INSIDE_RESHAPE) {
5949  		ret = STRIPE_SCHEDULE_AND_RETRY;
5950  		goto out;
5951  	}
5952  	if (loc == LOC_AHEAD_OF_RESHAPE)
5953  		previous = 1;
5954  
5955  	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956  					  &dd_idx, NULL);
5957  	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958  		 new_sector, logical_sector);
5959  
5960  	if (previous)
5961  		flags |= R5_GAS_PREVIOUS;
5962  	if (bi->bi_opf & REQ_RAHEAD)
5963  		flags |= R5_GAS_NOBLOCK;
5964  	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965  	if (unlikely(!sh)) {
5966  		/* cannot get stripe, just give-up */
5967  		bi->bi_status = BLK_STS_IOERR;
5968  		return STRIPE_FAIL;
5969  	}
5970  
5971  	if (unlikely(previous) &&
5972  	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5973  		/*
5974  		 * Expansion moved on while waiting for a stripe.
5975  		 * Expansion could still move past after this
5976  		 * test, but as we are holding a reference to
5977  		 * 'sh', we know that if that happens,
5978  		 *  STRIPE_EXPANDING will get set and the expansion
5979  		 * won't proceed until we finish with the stripe.
5980  		 */
5981  		ret = STRIPE_SCHEDULE_AND_RETRY;
5982  		goto out_release;
5983  	}
5984  
5985  	if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986  		/* Might have got the wrong stripe_head by accident */
5987  		ret = STRIPE_RETRY;
5988  		goto out_release;
5989  	}
5990  
5991  	if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5992  		md_wakeup_thread(mddev->thread);
5993  		ret = STRIPE_SCHEDULE_AND_RETRY;
5994  		goto out_release;
5995  	}
5996  
5997  	if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5998  		ret = STRIPE_RETRY;
5999  		goto out;
6000  	}
6001  
6002  	if (stripe_can_batch(sh)) {
6003  		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004  		if (ctx->batch_last)
6005  			raid5_release_stripe(ctx->batch_last);
6006  		atomic_inc(&sh->count);
6007  		ctx->batch_last = sh;
6008  	}
6009  
6010  	if (ctx->do_flush) {
6011  		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012  		/* we only need flush for one stripe */
6013  		ctx->do_flush = false;
6014  	}
6015  
6016  	set_bit(STRIPE_HANDLE, &sh->state);
6017  	clear_bit(STRIPE_DELAYED, &sh->state);
6018  	if ((!sh->batch_head || sh == sh->batch_head) &&
6019  	    (bi->bi_opf & REQ_SYNC) &&
6020  	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021  		atomic_inc(&conf->preread_active_stripes);
6022  
6023  	release_stripe_plug(mddev, sh);
6024  	return STRIPE_SUCCESS;
6025  
6026  out_release:
6027  	raid5_release_stripe(sh);
6028  out:
6029  	if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6030  		bi->bi_status = BLK_STS_RESOURCE;
6031  		ret = STRIPE_WAIT_RESHAPE;
6032  		pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6033  	}
6034  	return ret;
6035  }
6036  
6037  /*
6038   * If the bio covers multiple data disks, find sector within the bio that has
6039   * the lowest chunk offset in the first chunk.
6040   */
raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6041  static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6042  					      struct bio *bi)
6043  {
6044  	int sectors_per_chunk = conf->chunk_sectors;
6045  	int raid_disks = conf->raid_disks;
6046  	int dd_idx;
6047  	struct stripe_head sh;
6048  	unsigned int chunk_offset;
6049  	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6050  	sector_t sector;
6051  
6052  	/* We pass in fake stripe_head to get back parity disk numbers */
6053  	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6054  	chunk_offset = sector_div(sector, sectors_per_chunk);
6055  	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6056  		return r_sector;
6057  	/*
6058  	 * Bio crosses to the next data disk. Check whether it's in the same
6059  	 * chunk.
6060  	 */
6061  	dd_idx++;
6062  	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6063  		dd_idx++;
6064  	if (dd_idx >= raid_disks)
6065  		return r_sector;
6066  	return r_sector + sectors_per_chunk - chunk_offset;
6067  }
6068  
raid5_make_request(struct mddev * mddev,struct bio * bi)6069  static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6070  {
6071  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6072  	bool on_wq;
6073  	struct r5conf *conf = mddev->private;
6074  	sector_t logical_sector;
6075  	struct stripe_request_ctx ctx = {};
6076  	const int rw = bio_data_dir(bi);
6077  	enum stripe_result res;
6078  	int s, stripe_cnt;
6079  
6080  	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6081  		int ret = log_handle_flush_request(conf, bi);
6082  
6083  		if (ret == 0)
6084  			return true;
6085  		if (ret == -ENODEV) {
6086  			if (md_flush_request(mddev, bi))
6087  				return true;
6088  		}
6089  		/* ret == -EAGAIN, fallback */
6090  		/*
6091  		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6092  		 * we need to flush journal device
6093  		 */
6094  		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6095  	}
6096  
6097  	md_write_start(mddev, bi);
6098  	/*
6099  	 * If array is degraded, better not do chunk aligned read because
6100  	 * later we might have to read it again in order to reconstruct
6101  	 * data on failed drives.
6102  	 */
6103  	if (rw == READ && mddev->degraded == 0 &&
6104  	    mddev->reshape_position == MaxSector) {
6105  		bi = chunk_aligned_read(mddev, bi);
6106  		if (!bi)
6107  			return true;
6108  	}
6109  
6110  	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6111  		make_discard_request(mddev, bi);
6112  		md_write_end(mddev);
6113  		return true;
6114  	}
6115  
6116  	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6117  	ctx.first_sector = logical_sector;
6118  	ctx.last_sector = bio_end_sector(bi);
6119  	bi->bi_next = NULL;
6120  
6121  	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6122  					   RAID5_STRIPE_SECTORS(conf));
6123  	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6124  
6125  	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6126  		 bi->bi_iter.bi_sector, ctx.last_sector);
6127  
6128  	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6129  	if ((bi->bi_opf & REQ_NOWAIT) &&
6130  	    get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6131  		bio_wouldblock_error(bi);
6132  		if (rw == WRITE)
6133  			md_write_end(mddev);
6134  		return true;
6135  	}
6136  	md_account_bio(mddev, &bi);
6137  
6138  	/*
6139  	 * Lets start with the stripe with the lowest chunk offset in the first
6140  	 * chunk. That has the best chances of creating IOs adjacent to
6141  	 * previous IOs in case of sequential IO and thus creates the most
6142  	 * sequential IO pattern. We don't bother with the optimization when
6143  	 * reshaping as the performance benefit is not worth the complexity.
6144  	 */
6145  	if (likely(conf->reshape_progress == MaxSector)) {
6146  		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6147  		on_wq = false;
6148  	} else {
6149  		add_wait_queue(&conf->wait_for_reshape, &wait);
6150  		on_wq = true;
6151  	}
6152  	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6153  
6154  	while (1) {
6155  		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6156  					  bi);
6157  		if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6158  			break;
6159  
6160  		if (res == STRIPE_RETRY)
6161  			continue;
6162  
6163  		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6164  			WARN_ON_ONCE(!on_wq);
6165  			/*
6166  			 * Must release the reference to batch_last before
6167  			 * scheduling and waiting for work to be done,
6168  			 * otherwise the batch_last stripe head could prevent
6169  			 * raid5_activate_delayed() from making progress
6170  			 * and thus deadlocking.
6171  			 */
6172  			if (ctx.batch_last) {
6173  				raid5_release_stripe(ctx.batch_last);
6174  				ctx.batch_last = NULL;
6175  			}
6176  
6177  			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6178  				   MAX_SCHEDULE_TIMEOUT);
6179  			continue;
6180  		}
6181  
6182  		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6183  		if (s == stripe_cnt)
6184  			break;
6185  
6186  		logical_sector = ctx.first_sector +
6187  			(s << RAID5_STRIPE_SHIFT(conf));
6188  	}
6189  	if (unlikely(on_wq))
6190  		remove_wait_queue(&conf->wait_for_reshape, &wait);
6191  
6192  	if (ctx.batch_last)
6193  		raid5_release_stripe(ctx.batch_last);
6194  
6195  	if (rw == WRITE)
6196  		md_write_end(mddev);
6197  	if (res == STRIPE_WAIT_RESHAPE) {
6198  		md_free_cloned_bio(bi);
6199  		return false;
6200  	}
6201  
6202  	bio_endio(bi);
6203  	return true;
6204  }
6205  
6206  static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6207  
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6208  static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6209  {
6210  	/* reshaping is quite different to recovery/resync so it is
6211  	 * handled quite separately ... here.
6212  	 *
6213  	 * On each call to sync_request, we gather one chunk worth of
6214  	 * destination stripes and flag them as expanding.
6215  	 * Then we find all the source stripes and request reads.
6216  	 * As the reads complete, handle_stripe will copy the data
6217  	 * into the destination stripe and release that stripe.
6218  	 */
6219  	struct r5conf *conf = mddev->private;
6220  	struct stripe_head *sh;
6221  	struct md_rdev *rdev;
6222  	sector_t first_sector, last_sector;
6223  	int raid_disks = conf->previous_raid_disks;
6224  	int data_disks = raid_disks - conf->max_degraded;
6225  	int new_data_disks = conf->raid_disks - conf->max_degraded;
6226  	int i;
6227  	int dd_idx;
6228  	sector_t writepos, readpos, safepos;
6229  	sector_t stripe_addr;
6230  	int reshape_sectors;
6231  	struct list_head stripes;
6232  	sector_t retn;
6233  
6234  	if (sector_nr == 0) {
6235  		/* If restarting in the middle, skip the initial sectors */
6236  		if (mddev->reshape_backwards &&
6237  		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6238  			sector_nr = raid5_size(mddev, 0, 0)
6239  				- conf->reshape_progress;
6240  		} else if (mddev->reshape_backwards &&
6241  			   conf->reshape_progress == MaxSector) {
6242  			/* shouldn't happen, but just in case, finish up.*/
6243  			sector_nr = MaxSector;
6244  		} else if (!mddev->reshape_backwards &&
6245  			   conf->reshape_progress > 0)
6246  			sector_nr = conf->reshape_progress;
6247  		sector_div(sector_nr, new_data_disks);
6248  		if (sector_nr) {
6249  			mddev->curr_resync_completed = sector_nr;
6250  			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6251  			*skipped = 1;
6252  			retn = sector_nr;
6253  			goto finish;
6254  		}
6255  	}
6256  
6257  	/* We need to process a full chunk at a time.
6258  	 * If old and new chunk sizes differ, we need to process the
6259  	 * largest of these
6260  	 */
6261  
6262  	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6263  
6264  	/* We update the metadata at least every 10 seconds, or when
6265  	 * the data about to be copied would over-write the source of
6266  	 * the data at the front of the range.  i.e. one new_stripe
6267  	 * along from reshape_progress new_maps to after where
6268  	 * reshape_safe old_maps to
6269  	 */
6270  	writepos = conf->reshape_progress;
6271  	sector_div(writepos, new_data_disks);
6272  	readpos = conf->reshape_progress;
6273  	sector_div(readpos, data_disks);
6274  	safepos = conf->reshape_safe;
6275  	sector_div(safepos, data_disks);
6276  	if (mddev->reshape_backwards) {
6277  		if (WARN_ON(writepos < reshape_sectors))
6278  			return MaxSector;
6279  
6280  		writepos -= reshape_sectors;
6281  		readpos += reshape_sectors;
6282  		safepos += reshape_sectors;
6283  	} else {
6284  		writepos += reshape_sectors;
6285  		/* readpos and safepos are worst-case calculations.
6286  		 * A negative number is overly pessimistic, and causes
6287  		 * obvious problems for unsigned storage.  So clip to 0.
6288  		 */
6289  		readpos -= min_t(sector_t, reshape_sectors, readpos);
6290  		safepos -= min_t(sector_t, reshape_sectors, safepos);
6291  	}
6292  
6293  	/* Having calculated the 'writepos' possibly use it
6294  	 * to set 'stripe_addr' which is where we will write to.
6295  	 */
6296  	if (mddev->reshape_backwards) {
6297  		if (WARN_ON(conf->reshape_progress == 0))
6298  			return MaxSector;
6299  
6300  		stripe_addr = writepos;
6301  		if (WARN_ON((mddev->dev_sectors &
6302  		    ~((sector_t)reshape_sectors - 1)) -
6303  		    reshape_sectors - stripe_addr != sector_nr))
6304  			return MaxSector;
6305  	} else {
6306  		if (WARN_ON(writepos != sector_nr + reshape_sectors))
6307  			return MaxSector;
6308  
6309  		stripe_addr = sector_nr;
6310  	}
6311  
6312  	/* 'writepos' is the most advanced device address we might write.
6313  	 * 'readpos' is the least advanced device address we might read.
6314  	 * 'safepos' is the least address recorded in the metadata as having
6315  	 *     been reshaped.
6316  	 * If there is a min_offset_diff, these are adjusted either by
6317  	 * increasing the safepos/readpos if diff is negative, or
6318  	 * increasing writepos if diff is positive.
6319  	 * If 'readpos' is then behind 'writepos', there is no way that we can
6320  	 * ensure safety in the face of a crash - that must be done by userspace
6321  	 * making a backup of the data.  So in that case there is no particular
6322  	 * rush to update metadata.
6323  	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6324  	 * update the metadata to advance 'safepos' to match 'readpos' so that
6325  	 * we can be safe in the event of a crash.
6326  	 * So we insist on updating metadata if safepos is behind writepos and
6327  	 * readpos is beyond writepos.
6328  	 * In any case, update the metadata every 10 seconds.
6329  	 * Maybe that number should be configurable, but I'm not sure it is
6330  	 * worth it.... maybe it could be a multiple of safemode_delay???
