xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15 
16 #define HCLGEVF_NAME	"hclgevf"
17 
18 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
19 
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 				  unsigned long delay);
23 
24 static struct hnae3_ae_algo ae_algovf;
25 
26 static struct workqueue_struct *hclgevf_wq;
27 
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 	/* required last entry */
33 	{0, }
34 };
35 
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37 
38 /* hclgevf_cmd_send - send command to command queue
39  * @hw: pointer to the hw struct
40  * @desc: prefilled descriptor for describing the command
41  * @num : the number of descriptors to be sent
42  *
43  * This is the main send command for command queue, it
44  * sends the queue, cleans the queue, etc
45  */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 	return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50 
hclgevf_trace_cmd_send(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 				   int num, bool is_special)
53 {
54 	int i;
55 
56 	trace_hclge_vf_cmd_send(hw, desc, 0, num);
57 
58 	if (is_special)
59 		return;
60 
61 	for (i = 1; i < num; i++)
62 		trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64 
hclgevf_trace_cmd_get(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 				  int num, bool is_special)
67 {
68 	int i;
69 
70 	if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 		return;
72 
73 	trace_hclge_vf_cmd_get(hw, desc, 0, num);
74 
75 	if (is_special)
76 		return;
77 
78 	for (i = 1; i < num; i++)
79 		trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81 
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 	.trace_cmd_send = hclgevf_trace_cmd_send,
84 	.trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86 
hclgevf_arq_init(struct hclgevf_dev * hdev)87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90 
91 	spin_lock(&cmdq->crq.lock);
92 	/* initialize the pointers of async rx queue of mailbox */
93 	hdev->arq.hdev = hdev;
94 	hdev->arq.head = 0;
95 	hdev->arq.tail = 0;
96 	atomic_set(&hdev->arq.count, 0);
97 	spin_unlock(&cmdq->crq.lock);
98 }
99 
hclgevf_ae_get_hdev(struct hnae3_handle * handle)100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 	if (!handle->client)
103 		return container_of(handle, struct hclgevf_dev, nic);
104 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 		return container_of(handle, struct hclgevf_dev, roce);
106 	else
107 		return container_of(handle, struct hclgevf_dev, nic);
108 }
109 
hclgevf_update_stats(struct hnae3_handle * handle)110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 	int status;
114 
115 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 	if (status)
117 		dev_err(&hdev->pdev->dev,
118 			"VF update of TQPS stats fail, status = %d.\n",
119 			status);
120 }
121 
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 	if (strset == ETH_SS_TEST)
125 		return -EOPNOTSUPP;
126 	else if (strset == ETH_SS_STATS)
127 		return hclge_comm_tqps_get_sset_count(handle);
128 
129 	return 0;
130 }
131 
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 ** data)132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 				u8 **data)
134 {
135 	if (strset == ETH_SS_STATS)
136 		hclge_comm_tqps_get_strings(handle, data);
137 }
138 
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)139 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
140 {
141 	hclge_comm_tqps_get_stats(handle, data);
142 }
143 
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)144 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
145 				   u8 subcode)
146 {
147 	if (msg) {
148 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
149 		msg->code = code;
150 		msg->subcode = subcode;
151 	}
152 }
153 
hclgevf_get_basic_info(struct hclgevf_dev * hdev)154 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
155 {
156 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
157 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
158 	struct hclge_basic_info *basic_info;
159 	struct hclge_vf_to_pf_msg send_msg;
160 	unsigned long caps;
161 	int status;
162 
163 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
164 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
165 				      sizeof(resp_msg));
166 	if (status) {
167 		dev_err(&hdev->pdev->dev,
168 			"failed to get basic info from pf, ret = %d", status);
169 		return status;
170 	}
171 
172 	basic_info = (struct hclge_basic_info *)resp_msg;
173 
174 	hdev->hw_tc_map = basic_info->hw_tc_map;
175 	hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
176 	caps = le32_to_cpu(basic_info->pf_caps);
177 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
178 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
179 
180 	return 0;
181 }
182 
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)183 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
184 {
