1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15
16 #define HCLGEVF_NAME "hclgevf"
17
18 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
19
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 unsigned long delay);
23
24 static struct hnae3_ae_algo ae_algovf;
25
26 static struct workqueue_struct *hclgevf_wq;
27
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 /* required last entry */
33 {0, }
34 };
35
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37
38 /* hclgevf_cmd_send - send command to command queue
39 * @hw: pointer to the hw struct
40 * @desc: prefilled descriptor for describing the command
41 * @num : the number of descriptors to be sent
42 *
43 * This is the main send command for command queue, it
44 * sends the queue, cleans the queue, etc
45 */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50
hclgevf_trace_cmd_send(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 int num, bool is_special)
53 {
54 int i;
55
56 trace_hclge_vf_cmd_send(hw, desc, 0, num);
57
58 if (is_special)
59 return;
60
61 for (i = 1; i < num; i++)
62 trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64
hclgevf_trace_cmd_get(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 int num, bool is_special)
67 {
68 int i;
69
70 if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 return;
72
73 trace_hclge_vf_cmd_get(hw, desc, 0, num);
74
75 if (is_special)
76 return;
77
78 for (i = 1; i < num; i++)
79 trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 .trace_cmd_send = hclgevf_trace_cmd_send,
84 .trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86
hclgevf_arq_init(struct hclgevf_dev * hdev)87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90
91 spin_lock(&cmdq->crq.lock);
92 /* initialize the pointers of async rx queue of mailbox */
93 hdev->arq.hdev = hdev;
94 hdev->arq.head = 0;
95 hdev->arq.tail = 0;
96 atomic_set(&hdev->arq.count, 0);
97 spin_unlock(&cmdq->crq.lock);
98 }
99
hclgevf_ae_get_hdev(struct hnae3_handle * handle)100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 if (!handle->client)
103 return container_of(handle, struct hclgevf_dev, nic);
104 else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 return container_of(handle, struct hclgevf_dev, roce);
106 else
107 return container_of(handle, struct hclgevf_dev, nic);
108 }
109
hclgevf_update_stats(struct hnae3_handle * handle)110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 int status;
114
115 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 if (status)
117 dev_err(&hdev->pdev->dev,
118 "VF update of TQPS stats fail, status = %d.\n",
119 status);
120 }
121
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 if (strset == ETH_SS_TEST)
125 return -EOPNOTSUPP;
126 else if (strset == ETH_SS_STATS)
127 return hclge_comm_tqps_get_sset_count(handle);
128
129 return 0;
130 }
131
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 ** data)132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 u8 **data)
134 {
135 if (strset == ETH_SS_STATS)
136 hclge_comm_tqps_get_strings(handle, data);
137 }
138
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)139 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
140 {
141 hclge_comm_tqps_get_stats(handle, data);
142 }
143
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)144 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
145 u8 subcode)
146 {
147 if (msg) {
148 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
149 msg->code = code;
150 msg->subcode = subcode;
151 }
152 }
153
hclgevf_get_basic_info(struct hclgevf_dev * hdev)154 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
155 {
156 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
157 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
158 struct hclge_basic_info *basic_info;
159 struct hclge_vf_to_pf_msg send_msg;
160 unsigned long caps;
161 int status;
162
163 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
164 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
165 sizeof(resp_msg));
166 if (status) {
167 dev_err(&hdev->pdev->dev,
168 "failed to get basic info from pf, ret = %d", status);
169 return status;
170 }
171
172 basic_info = (struct hclge_basic_info *)resp_msg;
173
174 hdev->hw_tc_map = basic_info->hw_tc_map;
175 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
176 caps = le32_to_cpu(basic_info->pf_caps);
177 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
178 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
179
180 return 0;
181 }
182
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)183 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
184 {
185 struct hnae3_handle *nic = &hdev->nic;
186 struct hclge_vf_to_pf_msg send_msg;
187 u8 resp_msg;
188 int ret;
189
190 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
191 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
192 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
193 sizeof(u8));
194 if (ret) {
195 dev_err(&hdev->pdev->dev,
196 "VF request to get port based vlan state failed %d",
197 ret);
198 return ret;
199 }
200
201 nic->port_base_vlan_state = resp_msg;
202
203 return 0;
204 }
205
hclgevf_get_queue_info(struct hclgevf_dev * hdev)206 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
207 {
208 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
209
210 struct hclge_mbx_vf_queue_info *queue_info;
211 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
212 struct hclge_vf_to_pf_msg send_msg;
213 int status;
214
215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
216 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
217 HCLGEVF_TQPS_RSS_INFO_LEN);
218 if (status) {
219 dev_err(&hdev->pdev->dev,
220 "VF request to get tqp info from PF failed %d",
221 status);
222 return status;
223 }
224
225 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
226 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
227 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
228 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
229
230 return 0;
231 }
232
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)233 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
234 {
235 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
236
237 struct hclge_mbx_vf_queue_depth *queue_depth;
238 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
239 struct hclge_vf_to_pf_msg send_msg;
240 int ret;
241
242 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
243 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
244 HCLGEVF_TQPS_DEPTH_INFO_LEN);
245 if (ret) {
246 dev_err(&hdev->pdev->dev,
247 "VF request to get tqp depth info from PF failed %d",
248 ret);
249 return ret;
250 }
251
252 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
253 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
254 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
255
256 return 0;
257 }
258
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
260 {
261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
262 struct hclge_vf_to_pf_msg send_msg;
263 u16 qid_in_pf = 0;
264 u8 resp_data[2];
265 int ret;
266
267 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
268 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
269 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
270 sizeof(resp_data));
271 if (!ret)
272 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
273
274 return qid_in_pf;
275 }
276
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)277 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
278 {
279 struct hclge_vf_to_pf_msg send_msg;
280 u8 resp_msg[2];
281 int ret;
282
283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
284 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
285 sizeof(resp_msg));
286 if (ret) {
287 dev_err(&hdev->pdev->dev,
288 "VF request to get the pf port media type failed %d",
289 ret);
290 return ret;
291 }
292
293 hdev->hw.mac.media_type = resp_msg[0];
294 hdev->hw.mac.module_type = resp_msg[1];
295
296 return 0;
297 }
298
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)299 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
300 {
301 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
302 struct hclge_comm_tqp *tqp;
303 int i;
304
305 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
306 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
307 if (!hdev->htqp)
308 return -ENOMEM;
309
310 tqp = hdev->htqp;
311
312 for (i = 0; i < hdev->num_tqps; i++) {
313 tqp->dev = &hdev->pdev->dev;
314 tqp->index = i;
315
316 tqp->q.ae_algo = &ae_algovf;
317 tqp->q.buf_size = hdev->rx_buf_len;
318 tqp->q.tx_desc_num = hdev->num_tx_desc;
319 tqp->q.rx_desc_num = hdev->num_rx_desc;
320
321 /* need an extended offset to configure queues >=
322 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
323 */
324 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
325 tqp->q.io_base = hdev->hw.hw.io_base +
326 HCLGEVF_TQP_REG_OFFSET +
327 i * HCLGEVF_TQP_REG_SIZE;
328 else
329 tqp->q.io_base = hdev->hw.hw.io_base +
330 HCLGEVF_TQP_REG_OFFSET +
331 HCLGEVF_TQP_EXT_REG_OFFSET +
332 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
333 HCLGEVF_TQP_REG_SIZE;
334
335 /* when device supports tx push and has device memory,
336 * the queue can execute push mode or doorbell mode on
337 * device memory.
338 */
339 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
340 tqp->q.mem_base = hdev->hw.hw.mem_base +
341 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
342
343 tqp++;
344 }
345
346 return 0;
347 }
348
hclgevf_knic_setup(struct hclgevf_dev * hdev)349 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
350 {
351 struct hnae3_handle *nic = &hdev->nic;
352 struct hnae3_knic_private_info *kinfo;
353 u16 new_tqps = hdev->num_tqps;
354 unsigned int i;
355 u8 num_tc = 0;
356
357 kinfo = &nic->kinfo;
358 kinfo->num_tx_desc = hdev->num_tx_desc;
359 kinfo->num_rx_desc = hdev->num_rx_desc;
360 kinfo->rx_buf_len = hdev->rx_buf_len;
361 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
362 if (hdev->hw_tc_map & BIT(i))
363 num_tc++;
364
365 num_tc = num_tc ? num_tc : 1;
366 kinfo->tc_info.num_tc = num_tc;
367 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
368 new_tqps = kinfo->rss_size * num_tc;
369 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
370
371 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
372 sizeof(struct hnae3_queue *), GFP_KERNEL);
373 if (!kinfo->tqp)
374 return -ENOMEM;
375
376 for (i = 0; i < kinfo->num_tqps; i++) {
377 hdev->htqp[i].q.handle = &hdev->nic;
378 hdev->htqp[i].q.tqp_index = i;
379 kinfo->tqp[i] = &hdev->htqp[i].q;
380 }
381
382 /* after init the max rss_size and tqps, adjust the default tqp numbers
383 * and rss size with the actual vector numbers
384 */
385 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
386 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
387 kinfo->rss_size);
388
389 return 0;
390 }
391
hclgevf_request_link_info(struct hclgevf_dev * hdev)392 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
393 {
394 struct hclge_vf_to_pf_msg send_msg;
395 int status;
396
397 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
398 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
399 if (status)
400 dev_err(&hdev->pdev->dev,
401 "VF failed to fetch link status(%d) from PF", status);
402 }
403
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)404 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
405 {
406 struct hnae3_handle *rhandle = &hdev->roce;
407 struct hnae3_handle *handle = &hdev->nic;
408 struct hnae3_client *rclient;
409 struct hnae3_client *client;
410
411 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
412 return;
413
414 client = handle->client;
415 rclient = hdev->roce_client;
416
417 link_state =
418 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
419 if (link_state != hdev->hw.mac.link) {
420 hdev->hw.mac.link = link_state;
421 client->ops->link_status_change(handle, !!link_state);
422 if (rclient && rclient->ops->link_status_change)
423 rclient->ops->link_status_change(rhandle, !!link_state);
424 }
425
426 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
427 }
428
hclgevf_update_link_mode(struct hclgevf_dev * hdev)429 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
430 {
431 #define HCLGEVF_ADVERTISING 0
432 #define HCLGEVF_SUPPORTED 1
433
434 struct hclge_vf_to_pf_msg send_msg;
435
436 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
437 send_msg.data[0] = HCLGEVF_ADVERTISING;
438 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
439 send_msg.data[0] = HCLGEVF_SUPPORTED;
440 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 }
442
hclgevf_set_handle_info(struct hclgevf_dev * hdev)443 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
444 {
445 struct hnae3_handle *nic = &hdev->nic;
446 int ret;
447
448 nic->ae_algo = &ae_algovf;
449 nic->pdev = hdev->pdev;
450 bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
451 MAX_NUMNODES);
452 nic->flags |= HNAE3_SUPPORT_VF;
453 nic->kinfo.io_base = hdev->hw.hw.io_base;
454
455 ret = hclgevf_knic_setup(hdev);
456 if (ret)
457 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
458 ret);
459 return ret;
460 }
461
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)462 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
463 {
464 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
465 dev_warn(&hdev->pdev->dev,
466 "vector(vector_id %d) has been freed.\n", vector_id);
467 return;
468 }
469
470 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
471 hdev->num_msi_left += 1;
472 hdev->num_msi_used -= 1;
473 }
474
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)475 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
476 struct hnae3_vector_info *vector_info)
477 {
478 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
479 struct hnae3_vector_info *vector = vector_info;
480 int alloc = 0;
481 int i, j;
482
483 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
484 vector_num = min(hdev->num_msi_left, vector_num);
485
486 for (j = 0; j < vector_num; j++) {
487 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
488 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
489 vector->vector = pci_irq_vector(hdev->pdev, i);
490 vector->io_addr = hdev->hw.hw.io_base +