6331  	 */
6332  	if (conf->min_offset_diff < 0) {
6333  		safepos += -conf->min_offset_diff;
6334  		readpos += -conf->min_offset_diff;
6335  	} else
6336  		writepos += conf->min_offset_diff;
6337  
6338  	if ((mddev->reshape_backwards
6339  	     ? (safepos > writepos && readpos < writepos)
6340  	     : (safepos < writepos && readpos > writepos)) ||
6341  	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6342  		/* Cannot proceed until we've updated the superblock... */
6343  		wait_event(conf->wait_for_reshape,
6344  			   atomic_read(&conf->reshape_stripes)==0
6345  			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6346  		if (atomic_read(&conf->reshape_stripes) != 0)
6347  			return 0;
6348  		mddev->reshape_position = conf->reshape_progress;
6349  		mddev->curr_resync_completed = sector_nr;
6350  		if (!mddev->reshape_backwards)
6351  			/* Can update recovery_offset */
6352  			rdev_for_each(rdev, mddev)
6353  				if (rdev->raid_disk >= 0 &&
6354  				    !test_bit(Journal, &rdev->flags) &&
6355  				    !test_bit(In_sync, &rdev->flags) &&
6356  				    rdev->recovery_offset < sector_nr)
6357  					rdev->recovery_offset = sector_nr;
6358  
6359  		conf->reshape_checkpoint = jiffies;
6360  		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6361  		md_wakeup_thread(mddev->thread);
6362  		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6363  			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6364  		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6365  			return 0;
6366  		spin_lock_irq(&conf->device_lock);
6367  		conf->reshape_safe = mddev->reshape_position;
6368  		spin_unlock_irq(&conf->device_lock);
6369  		wake_up(&conf->wait_for_reshape);
6370  		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6371  	}
6372  
6373  	INIT_LIST_HEAD(&stripes);
6374  	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6375  		int j;
6376  		int skipped_disk = 0;
6377  		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6378  					     R5_GAS_NOQUIESCE);
6379  		set_bit(STRIPE_EXPANDING, &sh->state);
6380  		atomic_inc(&conf->reshape_stripes);
6381  		/* If any of this stripe is beyond the end of the old
6382  		 * array, then we need to zero those blocks
6383  		 */
6384  		for (j=sh->disks; j--;) {
6385  			sector_t s;
6386  			if (j == sh->pd_idx)
6387  				continue;
6388  			if (conf->level == 6 &&
6389  			    j == sh->qd_idx)
6390  				continue;
6391  			s = raid5_compute_blocknr(sh, j, 0);
6392  			if (s < raid5_size(mddev, 0, 0)) {
6393  				skipped_disk = 1;
6394  				continue;
6395  			}
6396  			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6397  			set_bit(R5_Expanded, &sh->dev[j].flags);
6398  			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6399  		}
6400  		if (!skipped_disk) {
6401  			set_bit(STRIPE_EXPAND_READY, &sh->state);
6402  			set_bit(STRIPE_HANDLE, &sh->state);
6403  		}
6404  		list_add(&sh->lru, &stripes);
6405  	}
6406  	spin_lock_irq(&conf->device_lock);
6407  	if (mddev->reshape_backwards)
6408  		conf->reshape_progress -= reshape_sectors * new_data_disks;
6409  	else
6410  		conf->reshape_progress += reshape_sectors * new_data_disks;
6411  	spin_unlock_irq(&conf->device_lock);
6412  	/* Ok, those stripe are ready. We can start scheduling
6413  	 * reads on the source stripes.
6414  	 * The source stripes are determined by mapping the first and last
6415  	 * block on the destination stripes.
6416  	 */
6417  	first_sector =
6418  		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6419  				     1, &dd_idx, NULL);
6420  	last_sector =
6421  		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6422  					    * new_data_disks - 1),
6423  				     1, &dd_idx, NULL);
6424  	if (last_sector >= mddev->dev_sectors)
6425  		last_sector = mddev->dev_sectors - 1;
6426  	while (first_sector <= last_sector) {
6427  		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6428  				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6429  		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6430  		set_bit(STRIPE_HANDLE, &sh->state);
6431  		raid5_release_stripe(sh);
6432  		first_sector += RAID5_STRIPE_SECTORS(conf);
6433  	}
6434  	/* Now that the sources are clearly marked, we can release
6435  	 * the destination stripes
6436  	 */
6437  	while (!list_empty(&stripes)) {
6438  		sh = list_entry(stripes.next, struct stripe_head, lru);
6439  		list_del_init(&sh->lru);
6440  		raid5_release_stripe(sh);
6441  	}
6442  	/* If this takes us to the resync_max point where we have to pause,
6443  	 * then we need to write out the superblock.
6444  	 */
6445  	sector_nr += reshape_sectors;
6446  	retn = reshape_sectors;
6447  finish:
6448  	if (mddev->curr_resync_completed > mddev->resync_max ||
6449  	    (sector_nr - mddev->curr_resync_completed) * 2
6450  	    >= mddev->resync_max - mddev->curr_resync_completed) {
6451  		/* Cannot proceed until we've updated the superblock... */
6452  		wait_event(conf->wait_for_reshape,
6453  			   atomic_read(&conf->reshape_stripes) == 0
6454  			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6455  		if (atomic_read(&conf->reshape_stripes) != 0)
6456  			goto ret;
6457  		mddev->reshape_position = conf->reshape_progress;
6458  		mddev->curr_resync_completed = sector_nr;
6459  		if (!mddev->reshape_backwards)
6460  			/* Can update recovery_offset */
6461  			rdev_for_each(rdev, mddev)
6462  				if (rdev->raid_disk >= 0 &&
6463  				    !test_bit(Journal, &rdev->flags) &&
6464  				    !test_bit(In_sync, &rdev->flags) &&
6465  				    rdev->recovery_offset < sector_nr)
6466  					rdev->recovery_offset = sector_nr;
6467  		conf->reshape_checkpoint = jiffies;
6468  		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6469  		md_wakeup_thread(mddev->thread);
6470  		wait_event(mddev->sb_wait,
6471  			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6472  			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6473  		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6474  			goto ret;
6475  		spin_lock_irq(&conf->device_lock);
6476  		conf->reshape_safe = mddev->reshape_position;
6477  		spin_unlock_irq(&conf->device_lock);
6478  		wake_up(&conf->wait_for_reshape);
6479  		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6480  	}
6481  ret:
6482  	return retn;
6483  }
6484  
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)6485  static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6486  					  sector_t max_sector, int *skipped)
6487  {
6488  	struct r5conf *conf = mddev->private;
6489  	struct stripe_head *sh;
6490  	sector_t sync_blocks;
6491  	bool still_degraded = false;
6492  	int i;
6493  
6494  	if (sector_nr >= max_sector) {
6495  		/* just being told to finish up .. nothing much to do */
6496  
6497  		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6498  			end_reshape(conf);
6499  			return 0;
6500  		}
6501  
6502  		if (mddev->curr_resync < max_sector) /* aborted */
6503  			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6504  						    &sync_blocks);
6505  		else /* completed sync */
6506  			conf->fullsync = 0;
6507  		mddev->bitmap_ops->close_sync(mddev);
6508  
6509  		return 0;
6510  	}
6511  
6512  	/* Allow raid5_quiesce to complete */
6513  	wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6514  
6515  	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6516  		return reshape_request(mddev, sector_nr, skipped);
6517  
6518  	/* No need to check resync_max as we never do more than one
6519  	 * stripe, and as resync_max will always be on a chunk boundary,
6520  	 * if the check in md_do_sync didn't fire, there is no chance
6521  	 * of overstepping resync_max here
6522  	 */
6523  
6524  	/* if there is too many failed drives and we are trying
6525  	 * to resync, then assert that we are finished, because there is
6526  	 * nothing we can do.
6527  	 */
6528  	if (mddev->degraded >= conf->max_degraded &&
6529  	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6530  		sector_t rv = mddev->dev_sectors - sector_nr;
6531  		*skipped = 1;
6532  		return rv;
6533  	}
6534  	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6535  	    !conf->fullsync &&
6536  	    !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6537  					   true) &&
6538  	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6539  		/* we can skip this block, and probably more */
6540  		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6541  		*skipped = 1;
6542  		/* keep things rounded to whole stripes */
6543  		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6544  	}
6545  
6546  	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6547  
6548  	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6549  				     R5_GAS_NOBLOCK);
6550  	if (sh == NULL) {
6551  		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6552  		/* make sure we don't swamp the stripe cache if someone else
6553  		 * is trying to get access
6554  		 */
6555  		schedule_timeout_uninterruptible(1);
6556  	}
6557  	/* Need to check if array will still be degraded after recovery/resync
6558  	 * Note in case of > 1 drive failures it's possible we're rebuilding
6559  	 * one drive while leaving another faulty drive in array.
6560  	 */
6561  	for (i = 0; i < conf->raid_disks; i++) {
6562  		struct md_rdev *rdev = conf->disks[i].rdev;
6563  
6564  		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6565  			still_degraded = true;
6566  	}
6567  
6568  	mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6569  				      still_degraded);
6570  
6571  	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6572  	set_bit(STRIPE_HANDLE, &sh->state);
6573  
6574  	raid5_release_stripe(sh);
6575  
6576  	return RAID5_STRIPE_SECTORS(conf);
6577  }
6578  
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6579  static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6580  			       unsigned int offset)
6581  {
6582  	/* We may not be able to submit a whole bio at once as there
6583  	 * may not be enough stripe_heads available.
6584  	 * We cannot pre-allocate enough stripe_heads as we may need
6585  	 * more than exist in the cache (if we allow ever large chunks).
6586  	 * So we do one stripe head at a time and record in
6587  	 * ->bi_hw_segments how many have been done.
6588  	 *
6589  	 * We *know* that this entire raid_bio is in one chunk, so
6590  	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6591  	 */
6592  	struct stripe_head *sh;
6593  	int dd_idx;
6594  	sector_t sector, logical_sector, last_sector;
6595  	int scnt = 0;
6596  	int handled = 0;
6597  
6598  	logical_sector = raid_bio->bi_iter.bi_sector &
6599  		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6600  	sector = raid5_compute_sector(conf, logical_sector,
6601  				      0, &dd_idx, NULL);
6602  	last_sector = bio_end_sector(raid_bio);
6603  
6604  	for (; logical_sector < last_sector;
6605  	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6606  		     sector += RAID5_STRIPE_SECTORS(conf),
6607  		     scnt++) {
6608  
6609  		if (scnt < offset)
6610  			/* already done this stripe */
6611  			continue;
6612  
6613  		sh = raid5_get_active_stripe(conf, NULL, sector,
6614  				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6615  		if (!sh) {
6616  			/* failed to get a stripe - must wait */
6617  			conf->retry_read_aligned = raid_bio;
6618  			conf->retry_read_offset = scnt;
6619  			return handled;
6620  		}
6621  
6622  		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6623  			raid5_release_stripe(sh);
6624  			conf->retry_read_aligned = raid_bio;
6625  			conf->retry_read_offset = scnt;
6626  			return handled;
6627  		}
6628  
6629  		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6630  		handle_stripe(sh);
6631  		raid5_release_stripe(sh);
6632  		handled++;
6633  	}
6634  
6635  	bio_endio(raid_bio);
6636  
6637  	if (atomic_dec_and_test(&conf->active_aligned_reads))
6638  		wake_up(&conf->wait_for_quiescent);
6639  	return handled;
6640  }
6641  
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6642  static int handle_active_stripes(struct r5conf *conf, int group,
6643  				 struct r5worker *worker,
6644  				 struct list_head *temp_inactive_list)
6645  		__must_hold(&conf->device_lock)
6646  {
6647  	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6648  	int i, batch_size = 0, hash;
6649  	bool release_inactive = false;
6650  
6651  	while (batch_size < MAX_STRIPE_BATCH &&
6652  			(sh = __get_priority_stripe(conf, group)) != NULL)
6653  		batch[batch_size++] = sh;
6654  
6655  	if (batch_size == 0) {
6656  		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6657  			if (!list_empty(temp_inactive_list + i))
6658  				break;
6659  		if (i == NR_STRIPE_HASH_LOCKS) {
6660  			spin_unlock_irq(&conf->device_lock);
6661  			log_flush_stripe_to_raid(conf);
6662  			spin_lock_irq(&conf->device_lock);
6663  			return batch_size;
6664  		}
6665  		release_inactive = true;
6666  	}
6667  	spin_unlock_irq(&conf->device_lock);
6668  
6669  	release_inactive_stripe_list(conf, temp_inactive_list,
6670  				     NR_STRIPE_HASH_LOCKS);
6671  
6672  	r5l_flush_stripe_to_raid(conf->log);
6673  	if (release_inactive) {
6674  		spin_lock_irq(&conf->device_lock);
6675  		return 0;
6676  	}
6677  
6678  	for (i = 0; i < batch_size; i++)
6679  		handle_stripe(batch[i]);
6680  	log_write_stripe_run(conf);
6681  
6682  	cond_resched();
6683  
6684  	spin_lock_irq(&conf->device_lock);
6685  	for (i = 0; i < batch_size; i++) {
6686  		hash = batch[i]->hash_lock_index;
6687  		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6688  	}
6689  	return batch_size;
6690  }
6691  
raid5_do_work(struct work_struct * work)6692  static void raid5_do_work(struct work_struct *work)
6693  {
6694  	struct r5worker *worker = container_of(work, struct r5worker, work);
6695  	struct r5worker_group *group = worker->group;
6696  	struct r5conf *conf = group->conf;
6697  	struct mddev *mddev = conf->mddev;
6698  	int group_id = group - conf->worker_groups;
6699  	int handled;
6700  	struct blk_plug plug;
6701  
6702  	pr_debug("+++ raid5worker active\n");
6703  
6704  	blk_start_plug(&plug);
6705  	handled = 0;
6706  	spin_lock_irq(&conf->device_lock);
6707  	while (1) {
6708  		int batch_size, released;
6709  
6710  		released = release_stripe_list(conf, worker->temp_inactive_list);
6711  
6712  		batch_size = handle_active_stripes(conf, group_id, worker,
6713  						   worker->temp_inactive_list);
6714  		worker->working = false;
6715  		if (!batch_size && !released)
6716  			break;
6717  		handled += batch_size;
6718  		wait_event_lock_irq(mddev->sb_wait,
6719  			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6720  			conf->device_lock);
6721  	}
6722  	pr_debug("%d stripes handled\n", handled);
6723  
6724  	spin_unlock_irq(&conf->device_lock);
6725  
6726  	flush_deferred_bios(conf);
6727  
6728  	r5l_flush_stripe_to_raid(conf->log);
6729  
6730  	async_tx_issue_pending_all();
6731  	blk_finish_plug(&plug);
6732  
6733  	pr_debug("--- raid5worker inactive\n");
6734  }
6735  
6736  /*
6737   * This is our raid5 kernel thread.