185 	struct hnae3_handle *nic = &hdev->nic;
186 	struct hclge_vf_to_pf_msg send_msg;
187 	u8 resp_msg;
188 	int ret;
189 
190 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
191 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
192 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
193 				   sizeof(u8));
194 	if (ret) {
195 		dev_err(&hdev->pdev->dev,
196 			"VF request to get port based vlan state failed %d",
197 			ret);
198 		return ret;
199 	}
200 
201 	nic->port_base_vlan_state = resp_msg;
202 
203 	return 0;
204 }
205 
hclgevf_get_queue_info(struct hclgevf_dev * hdev)206 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
207 {
208 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
209 
210 	struct hclge_mbx_vf_queue_info *queue_info;
211 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
212 	struct hclge_vf_to_pf_msg send_msg;
213 	int status;
214 
215 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
216 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
217 				      HCLGEVF_TQPS_RSS_INFO_LEN);
218 	if (status) {
219 		dev_err(&hdev->pdev->dev,
220 			"VF request to get tqp info from PF failed %d",
221 			status);
222 		return status;
223 	}
224 
225 	queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
226 	hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
227 	hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
228 	hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
229 
230 	return 0;
231 }
232 
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)233 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
234 {
235 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
236 
237 	struct hclge_mbx_vf_queue_depth *queue_depth;
238 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
239 	struct hclge_vf_to_pf_msg send_msg;
240 	int ret;
241 
242 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
243 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
244 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
245 	if (ret) {
246 		dev_err(&hdev->pdev->dev,
247 			"VF request to get tqp depth info from PF failed %d",
248 			ret);
249 		return ret;
250 	}
251 
252 	queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
253 	hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
254 	hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
255 
256 	return 0;
257 }
258 
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
260 {
261 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
262 	struct hclge_vf_to_pf_msg send_msg;
263 	u16 qid_in_pf = 0;
264 	u8 resp_data[2];
265 	int ret;
266 
267 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
268 	*(__le16 *)send_msg.data = cpu_to_le16(queue_id);
269 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
270 				   sizeof(resp_data));
271 	if (!ret)
272 		qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
273 
274 	return qid_in_pf;
275 }
276 
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)277 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
278 {
279 	struct hclge_vf_to_pf_msg send_msg;
280 	u8 resp_msg[2];
281 	int ret;
282 
283 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
284 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
285 				   sizeof(resp_msg));
286 	if (ret) {
287 		dev_err(&hdev->pdev->dev,
288 			"VF request to get the pf port media type failed %d",
289 			ret);
290 		return ret;
291 	}
292 
293 	hdev->hw.mac.media_type = resp_msg[0];
294 	hdev->hw.mac.module_type = resp_msg[1];
295 
296 	return 0;
297 }
298 
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)299 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
300 {
301 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
302 	struct hclge_comm_tqp *tqp;
303 	int i;
304 
305 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
306 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
307 	if (!hdev->htqp)
308 		return -ENOMEM;
309 
310 	tqp = hdev->htqp;
311 
312 	for (i = 0; i < hdev->num_tqps; i++) {
313 		tqp->dev = &hdev->pdev->dev;
314 		tqp->index = i;
315 
316 		tqp->q.ae_algo = &ae_algovf;
317 		tqp->q.buf_size = hdev->rx_buf_len;
318 		tqp->q.tx_desc_num = hdev->num_tx_desc;
319 		tqp->q.rx_desc_num = hdev->num_rx_desc;
320 
321 		/* need an extended offset to configure queues >=
322 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
323 		 */
324 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
325 			tqp->q.io_base = hdev->hw.hw.io_base +
326 					 HCLGEVF_TQP_REG_OFFSET +
327 					 i * HCLGEVF_TQP_REG_SIZE;
328 		else
329 			tqp->q.io_base = hdev->hw.hw.io_base +
330 					 HCLGEVF_TQP_REG_OFFSET +
331 					 HCLGEVF_TQP_EXT_REG_OFFSET +
332 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
333 					 HCLGEVF_TQP_REG_SIZE;
334 
335 		/* when device supports tx push and has device memory,
336 		 * the queue can execute push mode or doorbell mode on
337 		 * device memory.