491 HCLGEVF_VECTOR_REG_BASE +
492 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
493 hdev->vector_status[i] = 0;
494 hdev->vector_irq[i] = vector->vector;
495
496 vector++;
497 alloc++;
498
499 break;
500 }
501 }
502 }
503 hdev->num_msi_left -= alloc;
504 hdev->num_msi_used += alloc;
505
506 return alloc;
507 }
508
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)509 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
510 {
511 int i;
512
513 for (i = 0; i < hdev->num_msi; i++)
514 if (vector == hdev->vector_irq[i])
515 return i;
516
517 return -EINVAL;
518 }
519
520 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)521 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
522 {
523 #define HCLGEVF_RSS_MBX_RESP_LEN 8
524 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
525 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
526 struct hclge_vf_to_pf_msg send_msg;
527 u16 msg_num, hash_key_index;
528 u8 index;
529 int ret;
530
531 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
532 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
533 HCLGEVF_RSS_MBX_RESP_LEN;
534 for (index = 0; index < msg_num; index++) {
535 send_msg.data[0] = index;
536 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
537 HCLGEVF_RSS_MBX_RESP_LEN);
538 if (ret) {
539 dev_err(&hdev->pdev->dev,
540 "VF get rss hash key from PF failed, ret=%d",
541 ret);
542 return ret;
543 }
544
545 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
546 if (index == msg_num - 1)
547 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
548 &resp_msg[0],
549 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
550 else
551 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
552 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
553 }
554
555 return 0;
556 }
557
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)558 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
559 u8 *hfunc)
560 {
561 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
562 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
563 int ret;
564
565 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
566 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
567 } else {
568 if (hfunc)
569 *hfunc = ETH_RSS_HASH_TOP;
570 if (key) {
571 ret = hclgevf_get_rss_hash_key(hdev);
572 if (ret)
573 return ret;
574 memcpy(key, rss_cfg->rss_hash_key,
575 HCLGE_COMM_RSS_KEY_SIZE);
576 }
577 }
578
579 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
580 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
581
582 return 0;
583 }
584
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)585 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
586 const u8 *key, const u8 hfunc)
587 {
588 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
589 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
590 int ret, i;
591
592 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
593 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
594 hfunc);
595 if (ret)
596 return ret;
597 }
598
599 /* update the shadow RSS table with user specified qids */
600 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
601 rss_cfg->rss_indirection_tbl[i] = indir[i];
602
603 /* update the hardware */
604 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
605 rss_cfg->rss_indirection_tbl);
606 }
607
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)608 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
609 struct ethtool_rxnfc *nfc)
610 {
611 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
612 int ret;
613
614 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
615 return -EOPNOTSUPP;
616
617 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
618 &hdev->rss_cfg, nfc);
619 if (ret)
620 dev_err(&hdev->pdev->dev,
621 "failed to set rss tuple, ret = %d.\n", ret);
622
623 return ret;
624 }
625
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)626 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
627 struct ethtool_rxnfc *nfc)
628 {
629 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
630 u8 tuple_sets;
631 int ret;
632
633 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
634 return -EOPNOTSUPP;
635
636 nfc->data = 0;
637
638 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
639 &tuple_sets);
640 if (ret || !tuple_sets)
641 return ret;
642
643 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
644
645 return 0;
646 }
647
hclgevf_get_tc_size(struct hnae3_handle * handle)648 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
649 {
650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
652
653 return rss_cfg->rss_size;
654 }
655
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)656 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
657 int vector_id,
658 struct hnae3_ring_chain_node *ring_chain)
659 {
660 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
661 struct hclge_vf_to_pf_msg send_msg;
662 struct hnae3_ring_chain_node *node;
663 int status;
664 int i = 0;
665
666 memset(&send_msg, 0, sizeof(send_msg));
667 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
668 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
669 send_msg.vector_id = vector_id;
670
671 for (node = ring_chain; node; node = node->next) {
672 send_msg.param[i].ring_type =
673 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
674
675 send_msg.param[i].tqp_index = node->tqp_index;
676 send_msg.param[i].int_gl_index =
677 hnae3_get_field(node->int_gl_idx,
678 HNAE3_RING_GL_IDX_M,
679 HNAE3_RING_GL_IDX_S);
680
681 i++;
682 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
683 send_msg.ring_num = i;
684
685 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
686 NULL, 0);
687 if (status) {
688 dev_err(&hdev->pdev->dev,
689 "Map TQP fail, status is %d.\n",
690 status);
691 return status;
692 }
693 i = 0;
694 }
695 }
696
697 return 0;
698 }
699
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)700 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
701 struct hnae3_ring_chain_node *ring_chain)
702 {
703 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
704 int vector_id;
705
706 vector_id = hclgevf_get_vector_index(hdev, vector);
707 if (vector_id < 0) {
708 dev_err(&handle->pdev->dev,
709 "Get vector index fail. ret =%d\n", vector_id);
710 return vector_id;
711 }
712
713 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
714 }
715
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)716 static int hclgevf_unmap_ring_from_vector(
717 struct hnae3_handle *handle,
718 int vector,
719 struct hnae3_ring_chain_node *ring_chain)
720 {
721 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
722 int ret, vector_id;
723
724 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
725 return 0;
726
727 vector_id = hclgevf_get_vector_index(hdev, vector);
728 if (vector_id < 0) {
729 dev_err(&handle->pdev->dev,
730 "Get vector index fail. ret =%d\n", vector_id);
731 return vector_id;
732 }
733
734 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
735 if (ret)
736 dev_err(&handle->pdev->dev,
737 "Unmap ring from vector fail. vector=%d, ret =%d\n",
738 vector_id,
739 ret);
740
741 return ret;
742 }
743
hclgevf_put_vector(struct hnae3_handle * handle,int vector)744 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
745 {
746 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
747 int vector_id;
748
749 vector_id = hclgevf_get_vector_index(hdev, vector);
750 if (vector_id < 0) {
751 dev_err(&handle->pdev->dev,
752 "hclgevf_put_vector get vector index fail. ret =%d\n",
753 vector_id);
754 return vector_id;
755 }
756
757 hclgevf_free_vector(hdev, vector_id);
758
759 return 0;
760 }
761
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)762 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
763 bool en_uc_pmc, bool en_mc_pmc,
764 bool en_bc_pmc)
765 {
766 struct hnae3_handle *handle = &hdev->nic;
767 struct hclge_vf_to_pf_msg send_msg;
768 int ret;
769
770 memset(&send_msg, 0, sizeof(send_msg));
771 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
772 send_msg.en_bc = en_bc_pmc ? 1 : 0;
773 send_msg.en_uc = en_uc_pmc ? 1 : 0;
774 send_msg.en_mc = en_mc_pmc ? 1 : 0;
775 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
776 &handle->priv_flags) ? 1 : 0;
777
778 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
779 if (ret)
780 dev_err(&hdev->pdev->dev,
781 "Set promisc mode fail, status is %d.\n", ret);
782
783 return ret;
784 }
785
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)786 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
787 bool en_mc_pmc)
788 {
789 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
790 bool en_bc_pmc;
791
792 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
793
794 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
795 en_bc_pmc);
796 }
797
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)798 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
799 {
800 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
801
802 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
803 hclgevf_task_schedule(hdev, 0);
804 }
805
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)806 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
807 {
808 struct hnae3_handle *handle = &hdev->nic;
809 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
810 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
811 int ret;
812
813 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
814 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
815 if (!ret)
816 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
817 }
818 }
819
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)820 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
821 u16 stream_id, bool enable)
822 {
823 struct hclgevf_cfg_com_tqp_queue_cmd *req;
824 struct hclge_desc desc;
825
826 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
827
828 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
829 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
830 req->stream_id = cpu_to_le16(stream_id);
831 if (enable)
832 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
833
834 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
835 }
836
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)837 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
838 {
839 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
840 int ret;
841 u16 i;
842
843 for (i = 0; i < handle->kinfo.num_tqps; i++) {
844 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
845 if (ret)
846 return ret;
847 }
848
849 return 0;
850 }
851
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)852 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
853 {
854 struct hclge_vf_to_pf_msg send_msg;
855 u8 host_mac[ETH_ALEN];
856 int status;
857
858 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
859 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
860 ETH_ALEN);
861 if (status) {
862 dev_err(&hdev->pdev->dev,
863 "fail to get VF MAC from host %d", status);
864 return status;
865 }
866
867 ether_addr_copy(p, host_mac);
868
869 return 0;
870 }
871
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)872 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
873 {
874 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
875 u8 host_mac_addr[ETH_ALEN];
876
877 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
878 return;
879
880 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
881 if (hdev->has_pf_mac)
882 ether_addr_copy(p, host_mac_addr);
883 else
884 ether_addr_copy(p, hdev->hw.mac.mac_addr);
885 }
886
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)887 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
888 bool is_first)
889 {
890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
892 struct hclge_vf_to_pf_msg send_msg;
893 u8 *new_mac_addr = (u8 *)p;
894 int status;
895
896 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
897 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
898 ether_addr_copy(send_msg.data, new_mac_addr);
899 if (is_first && !hdev->has_pf_mac)
900 eth_zero_addr(&send_msg.data[ETH_ALEN]);
901 else
902 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
903 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
904 if (!status)
905 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
906
907 return status;
908 }
909
910 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)911 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
912 {
913 struct hclgevf_mac_addr_node *mac_node, *tmp;
914
915 list_for_each_entry_safe(mac_node, tmp, list, node)
916 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
917 return mac_node;
918
919 return NULL;
920 }
921
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)922 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
923 enum HCLGEVF_MAC_NODE_STATE state)
924 {
925 switch (state) {
926 /* from set_rx_mode or tmp_add_list */
927 case HCLGEVF_MAC_TO_ADD:
928 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
929 mac_node->state = HCLGEVF_MAC_ACTIVE;
930 break;
931 /* only from set_rx_mode */
932 case HCLGEVF_MAC_TO_DEL:
933 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
934 list_del(&mac_node->node);
935 kfree(mac_node);
936 } else {
937 mac_node->state = HCLGEVF_MAC_TO_DEL;
938 }
939 break;
940 /* only from tmp_add_list, the mac_node->state won't be
941 * HCLGEVF_MAC_ACTIVE
942 */
943 case HCLGEVF_MAC_ACTIVE:
944 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
945 mac_node->state = HCLGEVF_MAC_ACTIVE;
946 break;
947 }
948 }
949
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)950 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
951 enum HCLGEVF_MAC_NODE_STATE state,
952 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
953 const unsigned char *addr)
954 {
955 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
956 struct hclgevf_mac_addr_node *mac_node;
957 struct list_head *list;
958
959 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
960 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
961
962 spin_lock_bh(&hdev->mac_table.mac_list_lock);
963
964 /* if the mac addr is already in the mac list, no need to add a new
965 * one into it, just check the mac addr state, convert it to a new
966 * state, or just remove it, or do nothing.