6738   *
6739   * We scan the hash table for stripes which can be handled now.
6740   * During the scan, completed stripes are saved for us by the interrupt
6741   * handler, so that they will not have to wait for our next wakeup.
6742   */
raid5d(struct md_thread * thread)6743  static void raid5d(struct md_thread *thread)
6744  {
6745  	struct mddev *mddev = thread->mddev;
6746  	struct r5conf *conf = mddev->private;
6747  	int handled;
6748  	struct blk_plug plug;
6749  
6750  	pr_debug("+++ raid5d active\n");
6751  
6752  	md_check_recovery(mddev);
6753  
6754  	blk_start_plug(&plug);
6755  	handled = 0;
6756  	spin_lock_irq(&conf->device_lock);
6757  	while (1) {
6758  		struct bio *bio;
6759  		int batch_size, released;
6760  		unsigned int offset;
6761  
6762  		if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6763  			break;
6764  
6765  		released = release_stripe_list(conf, conf->temp_inactive_list);
6766  		if (released)
6767  			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6768  
6769  		if (
6770  		    !list_empty(&conf->bitmap_list)) {
6771  			/* Now is a good time to flush some bitmap updates */
6772  			conf->seq_flush++;
6773  			spin_unlock_irq(&conf->device_lock);
6774  			mddev->bitmap_ops->unplug(mddev, true);
6775  			spin_lock_irq(&conf->device_lock);
6776  			conf->seq_write = conf->seq_flush;
6777  			activate_bit_delay(conf, conf->temp_inactive_list);
6778  		}
6779  		raid5_activate_delayed(conf);
6780  
6781  		while ((bio = remove_bio_from_retry(conf, &offset))) {
6782  			int ok;
6783  			spin_unlock_irq(&conf->device_lock);
6784  			ok = retry_aligned_read(conf, bio, offset);
6785  			spin_lock_irq(&conf->device_lock);
6786  			if (!ok)
6787  				break;
6788  			handled++;
6789  		}
6790  
6791  		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6792  						   conf->temp_inactive_list);
6793  		if (!batch_size && !released)
6794  			break;
6795  		handled += batch_size;
6796  
6797  		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6798  			spin_unlock_irq(&conf->device_lock);
6799  			md_check_recovery(mddev);
6800  			spin_lock_irq(&conf->device_lock);
6801  		}
6802  	}
6803  	pr_debug("%d stripes handled\n", handled);
6804  
6805  	spin_unlock_irq(&conf->device_lock);
6806  	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6807  	    mutex_trylock(&conf->cache_size_mutex)) {
6808  		grow_one_stripe(conf, __GFP_NOWARN);
6809  		/* Set flag even if allocation failed.  This helps
6810  		 * slow down allocation requests when mem is short
6811  		 */
6812  		set_bit(R5_DID_ALLOC, &conf->cache_state);
6813  		mutex_unlock(&conf->cache_size_mutex);
6814  	}
6815  
6816  	flush_deferred_bios(conf);
6817  
6818  	r5l_flush_stripe_to_raid(conf->log);
6819  
6820  	async_tx_issue_pending_all();
6821  	blk_finish_plug(&plug);
6822  
6823  	pr_debug("--- raid5d inactive\n");
6824  }
6825  
6826  static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6827  raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6828  {
6829  	struct r5conf *conf;
6830  	int ret = 0;
6831  	spin_lock(&mddev->lock);
6832  	conf = mddev->private;
6833  	if (conf)
6834  		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6835  	spin_unlock(&mddev->lock);
6836  	return ret;
6837  }
6838  
6839  int
raid5_set_cache_size(struct mddev * mddev,int size)6840  raid5_set_cache_size(struct mddev *mddev, int size)
6841  {
6842  	int result = 0;
6843  	struct r5conf *conf = mddev->private;
6844  
6845  	if (size <= 16 || size > 32768)
6846  		return -EINVAL;
6847  
6848  	WRITE_ONCE(conf->min_nr_stripes, size);
6849  	mutex_lock(&conf->cache_size_mutex);
6850  	while (size < conf->max_nr_stripes &&
6851  	       drop_one_stripe(conf))
6852  		;
6853  	mutex_unlock(&conf->cache_size_mutex);
6854  
6855  	md_allow_write(mddev);
6856  
6857  	mutex_lock(&conf->cache_size_mutex);
6858  	while (size > conf->max_nr_stripes)
6859  		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6860  			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6861  			result = -ENOMEM;
6862  			break;
6863  		}
6864  	mutex_unlock(&conf->cache_size_mutex);
6865  
6866  	return result;
6867  }
6868  EXPORT_SYMBOL(raid5_set_cache_size);
6869  
6870  static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6871  raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6872  {
6873  	struct r5conf *conf;
6874  	unsigned long new;
6875  	int err;
6876  
6877  	if (len >= PAGE_SIZE)
6878  		return -EINVAL;
6879  	if (kstrtoul(page, 10, &new))
6880  		return -EINVAL;
6881  	err = mddev_lock(mddev);
6882  	if (err)
6883  		return err;
6884  	conf = mddev->private;
6885  	if (!conf)
6886  		err = -ENODEV;
6887  	else
6888  		err = raid5_set_cache_size(mddev, new);
6889  	mddev_unlock(mddev);
6890  
6891  	return err ?: len;
6892  }
6893  
6894  static struct md_sysfs_entry
6895  raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6896  				raid5_show_stripe_cache_size,
6897  				raid5_store_stripe_cache_size);
6898  
6899  static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6900  raid5_show_rmw_level(struct mddev  *mddev, char *page)
6901  {
6902  	struct r5conf *conf = mddev->private;
6903  	if (conf)
6904  		return sprintf(page, "%d\n", conf->rmw_level);
6905  	else
6906  		return 0;
6907  }
6908  
6909  static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6910  raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6911  {
6912  	struct r5conf *conf = mddev->private;
6913  	unsigned long new;
6914  
6915  	if (!conf)
6916  		return -ENODEV;
6917  
6918  	if (len >= PAGE_SIZE)
6919  		return -EINVAL;
6920  
6921  	if (kstrtoul(page, 10, &new))
6922  		return -EINVAL;
6923  
6924  	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6925  		return -EINVAL;
6926  
6927  	if (new != PARITY_DISABLE_RMW &&
6928  	    new != PARITY_ENABLE_RMW &&
6929  	    new != PARITY_PREFER_RMW)
6930  		return -EINVAL;
6931  
6932  	conf->rmw_level = new;
6933  	return len;
6934  }
6935  
6936  static struct md_sysfs_entry
6937  raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6938  			 raid5_show_rmw_level,
6939  			 raid5_store_rmw_level);
6940  
6941  static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6942  raid5_show_stripe_size(struct mddev  *mddev, char *page)
6943  {
6944  	struct r5conf *conf;
6945  	int ret = 0;
6946  
6947  	spin_lock(&mddev->lock);
6948  	conf = mddev->private;
6949  	if (conf)
6950  		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6951  	spin_unlock(&mddev->lock);
6952  	return ret;
6953  }
6954  
6955  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6956  static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6957  raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6958  {
6959  	struct r5conf *conf;
6960  	unsigned long new;
6961  	int err;
6962  	int size;
6963  
6964  	if (len >= PAGE_SIZE)
6965  		return -EINVAL;
6966  	if (kstrtoul(page, 10, &new))
6967  		return -EINVAL;
6968  
6969  	/*
6970  	 * The value should not be bigger than PAGE_SIZE. It requires to
6971  	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6972  	 * of two.
6973  	 */
6974  	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6975  			new > PAGE_SIZE || new == 0 ||
6976  			new != roundup_pow_of_two(new))
6977  		return -EINVAL;
6978  
6979  	err = mddev_suspend_and_lock(mddev);
6980  	if (err)
6981  		return err;
6982  
6983  	conf = mddev->private;
6984  	if (!conf) {
6985  		err = -ENODEV;
6986  		goto out_unlock;
6987  	}
6988  
6989  	if (new == conf->stripe_size)
6990  		goto out_unlock;
6991  
6992  	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6993  			conf->stripe_size, new);
6994  
6995  	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6996  	    mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6997  		err = -EBUSY;
6998  		goto out_unlock;
6999  	}
7000  
7001  	mutex_lock(&conf->cache_size_mutex);
7002  	size = conf->max_nr_stripes;
7003  
7004  	shrink_stripes(conf);
7005  
7006  	conf->stripe_size = new;
7007  	conf->stripe_shift = ilog2(new) - 9;
7008  	conf->stripe_sectors = new >> 9;
7009  	if (grow_stripes(conf, size)) {
7010  		pr_warn("md/raid:%s: couldn't allocate buffers\n",
7011  				mdname(mddev));
7012  		err = -ENOMEM;
7013  	}
7014  	mutex_unlock(&conf->cache_size_mutex);
7015  
7016  out_unlock:
7017  	mddev_unlock_and_resume(mddev);
7018  	return err ?: len;
7019  }
7020  
7021  static struct md_sysfs_entry
7022  raid5_stripe_size = __ATTR(stripe_size, 0644,
7023  			 raid5_show_stripe_size,
7024  			 raid5_store_stripe_size);
7025  #else
7026  static struct md_sysfs_entry
7027  raid5_stripe_size = __ATTR(stripe_size, 0444,
7028  			 raid5_show_stripe_size,
7029  			 NULL);
7030  #endif
7031  
7032  static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)7033  raid5_show_preread_threshold(struct mddev *mddev, char *page)
7034  {
7035  	struct r5conf *conf;
7036  	int ret = 0;
7037  	spin_lock(&mddev->lock);
7038  	conf = mddev->private;
7039  	if (conf)
7040  		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7041  	spin_unlock(&mddev->lock);
7042  	return ret;
7043  }
7044  
7045  static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7046  raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7047  {
7048  	struct r5conf *conf;
7049  	unsigned long new;
7050  	int err;
7051  
7052  	if (len >= PAGE_SIZE)
7053  		return -EINVAL;
7054  	if (kstrtoul(page, 10, &new))
7055  		return -EINVAL;
7056  
7057  	err = mddev_lock(mddev);
7058  	if (err)
7059  		return err;
7060  	conf = mddev->private;
7061  	if (!conf)
7062  		err = -ENODEV;
7063  	else if (new > conf->min_nr_stripes)
7064  		err = -EINVAL;
7065  	else
7066  		conf->bypass_threshold = new;
7067  	mddev_unlock(mddev);
7068  	return err ?: len;
7069  }
7070  
7071  static struct md_sysfs_entry
7072  raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7073  					S_IRUGO | S_IWUSR,
7074  					raid5_show_preread_threshold,
7075  					raid5_store_preread_threshold);
7076  
7077  static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)7078  raid5_show_skip_copy(struct mddev *mddev, char *page)
7079  {
7080  	struct r5conf *conf;
7081  	int ret = 0;
7082  	spin_lock(&mddev->lock);
7083  	conf = mddev->private;
7084  	if (conf)
7085  		ret = sprintf(page, "%d\n", conf->skip_copy);
7086  	spin_unlock(&mddev->lock);
7087  	return ret;
7088  }
7089  
7090  static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7091  raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7092  {
7093  	struct r5conf *conf;
7094  	unsigned long new;
7095  	int err;
7096  
7097  	if (len >= PAGE_SIZE)
7098  		return -EINVAL;
7099  	if (kstrtoul(page, 10, &new))
7100  		return -EINVAL;
7101  	new = !!new;
7102  
7103  	err = mddev_suspend_and_lock(mddev);
7104  	if (err)
7105  		return err;
7106  	conf = mddev->private;
7107  	if (!conf)
7108  		err = -ENODEV;
7109  	else if (new != conf->skip_copy) {
7110  		struct request_queue *q = mddev->gendisk->queue;
7111  		struct queue_limits lim = queue_limits_start_update(q);
7112  
7113  		conf->skip_copy = new;
7114  		if (new)
7115  			lim.features |= BLK_FEAT_STABLE_WRITES;
7116  		else
7117  			lim.features &= ~BLK_FEAT_STABLE_WRITES;
7118  		err = queue_limits_commit_update(q, &lim);
7119  	}
7120  	mddev_unlock_and_resume(mddev);
7121  	return err ?: len;
7122  }
7123  
7124  static struct md_sysfs_entry
7125  raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7126  					raid5_show_skip_copy,
7127  					raid5_store_skip_copy);
7128  
7129  static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)7130  stripe_cache_active_show(struct mddev *mddev, char *page)
7131  {
7132  	struct r5conf *conf = mddev->private;
7133  	if (conf)
7134  		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7135  	else
7136  		return 0;
7137  }
7138  
7139  static struct md_sysfs_entry
7140  raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7141  
7142  static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7143  raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7144  {
7145  	struct r5conf *conf;
7146  	int ret = 0;
7147  	spin_lock(&mddev->lock);
7148  	conf = mddev->private;
7149  	if (conf)
7150  		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7151  	spin_unlock(&mddev->lock);
7152  	return ret;
7153  }
7154  
7155  static int alloc_thread_groups(struct r5conf *conf, int cnt,
7156  			       int *group_cnt,
7157  			       struct r5worker_group **worker_groups);
7158  static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7159  raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7160  {
7161  	struct r5conf *conf;
7162  	unsigned int new;
7163  	int err;
7164  	struct r5worker_group *new_groups, *old_groups;
7165  	int group_cnt;
7166  
7167  	if (len >= PAGE_SIZE)
7168  		return -EINVAL;
7169  	if (kstrtouint(page, 10, &new))
7170  		return -EINVAL;
7171  	/* 8192 should be big enough */