338 		 */
339 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
340 			tqp->q.mem_base = hdev->hw.hw.mem_base +
341 					  HCLGEVF_TQP_MEM_OFFSET(hdev, i);
342 
343 		tqp++;
344 	}
345 
346 	return 0;
347 }
348 
hclgevf_knic_setup(struct hclgevf_dev * hdev)349 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
350 {
351 	struct hnae3_handle *nic = &hdev->nic;
352 	struct hnae3_knic_private_info *kinfo;
353 	u16 new_tqps = hdev->num_tqps;
354 	unsigned int i;
355 	u8 num_tc = 0;
356 
357 	kinfo = &nic->kinfo;
358 	kinfo->num_tx_desc = hdev->num_tx_desc;
359 	kinfo->num_rx_desc = hdev->num_rx_desc;
360 	kinfo->rx_buf_len = hdev->rx_buf_len;
361 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
362 		if (hdev->hw_tc_map & BIT(i))
363 			num_tc++;
364 
365 	num_tc = num_tc ? num_tc : 1;
366 	kinfo->tc_info.num_tc = num_tc;
367 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
368 	new_tqps = kinfo->rss_size * num_tc;
369 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
370 
371 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
372 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
373 	if (!kinfo->tqp)
374 		return -ENOMEM;
375 
376 	for (i = 0; i < kinfo->num_tqps; i++) {
377 		hdev->htqp[i].q.handle = &hdev->nic;
378 		hdev->htqp[i].q.tqp_index = i;
379 		kinfo->tqp[i] = &hdev->htqp[i].q;
380 	}
381 
382 	/* after init the max rss_size and tqps, adjust the default tqp numbers
383 	 * and rss size with the actual vector numbers
384 	 */
385 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
386 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
387 				kinfo->rss_size);
388 
389 	return 0;
390 }
391 
hclgevf_request_link_info(struct hclgevf_dev * hdev)392 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
393 {
394 	struct hclge_vf_to_pf_msg send_msg;
395 	int status;
396 
397 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
398 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
399 	if (status)
400 		dev_err(&hdev->pdev->dev,
401 			"VF failed to fetch link status(%d) from PF", status);
402 }
403 
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)404 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
405 {
406 	struct hnae3_handle *rhandle = &hdev->roce;
407 	struct hnae3_handle *handle = &hdev->nic;
408 	struct hnae3_client *rclient;
409 	struct hnae3_client *client;
410 
411 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
412 		return;
413 
414 	client = handle->client;
415 	rclient = hdev->roce_client;
416 
417 	link_state =
418 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
419 	if (link_state != hdev->hw.mac.link) {
420 		hdev->hw.mac.link = link_state;
421 		client->ops->link_status_change(handle, !!link_state);
422 		if (rclient && rclient->ops->link_status_change)
423 			rclient->ops->link_status_change(rhandle, !!link_state);
424 	}
425 
426 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
427 }
428 
hclgevf_update_link_mode(struct hclgevf_dev * hdev)429 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
430 {
431 #define HCLGEVF_ADVERTISING	0
432 #define HCLGEVF_SUPPORTED	1
433 
434 	struct hclge_vf_to_pf_msg send_msg;
435 
436 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
437 	send_msg.data[0] = HCLGEVF_ADVERTISING;
438 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
439 	send_msg.data[0] = HCLGEVF_SUPPORTED;
440 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 }
442 
hclgevf_set_handle_info(struct hclgevf_dev * hdev)443 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
444 {
445 	struct hnae3_handle *nic = &hdev->nic;
446 	int ret;
447 
448 	nic->ae_algo = &ae_algovf;
449 	nic->pdev = hdev->pdev;
450 	bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
451 		    MAX_NUMNODES);
452 	nic->flags |= HNAE3_SUPPORT_VF;
453 	nic->kinfo.io_base = hdev->hw.hw.io_base;
454 
455 	ret = hclgevf_knic_setup(hdev);
456 	if (ret)
457 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
458 			ret);
459 	return ret;
460 }
461 
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)462 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
463 {
464 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
465 		dev_warn(&hdev->pdev->dev,
466 			 "vector(vector_id %d) has been freed.\n", vector_id);
467 		return;
468 	}
469 
470 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
471 	hdev->num_msi_left += 1;
472 	hdev->num_msi_used -= 1;
473 }
474 
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)475 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
476 			      struct hnae3_vector_info *vector_info)
477 {
478 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
479 	struct hnae3_vector_info *vector = vector_info;
480 	int alloc = 0;
481 	int i, j;
482 
483 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
484 	vector_num = min(hdev->num_msi_left, vector_num);
485 
486 	for (j = 0; j < vector_num; j++) {
487 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
488 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
489 				vector->vector = pci_irq_vector(hdev->pdev, i);
490 				vector->io_addr = hdev->hw.hw.io_base +
491 					HCLGEVF_VECTOR_REG_BASE +
492 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
493 				hdev->vector_status[i] = 0;
494 				hdev->vector_irq[i] = vector->vector;
495 
496 				vector++;
497 				alloc++;
498 
499 				break;
500 			}
501 		}
502 	}
503 	hdev->num_msi_left -= alloc;
504 	hdev->num_msi_used += alloc;
505 
506 	return alloc;
507 }
508 
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)509 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
510 {
511 	int i;
512 
513 	for (i = 0; i < hdev->num_msi; i++)
514 		if (vector == hdev->vector_irq[i])
515 			return i;
516 
517 	return -EINVAL;
518 }
519 
520 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)521 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
522 {
523 #define HCLGEVF_RSS_MBX_RESP_LEN	8
524 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
525 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
526 	struct hclge_vf_to_pf_msg send_msg;
527 	u16 msg_num, hash_key_index;
528 	u8 index;
529 	int ret;
530 
531 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
