xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp (revision 36b606ae6aa4b24061096ba18582e0a08ccd5dba)
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineCombinerPattern.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/PseudoSourceValue.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/TargetRegistry.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "ppc-instr-info"
49 
50 #define GET_INSTRMAP_INFO
51 #define GET_INSTRINFO_CTOR_DTOR
52 #include "PPCGenInstrInfo.inc"
53 
54 STATISTIC(NumStoreSPILLVSRRCAsVec,
55           "Number of spillvsrrc spilled to stack as vec");
56 STATISTIC(NumStoreSPILLVSRRCAsGpr,
57           "Number of spillvsrrc spilled to stack as gpr");
58 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
59 STATISTIC(CmpIselsConverted,
60           "Number of ISELs that depend on comparison of constants converted");
61 STATISTIC(MissedConvertibleImmediateInstrs,
62           "Number of compare-immediate instructions fed by constants");
63 STATISTIC(NumRcRotatesConvertedToRcAnd,
64           "Number of record-form rotates converted to record-form andi");
65 
66 static cl::
67 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
68             cl::desc("Disable analysis for CTR loops"));
69 
70 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
71 cl::desc("Disable compare instruction optimization"), cl::Hidden);
72 
73 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
74 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
75 cl::Hidden);
76 
77 static cl::opt<bool>
78 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
79   cl::desc("Use the old (incorrect) instruction latency calculation"));
80 
81 static cl::opt<float>
82     FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
83                 cl::desc("register pressure factor for the transformations."));
84 
85 static cl::opt<bool> EnableFMARegPressureReduction(
86     "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
87     cl::desc("enable register pressure reduce in machine combiner pass."));
88 
89 // Pin the vtable to this file.
anchor()90 void PPCInstrInfo::anchor() {}
91 
PPCInstrInfo(PPCSubtarget & STI)92 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
93     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
94                       /* CatchRetOpcode */ -1,
95                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
96       Subtarget(STI), RI(STI.getTargetMachine()) {}
97 
98 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
99 /// this target when scheduling the DAG.
100 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const101 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
102                                            const ScheduleDAG *DAG) const {
103   unsigned Directive =
104       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
105   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
106       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
107     const InstrItineraryData *II =
108         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
109     return new ScoreboardHazardRecognizer(II, DAG);
110   }
111 
112   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
113 }
114 
115 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
116 /// to use for this target when scheduling the DAG.
117 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const118 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
119                                                  const ScheduleDAG *DAG) const {
120   unsigned Directive =
121       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
122 
123   // FIXME: Leaving this as-is until we have POWER9 scheduling info
124   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
125     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
126 
127   // Most subtargets use a PPC970 recognizer.
128   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
129       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
130     assert(DAG->TII && "No InstrInfo?");
131 
132     return new PPCHazardRecognizer970(*DAG);
133   }
134 
135   return new ScoreboardHazardRecognizer(II, DAG);
136 }
137 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const138 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
139                                        const MachineInstr &MI,
140                                        unsigned *PredCost) const {
141   if (!ItinData || UseOldLatencyCalc)
142     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
143 
144   // The default implementation of getInstrLatency calls getStageLatency, but
145   // getStageLatency does not do the right thing for us. While we have
146   // itinerary, most cores are fully pipelined, and so the itineraries only
147   // express the first part of the pipeline, not every stage. Instead, we need
148   // to use the listed output operand cycle number (using operand 0 here, which
149   // is an output).
150 
151   unsigned Latency = 1;
152   unsigned DefClass = MI.getDesc().getSchedClass();
153   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
154     const MachineOperand &MO = MI.getOperand(i);
155     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
156       continue;
157 
158     std::optional<unsigned> Cycle = ItinData->getOperandCycle(DefClass, i);
159     if (!Cycle)
160       continue;
161 
162     Latency = std::max(Latency, *Cycle);
163   }
164 
165   return Latency;
166 }
167 
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const168 std::optional<unsigned> PPCInstrInfo::getOperandLatency(
169     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
170     unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
171   std::optional<unsigned> Latency = PPCGenInstrInfo::getOperandLatency(
172       ItinData, DefMI, DefIdx, UseMI, UseIdx);
173 
174   if (!DefMI.getParent())
175     return Latency;
176 
177   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
178   Register Reg = DefMO.getReg();
179 
180   bool IsRegCR;
181   if (Reg.isVirtual()) {
182     const MachineRegisterInfo *MRI =
183         &DefMI.getParent()->getParent()->getRegInfo();
184     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
185               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
186   } else {
187     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
188               PPC::CRBITRCRegClass.contains(Reg);
189   }
190 
191   if (UseMI.isBranch() && IsRegCR) {
192     if (!Latency)
193       Latency = getInstrLatency(ItinData, DefMI);
194 
195     // On some cores, there is an additional delay between writing to a condition
196     // register, and using it from a branch.
197     unsigned Directive = Subtarget.getCPUDirective();
198     switch (Directive) {
199     default: break;
200     case PPC::DIR_7400:
201     case PPC::DIR_750:
202     case PPC::DIR_970:
203     case PPC::DIR_E5500:
204     case PPC::DIR_PWR4:
205     case PPC::DIR_PWR5:
206     case PPC::DIR_PWR5X:
207     case PPC::DIR_PWR6:
208     case PPC::DIR_PWR6X:
209     case PPC::DIR_PWR7:
210     case PPC::DIR_PWR8:
211     // FIXME: Is this needed for POWER9?
212     Latency = *Latency + 2;
213     break;
214     }
215   }
216 
217   return Latency;
218 }
219 
setSpecialOperandAttr(MachineInstr & MI,uint32_t Flags) const220 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
221                                          uint32_t Flags) const {
222   MI.setFlags(Flags);
223   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
224   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
225   MI.clearFlag(MachineInstr::MIFlag::IsExact);
226 }
227 
228 // This function does not list all associative and commutative operations, but
229 // only those worth feeding through the machine combiner in an attempt to
230 // reduce the critical path. Mostly, this means floating-point operations,
231 // because they have high latencies(>=5) (compared to other operations, such as
232 // and/or, which are also associative and commutative, but have low latencies).
isAssociativeAndCommutative(const MachineInstr & Inst,bool Invert) const233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
234                                                bool Invert) const {
235   if (Invert)
236     return false;
237   switch (Inst.getOpcode()) {
238   // Floating point:
239   // FP Add:
240   case PPC::FADD:
241   case PPC::FADDS:
242   // FP Multiply:
243   case PPC::FMUL:
244   case PPC::FMULS:
245   // Altivec Add:
246   case PPC::VADDFP:
247   // VSX Add:
248   case PPC::XSADDDP:
249   case PPC::XVADDDP:
250   case PPC::XVADDSP:
251   case PPC::XSADDSP:
252   // VSX Multiply:
253   case PPC::XSMULDP:
254   case PPC::XVMULDP:
255   case PPC::XVMULSP:
256   case PPC::XSMULSP:
257     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
258            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
259   // Fixed point:
260   // Multiply:
261   case PPC::MULHD:
262   case PPC::MULLD:
263   case PPC::MULHW:
264   case PPC::MULLW:
265     return true;
266   default:
267     return false;
268   }
269 }
270 
271 #define InfoArrayIdxFMAInst 0
272 #define InfoArrayIdxFAddInst 1
273 #define InfoArrayIdxFMULInst 2
274 #define InfoArrayIdxAddOpIdx 3
275 #define InfoArrayIdxMULOpIdx 4
276 #define InfoArrayIdxFSubInst 5
277 // Array keeps info for FMA instructions:
278 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
279 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
280 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
281 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
282 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
283 //                                second MUL operand index is plus 1;
284 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
285 static const uint16_t FMAOpIdxInfo[][6] = {
286     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
287     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
288     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
289     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
290     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
291     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
292     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
293 
294 // Check if an opcode is a FMA instruction. If it is, return the index in array
295 // FMAOpIdxInfo. Otherwise, return -1.
getFMAOpIdxInfo(unsigned Opcode) const296 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
297   for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++)
298     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
299       return I;
300   return -1;
301 }
302 
303 // On PowerPC target, we have two kinds of patterns related to FMA:
304 // 1: Improve ILP.
305 // Try to reassociate FMA chains like below:
306 //
307 // Pattern 1:
308 //   A =  FADD X,  Y          (Leaf)
309 //   B =  FMA  A,  M21,  M22  (Prev)
310 //   C =  FMA  B,  M31,  M32  (Root)
311 // -->
312 //   A =  FMA  X,  M21,  M22
313 //   B =  FMA  Y,  M31,  M32
314 //   C =  FADD A,  B
315 //
316 // Pattern 2:
317 //   A =  FMA  X,  M11,  M12  (Leaf)
318 //   B =  FMA  A,  M21,  M22  (Prev)
319 //   C =  FMA  B,  M31,  M32  (Root)
320 // -->
321 //   A =  FMUL M11,  M12
322 //   B =  FMA  X,  M21,  M22
323 //   D =  FMA  A,  M31,  M32
324 //   C =  FADD B,  D
325 //
326 // breaking the dependency between A and B, allowing FMA to be executed in
327 // parallel (or back-to-back in a pipeline) instead of depending on each other.
328 //
329 // 2: Reduce register pressure.
330 // Try to reassociate FMA with FSUB and a constant like below:
331 // C is a floating point const.
332 //
333 // Pattern 1:
334 //   A = FSUB  X,  Y      (Leaf)
335 //   D = FMA   B,  C,  A  (Root)
336 // -->
337 //   A = FMA   B,  Y,  -C
338 //   D = FMA   A,  X,  C
339 //
340 // Pattern 2:
341 //   A = FSUB  X,  Y      (Leaf)
342 //   D = FMA   B,  A,  C  (Root)
343 // -->
344 //   A = FMA   B,  Y,  -C
345 //   D = FMA   A,  X,  C
346 //
347 //  Before the transformation, A must be assigned with different hardware
348 //  register with D. After the transformation, A and D must be assigned with
349 //  same hardware register due to TIE attribute of FMA instructions.
350 //
getFMAPatterns(MachineInstr & Root,SmallVectorImpl<unsigned> & Patterns,bool DoRegPressureReduce) const351 bool PPCInstrInfo::getFMAPatterns(MachineInstr &Root,
352                                   SmallVectorImpl<unsigned> &Patterns,
353                                   bool DoRegPressureReduce) const {
354   MachineBasicBlock *MBB = Root.getParent();
355   const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
356   const TargetRegisterInfo *TRI = &getRegisterInfo();
357 
358   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
359     for (const auto &MO : Instr.explicit_operands())
360       if (!(MO.isReg() && MO.getReg().isVirtual()))
361         return false;
362     return true;
363   };
364 
365   auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
366                                     unsigned OpType) {
367     if (Instr.getOpcode() !=
368         FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
369       return false;
370 
371     // Instruction can be reassociated.
372     // fast math flags may prohibit reassociation.
373     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
374           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
375       return false;
376 
377     // Instruction operands are virtual registers for reassociation.
378     if (!IsAllOpsVirtualReg(Instr))
379       return false;
380 
381     // For register pressure reassociation, the FSub must have only one use as
382     // we want to delete the sub to save its def.
383     if (OpType == InfoArrayIdxFSubInst &&
384         !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
385       return false;
386 
387     return true;
388   };
389 
390   auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
391                                int16_t &MulOpIdx, bool IsLeaf) {
392     int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
393     if (Idx < 0)
394       return false;
395 
396     // Instruction can be reassociated.
397     // fast math flags may prohibit reassociation.
398     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
399           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
400       return false;
401 
402     // Instruction operands are virtual registers for reassociation.
403     if (!IsAllOpsVirtualReg(Instr))
404       return false;
405 
406     MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
407     if (IsLeaf)
408       return true;
409 
410     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
411 
412     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
413     MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
414     // If 'add' operand's def is not in current block, don't do ILP related opt.
415     if (!MIAdd || MIAdd->getParent() != MBB)
416       return false;
417 
418     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
419     // as this fma will be changed later.
420     return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
421   };
422 
423   int16_t AddOpIdx = -1;
424   int16_t MulOpIdx = -1;
425 
426   bool IsUsedOnceL = false;
427   bool IsUsedOnceR = false;
428   MachineInstr *MULInstrL = nullptr;
429   MachineInstr *MULInstrR = nullptr;
430 
431   auto IsRPReductionCandidate = [&]() {
432     // Currently, we only support float and double.
433     // FIXME: add support for other types.
434     unsigned Opcode = Root.getOpcode();
435     if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
436       return false;
437 
438     // Root must be a valid FMA like instruction.
439     // Treat it as leaf as we don't care its add operand.
440     if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
441       assert((MulOpIdx >= 0) && "mul operand index not right!");
442       Register MULRegL = TRI->lookThruSingleUseCopyChain(
443           Root.getOperand(MulOpIdx).getReg(), MRI);
444       Register MULRegR = TRI->lookThruSingleUseCopyChain(
445           Root.getOperand(MulOpIdx + 1).getReg(), MRI);
446       if (!MULRegL && !MULRegR)
447         return false;
448 
449       if (MULRegL && !MULRegR) {
450         MULRegR =
451             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
452         IsUsedOnceL = true;
453       } else if (!MULRegL && MULRegR) {
454         MULRegL =
455             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
456         IsUsedOnceR = true;
457       } else {
458         IsUsedOnceL = true;
459         IsUsedOnceR = true;
460       }
461 
462       if (!MULRegL.isVirtual() || !MULRegR.isVirtual())
463         return false;
464 
465       MULInstrL = MRI->getVRegDef(MULRegL);
466       MULInstrR = MRI->getVRegDef(MULRegR);
467       return true;
468     }
469     return false;
470   };
471 
472   // Register pressure fma reassociation patterns.
473   if (DoRegPressureReduce && IsRPReductionCandidate()) {
474     assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
475     // Register pressure pattern 1
476     if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
477         IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
478       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
479       Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BCA);
480       return true;
481     }
482 
483     // Register pressure pattern 2
484     if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
485          IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
486       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
487       Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BAC);
488       return true;
489     }
490   }
491 
492   // ILP fma reassociation patterns.
493   // Root must be a valid FMA like instruction.
494   AddOpIdx = -1;
495   if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
496     return false;
497 
498   assert((AddOpIdx >= 0) && "add operand index not right!");
499 
500   Register RegB = Root.getOperand(AddOpIdx).getReg();
501   MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
502 
503   // Prev must be a valid FMA like instruction.
504   AddOpIdx = -1;
505   if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
506     return false;
507 
508   assert((AddOpIdx >= 0) && "add operand index not right!");
509 
510   Register RegA = Prev->getOperand(AddOpIdx).getReg();
511   MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
512   AddOpIdx = -1;
513   if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
514     Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM);
515     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
516     return true;
517   }
518   if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
519     Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM);
520     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
521     return true;
522   }
523   return false;
524 }
525 
finalizeInsInstrs(MachineInstr & Root,unsigned & Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs) const526 void PPCInstrInfo::finalizeInsInstrs(
527     MachineInstr &Root, unsigned &Pattern,
528     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
529   assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
530 
531   MachineFunction *MF = Root.getMF();
532   MachineRegisterInfo *MRI = &MF->getRegInfo();
533   const TargetRegisterInfo *TRI = &getRegisterInfo();
534   MachineConstantPool *MCP = MF->getConstantPool();
535 
536   int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
537   if (Idx < 0)
538     return;
539 
540   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
541 
542   // For now we only need to fix up placeholder for register pressure reduce
543   // patterns.
544   Register ConstReg = 0;
545   switch (Pattern) {
546   case PPCMachineCombinerPattern::REASSOC_XY_BCA:
547     ConstReg =
548         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
549     break;
550   case PPCMachineCombinerPattern::REASSOC_XY_BAC:
551     ConstReg =
552         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
553     break;
554   default:
555     // Not register pressure reduce patterns.
556     return;
557   }
558 
559   MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
560   // Get const value from const pool.
561   const Constant *C = getConstantFromConstantPool(ConstDefInstr);
562   assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
563 
564   // Get negative fp const.
565   APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
566   F1.changeSign();
567   Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
568   Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
569 
570   // Put negative fp const into constant pool.
571   unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
572 
573   MachineOperand *Placeholder = nullptr;
574   // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
575   for (auto *Inst : InsInstrs) {
576     for (MachineOperand &Operand : Inst->explicit_operands()) {
577       assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
578       if (Operand.getReg() == PPC::ZERO8) {
579         Placeholder = &Operand;
580         break;
581       }
582     }
583   }
584 
585   assert(Placeholder && "Placeholder does not exist!");
586 
587   // Generate instructions to load the const fp from constant pool.
588   // We only support PPC64 and medium code model.
589   Register LoadNewConst =
590       generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
591 
592   // Fill the placeholder with the new load from constant pool.
593   Placeholder->setReg(LoadNewConst);
594 }
595 
shouldReduceRegisterPressure(const MachineBasicBlock * MBB,const RegisterClassInfo * RegClassInfo) const596 bool PPCInstrInfo::shouldReduceRegisterPressure(
597     const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const {
598 
599   if (!EnableFMARegPressureReduction)
600     return false;
601 
602   // Currently, we only enable register pressure reducing in machine combiner
603   // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
604   // support.
605   //
606   // So we need following instructions to access a TOC entry:
607   //
608   // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
609   // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
610   //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
611   //
612   // FIXME: add more supported targets, like Small and Large code model, PPC32,
613   // AIX.
614   if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
615         Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
616     return false;
617 
618   const TargetRegisterInfo *TRI = &getRegisterInfo();
619   const MachineFunction *MF = MBB->getParent();
620   const MachineRegisterInfo *MRI = &MF->getRegInfo();
621 
622   auto GetMBBPressure =
623       [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> {
624     RegionPressure Pressure;
625     RegPressureTracker RPTracker(Pressure);
626 
627     // Initialize the register pressure tracker.
628     RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
629                    /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
630 
631     for (const auto &MI : reverse(*MBB)) {
632       if (MI.isDebugValue() || MI.isDebugLabel())
633         continue;
634       RegisterOperands RegOpers;
635       RegOpers.collect(MI, *TRI, *MRI, false, false);
636       RPTracker.recedeSkipDebugValues();
637       assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
638       RPTracker.recede(RegOpers);
639     }
640 
641     // Close the RPTracker to finalize live ins.
642     RPTracker.closeRegion();
643 
644     return RPTracker.getPressure().MaxSetPressure;
645   };
646 
647   // For now we only care about float and double type fma.
648   unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
649       *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
650 
651   // Only reduce register pressure when pressure is high.
652   return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
653          (float)VSSRCLimit * FMARPFactor;
654 }
655 
isLoadFromConstantPool(MachineInstr * I) const656 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
657   // I has only one memory operand which is load from constant pool.
658   if (!I->hasOneMemOperand())
659     return false;
660 
661   MachineMemOperand *Op = I->memoperands()[0];
662   return Op->isLoad() && Op->getPseudoValue() &&
663          Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
664 }
665 
generateLoadForNewConst(unsigned Idx,MachineInstr * MI,Type * Ty,SmallVectorImpl<MachineInstr * > & InsInstrs) const666 Register PPCInstrInfo::generateLoadForNewConst(
667     unsigned Idx, MachineInstr *MI, Type *Ty,
668     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
669   // Now we only support PPC64, Medium code model and P9 with vector.
670   // We have immutable pattern to access const pool. See function
671   // shouldReduceRegisterPressure.
672   assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
673           Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
674          "Target not supported!\n");
675 
676   MachineFunction *MF = MI->getMF();
677   MachineRegisterInfo *MRI = &MF->getRegInfo();
678 
679   // Generate ADDIStocHA8
680   Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
681   MachineInstrBuilder TOCOffset =
682       BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
683           .addReg(PPC::X2)
684           .addConstantPoolIndex(Idx);
685 
686   assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
687          "Only float and double are supported!");
688 
689   unsigned LoadOpcode;
690   // Should be float type or double type.
691   if (Ty->isFloatTy())
692     LoadOpcode = PPC::DFLOADf32;
693   else
694     LoadOpcode = PPC::DFLOADf64;
695 
696   const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
697   Register VReg2 = MRI->createVirtualRegister(RC);
698   MachineMemOperand *MMO = MF->getMachineMemOperand(
699       MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
700       Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
701 
702   // Generate Load from constant pool.
703   MachineInstrBuilder Load =
704       BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
705           .addConstantPoolIndex(Idx)
706           .addReg(VReg1, getKillRegState(true))
707           .addMemOperand(MMO);
708 
709   Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
710 
711   // Insert the toc load instructions into InsInstrs.
712   InsInstrs.insert(InsInstrs.begin(), Load);
713   InsInstrs.insert(InsInstrs.begin(), TOCOffset);
714   return VReg2;
715 }
716 
717 // This function returns the const value in constant pool if the \p I is a load
718 // from constant pool.
719 const Constant *
getConstantFromConstantPool(MachineInstr * I) const720 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
721   MachineFunction *MF = I->getMF();
722   MachineRegisterInfo *MRI = &MF->getRegInfo();
723   MachineConstantPool *MCP = MF->getConstantPool();
724   assert(I->mayLoad() && "Should be a load instruction.\n");
725   for (auto MO : I->uses()) {
726     if (!MO.isReg())
727       continue;
728     Register Reg = MO.getReg();
729     if (Reg == 0 || !Reg.isVirtual())
730       continue;
731     // Find the toc address.
732     MachineInstr *DefMI = MRI->getVRegDef(Reg);
733     for (auto MO2 : DefMI->uses())
734       if (MO2.isCPI())
735         return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
736   }
737   return nullptr;
738 }
739 
getCombinerObjective(unsigned Pattern) const740 CombinerObjective PPCInstrInfo::getCombinerObjective(unsigned Pattern) const {
741   switch (Pattern) {
742   case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
743   case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
744     return CombinerObjective::MustReduceDepth;
745   case PPCMachineCombinerPattern::REASSOC_XY_BCA:
746   case PPCMachineCombinerPattern::REASSOC_XY_BAC:
747     return CombinerObjective::MustReduceRegisterPressure;
748   default:
749     return TargetInstrInfo::getCombinerObjective(Pattern);
750   }
751 }
752 
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<unsigned> & Patterns,bool DoRegPressureReduce) const753 bool PPCInstrInfo::getMachineCombinerPatterns(
754     MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
755     bool DoRegPressureReduce) const {
756   // Using the machine combiner in this way is potentially expensive, so
757   // restrict to when aggressive optimizations are desired.
758   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOptLevel::Aggressive)
759     return false;
760 
761   if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
762     return true;
763 
764   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
765                                                      DoRegPressureReduce);
766 }
767 
genAlternativeCodeSequence(MachineInstr & Root,unsigned Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg) const768 void PPCInstrInfo::genAlternativeCodeSequence(
769     MachineInstr &Root, unsigned Pattern,
770     SmallVectorImpl<MachineInstr *> &InsInstrs,
771     SmallVectorImpl<MachineInstr *> &DelInstrs,
772     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
773   switch (Pattern) {
774   case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
775   case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
776   case PPCMachineCombinerPattern::REASSOC_XY_BCA:
777   case PPCMachineCombinerPattern::REASSOC_XY_BAC:
778     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
779     break;
780   default:
781     // Reassociate default patterns.