7172  	if (new > 8192)
7173  		return -EINVAL;
7174  
7175  	err = mddev_suspend_and_lock(mddev);
7176  	if (err)
7177  		return err;
7178  	raid5_quiesce(mddev, true);
7179  
7180  	conf = mddev->private;
7181  	if (!conf)
7182  		err = -ENODEV;
7183  	else if (new != conf->worker_cnt_per_group) {
7184  		old_groups = conf->worker_groups;
7185  		if (old_groups)
7186  			flush_workqueue(raid5_wq);
7187  
7188  		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7189  		if (!err) {
7190  			spin_lock_irq(&conf->device_lock);
7191  			conf->group_cnt = group_cnt;
7192  			conf->worker_cnt_per_group = new;
7193  			conf->worker_groups = new_groups;
7194  			spin_unlock_irq(&conf->device_lock);
7195  
7196  			if (old_groups)
7197  				kfree(old_groups[0].workers);
7198  			kfree(old_groups);
7199  		}
7200  	}
7201  
7202  	raid5_quiesce(mddev, false);
7203  	mddev_unlock_and_resume(mddev);
7204  
7205  	return err ?: len;
7206  }
7207  
7208  static struct md_sysfs_entry
7209  raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7210  				raid5_show_group_thread_cnt,
7211  				raid5_store_group_thread_cnt);
7212  
7213  static struct attribute *raid5_attrs[] =  {
7214  	&raid5_stripecache_size.attr,
7215  	&raid5_stripecache_active.attr,
7216  	&raid5_preread_bypass_threshold.attr,
7217  	&raid5_group_thread_cnt.attr,
7218  	&raid5_skip_copy.attr,
7219  	&raid5_rmw_level.attr,
7220  	&raid5_stripe_size.attr,
7221  	&r5c_journal_mode.attr,
7222  	&ppl_write_hint.attr,
7223  	NULL,
7224  };
7225  static const struct attribute_group raid5_attrs_group = {
7226  	.name = NULL,
7227  	.attrs = raid5_attrs,
7228  };
7229  
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7230  static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7231  			       struct r5worker_group **worker_groups)
7232  {
7233  	int i, j, k;
7234  	ssize_t size;
7235  	struct r5worker *workers;
7236  
7237  	if (cnt == 0) {
7238  		*group_cnt = 0;
7239  		*worker_groups = NULL;
7240  		return 0;
7241  	}
7242  	*group_cnt = num_possible_nodes();
7243  	size = sizeof(struct r5worker) * cnt;
7244  	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7245  	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7246  				 GFP_NOIO);
7247  	if (!*worker_groups || !workers) {
7248  		kfree(workers);
7249  		kfree(*worker_groups);
7250  		return -ENOMEM;
7251  	}
7252  
7253  	for (i = 0; i < *group_cnt; i++) {
7254  		struct r5worker_group *group;
7255  
7256  		group = &(*worker_groups)[i];
7257  		INIT_LIST_HEAD(&group->handle_list);
7258  		INIT_LIST_HEAD(&group->loprio_list);
7259  		group->conf = conf;
7260  		group->workers = workers + i * cnt;
7261  
7262  		for (j = 0; j < cnt; j++) {
7263  			struct r5worker *worker = group->workers + j;
7264  			worker->group = group;
7265  			INIT_WORK(&worker->work, raid5_do_work);
7266  
7267  			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7268  				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7269  		}
7270  	}
7271  
7272  	return 0;
7273  }
7274  
free_thread_groups(struct r5conf * conf)7275  static void free_thread_groups(struct r5conf *conf)
7276  {
7277  	if (conf->worker_groups)
7278  		kfree(conf->worker_groups[0].workers);
7279  	kfree(conf->worker_groups);
7280  	conf->worker_groups = NULL;
7281  }
7282  
7283  static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7284  raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7285  {
7286  	struct r5conf *conf = mddev->private;
7287  
7288  	if (!sectors)
7289  		sectors = mddev->dev_sectors;
7290  	if (!raid_disks)
7291  		/* size is defined by the smallest of previous and new size */
7292  		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7293  
7294  	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7295  	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7296  	return sectors * (raid_disks - conf->max_degraded);
7297  }
7298  
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7299  static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7300  {
7301  	safe_put_page(percpu->spare_page);
7302  	percpu->spare_page = NULL;
7303  	kvfree(percpu->scribble);
7304  	percpu->scribble = NULL;
7305  }
7306  
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7307  static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7308  {
7309  	if (conf->level == 6 && !percpu->spare_page) {
7310  		percpu->spare_page = alloc_page(GFP_KERNEL);
7311  		if (!percpu->spare_page)
7312  			return -ENOMEM;
7313  	}
7314  
7315  	if (scribble_alloc(percpu,
7316  			   max(conf->raid_disks,
7317  			       conf->previous_raid_disks),
7318  			   max(conf->chunk_sectors,
7319  			       conf->prev_chunk_sectors)
7320  			   / RAID5_STRIPE_SECTORS(conf))) {
7321  		free_scratch_buffer(conf, percpu);
7322  		return -ENOMEM;
7323  	}
7324  
7325  	local_lock_init(&percpu->lock);
7326  	return 0;
7327  }
7328  
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7329  static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7330  {
7331  	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7332  
7333  	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7334  	return 0;
7335  }
7336  
raid5_free_percpu(struct r5conf * conf)7337  static void raid5_free_percpu(struct r5conf *conf)
7338  {
7339  	if (!conf->percpu)
7340  		return;
7341  
7342  	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7343  	free_percpu(conf->percpu);
7344  }
7345  
free_conf(struct r5conf * conf)7346  static void free_conf(struct r5conf *conf)
7347  {
7348  	int i;
7349  
7350  	log_exit(conf);
7351  
7352  	shrinker_free(conf->shrinker);
7353  	free_thread_groups(conf);
7354  	shrink_stripes(conf);
7355  	raid5_free_percpu(conf);
7356  	for (i = 0; i < conf->pool_size; i++)
7357  		if (conf->disks[i].extra_page)
7358  			put_page(conf->disks[i].extra_page);
7359  	kfree(conf->disks);
7360  	bioset_exit(&conf->bio_split);
7361  	kfree(conf->stripe_hashtbl);
7362  	kfree(conf->pending_data);
7363  	kfree(conf);
7364  }
7365  
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7366  static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7367  {
7368  	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7369  	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7370  
7371  	if (alloc_scratch_buffer(conf, percpu)) {
7372  		pr_warn("%s: failed memory allocation for cpu%u\n",
7373  			__func__, cpu);
7374  		return -ENOMEM;
7375  	}
7376  	return 0;
7377  }
7378  
raid5_alloc_percpu(struct r5conf * conf)7379  static int raid5_alloc_percpu(struct r5conf *conf)
7380  {
7381  	int err = 0;
7382  
7383  	conf->percpu = alloc_percpu(struct raid5_percpu);
7384  	if (!conf->percpu)
7385  		return -ENOMEM;
7386  
7387  	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7388  	if (!err) {
7389  		conf->scribble_disks = max(conf->raid_disks,
7390  			conf->previous_raid_disks);
7391  		conf->scribble_sectors = max(conf->chunk_sectors,
7392  			conf->prev_chunk_sectors);
7393  	}
7394  	return err;
7395  }
7396  
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7397  static unsigned long raid5_cache_scan(struct shrinker *shrink,
7398  				      struct shrink_control *sc)
7399  {
7400  	struct r5conf *conf = shrink->private_data;
7401  	unsigned long ret = SHRINK_STOP;
7402  
7403  	if (mutex_trylock(&conf->cache_size_mutex)) {
7404  		ret= 0;
7405  		while (ret < sc->nr_to_scan &&
7406  		       conf->max_nr_stripes > conf->min_nr_stripes) {
7407  			if (drop_one_stripe(conf) == 0) {
7408  				ret = SHRINK_STOP;
7409  				break;
7410  			}
7411  			ret++;
7412  		}
7413  		mutex_unlock(&conf->cache_size_mutex);
7414  	}
7415  	return ret;
7416  }
7417  
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7418  static unsigned long raid5_cache_count(struct shrinker *shrink,
7419  				       struct shrink_control *sc)
7420  {
7421  	struct r5conf *conf = shrink->private_data;
7422  	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7423  	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7424  
7425  	if (max_stripes < min_stripes)
7426  		/* unlikely, but not impossible */
7427  		return 0;
7428  	return max_stripes - min_stripes;
7429  }
7430  
setup_conf(struct mddev * mddev)7431  static struct r5conf *setup_conf(struct mddev *mddev)
7432  {
7433  	struct r5conf *conf;
7434  	int raid_disk, memory, max_disks;
7435  	struct md_rdev *rdev;
7436  	struct disk_info *disk;
7437  	char pers_name[6];
7438  	int i;
7439  	int group_cnt;
7440  	struct r5worker_group *new_group;
7441  	int ret = -ENOMEM;
7442  
7443  	if (mddev->new_level != 5
7444  	    && mddev->new_level != 4
7445  	    && mddev->new_level != 6) {
7446  		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7447  			mdname(mddev), mddev->new_level);
7448  		return ERR_PTR(-EIO);
7449  	}
7450  	if ((mddev->new_level == 5
7451  	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7452  	    (mddev->new_level == 6
7453  	     && !algorithm_valid_raid6(mddev->new_layout))) {
7454  		pr_warn("md/raid:%s: layout %d not supported\n",
7455  			mdname(mddev), mddev->new_layout);
7456  		return ERR_PTR(-EIO);
7457  	}
7458  	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7459  		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7460  			mdname(mddev), mddev->raid_disks);
7461  		return ERR_PTR(-EINVAL);
7462  	}
7463  
7464  	if (!mddev->new_chunk_sectors ||
7465  	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7466  	    !is_power_of_2(mddev->new_chunk_sectors)) {
7467  		pr_warn("md/raid:%s: invalid chunk size %d\n",
7468  			mdname(mddev), mddev->new_chunk_sectors << 9);
7469  		return ERR_PTR(-EINVAL);
7470  	}
7471  
7472  	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7473  	if (conf == NULL)
7474  		goto abort;
7475  
7476  #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7477  	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7478  	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7479  	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7480  #endif
7481  	INIT_LIST_HEAD(&conf->free_list);
7482  	INIT_LIST_HEAD(&conf->pending_list);
7483  	conf->pending_data = kcalloc(PENDING_IO_MAX,
7484  				     sizeof(struct r5pending_data),
7485  				     GFP_KERNEL);
7486  	if (!conf->pending_data)
7487  		goto abort;
7488  	for (i = 0; i < PENDING_IO_MAX; i++)
7489  		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7490  	/* Don't enable multi-threading by default*/
7491  	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7492  		conf->group_cnt = group_cnt;
7493  		conf->worker_cnt_per_group = 0;
7494  		conf->worker_groups = new_group;
7495  	} else
7496  		goto abort;
7497  	spin_lock_init(&conf->device_lock);
7498  	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7499  	mutex_init(&conf->cache_size_mutex);
7500  
7501  	init_waitqueue_head(&conf->wait_for_quiescent);
7502  	init_waitqueue_head(&conf->wait_for_stripe);
7503  	init_waitqueue_head(&conf->wait_for_reshape);
7504  	INIT_LIST_HEAD(&conf->handle_list);
7505  	INIT_LIST_HEAD(&conf->loprio_list);
7506  	INIT_LIST_HEAD(&conf->hold_list);
7507  	INIT_LIST_HEAD(&conf->delayed_list);
7508  	INIT_LIST_HEAD(&conf->bitmap_list);
7509  	init_llist_head(&conf->released_stripes);
7510  	atomic_set(&conf->active_stripes, 0);
7511  	atomic_set(&conf->preread_active_stripes, 0);
7512  	atomic_set(&conf->active_aligned_reads, 0);
7513  	spin_lock_init(&conf->pending_bios_lock);
7514  	conf->batch_bio_dispatch = true;
7515  	rdev_for_each(rdev, mddev) {
7516  		if (test_bit(Journal, &rdev->flags))
7517  			continue;
7518  		if (bdev_nonrot(rdev->bdev)) {
7519  			conf->batch_bio_dispatch = false;
7520  			break;
7521  		}
7522  	}
7523  
7524  	conf->bypass_threshold = BYPASS_THRESHOLD;
7525  	conf->recovery_disabled = mddev->recovery_disabled - 1;
7526  
7527  	conf->raid_disks = mddev->raid_disks;
7528  	if (mddev->reshape_position == MaxSector)
7529  		conf->previous_raid_disks = mddev->raid_disks;
7530  	else
7531  		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7532  	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7533  
7534  	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7535  			      GFP_KERNEL);
7536  
7537  	if (!conf->disks)
7538  		goto abort;
7539  
7540  	for (i = 0; i < max_disks; i++) {
7541  		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7542  		if (!conf->disks[i].extra_page)
7543  			goto abort;
7544  	}
7545  
7546  	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7547  	if (ret)
7548  		goto abort;
7549  	conf->mddev = mddev;
7550  
7551  	ret = -ENOMEM;
7552  	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7553  	if (!conf->stripe_hashtbl)
7554  		goto abort;
7555  
7556  	/* We init hash_locks[0] separately to that it can be used
7557  	 * as the reference lock in the spin_lock_nest_lock() call
7558  	 * in lock_all_device_hash_locks_irq in order to convince
7559  	 * lockdep that we know what we are doing.