532 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
533 			HCLGEVF_RSS_MBX_RESP_LEN;
534 	for (index = 0; index < msg_num; index++) {
535 		send_msg.data[0] = index;
536 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
537 					   HCLGEVF_RSS_MBX_RESP_LEN);
538 		if (ret) {
539 			dev_err(&hdev->pdev->dev,
540 				"VF get rss hash key from PF failed, ret=%d",
541 				ret);
542 			return ret;
543 		}
544 
545 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
546 		if (index == msg_num - 1)
547 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
548 			       &resp_msg[0],
549 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
550 		else
551 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
552 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
553 	}
554 
555 	return 0;
556 }
557 
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)558 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
559 			   u8 *hfunc)
560 {
561 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
562 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
563 	int ret;
564 
565 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
566 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
567 	} else {
568 		if (hfunc)
569 			*hfunc = ETH_RSS_HASH_TOP;
570 		if (key) {
571 			ret = hclgevf_get_rss_hash_key(hdev);
572 			if (ret)
573 				return ret;
574 			memcpy(key, rss_cfg->rss_hash_key,
575 			       HCLGE_COMM_RSS_KEY_SIZE);
576 		}
577 	}
578 
579 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
580 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
581 
582 	return 0;
583 }
584 
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)585 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
586 			   const u8 *key, const u8 hfunc)
587 {
588 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
589 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
590 	int ret, i;
591 
592 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
593 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
594 						  hfunc);
595 		if (ret)
596 			return ret;
597 	}
598 
599 	/* update the shadow RSS table with user specified qids */
600 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
601 		rss_cfg->rss_indirection_tbl[i] = indir[i];
602 
603 	/* update the hardware */
604 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
605 					      rss_cfg->rss_indirection_tbl);
606 }
607 
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)608 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
609 				 struct ethtool_rxnfc *nfc)
610 {
611 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
612 	int ret;
613 
614 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
615 		return -EOPNOTSUPP;
616 
617 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
618 				       &hdev->rss_cfg, nfc);
619 	if (ret)
620 		dev_err(&hdev->pdev->dev,
621 		"failed to set rss tuple, ret = %d.\n", ret);
622 
623 	return ret;
624 }
625 
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)626 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
627 				 struct ethtool_rxnfc *nfc)
628 {
629 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
630 	u8 tuple_sets;
631 	int ret;
632 
633 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
634 		return -EOPNOTSUPP;
635 
636 	nfc->data = 0;
637 
638 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
639 				       &tuple_sets);
640 	if (ret || !tuple_sets)
641 		return ret;
642 
643 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
644 
645 	return 0;
646 }
647 
hclgevf_get_tc_size(struct hnae3_handle * handle)648 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
649 {
650 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
652 
653 	return rss_cfg->rss_size;
654 }
655 
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)656 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
657 				       int vector_id,
658 				       struct hnae3_ring_chain_node *ring_chain)
659 {
660 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
661 	struct hclge_vf_to_pf_msg send_msg;
662 	struct hnae3_ring_chain_node *node;
663 	int status;
664 	int i = 0;
665 
666 	memset(&send_msg, 0, sizeof(send_msg));
667 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
668 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
669 	send_msg.vector_id = vector_id;
670 
671 	for (node = ring_chain; node; node = node->next) {
672 		send_msg.param[i].ring_type =
673 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
674 
675 		send_msg.param[i].tqp_index = node->tqp_index;
676 		send_msg.param[i].int_gl_index =
677 					hnae3_get_field(node->int_gl_idx,
678 							HNAE3_RING_GL_IDX_M,
679 							HNAE3_RING_GL_IDX_S);
680 
681 		i++;
682 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
683 			send_msg.ring_num = i;
684 
685 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
686 						      NULL, 0);
687 			if (status) {
688 				dev_err(&hdev->pdev->dev,
689 					"Map TQP fail, status is %d.\n",
690 					status);
691 				return status;
692 			}
693 			i = 0;
694 		}
695 	}
696 
697 	return 0;
698 }
699 
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)700 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
701 				      struct hnae3_ring_chain_node *ring_chain)
702 {
703 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
704 	int vector_id;
705 
706 	vector_id = hclgevf_get_vector_index(hdev, vector);
707 	if (vector_id < 0) {
708 		dev_err(&handle->pdev->dev,
709 			"Get vector index fail. ret =%d\n", vector_id);
710 		return vector_id;
711 	}
712 
713 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
714 }
715 
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)716 static int hclgevf_unmap_ring_from_vector(
717 				struct hnae3_handle *handle,
718 				int vector,
719 				struct hnae3_ring_chain_node *ring_chain)
720 {
721 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
722 	int ret, vector_id;
723 
724 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
725 		return 0;
726 
727 	vector_id = hclgevf_get_vector_index(hdev, vector);
728 	if (vector_id < 0) {
729 		dev_err(&handle->pdev->dev,