782     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
783                                                 DelInstrs, InstrIdxForVirtReg);
784     break;
785   }
786 }
787 
reassociateFMA(MachineInstr & Root,unsigned Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg) const788 void PPCInstrInfo::reassociateFMA(
789     MachineInstr &Root, unsigned Pattern,
790     SmallVectorImpl<MachineInstr *> &InsInstrs,
791     SmallVectorImpl<MachineInstr *> &DelInstrs,
792     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
793   MachineFunction *MF = Root.getMF();
794   MachineRegisterInfo &MRI = MF->getRegInfo();
795   const TargetRegisterInfo *TRI = &getRegisterInfo();
796   MachineOperand &OpC = Root.getOperand(0);
797   Register RegC = OpC.getReg();
798   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
799   MRI.constrainRegClass(RegC, RC);
800 
801   unsigned FmaOp = Root.getOpcode();
802   int16_t Idx = getFMAOpIdxInfo(FmaOp);
803   assert(Idx >= 0 && "Root must be a FMA instruction");
804 
805   bool IsILPReassociate =
806       (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
807       (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM);
808 
809   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
810   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
811 
812   MachineInstr *Prev = nullptr;
813   MachineInstr *Leaf = nullptr;
814   switch (Pattern) {
815   default:
816     llvm_unreachable("not recognized pattern!");
817   case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
818   case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
819     Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
820     Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
821     break;
822   case PPCMachineCombinerPattern::REASSOC_XY_BAC: {
823     Register MULReg =
824         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
825     Leaf = MRI.getVRegDef(MULReg);
826     break;
827   }
828   case PPCMachineCombinerPattern::REASSOC_XY_BCA: {
829     Register MULReg = TRI->lookThruCopyLike(
830         Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
831     Leaf = MRI.getVRegDef(MULReg);
832     break;
833   }
834   }
835 
836   uint32_t IntersectedFlags = 0;
837   if (IsILPReassociate)
838     IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
839   else
840     IntersectedFlags = Root.getFlags() & Leaf->getFlags();
841 
842   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
843                             bool &KillFlag) {
844     Reg = Operand.getReg();
845     MRI.constrainRegClass(Reg, RC);
846     KillFlag = Operand.isKill();
847   };
848 
849   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
850                              Register &MulOp2, Register &AddOp,
851                              bool &MulOp1KillFlag, bool &MulOp2KillFlag,
852                              bool &AddOpKillFlag) {
853     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
854     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
855     GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
856   };
857 
858   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
859       RegA21, RegB;
860   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
861        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
862        KillA11 = false, KillA21 = false, KillB = false;
863 
864   GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
865 
866   if (IsILPReassociate)
867     GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
868 
869   if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
870     GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
871     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
872   } else if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) {
873     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
874     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
875   } else {
876     // Get FSUB instruction info.
877     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
878     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
879   }
880 
881   // Create new virtual registers for the new results instead of
882   // recycling legacy ones because the MachineCombiner's computation of the
883   // critical path requires a new register definition rather than an existing
884   // one.
885   // For register pressure reassociation, we only need create one virtual
886   // register for the new fma.
887   Register NewVRA = MRI.createVirtualRegister(RC);
888   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
889 
890   Register NewVRB = 0;
891   if (IsILPReassociate) {
892     NewVRB = MRI.createVirtualRegister(RC);
893     InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
894   }
895 
896   Register NewVRD = 0;
897   if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
898     NewVRD = MRI.createVirtualRegister(RC);
899     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
900   }
901 
902   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
903                                 Register RegMul1, bool KillRegMul1,
904                                 Register RegMul2, bool KillRegMul2) {
905     MI->getOperand(AddOpIdx).setReg(RegAdd);
906     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
907     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
908     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
909     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
910     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
911   };
912 
913   MachineInstrBuilder NewARegPressure, NewCRegPressure;
914   switch (Pattern) {
915   default:
916     llvm_unreachable("not recognized pattern!");
917   case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: {
918     // Create new instructions for insertion.
919     MachineInstrBuilder MINewB =
920         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
921             .addReg(RegX, getKillRegState(KillX))
922             .addReg(RegM21, getKillRegState(KillM21))
923             .addReg(RegM22, getKillRegState(KillM22));
924     MachineInstrBuilder MINewA =
925         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
926             .addReg(RegY, getKillRegState(KillY))
927             .addReg(RegM31, getKillRegState(KillM31))
928             .addReg(RegM32, getKillRegState(KillM32));
929     // If AddOpIdx is not 1, adjust the order.
930     if (AddOpIdx != 1) {
931       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
932       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
933     }
934 
935     MachineInstrBuilder MINewC =
936         BuildMI(*MF, Root.getDebugLoc(),
937                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
938             .addReg(NewVRB, getKillRegState(true))
939             .addReg(NewVRA, getKillRegState(true));
940 
941     // Update flags for newly created instructions.
942     setSpecialOperandAttr(*MINewA, IntersectedFlags);
943     setSpecialOperandAttr(*MINewB, IntersectedFlags);
944     setSpecialOperandAttr(*MINewC, IntersectedFlags);
945 
946     // Record new instructions for insertion.
947     InsInstrs.push_back(MINewA);
948     InsInstrs.push_back(MINewB);
949     InsInstrs.push_back(MINewC);
950     break;
951   }
952   case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
953     assert(NewVRD && "new FMA register not created!");
954     // Create new instructions for insertion.
955     MachineInstrBuilder MINewA =
956         BuildMI(*MF, Leaf->getDebugLoc(),
957                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
958             .addReg(RegM11, getKillRegState(KillM11))
959             .addReg(RegM12, getKillRegState(KillM12));
960     MachineInstrBuilder MINewB =
961         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
962             .addReg(RegX, getKillRegState(KillX))
963             .addReg(RegM21, getKillRegState(KillM21))
964             .addReg(RegM22, getKillRegState(KillM22));
965     MachineInstrBuilder MINewD =
966         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
967             .addReg(NewVRA, getKillRegState(true))
968             .addReg(RegM31, getKillRegState(KillM31))
969             .addReg(RegM32, getKillRegState(KillM32));
970     // If AddOpIdx is not 1, adjust the order.
971     if (AddOpIdx != 1) {
972       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
973       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
974                          KillM32);
975     }
976 
977     MachineInstrBuilder MINewC =
978         BuildMI(*MF, Root.getDebugLoc(),
979                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
980             .addReg(NewVRB, getKillRegState(true))
981             .addReg(NewVRD, getKillRegState(true));
982 
983     // Update flags for newly created instructions.
984     setSpecialOperandAttr(*MINewA, IntersectedFlags);
985     setSpecialOperandAttr(*MINewB, IntersectedFlags);
986     setSpecialOperandAttr(*MINewD, IntersectedFlags);
987     setSpecialOperandAttr(*MINewC, IntersectedFlags);
988 
989     // Record new instructions for insertion.
990     InsInstrs.push_back(MINewA);
991     InsInstrs.push_back(MINewB);
992     InsInstrs.push_back(MINewD);
993     InsInstrs.push_back(MINewC);
994     break;
995   }
996   case PPCMachineCombinerPattern::REASSOC_XY_BAC:
997   case PPCMachineCombinerPattern::REASSOC_XY_BCA: {
998     Register VarReg;
999     bool KillVarReg = false;
1000     if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_BCA) {
1001       VarReg = RegM31;
1002       KillVarReg = KillM31;
1003     } else {
1004       VarReg = RegM32;
1005       KillVarReg = KillM32;
1006     }
1007     // We don't want to get negative const from memory pool too early, as the
1008     // created entry will not be deleted even if it has no users. Since all
1009     // operand of Leaf and Root are virtual register, we use zero register
1010     // here as a placeholder. When the InsInstrs is selected in
1011     // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1012     // with a virtual register which is a load from constant pool.
1013     NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1014                           .addReg(RegB, getKillRegState(RegB))
1015                           .addReg(RegY, getKillRegState(KillY))
1016                           .addReg(PPC::ZERO8);
1017     NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1018                           .addReg(NewVRA, getKillRegState(true))
1019                           .addReg(RegX, getKillRegState(KillX))
1020                           .addReg(VarReg, getKillRegState(KillVarReg));
1021     // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1022     // both at index 1, no need to adjust.
1023     // FIXME: when add more fma instructions support, like fma/fmas, adjust
1024     // the operand index here.
1025     break;
1026   }
1027   }
1028 
1029   if (!IsILPReassociate) {
1030     setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1031     setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1032 
1033     InsInstrs.push_back(NewARegPressure);
1034     InsInstrs.push_back(NewCRegPressure);
1035   }
1036 
1037   assert(!InsInstrs.empty() &&
1038          "Insertion instructions set should not be empty!");
1039 
1040   // Record old instructions for deletion.
1041   DelInstrs.push_back(Leaf);
1042   if (IsILPReassociate)
1043     DelInstrs.push_back(Prev);
1044   DelInstrs.push_back(&Root);
1045 }
1046 
1047 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx) const1048 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1049                                          Register &SrcReg, Register &DstReg,
1050                                          unsigned &SubIdx) const {
1051   switch (MI.getOpcode()) {
1052   default: return false;
1053   case PPC::EXTSW:
1054   case PPC::EXTSW_32:
1055   case PPC::EXTSW_32_64:
1056     SrcReg = MI.getOperand(1).getReg();
1057     DstReg = MI.getOperand(0).getReg();
1058     SubIdx = PPC::sub_32;
1059     return true;
1060   }
1061 }
1062 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1063 Register PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1064                                            int &FrameIndex) const {
1065   if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) {
1066     // Check for the operands added by addFrameReference (the immediate is the
1067     // offset which defaults to 0).
1068     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1069         MI.getOperand(2).isFI()) {
1070       FrameIndex = MI.getOperand(2).getIndex();
1071       return MI.getOperand(0).getReg();
1072     }
1073   }
1074   return 0;
1075 }
1076 
1077 // For opcodes with the ReMaterializable flag set, this function is called to
1078 // verify the instruction is really rematable.
isReallyTriviallyReMaterializable(const MachineInstr & MI) const1079 bool PPCInstrInfo::isReallyTriviallyReMaterializable(
1080     const MachineInstr &MI) const {
1081   switch (MI.getOpcode()) {
1082   default:
1083     // Let base implementaion decide.
1084     break;
1085   case PPC::LI:
1086   case PPC::LI8:
1087   case PPC::PLI:
1088   case PPC::PLI8:
1089   case PPC::LIS:
1090   case PPC::LIS8:
1091   case PPC::ADDIStocHA:
1092   case PPC::ADDIStocHA8:
1093   case PPC::ADDItocL:
1094   case PPC::ADDItocL8:
1095   case PPC::LOAD_STACK_GUARD:
1096   case PPC::PPCLdFixedAddr:
1097   case PPC::XXLXORz:
1098   case PPC::XXLXORspz:
1099   case PPC::XXLXORdpz:
1100   case PPC::XXLEQVOnes:
1101   case PPC::XXSPLTI32DX:
1102   case PPC::XXSPLTIW:
1103   case PPC::XXSPLTIDP:
1104   case PPC::V_SET0B:
1105   case PPC::V_SET0H:
1106   case PPC::V_SET0:
1107   case PPC::V_SETALLONESB:
1108   case PPC::V_SETALLONESH:
1109   case PPC::V_SETALLONES:
1110   case PPC::CRSET:
1111   case PPC::CRUNSET:
1112   case PPC::XXSETACCZ:
1113   case PPC::XXSETACCZW:
1114     return true;
1115   }
1116   return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
1117 }
1118 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1119 Register PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1120                                           int &FrameIndex) const {
1121   if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) {
1122     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1123         MI.getOperand(2).isFI()) {
1124       FrameIndex = MI.getOperand(2).getIndex();
1125       return MI.getOperand(0).getReg();
1126     }
1127   }
1128   return 0;
1129 }
1130 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const1131 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1132                                                    unsigned OpIdx1,
1133                                                    unsigned OpIdx2) const {
1134   MachineFunction &MF = *MI.getParent()->getParent();
1135 
1136   // Normal instructions can be commuted the obvious way.
1137   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1138     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1139   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1140   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1141   // changing the relative order of the mask operands might change what happens
1142   // to the high-bits of the mask (and, thus, the result).
1143 
1144   // Cannot commute if it has a non-zero rotate count.
1145   if (MI.getOperand(3).getImm() != 0)
1146     return nullptr;
1147 
1148   // If we have a zero rotate count, we have:
1149   //   M = mask(MB,ME)
1150   //   Op0 = (Op1 & ~M) | (Op2 & M)
1151   // Change this to:
1152   //   M = mask((ME+1)&31, (MB-1)&31)
1153   //   Op0 = (Op2 & ~M) | (Op1 & M)
1154 
1155   // Swap op1/op2
1156   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1157          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1158   Register Reg0 = MI.getOperand(0).getReg();
1159   Register Reg1 = MI.getOperand(1).getReg();
1160   Register Reg2 = MI.getOperand(2).getReg();
1161   unsigned SubReg1 = MI.getOperand(1).getSubReg();
1162   unsigned SubReg2 = MI.getOperand(2).getSubReg();
1163   bool Reg1IsKill = MI.getOperand(1).isKill();
1164   bool Reg2IsKill = MI.getOperand(2).isKill();
1165   bool ChangeReg0 = false;
1166   // If machine instrs are no longer in two-address forms, update
1167   // destination register as well.
1168   if (Reg0 == Reg1) {
1169     // Must be two address instruction (i.e. op1 is tied to op0).
1170     assert(MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) == 0 &&
1171            "Expecting a two-address instruction!");
1172     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1173     Reg2IsKill = false;
1174     ChangeReg0 = true;
1175   }
1176 
1177   // Masks.
1178   unsigned MB = MI.getOperand(4).getImm();
1179   unsigned ME = MI.getOperand(5).getImm();
1180 
1181   // We can't commute a trivial mask (there is no way to represent an all-zero
1182   // mask).
1183   if (MB == 0 && ME == 31)
1184     return nullptr;
1185 
1186   if (NewMI) {
1187     // Create a new instruction.
1188     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1189     bool Reg0IsDead = MI.getOperand(0).isDead();
1190     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1191         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1192         .addReg(Reg2, getKillRegState(Reg2IsKill))
1193         .addReg(Reg1, getKillRegState(Reg1IsKill))
1194         .addImm((ME + 1) & 31)
1195         .addImm((MB - 1) & 31);
1196   }
1197 
1198   if (ChangeReg0) {
1199     MI.getOperand(0).setReg(Reg2);
1200     MI.getOperand(0).setSubReg(SubReg2);
1201   }
1202   MI.getOperand(2).setReg(Reg1);
1203   MI.getOperand(1).setReg(Reg2);
1204   MI.getOperand(2).setSubReg(SubReg1);
1205   MI.getOperand(1).setSubReg(SubReg2);
1206   MI.getOperand(2).setIsKill(Reg1IsKill);
1207   MI.getOperand(1).setIsKill(Reg2IsKill);
1208 
1209   // Swap the mask around.
1210   MI.getOperand(4).setImm((ME + 1) & 31);
1211   MI.getOperand(5).setImm((MB - 1) & 31);
1212   return &MI;
1213 }
1214 
findCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const1215 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1216                                          unsigned &SrcOpIdx1,
1217                                          unsigned &SrcOpIdx2) const {
1218   // For VSX A-Type FMA instructions, it is the first two operands that can be
1219   // commuted, however, because the non-encoded tied input operand is listed
1220   // first, the operands to swap are actually the second and third.
1221 
1222   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1223   if (AltOpc == -1)
1224     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1225 
1226   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1227   // and SrcOpIdx2.
1228   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1229 }
1230 
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const1231 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1232                               MachineBasicBlock::iterator MI) const {
1233   // This function is used for scheduling, and the nop wanted here is the type
1234   // that terminates dispatch groups on the POWER cores.
1235   unsigned Directive = Subtarget.getCPUDirective();
1236   unsigned Opcode;
1237   switch (Directive) {
1238   default:            Opcode = PPC::NOP; break;
1239   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1240   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1241   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1242   // FIXME: Update when POWER9 scheduling model is ready.
1243   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1244   }
1245 
1246   DebugLoc DL;
1247   BuildMI(MBB, MI, DL, get(Opcode));
1248 }
1249 
1250 /// Return the noop instruction to use for a noop.
getNop() const1251 MCInst PPCInstrInfo::getNop() const {
1252   MCInst Nop;
1253   Nop.setOpcode(PPC::NOP);
1254   return Nop;
1255 }
1256 
1257 // Branch analysis.
1258 // Note: If the condition register is set to CTR or CTR8 then this is a
1259 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const1260 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1261                                  MachineBasicBlock *&TBB,
1262                                  MachineBasicBlock *&FBB,
1263                                  SmallVectorImpl<MachineOperand> &Cond,
1264                                  bool AllowModify) const {
1265   bool isPPC64 = Subtarget.isPPC64();
1266 
1267   // If the block has no terminators, it just falls into the block after it.
1268   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1269   if (I == MBB.end())
1270     return false;
1271 
1272   if (!isUnpredicatedTerminator(*I))
1273     return false;
1274 
1275   if (AllowModify) {
1276     // If the BB ends with an unconditional branch to the fallthrough BB,
1277     // we eliminate the branch instruction.
1278     if (I->getOpcode() == PPC::B &&
1279         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1280       I->eraseFromParent();
1281 
1282       // We update iterator after deleting the last branch.
1283       I = MBB.getLastNonDebugInstr();
1284       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1285         return false;
1286     }
1287   }
1288 
1289   // Get the last instruction in the block.
1290   MachineInstr &LastInst = *I;
1291 
1292   // If there is only one terminator instruction, process it.
1293   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1294     if (LastInst.getOpcode() == PPC::B) {
1295       if (!LastInst.getOperand(0).isMBB())
1296         return true;
1297       TBB = LastInst.getOperand(0).getMBB();
1298       return false;
1299     } else if (LastInst.getOpcode() == PPC::BCC) {
1300       if (!LastInst.getOperand(2).isMBB())
1301         return true;
1302       // Block ends with fall-through condbranch.
1303       TBB = LastInst.getOperand(2).getMBB();
1304       Cond.push_back(LastInst.getOperand(0));
1305       Cond.push_back(LastInst.getOperand(1));
1306       return false;
1307     } else if (LastInst.getOpcode() == PPC::BC) {
1308       if (!LastInst.getOperand(1).isMBB())
1309         return true;
1310       // Block ends with fall-through condbranch.
1311       TBB = LastInst.getOperand(1).getMBB();
1312       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1313       Cond.push_back(LastInst.getOperand(0));
1314       return false;
1315     } else if (LastInst.getOpcode() == PPC::BCn) {
1316       if (!LastInst.getOperand(1).isMBB())
1317         return true;
1318       // Block ends with fall-through condbranch.
1319       TBB = LastInst.getOperand(1).getMBB();
1320       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1321       Cond.push_back(LastInst.getOperand(0));
1322       return false;
1323     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1324                LastInst.getOpcode() == PPC::BDNZ) {
1325       if (!LastInst.getOperand(0).isMBB())
1326         return true;
1327       if (DisableCTRLoopAnal)
1328         return true;
1329       TBB = LastInst.getOperand(0).getMBB();
1330       Cond.push_back(MachineOperand::CreateImm(1));
1331       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1332                                                true));
1333       return false;
1334     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1335                LastInst.getOpcode() == PPC::BDZ) {
1336       if (!LastInst.getOperand(0).isMBB())
1337         return true;
1338       if (DisableCTRLoopAnal)
1339         return true;
1340       TBB = LastInst.getOperand(0).getMBB();
1341       Cond.push_back(MachineOperand::CreateImm(0));
1342       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1343                                                true));
1344       return false;
1345     }
1346 
1347     // Otherwise, don't know what this is.
1348     return true;
1349   }
1350 
1351   // Get the instruction before it if it's a terminator.
1352   MachineInstr &SecondLastInst = *I;
1353 
1354   // If there are three terminators, we don't know what sort of block this is.
1355   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1356     return true;
1357 
1358   // If the block ends with PPC::B and PPC:BCC, handle it.
1359   if (SecondLastInst.getOpcode() == PPC::BCC &&
1360       LastInst.getOpcode() == PPC::B) {
1361     if (!SecondLastInst.getOperand(2).isMBB() ||
1362         !LastInst.getOperand(0).isMBB())
1363       return true;
1364     TBB = SecondLastInst.getOperand(2).getMBB();
1365     Cond.push_back(SecondLastInst.getOperand(0));
1366     Cond.push_back(SecondLastInst.getOperand(1));
1367     FBB = LastInst.getOperand(0).getMBB();
1368     return false;
1369   } else if (SecondLastInst.getOpcode() == PPC::BC &&
1370              LastInst.getOpcode() == PPC::B) {
1371     if (!SecondLastInst.getOperand(1).isMBB() ||
1372         !LastInst.getOperand(0).isMBB())
1373       return true;
1374     TBB = SecondLastInst.getOperand(1).getMBB();
1375     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1376     Cond.push_back(SecondLastInst.getOperand(0));
1377     FBB = LastInst.getOperand(0).getMBB();
1378     return false;
1379   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1380              LastInst.getOpcode() == PPC::B) {
1381     if (!SecondLastInst.getOperand(1).isMBB() ||
1382         !LastInst.getOperand(0).isMBB())
1383       return true;
1384     TBB = SecondLastInst.getOperand(1).getMBB();
1385     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1386     Cond.push_back(SecondLastInst.getOperand(0));
1387     FBB = LastInst.getOperand(0).getMBB();
1388     return false;
1389   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1390               SecondLastInst.getOpcode() == PPC::BDNZ) &&
1391              LastInst.getOpcode() == PPC::B) {
1392     if (!SecondLastInst.getOperand(0).isMBB() ||
1393         !LastInst.getOperand(0).isMBB())
1394       return true;
1395     if (DisableCTRLoopAnal)
1396       return true;
1397     TBB = SecondLastInst.getOperand(0).getMBB();
1398     Cond.push_back(MachineOperand::CreateImm(1));
1399     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1400                                              true));
1401     FBB = LastInst.getOperand(0).getMBB();
1402     return false;
1403   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1404               SecondLastInst.getOpcode() == PPC::BDZ) &&
1405              LastInst.getOpcode() == PPC::B) {
1406     if (!SecondLastInst.getOperand(0).isMBB() ||
1407         !LastInst.getOperand(0).isMBB())
1408       return true;
1409     if (DisableCTRLoopAnal)
1410       return true;
1411     TBB = SecondLastInst.getOperand(0).getMBB();
1412     Cond.push_back(MachineOperand::CreateImm(0));
1413     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1414                                              true));
1415     FBB = LastInst.getOperand(0).getMBB();
1416     return false;
1417   }
1418 
1419   // If the block ends with two PPC:Bs, handle it.  The second one is not
1420   // executed, so remove it.
1421   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1422     if (!SecondLastInst.getOperand(0).isMBB())
1423       return true;
1424     TBB = SecondLastInst.getOperand(0).getMBB();
1425     I = LastInst;
1426     if (AllowModify)
1427       I->eraseFromParent();
1428     return false;
1429   }
1430 
1431   // Otherwise, can't handle this.
1432   return true;
1433 }
1434 
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const1435 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1436                                     int *BytesRemoved) const {
1437   assert(!BytesRemoved && "code size not handled");
1438 
1439   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1440   if (I == MBB.end())
1441     return 0;
1442 
1443   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1444       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1445       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1446       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1447     return 0;
1448 
1449   // Remove the branch.
1450   I->eraseFromParent();
1451 
1452   I = MBB.end();
1453 
1454   if (I == MBB.begin()) return 1;
1455   --I;
1456   if (I->getOpcode() != PPC::BCC &&
1457       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1458       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1459       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1460     return 1;
1461 
1462   // Remove the branch.
1463   I->eraseFromParent();
1464   return 2;
1465 }
1466 
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const1467 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1468                                     MachineBasicBlock *TBB,
1469                                     MachineBasicBlock *FBB,
1470                                     ArrayRef<MachineOperand> Cond,
1471                                     const DebugLoc &DL,
1472                                     int *BytesAdded) const {
1473   // Shouldn't be a fall through.
1474   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1475   assert((Cond.size() == 2 || Cond.size() == 0) &&
1476          "PPC branch conditions have two components!");
1477   assert(!BytesAdded && "code size not handled");
1478 
1479   bool isPPC64 = Subtarget.isPPC64();
1480 
1481   // One-way branch.
1482   if (!FBB) {
1483     if (Cond.empty())   // Unconditional branch
1484       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1485     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1486       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1487                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1488                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1489     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1490       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1491     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1492       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1493     else                // Conditional branch
1494       BuildMI(&MBB, DL, get(PPC::BCC))
1495           .addImm(Cond[0].getImm())
1496           .add(Cond[1])
1497           .addMBB(TBB);
1498     return 1;
1499   }
1500 
1501   // Two-way Conditional Branch.