7560  	 */
7561  	spin_lock_init(conf->hash_locks);
7562  	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7563  		spin_lock_init(conf->hash_locks + i);
7564  
7565  	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7566  		INIT_LIST_HEAD(conf->inactive_list + i);
7567  
7568  	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7569  		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7570  
7571  	atomic_set(&conf->r5c_cached_full_stripes, 0);
7572  	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7573  	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7574  	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7575  	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7576  	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7577  
7578  	conf->level = mddev->new_level;
7579  	conf->chunk_sectors = mddev->new_chunk_sectors;
7580  	ret = raid5_alloc_percpu(conf);
7581  	if (ret)
7582  		goto abort;
7583  
7584  	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7585  
7586  	ret = -EIO;
7587  	rdev_for_each(rdev, mddev) {
7588  		raid_disk = rdev->raid_disk;
7589  		if (raid_disk >= max_disks
7590  		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7591  			continue;
7592  		disk = conf->disks + raid_disk;
7593  
7594  		if (test_bit(Replacement, &rdev->flags)) {
7595  			if (disk->replacement)
7596  				goto abort;
7597  			disk->replacement = rdev;
7598  		} else {
7599  			if (disk->rdev)
7600  				goto abort;
7601  			disk->rdev = rdev;
7602  		}
7603  
7604  		if (test_bit(In_sync, &rdev->flags)) {
7605  			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7606  				mdname(mddev), rdev->bdev, raid_disk);
7607  		} else if (rdev->saved_raid_disk != raid_disk)
7608  			/* Cannot rely on bitmap to complete recovery */
7609  			conf->fullsync = 1;
7610  	}
7611  
7612  	conf->level = mddev->new_level;
7613  	if (conf->level == 6) {
7614  		conf->max_degraded = 2;
7615  		if (raid6_call.xor_syndrome)
7616  			conf->rmw_level = PARITY_ENABLE_RMW;
7617  		else
7618  			conf->rmw_level = PARITY_DISABLE_RMW;
7619  	} else {
7620  		conf->max_degraded = 1;
7621  		conf->rmw_level = PARITY_ENABLE_RMW;
7622  	}
7623  	conf->algorithm = mddev->new_layout;
7624  	conf->reshape_progress = mddev->reshape_position;
7625  	if (conf->reshape_progress != MaxSector) {
7626  		conf->prev_chunk_sectors = mddev->chunk_sectors;
7627  		conf->prev_algo = mddev->layout;
7628  	} else {
7629  		conf->prev_chunk_sectors = conf->chunk_sectors;
7630  		conf->prev_algo = conf->algorithm;
7631  	}
7632  
7633  	conf->min_nr_stripes = NR_STRIPES;
7634  	if (mddev->reshape_position != MaxSector) {
7635  		int stripes = max_t(int,
7636  			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7637  			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7638  		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7639  		if (conf->min_nr_stripes != NR_STRIPES)
7640  			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7641  				mdname(mddev), conf->min_nr_stripes);
7642  	}
7643  	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7644  		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7645  	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7646  	if (grow_stripes(conf, conf->min_nr_stripes)) {
7647  		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7648  			mdname(mddev), memory);
7649  		ret = -ENOMEM;
7650  		goto abort;
7651  	} else
7652  		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7653  	/*
7654  	 * Losing a stripe head costs more than the time to refill it,
7655  	 * it reduces the queue depth and so can hurt throughput.
7656  	 * So set it rather large, scaled by number of devices.
7657  	 */
7658  	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7659  	if (!conf->shrinker) {
7660  		ret = -ENOMEM;
7661  		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7662  			mdname(mddev));
7663  		goto abort;
7664  	}
7665  
7666  	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7667  	conf->shrinker->scan_objects = raid5_cache_scan;
7668  	conf->shrinker->count_objects = raid5_cache_count;
7669  	conf->shrinker->batch = 128;
7670  	conf->shrinker->private_data = conf;
7671  
7672  	shrinker_register(conf->shrinker);
7673  
7674  	sprintf(pers_name, "raid%d", mddev->new_level);
7675  	rcu_assign_pointer(conf->thread,
7676  			   md_register_thread(raid5d, mddev, pers_name));
7677  	if (!conf->thread) {
7678  		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7679  			mdname(mddev));
7680  		ret = -ENOMEM;
7681  		goto abort;
7682  	}
7683  
7684  	return conf;
7685  
7686   abort:
7687  	if (conf)
7688  		free_conf(conf);
7689  	return ERR_PTR(ret);
7690  }
7691  
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7692  static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7693  {
7694  	switch (algo) {
7695  	case ALGORITHM_PARITY_0:
7696  		if (raid_disk < max_degraded)
7697  			return 1;
7698  		break;
7699  	case ALGORITHM_PARITY_N:
7700  		if (raid_disk >= raid_disks - max_degraded)
7701  			return 1;
7702  		break;
7703  	case ALGORITHM_PARITY_0_6:
7704  		if (raid_disk == 0 ||
7705  		    raid_disk == raid_disks - 1)
7706  			return 1;
7707  		break;
7708  	case ALGORITHM_LEFT_ASYMMETRIC_6:
7709  	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7710  	case ALGORITHM_LEFT_SYMMETRIC_6:
7711  	case ALGORITHM_RIGHT_SYMMETRIC_6:
7712  		if (raid_disk == raid_disks - 1)
7713  			return 1;
7714  	}
7715  	return 0;
7716  }
7717  
raid5_set_limits(struct mddev * mddev)7718  static int raid5_set_limits(struct mddev *mddev)
7719  {
7720  	struct r5conf *conf = mddev->private;
7721  	struct queue_limits lim;
7722  	int data_disks, stripe;
7723  	struct md_rdev *rdev;
7724  
7725  	/*
7726  	 * The read-ahead size must cover two whole stripes, which is
7727  	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7728  	 */
7729  	data_disks = conf->previous_raid_disks - conf->max_degraded;
7730  
7731  	/*
7732  	 * We can only discard a whole stripe. It doesn't make sense to
7733  	 * discard data disk but write parity disk
7734  	 */
7735  	stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7736  
7737  	md_init_stacking_limits(&lim);
7738  	lim.io_min = mddev->chunk_sectors << 9;
7739  	lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7740  	lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7741  	lim.discard_granularity = stripe;
7742  	lim.max_write_zeroes_sectors = 0;
7743  	mddev_stack_rdev_limits(mddev, &lim, 0);
7744  	rdev_for_each(rdev, mddev)
7745  		queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7746  				mddev->gendisk->disk_name);
7747  
7748  	/*
7749  	 * Zeroing is required for discard, otherwise data could be lost.
7750  	 *
7751  	 * Consider a scenario: discard a stripe (the stripe could be
7752  	 * inconsistent if discard_zeroes_data is 0); write one disk of the
7753  	 * stripe (the stripe could be inconsistent again depending on which
7754  	 * disks are used to calculate parity); the disk is broken; The stripe
7755  	 * data of this disk is lost.
7756  	 *
7757  	 * We only allow DISCARD if the sysadmin has confirmed that only safe
7758  	 * devices are in use by setting a module parameter.  A better idea
7759  	 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7760  	 * required to be safe.
7761  	 */
7762  	if (!devices_handle_discard_safely ||
7763  	    lim.max_discard_sectors < (stripe >> 9) ||
7764  	    lim.discard_granularity < stripe)
7765  		lim.max_hw_discard_sectors = 0;
7766  
7767  	/*
7768  	 * Requests require having a bitmap for each stripe.
7769  	 * Limit the max sectors based on this.
7770  	 */
7771  	lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7772  
7773  	/* No restrictions on the number of segments in the request */
7774  	lim.max_segments = USHRT_MAX;
7775  
7776  	return queue_limits_set(mddev->gendisk->queue, &lim);
7777  }
7778  
raid5_run(struct mddev * mddev)7779  static int raid5_run(struct mddev *mddev)
7780  {
7781  	struct r5conf *conf;
7782  	int dirty_parity_disks = 0;
7783  	struct md_rdev *rdev;
7784  	struct md_rdev *journal_dev = NULL;
7785  	sector_t reshape_offset = 0;
7786  	int i;
7787  	long long min_offset_diff = 0;
7788  	int first = 1;
7789  	int ret = -EIO;
7790  
7791  	if (mddev->recovery_cp != MaxSector)
7792  		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7793  			  mdname(mddev));
7794  
7795  	rdev_for_each(rdev, mddev) {
7796  		long long diff;
7797  
7798  		if (test_bit(Journal, &rdev->flags)) {
7799  			journal_dev = rdev;
7800  			continue;
7801  		}
7802  		if (rdev->raid_disk < 0)
7803  			continue;
7804  		diff = (rdev->new_data_offset - rdev->data_offset);
7805  		if (first) {
7806  			min_offset_diff = diff;
7807  			first = 0;
7808  		} else if (mddev->reshape_backwards &&
7809  			 diff < min_offset_diff)
7810  			min_offset_diff = diff;
7811  		else if (!mddev->reshape_backwards &&
7812  			 diff > min_offset_diff)
7813  			min_offset_diff = diff;
7814  	}
7815  
7816  	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7817  	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7818  		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7819  			  mdname(mddev));
7820  		return -EINVAL;
7821  	}
7822  
7823  	if (mddev->reshape_position != MaxSector) {
7824  		/* Check that we can continue the reshape.
7825  		 * Difficulties arise if the stripe we would write to
7826  		 * next is at or after the stripe we would read from next.
7827  		 * For a reshape that changes the number of devices, this
7828  		 * is only possible for a very short time, and mdadm makes
7829  		 * sure that time appears to have past before assembling
7830  		 * the array.  So we fail if that time hasn't passed.
7831  		 * For a reshape that keeps the number of devices the same
7832  		 * mdadm must be monitoring the reshape can keeping the
7833  		 * critical areas read-only and backed up.  It will start
7834  		 * the array in read-only mode, so we check for that.
7835  		 */
7836  		sector_t here_new, here_old;
7837  		int old_disks;
7838  		int max_degraded = (mddev->level == 6 ? 2 : 1);
7839  		int chunk_sectors;
7840  		int new_data_disks;
7841  
7842  		if (journal_dev) {
7843  			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7844  				mdname(mddev));
7845  			return -EINVAL;
7846  		}
7847  
7848  		if (mddev->new_level != mddev->level) {
7849  			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7850  				mdname(mddev));
7851  			return -EINVAL;
7852  		}
7853  		old_disks = mddev->raid_disks - mddev->delta_disks;
7854  		/* reshape_position must be on a new-stripe boundary, and one
7855  		 * further up in new geometry must map after here in old
7856  		 * geometry.
7857  		 * If the chunk sizes are different, then as we perform reshape
7858  		 * in units of the largest of the two, reshape_position needs
7859  		 * be a multiple of the largest chunk size times new data disks.
7860  		 */
7861  		here_new = mddev->reshape_position;
7862  		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7863  		new_data_disks = mddev->raid_disks - max_degraded;
7864  		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7865  			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7866  				mdname(mddev));
7867  			return -EINVAL;
7868  		}
7869  		reshape_offset = here_new * chunk_sectors;
7870  		/* here_new is the stripe we will write to */
7871  		here_old = mddev->reshape_position;
7872  		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7873  		/* here_old is the first stripe that we might need to read
7874  		 * from */
7875  		if (mddev->delta_disks == 0) {
7876  			/* We cannot be sure it is safe to start an in-place
7877  			 * reshape.  It is only safe if user-space is monitoring
7878  			 * and taking constant backups.
7879  			 * mdadm always starts a situation like this in
7880  			 * readonly mode so it can take control before
7881  			 * allowing any writes.  So just check for that.
7882  			 */
7883  			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7884  			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7885  				/* not really in-place - so OK */;
7886  			else if (mddev->ro == 0) {
7887  				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7888  					mdname(mddev));
7889  				return -EINVAL;
7890  			}
7891  		} else if (mddev->reshape_backwards
7892  		    ? (here_new * chunk_sectors + min_offset_diff <=
7893  		       here_old * chunk_sectors)
7894  		    : (here_new * chunk_sectors >=
7895  		       here_old * chunk_sectors + (-min_offset_diff))) {
7896  			/* Reading from the same stripe as writing to - bad */
7897  			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7898  				mdname(mddev));
7899  			return -EINVAL;
7900  		}
7901  		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7902  		/* OK, we should be able to continue; */
7903  	} else {
7904  		BUG_ON(mddev->level != mddev->new_level);
7905  		BUG_ON(mddev->layout != mddev->new_layout);
7906  		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7907  		BUG_ON(mddev->delta_disks != 0);
7908  	}
7909  
7910  	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7911  	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7912  		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7913  			mdname(mddev));
7914  		clear_bit(MD_HAS_PPL, &mddev->flags);
7915  		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7916  	}
7917  
7918  	if (mddev->private == NULL)
7919  		conf = setup_conf(mddev);
7920  	else
7921  		conf = mddev->private;
7922  
7923  	if (IS_ERR(conf))
7924  		return PTR_ERR(conf);
7925  
7926  	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7927  		if (!journal_dev) {
7928  			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7929  				mdname(mddev));
7930  			mddev->ro = 1;
7931  			set_disk_ro(mddev->gendisk, 1);
7932  		} else if (mddev->recovery_cp == MaxSector)
7933  			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7934  	}
7935  
7936  	conf->min_offset_diff = min_offset_diff;
7937  	rcu_assign_pointer(mddev->thread, conf->thread);
7938  	rcu_assign_pointer(conf->thread, NULL);
7939  	mddev->private = conf;
7940  
7941  	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7942  	     i++) {
7943  		rdev = conf->disks[i].rdev;
7944  		if (!rdev)
7945  			continue;
7946  		if (conf->disks[i].replacement &&
7947  		    conf->reshape_progress != MaxSector) {
7948  			/* replacements and reshape simply do not mix. */
7949  			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7950  			goto abort;
7951  		}
7952  		if (test_bit(In_sync, &rdev->flags))
7953  			continue;
7954  		/* This disc is not fully in-sync.  However if it
7955  		 * just stored parity (beyond the recovery_offset),
7956  		 * when we don't need to be concerned about the
7957  		 * array being dirty.
7958  		 * When reshape goes 'backwards', we never have
7959  		 * partially completed devices, so we only need
7960  		 * to worry about reshape going forwards.