730 			"Get vector index fail. ret =%d\n", vector_id);
731 		return vector_id;
732 	}
733 
734 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
735 	if (ret)
736 		dev_err(&handle->pdev->dev,
737 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
738 			vector_id,
739 			ret);
740 
741 	return ret;
742 }
743 
hclgevf_put_vector(struct hnae3_handle * handle,int vector)744 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
745 {
746 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
747 	int vector_id;
748 
749 	vector_id = hclgevf_get_vector_index(hdev, vector);
750 	if (vector_id < 0) {
751 		dev_err(&handle->pdev->dev,
752 			"hclgevf_put_vector get vector index fail. ret =%d\n",
753 			vector_id);
754 		return vector_id;
755 	}
756 
757 	hclgevf_free_vector(hdev, vector_id);
758 
759 	return 0;
760 }
761 
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)762 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
763 					bool en_uc_pmc, bool en_mc_pmc,
764 					bool en_bc_pmc)
765 {
766 	struct hnae3_handle *handle = &hdev->nic;
767 	struct hclge_vf_to_pf_msg send_msg;
768 	int ret;
769 
770 	memset(&send_msg, 0, sizeof(send_msg));
771 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
772 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
773 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
774 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
775 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
776 					     &handle->priv_flags) ? 1 : 0;
777 
778 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
779 	if (ret)
780 		dev_err(&hdev->pdev->dev,
781 			"Set promisc mode fail, status is %d.\n", ret);
782 
783 	return ret;
784 }
785 
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)786 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
787 				    bool en_mc_pmc)
788 {
789 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
790 	bool en_bc_pmc;
791 
792 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
793 
794 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
795 					    en_bc_pmc);
796 }
797 
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)798 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
799 {
800 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
801 
802 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
803 	hclgevf_task_schedule(hdev, 0);
804 }
805 
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)806 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
807 {
808 	struct hnae3_handle *handle = &hdev->nic;
809 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
810 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
811 	int ret;
812 
813 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
814 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
815 		if (!ret)
816 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
817 	}
818 }
819 
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)820 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
821 				       u16 stream_id, bool enable)
822 {
823 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
824 	struct hclge_desc desc;
825 
826 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
827 
828 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
829 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
830 	req->stream_id = cpu_to_le16(stream_id);
831 	if (enable)
832 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
833 
834 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
835 }
836 
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)837 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
838 {
839 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
840 	int ret;
841 	u16 i;
842 
843 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
844 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
845 		if (ret)
846 			return ret;
847 	}
848 
849 	return 0;
850 }
851 
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)852 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
853 {
854 	struct hclge_vf_to_pf_msg send_msg;
855 	u8 host_mac[ETH_ALEN];
856 	int status;
857 
858 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
859 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
860 				      ETH_ALEN);
861 	if (status) {
862 		dev_err(&hdev->pdev->dev,
863 			"fail to get VF MAC from host %d", status);
864 		return status;
865 	}
866 
867 	ether_addr_copy(p, host_mac);
868 
869 	return 0;
870 }
871 
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)872 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
873 {
874 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
875 	u8 host_mac_addr[ETH_ALEN];
876 
877 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
878 		return;
879 
880 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
881 	if (hdev->has_pf_mac)
882 		ether_addr_copy(p, host_mac_addr);
883 	else
884 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
885 }
886 
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)887 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
888 				bool is_first)
889 {
890 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
892 	struct hclge_vf_to_pf_msg send_msg;
893 	u8 *new_mac_addr = (u8 *)p;
894 	int status;
895 
896 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
897 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
898 	ether_addr_copy(send_msg.data, new_mac_addr);
899 	if (is_first && !hdev->has_pf_mac)
900 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
901 	else
902 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
903 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
904 	if (!status)
905 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
906 
907 	return status;
908 }
909 
910 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)911 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
912 {
913 	struct hclgevf_mac_addr_node *mac_node, *tmp;
914 
915 	list_for_each_entry_safe(mac_node, tmp, list, node)
916 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
917 			return mac_node;
918 
919 	return NULL;
920 }
921 