967 */
968 mac_node = hclgevf_find_mac_node(list, addr);
969 if (mac_node) {
970 hclgevf_update_mac_node(mac_node, state);
971 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
972 return 0;
973 }
974 /* if this address is never added, unnecessary to delete */
975 if (state == HCLGEVF_MAC_TO_DEL) {
976 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
977 return -ENOENT;
978 }
979
980 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
981 if (!mac_node) {
982 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
983 return -ENOMEM;
984 }
985
986 mac_node->state = state;
987 ether_addr_copy(mac_node->mac_addr, addr);
988 list_add_tail(&mac_node->node, list);
989
990 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
991 return 0;
992 }
993
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)994 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
995 const unsigned char *addr)
996 {
997 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
998 HCLGEVF_MAC_ADDR_UC, addr);
999 }
1000
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1001 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1002 const unsigned char *addr)
1003 {
1004 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1005 HCLGEVF_MAC_ADDR_UC, addr);
1006 }
1007
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1008 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1009 const unsigned char *addr)
1010 {
1011 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1012 HCLGEVF_MAC_ADDR_MC, addr);
1013 }
1014
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1015 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1016 const unsigned char *addr)
1017 {
1018 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1019 HCLGEVF_MAC_ADDR_MC, addr);
1020 }
1021
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1022 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1023 struct hclgevf_mac_addr_node *mac_node,
1024 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1025 {
1026 struct hclge_vf_to_pf_msg send_msg;
1027 u8 code, subcode;
1028
1029 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1030 code = HCLGE_MBX_SET_UNICAST;
1031 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1032 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1033 else
1034 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1035 } else {
1036 code = HCLGE_MBX_SET_MULTICAST;
1037 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1038 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1039 else
1040 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1041 }
1042
1043 hclgevf_build_send_msg(&send_msg, code, subcode);
1044 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1045 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1046 }
1047
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1048 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1049 struct list_head *list,
1050 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1051 {
1052 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1053 struct hclgevf_mac_addr_node *mac_node, *tmp;
1054 int ret;
1055
1056 list_for_each_entry_safe(mac_node, tmp, list, node) {
1057 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1058 if (ret) {
1059 hnae3_format_mac_addr(format_mac_addr,
1060 mac_node->mac_addr);
1061 dev_err(&hdev->pdev->dev,
1062 "failed to configure mac %s, state = %d, ret = %d\n",
1063 format_mac_addr, mac_node->state, ret);
1064 return;
1065 }
1066 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1067 mac_node->state = HCLGEVF_MAC_ACTIVE;
1068 } else {
1069 list_del(&mac_node->node);
1070 kfree(mac_node);
1071 }
1072 }
1073 }
1074
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1075 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1076 struct list_head *mac_list)
1077 {
1078 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1079
1080 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1081 /* if the mac address from tmp_add_list is not in the
1082 * uc/mc_mac_list, it means have received a TO_DEL request
1083 * during the time window of sending mac config request to PF
1084 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1085 * then it will be removed at next time. If is TO_ADD, it means
1086 * send TO_ADD request failed, so just remove the mac node.
1087 */
1088 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1089 if (new_node) {
1090 hclgevf_update_mac_node(new_node, mac_node->state);
1091 list_del(&mac_node->node);
1092 kfree(mac_node);
1093 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1094 mac_node->state = HCLGEVF_MAC_TO_DEL;
1095 list_move_tail(&mac_node->node, mac_list);
1096 } else {
1097 list_del(&mac_node->node);
1098 kfree(mac_node);
1099 }
1100 }
1101 }
1102
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1103 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1104 struct list_head *mac_list)
1105 {
1106 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1107
1108 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1109 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1110 if (new_node) {
1111 /* If the mac addr is exist in the mac list, it means
1112 * received a new request TO_ADD during the time window
1113 * of sending mac addr configurrequest to PF, so just
1114 * change the mac state to ACTIVE.
1115 */
1116 new_node->state = HCLGEVF_MAC_ACTIVE;
1117 list_del(&mac_node->node);
1118 kfree(mac_node);
1119 } else {
1120 list_move_tail(&mac_node->node, mac_list);
1121 }
1122 }
1123 }
1124
hclgevf_clear_list(struct list_head * list)1125 static void hclgevf_clear_list(struct list_head *list)
1126 {
1127 struct hclgevf_mac_addr_node *mac_node, *tmp;
1128
1129 list_for_each_entry_safe(mac_node, tmp, list, node) {
1130 list_del(&mac_node->node);
1131 kfree(mac_node);
1132 }
1133 }
1134
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1135 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1136 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1137 {
1138 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1139 struct list_head tmp_add_list, tmp_del_list;
1140 struct list_head *list;
1141
1142 INIT_LIST_HEAD(&tmp_add_list);
1143 INIT_LIST_HEAD(&tmp_del_list);
1144
1145 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1146 * we can add/delete these mac addr outside the spin lock
1147 */
1148 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1149 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1150
1151 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1152
1153 list_for_each_entry_safe(mac_node, tmp, list, node) {
1154 switch (mac_node->state) {
1155 case HCLGEVF_MAC_TO_DEL:
1156 list_move_tail(&mac_node->node, &tmp_del_list);
1157 break;
1158 case HCLGEVF_MAC_TO_ADD:
1159 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1160 if (!new_node)
1161 goto stop_traverse;
1162
1163 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1164 new_node->state = mac_node->state;
1165 list_add_tail(&new_node->node, &tmp_add_list);
1166 break;
1167 default:
1168 break;
1169 }
1170 }
1171
1172 stop_traverse:
1173 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1174
1175 /* delete first, in order to get max mac table space for adding */
1176 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1177 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1178
1179 /* if some mac addresses were added/deleted fail, move back to the
1180 * mac_list, and retry at next time.
1181 */
1182 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1183
1184 hclgevf_sync_from_del_list(&tmp_del_list, list);
1185 hclgevf_sync_from_add_list(&tmp_add_list, list);
1186
1187 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1188 }
1189
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1190 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1191 {
1192 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1193 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1194 }
1195
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1196 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1197 {
1198 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199
1200 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1201 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1202
1203 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1206 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1207 {
1208 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1209 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1210 struct hclge_vf_to_pf_msg send_msg;
1211
1212 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1213 return -EOPNOTSUPP;
1214
1215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1216 HCLGE_MBX_ENABLE_VLAN_FILTER);
1217 send_msg.data[0] = enable ? 1 : 0;
1218
1219 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1220 }
1221
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1222 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1223 __be16 proto, u16 vlan_id,
1224 bool is_kill)
1225 {
1226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227 struct hclge_mbx_vlan_filter *vlan_filter;
1228 struct hclge_vf_to_pf_msg send_msg;
1229 int ret;
1230
1231 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1232 return -EINVAL;
1233
1234 if (proto != htons(ETH_P_8021Q))
1235 return -EPROTONOSUPPORT;
1236
1237 /* When device is resetting or reset failed, firmware is unable to
1238 * handle mailbox. Just record the vlan id, and remove it after
1239 * reset finished.
1240 */
1241 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1242 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1243 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1244 return -EBUSY;
1245 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1246 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1247 }
1248
1249 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1250 HCLGE_MBX_VLAN_FILTER);
1251 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1252 vlan_filter->is_kill = is_kill;
1253 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1254 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1255
1256 /* when remove hw vlan filter failed, record the vlan id,
1257 * and try to remove it from hw later, to be consistence
1258 * with stack.
1259 */
1260 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1261 if (is_kill && ret)
1262 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1263
1264 return ret;
1265 }
1266
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1267 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1268 {
1269 #define HCLGEVF_MAX_SYNC_COUNT 60
1270 struct hnae3_handle *handle = &hdev->nic;
1271 int ret, sync_cnt = 0;
1272 u16 vlan_id;
1273
1274 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1275 return;
1276
1277 rtnl_lock();
1278 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1279 while (vlan_id != VLAN_N_VID) {
1280 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1281 vlan_id, true);
1282 if (ret)
1283 break;
1284
1285 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1286 sync_cnt++;
1287 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1288 break;
1289
1290 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1291 }
1292 rtnl_unlock();
1293 }
1294
hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev * hdev,bool enable)1295 static int hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev *hdev, bool enable)
1296 {
1297 struct hclge_vf_to_pf_msg send_msg;
1298
1299 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1300 HCLGE_MBX_VLAN_RX_OFF_CFG);
1301 send_msg.data[0] = enable ? 1 : 0;
1302 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1303 }
1304
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1305 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1306 {
1307 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1308 int ret;
1309
1310 ret = hclgevf_en_hw_strip_rxvtag_cmd(hdev, enable);
1311 if (ret)
1312 return ret;
1313
1314 hdev->rxvtag_strip_en = enable;
1315 return 0;
1316 }
1317
hclgevf_reset_tqp(struct hnae3_handle * handle)1318 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1319 {
1320 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1321 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1322 struct hclge_vf_to_pf_msg send_msg;
1323 u8 return_status = 0;
1324 int ret;
1325 u16 i;
1326
1327 /* disable vf queue before send queue reset msg to PF */
1328 ret = hclgevf_tqp_enable(handle, false);
1329 if (ret) {
1330 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1331 ret);
1332 return ret;
1333 }
1334
1335 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1336
1337 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1338 sizeof(return_status));
1339 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1340 return ret;
1341
1342 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1343 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1344 *(__le16 *)send_msg.data = cpu_to_le16(i);
1345 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1346 if (ret)
1347 return ret;
1348 }
1349
1350 return 0;
1351 }
1352
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1353 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1354 {
1355 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1356 struct hclge_mbx_mtu_info *mtu_info;
1357 struct hclge_vf_to_pf_msg send_msg;
1358
1359 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1360 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1361 mtu_info->mtu = cpu_to_le32(new_mtu);
1362
1363 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1364 }
1365
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1366 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1367 enum hnae3_reset_notify_type type)
1368 {
1369 struct hnae3_client *client = hdev->nic_client;
1370 struct hnae3_handle *handle = &hdev->nic;
1371 int ret;
1372
1373 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1374 !client)
1375 return 0;
1376
1377 if (!client->ops->reset_notify)
1378 return -EOPNOTSUPP;
1379
1380 ret = client->ops->reset_notify(handle, type);
1381 if (ret)
1382 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1383 type, ret);
1384
1385 return ret;
1386 }
1387
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1388 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1389 enum hnae3_reset_notify_type type)
1390 {
1391 struct hnae3_client *client = hdev->roce_client;
1392 struct hnae3_handle *handle = &hdev->roce;
1393 int ret;
1394
1395 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1396 return 0;
1397
1398 if (!client->ops->reset_notify)
1399 return -EOPNOTSUPP;
1400
1401 ret = client->ops->reset_notify(handle, type);
1402 if (ret)
1403 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1404 type, ret);
1405 return ret;
1406 }
1407
hclgevf_set_reset_pending(struct hclgevf_dev * hdev,enum hnae3_reset_type reset_type)1408 static void hclgevf_set_reset_pending(struct hclgevf_dev *hdev,
1409 enum hnae3_reset_type reset_type)
1410 {
1411 /* When an incorrect reset type is executed, the get_reset_level
1412 * function generates the HNAE3_NONE_RESET flag. As a result, this
1413 * type do not need to pending.