7961  		 */
7962  		/* Hack because v0.91 doesn't store recovery_offset properly. */
7963  		if (mddev->major_version == 0 &&
7964  		    mddev->minor_version > 90)
7965  			rdev->recovery_offset = reshape_offset;
7966  
7967  		if (rdev->recovery_offset < reshape_offset) {
7968  			/* We need to check old and new layout */
7969  			if (!only_parity(rdev->raid_disk,
7970  					 conf->algorithm,
7971  					 conf->raid_disks,
7972  					 conf->max_degraded))
7973  				continue;
7974  		}
7975  		if (!only_parity(rdev->raid_disk,
7976  				 conf->prev_algo,
7977  				 conf->previous_raid_disks,
7978  				 conf->max_degraded))
7979  			continue;
7980  		dirty_parity_disks++;
7981  	}
7982  
7983  	/*
7984  	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7985  	 */
7986  	mddev->degraded = raid5_calc_degraded(conf);
7987  
7988  	if (has_failed(conf)) {
7989  		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7990  			mdname(mddev), mddev->degraded, conf->raid_disks);
7991  		goto abort;
7992  	}
7993  
7994  	/* device size must be a multiple of chunk size */
7995  	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7996  	mddev->resync_max_sectors = mddev->dev_sectors;
7997  
7998  	if (mddev->degraded > dirty_parity_disks &&
7999  	    mddev->recovery_cp != MaxSector) {
8000  		if (test_bit(MD_HAS_PPL, &mddev->flags))
8001  			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8002  				mdname(mddev));
8003  		else if (mddev->ok_start_degraded)
8004  			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8005  				mdname(mddev));
8006  		else {
8007  			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8008  				mdname(mddev));
8009  			goto abort;
8010  		}
8011  	}
8012  
8013  	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8014  		mdname(mddev), conf->level,
8015  		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8016  		mddev->new_layout);
8017  
8018  	print_raid5_conf(conf);
8019  
8020  	if (conf->reshape_progress != MaxSector) {
8021  		conf->reshape_safe = conf->reshape_progress;
8022  		atomic_set(&conf->reshape_stripes, 0);
8023  		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8024  		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8025  		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8026  		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8027  	}
8028  
8029  	/* Ok, everything is just fine now */
8030  	if (mddev->to_remove == &raid5_attrs_group)
8031  		mddev->to_remove = NULL;
8032  	else if (mddev->kobj.sd &&
8033  	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8034  		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8035  			mdname(mddev));
8036  	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8037  
8038  	if (!mddev_is_dm(mddev)) {
8039  		ret = raid5_set_limits(mddev);
8040  		if (ret)
8041  			goto abort;
8042  	}
8043  
8044  	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8045  		goto abort;
8046  
8047  	return 0;
8048  abort:
8049  	md_unregister_thread(mddev, &mddev->thread);
8050  	print_raid5_conf(conf);
8051  	free_conf(conf);
8052  	mddev->private = NULL;
8053  	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8054  	return ret;
8055  }
8056  
raid5_free(struct mddev * mddev,void * priv)8057  static void raid5_free(struct mddev *mddev, void *priv)
8058  {
8059  	struct r5conf *conf = priv;
8060  
8061  	free_conf(conf);
8062  	mddev->to_remove = &raid5_attrs_group;
8063  }
8064  
raid5_status(struct seq_file * seq,struct mddev * mddev)8065  static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8066  {
8067  	struct r5conf *conf = mddev->private;
8068  	int i;
8069  
8070  	lockdep_assert_held(&mddev->lock);
8071  
8072  	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8073  		conf->chunk_sectors / 2, mddev->layout);
8074  	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8075  	for (i = 0; i < conf->raid_disks; i++) {
8076  		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8077  
8078  		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8079  	}
8080  	seq_printf (seq, "]");
8081  }
8082  
print_raid5_conf(struct r5conf * conf)8083  static void print_raid5_conf(struct r5conf *conf)
8084  {
8085  	struct md_rdev *rdev;
8086  	int i;
8087  
8088  	pr_debug("RAID conf printout:\n");
8089  	if (!conf) {
8090  		pr_debug("(conf==NULL)\n");
8091  		return;
8092  	}
8093  	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8094  	       conf->raid_disks,
8095  	       conf->raid_disks - conf->mddev->degraded);
8096  
8097  	for (i = 0; i < conf->raid_disks; i++) {
8098  		rdev = conf->disks[i].rdev;
8099  		if (rdev)
8100  			pr_debug(" disk %d, o:%d, dev:%pg\n",
8101  			       i, !test_bit(Faulty, &rdev->flags),
8102  			       rdev->bdev);
8103  	}
8104  }
8105  
raid5_spare_active(struct mddev * mddev)8106  static int raid5_spare_active(struct mddev *mddev)
8107  {
8108  	int i;
8109  	struct r5conf *conf = mddev->private;
8110  	struct md_rdev *rdev, *replacement;
8111  	int count = 0;
8112  	unsigned long flags;
8113  
8114  	for (i = 0; i < conf->raid_disks; i++) {
8115  		rdev = conf->disks[i].rdev;
8116  		replacement = conf->disks[i].replacement;
8117  		if (replacement
8118  		    && replacement->recovery_offset == MaxSector
8119  		    && !test_bit(Faulty, &replacement->flags)
8120  		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8121  			/* Replacement has just become active. */
8122  			if (!rdev
8123  			    || !test_and_clear_bit(In_sync, &rdev->flags))
8124  				count++;
8125  			if (rdev) {
8126  				/* Replaced device not technically faulty,
8127  				 * but we need to be sure it gets removed
8128  				 * and never re-added.
8129  				 */
8130  				set_bit(Faulty, &rdev->flags);
8131  				sysfs_notify_dirent_safe(
8132  					rdev->sysfs_state);
8133  			}
8134  			sysfs_notify_dirent_safe(replacement->sysfs_state);
8135  		} else if (rdev
8136  		    && rdev->recovery_offset == MaxSector
8137  		    && !test_bit(Faulty, &rdev->flags)
8138  		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8139  			count++;
8140  			sysfs_notify_dirent_safe(rdev->sysfs_state);
8141  		}
8142  	}
8143  	spin_lock_irqsave(&conf->device_lock, flags);
8144  	mddev->degraded = raid5_calc_degraded(conf);
8145  	spin_unlock_irqrestore(&conf->device_lock, flags);
8146  	print_raid5_conf(conf);
8147  	return count;
8148  }
8149  
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8150  static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8151  {
8152  	struct r5conf *conf = mddev->private;
8153  	int err = 0;
8154  	int number = rdev->raid_disk;
8155  	struct md_rdev **rdevp;
8156  	struct disk_info *p;
8157  	struct md_rdev *tmp;
8158  
8159  	print_raid5_conf(conf);
8160  	if (test_bit(Journal, &rdev->flags) && conf->log) {
8161  		/*
8162  		 * we can't wait pending write here, as this is called in
8163  		 * raid5d, wait will deadlock.
8164  		 * neilb: there is no locking about new writes here,
8165  		 * so this cannot be safe.
8166  		 */
8167  		if (atomic_read(&conf->active_stripes) ||
8168  		    atomic_read(&conf->r5c_cached_full_stripes) ||
8169  		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8170  			return -EBUSY;
8171  		}
8172  		log_exit(conf);
8173  		return 0;
8174  	}
8175  	if (unlikely(number >= conf->pool_size))
8176  		return 0;
8177  	p = conf->disks + number;
8178  	if (rdev == p->rdev)
8179  		rdevp = &p->rdev;
8180  	else if (rdev == p->replacement)
8181  		rdevp = &p->replacement;
8182  	else
8183  		return 0;
8184  
8185  	if (number >= conf->raid_disks &&
8186  	    conf->reshape_progress == MaxSector)
8187  		clear_bit(In_sync, &rdev->flags);
8188  
8189  	if (test_bit(In_sync, &rdev->flags) ||
8190  	    atomic_read(&rdev->nr_pending)) {
8191  		err = -EBUSY;
8192  		goto abort;
8193  	}
8194  	/* Only remove non-faulty devices if recovery
8195  	 * isn't possible.
8196  	 */
8197  	if (!test_bit(Faulty, &rdev->flags) &&
8198  	    mddev->recovery_disabled != conf->recovery_disabled &&
8199  	    !has_failed(conf) &&
8200  	    (!p->replacement || p->replacement == rdev) &&
8201  	    number < conf->raid_disks) {
8202  		err = -EBUSY;
8203  		goto abort;
8204  	}
8205  	WRITE_ONCE(*rdevp, NULL);
8206  	if (!err) {
8207  		err = log_modify(conf, rdev, false);
8208  		if (err)
8209  			goto abort;
8210  	}
8211  
8212  	tmp = p->replacement;
8213  	if (tmp) {
8214  		/* We must have just cleared 'rdev' */
8215  		WRITE_ONCE(p->rdev, tmp);
8216  		clear_bit(Replacement, &tmp->flags);
8217  		WRITE_ONCE(p->replacement, NULL);
8218  
8219  		if (!err)
8220  			err = log_modify(conf, tmp, true);
8221  	}
8222  
8223  	clear_bit(WantReplacement, &rdev->flags);
8224  abort:
8225  
8226  	print_raid5_conf(conf);
8227  	return err;
8228  }
8229  
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8230  static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8231  {
8232  	struct r5conf *conf = mddev->private;
8233  	int ret, err = -EEXIST;
8234  	int disk;
8235  	struct disk_info *p;
8236  	struct md_rdev *tmp;
8237  	int first = 0;
8238  	int last = conf->raid_disks - 1;
8239  
8240  	if (test_bit(Journal, &rdev->flags)) {
8241  		if (conf->log)
8242  			return -EBUSY;
8243  
8244  		rdev->raid_disk = 0;
8245  		/*
8246  		 * The array is in readonly mode if journal is missing, so no
8247  		 * write requests running. We should be safe
8248  		 */
8249  		ret = log_init(conf, rdev, false);
8250  		if (ret)
8251  			return ret;
8252  
8253  		ret = r5l_start(conf->log);
8254  		if (ret)
8255  			return ret;
8256  
8257  		return 0;
8258  	}
8259  	if (mddev->recovery_disabled == conf->recovery_disabled)
8260  		return -EBUSY;
8261  
8262  	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8263  		/* no point adding a device */
8264  		return -EINVAL;
8265  
8266  	if (rdev->raid_disk >= 0)
8267  		first = last = rdev->raid_disk;
8268  
8269  	/*
8270  	 * find the disk ... but prefer rdev->saved_raid_disk
8271  	 * if possible.
8272  	 */
8273  	if (rdev->saved_raid_disk >= first &&
8274  	    rdev->saved_raid_disk <= last &&
8275  	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8276  		first = rdev->saved_raid_disk;
8277  
8278  	for (disk = first; disk <= last; disk++) {
8279  		p = conf->disks + disk;
8280  		if (p->rdev == NULL) {
8281  			clear_bit(In_sync, &rdev->flags);
8282  			rdev->raid_disk = disk;
8283  			if (rdev->saved_raid_disk != disk)
8284  				conf->fullsync = 1;
8285  			WRITE_ONCE(p->rdev, rdev);
8286  
8287  			err = log_modify(conf, rdev, true);
8288  
8289  			goto out;
8290  		}
8291  	}
8292  	for (disk = first; disk <= last; disk++) {
8293  		p = conf->disks + disk;
8294  		tmp = p->rdev;
8295  		if (test_bit(WantReplacement, &tmp->flags) &&
8296  		    mddev->reshape_position == MaxSector &&
8297  		    p->replacement == NULL) {
8298  			clear_bit(In_sync, &rdev->flags);
8299  			set_bit(Replacement, &rdev->flags);
8300  			rdev->raid_disk = disk;
8301  			err = 0;
8302  			conf->fullsync = 1;
8303  			WRITE_ONCE(p->replacement, rdev);
8304  			break;
8305  		}
8306  	}
8307  out:
8308  	print_raid5_conf(conf);
8309  	return err;
8310  }
8311  
raid5_resize(struct mddev * mddev,sector_t sectors)8312  static int raid5_resize(struct mddev *mddev, sector_t sectors)
8313  {
8314  	/* no resync is happening, and there is enough space
8315  	 * on all devices, so we can resize.
8316  	 * We need to make sure resync covers any new space.
8317  	 * If the array is shrinking we should possibly wait until
8318  	 * any io in the removed space completes, but it hardly seems
8319  	 * worth it.
8320  	 */
8321  	sector_t newsize;
8322  	struct r5conf *conf = mddev->private;
8323  	int ret;
8324  
8325  	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8326  		return -EINVAL;
8327  	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8328  	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8329  	if (mddev->external_size &&
8330  	    mddev->array_sectors > newsize)
8331  		return -EINVAL;
8332  
8333  	ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8334  	if (ret)
8335  		return ret;
8336  
8337  	md_set_array_sectors(mddev, newsize);
8338  	if (sectors > mddev->dev_sectors &&
8339  	    mddev->recovery_cp > mddev->dev_sectors) {
8340  		mddev->recovery_cp = mddev->dev_sectors;
8341  		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8342  	}
8343  	mddev->dev_sectors = sectors;
8344  	mddev->resync_max_sectors = sectors;
8345  	return 0;
8346  }
8347  
check_stripe_cache(struct mddev * mddev)8348  static int check_stripe_cache(struct mddev *mddev)
8349  {
8350  	/* Can only proceed if there are plenty of stripe_heads.
8351  	 * We need a minimum of one full stripe,, and for sensible progress
8352  	 * it is best to have about 4 times that.
8353  	 * If we require 4 times, then the default 256 4K stripe_heads will
8354  	 * allow for chunk sizes up to 256K, which is probably OK.
8355  	 * If the chunk size is greater, user-space should request more
8356  	 * stripe_heads first.
8357  	 */
8358  	struct r5conf *conf = mddev->private;
8359  	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8360  	    > conf->min_nr_stripes ||
8361  	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8362  	    > conf->min_nr_stripes) {
8363  		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8364  			mdname(mddev),
8365  			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8366  			 / RAID5_STRIPE_SIZE(conf))*4);
8367  		return 0;
8368  	}
8369  	return 1;
8370  }
8371  
check_reshape(struct mddev * mddev)8372  static int check_reshape(struct mddev *mddev)
8373  {
8374  	struct r5conf *conf = mddev->private;
8375  
8376  	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8377  		return -EINVAL;
8378  	if (mddev->delta_disks == 0 &&
8379  	    mddev->new_layout == mddev->layout &&
8380  	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8381  		return 0; /* nothing to do */
8382  	if (has_failed(conf))
8383  		return -EINVAL;
8384  	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8385  		/* We might be able to shrink, but the devices must
8386  		 * be made bigger first.