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)922 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
923 				    enum HCLGEVF_MAC_NODE_STATE state)
924 {
925 	switch (state) {
926 	/* from set_rx_mode or tmp_add_list */
927 	case HCLGEVF_MAC_TO_ADD:
928 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
929 			mac_node->state = HCLGEVF_MAC_ACTIVE;
930 		break;
931 	/* only from set_rx_mode */
932 	case HCLGEVF_MAC_TO_DEL:
933 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
934 			list_del(&mac_node->node);
935 			kfree(mac_node);
936 		} else {
937 			mac_node->state = HCLGEVF_MAC_TO_DEL;
938 		}
939 		break;
940 	/* only from tmp_add_list, the mac_node->state won't be
941 	 * HCLGEVF_MAC_ACTIVE
942 	 */
943 	case HCLGEVF_MAC_ACTIVE:
944 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
945 			mac_node->state = HCLGEVF_MAC_ACTIVE;
946 		break;
947 	}
948 }
949 
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)950 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
951 				   enum HCLGEVF_MAC_NODE_STATE state,
952 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
953 				   const unsigned char *addr)
954 {
955 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
956 	struct hclgevf_mac_addr_node *mac_node;
957 	struct list_head *list;
958 
959 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
960 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
961 
962 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
963 
964 	/* if the mac addr is already in the mac list, no need to add a new
965 	 * one into it, just check the mac addr state, convert it to a new
966 	 * state, or just remove it, or do nothing.
967 	 */
968 	mac_node = hclgevf_find_mac_node(list, addr);
969 	if (mac_node) {
970 		hclgevf_update_mac_node(mac_node, state);
971 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
972 		return 0;
973 	}
974 	/* if this address is never added, unnecessary to delete */
975 	if (state == HCLGEVF_MAC_TO_DEL) {
976 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
977 		return -ENOENT;
978 	}
979 
980 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
981 	if (!mac_node) {
982 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
983 		return -ENOMEM;
984 	}
985 
986 	mac_node->state = state;
987 	ether_addr_copy(mac_node->mac_addr, addr);
988 	list_add_tail(&mac_node->node, list);
989 
990 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
991 	return 0;
992 }
993 
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)994 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
995 			       const unsigned char *addr)
996 {
997 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
998 				       HCLGEVF_MAC_ADDR_UC, addr);
999 }
1000 
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1001 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1002 			      const unsigned char *addr)
1003 {
1004 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1005 				       HCLGEVF_MAC_ADDR_UC, addr);
1006 }
1007 
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1008 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1009 			       const unsigned char *addr)
1010 {
1011 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1012 				       HCLGEVF_MAC_ADDR_MC, addr);
1013 }
1014 
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1015 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1016 			      const unsigned char *addr)
1017 {
1018 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1019 				       HCLGEVF_MAC_ADDR_MC, addr);
1020 }
1021 
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1022 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1023 				    struct hclgevf_mac_addr_node *mac_node,
1024 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1025 {
1026 	struct hclge_vf_to_pf_msg send_msg;
1027 	u8 code, subcode;
1028 
1029 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1030 		code = HCLGE_MBX_SET_UNICAST;
1031 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1032 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1033 		else
1034 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1035 	} else {
1036 		code = HCLGE_MBX_SET_MULTICAST;
1037 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1038 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1039 		else
1040 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1041 	}
1042 
1043 	hclgevf_build_send_msg(&send_msg, code, subcode);
1044 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1045 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1046 }
1047 
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1048 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1049 				    struct list_head *list,
1050 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1051 {
1052 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1053 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1054 	int ret;
1055 
1056 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1057 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1058 		if  (ret) {
1059 			hnae3_format_mac_addr(format_mac_addr,
1060 					      mac_node->mac_addr);
1061 			dev_err(&hdev->pdev->dev,
1062 				"failed to configure mac %s, state = %d, ret = %d\n",
1063 				format_mac_addr, mac_node->state, ret);
1064 			return;
1065 		}
1066 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1067 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1068 		} else {
1069 			list_del(&mac_node->node);
1070 			kfree(mac_node);
1071 		}
1072 	}
1073 }
1074 
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1075 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1076 				       struct list_head *mac_list)
1077 {
1078 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1079 
1080 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1081 		/* if the mac address from tmp_add_list is not in the
1082 		 * uc/mc_mac_list, it means have received a TO_DEL request
1083 		 * during the time window of sending mac config request to PF
1084 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1085 		 * then it will be removed at next time. If is TO_ADD, it means
1086 		 * send TO_ADD request failed, so just remove the mac node.