1414 */
1415 if (reset_type != HNAE3_NONE_RESET)
1416 set_bit(reset_type, &hdev->reset_pending);
1417 }
1418
hclgevf_reset_wait(struct hclgevf_dev * hdev)1419 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1420 {
1421 #define HCLGEVF_RESET_WAIT_US 20000
1422 #define HCLGEVF_RESET_WAIT_CNT 2000
1423 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1424 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1425
1426 u32 val;
1427 int ret;
1428
1429 if (hdev->reset_type == HNAE3_VF_RESET)
1430 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1431 HCLGEVF_VF_RST_ING, val,
1432 !(val & HCLGEVF_VF_RST_ING_BIT),
1433 HCLGEVF_RESET_WAIT_US,
1434 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1435 else
1436 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1437 HCLGEVF_RST_ING, val,
1438 !(val & HCLGEVF_RST_ING_BITS),
1439 HCLGEVF_RESET_WAIT_US,
1440 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1441
1442 /* hardware completion status should be available by this time */
1443 if (ret) {
1444 dev_err(&hdev->pdev->dev,
1445 "couldn't get reset done status from h/w, timeout!\n");
1446 return ret;
1447 }
1448
1449 /* we will wait a bit more to let reset of the stack to complete. This
1450 * might happen in case reset assertion was made by PF. Yes, this also
1451 * means we might end up waiting bit more even for VF reset.
1452 */
1453 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1454 msleep(5000);
1455 else
1456 msleep(500);
1457
1458 return 0;
1459 }
1460
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1461 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1462 {
1463 u32 reg_val;
1464
1465 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1466 if (enable)
1467 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1468 else
1469 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1470
1471 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1472 reg_val);
1473 }
1474
hclgevf_reset_stack(struct hclgevf_dev * hdev)1475 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1476 {
1477 int ret;
1478
1479 /* uninitialize the nic client */
1480 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1481 if (ret)
1482 return ret;
1483
1484 /* re-initialize the hclge device */
1485 ret = hclgevf_reset_hdev(hdev);
1486 if (ret) {
1487 dev_err(&hdev->pdev->dev,
1488 "hclge device re-init failed, VF is disabled!\n");
1489 return ret;
1490 }
1491
1492 /* bring up the nic client again */
1493 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1494 if (ret)
1495 return ret;
1496
1497 /* clear handshake status with IMP */
1498 hclgevf_reset_handshake(hdev, false);
1499
1500 /* bring up the nic to enable TX/RX again */
1501 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1502 }
1503
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1504 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1505 {
1506 #define HCLGEVF_RESET_SYNC_TIME 100
1507
1508 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1509 struct hclge_vf_to_pf_msg send_msg;
1510 int ret;
1511
1512 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1513 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1514 if (ret) {
1515 dev_err(&hdev->pdev->dev,
1516 "failed to assert VF reset, ret = %d\n", ret);
1517 return ret;
1518 }
1519 hdev->rst_stats.vf_func_rst_cnt++;
1520 }
1521
1522 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1523 /* inform hardware that preparatory work is done */
1524 msleep(HCLGEVF_RESET_SYNC_TIME);
1525 hclgevf_reset_handshake(hdev, true);
1526 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1527 hdev->reset_type);
1528
1529 return 0;
1530 }
1531
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1532 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1533 {
1534 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1535 hdev->rst_stats.vf_func_rst_cnt);
1536 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1537 hdev->rst_stats.flr_rst_cnt);
1538 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1539 hdev->rst_stats.vf_rst_cnt);
1540 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1541 hdev->rst_stats.rst_done_cnt);
1542 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1543 hdev->rst_stats.hw_rst_done_cnt);
1544 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1545 hdev->rst_stats.rst_cnt);
1546 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1547 hdev->rst_stats.rst_fail_cnt);
1548 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1549 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1550 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1551 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1552 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1553 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1554 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1555 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1556 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1557 }
1558
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1559 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1560 {
1561 /* recover handshake status with IMP when reset fail */
1562 hclgevf_reset_handshake(hdev, true);
1563 hdev->rst_stats.rst_fail_cnt++;
1564 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1565 hdev->rst_stats.rst_fail_cnt);
1566
1567 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1568 hclgevf_set_reset_pending(hdev, hdev->reset_type);
1569
1570 if (hclgevf_is_reset_pending(hdev)) {
1571 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1572 hclgevf_reset_task_schedule(hdev);
1573 } else {
1574 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1575 hclgevf_dump_rst_info(hdev);
1576 }
1577 }
1578
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1579 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1580 {
1581 int ret;
1582
1583 hdev->rst_stats.rst_cnt++;
1584
1585 /* perform reset of the stack & ae device for a client */
1586 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1587 if (ret)
1588 return ret;
1589
1590 rtnl_lock();
1591 /* bring down the nic to stop any ongoing TX/RX */
1592 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1593 rtnl_unlock();
1594 if (ret)
1595 return ret;
1596
1597 return hclgevf_reset_prepare_wait(hdev);
1598 }
1599
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1600 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1601 {
1602 int ret;
1603
1604 hdev->rst_stats.hw_rst_done_cnt++;
1605 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1606 if (ret)
1607 return ret;
1608
1609 rtnl_lock();
1610 /* now, re-initialize the nic client and ae device */
1611 ret = hclgevf_reset_stack(hdev);
1612 rtnl_unlock();
1613 if (ret) {
1614 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1615 return ret;
1616 }
1617
1618 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1619 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1620 * times
1621 */
1622 if (ret &&
1623 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1624 return ret;
1625
1626 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1627 if (ret)
1628 return ret;
1629
1630 hdev->last_reset_time = jiffies;
1631 hdev->rst_stats.rst_done_cnt++;
1632 hdev->rst_stats.rst_fail_cnt = 0;
1633 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1634
1635 return 0;
1636 }
1637
hclgevf_reset(struct hclgevf_dev * hdev)1638 static void hclgevf_reset(struct hclgevf_dev *hdev)
1639 {
1640 if (hclgevf_reset_prepare(hdev))
1641 goto err_reset;
1642
1643 /* check if VF could successfully fetch the hardware reset completion
1644 * status from the hardware
1645 */
1646 if (hclgevf_reset_wait(hdev)) {
1647 /* can't do much in this situation, will disable VF */
1648 dev_err(&hdev->pdev->dev,
1649 "failed to fetch H/W reset completion status\n");
1650 goto err_reset;
1651 }
1652
1653 if (hclgevf_reset_rebuild(hdev))
1654 goto err_reset;
1655
1656 return;
1657
1658 err_reset:
1659 hclgevf_reset_err_handle(hdev);
1660 }
1661
hclgevf_get_reset_level(unsigned long * addr)1662 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1663 {
1664 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1665
1666 /* return the highest priority reset level amongst all */
1667 if (test_bit(HNAE3_VF_RESET, addr)) {
1668 rst_level = HNAE3_VF_RESET;
1669 clear_bit(HNAE3_VF_RESET, addr);
1670 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1671 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1672 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1673 rst_level = HNAE3_VF_FULL_RESET;
1674 clear_bit(HNAE3_VF_FULL_RESET, addr);
1675 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1676 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1677 rst_level = HNAE3_VF_PF_FUNC_RESET;
1678 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1679 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1680 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1681 rst_level = HNAE3_VF_FUNC_RESET;
1682 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1683 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1684 rst_level = HNAE3_FLR_RESET;
1685 clear_bit(HNAE3_FLR_RESET, addr);
1686 }
1687
1688 clear_bit(HNAE3_NONE_RESET, addr);
1689
1690 return rst_level;
1691 }
1692
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1693 static void hclgevf_reset_event(struct pci_dev *pdev,
1694 struct hnae3_handle *handle)
1695 {
1696 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1697 struct hclgevf_dev *hdev = ae_dev->priv;
1698
1699 if (hdev->default_reset_request)
1700 hdev->reset_level =
1701 hclgevf_get_reset_level(&hdev->default_reset_request);
1702 else
1703 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1704
1705 dev_info(&hdev->pdev->dev, "received reset request from VF enet, reset level is %d\n",
1706 hdev->reset_level);
1707
1708 /* reset of this VF requested */
1709 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1710 hclgevf_reset_task_schedule(hdev);
1711
1712 hdev->last_reset_time = jiffies;
1713 }
1714
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1715 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1716 enum hnae3_reset_type rst_type)
1717 {
1718 #define HCLGEVF_SUPPORT_RESET_TYPE \
1719 (BIT(HNAE3_VF_RESET) | BIT(HNAE3_VF_FUNC_RESET) | \
1720 BIT(HNAE3_VF_PF_FUNC_RESET) | BIT(HNAE3_VF_FULL_RESET) | \
1721 BIT(HNAE3_FLR_RESET) | BIT(HNAE3_VF_EXP_RESET))
1722
1723 struct hclgevf_dev *hdev = ae_dev->priv;
1724
1725 if (!(BIT(rst_type) & HCLGEVF_SUPPORT_RESET_TYPE)) {
1726 /* To prevent reset triggered by hclge_reset_event */
1727 set_bit(HNAE3_NONE_RESET, &hdev->default_reset_request);
1728 dev_info(&hdev->pdev->dev, "unsupported reset type %d\n",
1729 rst_type);
1730 return;
1731 }
1732 set_bit(rst_type, &hdev->default_reset_request);
1733 }
1734
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1735 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1736 {
1737 writel(en ? 1 : 0, vector->addr);
1738 }
1739
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1740 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1741 enum hnae3_reset_type rst_type)
1742 {
1743 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1744 #define HCLGEVF_RESET_RETRY_CNT 5
1745
1746 struct hclgevf_dev *hdev = ae_dev->priv;
1747 int retry_cnt = 0;
1748 int ret;
1749
1750 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1751 down(&hdev->reset_sem);
1752 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1753 hdev->reset_type = rst_type;
1754 ret = hclgevf_reset_prepare(hdev);
1755 if (!ret && !hdev->reset_pending)
1756 break;
1757
1758 dev_err(&hdev->pdev->dev,
1759 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1760 ret, hdev->reset_pending, retry_cnt);
1761 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1762 up(&hdev->reset_sem);
1763 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1764 }
1765
1766 /* disable misc vector before reset done */
1767 hclgevf_enable_vector(&hdev->misc_vector, false);
1768
1769 if (hdev->reset_type == HNAE3_FLR_RESET)
1770 hdev->rst_stats.flr_rst_cnt++;
1771 }
1772
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1773 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1774 {
1775 struct hclgevf_dev *hdev = ae_dev->priv;
1776 int ret;
1777
1778 hclgevf_enable_vector(&hdev->misc_vector, true);
1779
1780 ret = hclgevf_reset_rebuild(hdev);
1781 if (ret)
1782 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1783 ret);
1784
1785 hdev->reset_type = HNAE3_NONE_RESET;
1786 if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1787 up(&hdev->reset_sem);
1788 }
1789
hclgevf_get_fw_version(struct hnae3_handle * handle)1790 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1791 {
1792 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1793
1794 return hdev->fw_version;
1795 }
1796
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1797 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1798 {
1799 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1800
1801 vector->vector_irq = pci_irq_vector(hdev->pdev,
1802 HCLGEVF_MISC_VECTOR_NUM);
1803 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1804 /* vector status always valid for Vector 0 */
1805 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1806 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1807
1808 hdev->num_msi_left -= 1;
1809 hdev->num_msi_used += 1;
1810 }
1811
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1812 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1813 {
1814 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1815 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1816 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1817 &hdev->state))
1818 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1819 }
1820
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1821 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1822 {
1823 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1824 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1825 &hdev->state))
1826 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1827 }
1828
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1829 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1830 unsigned long delay)
1831 {
1832 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1833 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1834 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1835 }
1836
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1837 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1838 {
1839 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1840
1841 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1842 return;
1843
1844 down(&hdev->reset_sem);
1845 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1846
1847 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1848 &hdev->reset_state)) {
1849 /* PF has intimated that it is about to reset the hardware.