1502   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1503     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1504                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1505                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1506   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1507     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1508   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1509     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1510   else
1511     BuildMI(&MBB, DL, get(PPC::BCC))
1512         .addImm(Cond[0].getImm())
1513         .add(Cond[1])
1514         .addMBB(TBB);
1515   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1516   return 2;
1517 }
1518 
1519 // Select analysis.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const1520 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1521                                    ArrayRef<MachineOperand> Cond,
1522                                    Register DstReg, Register TrueReg,
1523                                    Register FalseReg, int &CondCycles,
1524                                    int &TrueCycles, int &FalseCycles) const {
1525   if (!Subtarget.hasISEL())
1526     return false;
1527 
1528   if (Cond.size() != 2)
1529     return false;
1530 
1531   // If this is really a bdnz-like condition, then it cannot be turned into a
1532   // select.
1533   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1534     return false;
1535 
1536   // If the conditional branch uses a physical register, then it cannot be
1537   // turned into a select.
1538   if (Cond[1].getReg().isPhysical())
1539     return false;
1540 
1541   // Check register classes.
1542   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1543   const TargetRegisterClass *RC =
1544     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1545   if (!RC)
1546     return false;
1547 
1548   // isel is for regular integer GPRs only.
1549   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1550       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1551       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1552       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1553     return false;
1554 
1555   // FIXME: These numbers are for the A2, how well they work for other cores is
1556   // an open question. On the A2, the isel instruction has a 2-cycle latency
1557   // but single-cycle throughput. These numbers are used in combination with
1558   // the MispredictPenalty setting from the active SchedMachineModel.
1559   CondCycles = 1;
1560   TrueCycles = 1;
1561   FalseCycles = 1;
1562 
1563   return true;
1564 }
1565 
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & dl,Register DestReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg) const1566 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1567                                 MachineBasicBlock::iterator MI,
1568                                 const DebugLoc &dl, Register DestReg,
1569                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1570                                 Register FalseReg) const {
1571   assert(Cond.size() == 2 &&
1572          "PPC branch conditions have two components!");
1573 
1574   // Get the register classes.
1575   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1576   const TargetRegisterClass *RC =
1577     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1578   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1579 
1580   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1581                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1582   assert((Is64Bit ||
1583           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1584           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1585          "isel is for regular integer GPRs only");
1586 
1587   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1588   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1589 
1590   unsigned SubIdx = 0;
1591   bool SwapOps = false;
1592   switch (SelectPred) {
1593   case PPC::PRED_EQ:
1594   case PPC::PRED_EQ_MINUS:
1595   case PPC::PRED_EQ_PLUS:
1596       SubIdx = PPC::sub_eq; SwapOps = false; break;
1597   case PPC::PRED_NE:
1598   case PPC::PRED_NE_MINUS:
1599   case PPC::PRED_NE_PLUS:
1600       SubIdx = PPC::sub_eq; SwapOps = true; break;
1601   case PPC::PRED_LT:
1602   case PPC::PRED_LT_MINUS:
1603   case PPC::PRED_LT_PLUS:
1604       SubIdx = PPC::sub_lt; SwapOps = false; break;
1605   case PPC::PRED_GE:
1606   case PPC::PRED_GE_MINUS:
1607   case PPC::PRED_GE_PLUS:
1608       SubIdx = PPC::sub_lt; SwapOps = true; break;
1609   case PPC::PRED_GT:
1610   case PPC::PRED_GT_MINUS:
1611   case PPC::PRED_GT_PLUS:
1612       SubIdx = PPC::sub_gt; SwapOps = false; break;
1613   case PPC::PRED_LE:
1614   case PPC::PRED_LE_MINUS:
1615   case PPC::PRED_LE_PLUS:
1616       SubIdx = PPC::sub_gt; SwapOps = true; break;
1617   case PPC::PRED_UN:
1618   case PPC::PRED_UN_MINUS:
1619   case PPC::PRED_UN_PLUS:
1620       SubIdx = PPC::sub_un; SwapOps = false; break;
1621   case PPC::PRED_NU:
1622   case PPC::PRED_NU_MINUS:
1623   case PPC::PRED_NU_PLUS:
1624       SubIdx = PPC::sub_un; SwapOps = true; break;
1625   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1626   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1627   }
1628 
1629   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1630            SecondReg = SwapOps ? TrueReg  : FalseReg;
1631 
1632   // The first input register of isel cannot be r0. If it is a member
1633   // of a register class that can be r0, then copy it first (the
1634   // register allocator should eliminate the copy).
1635   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1636       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1637     const TargetRegisterClass *FirstRC =
1638       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1639         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1640     Register OldFirstReg = FirstReg;
1641     FirstReg = MRI.createVirtualRegister(FirstRC);
1642     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1643       .addReg(OldFirstReg);
1644   }
1645 
1646   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1647     .addReg(FirstReg).addReg(SecondReg)
1648     .addReg(Cond[1].getReg(), 0, SubIdx);
1649 }
1650 
getCRBitValue(unsigned CRBit)1651 static unsigned getCRBitValue(unsigned CRBit) {
1652   unsigned Ret = 4;
1653   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1654       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1655       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1656       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1657     Ret = 3;
1658   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1659       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1660       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1661       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1662     Ret = 2;
1663   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1664       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1665       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1666       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1667     Ret = 1;
1668   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1669       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1670       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1671       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1672     Ret = 0;
1673 
1674   assert(Ret != 4 && "Invalid CR bit register");
1675   return Ret;
1676 }
1677 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const1678 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1679                                MachineBasicBlock::iterator I,
1680                                const DebugLoc &DL, MCRegister DestReg,
1681                                MCRegister SrcReg, bool KillSrc) const {
1682   // We can end up with self copies and similar things as a result of VSX copy
1683   // legalization. Promote them here.
1684   const TargetRegisterInfo *TRI = &getRegisterInfo();
1685   if (PPC::F8RCRegClass.contains(DestReg) &&
1686       PPC::VSRCRegClass.contains(SrcReg)) {
1687     MCRegister SuperReg =
1688         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1689 
1690     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1691       llvm_unreachable("nop VSX copy");
1692 
1693     DestReg = SuperReg;
1694   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1695              PPC::VSRCRegClass.contains(DestReg)) {
1696     MCRegister SuperReg =
1697         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1698 
1699     if (VSXSelfCopyCrash && DestReg == SuperReg)
1700       llvm_unreachable("nop VSX copy");
1701 
1702     SrcReg = SuperReg;
1703   }
1704 
1705   // Different class register copy
1706   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1707       PPC::GPRCRegClass.contains(DestReg)) {
1708     MCRegister CRReg = getCRFromCRBit(SrcReg);
1709     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1710     getKillRegState(KillSrc);
1711     // Rotate the CR bit in the CR fields to be the least significant bit and
1712     // then mask with 0x1 (MB = ME = 31).
1713     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1714        .addReg(DestReg, RegState::Kill)
1715        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1716        .addImm(31)
1717        .addImm(31);
1718     return;
1719   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1720              (PPC::G8RCRegClass.contains(DestReg) ||
1721               PPC::GPRCRegClass.contains(DestReg))) {
1722     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1723     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1724     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1725     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1726     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1727     getKillRegState(KillSrc);
1728     if (CRNum == 7)
1729       return;
1730     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1731     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1732         .addReg(DestReg, RegState::Kill)
1733         .addImm(CRNum * 4 + 4)
1734         .addImm(28)
1735         .addImm(31);
1736     return;
1737   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1738              PPC::VSFRCRegClass.contains(DestReg)) {
1739     assert(Subtarget.hasDirectMove() &&
1740            "Subtarget doesn't support directmove, don't know how to copy.");
1741     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1742     NumGPRtoVSRSpill++;
1743     getKillRegState(KillSrc);
1744     return;
1745   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1746              PPC::G8RCRegClass.contains(DestReg)) {
1747     assert(Subtarget.hasDirectMove() &&
1748            "Subtarget doesn't support directmove, don't know how to copy.");
1749     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1750     getKillRegState(KillSrc);
1751     return;
1752   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1753              PPC::GPRCRegClass.contains(DestReg)) {
1754     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1755     getKillRegState(KillSrc);
1756     return;
1757   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1758              PPC::SPERCRegClass.contains(DestReg)) {
1759     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1760     getKillRegState(KillSrc);
1761     return;
1762   }
1763 
1764   unsigned Opc;
1765   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1766     Opc = PPC::OR;
1767   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1768     Opc = PPC::OR8;
1769   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1770     Opc = PPC::FMR;
1771   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1772     Opc = PPC::MCRF;
1773   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1774     Opc = PPC::VOR;
1775   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1776     // There are two different ways this can be done:
1777     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1778     //      issue in VSU pipeline 0.
1779     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1780     //      can go to either pipeline.
1781     // We'll always use xxlor here, because in practically all cases where
1782     // copies are generated, they are close enough to some use that the
1783     // lower-latency form is preferable.
1784     Opc = PPC::XXLOR;
1785   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1786            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1787     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1788   else if (Subtarget.pairedVectorMemops() &&
1789            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1790     if (SrcReg > PPC::VSRp15)
1791       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1792     else
1793       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1794     if (DestReg > PPC::VSRp15)
1795       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1796     else
1797       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1798     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1799       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1800     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1801       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1802     return;
1803   }
1804   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1805     Opc = PPC::CROR;
1806   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1807     Opc = PPC::EVOR;
1808   else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1809             PPC::UACCRCRegClass.contains(DestReg)) &&
1810            (PPC::ACCRCRegClass.contains(SrcReg) ||
1811             PPC::UACCRCRegClass.contains(SrcReg))) {
1812     // If primed, de-prime the source register, copy the individual registers
1813     // and prime the destination if needed. The vector subregisters are
1814     // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1815     // source is primed, we need to re-prime it after the copy as well.
1816     PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1817     bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1818     bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1819     MCRegister VSLSrcReg =
1820         PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1821     MCRegister VSLDestReg =
1822         PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1823     if (SrcPrimed)
1824       BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1825     for (unsigned Idx = 0; Idx < 4; Idx++)
1826       BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1827           .addReg(VSLSrcReg + Idx)
1828           .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1829     if (DestPrimed)
1830       BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1831     if (SrcPrimed && !KillSrc)
1832       BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1833     return;
1834   } else if (PPC::G8pRCRegClass.contains(DestReg) &&
1835              PPC::G8pRCRegClass.contains(SrcReg)) {
1836     // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1837     unsigned DestRegIdx = DestReg - PPC::G8p0;
1838     MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1839     MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1840     unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1841     MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1842     MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1843     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1844         .addReg(SrcRegSub0)
1845         .addReg(SrcRegSub0, getKillRegState(KillSrc));
1846     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1847         .addReg(SrcRegSub1)
1848         .addReg(SrcRegSub1, getKillRegState(KillSrc));
1849     return;
1850   } else
1851     llvm_unreachable("Impossible reg-to-reg copy");
1852 
1853   const MCInstrDesc &MCID = get(Opc);
1854   if (MCID.getNumOperands() == 3)
1855     BuildMI(MBB, I, DL, MCID, DestReg)
1856       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1857   else
1858     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1859 }
1860 
getSpillIndex(const TargetRegisterClass * RC) const1861 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1862   int OpcodeIndex = 0;
1863 
1864   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1865       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1866     OpcodeIndex = SOK_Int4Spill;
1867   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1868              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1869     OpcodeIndex = SOK_Int8Spill;
1870   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1871     OpcodeIndex = SOK_Float8Spill;
1872   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1873     OpcodeIndex = SOK_Float4Spill;
1874   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1875     OpcodeIndex = SOK_SPESpill;
1876   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1877     OpcodeIndex = SOK_CRSpill;
1878   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1879     OpcodeIndex = SOK_CRBitSpill;
1880   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1881     OpcodeIndex = SOK_VRVectorSpill;
1882   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1883     OpcodeIndex = SOK_VSXVectorSpill;
1884   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1885     OpcodeIndex = SOK_VectorFloat8Spill;
1886   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1887     OpcodeIndex = SOK_VectorFloat4Spill;
1888   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1889     OpcodeIndex = SOK_SpillToVSR;
1890   } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1891     assert(Subtarget.pairedVectorMemops() &&
1892            "Register unexpected when paired memops are disabled.");
1893     OpcodeIndex = SOK_AccumulatorSpill;
1894   } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1895     assert(Subtarget.pairedVectorMemops() &&
1896            "Register unexpected when paired memops are disabled.");
1897     OpcodeIndex = SOK_UAccumulatorSpill;
1898   } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) {
1899     assert(Subtarget.pairedVectorMemops() &&
1900            "Register unexpected when paired memops are disabled.");
1901     OpcodeIndex = SOK_WAccumulatorSpill;
1902   } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1903     assert(Subtarget.pairedVectorMemops() &&
1904            "Register unexpected when paired memops are disabled.");
1905     OpcodeIndex = SOK_PairedVecSpill;
1906   } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1907     OpcodeIndex = SOK_PairedG8Spill;
1908   } else {
1909     llvm_unreachable("Unknown regclass!");
1910   }
1911   return OpcodeIndex;
1912 }
1913 
1914 unsigned
getStoreOpcodeForSpill(const TargetRegisterClass * RC) const1915 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1916   ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray();
1917   return OpcodesForSpill[getSpillIndex(RC)];
1918 }
1919 
1920 unsigned
getLoadOpcodeForSpill(const TargetRegisterClass * RC) const1921 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1922   ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray();
1923   return OpcodesForSpill[getSpillIndex(RC)];
1924 }
1925 
StoreRegToStackSlot(MachineFunction & MF,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs) const1926 void PPCInstrInfo::StoreRegToStackSlot(
1927     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1928     const TargetRegisterClass *RC,
1929     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1930   unsigned Opcode = getStoreOpcodeForSpill(RC);
1931   DebugLoc DL;
1932 
1933   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1934   FuncInfo->setHasSpills();
1935 
1936   NewMIs.push_back(addFrameReference(
1937       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1938       FrameIdx));
1939 
1940   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1941       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1942     FuncInfo->setSpillsCR();
1943 
1944   if (isXFormMemOp(Opcode))
1945     FuncInfo->setHasNonRISpills();
1946 }
1947 
storeRegToStackSlotNoUpd(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1948 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1949     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1950     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1951     const TargetRegisterInfo *TRI) const {
1952   MachineFunction &MF = *MBB.getParent();
1953   SmallVector<MachineInstr *, 4> NewMIs;
1954 
1955   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1956 
1957   for (MachineInstr *NewMI : NewMIs)
1958     MBB.insert(MI, NewMI);
1959 
1960   const MachineFrameInfo &MFI = MF.getFrameInfo();
1961   MachineMemOperand *MMO = MF.getMachineMemOperand(
1962       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1963       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1964       MFI.getObjectAlign(FrameIdx));
1965   NewMIs.back()->addMemOperand(MF, MMO);
1966 }
1967 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const1968 void PPCInstrInfo::storeRegToStackSlot(
1969     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
1970     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1971     const TargetRegisterInfo *TRI, Register VReg) const {
1972   // We need to avoid a situation in which the value from a VRRC register is
1973   // spilled using an Altivec instruction and reloaded into a VSRC register
1974   // using a VSX instruction. The issue with this is that the VSX
1975   // load/store instructions swap the doublewords in the vector and the Altivec
1976   // ones don't. The register classes on the spill/reload may be different if
1977   // the register is defined using an Altivec instruction and is then used by a
1978   // VSX instruction.
1979   RC = updatedRC(RC);
1980   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1981 }
1982 
LoadRegFromStackSlot(MachineFunction & MF,const DebugLoc & DL,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs) const1983 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1984                                         unsigned DestReg, int FrameIdx,
1985                                         const TargetRegisterClass *RC,
1986                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1987                                         const {
1988   unsigned Opcode = getLoadOpcodeForSpill(RC);
1989   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1990                                      FrameIdx));
1991 }
1992 
loadRegFromStackSlotNoUpd(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1993 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1994     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1995     int FrameIdx, const TargetRegisterClass *RC,
1996     const TargetRegisterInfo *TRI) const {
1997   MachineFunction &MF = *MBB.getParent();
1998   SmallVector<MachineInstr*, 4> NewMIs;
1999   DebugLoc DL;
2000   if (MI != MBB.end()) DL = MI->getDebugLoc();
2001 
2002   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2003 
2004   for (MachineInstr *NewMI : NewMIs)
2005     MBB.insert(MI, NewMI);
2006 
2007   const MachineFrameInfo &MFI = MF.getFrameInfo();
2008   MachineMemOperand *MMO = MF.getMachineMemOperand(
2009       MachinePointerInfo::getFixedStack(MF, FrameIdx),
2010       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2011       MFI.getObjectAlign(FrameIdx));
2012   NewMIs.back()->addMemOperand(MF, MMO);
2013 }
2014 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const2015 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2016                                         MachineBasicBlock::iterator MI,
2017                                         Register DestReg, int FrameIdx,
2018                                         const TargetRegisterClass *RC,
2019                                         const TargetRegisterInfo *TRI,
2020                                         Register VReg) const {
2021   // We need to avoid a situation in which the value from a VRRC register is
2022   // spilled using an Altivec instruction and reloaded into a VSRC register
2023   // using a VSX instruction. The issue with this is that the VSX
2024   // load/store instructions swap the doublewords in the vector and the Altivec
2025   // ones don't. The register classes on the spill/reload may be different if
2026   // the register is defined using an Altivec instruction and is then used by a
2027   // VSX instruction.
2028   RC = updatedRC(RC);
2029 
2030   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2031 }
2032 
2033 bool PPCInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const2034 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2035   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2036   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2037     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2038   else
2039     // Leave the CR# the same, but invert the condition.
2040     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2041   return false;
2042 }
2043 
2044 // For some instructions, it is legal to fold ZERO into the RA register field.
2045 // This function performs that fold by replacing the operand with PPC::ZERO,
2046 // it does not consider whether the load immediate zero is no longer in use.
onlyFoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg) const2047 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2048                                      Register Reg) const {
2049   // A zero immediate should always be loaded with a single li.
2050   unsigned DefOpc = DefMI.getOpcode();
2051   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2052     return false;
2053   if (!DefMI.getOperand(1).isImm())
2054     return false;
2055   if (DefMI.getOperand(1).getImm() != 0)
2056     return false;
2057 
2058   // Note that we cannot here invert the arguments of an isel in order to fold
2059   // a ZERO into what is presented as the second argument. All we have here
2060   // is the condition bit, and that might come from a CR-logical bit operation.
2061 
2062   const MCInstrDesc &UseMCID = UseMI.getDesc();
2063 
2064   // Only fold into real machine instructions.
2065   if (UseMCID.isPseudo())
2066     return false;
2067 
2068   // We need to find which of the User's operands is to be folded, that will be
2069   // the operand that matches the given register ID.
2070   unsigned UseIdx;
2071   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2072     if (UseMI.getOperand(UseIdx).isReg() &&
2073         UseMI.getOperand(UseIdx).getReg() == Reg)
2074       break;
2075 
2076   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2077   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2078 
2079   const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx];
2080 
2081   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2082   // register (which might also be specified as a pointer class kind).
2083   if (UseInfo->isLookupPtrRegClass()) {
2084     if (UseInfo->RegClass /* Kind */ != 1)
2085       return false;
2086   } else {
2087     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2088         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2089       return false;
2090   }
2091 
2092   // Make sure this is not tied to an output register (or otherwise
2093   // constrained). This is true for ST?UX registers, for example, which
2094   // are tied to their output registers.
2095   if (UseInfo->Constraints != 0)
2096     return false;
2097 
2098   MCRegister ZeroReg;
2099   if (UseInfo->isLookupPtrRegClass()) {
2100     bool isPPC64 = Subtarget.isPPC64();
2101     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2102   } else {
2103     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2104               PPC::ZERO8 : PPC::ZERO;
2105   }
2106 
2107   LLVM_DEBUG(dbgs() << "Folded immediate zero for: ");
2108   LLVM_DEBUG(UseMI.dump());
2109   UseMI.getOperand(UseIdx).setReg(ZeroReg);
2110   LLVM_DEBUG(dbgs() << "Into: ");
2111   LLVM_DEBUG(UseMI.dump());
2112   return true;
2113 }
2114 
2115 // Folds zero into instructions which have a load immediate zero as an operand
2116 // but also recognize zero as immediate zero. If the definition of the load
2117 // has no more users it is deleted.
foldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const2118 bool PPCInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2119                                  Register Reg, MachineRegisterInfo *MRI) const {
2120   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2121   if (MRI->use_nodbg_empty(Reg))
2122     DefMI.eraseFromParent();
2123   return Changed;
2124 }
2125 
MBBDefinesCTR(MachineBasicBlock & MBB)2126 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2127   for (MachineInstr &MI : MBB)
2128     if (MI.definesRegister(PPC::CTR, /*TRI=*/nullptr) ||
2129         MI.definesRegister(PPC::CTR8, /*TRI=*/nullptr))
2130       return true;
2131   return false;
2132 }
2133 
2134 // We should make sure that, if we're going to predicate both sides of a
2135 // condition (a diamond), that both sides don't define the counter register. We
2136 // can predicate counter-decrement-based branches, but while that predicates
2137 // the branching, it does not predicate the counter decrement. If we tried to
2138 // merge the triangle into one predicated block, we'd decrement the counter
2139 // twice.
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumT,unsigned ExtraT,MachineBasicBlock & FMBB,unsigned NumF,unsigned ExtraF,BranchProbability Probability) const2140 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2141                      unsigned NumT, unsigned ExtraT,
2142                      MachineBasicBlock &FMBB,
2143                      unsigned NumF, unsigned ExtraF,
2144                      BranchProbability Probability) const {
2145   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2146 }
2147 
2148 
isPredicated(const MachineInstr & MI) const2149 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2150   // The predicated branches are identified by their type, not really by the
2151   // explicit presence of a predicate. Furthermore, some of them can be
2152   // predicated more than once. Because if conversion won't try to predicate
2153   // any instruction which already claims to be predicated (by returning true
2154   // here), always return false. In doing so, we let isPredicable() be the
2155   // final word on whether not the instruction can be (further) predicated.
2156 
2157   return false;
2158 }
2159 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const2160 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2161                                         const MachineBasicBlock *MBB,
2162                                         const MachineFunction &MF) const {
2163   switch (MI.getOpcode()) {
2164   default:
2165     break;
2166   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2167   // across them, since some FP operations may change content of FPSCR.
2168   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2169   case PPC::MFFS:
2170   case PPC::MTFSF:
2171   case PPC::FENCE:
2172     return true;
2173   }
2174   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2175 }
2176 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const2177 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2178                                         ArrayRef<MachineOperand> Pred) const {
2179   unsigned OpC = MI.getOpcode();
2180   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2181     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2182       bool isPPC64 = Subtarget.isPPC64();
2183       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2184                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2185       // Need add Def and Use for CTR implicit operand.
2186       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2187           .addReg(Pred[1].getReg(), RegState::Implicit)
2188           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2189     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2190       MI.setDesc(get(PPC::BCLR));
2191       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2192     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2193       MI.setDesc(get(PPC::BCLRn));
2194       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2195     } else {
2196       MI.setDesc(get(PPC::BCCLR));
2197       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2198           .addImm(Pred[0].getImm())
2199           .add(Pred[1]);
2200     }
2201 
2202     return true;
2203   } else if (OpC == PPC::B) {
2204     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2205       bool isPPC64 = Subtarget.isPPC64();
2206       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2207                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2208       // Need add Def and Use for CTR implicit operand.
2209       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2210           .addReg(Pred[1].getReg(), RegState::Implicit)
2211           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2212     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2213       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2214       MI.removeOperand(0);
2215 
2216       MI.setDesc(get(PPC::BC));
2217       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2218           .add(Pred[1])
2219           .addMBB(MBB);
2220     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2221       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2222       MI.removeOperand(0);
2223 
2224       MI.setDesc(get(PPC::BCn));
2225       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2226           .add(Pred[1])
2227           .addMBB(MBB);
2228     } else {
2229       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2230       MI.removeOperand(0);
2231 
2232       MI.setDesc(get(PPC::BCC));
2233       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2234           .addImm(Pred[0].getImm())
2235           .add(Pred[1])
2236           .addMBB(MBB);
2237     }
2238 
2239     return true;
2240   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2241              OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM ||
2242              OpC == PPC::BCTRL8_RM) {
2243     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2244       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2245 
2246     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 ||
2247                  OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM;
2248     bool isPPC64 = Subtarget.isPPC64();
2249 
2250     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2251       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2252                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2253       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2254     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2255       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2256                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2257       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2258     } else {
2259       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2260                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2261       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2262           .addImm(Pred[0].getImm())
2263           .add(Pred[1]);
2264     }
2265 
2266     // Need add Def and Use for LR implicit operand.