8387  		 * For raid6, 4 is the minimum size.
8388  		 * Otherwise 2 is the minimum
8389  		 */
8390  		int min = 2;
8391  		if (mddev->level == 6)
8392  			min = 4;
8393  		if (mddev->raid_disks + mddev->delta_disks < min)
8394  			return -EINVAL;
8395  	}
8396  
8397  	if (!check_stripe_cache(mddev))
8398  		return -ENOSPC;
8399  
8400  	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8401  	    mddev->delta_disks > 0)
8402  		if (resize_chunks(conf,
8403  				  conf->previous_raid_disks
8404  				  + max(0, mddev->delta_disks),
8405  				  max(mddev->new_chunk_sectors,
8406  				      mddev->chunk_sectors)
8407  			    ) < 0)
8408  			return -ENOMEM;
8409  
8410  	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8411  		return 0; /* never bother to shrink */
8412  	return resize_stripes(conf, (conf->previous_raid_disks
8413  				     + mddev->delta_disks));
8414  }
8415  
raid5_start_reshape(struct mddev * mddev)8416  static int raid5_start_reshape(struct mddev *mddev)
8417  {
8418  	struct r5conf *conf = mddev->private;
8419  	struct md_rdev *rdev;
8420  	int spares = 0;
8421  	int i;
8422  	unsigned long flags;
8423  
8424  	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8425  		return -EBUSY;
8426  
8427  	if (!check_stripe_cache(mddev))
8428  		return -ENOSPC;
8429  
8430  	if (has_failed(conf))
8431  		return -EINVAL;
8432  
8433  	/* raid5 can't handle concurrent reshape and recovery */
8434  	if (mddev->recovery_cp < MaxSector)
8435  		return -EBUSY;
8436  	for (i = 0; i < conf->raid_disks; i++)
8437  		if (conf->disks[i].replacement)
8438  			return -EBUSY;
8439  
8440  	rdev_for_each(rdev, mddev) {
8441  		if (!test_bit(In_sync, &rdev->flags)
8442  		    && !test_bit(Faulty, &rdev->flags))
8443  			spares++;
8444  	}
8445  
8446  	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8447  		/* Not enough devices even to make a degraded array
8448  		 * of that size
8449  		 */
8450  		return -EINVAL;
8451  
8452  	/* Refuse to reduce size of the array.  Any reductions in
8453  	 * array size must be through explicit setting of array_size
8454  	 * attribute.
8455  	 */
8456  	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8457  	    < mddev->array_sectors) {
8458  		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8459  			mdname(mddev));
8460  		return -EINVAL;
8461  	}
8462  
8463  	atomic_set(&conf->reshape_stripes, 0);
8464  	spin_lock_irq(&conf->device_lock);
8465  	write_seqcount_begin(&conf->gen_lock);
8466  	conf->previous_raid_disks = conf->raid_disks;
8467  	conf->raid_disks += mddev->delta_disks;
8468  	conf->prev_chunk_sectors = conf->chunk_sectors;
8469  	conf->chunk_sectors = mddev->new_chunk_sectors;
8470  	conf->prev_algo = conf->algorithm;
8471  	conf->algorithm = mddev->new_layout;
8472  	conf->generation++;
8473  	/* Code that selects data_offset needs to see the generation update
8474  	 * if reshape_progress has been set - so a memory barrier needed.
8475  	 */
8476  	smp_mb();
8477  	if (mddev->reshape_backwards)
8478  		conf->reshape_progress = raid5_size(mddev, 0, 0);
8479  	else
8480  		conf->reshape_progress = 0;
8481  	conf->reshape_safe = conf->reshape_progress;
8482  	write_seqcount_end(&conf->gen_lock);
8483  	spin_unlock_irq(&conf->device_lock);
8484  
8485  	/* Now make sure any requests that proceeded on the assumption
8486  	 * the reshape wasn't running - like Discard or Read - have
8487  	 * completed.
8488  	 */
8489  	raid5_quiesce(mddev, true);
8490  	raid5_quiesce(mddev, false);
8491  
8492  	/* Add some new drives, as many as will fit.
8493  	 * We know there are enough to make the newly sized array work.
8494  	 * Don't add devices if we are reducing the number of
8495  	 * devices in the array.  This is because it is not possible
8496  	 * to correctly record the "partially reconstructed" state of
8497  	 * such devices during the reshape and confusion could result.
8498  	 */
8499  	if (mddev->delta_disks >= 0) {
8500  		rdev_for_each(rdev, mddev)
8501  			if (rdev->raid_disk < 0 &&
8502  			    !test_bit(Faulty, &rdev->flags)) {
8503  				if (raid5_add_disk(mddev, rdev) == 0) {
8504  					if (rdev->raid_disk
8505  					    >= conf->previous_raid_disks)
8506  						set_bit(In_sync, &rdev->flags);
8507  					else
8508  						rdev->recovery_offset = 0;
8509  
8510  					/* Failure here is OK */
8511  					sysfs_link_rdev(mddev, rdev);
8512  				}
8513  			} else if (rdev->raid_disk >= conf->previous_raid_disks
8514  				   && !test_bit(Faulty, &rdev->flags)) {
8515  				/* This is a spare that was manually added */
8516  				set_bit(In_sync, &rdev->flags);
8517  			}
8518  
8519  		/* When a reshape changes the number of devices,
8520  		 * ->degraded is measured against the larger of the
8521  		 * pre and post number of devices.
8522  		 */
8523  		spin_lock_irqsave(&conf->device_lock, flags);
8524  		mddev->degraded = raid5_calc_degraded(conf);
8525  		spin_unlock_irqrestore(&conf->device_lock, flags);
8526  	}
8527  	mddev->raid_disks = conf->raid_disks;
8528  	mddev->reshape_position = conf->reshape_progress;
8529  	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8530  
8531  	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8532  	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8533  	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8534  	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8535  	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8536  	conf->reshape_checkpoint = jiffies;
8537  	md_new_event();
8538  	return 0;
8539  }
8540  
8541  /* This is called from the reshape thread and should make any
8542   * changes needed in 'conf'
8543   */
end_reshape(struct r5conf * conf)8544  static void end_reshape(struct r5conf *conf)
8545  {
8546  
8547  	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8548  		struct md_rdev *rdev;
8549  
8550  		spin_lock_irq(&conf->device_lock);
8551  		conf->previous_raid_disks = conf->raid_disks;
8552  		md_finish_reshape(conf->mddev);
8553  		smp_wmb();
8554  		conf->reshape_progress = MaxSector;
8555  		conf->mddev->reshape_position = MaxSector;
8556  		rdev_for_each(rdev, conf->mddev)
8557  			if (rdev->raid_disk >= 0 &&
8558  			    !test_bit(Journal, &rdev->flags) &&
8559  			    !test_bit(In_sync, &rdev->flags))
8560  				rdev->recovery_offset = MaxSector;
8561  		spin_unlock_irq(&conf->device_lock);
8562  		wake_up(&conf->wait_for_reshape);
8563  
8564  		mddev_update_io_opt(conf->mddev,
8565  			conf->raid_disks - conf->max_degraded);
8566  	}
8567  }
8568  
8569  /* This is called from the raid5d thread with mddev_lock held.
8570   * It makes config changes to the device.
8571   */
raid5_finish_reshape(struct mddev * mddev)8572  static void raid5_finish_reshape(struct mddev *mddev)
8573  {
8574  	struct r5conf *conf = mddev->private;
8575  	struct md_rdev *rdev;
8576  
8577  	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8578  
8579  		if (mddev->delta_disks <= 0) {
8580  			int d;
8581  			spin_lock_irq(&conf->device_lock);
8582  			mddev->degraded = raid5_calc_degraded(conf);
8583  			spin_unlock_irq(&conf->device_lock);
8584  			for (d = conf->raid_disks ;
8585  			     d < conf->raid_disks - mddev->delta_disks;
8586  			     d++) {
8587  				rdev = conf->disks[d].rdev;
8588  				if (rdev)
8589  					clear_bit(In_sync, &rdev->flags);
8590  				rdev = conf->disks[d].replacement;
8591  				if (rdev)
8592  					clear_bit(In_sync, &rdev->flags);
8593  			}
8594  		}
8595  		mddev->layout = conf->algorithm;
8596  		mddev->chunk_sectors = conf->chunk_sectors;
8597  		mddev->reshape_position = MaxSector;
8598  		mddev->delta_disks = 0;
8599  		mddev->reshape_backwards = 0;
8600  	}
8601  }
8602  
raid5_quiesce(struct mddev * mddev,int quiesce)8603  static void raid5_quiesce(struct mddev *mddev, int quiesce)
8604  {
8605  	struct r5conf *conf = mddev->private;
8606  
8607  	if (quiesce) {
8608  		/* stop all writes */
8609  		lock_all_device_hash_locks_irq(conf);
8610  		/* '2' tells resync/reshape to pause so that all
8611  		 * active stripes can drain
8612  		 */
8613  		r5c_flush_cache(conf, INT_MAX);
8614  		/* need a memory barrier to make sure read_one_chunk() sees
8615  		 * quiesce started and reverts to slow (locked) path.
8616  		 */
8617  		smp_store_release(&conf->quiesce, 2);
8618  		wait_event_cmd(conf->wait_for_quiescent,
8619  				    atomic_read(&conf->active_stripes) == 0 &&
8620  				    atomic_read(&conf->active_aligned_reads) == 0,
8621  				    unlock_all_device_hash_locks_irq(conf),
8622  				    lock_all_device_hash_locks_irq(conf));
8623  		conf->quiesce = 1;
8624  		unlock_all_device_hash_locks_irq(conf);
8625  		/* allow reshape to continue */
8626  		wake_up(&conf->wait_for_reshape);
8627  	} else {
8628  		/* re-enable writes */
8629  		lock_all_device_hash_locks_irq(conf);
8630  		conf->quiesce = 0;
8631  		wake_up(&conf->wait_for_quiescent);
8632  		wake_up(&conf->wait_for_reshape);
8633  		unlock_all_device_hash_locks_irq(conf);
8634  	}
8635  	log_quiesce(conf, quiesce);
8636  }
8637  
raid45_takeover_raid0(struct mddev * mddev,int level)8638  static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8639  {
8640  	struct r0conf *raid0_conf = mddev->private;
8641  	sector_t sectors;
8642  
8643  	/* for raid0 takeover only one zone is supported */
8644  	if (raid0_conf->nr_strip_zones > 1) {
8645  		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8646  			mdname(mddev));
8647  		return ERR_PTR(-EINVAL);
8648  	}
8649  
8650  	sectors = raid0_conf->strip_zone[0].zone_end;
8651  	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8652  	mddev->dev_sectors = sectors;
8653  	mddev->new_level = level;
8654  	mddev->new_layout = ALGORITHM_PARITY_N;
8655  	mddev->new_chunk_sectors = mddev->chunk_sectors;
8656  	mddev->raid_disks += 1;
8657  	mddev->delta_disks = 1;
8658  	/* make sure it will be not marked as dirty */
8659  	mddev->recovery_cp = MaxSector;
8660  
8661  	return setup_conf(mddev);
8662  }
8663  
raid5_takeover_raid1(struct mddev * mddev)8664  static void *raid5_takeover_raid1(struct mddev *mddev)
8665  {
8666  	int chunksect;
8667  	void *ret;
8668  
8669  	if (mddev->raid_disks != 2 ||
8670  	    mddev->degraded > 1)
8671  		return ERR_PTR(-EINVAL);
8672  
8673  	/* Should check if there are write-behind devices? */
8674  
8675  	chunksect = 64*2; /* 64K by default */
8676  
8677  	/* The array must be an exact multiple of chunksize */
8678  	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8679  		chunksect >>= 1;
8680  
8681  	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8682  		/* array size does not allow a suitable chunk size */
8683  		return ERR_PTR(-EINVAL);
8684  
8685  	mddev->new_level = 5;
8686  	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8687  	mddev->new_chunk_sectors = chunksect;
8688  
8689  	ret = setup_conf(mddev);
8690  	if (!IS_ERR(ret))
8691  		mddev_clear_unsupported_flags(mddev,
8692  			UNSUPPORTED_MDDEV_FLAGS);
8693  	return ret;
8694  }
8695  
raid5_takeover_raid6(struct mddev * mddev)8696  static void *raid5_takeover_raid6(struct mddev *mddev)
8697  {
8698  	int new_layout;
8699  
8700  	switch (mddev->layout) {
8701  	case ALGORITHM_LEFT_ASYMMETRIC_6:
8702  		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8703  		break;
8704  	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8705  		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8706  		break;
8707  	case ALGORITHM_LEFT_SYMMETRIC_6:
8708  		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8709  		break;
8710  	case ALGORITHM_RIGHT_SYMMETRIC_6:
8711  		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8712  		break;
8713  	case ALGORITHM_PARITY_0_6:
8714  		new_layout = ALGORITHM_PARITY_0;
8715  		break;
8716  	case ALGORITHM_PARITY_N:
8717  		new_layout = ALGORITHM_PARITY_N;
8718  		break;
8719  	default:
8720  		return ERR_PTR(-EINVAL);
8721  	}
8722  	mddev->new_level = 5;
8723  	mddev->new_layout = new_layout;
8724  	mddev->delta_disks = -1;
8725  	mddev->raid_disks -= 1;
8726  	return setup_conf(mddev);
8727  }
8728  
raid5_check_reshape(struct mddev * mddev)8729  static int raid5_check_reshape(struct mddev *mddev)
8730  {
8731  	/* For a 2-drive array, the layout and chunk size can be changed
8732  	 * immediately as not restriping is needed.
8733  	 * For larger arrays we record the new value - after validation
8734  	 * to be used by a reshape pass.