1850 * We now have to poll & check if hardware has actually
1851 * completed the reset sequence. On hardware reset completion,
1852 * VF needs to reset the client and ae device.
1853 */
1854 hdev->reset_attempts = 0;
1855
1856 hdev->last_reset_time = jiffies;
1857 hdev->reset_type =
1858 hclgevf_get_reset_level(&hdev->reset_pending);
1859 if (hdev->reset_type != HNAE3_NONE_RESET)
1860 hclgevf_reset(hdev);
1861 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1862 &hdev->reset_state)) {
1863 /* we could be here when either of below happens:
1864 * 1. reset was initiated due to watchdog timeout caused by
1865 * a. IMP was earlier reset and our TX got choked down and
1866 * which resulted in watchdog reacting and inducing VF
1867 * reset. This also means our cmdq would be unreliable.
1868 * b. problem in TX due to other lower layer(example link
1869 * layer not functioning properly etc.)
1870 * 2. VF reset might have been initiated due to some config
1871 * change.
1872 *
1873 * NOTE: Theres no clear way to detect above cases than to react
1874 * to the response of PF for this reset request. PF will ack the
1875 * 1b and 2. cases but we will not get any intimation about 1a
1876 * from PF as cmdq would be in unreliable state i.e. mailbox
1877 * communication between PF and VF would be broken.
1878 *
1879 * if we are never geting into pending state it means either:
1880 * 1. PF is not receiving our request which could be due to IMP
1881 * reset
1882 * 2. PF is screwed
1883 * We cannot do much for 2. but to check first we can try reset
1884 * our PCIe + stack and see if it alleviates the problem.
1885 */
1886 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1887 /* prepare for full reset of stack + pcie interface */
1888 hclgevf_set_reset_pending(hdev, HNAE3_VF_FULL_RESET);
1889
1890 /* "defer" schedule the reset task again */
1891 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1892 } else {
1893 hdev->reset_attempts++;
1894
1895 hclgevf_set_reset_pending(hdev, hdev->reset_level);
1896 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1897 }
1898 hclgevf_reset_task_schedule(hdev);
1899 }
1900
1901 hdev->reset_type = HNAE3_NONE_RESET;
1902 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1903 up(&hdev->reset_sem);
1904 }
1905
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1906 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1907 {
1908 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1909 return;
1910
1911 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1912 return;
1913
1914 hclgevf_mbx_async_handler(hdev);
1915
1916 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1917 }
1918
hclgevf_keep_alive(struct hclgevf_dev * hdev)1919 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1920 {
1921 struct hclge_vf_to_pf_msg send_msg;
1922 int ret;
1923
1924 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1925 return;
1926
1927 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1928 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1929 if (ret)
1930 dev_err(&hdev->pdev->dev,
1931 "VF sends keep alive cmd failed(=%d)\n", ret);
1932 }
1933
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1934 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1935 {
1936 unsigned long delta = round_jiffies_relative(HZ);
1937 struct hnae3_handle *handle = &hdev->nic;
1938
1939 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1940 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1941 return;
1942
1943 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1944 delta = jiffies - hdev->last_serv_processed;
1945
1946 if (delta < round_jiffies_relative(HZ)) {
1947 delta = round_jiffies_relative(HZ) - delta;
1948 goto out;
1949 }
1950 }
1951
1952 hdev->serv_processed_cnt++;
1953 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1954 hclgevf_keep_alive(hdev);
1955
1956 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1957 hdev->last_serv_processed = jiffies;
1958 goto out;
1959 }
1960
1961 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1962 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1963
1964 /* VF does not need to request link status when this bit is set, because
1965 * PF will push its link status to VFs when link status changed.
1966 */
1967 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1968 hclgevf_request_link_info(hdev);
1969
1970 hclgevf_update_link_mode(hdev);
1971
1972 hclgevf_sync_vlan_filter(hdev);
1973
1974 hclgevf_sync_mac_table(hdev);
1975
1976 hclgevf_sync_promisc_mode(hdev);
1977
1978 hdev->last_serv_processed = jiffies;
1979
1980 out:
1981 hclgevf_task_schedule(hdev, delta);
1982 }
1983
hclgevf_service_task(struct work_struct * work)1984 static void hclgevf_service_task(struct work_struct *work)
1985 {
1986 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1987 service_task.work);
1988
1989 hclgevf_reset_service_task(hdev);
1990 hclgevf_mailbox_service_task(hdev);
1991 hclgevf_periodic_service_task(hdev);
1992
1993 /* Handle reset and mbx again in case periodical task delays the
1994 * handling by calling hclgevf_task_schedule() in
1995 * hclgevf_periodic_service_task()
1996 */
1997 hclgevf_reset_service_task(hdev);
1998 hclgevf_mailbox_service_task(hdev);
1999 }
2000
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)2001 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2002 {
2003 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
2004 }
2005
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)2006 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2007 u32 *clearval)
2008 {
2009 u32 val, cmdq_stat_reg, rst_ing_reg;
2010
2011 /* fetch the events from their corresponding regs */
2012 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2013 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2014 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2015 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2016 dev_info(&hdev->pdev->dev,
2017 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2018 hclgevf_set_reset_pending(hdev, HNAE3_VF_RESET);
2019 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2020 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2021 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2022 hdev->rst_stats.vf_rst_cnt++;
2023 /* set up VF hardware reset status, its PF will clear
2024 * this status when PF has initialized done.
2025 */
2026 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2027 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2028 val | HCLGEVF_VF_RST_ING_BIT);
2029 return HCLGEVF_VECTOR0_EVENT_RST;
2030 }
2031
2032 /* check for vector0 mailbox(=CMDQ RX) event source */
2033 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2034 /* for revision 0x21, clearing interrupt is writing bit 0
2035 * to the clear register, writing bit 1 means to keep the
2036 * old value.
2037 * for revision 0x20, the clear register is a read & write
2038 * register, so we should just write 0 to the bit we are
2039 * handling, and keep other bits as cmdq_stat_reg.
2040 */
2041 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2042 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2043 else
2044 *clearval = cmdq_stat_reg &
2045 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2046
2047 return HCLGEVF_VECTOR0_EVENT_MBX;
2048 }
2049
2050 /* print other vector0 event source */
2051 dev_info(&hdev->pdev->dev,
2052 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2053 cmdq_stat_reg);
2054
2055 return HCLGEVF_VECTOR0_EVENT_OTHER;
2056 }
2057
hclgevf_reset_timer(struct timer_list * t)2058 static void hclgevf_reset_timer(struct timer_list *t)
2059 {
2060 struct hclgevf_dev *hdev = timer_container_of(hdev, t, reset_timer);
2061
2062 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2063 hclgevf_reset_task_schedule(hdev);
2064 }
2065
hclgevf_misc_irq_handle(int irq,void * data)2066 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2067 {
2068 #define HCLGEVF_RESET_DELAY 5
2069
2070 enum hclgevf_evt_cause event_cause;
2071 struct hclgevf_dev *hdev = data;
2072 u32 clearval;
2073
2074 hclgevf_enable_vector(&hdev->misc_vector, false);
2075 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2076 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2077 hclgevf_clear_event_cause(hdev, clearval);
2078
2079 switch (event_cause) {
2080 case HCLGEVF_VECTOR0_EVENT_RST:
2081 mod_timer(&hdev->reset_timer,
2082 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2083 break;
2084 case HCLGEVF_VECTOR0_EVENT_MBX:
2085 hclgevf_mbx_handler(hdev);
2086 break;
2087 default:
2088 break;
2089 }
2090
2091 hclgevf_enable_vector(&hdev->misc_vector, true);
2092
2093 return IRQ_HANDLED;
2094 }
2095
hclgevf_configure(struct hclgevf_dev * hdev)2096 static int hclgevf_configure(struct hclgevf_dev *hdev)
2097 {
2098 int ret;
2099
2100 hdev->gro_en = true;
2101
2102 ret = hclgevf_get_basic_info(hdev);
2103 if (ret)
2104 return ret;
2105
2106 /* get current port based vlan state from PF */
2107 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2108 if (ret)
2109 return ret;
2110
2111 /* get queue configuration from PF */
2112 ret = hclgevf_get_queue_info(hdev);
2113 if (ret)
2114 return ret;
2115
2116 /* get queue depth info from PF */
2117 ret = hclgevf_get_queue_depth(hdev);
2118 if (ret)
2119 return ret;
2120
2121 return hclgevf_get_pf_media_type(hdev);
2122 }
2123
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2124 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2125 {
2126 struct pci_dev *pdev = ae_dev->pdev;
2127 struct hclgevf_dev *hdev;
2128
2129 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2130 if (!hdev)
2131 return -ENOMEM;
2132
2133 hdev->pdev = pdev;
2134 hdev->ae_dev = ae_dev;
2135 ae_dev->priv = hdev;
2136
2137 return 0;
2138 }
2139
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2140 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2141 {
2142 struct hnae3_handle *roce = &hdev->roce;
2143 struct hnae3_handle *nic = &hdev->nic;
2144
2145 roce->rinfo.num_vectors = hdev->num_roce_msix;
2146
2147 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2148 hdev->num_msi_left == 0)
2149 return -EINVAL;
2150
2151 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2152
2153 roce->rinfo.netdev = nic->kinfo.netdev;
2154 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2155 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2156
2157 roce->pdev = nic->pdev;
2158 roce->ae_algo = nic->ae_algo;
2159 bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2160 MAX_NUMNODES);
2161 return 0;
2162 }
2163
hclgevf_config_gro(struct hclgevf_dev * hdev)2164 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2165 {
2166 struct hclgevf_cfg_gro_status_cmd *req;
2167 struct hclge_desc desc;
2168 int ret;
2169
2170 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2171 return 0;
2172
2173 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2174 false);
2175 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2176
2177 req->gro_en = hdev->gro_en ? 1 : 0;
2178
2179 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2180 if (ret)
2181 dev_err(&hdev->pdev->dev,
2182 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2183
2184 return ret;
2185 }
2186
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2187 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2188 {
2189 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2190 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2191 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2192 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2193 int ret;
2194
2195 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2196 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2197 rss_cfg->rss_algo,
2198 rss_cfg->rss_hash_key);
2199 if (ret)
2200 return ret;
2201
2202 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2203 if (ret)
2204 return ret;
2205 }
2206
2207 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2208 rss_cfg->rss_indirection_tbl);
2209 if (ret)
2210 return ret;
2211
2212 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2213 tc_offset, tc_valid, tc_size);
2214
2215 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2216 tc_valid, tc_size);
2217 }
2218
hclgevf_init_vlan_config(struct hclgevf_dev * hdev,bool rxvtag_strip_en)2219 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev,
2220 bool rxvtag_strip_en)
2221 {
2222 struct hnae3_handle *nic = &hdev->nic;
2223 int ret;
2224
2225 ret = hclgevf_en_hw_strip_rxvtag(nic, rxvtag_strip_en);
2226 if (ret) {
2227 dev_err(&hdev->pdev->dev,
2228 "failed to enable rx vlan offload, ret = %d\n", ret);
2229 return ret;
2230 }
2231
2232 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2233 false);
2234 }
2235
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2236 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2237 {
2238 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2239
2240 unsigned long last = hdev->serv_processed_cnt;
2241 int i = 0;
2242
2243 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2244 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2245 last == hdev->serv_processed_cnt)
2246 usleep_range(1, 1);
2247 }
2248
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2249 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2250 {
2251 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2252
2253 if (enable) {
2254 hclgevf_task_schedule(hdev, 0);
2255 } else {
2256 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2257
2258 smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2259 hclgevf_flush_link_update(hdev);