1087 		 */
1088 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1089 		if (new_node) {
1090 			hclgevf_update_mac_node(new_node, mac_node->state);
1091 			list_del(&mac_node->node);
1092 			kfree(mac_node);
1093 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1094 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1095 			list_move_tail(&mac_node->node, mac_list);
1096 		} else {
1097 			list_del(&mac_node->node);
1098 			kfree(mac_node);
1099 		}
1100 	}
1101 }
1102 
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1103 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1104 				       struct list_head *mac_list)
1105 {
1106 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1107 
1108 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1109 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1110 		if (new_node) {
1111 			/* If the mac addr is exist in the mac list, it means
1112 			 * received a new request TO_ADD during the time window
1113 			 * of sending mac addr configurrequest to PF, so just
1114 			 * change the mac state to ACTIVE.
1115 			 */
1116 			new_node->state = HCLGEVF_MAC_ACTIVE;
1117 			list_del(&mac_node->node);
1118 			kfree(mac_node);
1119 		} else {
1120 			list_move_tail(&mac_node->node, mac_list);
1121 		}
1122 	}
1123 }
1124 
hclgevf_clear_list(struct list_head * list)1125 static void hclgevf_clear_list(struct list_head *list)
1126 {
1127 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1128 
1129 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1130 		list_del(&mac_node->node);
1131 		kfree(mac_node);
1132 	}
1133 }
1134 
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1135 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1136 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1137 {
1138 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1139 	struct list_head tmp_add_list, tmp_del_list;
1140 	struct list_head *list;
1141 
1142 	INIT_LIST_HEAD(&tmp_add_list);
1143 	INIT_LIST_HEAD(&tmp_del_list);
1144 
1145 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1146 	 * we can add/delete these mac addr outside the spin lock
1147 	 */
1148 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1149 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1150 
1151 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1152 
1153 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1154 		switch (mac_node->state) {
1155 		case HCLGEVF_MAC_TO_DEL:
1156 			list_move_tail(&mac_node->node, &tmp_del_list);
1157 			break;
1158 		case HCLGEVF_MAC_TO_ADD:
1159 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1160 			if (!new_node)
1161 				goto stop_traverse;
1162 
1163 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1164 			new_node->state = mac_node->state;
1165 			list_add_tail(&new_node->node, &tmp_add_list);
1166 			break;
1167 		default:
1168 			break;
1169 		}
1170 	}
1171 
1172 stop_traverse:
1173 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1174 
1175 	/* delete first, in order to get max mac table space for adding */
1176 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1177 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1178 
1179 	/* if some mac addresses were added/deleted fail, move back to the
1180 	 * mac_list, and retry at next time.
1181 	 */
1182 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1183 
1184 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1185 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1186 
1187 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1188 }
1189 
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1190 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1191 {
1192 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1193 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1194 }
1195 
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1196 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1197 {
1198 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199 
1200 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1201 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1202 
1203 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205 
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1206 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1207 {
1208 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1209 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1210 	struct hclge_vf_to_pf_msg send_msg;
1211 
1212 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1213 		return -EOPNOTSUPP;
1214 
1215 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1216 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1217 	send_msg.data[0] = enable ? 1 : 0;
1218 
1219 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1220 }
1221 
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1222 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1223 				   __be16 proto, u16 vlan_id,
1224 				   bool is_kill)
1225 {
1226 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227 	struct hclge_mbx_vlan_filter *vlan_filter;
1228 	struct hclge_vf_to_pf_msg send_msg;
1229 	int ret;
1230 
1231 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1232 		return -EINVAL;
1233 
1234 	if (proto != htons(ETH_P_8021Q))
1235 		return -EPROTONOSUPPORT;
1236 
1237 	/* When device is resetting or reset failed, firmware is unable to
1238 	 * handle mailbox. Just record the vlan id, and remove it after
1239 	 * reset finished.