2267     if (setLR)
2268       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2269           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2270           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2271     if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM)
2272       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2273           .addReg(PPC::RM, RegState::ImplicitDefine);
2274 
2275     return true;
2276   }
2277 
2278   return false;
2279 }
2280 
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const2281 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2282                                      ArrayRef<MachineOperand> Pred2) const {
2283   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2284   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2285 
2286   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2287     return false;
2288   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2289     return false;
2290 
2291   // P1 can only subsume P2 if they test the same condition register.
2292   if (Pred1[1].getReg() != Pred2[1].getReg())
2293     return false;
2294 
2295   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2296   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2297 
2298   if (P1 == P2)
2299     return true;
2300 
2301   // Does P1 subsume P2, e.g. GE subsumes GT.
2302   if (P1 == PPC::PRED_LE &&
2303       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2304     return true;
2305   if (P1 == PPC::PRED_GE &&
2306       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2307     return true;
2308 
2309   return false;
2310 }
2311 
ClobbersPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred,bool SkipDead) const2312 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2313                                      std::vector<MachineOperand> &Pred,
2314                                      bool SkipDead) const {
2315   // Note: At the present time, the contents of Pred from this function is
2316   // unused by IfConversion. This implementation follows ARM by pushing the
2317   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2318   // predicate, instructions defining CTR or CTR8 are also included as
2319   // predicate-defining instructions.
2320 
2321   const TargetRegisterClass *RCs[] =
2322     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2323       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2324 
2325   bool Found = false;
2326   for (const MachineOperand &MO : MI.operands()) {
2327     for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) {
2328       const TargetRegisterClass *RC = RCs[c];
2329       if (MO.isReg()) {
2330         if (MO.isDef() && RC->contains(MO.getReg())) {
2331           Pred.push_back(MO);
2332           Found = true;
2333         }
2334       } else if (MO.isRegMask()) {
2335         for (MCPhysReg R : *RC)
2336           if (MO.clobbersPhysReg(R)) {
2337             Pred.push_back(MO);
2338             Found = true;
2339           }
2340       }
2341     }
2342   }
2343 
2344   return Found;
2345 }
2346 
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & Mask,int64_t & Value) const2347 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2348                                   Register &SrcReg2, int64_t &Mask,
2349                                   int64_t &Value) const {
2350   unsigned Opc = MI.getOpcode();
2351 
2352   switch (Opc) {
2353   default: return false;
2354   case PPC::CMPWI:
2355   case PPC::CMPLWI:
2356   case PPC::CMPDI:
2357   case PPC::CMPLDI:
2358     SrcReg = MI.getOperand(1).getReg();
2359     SrcReg2 = 0;
2360     Value = MI.getOperand(2).getImm();
2361     Mask = 0xFFFF;
2362     return true;
2363   case PPC::CMPW:
2364   case PPC::CMPLW:
2365   case PPC::CMPD:
2366   case PPC::CMPLD:
2367   case PPC::FCMPUS:
2368   case PPC::FCMPUD:
2369     SrcReg = MI.getOperand(1).getReg();
2370     SrcReg2 = MI.getOperand(2).getReg();
2371     Value = 0;
2372     Mask = 0;
2373     return true;
2374   }
2375 }
2376 
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t Mask,int64_t Value,const MachineRegisterInfo * MRI) const2377 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2378                                         Register SrcReg2, int64_t Mask,
2379                                         int64_t Value,
2380                                         const MachineRegisterInfo *MRI) const {
2381   if (DisableCmpOpt)
2382     return false;
2383 
2384   int OpC = CmpInstr.getOpcode();
2385   Register CRReg = CmpInstr.getOperand(0).getReg();
2386 
2387   // FP record forms set CR1 based on the exception status bits, not a
2388   // comparison with zero.
2389   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2390     return false;
2391 
2392   const TargetRegisterInfo *TRI = &getRegisterInfo();
2393   // The record forms set the condition register based on a signed comparison
2394   // with zero (so says the ISA manual). This is not as straightforward as it
2395   // seems, however, because this is always a 64-bit comparison on PPC64, even
2396   // for instructions that are 32-bit in nature (like slw for example).
2397   // So, on PPC32, for unsigned comparisons, we can use the record forms only
2398   // for equality checks (as those don't depend on the sign). On PPC64,
2399   // we are restricted to equality for unsigned 64-bit comparisons and for
2400   // signed 32-bit comparisons the applicability is more restricted.
2401   bool isPPC64 = Subtarget.isPPC64();
2402   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
2403   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2404   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2405 
2406   // Look through copies unless that gets us to a physical register.
2407   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2408   if (ActualSrc.isVirtual())
2409     SrcReg = ActualSrc;
2410 
2411   // Get the unique definition of SrcReg.
2412   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2413   if (!MI) return false;
2414 
2415   bool equalityOnly = false;
2416   bool noSub = false;
2417   if (isPPC64) {
2418     if (is32BitSignedCompare) {
2419       // We can perform this optimization only if SrcReg is sign-extending.
2420       if (isSignExtended(SrcReg, MRI))
2421         noSub = true;
2422       else
2423         return false;
2424     } else if (is32BitUnsignedCompare) {
2425       // We can perform this optimization, equality only, if SrcReg is
2426       // zero-extending.
2427       if (isZeroExtended(SrcReg, MRI)) {
2428         noSub = true;
2429         equalityOnly = true;
2430       } else
2431         return false;
2432     } else
2433       equalityOnly = is64BitUnsignedCompare;
2434   } else
2435     equalityOnly = is32BitUnsignedCompare;
2436 
2437   if (equalityOnly) {
2438     // We need to check the uses of the condition register in order to reject
2439     // non-equality comparisons.
2440     for (MachineRegisterInfo::use_instr_iterator
2441          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2442          I != IE; ++I) {
2443       MachineInstr *UseMI = &*I;
2444       if (UseMI->getOpcode() == PPC::BCC) {
2445         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2446         unsigned PredCond = PPC::getPredicateCondition(Pred);
2447         // We ignore hint bits when checking for non-equality comparisons.
2448         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2449           return false;
2450       } else if (UseMI->getOpcode() == PPC::ISEL ||
2451                  UseMI->getOpcode() == PPC::ISEL8) {
2452         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2453         if (SubIdx != PPC::sub_eq)
2454           return false;
2455       } else
2456         return false;
2457     }
2458   }
2459 
2460   MachineBasicBlock::iterator I = CmpInstr;
2461 
2462   // Scan forward to find the first use of the compare.
2463   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2464        ++I) {
2465     bool FoundUse = false;
2466     for (MachineRegisterInfo::use_instr_iterator
2467          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2468          J != JE; ++J)
2469       if (&*J == &*I) {
2470         FoundUse = true;
2471         break;
2472       }
2473 
2474     if (FoundUse)
2475       break;
2476   }
2477 
2478   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2479   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2480 
2481   // There are two possible candidates which can be changed to set CR[01].
2482   // One is MI, the other is a SUB instruction.
2483   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2484   MachineInstr *Sub = nullptr;
2485   if (SrcReg2 != 0)
2486     // MI is not a candidate for CMPrr.
2487     MI = nullptr;
2488   // FIXME: Conservatively refuse to convert an instruction which isn't in the
2489   // same BB as the comparison. This is to allow the check below to avoid calls
2490   // (and other explicit clobbers); instead we should really check for these
2491   // more explicitly (in at least a few predecessors).
2492   else if (MI->getParent() != CmpInstr.getParent())
2493     return false;
2494   else if (Value != 0) {
2495     // The record-form instructions set CR bit based on signed comparison
2496     // against 0. We try to convert a compare against 1 or -1 into a compare
2497     // against 0 to exploit record-form instructions. For example, we change
2498     // the condition "greater than -1" into "greater than or equal to 0"
2499     // and "less than 1" into "less than or equal to 0".
2500 
2501     // Since we optimize comparison based on a specific branch condition,
2502     // we don't optimize if condition code is used by more than once.
2503     if (equalityOnly || !MRI->hasOneUse(CRReg))
2504       return false;
2505 
2506     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2507     if (UseMI->getOpcode() != PPC::BCC)
2508       return false;
2509 
2510     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2511     unsigned PredCond = PPC::getPredicateCondition(Pred);
2512     unsigned PredHint = PPC::getPredicateHint(Pred);
2513     int16_t Immed = (int16_t)Value;
2514 
2515     // When modifying the condition in the predicate, we propagate hint bits
2516     // from the original predicate to the new one.
2517     if (Immed == -1 && PredCond == PPC::PRED_GT)
2518       // We convert "greater than -1" into "greater than or equal to 0",
2519       // since we are assuming signed comparison by !equalityOnly
2520       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2521     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2522       // We convert "less than or equal to -1" into "less than 0".
2523       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2524     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2525       // We convert "less than 1" into "less than or equal to 0".
2526       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2527     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2528       // We convert "greater than or equal to 1" into "greater than 0".
2529       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2530     else
2531       return false;
2532 
2533     // Convert the comparison and its user to a compare against zero with the
2534     // appropriate predicate on the branch. Zero comparison might provide
2535     // optimization opportunities post-RA (see optimization in
2536     // PPCPreEmitPeephole.cpp).
2537     UseMI->getOperand(0).setImm(Pred);
2538     CmpInstr.getOperand(2).setImm(0);
2539   }
2540 
2541   // Search for Sub.
2542   --I;
2543 
2544   // Get ready to iterate backward from CmpInstr.
2545   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2546 
2547   for (; I != E && !noSub; --I) {
2548     const MachineInstr &Instr = *I;
2549     unsigned IOpC = Instr.getOpcode();
2550 
2551     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2552                              Instr.readsRegister(PPC::CR0, TRI)))
2553       // This instruction modifies or uses the record condition register after
2554       // the one we want to change. While we could do this transformation, it
2555       // would likely not be profitable. This transformation removes one
2556       // instruction, and so even forcing RA to generate one move probably
2557       // makes it unprofitable.
2558       return false;
2559 
2560     // Check whether CmpInstr can be made redundant by the current instruction.
2561     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2562          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2563         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2564         ((Instr.getOperand(1).getReg() == SrcReg &&
2565           Instr.getOperand(2).getReg() == SrcReg2) ||
2566         (Instr.getOperand(1).getReg() == SrcReg2 &&
2567          Instr.getOperand(2).getReg() == SrcReg))) {
2568       Sub = &*I;
2569       break;
2570     }
2571 
2572     if (I == B)
2573       // The 'and' is below the comparison instruction.
2574       return false;
2575   }
2576 
2577   // Return false if no candidates exist.
2578   if (!MI && !Sub)
2579     return false;
2580 
2581   // The single candidate is called MI.
2582   if (!MI) MI = Sub;
2583 
2584   int NewOpC = -1;
2585   int MIOpC = MI->getOpcode();
2586   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2587       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2588     NewOpC = MIOpC;
2589   else {
2590     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2591     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2592       NewOpC = MIOpC;
2593   }
2594 
2595   // FIXME: On the non-embedded POWER architectures, only some of the record
2596   // forms are fast, and we should use only the fast ones.
2597 
2598   // The defining instruction has a record form (or is already a record
2599   // form). It is possible, however, that we'll need to reverse the condition
2600   // code of the users.
2601   if (NewOpC == -1)
2602     return false;
2603 
2604   // This transformation should not be performed if `nsw` is missing and is not
2605   // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2606   // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2607   // CRReg can reflect if compared values are equal, this optz is still valid.
2608   if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2609       Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2610     return false;
2611 
2612   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2613   // needs to be updated to be based on SUB.  Push the condition code
2614   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2615   // condition code of these operands will be modified.
2616   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2617   // comparison against 0, which may modify predicate.
2618   bool ShouldSwap = false;
2619   if (Sub && Value == 0) {
2620     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2621       Sub->getOperand(2).getReg() == SrcReg;
2622 
2623     // The operands to subf are the opposite of sub, so only in the fixed-point
2624     // case, invert the order.
2625     ShouldSwap = !ShouldSwap;
2626   }
2627 
2628   if (ShouldSwap)
2629     for (MachineRegisterInfo::use_instr_iterator
2630          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2631          I != IE; ++I) {
2632       MachineInstr *UseMI = &*I;
2633       if (UseMI->getOpcode() == PPC::BCC) {
2634         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2635         unsigned PredCond = PPC::getPredicateCondition(Pred);
2636         assert((!equalityOnly ||
2637                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2638                "Invalid predicate for equality-only optimization");
2639         (void)PredCond; // To suppress warning in release build.
2640         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2641                                 PPC::getSwappedPredicate(Pred)));
2642       } else if (UseMI->getOpcode() == PPC::ISEL ||
2643                  UseMI->getOpcode() == PPC::ISEL8) {
2644         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2645         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2646                "Invalid CR bit for equality-only optimization");
2647 
2648         if (NewSubReg == PPC::sub_lt)
2649           NewSubReg = PPC::sub_gt;
2650         else if (NewSubReg == PPC::sub_gt)
2651           NewSubReg = PPC::sub_lt;
2652 
2653         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2654                                                  NewSubReg));
2655       } else // We need to abort on a user we don't understand.
2656         return false;
2657     }
2658   assert(!(Value != 0 && ShouldSwap) &&
2659          "Non-zero immediate support and ShouldSwap"
2660          "may conflict in updating predicate");
2661 
2662   // Create a new virtual register to hold the value of the CR set by the
2663   // record-form instruction. If the instruction was not previously in
2664   // record form, then set the kill flag on the CR.
2665   CmpInstr.eraseFromParent();
2666 
2667   MachineBasicBlock::iterator MII = MI;
2668   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2669           get(TargetOpcode::COPY), CRReg)
2670     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2671 
2672   // Even if CR0 register were dead before, it is alive now since the
2673   // instruction we just built uses it.
2674   MI->clearRegisterDeads(PPC::CR0);
2675 
2676   if (MIOpC != NewOpC) {
2677     // We need to be careful here: we're replacing one instruction with
2678     // another, and we need to make sure that we get all of the right
2679     // implicit uses and defs. On the other hand, the caller may be holding
2680     // an iterator to this instruction, and so we can't delete it (this is
2681     // specifically the case if this is the instruction directly after the
2682     // compare).
2683 
2684     // Rotates are expensive instructions. If we're emitting a record-form
2685     // rotate that can just be an andi/andis, we should just emit that.
2686     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2687       Register GPRRes = MI->getOperand(0).getReg();
2688       int64_t SH = MI->getOperand(2).getImm();
2689       int64_t MB = MI->getOperand(3).getImm();
2690       int64_t ME = MI->getOperand(4).getImm();
2691       // We can only do this if both the start and end of the mask are in the
2692       // same halfword.
2693       bool MBInLoHWord = MB >= 16;
2694       bool MEInLoHWord = ME >= 16;
2695       uint64_t Mask = ~0LLU;
2696 
2697       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2698         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2699         // The mask value needs to shift right 16 if we're emitting andis.
2700         Mask >>= MBInLoHWord ? 0 : 16;
2701         NewOpC = MIOpC == PPC::RLWINM
2702                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2703                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2704       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2705                  (ME - MB + 1 == SH) && (MB >= 16)) {
2706         // If we are rotating by the exact number of bits as are in the mask
2707         // and the mask is in the least significant bits of the register,
2708         // that's just an andis. (as long as the GPR result has no uses).
2709         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2710         Mask >>= 16;
2711         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2712       }
2713       // If we've set the mask, we can transform.
2714       if (Mask != ~0LLU) {
2715         MI->removeOperand(4);
2716         MI->removeOperand(3);
2717         MI->getOperand(2).setImm(Mask);
2718         NumRcRotatesConvertedToRcAnd++;
2719       }
2720     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2721       int64_t MB = MI->getOperand(3).getImm();
2722       if (MB >= 48) {
2723         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2724         NewOpC = PPC::ANDI8_rec;
2725         MI->removeOperand(3);
2726         MI->getOperand(2).setImm(Mask);
2727         NumRcRotatesConvertedToRcAnd++;
2728       }
2729     }
2730 
2731     const MCInstrDesc &NewDesc = get(NewOpC);
2732     MI->setDesc(NewDesc);
2733 
2734     for (MCPhysReg ImpDef : NewDesc.implicit_defs()) {
2735       if (!MI->definesRegister(ImpDef, /*TRI=*/nullptr)) {
2736         MI->addOperand(*MI->getParent()->getParent(),
2737                        MachineOperand::CreateReg(ImpDef, true, true));
2738       }
2739     }
2740     for (MCPhysReg ImpUse : NewDesc.implicit_uses()) {
2741       if (!MI->readsRegister(ImpUse, /*TRI=*/nullptr)) {
2742         MI->addOperand(*MI->getParent()->getParent(),
2743                        MachineOperand::CreateReg(ImpUse, false, true));
2744       }
2745     }
2746   }
2747   assert(MI->definesRegister(PPC::CR0, /*TRI=*/nullptr) &&
2748          "Record-form instruction does not define cr0?");
2749 
2750   // Modify the condition code of operands in OperandsToUpdate.
2751   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2752   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2753   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2754     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2755 
2756   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2757     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2758 
2759   return true;
2760 }
2761 
optimizeCmpPostRA(MachineInstr & CmpMI) const2762 bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const {
2763   MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo();
2764   if (MRI->isSSA())
2765     return false;
2766 
2767   Register SrcReg, SrcReg2;
2768   int64_t CmpMask, CmpValue;
2769   if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue))
2770     return false;
2771 
2772   // Try to optimize the comparison against 0.
2773   if (CmpValue || !CmpMask || SrcReg2)
2774     return false;
2775 
2776   // The record forms set the condition register based on a signed comparison
2777   // with zero (see comments in optimizeCompareInstr). Since we can't do the
2778   // equality checks in post-RA, we are more restricted on a unsigned
2779   // comparison.
2780   unsigned Opc = CmpMI.getOpcode();
2781   if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI)
2782     return false;
2783 
2784   // The record forms are always based on a 64-bit comparison on PPC64
2785   // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit
2786   // comparison. Since we can't do the equality checks in post-RA, we bail out
2787   // the case.
2788   if (Subtarget.isPPC64() && Opc == PPC::CMPWI)
2789     return false;
2790 
2791   // CmpMI can't be deleted if it has implicit def.
2792   if (CmpMI.hasImplicitDef())
2793     return false;
2794 
2795   bool SrcRegHasOtherUse = false;
2796   MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse);
2797   if (!SrcMI || !SrcMI->definesRegister(SrcReg, /*TRI=*/nullptr))
2798     return false;
2799 
2800   MachineOperand RegMO = CmpMI.getOperand(0);
2801   Register CRReg = RegMO.getReg();
2802   if (CRReg != PPC::CR0)
2803     return false;
2804 
2805   // Make sure there is no def/use of CRReg between SrcMI and CmpMI.
2806   bool SeenUseOfCRReg = false;
2807   bool IsCRRegKilled = false;
2808   if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled,
2809                                  SeenUseOfCRReg) ||
2810       SrcMI->definesRegister(CRReg, /*TRI=*/nullptr) || SeenUseOfCRReg)
2811     return false;
2812 
2813   int SrcMIOpc = SrcMI->getOpcode();
2814   int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc);
2815   if (NewOpC == -1)
2816     return false;
2817 
2818   LLVM_DEBUG(dbgs() << "Replace Instr: ");
2819   LLVM_DEBUG(SrcMI->dump());
2820 
2821   const MCInstrDesc &NewDesc = get(NewOpC);
2822   SrcMI->setDesc(NewDesc);
2823   MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI)
2824       .addReg(CRReg, RegState::ImplicitDefine);
2825   SrcMI->clearRegisterDeads(CRReg);
2826 
2827   assert(SrcMI->definesRegister(PPC::CR0, /*TRI=*/nullptr) &&
2828          "Record-form instruction does not define cr0?");
2829 
2830   LLVM_DEBUG(dbgs() << "with: ");
2831   LLVM_DEBUG(SrcMI->dump());
2832   LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
2833   LLVM_DEBUG(CmpMI.dump());
2834   return true;
2835 }
2836 
getMemOperandsWithOffsetWidth(const MachineInstr & LdSt,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,LocationSize & Width,const TargetRegisterInfo * TRI) const2837 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2838     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2839     int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
2840     const TargetRegisterInfo *TRI) const {
2841   const MachineOperand *BaseOp;
2842   OffsetIsScalable = false;
2843   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2844     return false;
2845   BaseOps.push_back(BaseOp);
2846   return true;
2847 }
2848 
isLdStSafeToCluster(const MachineInstr & LdSt,const TargetRegisterInfo * TRI)2849 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2850                                 const TargetRegisterInfo *TRI) {
2851   // If this is a volatile load/store, don't mess with it.
2852   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2853     return false;
2854 
2855   if (LdSt.getOperand(2).isFI())
2856     return true;
2857 
2858   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2859   // Can't cluster if the instruction modifies the base register
2860   // or it is update form. e.g. ld r2,3(r2)
2861   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2862     return false;
2863 
2864   return true;
2865 }
2866 
2867 // Only cluster instruction pair that have the same opcode, and they are
2868 // clusterable according to PowerPC specification.
isClusterableLdStOpcPair(unsigned FirstOpc,unsigned SecondOpc,const PPCSubtarget & Subtarget)2869 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2870                                      const PPCSubtarget &Subtarget) {
2871   switch (FirstOpc) {
2872   default:
2873     return false;
2874   case PPC::STD:
2875   case PPC::STFD:
2876   case PPC::STXSD:
2877   case PPC::DFSTOREf64:
2878     return FirstOpc == SecondOpc;
2879   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2880   // 32bit and 64bit instruction selection. They are clusterable pair though
2881   // they are different opcode.
2882   case PPC::STW:
2883   case PPC::STW8:
2884     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2885   }
2886 }
2887 
shouldClusterMemOps(ArrayRef<const MachineOperand * > BaseOps1,int64_t OpOffset1,bool OffsetIsScalable1,ArrayRef<const MachineOperand * > BaseOps2,int64_t OpOffset2,bool OffsetIsScalable2,unsigned ClusterSize,unsigned NumBytes) const2888 bool PPCInstrInfo::shouldClusterMemOps(
2889     ArrayRef<const MachineOperand *> BaseOps1, int64_t OpOffset1,
2890     bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2,
2891     int64_t OpOffset2, bool OffsetIsScalable2, unsigned ClusterSize,
2892     unsigned NumBytes) const {
2893 
2894   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2895   const MachineOperand &BaseOp1 = *BaseOps1.front();
2896   const MachineOperand &BaseOp2 = *BaseOps2.front();
2897   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2898          "Only base registers and frame indices are supported.");
2899 
2900   // ClusterSize means the number of memory operations that will have been
2901   // clustered if this hook returns true.
2902   // Don't cluster memory op if there are already two ops clustered at least.
2903   if (ClusterSize > 2)
2904     return false;
2905 
2906   // Cluster the load/store only when they have the same base
2907   // register or FI.
2908   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2909       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2910       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2911     return false;
2912 
2913   // Check if the load/store are clusterable according to the PowerPC
2914   // specification.
2915   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2916   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2917   unsigned FirstOpc = FirstLdSt.getOpcode();
2918   unsigned SecondOpc = SecondLdSt.getOpcode();
2919   const TargetRegisterInfo *TRI = &getRegisterInfo();
2920   // Cluster the load/store only when they have the same opcode, and they are
2921   // clusterable opcode according to PowerPC specification.
2922   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2923     return false;
2924 
2925   // Can't cluster load/store that have ordered or volatile memory reference.