2260 }
2261 }
2262
hclgevf_ae_start(struct hnae3_handle * handle)2263 static int hclgevf_ae_start(struct hnae3_handle *handle)
2264 {
2265 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2266
2267 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2268 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2269
2270 hclge_comm_reset_tqp_stats(handle);
2271
2272 hclgevf_request_link_info(hdev);
2273
2274 hclgevf_update_link_mode(hdev);
2275
2276 return 0;
2277 }
2278
hclgevf_ae_stop(struct hnae3_handle * handle)2279 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2280 {
2281 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2282
2283 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2284
2285 if (hdev->reset_type != HNAE3_VF_RESET)
2286 hclgevf_reset_tqp(handle);
2287
2288 hclge_comm_reset_tqp_stats(handle);
2289 hclgevf_update_link_status(hdev, 0);
2290 }
2291
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2292 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2293 {
2294 #define HCLGEVF_STATE_ALIVE 1
2295 #define HCLGEVF_STATE_NOT_ALIVE 0
2296
2297 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2298 struct hclge_vf_to_pf_msg send_msg;
2299
2300 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2301 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2302 HCLGEVF_STATE_NOT_ALIVE;
2303 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2304 }
2305
hclgevf_client_start(struct hnae3_handle * handle)2306 static int hclgevf_client_start(struct hnae3_handle *handle)
2307 {
2308 return hclgevf_set_alive(handle, true);
2309 }
2310
hclgevf_client_stop(struct hnae3_handle * handle)2311 static void hclgevf_client_stop(struct hnae3_handle *handle)
2312 {
2313 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2314 int ret;
2315
2316 ret = hclgevf_set_alive(handle, false);
2317 if (ret)
2318 dev_warn(&hdev->pdev->dev,
2319 "%s failed %d\n", __func__, ret);
2320 }
2321
hclgevf_state_init(struct hclgevf_dev * hdev)2322 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2323 {
2324 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2325 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2326 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2327
2328 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2329 /* timer needs to be initialized before misc irq */
2330 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2331
2332 mutex_init(&hdev->mbx_resp.mbx_mutex);
2333 sema_init(&hdev->reset_sem, 1);
2334
2335 spin_lock_init(&hdev->mac_table.mac_list_lock);
2336 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2337 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2338
2339 /* bring the device down */
2340 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2341 }
2342
hclgevf_state_uninit(struct hclgevf_dev * hdev)2343 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2344 {
2345 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2346 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2347
2348 if (hdev->service_task.work.func)
2349 cancel_delayed_work_sync(&hdev->service_task);
2350
2351 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2352 }
2353
hclgevf_init_msi(struct hclgevf_dev * hdev)2354 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2355 {
2356 struct pci_dev *pdev = hdev->pdev;
2357 int vectors;
2358 int i;
2359
2360 if (hnae3_dev_roce_supported(hdev))
2361 vectors = pci_alloc_irq_vectors(pdev,
2362 hdev->roce_base_msix_offset + 1,
2363 hdev->num_msi,
2364 PCI_IRQ_MSIX);
2365 else
2366 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2367 hdev->num_msi,
2368 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2369
2370 if (vectors < 0) {
2371 dev_err(&pdev->dev,
2372 "failed(%d) to allocate MSI/MSI-X vectors\n",
2373 vectors);
2374 return vectors;
2375 }
2376 if (vectors < hdev->num_msi)
2377 dev_warn(&hdev->pdev->dev,
2378 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2379 hdev->num_msi, vectors);
2380
2381 hdev->num_msi = vectors;
2382 hdev->num_msi_left = vectors;
2383
2384 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2385 sizeof(u16), GFP_KERNEL);
2386 if (!hdev->vector_status) {
2387 pci_free_irq_vectors(pdev);
2388 return -ENOMEM;
2389 }
2390
2391 for (i = 0; i < hdev->num_msi; i++)
2392 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2393
2394 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2395 sizeof(int), GFP_KERNEL);
2396 if (!hdev->vector_irq) {
2397 devm_kfree(&pdev->dev, hdev->vector_status);
2398 pci_free_irq_vectors(pdev);
2399 return -ENOMEM;
2400 }
2401
2402 return 0;
2403 }
2404
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2405 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2406 {
2407 struct pci_dev *pdev = hdev->pdev;
2408
2409 devm_kfree(&pdev->dev, hdev->vector_status);
2410 devm_kfree(&pdev->dev, hdev->vector_irq);
2411 pci_free_irq_vectors(pdev);
2412 }
2413
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2414 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2415 {
2416 int ret;
2417
2418 hclgevf_get_misc_vector(hdev);
2419
2420 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2421 HCLGEVF_NAME, pci_name(hdev->pdev));
2422 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2423 0, hdev->misc_vector.name, hdev);
2424 if (ret) {
2425 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2426 hdev->misc_vector.vector_irq);
2427 return ret;
2428 }
2429
2430 hclgevf_clear_event_cause(hdev, 0);
2431
2432 /* enable misc. vector(vector 0) */
2433 hclgevf_enable_vector(&hdev->misc_vector, true);
2434
2435 return ret;
2436 }
2437
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2438 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2439 {
2440 /* disable misc vector(vector 0) */
2441 hclgevf_enable_vector(&hdev->misc_vector, false);
2442 synchronize_irq(hdev->misc_vector.vector_irq);
2443 free_irq(hdev->misc_vector.vector_irq, hdev);
2444 hclgevf_free_vector(hdev, 0);
2445 }
2446
hclgevf_info_show(struct hclgevf_dev * hdev)2447 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2448 {
2449 struct device *dev = &hdev->pdev->dev;
2450
2451 dev_info(dev, "VF info begin:\n");
2452
2453 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2454 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2455 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2456 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2457 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2458 dev_info(dev, "PF media type of this VF: %u\n",
2459 hdev->hw.mac.media_type);
2460
2461 dev_info(dev, "VF info end.\n");
2462 }
2463
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2464 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2465 struct hnae3_client *client)
2466 {
2467 struct hclgevf_dev *hdev = ae_dev->priv;
2468 int rst_cnt = hdev->rst_stats.rst_cnt;
2469 int ret;
2470
2471 ret = client->ops->init_instance(&hdev->nic);
2472 if (ret)
2473 return ret;
2474
2475 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2476 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2477 rst_cnt != hdev->rst_stats.rst_cnt) {
2478 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2479
2480 client->ops->uninit_instance(&hdev->nic, 0);
2481 return -EBUSY;
2482 }
2483
2484 hnae3_set_client_init_flag(client, ae_dev, 1);
2485
2486 if (netif_msg_drv(&hdev->nic))
2487 hclgevf_info_show(hdev);
2488
2489 return 0;
2490 }
2491
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2492 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2493 struct hnae3_client *client)
2494 {
2495 struct hclgevf_dev *hdev = ae_dev->priv;
2496 int ret;
2497
2498 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2499 !hdev->nic_client)
2500 return 0;
2501
2502 ret = hclgevf_init_roce_base_info(hdev);
2503 if (ret)
2504 return ret;
2505
2506 ret = client->ops->init_instance(&hdev->roce);
2507 if (ret)
2508 return ret;
2509
2510 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2511 hnae3_set_client_init_flag(client, ae_dev, 1);
2512
2513 return 0;
2514 }
2515
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2516 static int hclgevf_init_client_instance(struct hnae3_client *client,
2517 struct hnae3_ae_dev *ae_dev)
2518 {
2519 struct hclgevf_dev *hdev = ae_dev->priv;
2520 int ret;
2521
2522 switch (client->type) {
2523 case HNAE3_CLIENT_KNIC:
2524 hdev->nic_client = client;
2525 hdev->nic.client = client;
2526
2527 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2528 if (ret)
2529 goto clear_nic;
2530
2531 ret = hclgevf_init_roce_client_instance(ae_dev,
2532 hdev->roce_client);
2533 if (ret)
2534 goto clear_roce;
2535
2536 break;
2537 case HNAE3_CLIENT_ROCE:
2538 if (hnae3_dev_roce_supported(hdev)) {
2539 hdev->roce_client = client;
2540 hdev->roce.client = client;
2541 }
2542
2543 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2544 if (ret)
2545 goto clear_roce;
2546
2547 break;
2548 default:
2549 return -EINVAL;
2550 }
2551
2552 return 0;
2553
2554 clear_nic:
2555 hdev->nic_client = NULL;
2556 hdev->nic.client = NULL;
2557 return ret;
2558 clear_roce:
2559 hdev->roce_client = NULL;
2560 hdev->roce.client = NULL;
2561 return ret;
2562 }
2563
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2564 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2565 struct hnae3_ae_dev *ae_dev)
2566 {
2567 struct hclgevf_dev *hdev = ae_dev->priv;
2568
2569 /* un-init roce, if it exists */
2570 if (hdev->roce_client) {
2571 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2572 msleep(HCLGEVF_WAIT_RESET_DONE);
2573 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2574
2575 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2576 hdev->roce_client = NULL;
2577 hdev->roce.client = NULL;
2578 }
2579
2580 /* un-init nic/unic, if this was not called by roce client */
2581 if (client->ops->uninit_instance && hdev->nic_client &&
2582 client->type != HNAE3_CLIENT_ROCE) {
2583 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2584 msleep(HCLGEVF_WAIT_RESET_DONE);
2585 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2586
2587 client->ops->uninit_instance(&hdev->nic, 0);
2588 hdev->nic_client = NULL;
2589 hdev->nic.client = NULL;
2590 }
2591 }
2592
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2593 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2594 {
2595 struct pci_dev *pdev = hdev->pdev;
2596 struct hclgevf_hw *hw = &hdev->hw;
2597
2598 /* for device does not have device memory, return directly */
2599 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2600 return 0;
2601
2602 hw->hw.mem_base =
2603 devm_ioremap_wc(&pdev->dev,
2604 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2605 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2606 if (!hw->hw.mem_base) {
2607 dev_err(&pdev->dev, "failed to map device memory\n");
2608 return -EFAULT;
2609 }
2610
2611 return 0;
2612 }
2613
hclgevf_pci_init(struct hclgevf_dev * hdev)2614 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2615 {
2616 struct pci_dev *pdev = hdev->pdev;
2617 struct hclgevf_hw *hw;
2618 int ret;
2619
2620 ret = pci_enable_device(pdev);
2621 if (ret) {
2622 dev_err(&pdev->dev, "failed to enable PCI device\n");
2623 return ret;
2624 }
2625
2626 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2627 if (ret) {
2628 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2629 goto err_disable_device;
2630 }
2631
2632 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2633 if (ret) {
2634 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2635 goto err_disable_device;
2636 }
2637
2638 pci_set_master(pdev);
2639 hw = &hdev->hw;
2640 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2641 if (!hw->hw.io_base) {
2642 dev_err(&pdev->dev, "can't map configuration register space\n");
2643 ret = -ENOMEM;
2644 goto err_release_regions;
2645 }
2646
2647 ret = hclgevf_dev_mem_map(hdev);
2648 if (ret)
2649 goto err_unmap_io_base;
2650
2651 return 0;
2652
2653 err_unmap_io_base:
2654 pci_iounmap(pdev, hdev->hw.hw.io_base);
2655 err_release_regions:
2656 pci_release_regions(pdev);
2657 err_disable_device:
2658 pci_disable_device(pdev);
2659
2660 return ret;
2661 }
2662
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2663 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2664 {
2665 struct pci_dev *pdev = hdev->pdev;
2666
2667 if (hdev->hw.hw.mem_base)
2668 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2669
2670 pci_iounmap(pdev, hdev->hw.hw.io_base);
2671 pci_release_regions(pdev);
2672 pci_disable_device(pdev);
2673 }
2674
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2675 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2676 {
2677 struct hclgevf_query_res_cmd *req;
2678 struct hclge_desc desc;
2679 int ret;
2680
2681 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2682 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2683 if (ret) {
2684 dev_err(&hdev->pdev->dev,
2685 "query vf resource failed, ret = %d.\n", ret);
2686 return ret;
2687 }
2688
2689 req = (struct hclgevf_query_res_cmd *)desc.data;
2690
2691 if (hnae3_dev_roce_supported(hdev)) {
2692 hdev->roce_base_msix_offset =
2693 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2694 HCLGEVF_MSIX_OFT_ROCEE_M,
2695 HCLGEVF_MSIX_OFT_ROCEE_S);
2696 hdev->num_roce_msix =
2697 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2698 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2699
2700 /* nic's msix numbers is always equals to the roce's. */
2701 hdev->num_nic_msix = hdev->num_roce_msix;
2702
2703 /* VF should have NIC vectors and Roce vectors, NIC vectors
2704 * are queued before Roce vectors. The offset is fixed to 64.