8735  	 */
8736  	struct r5conf *conf = mddev->private;
8737  	int new_chunk = mddev->new_chunk_sectors;
8738  
8739  	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8740  		return -EINVAL;
8741  	if (new_chunk > 0) {
8742  		if (!is_power_of_2(new_chunk))
8743  			return -EINVAL;
8744  		if (new_chunk < (PAGE_SIZE>>9))
8745  			return -EINVAL;
8746  		if (mddev->array_sectors & (new_chunk-1))
8747  			/* not factor of array size */
8748  			return -EINVAL;
8749  	}
8750  
8751  	/* They look valid */
8752  
8753  	if (mddev->raid_disks == 2) {
8754  		/* can make the change immediately */
8755  		if (mddev->new_layout >= 0) {
8756  			conf->algorithm = mddev->new_layout;
8757  			mddev->layout = mddev->new_layout;
8758  		}
8759  		if (new_chunk > 0) {
8760  			conf->chunk_sectors = new_chunk ;
8761  			mddev->chunk_sectors = new_chunk;
8762  		}
8763  		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8764  		md_wakeup_thread(mddev->thread);
8765  	}
8766  	return check_reshape(mddev);
8767  }
8768  
raid6_check_reshape(struct mddev * mddev)8769  static int raid6_check_reshape(struct mddev *mddev)
8770  {
8771  	int new_chunk = mddev->new_chunk_sectors;
8772  
8773  	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8774  		return -EINVAL;
8775  	if (new_chunk > 0) {
8776  		if (!is_power_of_2(new_chunk))
8777  			return -EINVAL;
8778  		if (new_chunk < (PAGE_SIZE >> 9))
8779  			return -EINVAL;
8780  		if (mddev->array_sectors & (new_chunk-1))
8781  			/* not factor of array size */
8782  			return -EINVAL;
8783  	}
8784  
8785  	/* They look valid */
8786  	return check_reshape(mddev);
8787  }
8788  
raid5_takeover(struct mddev * mddev)8789  static void *raid5_takeover(struct mddev *mddev)
8790  {
8791  	/* raid5 can take over:
8792  	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8793  	 *  raid1 - if there are two drives.  We need to know the chunk size
8794  	 *  raid4 - trivial - just use a raid4 layout.
8795  	 *  raid6 - Providing it is a *_6 layout
8796  	 */
8797  	if (mddev->level == 0)
8798  		return raid45_takeover_raid0(mddev, 5);
8799  	if (mddev->level == 1)
8800  		return raid5_takeover_raid1(mddev);
8801  	if (mddev->level == 4) {
8802  		mddev->new_layout = ALGORITHM_PARITY_N;
8803  		mddev->new_level = 5;
8804  		return setup_conf(mddev);
8805  	}
8806  	if (mddev->level == 6)
8807  		return raid5_takeover_raid6(mddev);
8808  
8809  	return ERR_PTR(-EINVAL);
8810  }
8811  
raid4_takeover(struct mddev * mddev)8812  static void *raid4_takeover(struct mddev *mddev)
8813  {
8814  	/* raid4 can take over:
8815  	 *  raid0 - if there is only one strip zone
8816  	 *  raid5 - if layout is right
8817  	 */
8818  	if (mddev->level == 0)
8819  		return raid45_takeover_raid0(mddev, 4);
8820  	if (mddev->level == 5 &&
8821  	    mddev->layout == ALGORITHM_PARITY_N) {
8822  		mddev->new_layout = 0;
8823  		mddev->new_level = 4;
8824  		return setup_conf(mddev);
8825  	}
8826  	return ERR_PTR(-EINVAL);
8827  }
8828  
8829  static struct md_personality raid5_personality;
8830  
raid6_takeover(struct mddev * mddev)8831  static void *raid6_takeover(struct mddev *mddev)
8832  {
8833  	/* Currently can only take over a raid5.  We map the
8834  	 * personality to an equivalent raid6 personality
8835  	 * with the Q block at the end.
8836  	 */
8837  	int new_layout;
8838  
8839  	if (mddev->pers != &raid5_personality)
8840  		return ERR_PTR(-EINVAL);
8841  	if (mddev->degraded > 1)
8842  		return ERR_PTR(-EINVAL);
8843  	if (mddev->raid_disks > 253)
8844  		return ERR_PTR(-EINVAL);
8845  	if (mddev->raid_disks < 3)
8846  		return ERR_PTR(-EINVAL);
8847  
8848  	switch (mddev->layout) {
8849  	case ALGORITHM_LEFT_ASYMMETRIC:
8850  		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8851  		break;
8852  	case ALGORITHM_RIGHT_ASYMMETRIC:
8853  		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8854  		break;
8855  	case ALGORITHM_LEFT_SYMMETRIC:
8856  		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8857  		break;
8858  	case ALGORITHM_RIGHT_SYMMETRIC:
8859  		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8860  		break;
8861  	case ALGORITHM_PARITY_0:
8862  		new_layout = ALGORITHM_PARITY_0_6;
8863  		break;
8864  	case ALGORITHM_PARITY_N:
8865  		new_layout = ALGORITHM_PARITY_N;
8866  		break;
8867  	default:
8868  		return ERR_PTR(-EINVAL);
8869  	}
8870  	mddev->new_level = 6;
8871  	mddev->new_layout = new_layout;
8872  	mddev->delta_disks = 1;
8873  	mddev->raid_disks += 1;
8874  	return setup_conf(mddev);
8875  }
8876  
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8877  static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8878  {
8879  	struct r5conf *conf;
8880  	int err;
8881  
8882  	err = mddev_suspend_and_lock(mddev);
8883  	if (err)
8884  		return err;
8885  	conf = mddev->private;
8886  	if (!conf) {
8887  		mddev_unlock_and_resume(mddev);
8888  		return -ENODEV;
8889  	}
8890  
8891  	if (strncmp(buf, "ppl", 3) == 0) {
8892  		/* ppl only works with RAID 5 */
8893  		if (!raid5_has_ppl(conf) && conf->level == 5) {
8894  			err = log_init(conf, NULL, true);
8895  			if (!err) {
8896  				err = resize_stripes(conf, conf->pool_size);
8897  				if (err)
8898  					log_exit(conf);
8899  			}
8900  		} else
8901  			err = -EINVAL;
8902  	} else if (strncmp(buf, "resync", 6) == 0) {
8903  		if (raid5_has_ppl(conf)) {
8904  			log_exit(conf);
8905  			err = resize_stripes(conf, conf->pool_size);
8906  		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8907  			   r5l_log_disk_error(conf)) {
8908  			bool journal_dev_exists = false;
8909  			struct md_rdev *rdev;
8910  
8911  			rdev_for_each(rdev, mddev)
8912  				if (test_bit(Journal, &rdev->flags)) {
8913  					journal_dev_exists = true;
8914  					break;
8915  				}
8916  
8917  			if (!journal_dev_exists)
8918  				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8919  			else  /* need remove journal device first */
8920  				err = -EBUSY;
8921  		} else
8922  			err = -EINVAL;
8923  	} else {
8924  		err = -EINVAL;
8925  	}
8926  
8927  	if (!err)
8928  		md_update_sb(mddev, 1);
8929  
8930  	mddev_unlock_and_resume(mddev);
8931  
8932  	return err;
8933  }
8934  
raid5_start(struct mddev * mddev)8935  static int raid5_start(struct mddev *mddev)
8936  {
8937  	struct r5conf *conf = mddev->private;
8938  
8939  	return r5l_start(conf->log);
8940  }
8941  
8942  /*
8943   * This is only used for dm-raid456, caller already frozen sync_thread, hence
8944   * if rehsape is still in progress, io that is waiting for reshape can never be
8945   * done now, hence wake up and handle those IO.
8946   */
raid5_prepare_suspend(struct mddev * mddev)8947  static void raid5_prepare_suspend(struct mddev *mddev)
8948  {
8949  	struct r5conf *conf = mddev->private;
8950  
8951  	wake_up(&conf->wait_for_reshape);
8952  }
8953  
8954  static struct md_personality raid6_personality =
8955  {
8956  	.head = {
8957  		.type	= MD_PERSONALITY,
8958  		.id	= ID_RAID6,
8959  		.name	= "raid6",
8960  		.owner	= THIS_MODULE,
8961  	},
8962  
8963  	.make_request	= raid5_make_request,
8964  	.run		= raid5_run,
8965  	.start		= raid5_start,
8966  	.free		= raid5_free,
8967  	.status		= raid5_status,
8968  	.error_handler	= raid5_error,
8969  	.hot_add_disk	= raid5_add_disk,
8970  	.hot_remove_disk= raid5_remove_disk,
8971  	.spare_active	= raid5_spare_active,
8972  	.sync_request	= raid5_sync_request,
8973  	.resize		= raid5_resize,
8974  	.size		= raid5_size,
8975  	.check_reshape	= raid6_check_reshape,
8976  	.start_reshape  = raid5_start_reshape,
8977  	.finish_reshape = raid5_finish_reshape,
8978  	.quiesce	= raid5_quiesce,
8979  	.takeover	= raid6_takeover,
8980  	.change_consistency_policy = raid5_change_consistency_policy,
8981  	.prepare_suspend = raid5_prepare_suspend,
8982  	.bitmap_sector	= raid5_bitmap_sector,
8983  };
8984  static struct md_personality raid5_personality =
8985  {
8986  	.head = {
8987  		.type	= MD_PERSONALITY,
8988  		.id	= ID_RAID5,
8989  		.name	= "raid5",
8990  		.owner	= THIS_MODULE,
8991  	},
8992  
8993  	.make_request	= raid5_make_request,
8994  	.run		= raid5_run,
8995  	.start		= raid5_start,
8996  	.free		= raid5_free,
8997  	.status		= raid5_status,
8998  	.error_handler	= raid5_error,
8999  	.hot_add_disk	= raid5_add_disk,
9000  	.hot_remove_disk= raid5_remove_disk,
9001  	.spare_active	= raid5_spare_active,
9002  	.sync_request	= raid5_sync_request,
9003  	.resize		= raid5_resize,
9004  	.size		= raid5_size,
9005  	.check_reshape	= raid5_check_reshape,
9006  	.start_reshape  = raid5_start_reshape,
9007  	.finish_reshape = raid5_finish_reshape,
9008  	.quiesce	= raid5_quiesce,
9009  	.takeover	= raid5_takeover,
9010  	.change_consistency_policy = raid5_change_consistency_policy,
9011  	.prepare_suspend = raid5_prepare_suspend,
9012  	.bitmap_sector	= raid5_bitmap_sector,
9013  };
9014  
9015  static struct md_personality raid4_personality =
9016  {
9017  	.head = {
9018  		.type	= MD_PERSONALITY,
9019  		.id	= ID_RAID4,
9020  		.name	= "raid4",
9021  		.owner	= THIS_MODULE,
9022  	},
9023  
9024  	.make_request	= raid5_make_request,
9025  	.run		= raid5_run,
9026  	.start		= raid5_start,
9027  	.free		= raid5_free,
9028  	.status		= raid5_status,
9029  	.error_handler	= raid5_error,
9030  	.hot_add_disk	= raid5_add_disk,
9031  	.hot_remove_disk= raid5_remove_disk,
9032  	.spare_active	= raid5_spare_active,
9033  	.sync_request	= raid5_sync_request,
9034  	.resize		= raid5_resize,
9035  	.size		= raid5_size,
9036  	.check_reshape	= raid5_check_reshape,
9037  	.start_reshape  = raid5_start_reshape,
9038  	.finish_reshape = raid5_finish_reshape,
9039  	.quiesce	= raid5_quiesce,
9040  	.takeover	= raid4_takeover,
9041  	.change_consistency_policy = raid5_change_consistency_policy,
9042  	.prepare_suspend = raid5_prepare_suspend,
9043  	.bitmap_sector	= raid5_bitmap_sector,
9044  };
9045  
raid5_init(void)9046  static int __init raid5_init(void)
9047  {
9048  	int ret;
9049  
9050  	raid5_wq = alloc_workqueue("raid5wq",
9051  		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9052  	if (!raid5_wq)
9053  		return -ENOMEM;
9054  
9055  	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9056  				      "md/raid5:prepare",
9057  				      raid456_cpu_up_prepare,
9058  				      raid456_cpu_dead);
9059  	if (ret)
9060  		goto err_destroy_wq;
9061  
9062  	ret = register_md_submodule(&raid6_personality.head);
9063  	if (ret)
9064  		goto err_cpuhp_remove;
9065  
9066  	ret = register_md_submodule(&raid5_personality.head);
9067  	if (ret)
9068  		goto err_unregister_raid6;
9069  
9070  	ret = register_md_submodule(&raid4_personality.head);
9071  	if (ret)
9072  		goto err_unregister_raid5;
9073  
9074  	return 0;
9075  
9076  err_unregister_raid5:
9077  	unregister_md_submodule(&raid5_personality.head);
9078  err_unregister_raid6:
9079  	unregister_md_submodule(&raid6_personality.head);
9080  err_cpuhp_remove:
9081  	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9082  err_destroy_wq:
9083  	destroy_workqueue(raid5_wq);
9084  	return ret;
9085  }
9086  
raid5_exit(void)9087  static void __exit raid5_exit(void)
9088  {
9089  	unregister_md_submodule(&raid6_personality.head);
9090  	unregister_md_submodule(&raid5_personality.head);
9091  	unregister_md_submodule(&raid4_personality.head);
9092  	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9093  	destroy_workqueue(raid5_wq);
9094  }
9095  
9096  module_init(raid5_init);
9097  module_exit(raid5_exit);
9098  MODULE_LICENSE("GPL");
9099  MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9100  MODULE_ALIAS("md-personality-4"); /* RAID5 */
9101  MODULE_ALIAS("md-raid5");
9102  MODULE_ALIAS("md-raid4");
9103  MODULE_ALIAS("md-level-5");
9104  MODULE_ALIAS("md-level-4");
9105  MODULE_ALIAS("md-personality-8"); /* RAID6 */
9106  MODULE_ALIAS("md-raid6");
9107  MODULE_ALIAS("md-level-6");
9108  
9109  /* This used to be two separate modules, they were: */
9110  MODULE_ALIAS("raid5");
9111  MODULE_ALIAS("raid6");
9112