2926   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2927       !isLdStSafeToCluster(SecondLdSt, TRI))
2928     return false;
2929 
2930   int64_t Offset1 = 0, Offset2 = 0;
2931   LocationSize Width1 = 0, Width2 = 0;
2932   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2933   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2934       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2935       Width1 != Width2)
2936     return false;
2937 
2938   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2939          "getMemOperandWithOffsetWidth return incorrect base op");
2940   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2941   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2942   return Offset1 + (int64_t)Width1.getValue() == Offset2;
2943 }
2944 
2945 /// GetInstSize - Return the number of bytes of code the specified
2946 /// instruction may be.  This returns the maximum number of bytes.
2947 ///
getInstSizeInBytes(const MachineInstr & MI) const2948 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2949   unsigned Opcode = MI.getOpcode();
2950 
2951   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2952     const MachineFunction *MF = MI.getParent()->getParent();
2953     const char *AsmStr = MI.getOperand(0).getSymbolName();
2954     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2955   } else if (Opcode == TargetOpcode::STACKMAP) {
2956     StackMapOpers Opers(&MI);
2957     return Opers.getNumPatchBytes();
2958   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2959     PatchPointOpers Opers(&MI);
2960     return Opers.getNumPatchBytes();
2961   } else {
2962     return get(Opcode).getSize();
2963   }
2964 }
2965 
2966 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const2967 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2968   // PPC always uses a direct mask.
2969   return std::make_pair(TF, 0u);
2970 }
2971 
2972 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const2973 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2974   using namespace PPCII;
2975   static const std::pair<unsigned, const char *> TargetFlags[] = {
2976       {MO_PLT, "ppc-plt"},
2977       {MO_PIC_FLAG, "ppc-pic"},
2978       {MO_PCREL_FLAG, "ppc-pcrel"},
2979       {MO_GOT_FLAG, "ppc-got"},
2980       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2981       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2982       {MO_TPREL_FLAG, "ppc-tprel"},
2983       {MO_TLSLDM_FLAG, "ppc-tlsldm"},
2984       {MO_TLSLD_FLAG, "ppc-tlsld"},
2985       {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
2986       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2987       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2988       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"},
2989       {MO_LO, "ppc-lo"},
2990       {MO_HA, "ppc-ha"},
2991       {MO_TPREL_LO, "ppc-tprel-lo"},
2992       {MO_TPREL_HA, "ppc-tprel-ha"},
2993       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2994       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2995       {MO_TOC_LO, "ppc-toc-lo"},
2996       {MO_TLS, "ppc-tls"},
2997       {MO_PIC_HA_FLAG, "ppc-ha-pic"},
2998       {MO_PIC_LO_FLAG, "ppc-lo-pic"},
2999       {MO_TPREL_PCREL_FLAG, "ppc-tprel-pcrel"},
3000       {MO_TLS_PCREL_FLAG, "ppc-tls-pcrel"},
3001       {MO_GOT_PCREL_FLAG, "ppc-got-pcrel"},
3002   };
3003   return ArrayRef(TargetFlags);
3004 }
3005 
3006 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
3007 // The VSX versions have the advantage of a full 64-register target whereas
3008 // the FP ones have the advantage of lower latency and higher throughput. So
3009 // what we are after is using the faster instructions in low register pressure
3010 // situations and using the larger register file in high register pressure
3011 // situations.
expandVSXMemPseudo(MachineInstr & MI) const3012 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
3013     unsigned UpperOpcode, LowerOpcode;
3014     switch (MI.getOpcode()) {
3015     case PPC::DFLOADf32:
3016       UpperOpcode = PPC::LXSSP;
3017       LowerOpcode = PPC::LFS;
3018       break;
3019     case PPC::DFLOADf64:
3020       UpperOpcode = PPC::LXSD;
3021       LowerOpcode = PPC::LFD;
3022       break;
3023     case PPC::DFSTOREf32:
3024       UpperOpcode = PPC::STXSSP;
3025       LowerOpcode = PPC::STFS;
3026       break;
3027     case PPC::DFSTOREf64:
3028       UpperOpcode = PPC::STXSD;
3029       LowerOpcode = PPC::STFD;
3030       break;
3031     case PPC::XFLOADf32:
3032       UpperOpcode = PPC::LXSSPX;
3033       LowerOpcode = PPC::LFSX;
3034       break;
3035     case PPC::XFLOADf64:
3036       UpperOpcode = PPC::LXSDX;
3037       LowerOpcode = PPC::LFDX;
3038       break;
3039     case PPC::XFSTOREf32:
3040       UpperOpcode = PPC::STXSSPX;
3041       LowerOpcode = PPC::STFSX;
3042       break;
3043     case PPC::XFSTOREf64:
3044       UpperOpcode = PPC::STXSDX;
3045       LowerOpcode = PPC::STFDX;
3046       break;
3047     case PPC::LIWAX:
3048       UpperOpcode = PPC::LXSIWAX;
3049       LowerOpcode = PPC::LFIWAX;
3050       break;
3051     case PPC::LIWZX:
3052       UpperOpcode = PPC::LXSIWZX;
3053       LowerOpcode = PPC::LFIWZX;
3054       break;
3055     case PPC::STIWX:
3056       UpperOpcode = PPC::STXSIWX;
3057       LowerOpcode = PPC::STFIWX;
3058       break;
3059     default:
3060       llvm_unreachable("Unknown Operation!");
3061     }
3062 
3063     Register TargetReg = MI.getOperand(0).getReg();
3064     unsigned Opcode;
3065     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
3066         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
3067       Opcode = LowerOpcode;
3068     else
3069       Opcode = UpperOpcode;
3070     MI.setDesc(get(Opcode));
3071     return true;
3072 }
3073 
isAnImmediateOperand(const MachineOperand & MO)3074 static bool isAnImmediateOperand(const MachineOperand &MO) {
3075   return MO.isCPI() || MO.isGlobal() || MO.isImm();
3076 }
3077 
expandPostRAPseudo(MachineInstr & MI) const3078 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3079   auto &MBB = *MI.getParent();
3080   auto DL = MI.getDebugLoc();
3081 
3082   switch (MI.getOpcode()) {
3083   case PPC::BUILD_UACC: {
3084     MCRegister ACC = MI.getOperand(0).getReg();
3085     MCRegister UACC = MI.getOperand(1).getReg();
3086     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3087       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3088       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3089       // FIXME: This can easily be improved to look up to the top of the MBB
3090       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3091       // we can just re-target any such XXLOR's to DstVSR + offset.
3092       for (int VecNo = 0; VecNo < 4; VecNo++)
3093         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3094             .addReg(SrcVSR + VecNo)
3095             .addReg(SrcVSR + VecNo);
3096     }
3097     // BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
3098     // So after building the 4 copies, we can replace the BUILD_UACC instruction
3099     // with a NOP.
3100     [[fallthrough]];
3101   }
3102   case PPC::KILL_PAIR: {
3103     MI.setDesc(get(PPC::UNENCODED_NOP));
3104     MI.removeOperand(1);
3105     MI.removeOperand(0);
3106     return true;
3107   }
3108   case TargetOpcode::LOAD_STACK_GUARD: {
3109     assert(Subtarget.isTargetLinux() &&
3110            "Only Linux target is expected to contain LOAD_STACK_GUARD");
3111     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3112     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3113     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3114     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3115         .addImm(Offset)
3116         .addReg(Reg);
3117     return true;
3118   }
3119   case PPC::PPCLdFixedAddr: {
3120     assert(Subtarget.getTargetTriple().isOSGlibc() &&
3121            "Only targets with Glibc expected to contain PPCLdFixedAddr");
3122     int64_t Offset = 0;
3123     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3124     MI.setDesc(get(PPC::LWZ));
3125     uint64_t FAType = MI.getOperand(1).getImm();
3126 #undef PPC_LNX_FEATURE
3127 #undef PPC_CPU
3128 #define PPC_LNX_DEFINE_OFFSETS
3129 #include "llvm/TargetParser/PPCTargetParser.def"
3130     bool IsLE = Subtarget.isLittleEndian();
3131     bool Is64 = Subtarget.isPPC64();
3132     if (FAType == PPC_FAWORD_HWCAP) {
3133       if (IsLE)
3134         Offset = Is64 ? PPC_HWCAP_OFFSET_LE64 : PPC_HWCAP_OFFSET_LE32;
3135       else
3136         Offset = Is64 ? PPC_HWCAP_OFFSET_BE64 : PPC_HWCAP_OFFSET_BE32;
3137     } else if (FAType == PPC_FAWORD_HWCAP2) {
3138       if (IsLE)
3139         Offset = Is64 ? PPC_HWCAP2_OFFSET_LE64 : PPC_HWCAP2_OFFSET_LE32;
3140       else
3141         Offset = Is64 ? PPC_HWCAP2_OFFSET_BE64 : PPC_HWCAP2_OFFSET_BE32;
3142     } else if (FAType == PPC_FAWORD_CPUID) {
3143       if (IsLE)
3144         Offset = Is64 ? PPC_CPUID_OFFSET_LE64 : PPC_CPUID_OFFSET_LE32;
3145       else
3146         Offset = Is64 ? PPC_CPUID_OFFSET_BE64 : PPC_CPUID_OFFSET_BE32;
3147     }
3148     assert(Offset && "Do not know the offset for this fixed addr load");
3149     MI.removeOperand(1);
3150     Subtarget.getTargetMachine().setGlibcHWCAPAccess();
3151     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3152         .addImm(Offset)
3153         .addReg(Reg);
3154     return true;
3155 #define PPC_TGT_PARSER_UNDEF_MACROS
3156 #include "llvm/TargetParser/PPCTargetParser.def"
3157 #undef PPC_TGT_PARSER_UNDEF_MACROS
3158   }
3159   case PPC::DFLOADf32:
3160   case PPC::DFLOADf64:
3161   case PPC::DFSTOREf32:
3162   case PPC::DFSTOREf64: {
3163     assert(Subtarget.hasP9Vector() &&
3164            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3165     assert(MI.getOperand(2).isReg() &&
3166            isAnImmediateOperand(MI.getOperand(1)) &&
3167            "D-form op must have register and immediate operands");
3168     return expandVSXMemPseudo(MI);
3169   }
3170   case PPC::XFLOADf32:
3171   case PPC::XFSTOREf32:
3172   case PPC::LIWAX:
3173   case PPC::LIWZX:
3174   case PPC::STIWX: {
3175     assert(Subtarget.hasP8Vector() &&
3176            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3177     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3178            "X-form op must have register and register operands");
3179     return expandVSXMemPseudo(MI);
3180   }
3181   case PPC::XFLOADf64:
3182   case PPC::XFSTOREf64: {
3183     assert(Subtarget.hasVSX() &&
3184            "Invalid X-Form Pseudo-ops on target that has no VSX.");
3185     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3186            "X-form op must have register and register operands");
3187     return expandVSXMemPseudo(MI);
3188   }
3189   case PPC::SPILLTOVSR_LD: {
3190     Register TargetReg = MI.getOperand(0).getReg();
3191     if (PPC::VSFRCRegClass.contains(TargetReg)) {
3192       MI.setDesc(get(PPC::DFLOADf64));
3193       return expandPostRAPseudo(MI);
3194     }
3195     else
3196       MI.setDesc(get(PPC::LD));
3197     return true;
3198   }
3199   case PPC::SPILLTOVSR_ST: {
3200     Register SrcReg = MI.getOperand(0).getReg();
3201     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3202       NumStoreSPILLVSRRCAsVec++;
3203       MI.setDesc(get(PPC::DFSTOREf64));
3204       return expandPostRAPseudo(MI);
3205     } else {
3206       NumStoreSPILLVSRRCAsGpr++;
3207       MI.setDesc(get(PPC::STD));
3208     }
3209     return true;
3210   }
3211   case PPC::SPILLTOVSR_LDX: {
3212     Register TargetReg = MI.getOperand(0).getReg();
3213     if (PPC::VSFRCRegClass.contains(TargetReg))
3214       MI.setDesc(get(PPC::LXSDX));
3215     else
3216       MI.setDesc(get(PPC::LDX));
3217     return true;
3218   }
3219   case PPC::SPILLTOVSR_STX: {
3220     Register SrcReg = MI.getOperand(0).getReg();
3221     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3222       NumStoreSPILLVSRRCAsVec++;
3223       MI.setDesc(get(PPC::STXSDX));
3224     } else {
3225       NumStoreSPILLVSRRCAsGpr++;
3226       MI.setDesc(get(PPC::STDX));
3227     }
3228     return true;
3229   }
3230 
3231     // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
3232   case PPC::CFENCE:
3233   case PPC::CFENCE8: {
3234     auto Val = MI.getOperand(0).getReg();
3235     unsigned CmpOp = Subtarget.isPPC64() ? PPC::CMPD : PPC::CMPW;
3236     BuildMI(MBB, MI, DL, get(CmpOp), PPC::CR7).addReg(Val).addReg(Val);
3237     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3238         .addImm(PPC::PRED_NE_MINUS)
3239         .addReg(PPC::CR7)
3240         .addImm(1);
3241     MI.setDesc(get(PPC::ISYNC));
3242     MI.removeOperand(0);
3243     return true;
3244   }
3245   }
3246   return false;
3247 }
3248 
3249 // Essentially a compile-time implementation of a compare->isel sequence.
3250 // It takes two constants to compare, along with the true/false registers
3251 // and the comparison type (as a subreg to a CR field) and returns one
3252 // of the true/false registers, depending on the comparison results.
selectReg(int64_t Imm1,int64_t Imm2,unsigned CompareOpc,unsigned TrueReg,unsigned FalseReg,unsigned CRSubReg)3253 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3254                           unsigned TrueReg, unsigned FalseReg,
3255                           unsigned CRSubReg) {
3256   // Signed comparisons. The immediates are assumed to be sign-extended.
3257   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3258     switch (CRSubReg) {
3259     default: llvm_unreachable("Unknown integer comparison type.");
3260     case PPC::sub_lt:
3261       return Imm1 < Imm2 ? TrueReg : FalseReg;
3262     case PPC::sub_gt:
3263       return Imm1 > Imm2 ? TrueReg : FalseReg;
3264     case PPC::sub_eq:
3265       return Imm1 == Imm2 ? TrueReg : FalseReg;
3266     }
3267   }
3268   // Unsigned comparisons.
3269   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3270     switch (CRSubReg) {
3271     default: llvm_unreachable("Unknown integer comparison type.");
3272     case PPC::sub_lt:
3273       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3274     case PPC::sub_gt:
3275       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3276     case PPC::sub_eq:
3277       return Imm1 == Imm2 ? TrueReg : FalseReg;
3278     }
3279   }
3280   return PPC::NoRegister;
3281 }
3282 
replaceInstrOperandWithImm(MachineInstr & MI,unsigned OpNo,int64_t Imm) const3283 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3284                                               unsigned OpNo,
3285                                               int64_t Imm) const {
3286   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3287   // Replace the REG with the Immediate.
3288   Register InUseReg = MI.getOperand(OpNo).getReg();
3289   MI.getOperand(OpNo).ChangeToImmediate(Imm);
3290 
3291   // We need to make sure that the MI didn't have any implicit use
3292   // of this REG any more. We don't call MI.implicit_operands().empty() to
3293   // return early, since MI's MCID might be changed in calling context, as a
3294   // result its number of explicit operands may be changed, thus the begin of
3295   // implicit operand is changed.
3296   const TargetRegisterInfo *TRI = &getRegisterInfo();
3297   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, TRI, false);
3298   if (UseOpIdx >= 0) {
3299     MachineOperand &MO = MI.getOperand(UseOpIdx);
3300     if (MO.isImplicit())
3301       // The operands must always be in the following order:
3302       // - explicit reg defs,
3303       // - other explicit operands (reg uses, immediates, etc.),
3304       // - implicit reg defs
3305       // - implicit reg uses
3306       // Therefore, removing the implicit operand won't change the explicit
3307       // operands layout.
3308       MI.removeOperand(UseOpIdx);
3309   }
3310 }
3311 
3312 // Replace an instruction with one that materializes a constant (and sets
3313 // CR0 if the original instruction was a record-form instruction).
replaceInstrWithLI(MachineInstr & MI,const LoadImmediateInfo & LII) const3314 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3315                                       const LoadImmediateInfo &LII) const {
3316   // Remove existing operands.
3317   int OperandToKeep = LII.SetCR ? 1 : 0;
3318   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3319     MI.removeOperand(i);
3320 
3321   // Replace the instruction.
3322   if (LII.SetCR) {
3323     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3324     // Set the immediate.
3325     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3326         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3327     return;
3328   }
3329   else
3330     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3331 
3332   // Set the immediate.
3333   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3334       .addImm(LII.Imm);
3335 }
3336 
getDefMIPostRA(unsigned Reg,MachineInstr & MI,bool & SeenIntermediateUse) const3337 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3338                                            bool &SeenIntermediateUse) const {
3339   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3340          "Should be called after register allocation.");
3341   const TargetRegisterInfo *TRI = &getRegisterInfo();
3342   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3343   It++;
3344   SeenIntermediateUse = false;
3345   for (; It != E; ++It) {
3346     if (It->modifiesRegister(Reg, TRI))
3347       return &*It;
3348     if (It->readsRegister(Reg, TRI))
3349       SeenIntermediateUse = true;
3350   }
3351   return nullptr;
3352 }
3353 
materializeImmPostRA(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,Register Reg,int64_t Imm) const3354 void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB,
3355                                         MachineBasicBlock::iterator MBBI,
3356                                         const DebugLoc &DL, Register Reg,
3357                                         int64_t Imm) const {
3358   assert(!MBB.getParent()->getRegInfo().isSSA() &&
3359          "Register should be in non-SSA form after RA");
3360   bool isPPC64 = Subtarget.isPPC64();
3361   // FIXME: Materialization here is not optimal.
3362   // For some special bit patterns we can use less instructions.
3363   // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp.
3364   if (isInt<16>(Imm)) {
3365     BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm);
3366   } else if (isInt<32>(Imm)) {
3367     BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg)
3368         .addImm(Imm >> 16);
3369     if (Imm & 0xFFFF)
3370       BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg)
3371           .addReg(Reg, RegState::Kill)
3372           .addImm(Imm & 0xFFFF);
3373   } else {
3374     assert(isPPC64 && "Materializing 64-bit immediate to single register is "
3375                       "only supported in PPC64");
3376     BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48);
3377     if ((Imm >> 32) & 0xFFFF)
3378       BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3379           .addReg(Reg, RegState::Kill)
3380           .addImm((Imm >> 32) & 0xFFFF);
3381     BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg)
3382         .addReg(Reg, RegState::Kill)
3383         .addImm(32)
3384         .addImm(31);
3385     BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg)
3386         .addReg(Reg, RegState::Kill)
3387         .addImm((Imm >> 16) & 0xFFFF);
3388     if (Imm & 0xFFFF)
3389       BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3390           .addReg(Reg, RegState::Kill)
3391           .addImm(Imm & 0xFFFF);
3392   }
3393 }
3394 
getForwardingDefMI(MachineInstr & MI,unsigned & OpNoForForwarding,bool & SeenIntermediateUse) const3395 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3396   MachineInstr &MI,
3397   unsigned &OpNoForForwarding,
3398   bool &SeenIntermediateUse) const {
3399   OpNoForForwarding = ~0U;
3400   MachineInstr *DefMI = nullptr;
3401   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3402   const TargetRegisterInfo *TRI = &getRegisterInfo();
3403   // If we're in SSA, get the defs through the MRI. Otherwise, only look
3404   // within the basic block to see if the register is defined using an
3405   // LI/LI8/ADDI/ADDI8.
3406   if (MRI->isSSA()) {
3407     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3408       if (!MI.getOperand(i).isReg())
3409         continue;
3410       Register Reg = MI.getOperand(i).getReg();
3411       if (!Reg.isVirtual())
3412         continue;
3413       Register TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3414       if (TrueReg.isVirtual()) {
3415         MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg);
3416         if (DefMIForTrueReg->getOpcode() == PPC::LI ||
3417             DefMIForTrueReg->getOpcode() == PPC::LI8 ||
3418             DefMIForTrueReg->getOpcode() == PPC::ADDI ||
3419             DefMIForTrueReg->getOpcode() == PPC::ADDI8) {
3420           OpNoForForwarding = i;
3421           DefMI = DefMIForTrueReg;
3422           // The ADDI and LI operand maybe exist in one instruction at same
3423           // time. we prefer to fold LI operand as LI only has one Imm operand
3424           // and is more possible to be converted. So if current DefMI is
3425           // ADDI/ADDI8, we continue to find possible LI/LI8.
3426           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3427             break;
3428         }
3429       }
3430     }
3431   } else {
3432     // Looking back through the definition for each operand could be expensive,
3433     // so exit early if this isn't an instruction that either has an immediate
3434     // form or is already an immediate form that we can handle.
3435     ImmInstrInfo III;
3436     unsigned Opc = MI.getOpcode();
3437     bool ConvertibleImmForm =
3438         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3439         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3440         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3441         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3442         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3443         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3444         Opc == PPC::RLWINM8_rec;
3445     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3446                        ? PPC::isVFRegister(MI.getOperand(0).getReg())
3447                        : false;
3448     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3449       return nullptr;
3450 
3451     // Don't convert or %X, %Y, %Y since that's just a register move.
3452     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3453         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3454       return nullptr;
3455     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3456       MachineOperand &MO = MI.getOperand(i);
3457       SeenIntermediateUse = false;
3458       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3459         Register Reg = MI.getOperand(i).getReg();
3460         // If we see another use of this reg between the def and the MI,
3461         // we want to flag it so the def isn't deleted.
3462         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3463         if (DefMI) {
3464           // Is this register defined by some form of add-immediate (including
3465           // load-immediate) within this basic block?
3466           switch (DefMI->getOpcode()) {
3467           default:
3468             break;
3469           case PPC::LI:
3470           case PPC::LI8:
3471           case PPC::ADDItocL8:
3472           case PPC::ADDI:
3473           case PPC::ADDI8:
3474             OpNoForForwarding = i;
3475             return DefMI;
3476           }
3477         }
3478       }
3479     }
3480   }
3481   return OpNoForForwarding == ~0U ? nullptr : DefMI;
3482 }
3483 
getSpillTarget() const3484 unsigned PPCInstrInfo::getSpillTarget() const {
3485   // With P10, we may need to spill paired vector registers or accumulator
3486   // registers. MMA implies paired vectors, so we can just check that.
3487   bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3488   // P11 uses the P10 target.
3489   return Subtarget.isISAFuture() ? 3 : IsP10Variant ?
3490                                    2 : Subtarget.hasP9Vector() ?
3491                                    1 : 0;
3492 }
3493 
getStoreOpcodesForSpillArray() const3494 ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3495   return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3496 }
3497 
getLoadOpcodesForSpillArray() const3498 ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3499   return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3500 }
3501 
3502 // This opt tries to convert the following imm form to an index form to save an
3503 // add for stack variables.
3504 // Return false if no such pattern found.
3505 //
3506 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3507 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3508 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
3509 //
3510 // can be converted to:
3511 //
3512 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3513 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
3514 //
3515 // In order to eliminate ADD instr, make sure that:
3516 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3517 //    new ADDI instr and ADDI can only take int16 Imm.
3518 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3519 //    between ADDI and ADD instr since its original def in ADDI will be changed
3520 //    in new ADDI instr. And also there should be no new def for it between
3521 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3522 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3523 //    between ADD and Imm instr since ADD instr will be eliminated.
3524 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3525 //    moved to Index instr.
foldFrameOffset(MachineInstr & MI) const3526 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3527   MachineFunction *MF = MI.getParent()->getParent();
3528   MachineRegisterInfo *MRI = &MF->getRegInfo();
3529   bool PostRA = !MRI->isSSA();
3530   // Do this opt after PEI which is after RA. The reason is stack slot expansion
3531   // in PEI may expose such opportunities since in PEI, stack slot offsets to
3532   // frame base(OffsetAddi) are determined.
3533   if (!PostRA)
3534     return false;
3535   unsigned ToBeDeletedReg = 0;
3536   int64_t OffsetImm = 0;
3537   unsigned XFormOpcode = 0;
3538   ImmInstrInfo III;
3539 
3540   // Check if Imm instr meets requirement.
3541   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3542                                     III))
3543     return false;
3544 
3545   bool OtherIntermediateUse = false;
3546   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3547 
3548   // Exit if there is other use between ADD and Imm instr or no def found.