2705 */
2706 hdev->num_msi = hdev->num_roce_msix +
2707 hdev->roce_base_msix_offset;
2708 } else {
2709 hdev->num_msi =
2710 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2711 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2712
2713 hdev->num_nic_msix = hdev->num_msi;
2714 }
2715
2716 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2717 dev_err(&hdev->pdev->dev,
2718 "Just %u msi resources, not enough for vf(min:2).\n",
2719 hdev->num_nic_msix);
2720 return -EINVAL;
2721 }
2722
2723 return 0;
2724 }
2725
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2726 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2727 {
2728 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2729
2730 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2731
2732 ae_dev->dev_specs.max_non_tso_bd_num =
2733 HCLGEVF_MAX_NON_TSO_BD_NUM;
2734 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2735 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2736 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2737 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2738 }
2739
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2740 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2741 struct hclge_desc *desc)
2742 {
2743 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2744 struct hclgevf_dev_specs_0_cmd *req0;
2745 struct hclgevf_dev_specs_1_cmd *req1;
2746
2747 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2748 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2749
2750 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2751 ae_dev->dev_specs.rss_ind_tbl_size =
2752 le16_to_cpu(req0->rss_ind_tbl_size);
2753 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2754 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2755 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2756 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2757 }
2758
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2759 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2760 {
2761 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2762
2763 if (!dev_specs->max_non_tso_bd_num)
2764 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2765 if (!dev_specs->rss_ind_tbl_size)
2766 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2767 if (!dev_specs->rss_key_size)
2768 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2769 if (!dev_specs->max_int_gl)
2770 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2771 if (!dev_specs->max_frm_size)
2772 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2773 }
2774
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2775 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2776 {
2777 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2778 int ret;
2779 int i;
2780
2781 /* set default specifications as devices lower than version V3 do not
2782 * support querying specifications from firmware.
2783 */
2784 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2785 hclgevf_set_default_dev_specs(hdev);
2786 return 0;
2787 }
2788
2789 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2790 hclgevf_cmd_setup_basic_desc(&desc[i],
2791 HCLGE_OPC_QUERY_DEV_SPECS, true);
2792 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2793 }
2794 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2795
2796 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2797 if (ret)
2798 return ret;
2799
2800 hclgevf_parse_dev_specs(hdev, desc);
2801 hclgevf_check_dev_specs(hdev);
2802
2803 return 0;
2804 }
2805
hclgevf_pci_reset(struct hclgevf_dev * hdev)2806 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2807 {
2808 struct pci_dev *pdev = hdev->pdev;
2809 int ret = 0;
2810
2811 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2812 hdev->reset_type == HNAE3_FLR_RESET) &&
2813 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2814 hclgevf_misc_irq_uninit(hdev);
2815 hclgevf_uninit_msi(hdev);
2816 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2817 }
2818
2819 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2820 pci_set_master(pdev);
2821 ret = hclgevf_init_msi(hdev);
2822 if (ret) {
2823 dev_err(&pdev->dev,
2824 "failed(%d) to init MSI/MSI-X\n", ret);
2825 return ret;
2826 }
2827
2828 ret = hclgevf_misc_irq_init(hdev);
2829 if (ret) {
2830 hclgevf_uninit_msi(hdev);
2831 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2832 ret);
2833 return ret;
2834 }
2835
2836 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2837 }
2838
2839 return ret;
2840 }
2841
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2842 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2843 {
2844 struct hclge_vf_to_pf_msg send_msg;
2845
2846 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2847 HCLGE_MBX_VPORT_LIST_CLEAR);
2848 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2849 }
2850
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2851 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2852 {
2853 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2854 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2855 }
2856
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2857 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2858 {
2859 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2860 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2861 }
2862
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2863 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2864 {
2865 struct pci_dev *pdev = hdev->pdev;
2866 int ret;
2867
2868 ret = hclgevf_pci_reset(hdev);
2869 if (ret) {
2870 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2871 return ret;
2872 }
2873
2874 hclgevf_arq_init(hdev);
2875
2876 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2877 &hdev->fw_version, false,
2878 hdev->reset_pending);
2879 if (ret) {
2880 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2881 return ret;
2882 }
2883
2884 ret = hclgevf_rss_init_hw(hdev);
2885 if (ret) {
2886 dev_err(&hdev->pdev->dev,
2887 "failed(%d) to initialize RSS\n", ret);
2888 return ret;
2889 }
2890
2891 ret = hclgevf_config_gro(hdev);
2892 if (ret)
2893 return ret;
2894
2895 ret = hclgevf_init_vlan_config(hdev, hdev->rxvtag_strip_en);
2896 if (ret) {
2897 dev_err(&hdev->pdev->dev,
2898 "failed(%d) to initialize VLAN config\n", ret);
2899 return ret;
2900 }
2901
2902 /* get current port based vlan state from PF */
2903 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2904 if (ret)
2905 return ret;
2906
2907 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2908
2909 hclgevf_init_rxd_adv_layout(hdev);
2910
2911 dev_info(&hdev->pdev->dev, "Reset done\n");
2912
2913 return 0;
2914 }
2915
hclgevf_init_hdev(struct hclgevf_dev * hdev)2916 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2917 {
2918 struct pci_dev *pdev = hdev->pdev;
2919 int ret;
2920
2921 ret = hclgevf_pci_init(hdev);
2922 if (ret)
2923 return ret;
2924
2925 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2926 if (ret)
2927 goto err_cmd_queue_init;
2928
2929 hclgevf_arq_init(hdev);
2930
2931 hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2932 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2933 &hdev->fw_version, false,
2934 hdev->reset_pending);
2935 if (ret)
2936 goto err_cmd_init;
2937
2938 /* Get vf resource */
2939 ret = hclgevf_query_vf_resource(hdev);
2940 if (ret)
2941 goto err_cmd_init;
2942
2943 ret = hclgevf_query_dev_specs(hdev);
2944 if (ret) {
2945 dev_err(&pdev->dev,
2946 "failed to query dev specifications, ret = %d\n", ret);
2947 goto err_cmd_init;
2948 }
2949
2950 ret = hclgevf_init_msi(hdev);
2951 if (ret) {
2952 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2953 goto err_cmd_init;
2954 }
2955
2956 hclgevf_state_init(hdev);
2957 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2958 hdev->reset_type = HNAE3_NONE_RESET;
2959
2960 ret = hclgevf_misc_irq_init(hdev);
2961 if (ret)
2962 goto err_misc_irq_init;
2963
2964 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2965
2966 ret = hclgevf_configure(hdev);
2967 if (ret) {
2968 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2969 goto err_config;
2970 }
2971
2972 ret = hclgevf_alloc_tqps(hdev);
2973 if (ret) {
2974 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2975 goto err_config;
2976 }
2977
2978 ret = hclgevf_set_handle_info(hdev);
2979 if (ret)
2980 goto err_config;
2981
2982 ret = hclgevf_config_gro(hdev);
2983 if (ret)
2984 goto err_config;
2985
2986 /* Initialize RSS for this VF */
2987 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2988 &hdev->rss_cfg);
2989 if (ret) {
2990 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2991 goto err_config;
2992 }
2993
2994 ret = hclgevf_rss_init_hw(hdev);
2995 if (ret) {
2996 dev_err(&hdev->pdev->dev,
2997 "failed(%d) to initialize RSS\n", ret);
2998 goto err_config;
2999 }
3000
3001 /* ensure vf tbl list as empty before init */
3002 ret = hclgevf_clear_vport_list(hdev);
3003 if (ret) {
3004 dev_err(&pdev->dev,
3005 "failed to clear tbl list configuration, ret = %d.\n",
3006 ret);
3007 goto err_config;
3008 }
3009
3010 ret = hclgevf_init_vlan_config(hdev, true);
3011 if (ret) {
3012 dev_err(&hdev->pdev->dev,
3013 "failed(%d) to initialize VLAN config\n", ret);
3014 goto err_config;
3015 }
3016
3017 hclgevf_init_rxd_adv_layout(hdev);
3018
3019 ret = hclgevf_devlink_init(hdev);
3020 if (ret)
3021 goto err_config;
3022
3023 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3024
3025 hdev->last_reset_time = jiffies;
3026 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3027 HCLGEVF_DRIVER_NAME);
3028
3029 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3030
3031 return 0;
3032
3033 err_config:
3034 hclgevf_misc_irq_uninit(hdev);
3035 err_misc_irq_init:
3036 hclgevf_state_uninit(hdev);
3037 hclgevf_uninit_msi(hdev);
3038 err_cmd_init:
3039 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3040 err_cmd_queue_init:
3041 hclgevf_pci_uninit(hdev);
3042 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3043 return ret;
3044 }
3045
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3046 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3047 {
3048 struct hclge_vf_to_pf_msg send_msg;
3049
3050 hclgevf_state_uninit(hdev);
3051 hclgevf_uninit_rxd_adv_layout(hdev);
3052
3053 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3054 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3055
3056 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3057 hclgevf_misc_irq_uninit(hdev);
3058 hclgevf_uninit_msi(hdev);
3059 }
3060
3061 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3062 hclgevf_devlink_uninit(hdev);
3063 hclgevf_pci_uninit(hdev);
3064 hclgevf_uninit_mac_list(hdev);
3065 }
3066
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3067 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3068 {
3069 struct pci_dev *pdev = ae_dev->pdev;
3070 int ret;
3071
3072 ret = hclgevf_alloc_hdev(ae_dev);
3073 if (ret) {
3074 dev_err(&pdev->dev, "hclge device allocation failed\n");
3075 return ret;
3076 }
3077
3078 ret = hclgevf_init_hdev(ae_dev->priv);
3079 if (ret) {
3080 dev_err(&pdev->dev, "hclge device initialization failed\n");
3081 return ret;
3082 }
3083
3084 return 0;
3085 }
3086
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3087 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3088 {
3089 struct hclgevf_dev *hdev = ae_dev->priv;
3090
3091 hclgevf_uninit_hdev(hdev);
3092 ae_dev->priv = NULL;
3093 }
3094
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3095 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3096 {
3097 struct hnae3_handle *nic = &hdev->nic;
3098 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3099
3100 return min_t(u32, hdev->rss_size_max,
3101 hdev->num_tqps / kinfo->tc_info.num_tc);
3102 }
3103
3104 /**
3105 * hclgevf_get_channels - Get the current channels enabled and max supported.