3549   if (OtherIntermediateUse || !ADDMI)
3550     return false;
3551 
3552   // Check if ADD instr meets requirement.
3553   if (!isADDInstrEligibleForFolding(*ADDMI))
3554     return false;
3555 
3556   unsigned ScaleRegIdx = 0;
3557   int64_t OffsetAddi = 0;
3558   MachineInstr *ADDIMI = nullptr;
3559 
3560   // Check if there is a valid ToBeChangedReg in ADDMI.
3561   // 1: It must be killed.
3562   // 2: Its definition must be a valid ADDIMI.
3563   // 3: It must satify int16 offset requirement.
3564   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3565     ScaleRegIdx = 2;
3566   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3567     ScaleRegIdx = 1;
3568   else
3569     return false;
3570 
3571   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3572   Register ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3573   Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3574   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3575                        MachineBasicBlock::iterator End) {
3576     for (auto It = ++Start; It != End; It++)
3577       if (It->modifiesRegister(Reg, &getRegisterInfo()))
3578         return true;
3579     return false;
3580   };
3581 
3582   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3583   // treated as special zero when ScaleReg is R0/X0 register.
3584   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3585       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3586     return false;
3587 
3588   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3589   // and Imm Instr.
3590   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3591     return false;
3592 
3593   // Now start to do the transformation.
3594   LLVM_DEBUG(dbgs() << "Replace instruction: "
3595                     << "\n");
3596   LLVM_DEBUG(ADDIMI->dump());
3597   LLVM_DEBUG(ADDMI->dump());
3598   LLVM_DEBUG(MI.dump());
3599   LLVM_DEBUG(dbgs() << "with: "
3600                     << "\n");
3601 
3602   // Update ADDI instr.
3603   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3604 
3605   // Update Imm instr.
3606   MI.setDesc(get(XFormOpcode));
3607   MI.getOperand(III.ImmOpNo)
3608       .ChangeToRegister(ScaleReg, false, false,
3609                         ADDMI->getOperand(ScaleRegIdx).isKill());
3610 
3611   MI.getOperand(III.OpNoForForwarding)
3612       .ChangeToRegister(ToBeChangedReg, false, false, true);
3613 
3614   // Eliminate ADD instr.
3615   ADDMI->eraseFromParent();
3616 
3617   LLVM_DEBUG(ADDIMI->dump());
3618   LLVM_DEBUG(MI.dump());
3619 
3620   return true;
3621 }
3622 
isADDIInstrEligibleForFolding(MachineInstr & ADDIMI,int64_t & Imm) const3623 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3624                                                  int64_t &Imm) const {
3625   unsigned Opc = ADDIMI.getOpcode();
3626 
3627   // Exit if the instruction is not ADDI.
3628   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3629     return false;
3630 
3631   // The operand may not necessarily be an immediate - it could be a relocation.
3632   if (!ADDIMI.getOperand(2).isImm())
3633     return false;
3634 
3635   Imm = ADDIMI.getOperand(2).getImm();
3636 
3637   return true;
3638 }
3639 
isADDInstrEligibleForFolding(MachineInstr & ADDMI) const3640 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3641   unsigned Opc = ADDMI.getOpcode();
3642 
3643   // Exit if the instruction is not ADD.
3644   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3645 }
3646 
isImmInstrEligibleForFolding(MachineInstr & MI,unsigned & ToBeDeletedReg,unsigned & XFormOpcode,int64_t & OffsetImm,ImmInstrInfo & III) const3647 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3648                                                 unsigned &ToBeDeletedReg,
3649                                                 unsigned &XFormOpcode,
3650                                                 int64_t &OffsetImm,
3651                                                 ImmInstrInfo &III) const {
3652   // Only handle load/store.
3653   if (!MI.mayLoadOrStore())
3654     return false;
3655 
3656   unsigned Opc = MI.getOpcode();
3657 
3658   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3659 
3660   // Exit if instruction has no index form.
3661   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3662     return false;
3663 
3664   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3665   if (!instrHasImmForm(XFormOpcode,
3666                        PPC::isVFRegister(MI.getOperand(0).getReg()), III, true))
3667     return false;
3668 
3669   if (!III.IsSummingOperands)
3670     return false;
3671 
3672   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3673   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3674   // Only support imm operands, not relocation slots or others.
3675   if (!ImmOperand.isImm())
3676     return false;
3677 
3678   assert(RegOperand.isReg() && "Instruction format is not right");
3679 
3680   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3681   if (!RegOperand.isKill())
3682     return false;
3683 
3684   ToBeDeletedReg = RegOperand.getReg();
3685   OffsetImm = ImmOperand.getImm();
3686 
3687   return true;
3688 }
3689 
isValidToBeChangedReg(MachineInstr * ADDMI,unsigned Index,MachineInstr * & ADDIMI,int64_t & OffsetAddi,int64_t OffsetImm) const3690 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3691                                          MachineInstr *&ADDIMI,
3692                                          int64_t &OffsetAddi,
3693                                          int64_t OffsetImm) const {
3694   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3695   MachineOperand &MO = ADDMI->getOperand(Index);
3696 
3697   if (!MO.isKill())
3698     return false;
3699 
3700   bool OtherIntermediateUse = false;
3701 
3702   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3703   // Currently handle only one "add + Imminstr" pair case, exit if other
3704   // intermediate use for ToBeChangedReg found.
3705   // TODO: handle the cases where there are other "add + Imminstr" pairs
3706   // with same offset in Imminstr which is like:
3707   //
3708   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3709   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3710   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3711   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3712   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3713   //
3714   // can be converted to:
3715   //
3716   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3717   //                                       (OffsetAddi + OffsetImm)
3718   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3719   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3720 
3721   if (OtherIntermediateUse || !ADDIMI)
3722     return false;
3723   // Check if ADDI instr meets requirement.
3724   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3725     return false;
3726 
3727   if (isInt<16>(OffsetAddi + OffsetImm))
3728     return true;
3729   return false;
3730 }
3731 
3732 // If this instruction has an immediate form and one of its operands is a
3733 // result of a load-immediate or an add-immediate, convert it to
3734 // the immediate form if the constant is in range.
convertToImmediateForm(MachineInstr & MI,SmallSet<Register,4> & RegsToUpdate,MachineInstr ** KilledDef) const3735 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3736                                           SmallSet<Register, 4> &RegsToUpdate,
3737                                           MachineInstr **KilledDef) const {
3738   MachineFunction *MF = MI.getParent()->getParent();
3739   MachineRegisterInfo *MRI = &MF->getRegInfo();
3740   bool PostRA = !MRI->isSSA();
3741   bool SeenIntermediateUse = true;
3742   unsigned ForwardingOperand = ~0U;
3743   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3744                                            SeenIntermediateUse);
3745   if (!DefMI)
3746     return false;
3747   assert(ForwardingOperand < MI.getNumOperands() &&
3748          "The forwarding operand needs to be valid at this point");
3749   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3750   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3751   if (KilledDef && KillFwdDefMI)
3752     *KilledDef = DefMI;
3753 
3754   // Conservatively add defs from DefMI and defs/uses from MI to the set of
3755   // registers that need their kill flags updated.
3756   for (const MachineOperand &MO : DefMI->operands())
3757     if (MO.isReg() && MO.isDef())
3758       RegsToUpdate.insert(MO.getReg());
3759   for (const MachineOperand &MO : MI.operands())
3760     if (MO.isReg())
3761       RegsToUpdate.insert(MO.getReg());
3762 
3763   // If this is a imm instruction and its register operands is produced by ADDI,
3764   // put the imm into imm inst directly.
3765   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3766           PPC::INSTRUCTION_LIST_END &&
3767       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3768     return true;
3769 
3770   ImmInstrInfo III;
3771   bool IsVFReg = MI.getOperand(0).isReg()
3772                      ? PPC::isVFRegister(MI.getOperand(0).getReg())
3773                      : false;
3774   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3775   // If this is a reg+reg instruction that has a reg+imm form,
3776   // and one of the operands is produced by an add-immediate,
3777   // try to convert it.
3778   if (HasImmForm &&
3779       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3780                                  KillFwdDefMI))
3781     return true;
3782 
3783   // If this is a reg+reg instruction that has a reg+imm form,
3784   // and one of the operands is produced by LI, convert it now.
3785   if (HasImmForm &&
3786       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3787     return true;
3788 
3789   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3790   // can be simpified to LI.
3791   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3792     return true;
3793 
3794   return false;
3795 }
3796 
combineRLWINM(MachineInstr & MI,MachineInstr ** ToErase) const3797 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3798                                  MachineInstr **ToErase) const {
3799   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3800   Register FoldingReg = MI.getOperand(1).getReg();
3801   if (!FoldingReg.isVirtual())
3802     return false;
3803   MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3804   if (SrcMI->getOpcode() != PPC::RLWINM &&
3805       SrcMI->getOpcode() != PPC::RLWINM_rec &&
3806       SrcMI->getOpcode() != PPC::RLWINM8 &&
3807       SrcMI->getOpcode() != PPC::RLWINM8_rec)
3808     return false;
3809   assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3810           MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3811           SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3812          "Invalid PPC::RLWINM Instruction!");
3813   uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3814   uint64_t SHMI = MI.getOperand(2).getImm();
3815   uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3816   uint64_t MBMI = MI.getOperand(3).getImm();
3817   uint64_t MESrc = SrcMI->getOperand(4).getImm();
3818   uint64_t MEMI = MI.getOperand(4).getImm();
3819 
3820   assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3821          "Invalid PPC::RLWINM Instruction!");
3822   // If MBMI is bigger than MEMI, we always can not get run of ones.
3823   // RotatedSrcMask non-wrap:
3824   //                 0........31|32........63
3825   // RotatedSrcMask:   B---E        B---E
3826   // MaskMI:         -----------|--E  B------
3827   // Result:           -----          ---      (Bad candidate)
3828   //
3829   // RotatedSrcMask wrap:
3830   //                 0........31|32........63
3831   // RotatedSrcMask: --E   B----|--E    B----
3832   // MaskMI:         -----------|--E  B------
3833   // Result:         ---   -----|---    -----  (Bad candidate)
3834   //
3835   // One special case is RotatedSrcMask is a full set mask.
3836   // RotatedSrcMask full:
3837   //                 0........31|32........63
3838   // RotatedSrcMask: ------EB---|-------EB---
3839   // MaskMI:         -----------|--E  B------
3840   // Result:         -----------|---  -------  (Good candidate)
3841 
3842   // Mark special case.
3843   bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3844 
3845   // For other MBMI > MEMI cases, just return.
3846   if ((MBMI > MEMI) && !SrcMaskFull)
3847     return false;
3848 
3849   // Handle MBMI <= MEMI cases.
3850   APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3851   // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3852   // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3853   // while in PowerPC ISA, lowerest bit is at index 63.
3854   APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3855 
3856   APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3857   APInt FinalMask = RotatedSrcMask & MaskMI;
3858   uint32_t NewMB, NewME;
3859   bool Simplified = false;
3860 
3861   // If final mask is 0, MI result should be 0 too.
3862   if (FinalMask.isZero()) {
3863     bool Is64Bit =
3864         (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3865     Simplified = true;
3866     LLVM_DEBUG(dbgs() << "Replace Instr: ");
3867     LLVM_DEBUG(MI.dump());
3868 
3869     if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3870       // Replace MI with "LI 0"
3871       MI.removeOperand(4);
3872       MI.removeOperand(3);
3873       MI.removeOperand(2);
3874       MI.getOperand(1).ChangeToImmediate(0);
3875       MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3876     } else {
3877       // Replace MI with "ANDI_rec reg, 0"
3878       MI.removeOperand(4);
3879       MI.removeOperand(3);
3880       MI.getOperand(2).setImm(0);
3881       MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3882       MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3883       if (SrcMI->getOperand(1).isKill()) {
3884         MI.getOperand(1).setIsKill(true);
3885         SrcMI->getOperand(1).setIsKill(false);
3886       } else
3887         // About to replace MI.getOperand(1), clear its kill flag.
3888         MI.getOperand(1).setIsKill(false);
3889     }
3890 
3891     LLVM_DEBUG(dbgs() << "With: ");
3892     LLVM_DEBUG(MI.dump());
3893 
3894   } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3895               NewMB <= NewME) ||
3896              SrcMaskFull) {
3897     // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3898     // than NewME. Otherwise we get a 64 bit value after folding, but MI
3899     // return a 32 bit value.
3900     Simplified = true;
3901     LLVM_DEBUG(dbgs() << "Converting Instr: ");
3902     LLVM_DEBUG(MI.dump());
3903 
3904     uint16_t NewSH = (SHSrc + SHMI) % 32;
3905     MI.getOperand(2).setImm(NewSH);
3906     // If SrcMI mask is full, no need to update MBMI and MEMI.
3907     if (!SrcMaskFull) {
3908       MI.getOperand(3).setImm(NewMB);
3909       MI.getOperand(4).setImm(NewME);
3910     }
3911     MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3912     if (SrcMI->getOperand(1).isKill()) {
3913       MI.getOperand(1).setIsKill(true);
3914       SrcMI->getOperand(1).setIsKill(false);
3915     } else
3916       // About to replace MI.getOperand(1), clear its kill flag.
3917       MI.getOperand(1).setIsKill(false);
3918 
3919     LLVM_DEBUG(dbgs() << "To: ");
3920     LLVM_DEBUG(MI.dump());
3921   }
3922   if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3923       !SrcMI->hasImplicitDef()) {
3924     // If FoldingReg has no non-debug use and it has no implicit def (it
3925     // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3926     // Otherwise keep it.
3927     *ToErase = SrcMI;
3928     LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3929     LLVM_DEBUG(SrcMI->dump());
3930   }
3931   return Simplified;
3932 }
3933 
instrHasImmForm(unsigned Opc,bool IsVFReg,ImmInstrInfo & III,bool PostRA) const3934 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3935                                    ImmInstrInfo &III, bool PostRA) const {
3936   // The vast majority of the instructions would need their operand 2 replaced
3937   // with an immediate when switching to the reg+imm form. A marked exception
3938   // are the update form loads/stores for which a constant operand 2 would need
3939   // to turn into a displacement and move operand 1 to the operand 2 position.
3940   III.ImmOpNo = 2;
3941   III.OpNoForForwarding = 2;
3942   III.ImmWidth = 16;
3943   III.ImmMustBeMultipleOf = 1;
3944   III.TruncateImmTo = 0;
3945   III.IsSummingOperands = false;
3946   switch (Opc) {
3947   default: return false;
3948   case PPC::ADD4:
3949   case PPC::ADD8:
3950     III.SignedImm = true;
3951     III.ZeroIsSpecialOrig = 0;
3952     III.ZeroIsSpecialNew = 1;
3953     III.IsCommutative = true;
3954     III.IsSummingOperands = true;
3955     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3956     break;
3957   case PPC::ADDC:
3958   case PPC::ADDC8:
3959     III.SignedImm = true;
3960     III.ZeroIsSpecialOrig = 0;
3961     III.ZeroIsSpecialNew = 0;
3962     III.IsCommutative = true;
3963     III.IsSummingOperands = true;
3964     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3965     break;
3966   case PPC::ADDC_rec:
3967     III.SignedImm = true;
3968     III.ZeroIsSpecialOrig = 0;
3969     III.ZeroIsSpecialNew = 0;
3970     III.IsCommutative = true;
3971     III.IsSummingOperands = true;
3972     III.ImmOpcode = PPC::ADDIC_rec;
3973     break;
3974   case PPC::SUBFC:
3975   case PPC::SUBFC8:
3976     III.SignedImm = true;
3977     III.ZeroIsSpecialOrig = 0;
3978     III.ZeroIsSpecialNew = 0;
3979     III.IsCommutative = false;
3980     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3981     break;
3982   case PPC::CMPW:
3983   case PPC::CMPD:
3984     III.SignedImm = true;
3985     III.ZeroIsSpecialOrig = 0;
3986     III.ZeroIsSpecialNew = 0;
3987     III.IsCommutative = false;
3988     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3989     break;
3990   case PPC::CMPLW:
3991   case PPC::CMPLD:
3992     III.SignedImm = false;
3993     III.ZeroIsSpecialOrig = 0;
3994     III.ZeroIsSpecialNew = 0;
3995     III.IsCommutative = false;
3996     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3997     break;
3998   case PPC::AND_rec:
3999   case PPC::AND8_rec:
4000   case PPC::OR:
4001   case PPC::OR8:
4002   case PPC::XOR:
4003   case PPC::XOR8:
4004     III.SignedImm = false;
4005     III.ZeroIsSpecialOrig = 0;
4006     III.ZeroIsSpecialNew = 0;
4007     III.IsCommutative = true;
4008     switch(Opc) {
4009     default: llvm_unreachable("Unknown opcode");
4010     case PPC::AND_rec:
4011       III.ImmOpcode = PPC::ANDI_rec;
4012       break;
4013     case PPC::AND8_rec:
4014       III.ImmOpcode = PPC::ANDI8_rec;
4015       break;
4016     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
4017     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
4018     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
4019     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
4020     }
4021     break;
4022   case PPC::RLWNM:
4023   case PPC::RLWNM8:
4024   case PPC::RLWNM_rec:
4025   case PPC::RLWNM8_rec:
4026   case PPC::SLW:
4027   case PPC::SLW8:
4028   case PPC::SLW_rec:
4029   case PPC::SLW8_rec:
4030   case PPC::SRW:
4031   case PPC::SRW8:
4032   case PPC::SRW_rec:
4033   case PPC::SRW8_rec:
4034   case PPC::SRAW:
4035   case PPC::SRAW_rec:
4036     III.SignedImm = false;
4037     III.ZeroIsSpecialOrig = 0;
4038     III.ZeroIsSpecialNew = 0;
4039     III.IsCommutative = false;
4040     // This isn't actually true, but the instructions ignore any of the
4041     // upper bits, so any immediate loaded with an LI is acceptable.
4042     // This does not apply to shift right algebraic because a value
4043     // out of range will produce a -1/0.
4044     III.ImmWidth = 16;
4045     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
4046         Opc == PPC::RLWNM8_rec)
4047       III.TruncateImmTo = 5;
4048     else
4049       III.TruncateImmTo = 6;
4050     switch(Opc) {
4051     default: llvm_unreachable("Unknown opcode");
4052     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
4053     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
4054     case PPC::RLWNM_rec:
4055       III.ImmOpcode = PPC::RLWINM_rec;
4056       break;
4057     case PPC::RLWNM8_rec:
4058       III.ImmOpcode = PPC::RLWINM8_rec;
4059       break;
4060     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
4061     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
4062     case PPC::SLW_rec:
4063       III.ImmOpcode = PPC::RLWINM_rec;
4064       break;
4065     case PPC::SLW8_rec:
4066       III.ImmOpcode = PPC::RLWINM8_rec;
4067       break;
4068     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
4069     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
4070     case PPC::SRW_rec:
4071       III.ImmOpcode = PPC::RLWINM_rec;
4072       break;
4073     case PPC::SRW8_rec:
4074       III.ImmOpcode = PPC::RLWINM8_rec;
4075       break;
4076     case PPC::SRAW:
4077       III.ImmWidth = 5;
4078       III.TruncateImmTo = 0;
4079       III.ImmOpcode = PPC::SRAWI;
4080       break;
4081     case PPC::SRAW_rec:
4082       III.ImmWidth = 5;
4083       III.TruncateImmTo = 0;
4084       III.ImmOpcode = PPC::SRAWI_rec;
4085       break;
4086     }
4087     break;
4088   case PPC::RLDCL:
4089   case PPC::RLDCL_rec:
4090   case PPC::RLDCR:
4091   case PPC::RLDCR_rec:
4092   case PPC::SLD:
4093   case PPC::SLD_rec:
4094   case PPC::SRD:
4095   case PPC::SRD_rec:
4096   case PPC::SRAD:
4097   case PPC::SRAD_rec:
4098     III.SignedImm = false;
4099     III.ZeroIsSpecialOrig = 0;
4100     III.ZeroIsSpecialNew = 0;
4101     III.IsCommutative = false;
4102     // This isn't actually true, but the instructions ignore any of the
4103     // upper bits, so any immediate loaded with an LI is acceptable.
4104     // This does not apply to shift right algebraic because a value
4105     // out of range will produce a -1/0.
4106     III.ImmWidth = 16;
4107     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4108         Opc == PPC::RLDCR_rec)
4109       III.TruncateImmTo = 6;
4110     else
4111       III.TruncateImmTo = 7;
4112     switch(Opc) {
4113     default: llvm_unreachable("Unknown opcode");
4114     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4115     case PPC::RLDCL_rec:
4116       III.ImmOpcode = PPC::RLDICL_rec;
4117       break;
4118     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4119     case PPC::RLDCR_rec:
4120       III.ImmOpcode = PPC::RLDICR_rec;
4121       break;
4122     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4123     case PPC::SLD_rec:
4124       III.ImmOpcode = PPC::RLDICR_rec;
4125       break;
4126     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4127     case PPC::SRD_rec:
4128       III.ImmOpcode = PPC::RLDICL_rec;
4129       break;
4130     case PPC::SRAD:
4131       III.ImmWidth = 6;
4132       III.TruncateImmTo = 0;
4133       III.ImmOpcode = PPC::SRADI;
4134        break;
4135     case PPC::SRAD_rec:
4136       III.ImmWidth = 6;
4137       III.TruncateImmTo = 0;
4138       III.ImmOpcode = PPC::SRADI_rec;
4139       break;
4140     }
4141     break;
4142   // Loads and stores:
4143   case PPC::LBZX:
4144   case PPC::LBZX8:
4145   case PPC::LHZX:
4146   case PPC::LHZX8:
4147   case PPC::LHAX:
4148   case PPC::LHAX8:
4149   case PPC::LWZX:
4150   case PPC::LWZX8:
4151   case PPC::LWAX:
4152   case PPC::LDX:
4153   case PPC::LFSX:
4154   case PPC::LFDX:
4155   case PPC::STBX:
4156   case PPC::STBX8:
4157   case PPC::STHX:
4158   case PPC::STHX8:
4159   case PPC::STWX:
4160   case PPC::STWX8:
4161   case PPC::STDX:
4162   case PPC::STFSX:
4163   case PPC::STFDX:
4164     III.SignedImm = true;
4165     III.ZeroIsSpecialOrig = 1;
4166     III.ZeroIsSpecialNew = 2;
4167     III.IsCommutative = true;
4168     III.IsSummingOperands = true;
4169     III.ImmOpNo = 1;
4170     III.OpNoForForwarding = 2;
4171     switch(Opc) {
4172     default: llvm_unreachable("Unknown opcode");
4173     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4174     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4175     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4176     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4177     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4178     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4179     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4180     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4181     case PPC::LWAX:
4182       III.ImmOpcode = PPC::LWA;
4183       III.ImmMustBeMultipleOf = 4;
4184       break;
4185     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4186     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4187     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4188     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4189     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4190     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4191     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4192     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4193     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4194     case PPC::STDX:
4195       III.ImmOpcode = PPC::STD;
4196       III.ImmMustBeMultipleOf = 4;
4197       break;
4198     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4199     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4200     }
4201     break;
4202   case PPC::LBZUX:
4203   case PPC::LBZUX8:
4204   case PPC::LHZUX:
4205   case PPC::LHZUX8:
4206   case PPC::LHAUX:
4207   case PPC::LHAUX8:
4208   case PPC::LWZUX:
4209   case PPC::LWZUX8:
4210   case PPC::LDUX:
4211   case PPC::LFSUX:
4212   case PPC::LFDUX:
4213   case PPC::STBUX:
4214   case PPC::STBUX8:
4215   case PPC::STHUX:
4216   case PPC::STHUX8:
4217   case PPC::STWUX:
4218   case PPC::STWUX8:
4219   case PPC::STDUX:
4220   case PPC::STFSUX:
4221   case PPC::STFDUX:
4222     III.SignedImm = true;
4223     III.ZeroIsSpecialOrig = 2;
4224     III.ZeroIsSpecialNew = 3;
4225     III.IsCommutative = false;
4226     III.IsSummingOperands = true;
4227     III.ImmOpNo = 2;
4228     III.OpNoForForwarding = 3;
4229     switch(Opc) {
4230     default: llvm_unreachable("Unknown opcode");
4231     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4232     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4233     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4234     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4235     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4236     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4237     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4238     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4239     case PPC::LDUX:
4240       III.ImmOpcode = PPC::LDU;
4241       III.ImmMustBeMultipleOf = 4;
4242       break;
4243     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4244     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4245     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4246     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4247     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4248     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4249     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4250     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4251     case PPC::STDUX:
4252       III.ImmOpcode = PPC::STDU;
4253       III.ImmMustBeMultipleOf = 4;
4254       break;
4255     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4256     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4257     }
4258     break;
4259   // Power9 and up only. For some of these, the X-Form version has access to all
4260   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4261   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4262   // into or stored from is one of the VR registers.