3106 * @handle: hardware information for network interface
3107 * @ch: ethtool channels structure
3108 *
3109 * We don't support separate tx and rx queues as channels. The other count
3110 * represents how many queues are being used for control. max_combined counts
3111 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3112 * q_vectors since we support a lot more queue pairs than q_vectors.
3113 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3114 static void hclgevf_get_channels(struct hnae3_handle *handle,
3115 struct ethtool_channels *ch)
3116 {
3117 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3118
3119 ch->max_combined = hclgevf_get_max_channels(hdev);
3120 ch->other_count = 0;
3121 ch->max_other = 0;
3122 ch->combined_count = handle->kinfo.rss_size;
3123 }
3124
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3125 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3126 u16 *alloc_tqps, u16 *max_rss_size)
3127 {
3128 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3129
3130 *alloc_tqps = hdev->num_tqps;
3131 *max_rss_size = hdev->rss_size_max;
3132 }
3133
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3134 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3135 u32 new_tqps_num)
3136 {
3137 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3138 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3139 u16 max_rss_size;
3140
3141 kinfo->req_rss_size = new_tqps_num;
3142
3143 max_rss_size = min_t(u16, hdev->rss_size_max,
3144 hdev->num_tqps / kinfo->tc_info.num_tc);
3145
3146 /* Use the user's configuration when it is not larger than
3147 * max_rss_size, otherwise, use the maximum specification value.
3148 */
3149 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3150 kinfo->req_rss_size <= max_rss_size)
3151 kinfo->rss_size = kinfo->req_rss_size;
3152 else if (kinfo->rss_size > max_rss_size ||
3153 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3154 kinfo->rss_size = max_rss_size;
3155
3156 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3157 }
3158
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3159 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3160 bool rxfh_configured)
3161 {
3162 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3163 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3164 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3165 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3166 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3167 u16 cur_rss_size = kinfo->rss_size;
3168 u16 cur_tqps = kinfo->num_tqps;
3169 u32 *rss_indir;
3170 unsigned int i;
3171 int ret;
3172
3173 hclgevf_update_rss_size(handle, new_tqps_num);
3174
3175 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3176 tc_offset, tc_valid, tc_size);
3177 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3178 tc_valid, tc_size);
3179 if (ret)
3180 return ret;
3181
3182 /* RSS indirection table has been configured by user */
3183 if (rxfh_configured)
3184 goto out;
3185
3186 /* Reinitializes the rss indirect table according to the new RSS size */
3187 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3188 sizeof(u32), GFP_KERNEL);
3189 if (!rss_indir)
3190 return -ENOMEM;
3191
3192 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3193 rss_indir[i] = i % kinfo->rss_size;
3194
3195 hdev->rss_cfg.rss_size = kinfo->rss_size;
3196
3197 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3198 if (ret)
3199 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3200 ret);
3201
3202 kfree(rss_indir);
3203
3204 out:
3205 if (!ret)
3206 dev_info(&hdev->pdev->dev,
3207 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3208 cur_rss_size, kinfo->rss_size,
3209 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3210
3211 return ret;
3212 }
3213
hclgevf_get_status(struct hnae3_handle * handle)3214 static int hclgevf_get_status(struct hnae3_handle *handle)
3215 {
3216 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3217
3218 return hdev->hw.mac.link;
3219 }
3220
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3221 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3222 u8 *auto_neg, u32 *speed,
3223 u8 *duplex, u32 *lane_num)
3224 {
3225 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3226
3227 if (speed)
3228 *speed = hdev->hw.mac.speed;
3229 if (duplex)
3230 *duplex = hdev->hw.mac.duplex;
3231 if (auto_neg)
3232 *auto_neg = AUTONEG_DISABLE;
3233 }
3234
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3235 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3236 u8 duplex)
3237 {
3238 hdev->hw.mac.speed = speed;
3239 hdev->hw.mac.duplex = duplex;
3240 }
3241
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3242 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3243 {
3244 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3245 bool gro_en_old = hdev->gro_en;
3246 int ret;
3247
3248 hdev->gro_en = enable;
3249 ret = hclgevf_config_gro(hdev);
3250 if (ret)
3251 hdev->gro_en = gro_en_old;
3252
3253 return ret;
3254 }
3255
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3256 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3257 u8 *module_type)
3258 {
3259 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3260
3261 if (media_type)
3262 *media_type = hdev->hw.mac.media_type;
3263
3264 if (module_type)
3265 *module_type = hdev->hw.mac.module_type;
3266 }
3267
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3268 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3269 {
3270 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3271
3272 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3273 }
3274
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3275 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3276 {
3277 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3278
3279 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3280 }
3281
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3282 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3283 {
3284 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3285
3286 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3287 }
3288
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3289 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3290 {
3291 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3292
3293 return hdev->rst_stats.hw_rst_done_cnt;
3294 }
3295
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3296 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3297 unsigned long *supported,
3298 unsigned long *advertising)
3299 {
3300 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3301
3302 *supported = hdev->hw.mac.supported;
3303 *advertising = hdev->hw.mac.advertising;
3304 }
3305
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3306 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3307 struct hclge_mbx_port_base_vlan *port_base_vlan)
3308 {
3309 struct hnae3_handle *nic = &hdev->nic;
3310 struct hclge_vf_to_pf_msg send_msg;
3311 int ret;
3312
3313 rtnl_lock();
3314
3315 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3316 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3317 dev_warn(&hdev->pdev->dev,
3318 "is resetting when updating port based vlan info\n");
3319 rtnl_unlock();
3320 return;
3321 }
3322
3323 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3324 if (ret) {
3325 rtnl_unlock();
3326 return;
3327 }
3328
3329 /* send msg to PF and wait update port based vlan info */
3330 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3331 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3332 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3333 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3334 if (!ret) {
3335 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3336 nic->port_base_vlan_state = state;
3337 else
3338 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3339 }
3340
3341 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3342 rtnl_unlock();
3343 }
3344
3345 static const struct hnae3_ae_ops hclgevf_ops = {
3346 .init_ae_dev = hclgevf_init_ae_dev,
3347 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3348 .reset_prepare = hclgevf_reset_prepare_general,
3349 .reset_done = hclgevf_reset_done,
3350 .init_client_instance = hclgevf_init_client_instance,
3351 .uninit_client_instance = hclgevf_uninit_client_instance,
3352 .start = hclgevf_ae_start,
3353 .stop = hclgevf_ae_stop,
3354 .client_start = hclgevf_client_start,
3355 .client_stop = hclgevf_client_stop,
3356 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3357 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3358 .get_vector = hclgevf_get_vector,
3359 .put_vector = hclgevf_put_vector,
3360 .reset_queue = hclgevf_reset_tqp,
3361 .get_mac_addr = hclgevf_get_mac_addr,
3362 .set_mac_addr = hclgevf_set_mac_addr,
3363 .add_uc_addr = hclgevf_add_uc_addr,
3364 .rm_uc_addr = hclgevf_rm_uc_addr,
3365 .add_mc_addr = hclgevf_add_mc_addr,
3366 .rm_mc_addr = hclgevf_rm_mc_addr,
3367 .get_stats = hclgevf_get_stats,
3368 .update_stats = hclgevf_update_stats,
3369 .get_strings = hclgevf_get_strings,
3370 .get_sset_count = hclgevf_get_sset_count,
3371 .get_rss_key_size = hclge_comm_get_rss_key_size,
3372 .get_rss = hclgevf_get_rss,
3373 .set_rss = hclgevf_set_rss,
3374 .get_rss_tuple = hclgevf_get_rss_tuple,
3375 .set_rss_tuple = hclgevf_set_rss_tuple,
3376 .get_tc_size = hclgevf_get_tc_size,
3377 .get_fw_version = hclgevf_get_fw_version,
3378 .set_vlan_filter = hclgevf_set_vlan_filter,
3379 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3380 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3381 .reset_event = hclgevf_reset_event,
3382 .set_default_reset_request = hclgevf_set_def_reset_request,
3383 .set_channels = hclgevf_set_channels,
3384 .get_channels = hclgevf_get_channels,
3385 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3386 .get_regs_len = hclgevf_get_regs_len,
3387 .get_regs = hclgevf_get_regs,
3388 .get_status = hclgevf_get_status,
3389 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3390 .get_media_type = hclgevf_get_media_type,
3391 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3392 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3393 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3394 .set_gro_en = hclgevf_gro_en,
3395 .set_mtu = hclgevf_set_mtu,
3396 .get_global_queue_id = hclgevf_get_qid_global,
3397 .set_timer_task = hclgevf_set_timer_task,
3398 .get_link_mode = hclgevf_get_link_mode,
3399 .set_promisc_mode = hclgevf_set_promisc_mode,
3400 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3401 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3402 };
3403
3404 static struct hnae3_ae_algo ae_algovf = {
3405 .ops = &hclgevf_ops,
3406 .pdev_id_table = ae_algovf_pci_tbl,
3407 };
3408
hclgevf_init(void)3409 static int __init hclgevf_init(void)
3410 {
3411 pr_info("%s is initializing\n", HCLGEVF_NAME);
3412
3413 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3414 if (!hclgevf_wq) {
3415 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3416 return -ENOMEM;
3417 }
3418
3419 hnae3_register_ae_algo(&ae_algovf);
3420
3421 return 0;
3422 }
3423
hclgevf_exit(void)3424 static void __exit hclgevf_exit(void)
3425 {
3426 hnae3_acquire_unload_lock();
3427 hnae3_unregister_ae_algo(&ae_algovf);
3428 destroy_workqueue(hclgevf_wq);
3429 hnae3_release_unload_lock();
3430 }
3431 module_init(hclgevf_init);
3432 module_exit(hclgevf_exit);
3433
3434 MODULE_LICENSE("GPL");
3435 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3436 MODULE_DESCRIPTION("HCLGEVF Driver");
3437 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3438