4263   case PPC::LXVX:
4264   case PPC::LXSSPX:
4265   case PPC::LXSDX:
4266   case PPC::STXVX:
4267   case PPC::STXSSPX:
4268   case PPC::STXSDX:
4269   case PPC::XFLOADf32:
4270   case PPC::XFLOADf64:
4271   case PPC::XFSTOREf32:
4272   case PPC::XFSTOREf64:
4273     if (!Subtarget.hasP9Vector())
4274       return false;
4275     III.SignedImm = true;
4276     III.ZeroIsSpecialOrig = 1;
4277     III.ZeroIsSpecialNew = 2;
4278     III.IsCommutative = true;
4279     III.IsSummingOperands = true;
4280     III.ImmOpNo = 1;
4281     III.OpNoForForwarding = 2;
4282     III.ImmMustBeMultipleOf = 4;
4283     switch(Opc) {
4284     default: llvm_unreachable("Unknown opcode");
4285     case PPC::LXVX:
4286       III.ImmOpcode = PPC::LXV;
4287       III.ImmMustBeMultipleOf = 16;
4288       break;
4289     case PPC::LXSSPX:
4290       if (PostRA) {
4291         if (IsVFReg)
4292           III.ImmOpcode = PPC::LXSSP;
4293         else {
4294           III.ImmOpcode = PPC::LFS;
4295           III.ImmMustBeMultipleOf = 1;
4296         }
4297         break;
4298       }
4299       [[fallthrough]];
4300     case PPC::XFLOADf32:
4301       III.ImmOpcode = PPC::DFLOADf32;
4302       break;
4303     case PPC::LXSDX:
4304       if (PostRA) {
4305         if (IsVFReg)
4306           III.ImmOpcode = PPC::LXSD;
4307         else {
4308           III.ImmOpcode = PPC::LFD;
4309           III.ImmMustBeMultipleOf = 1;
4310         }
4311         break;
4312       }
4313       [[fallthrough]];
4314     case PPC::XFLOADf64:
4315       III.ImmOpcode = PPC::DFLOADf64;
4316       break;
4317     case PPC::STXVX:
4318       III.ImmOpcode = PPC::STXV;
4319       III.ImmMustBeMultipleOf = 16;
4320       break;
4321     case PPC::STXSSPX:
4322       if (PostRA) {
4323         if (IsVFReg)
4324           III.ImmOpcode = PPC::STXSSP;
4325         else {
4326           III.ImmOpcode = PPC::STFS;
4327           III.ImmMustBeMultipleOf = 1;
4328         }
4329         break;
4330       }
4331       [[fallthrough]];
4332     case PPC::XFSTOREf32:
4333       III.ImmOpcode = PPC::DFSTOREf32;
4334       break;
4335     case PPC::STXSDX:
4336       if (PostRA) {
4337         if (IsVFReg)
4338           III.ImmOpcode = PPC::STXSD;
4339         else {
4340           III.ImmOpcode = PPC::STFD;
4341           III.ImmMustBeMultipleOf = 1;
4342         }
4343         break;
4344       }
4345       [[fallthrough]];
4346     case PPC::XFSTOREf64:
4347       III.ImmOpcode = PPC::DFSTOREf64;
4348       break;
4349     }
4350     break;
4351   }
4352   return true;
4353 }
4354 
4355 // Utility function for swaping two arbitrary operands of an instruction.
swapMIOperands(MachineInstr & MI,unsigned Op1,unsigned Op2)4356 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4357   assert(Op1 != Op2 && "Cannot swap operand with itself.");
4358 
4359   unsigned MaxOp = std::max(Op1, Op2);
4360   unsigned MinOp = std::min(Op1, Op2);
4361   MachineOperand MOp1 = MI.getOperand(MinOp);
4362   MachineOperand MOp2 = MI.getOperand(MaxOp);
4363   MI.removeOperand(std::max(Op1, Op2));
4364   MI.removeOperand(std::min(Op1, Op2));
4365 
4366   // If the operands we are swapping are the two at the end (the common case)
4367   // we can just remove both and add them in the opposite order.
4368   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4369     MI.addOperand(MOp2);
4370     MI.addOperand(MOp1);
4371   } else {
4372     // Store all operands in a temporary vector, remove them and re-add in the
4373     // right order.
4374     SmallVector<MachineOperand, 2> MOps;
4375     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4376     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4377       MOps.push_back(MI.getOperand(i));
4378       MI.removeOperand(i);
4379     }
4380     // MOp2 needs to be added next.
4381     MI.addOperand(MOp2);
4382     // Now add the rest.
4383     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4384       if (i == MaxOp)
4385         MI.addOperand(MOp1);
4386       else {
4387         MI.addOperand(MOps.back());
4388         MOps.pop_back();
4389       }
4390     }
4391   }
4392 }
4393 
4394 // Check if the 'MI' that has the index OpNoForForwarding
4395 // meets the requirement described in the ImmInstrInfo.
isUseMIElgibleForForwarding(MachineInstr & MI,const ImmInstrInfo & III,unsigned OpNoForForwarding) const4396 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4397                                                const ImmInstrInfo &III,
4398                                                unsigned OpNoForForwarding
4399                                                ) const {
4400   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4401   // would not work pre-RA, we can only do the check post RA.
4402   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4403   if (MRI.isSSA())
4404     return false;
4405 
4406   // Cannot do the transform if MI isn't summing the operands.
4407   if (!III.IsSummingOperands)
4408     return false;
4409 
4410   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4411   if (!III.ZeroIsSpecialOrig)
4412     return false;
4413 
4414   // We cannot do the transform if the operand we are trying to replace
4415   // isn't the same as the operand the instruction allows.
4416   if (OpNoForForwarding != III.OpNoForForwarding)
4417     return false;
4418 
4419   // Check if the instruction we are trying to transform really has
4420   // the special zero register as its operand.
4421   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4422       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4423     return false;
4424 
4425   // This machine instruction is convertible if it is,
4426   // 1. summing the operands.
4427   // 2. one of the operands is special zero register.
4428   // 3. the operand we are trying to replace is allowed by the MI.
4429   return true;
4430 }
4431 
4432 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4433 // accordingly.
isDefMIElgibleForForwarding(MachineInstr & DefMI,const ImmInstrInfo & III,MachineOperand * & ImmMO,MachineOperand * & RegMO) const4434 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4435                                                const ImmInstrInfo &III,
4436                                                MachineOperand *&ImmMO,
4437                                                MachineOperand *&RegMO) const {
4438   unsigned Opc = DefMI.getOpcode();
4439   if (Opc != PPC::ADDItocL8 && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4440     return false;
4441 
4442   // Skip the optimization of transformTo[NewImm|Imm]FormFedByAdd for ADDItocL8
4443   // on AIX which is used for toc-data access. TODO: Follow up to see if it can
4444   // apply for AIX toc-data as well.
4445   if (Opc == PPC::ADDItocL8 && Subtarget.isAIX())
4446     return false;
4447 
4448   assert(DefMI.getNumOperands() >= 3 &&
4449          "Add inst must have at least three operands");
4450   RegMO = &DefMI.getOperand(1);
4451   ImmMO = &DefMI.getOperand(2);
4452 
4453   // Before RA, ADDI first operand could be a frame index.
4454   if (!RegMO->isReg())
4455     return false;
4456 
4457   // This DefMI is elgible for forwarding if it is:
4458   // 1. add inst
4459   // 2. one of the operands is Imm/CPI/Global.
4460   return isAnImmediateOperand(*ImmMO);
4461 }
4462 
isRegElgibleForForwarding(const MachineOperand & RegMO,const MachineInstr & DefMI,const MachineInstr & MI,bool KillDefMI,bool & IsFwdFeederRegKilled,bool & SeenIntermediateUse) const4463 bool PPCInstrInfo::isRegElgibleForForwarding(
4464     const MachineOperand &RegMO, const MachineInstr &DefMI,
4465     const MachineInstr &MI, bool KillDefMI,
4466     bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const {
4467   // x = addi y, imm
4468   // ...
4469   // z = lfdx 0, x   -> z = lfd imm(y)
4470   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4471   // of "y" between the DEF of "x" and "z".
4472   // The query is only valid post RA.
4473   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4474   if (MRI.isSSA())
4475     return false;
4476 
4477   Register Reg = RegMO.getReg();
4478 
4479   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4480   MachineBasicBlock::const_reverse_iterator It = MI;
4481   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4482   It++;
4483   for (; It != E; ++It) {
4484     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4485       return false;
4486     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4487       IsFwdFeederRegKilled = true;
4488     if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4489       SeenIntermediateUse = true;
4490     // Made it to DefMI without encountering a clobber.
4491     if ((&*It) == &DefMI)
4492       break;
4493   }
4494   assert((&*It) == &DefMI && "DefMI is missing");
4495 
4496   // If DefMI also defines the register to be forwarded, we can only forward it
4497   // if DefMI is being erased.
4498   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4499     return KillDefMI;
4500 
4501   return true;
4502 }
4503 
isImmElgibleForForwarding(const MachineOperand & ImmMO,const MachineInstr & DefMI,const ImmInstrInfo & III,int64_t & Imm,int64_t BaseImm) const4504 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4505                                              const MachineInstr &DefMI,
4506                                              const ImmInstrInfo &III,
4507                                              int64_t &Imm,
4508                                              int64_t BaseImm) const {
4509   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4510   if (DefMI.getOpcode() == PPC::ADDItocL8) {
4511     // The operand for ADDItocL8 is CPI, which isn't imm at compiling time,
4512     // However, we know that, it is 16-bit width, and has the alignment of 4.
4513     // Check if the instruction met the requirement.
4514     if (III.ImmMustBeMultipleOf > 4 ||
4515        III.TruncateImmTo || III.ImmWidth != 16)
4516       return false;
4517 
4518     // Going from XForm to DForm loads means that the displacement needs to be
4519     // not just an immediate but also a multiple of 4, or 16 depending on the
4520     // load. A DForm load cannot be represented if it is a multiple of say 2.
4521     // XForm loads do not have this restriction.
4522     if (ImmMO.isGlobal()) {
4523       const DataLayout &DL = ImmMO.getGlobal()->getDataLayout();
4524       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4525         return false;
4526     }
4527 
4528     return true;
4529   }
4530 
4531   if (ImmMO.isImm()) {
4532     // It is Imm, we need to check if the Imm fit the range.
4533     // Sign-extend to 64-bits.
4534     // DefMI may be folded with another imm form instruction, the result Imm is
4535     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4536     APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4537     if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4538       return false;
4539     if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4540       return false;
4541     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4542 
4543     if (Imm % III.ImmMustBeMultipleOf)
4544       return false;
4545     if (III.TruncateImmTo)
4546       Imm &= ((1 << III.TruncateImmTo) - 1);
4547   }
4548   else
4549     return false;
4550 
4551   // This ImmMO is forwarded if it meets the requriement describle
4552   // in ImmInstrInfo
4553   return true;
4554 }
4555 
simplifyToLI(MachineInstr & MI,MachineInstr & DefMI,unsigned OpNoForForwarding,MachineInstr ** KilledDef) const4556 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4557                                 unsigned OpNoForForwarding,
4558                                 MachineInstr **KilledDef) const {
4559   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4560       !DefMI.getOperand(1).isImm())
4561     return false;
4562 
4563   MachineFunction *MF = MI.getParent()->getParent();
4564   MachineRegisterInfo *MRI = &MF->getRegInfo();
4565   bool PostRA = !MRI->isSSA();
4566 
4567   int64_t Immediate = DefMI.getOperand(1).getImm();
4568   // Sign-extend to 64-bits.
4569   int64_t SExtImm = SignExtend64<16>(Immediate);
4570 
4571   bool ReplaceWithLI = false;
4572   bool Is64BitLI = false;
4573   int64_t NewImm = 0;
4574   bool SetCR = false;
4575   unsigned Opc = MI.getOpcode();
4576   switch (Opc) {
4577   default:
4578     return false;
4579 
4580   // FIXME: Any branches conditional on such a comparison can be made
4581   // unconditional. At this time, this happens too infrequently to be worth
4582   // the implementation effort, but if that ever changes, we could convert
4583   // such a pattern here.
4584   case PPC::CMPWI:
4585   case PPC::CMPLWI:
4586   case PPC::CMPDI:
4587   case PPC::CMPLDI: {
4588     // Doing this post-RA would require dataflow analysis to reliably find uses
4589     // of the CR register set by the compare.
4590     // No need to fixup killed/dead flag since this transformation is only valid
4591     // before RA.
4592     if (PostRA)
4593       return false;
4594     // If a compare-immediate is fed by an immediate and is itself an input of
4595     // an ISEL (the most common case) into a COPY of the correct register.
4596     bool Changed = false;
4597     Register DefReg = MI.getOperand(0).getReg();
4598     int64_t Comparand = MI.getOperand(2).getImm();
4599     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4600                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
4601                                 : Comparand;
4602 
4603     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4604       unsigned UseOpc = CompareUseMI.getOpcode();
4605       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4606         continue;
4607       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4608       Register TrueReg = CompareUseMI.getOperand(1).getReg();
4609       Register FalseReg = CompareUseMI.getOperand(2).getReg();
4610       unsigned RegToCopy =
4611           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4612       if (RegToCopy == PPC::NoRegister)
4613         continue;
4614       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4615       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4616         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4617         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4618         CompareUseMI.removeOperand(3);
4619         CompareUseMI.removeOperand(2);
4620         continue;
4621       }
4622       LLVM_DEBUG(
4623           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4624       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4625       LLVM_DEBUG(dbgs() << "Is converted to:\n");
4626       // Convert to copy and remove unneeded operands.
4627       CompareUseMI.setDesc(get(PPC::COPY));
4628       CompareUseMI.removeOperand(3);
4629       CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1);
4630       CmpIselsConverted++;
4631       Changed = true;
4632       LLVM_DEBUG(CompareUseMI.dump());
4633     }
4634     if (Changed)
4635       return true;
4636     // This may end up incremented multiple times since this function is called
4637     // during a fixed-point transformation, but it is only meant to indicate the
4638     // presence of this opportunity.
4639     MissedConvertibleImmediateInstrs++;
4640     return false;
4641   }
4642 
4643   // Immediate forms - may simply be convertable to an LI.
4644   case PPC::ADDI:
4645   case PPC::ADDI8: {
4646     // Does the sum fit in a 16-bit signed field?
4647     int64_t Addend = MI.getOperand(2).getImm();
4648     if (isInt<16>(Addend + SExtImm)) {
4649       ReplaceWithLI = true;
4650       Is64BitLI = Opc == PPC::ADDI8;
4651       NewImm = Addend + SExtImm;
4652       break;
4653     }
4654     return false;
4655   }
4656   case PPC::SUBFIC:
4657   case PPC::SUBFIC8: {
4658     // Only transform this if the CARRY implicit operand is dead.
4659     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4660       return false;
4661     int64_t Minuend = MI.getOperand(2).getImm();
4662     if (isInt<16>(Minuend - SExtImm)) {
4663       ReplaceWithLI = true;
4664       Is64BitLI = Opc == PPC::SUBFIC8;
4665       NewImm = Minuend - SExtImm;
4666       break;
4667     }
4668     return false;
4669   }
4670   case PPC::RLDICL:
4671   case PPC::RLDICL_rec:
4672   case PPC::RLDICL_32:
4673   case PPC::RLDICL_32_64: {
4674     // Use APInt's rotate function.
4675     int64_t SH = MI.getOperand(2).getImm();
4676     int64_t MB = MI.getOperand(3).getImm();
4677     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4678                 SExtImm, true);
4679     InVal = InVal.rotl(SH);
4680     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4681     InVal &= Mask;
4682     // Can't replace negative values with an LI as that will sign-extend
4683     // and not clear the left bits. If we're setting the CR bit, we will use
4684     // ANDI_rec which won't sign extend, so that's safe.
4685     if (isUInt<15>(InVal.getSExtValue()) ||
4686         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4687       ReplaceWithLI = true;
4688       Is64BitLI = Opc != PPC::RLDICL_32;
4689       NewImm = InVal.getSExtValue();
4690       SetCR = Opc == PPC::RLDICL_rec;
4691       break;
4692     }
4693     return false;
4694   }
4695   case PPC::RLWINM:
4696   case PPC::RLWINM8:
4697   case PPC::RLWINM_rec:
4698   case PPC::RLWINM8_rec: {
4699     int64_t SH = MI.getOperand(2).getImm();
4700     int64_t MB = MI.getOperand(3).getImm();
4701     int64_t ME = MI.getOperand(4).getImm();
4702     APInt InVal(32, SExtImm, true);
4703     InVal = InVal.rotl(SH);
4704     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4705     InVal &= Mask;
4706     // Can't replace negative values with an LI as that will sign-extend
4707     // and not clear the left bits. If we're setting the CR bit, we will use
4708     // ANDI_rec which won't sign extend, so that's safe.
4709     bool ValueFits = isUInt<15>(InVal.getSExtValue());
4710     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4711                   isUInt<16>(InVal.getSExtValue()));
4712     if (ValueFits) {
4713       ReplaceWithLI = true;
4714       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4715       NewImm = InVal.getSExtValue();
4716       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4717       break;
4718     }
4719     return false;
4720   }
4721   case PPC::ORI:
4722   case PPC::ORI8:
4723   case PPC::XORI:
4724   case PPC::XORI8: {
4725     int64_t LogicalImm = MI.getOperand(2).getImm();
4726     int64_t Result = 0;
4727     if (Opc == PPC::ORI || Opc == PPC::ORI8)
4728       Result = LogicalImm | SExtImm;
4729     else
4730       Result = LogicalImm ^ SExtImm;
4731     if (isInt<16>(Result)) {
4732       ReplaceWithLI = true;
4733       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4734       NewImm = Result;
4735       break;
4736     }
4737     return false;
4738   }
4739   }
4740 
4741   if (ReplaceWithLI) {
4742     // We need to be careful with CR-setting instructions we're replacing.
4743     if (SetCR) {
4744       // We don't know anything about uses when we're out of SSA, so only
4745       // replace if the new immediate will be reproduced.
4746       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4747       if (PostRA && ImmChanged)
4748         return false;
4749 
4750       if (!PostRA) {
4751         // If the defining load-immediate has no other uses, we can just replace
4752         // the immediate with the new immediate.
4753         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4754           DefMI.getOperand(1).setImm(NewImm);
4755 
4756         // If we're not using the GPR result of the CR-setting instruction, we
4757         // just need to and with zero/non-zero depending on the new immediate.
4758         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4759           if (NewImm) {
4760             assert(Immediate && "Transformation converted zero to non-zero?");
4761             NewImm = Immediate;
4762           }
4763         } else if (ImmChanged)
4764           return false;
4765       }
4766     }
4767 
4768     LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n");
4769     LLVM_DEBUG(MI.dump());
4770     LLVM_DEBUG(dbgs() << "Fed by:\n");
4771     LLVM_DEBUG(DefMI.dump());
4772     LoadImmediateInfo LII;
4773     LII.Imm = NewImm;
4774     LII.Is64Bit = Is64BitLI;
4775     LII.SetCR = SetCR;
4776     // If we're setting the CR, the original load-immediate must be kept (as an
4777     // operand to ANDI_rec/ANDI8_rec).
4778     if (KilledDef && SetCR)
4779       *KilledDef = nullptr;
4780     replaceInstrWithLI(MI, LII);
4781 
4782     if (PostRA)
4783       recomputeLivenessFlags(*MI.getParent());
4784 
4785     LLVM_DEBUG(dbgs() << "With:\n");
4786     LLVM_DEBUG(MI.dump());
4787     return true;
4788   }
4789   return false;
4790 }
4791 
transformToNewImmFormFedByAdd(MachineInstr & MI,MachineInstr & DefMI,unsigned OpNoForForwarding) const4792 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4793     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4794   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4795   bool PostRA = !MRI->isSSA();
4796   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4797   // for post-ra.
4798   if (PostRA)
4799     return false;
4800 
4801   // Only handle load/store.
4802   if (!MI.mayLoadOrStore())
4803     return false;
4804 
4805   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4806 
4807   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4808          "MI must have x-form opcode");
4809 
4810   // get Imm Form info.
4811   ImmInstrInfo III;
4812   bool IsVFReg = MI.getOperand(0).isReg()
4813                      ? PPC::isVFRegister(MI.getOperand(0).getReg())
4814                      : false;
4815 
4816   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4817     return false;
4818 
4819   if (!III.IsSummingOperands)
4820     return false;
4821 
4822   if (OpNoForForwarding != III.OpNoForForwarding)
4823     return false;
4824 
4825   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4826   if (!ImmOperandMI.isImm())
4827     return false;
4828 
4829   // Check DefMI.
4830   MachineOperand *ImmMO = nullptr;
4831   MachineOperand *RegMO = nullptr;
4832   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4833     return false;
4834   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4835 
4836   // Check Imm.
4837   // Set ImmBase from imm instruction as base and get new Imm inside
4838   // isImmElgibleForForwarding.
4839   int64_t ImmBase = ImmOperandMI.getImm();
4840   int64_t Imm = 0;
4841   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4842     return false;
4843 
4844   // Do the transform
4845   LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n");
4846   LLVM_DEBUG(MI.dump());
4847   LLVM_DEBUG(dbgs() << "Fed by:\n");
4848   LLVM_DEBUG(DefMI.dump());
4849 
4850   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4851   MI.getOperand(III.ImmOpNo).setImm(Imm);
4852 
4853   LLVM_DEBUG(dbgs() << "With:\n");
4854   LLVM_DEBUG(MI.dump());
4855   return true;
4856 }
4857 
4858 // If an X-Form instruction is fed by an add-immediate and one of its operands
4859 // is the literal zero, attempt to forward the source of the add-immediate to
4860 // the corresponding D-Form instruction with the displacement coming from
4861 // the immediate being added.
transformToImmFormFedByAdd(MachineInstr & MI,const ImmInstrInfo & III,unsigned OpNoForForwarding,MachineInstr & DefMI,bool KillDefMI) const4862 bool PPCInstrInfo::transformToImmFormFedByAdd(
4863     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4864     MachineInstr &DefMI, bool KillDefMI) const {
4865   //         RegMO ImmMO
4866   //           |    |
4867   // x = addi reg, imm  <----- DefMI
4868   // y = op    0 ,  x   <----- MI
4869   //                |
4870   //         OpNoForForwarding
4871   // Check if the MI meet the requirement described in the III.
4872   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4873     return false;
4874 
4875   // Check if the DefMI meet the requirement
4876   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4877   MachineOperand *ImmMO = nullptr;
4878   MachineOperand *RegMO = nullptr;
4879   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4880     return false;
4881   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4882 
4883   // As we get the Imm operand now, we need to check if the ImmMO meet
4884   // the requirement described in the III. If yes set the Imm.
4885   int64_t Imm = 0;
4886   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4887     return false;
4888 
4889   bool IsFwdFeederRegKilled = false;
4890   bool SeenIntermediateUse = false;
4891   // Check if the RegMO can be forwarded to MI.
4892   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4893                                  IsFwdFeederRegKilled, SeenIntermediateUse))
4894     return false;
4895 
4896   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4897   bool PostRA = !MRI.isSSA();
4898 
4899   // We know that, the MI and DefMI both meet the pattern, and
4900   // the Imm also meet the requirement with the new Imm-form.
4901   // It is safe to do the transformation now.
4902   LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n");
4903   LLVM_DEBUG(MI.dump());
4904   LLVM_DEBUG(dbgs() << "Fed by:\n");
4905   LLVM_DEBUG(DefMI.dump());
4906 
4907   // Update the base reg first.
4908   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4909                                                         false, false,
4910                                                         RegMO->isKill());
4911 
4912   // Then, update the imm.
4913   if (ImmMO->isImm()) {
4914     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4915     // directly.
4916     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4917   }
4918   else {
4919     // Otherwise, it is Constant Pool Index(CPI) or Global,
4920     // which is relocation in fact. We need to replace the special zero
4921     // register with ImmMO.
4922     // Before that, we need to fixup the target flags for imm.
4923     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4924     if (DefMI.getOpcode() == PPC::ADDItocL8)
4925       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4926 
4927     // MI didn't have the interface such as MI.setOperand(i) though
4928     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4929     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4930     // and, add the ImmMO, then, move back all the operands behind ZERO.
4931     SmallVector<MachineOperand, 2> MOps;
4932     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4933       MOps.push_back(MI.getOperand(i));
4934       MI.removeOperand(i);
4935     }
4936 
4937     // Remove the last MO in the list, which is ZERO operand in fact.
4938     MOps.pop_back();
4939     // Add the imm operand.
4940     MI.addOperand(*ImmMO);
4941     // Now add the rest back.
4942     for (auto &MO : MOps)
4943       MI.addOperand(MO);
4944   }
4945 
4946   // Update the opcode.
4947   MI.setDesc(get(III.ImmOpcode));
4948 
4949   if (PostRA)
4950     recomputeLivenessFlags(*MI.getParent());
4951   LLVM_DEBUG(dbgs() << "With:\n");
4952   LLVM_DEBUG(MI.dump());
4953 
4954   return true;
4955 }
4956 
transformToImmFormFedByLI(MachineInstr & MI,const ImmInstrInfo & III,unsigned ConstantOpNo,MachineInstr & DefMI) const4957 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4958                                              const ImmInstrInfo &III,
4959                                              unsigned ConstantOpNo,
4960                                              MachineInstr &DefMI) const {
4961   // DefMI must be LI or LI8.
4962   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4963       !DefMI.getOperand(1).isImm())
4964     return false;
4965 
4966   // Get Imm operand and Sign-extend to 64-bits.
4967   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4968 
4969   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4970   bool PostRA = !MRI.isSSA();
4971   // Exit early if we can't convert this.
4972   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4973     return false;
4974   if (Imm % III.ImmMustBeMultipleOf)
4975     return false;
4976   if (III.TruncateImmTo)
4977     Imm &= ((1 << III.TruncateImmTo) - 1);
4978   if (III.SignedImm) {
4979     APInt ActualValue(64, Imm, true);
4980     if (!ActualValue.isSignedIntN(III.ImmWidth))
4981       return false;
4982   } else {
4983     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4984     if ((uint64_t)Imm > UnsignedMax)
4985       return false;
4986   }
4987 
4988   // If we're post-RA, the instructions don't agree on whether register zero is
4989   // special, we can transform this as long as the register operand that will
4990   // end up in the location where zero is special isn't R0.
4991   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4992     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4993       III.ZeroIsSpecialNew + 1;
4994     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4995     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4996     // If R0 is in the operand where zero is special for the new instruction,
4997     // it is unsafe to transform if the constant operand isn't that operand.
4998     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4999         ConstantOpNo != III.ZeroIsSpecialNew)
5000       return false;
5001     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
5002         ConstantOpNo != PosForOrigZero)
5003       return false;
5004   }
5005 
5006   unsigned Opc = MI.getOpcode();
5007   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
5008                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
5009                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
5010                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
5011   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
5012                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
5013   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
5014                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
5015   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
5016                     Opc == PPC::SRD_rec;
5017 
5018   LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: ");
5019   LLVM_DEBUG(MI.dump());
5020   LLVM_DEBUG(dbgs() << "Fed by load-immediate: ");
5021   LLVM_DEBUG(DefMI.dump());
5022   MI.setDesc(get(III.ImmOpcode));
5023   if (ConstantOpNo == III.OpNoForForwarding) {
5024     // Converting shifts to immediate form is a bit tricky since they may do
5025     // one of three things:
5026     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
5027     // 2. If the shift amount is zero, the result is unchanged (save for maybe
5028     //    setting CR0)
5029     // 3. If the shift amount is in [1, OpSize), it's just a shift
5030     if (SpecialShift32 || SpecialShift64) {
5031       LoadImmediateInfo LII;
5032       LII.Imm = 0;
5033       LII.SetCR = SetCR;
5034       LII.Is64Bit = SpecialShift64;
5035       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
5036       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
5037         replaceInstrWithLI(MI, LII);
5038       // Shifts by zero don't change the value. If we don't need to set CR0,
5039       // just convert this to a COPY. Can't do this post-RA since we've already
5040       // cleaned up the copies.
5041       else if (!SetCR && ShAmt == 0 && !PostRA) {
5042         MI.removeOperand(2);
5043         MI.setDesc(get(PPC::COPY));
5044       } else {
5045         // The 32 bit and 64 bit instructions are quite different.
5046         if (SpecialShift32) {
5047           // Left shifts use (N, 0, 31-N).
5048           // Right shifts use (32-N, N, 31) if 0 < N < 32.
5049           //              use (0, 0, 31)    if N == 0.
5050           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5051           uint64_t MB = RightShift ? ShAmt : 0;
5052           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5053           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5054           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5055             .addImm(ME);
5056         } else {
5057           // Left shifts use (N, 63-N).
5058           // Right shifts use (64-N, N) if 0 < N < 64.
5059           //              use (0, 0)    if N == 0.
5060           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5061           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5062           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5063           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5064         }
5065       }
5066     } else
5067       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5068   }
5069   // Convert commutative instructions (switch the operands and convert the
5070   // desired one to an immediate.
5071   else if (III.IsCommutative) {
5072     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5073     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5074   } else
5075     llvm_unreachable("Should have exited early!");
5076 
5077   // For instructions for which the constant register replaces a different
5078   // operand than where the immediate goes, we need to swap them.
5079   if (III.OpNoForForwarding != III.ImmOpNo)
5080     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5081 
5082   // If the special R0/X0 register index are different for original instruction
5083   // and new instruction, we need to fix up the register class in new
5084   // instruction.
5085   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5086     if (III.ZeroIsSpecialNew) {
5087       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5088       // need to fix up register class.
5089       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5090       if (RegToModify.isVirtual()) {
5091         const TargetRegisterClass *NewRC =
5092           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5093           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5094         MRI.setRegClass(RegToModify, NewRC);
5095       }
5096     }
5097   }
5098 
5099   if (PostRA)
5100     recomputeLivenessFlags(*MI.getParent());
5101 
5102   LLVM_DEBUG(dbgs() << "With: ");
5103   LLVM_DEBUG(MI.dump());
5104   LLVM_DEBUG(dbgs() << "\n");
5105   return true;
5106 }
5107 
5108 const TargetRegisterClass *
updatedRC(const TargetRegisterClass * RC) const5109 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5110   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5111     return &PPC::VSRCRegClass;
5112   return RC;
5113 }
5114 
getRecordFormOpcode(unsigned Opcode)5115 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5116   return PPC::getRecordFormOpcode(Opcode);
5117 }
5118 
isOpZeroOfSubwordPreincLoad(int Opcode)5119 static bool isOpZeroOfSubwordPreincLoad(int Opcode) {
5120   return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 ||
5121           Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU ||
5122           Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 ||
5123           Opcode == PPC::LHZUX8);
5124 }
5125 
5126 // This function checks for sign extension from 32 bits to 64 bits.
definedBySignExtendingOp(const unsigned Reg,const MachineRegisterInfo * MRI)5127 static bool definedBySignExtendingOp(const unsigned Reg,
5128                                      const MachineRegisterInfo *MRI) {
5129   if (!Register::isVirtualRegister(Reg))
5130     return false;
5131 
5132   MachineInstr *MI = MRI->getVRegDef(Reg);
5133   if (!MI)
5134     return false;
5135 
5136   int Opcode = MI->getOpcode();
5137   const PPCInstrInfo *TII =
5138       MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5139   if (TII->isSExt32To64(Opcode))
5140     return true;
5141 
5142   // The first def of LBZU/LHZU is sign extended.
5143   if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg)
5144     return true;
5145 
5146   // RLDICL generates sign-extended output if it clears at least
5147   // 33 bits from the left (MSB).
5148   if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33)
5149     return true;
5150 
5151   // If at least one bit from left in a lower word is masked out,
5152   // all of 0 to 32-th bits of the output are cleared.
5153   // Hence the output is already sign extended.
5154   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5155        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5156       MI->getOperand(3).getImm() > 0 &&
5157       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5158     return true;
5159 
5160   // If the most significant bit of immediate in ANDIS is zero,
5161   // all of 0 to 32-th bits are cleared.
5162   if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) {
5163     uint16_t Imm = MI->getOperand(2).getImm();
5164     if ((Imm & 0x8000) == 0)
5165       return true;
5166   }
5167 
5168   return false;
5169 }
5170 
5171 // This function checks the machine instruction that defines the input register
5172 // Reg. If that machine instruction always outputs a value that has only zeros
5173 // in the higher 32 bits then this function will return true.
definedByZeroExtendingOp(const unsigned Reg,const MachineRegisterInfo * MRI)5174 static bool definedByZeroExtendingOp(const unsigned Reg,
5175                                      const MachineRegisterInfo *MRI) {
5176   if (!Register::isVirtualRegister(Reg))
5177     return false;
5178 
5179   MachineInstr *MI = MRI->getVRegDef(Reg);
5180   if (!MI)
5181     return false;
5182 
5183   int Opcode = MI->getOpcode();
5184   const PPCInstrInfo *TII =
5185       MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5186   if (TII->isZExt32To64(Opcode))
5187     return true;
5188 
5189   // The first def of LBZU/LHZU/LWZU are zero extended.
5190   if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU ||
5191        Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) &&
5192       MI->getOperand(0).getReg() == Reg)
5193     return true;
5194 
5195   // The 16-bit immediate is sign-extended in li/lis.
5196   // If the most significant bit is zero, all higher bits are zero.
5197   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
5198       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5199     int64_t Imm = MI->getOperand(1).getImm();
5200     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5201       return true;
5202   }
5203 
5204   // We have some variations of rotate-and-mask instructions
5205   // that clear higher 32-bits.
5206   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5207        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5208        Opcode == PPC::RLDICL_32_64) &&
5209       MI->getOperand(3).getImm() >= 32)
5210     return true;
5211 
5212   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5213       MI->getOperand(3).getImm() >= 32 &&
5214       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
5215     return true;
5216 
5217   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5218        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5219        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5220       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5221     return true;
5222 
5223   return false;
5224 }
5225 
5226 // This function returns true if the input MachineInstr is a TOC save
5227 // instruction.
isTOCSaveMI(const MachineInstr & MI) const5228 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5229   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5230     return false;
5231   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5232   unsigned StackOffset = MI.getOperand(1).getImm();
5233   Register StackReg = MI.getOperand(2).getReg();
5234   Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5235   if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5236     return true;
5237 
5238   return false;
5239 }
5240 
5241 // We limit the max depth to track incoming values of PHIs or binary ops
5242 // (e.g. AND) to avoid excessive cost.
5243 const unsigned MAX_BINOP_DEPTH = 1;
5244 // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth
5245 // does not count all of the recursions. The parameter BinOpDepth is incremented
5246 // only when isSignOrZeroExtended calls itself more than once. This is done to
5247 // prevent expontential recursion. There is no parameter to track linear
5248 // recursion.
5249 std::pair<bool, bool>
isSignOrZeroExtended(const unsigned Reg,const unsigned BinOpDepth,const MachineRegisterInfo * MRI) const5250 PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg,
5251                                    const unsigned BinOpDepth,
5252                                    const MachineRegisterInfo *MRI) const {
5253   if (!Register::isVirtualRegister(Reg))
5254     return std::pair<bool, bool>(false, false);
5255 
5256   MachineInstr *MI = MRI->getVRegDef(Reg);
5257   if (!MI)
5258     return std::pair<bool, bool>(false, false);
5259 
5260   bool IsSExt = definedBySignExtendingOp(Reg, MRI);
5261   bool IsZExt = definedByZeroExtendingOp(Reg, MRI);
5262 
5263   // If we know the instruction always returns sign- and zero-extended result,
5264   // return here.
5265   if (IsSExt && IsZExt)
5266     return std::pair<bool, bool>(IsSExt, IsZExt);
5267 
5268   switch (MI->getOpcode()) {
5269   case PPC::COPY: {
5270     Register SrcReg = MI->getOperand(1).getReg();
5271 
5272     // In both ELFv1 and v2 ABI, method parameters and the return value
5273     // are sign- or zero-extended.
5274     const MachineFunction *MF = MI->getMF();
5275 
5276     if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5277       // If this is a copy from another register, we recursively check source.
5278       auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5279       return std::pair<bool, bool>(SrcExt.first || IsSExt,
5280                                    SrcExt.second || IsZExt);
5281     }
5282 
5283     // From here on everything is SVR4ABI
5284     const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5285     // We check the ZExt/SExt flags for a method parameter.
5286     if (MI->getParent()->getBasicBlock() ==
5287         &MF->getFunction().getEntryBlock()) {
5288       Register VReg = MI->getOperand(0).getReg();
5289       if (MF->getRegInfo().isLiveIn(VReg)) {
5290         IsSExt |= FuncInfo->isLiveInSExt(VReg);
5291         IsZExt |= FuncInfo->isLiveInZExt(VReg);
5292         return std::pair<bool, bool>(IsSExt, IsZExt);
5293       }
5294     }
5295 
5296     if (SrcReg != PPC::X3) {
5297       // If this is a copy from another register, we recursively check source.
5298       auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5299       return std::pair<bool, bool>(SrcExt.first || IsSExt,
5300                                    SrcExt.second || IsZExt);
5301     }
5302 
5303     // For a method return value, we check the ZExt/SExt flags in attribute.
5304     // We assume the following code sequence for method call.
5305     //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5306     //   BL8_NOP @func,...
5307     //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5308     //   %5 = COPY %x3; G8RC:%5
5309     const MachineBasicBlock *MBB = MI->getParent();
5310     std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt);
5311     MachineBasicBlock::const_instr_iterator II =
5312         MachineBasicBlock::const_instr_iterator(MI);
5313     if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP)
5314       return IsExtendPair;
5315 
5316     const MachineInstr &CallMI = *(--II);
5317     if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal())
5318       return IsExtendPair;
5319 
5320     const Function *CalleeFn =
5321         dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal());
5322     if (!CalleeFn)
5323       return IsExtendPair;
5324     const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType());
5325     if (IntTy && IntTy->getBitWidth() <= 32) {
5326       const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
5327       IsSExt |= Attrs.hasAttribute(Attribute::SExt);
5328       IsZExt |= Attrs.hasAttribute(Attribute::ZExt);
5329       return std::pair<bool, bool>(IsSExt, IsZExt);
5330     }
5331 
5332     return IsExtendPair;
5333   }
5334 
5335   // OR, XOR with 16-bit immediate does not change the upper 48 bits.
5336   // So, we track the operand register as we do for register copy.
5337   case PPC::ORI:
5338   case PPC::XORI:
5339   case PPC::ORI8:
5340   case PPC::XORI8: {
5341     Register SrcReg = MI->getOperand(1).getReg();
5342     auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5343     return std::pair<bool, bool>(SrcExt.first || IsSExt,
5344                                  SrcExt.second || IsZExt);
5345   }
5346 
5347   // OR, XOR with shifted 16-bit immediate does not change the upper
5348   // 32 bits. So, we track the operand register for zero extension.
5349   // For sign extension when the MSB of the immediate is zero, we also
5350   // track the operand register since the upper 33 bits are unchanged.
5351   case PPC::ORIS:
5352   case PPC::XORIS:
5353   case PPC::ORIS8:
5354   case PPC::XORIS8: {
5355     Register SrcReg = MI->getOperand(1).getReg();
5356     auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5357     uint16_t Imm = MI->getOperand(2).getImm();
5358     if (Imm & 0x8000)
5359       return std::pair<bool, bool>(false, SrcExt.second || IsZExt);
5360     else
5361       return std::pair<bool, bool>(SrcExt.first || IsSExt,
5362                                    SrcExt.second || IsZExt);
5363   }
5364 
5365   // If all incoming values are sign-/zero-extended,
5366   // the output of OR, ISEL or PHI is also sign-/zero-extended.
5367   case PPC::OR:
5368   case PPC::OR8:
5369   case PPC::ISEL:
5370   case PPC::PHI: {
5371     if (BinOpDepth >= MAX_BINOP_DEPTH)
5372       return std::pair<bool, bool>(false, false);
5373 
5374     // The input registers for PHI are operand 1, 3, ...
5375     // The input registers for others are operand 1 and 2.
5376     unsigned OperandEnd = 3, OperandStride = 1;
5377     if (MI->getOpcode() == PPC::PHI) {
5378       OperandEnd = MI->getNumOperands();
5379       OperandStride = 2;
5380     }
5381 
5382     IsSExt = true;
5383     IsZExt = true;
5384     for (unsigned I = 1; I != OperandEnd; I += OperandStride) {
5385       if (!MI->getOperand(I).isReg())
5386         return std::pair<bool, bool>(false, false);
5387 
5388       Register SrcReg = MI->getOperand(I).getReg();
5389       auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI);
5390       IsSExt &= SrcExt.first;
5391       IsZExt &= SrcExt.second;
5392     }
5393     return std::pair<bool, bool>(IsSExt, IsZExt);
5394   }
5395 
5396   // If at least one of the incoming values of an AND is zero extended
5397   // then the output is also zero-extended. If both of the incoming values
5398   // are sign-extended then the output is also sign extended.
5399   case PPC::AND:
5400   case PPC::AND8: {
5401     if (BinOpDepth >= MAX_BINOP_DEPTH)
5402       return std::pair<bool, bool>(false, false);
5403 
5404     Register SrcReg1 = MI->getOperand(1).getReg();
5405     Register SrcReg2 = MI->getOperand(2).getReg();
5406     auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI);
5407     auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI);
5408     return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first,
5409                                  Src1Ext.second || Src2Ext.second);
5410   }
5411 
5412   default:
5413     break;
5414   }
5415   return std::pair<bool, bool>(IsSExt, IsZExt);
5416 }
5417 
isBDNZ(unsigned Opcode) const5418 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5419   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5420 }
5421 
5422 namespace {
5423 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5424   MachineInstr *Loop, *EndLoop, *LoopCount;
5425   MachineFunction *MF;
5426   const TargetInstrInfo *TII;
5427   int64_t TripCount;
5428 
5429 public:
PPCPipelinerLoopInfo(MachineInstr * Loop,MachineInstr * EndLoop,MachineInstr * LoopCount)5430   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5431                        MachineInstr *LoopCount)
5432       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5433         MF(Loop->getParent()->getParent()),
5434         TII(MF->getSubtarget().getInstrInfo()) {
5435     // Inspect the Loop instruction up-front, as it may be deleted when we call
5436     // createTripCountGreaterCondition.
5437     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5438       TripCount = LoopCount->getOperand(1).getImm();
5439     else
5440       TripCount = -1;
5441   }
5442 
shouldIgnoreForPipelining(const MachineInstr * MI) const5443   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5444     // Only ignore the terminator.
5445     return MI == EndLoop;
5446   }
5447 
createTripCountGreaterCondition(int TC,MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond)5448   std::optional<bool> createTripCountGreaterCondition(
5449       int TC, MachineBasicBlock &MBB,
5450       SmallVectorImpl<MachineOperand> &Cond) override {
5451     if (TripCount == -1) {
5452       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5453       // so we don't need to generate any thing here.
5454       Cond.push_back(MachineOperand::CreateImm(0));
5455       Cond.push_back(MachineOperand::CreateReg(
5456           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5457           true));
5458       return {};
5459     }
5460 
5461     return TripCount > TC;
5462   }
5463 
setPreheader(MachineBasicBlock * NewPreheader)5464   void setPreheader(MachineBasicBlock *NewPreheader) override {
5465     // Do nothing. We want the LOOP setup instruction to stay in the *old*
5466     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5467   }
5468 
adjustTripCount(int TripCountAdjust)5469   void adjustTripCount(int TripCountAdjust) override {
5470     // If the loop trip count is a compile-time value, then just change the
5471     // value.
5472     if (LoopCount->getOpcode() == PPC::LI8 ||
5473         LoopCount->getOpcode() == PPC::LI) {
5474       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5475       LoopCount->getOperand(1).setImm(TripCount);
5476       return;
5477     }
5478 
5479     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5480     // so we don't need to generate any thing here.
5481   }
5482 
disposed()5483   void disposed() override {
5484     Loop->eraseFromParent();
5485     // Ensure the loop setup instruction is deleted too.
5486     LoopCount->eraseFromParent();
5487   }
5488 };
5489 } // namespace
5490 
5491 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock * LoopBB) const5492 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5493   // We really "analyze" only hardware loops right now.
5494   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5495   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5496   if (Preheader == LoopBB)
5497     Preheader = *std::next(LoopBB->pred_begin());
5498   MachineFunction *MF = Preheader->getParent();
5499 
5500   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5501     SmallPtrSet<MachineBasicBlock *, 8> Visited;
5502     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5503       Register LoopCountReg = LoopInst->getOperand(0).getReg();
5504       MachineRegisterInfo &MRI = MF->getRegInfo();
5505       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5506       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5507     }
5508   }
5509   return nullptr;
5510 }
5511 
findLoopInstr(MachineBasicBlock & PreHeader,SmallPtrSet<MachineBasicBlock *,8> & Visited) const5512 MachineInstr *PPCInstrInfo::findLoopInstr(
5513     MachineBasicBlock &PreHeader,
5514     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5515 
5516   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5517 
5518   // The loop set-up instruction should be in preheader
5519   for (auto &I : PreHeader.instrs())
5520     if (I.getOpcode() == LOOPi)
5521       return &I;
5522   return nullptr;
5523 }
5524 
5525 // Return true if get the base operand, byte offset of an instruction and the
5526 // memory width. Width is the size of memory that is being loaded/stored.
getMemOperandWithOffsetWidth(const MachineInstr & LdSt,const MachineOperand * & BaseReg,int64_t & Offset,LocationSize & Width,const TargetRegisterInfo * TRI) const5527 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5528     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5529     LocationSize &Width, const TargetRegisterInfo *TRI) const {
5530   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5531     return false;
5532 
5533   // Handle only loads/stores with base register followed by immediate offset.
5534   if (!LdSt.getOperand(1).isImm() ||
5535       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5536     return false;
5537   if (!LdSt.getOperand(1).isImm() ||
5538       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5539     return false;
5540 
5541   if (!LdSt.hasOneMemOperand())
5542     return false;
5543 
5544   Width = (*LdSt.memoperands_begin())->getSize();
5545   Offset = LdSt.getOperand(1).getImm();
5546   BaseReg = &LdSt.getOperand(2);
5547   return true;
5548 }
5549 
areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb) const5550 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5551     const MachineInstr &MIa, const MachineInstr &MIb) const {
5552   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5553   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5554 
5555   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5556       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5557     return false;
5558 
5559   // Retrieve the base register, offset from the base register and width. Width
5560   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
5561   // base registers are identical, and the offset of a lower memory access +
5562   // the width doesn't overlap the offset of a higher memory access,
5563   // then the memory accesses are different.
5564   const TargetRegisterInfo *TRI = &getRegisterInfo();
5565   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5566   int64_t OffsetA = 0, OffsetB = 0;
5567   LocationSize WidthA = 0, WidthB = 0;
5568   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5569       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5570     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5571       int LowOffset = std::min(OffsetA, OffsetB);
5572       int HighOffset = std::max(OffsetA, OffsetB);
5573       LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5574       if (LowWidth.hasValue() &&
5575           LowOffset + (int)LowWidth.getValue() <= HighOffset)
5576         return true;
5577     }
5578   }
5579   return false;
5580 }
5581