1240 	 */
1241 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1242 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1243 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1244 		return -EBUSY;
1245 	} else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1246 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1247 	}
1248 
1249 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1250 			       HCLGE_MBX_VLAN_FILTER);
1251 	vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1252 	vlan_filter->is_kill = is_kill;
1253 	vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1254 	vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1255 
1256 	/* when remove hw vlan filter failed, record the vlan id,
1257 	 * and try to remove it from hw later, to be consistence
1258 	 * with stack.
1259 	 */
1260 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1261 	if (is_kill && ret)
1262 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1263 
1264 	return ret;
1265 }
1266 
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1267 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1268 {
1269 #define HCLGEVF_MAX_SYNC_COUNT	60
1270 	struct hnae3_handle *handle = &hdev->nic;
1271 	int ret, sync_cnt = 0;
1272 	u16 vlan_id;
1273 
1274 	if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1275 		return;
1276 
1277 	rtnl_lock();
1278 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1279 	while (vlan_id != VLAN_N_VID) {
1280 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1281 					      vlan_id, true);
1282 		if (ret)
1283 			break;
1284 
1285 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1286 		sync_cnt++;
1287 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1288 			break;
1289 
1290 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1291 	}
1292 	rtnl_unlock();
1293 }
1294 
hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev * hdev,bool enable)1295 static int hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev *hdev, bool enable)
1296 {
1297 	struct hclge_vf_to_pf_msg send_msg;
1298 
1299 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1300 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1301 	send_msg.data[0] = enable ? 1 : 0;
1302 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1303 }
1304 
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1305 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1306 {
1307 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1308 	int ret;
1309 
1310 	ret = hclgevf_en_hw_strip_rxvtag_cmd(hdev, enable);
1311 	if (ret)
1312 		return ret;
1313 
1314 	hdev->rxvtag_strip_en = enable;
1315 	return 0;
1316 }
1317 
hclgevf_reset_tqp(struct hnae3_handle * handle)1318 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1319 {
1320 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1321 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1322 	struct hclge_vf_to_pf_msg send_msg;
1323 	u8 return_status = 0;
1324 	int ret;
1325 	u16 i;
1326 
1327 	/* disable vf queue before send queue reset msg to PF */
1328 	ret = hclgevf_tqp_enable(handle, false);
1329 	if (ret) {
1330 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1331 			ret);
1332 		return ret;
1333 	}
1334 
1335 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1336 
1337 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1338 				   sizeof(return_status));
1339 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1340 		return ret;
1341 
1342 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1343 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1344 		*(__le16 *)send_msg.data = cpu_to_le16(i);
1345 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1346 		if (ret)
1347 			return ret;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1353 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1354 {
1355 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1356 	struct hclge_mbx_mtu_info *mtu_info;
1357 	struct hclge_vf_to_pf_msg send_msg;
1358 
1359 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1360 	mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1361 	mtu_info->mtu = cpu_to_le32(new_mtu);
1362 
1363 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1364 }
1365 
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1366 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1367 				 enum hnae3_reset_notify_type type)
1368 {
1369 	struct hnae3_client *client = hdev->nic_client;
1370 	struct hnae3_handle *handle = &hdev->nic;
1371 	int ret;
1372 
1373 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1374 	    !client)
1375 		return 0;
1376 
1377 	if (!client->ops->reset_notify)
1378 		return -EOPNOTSUPP;
1379 
1380 	ret = client->ops->reset_notify(handle, type);
1381 	if (ret)
1382 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1383 			type, ret);
1384 
1385 	return ret;
1386 }
1387 
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1388 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1389 				      enum hnae3_reset_notify_type type)
1390 {
1391 	struct hnae3_client *client = hdev->roce_client;
1392 	struct hnae3_handle *handle = &hdev->roce;
1393 	int ret;
1394 
1395 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1396 		return 0;
1397 
1398 	if (!client->ops->reset_notify)
1399 		return -EOPNOTSUPP;
1400 
1401 	ret = client->ops->reset_notify(handle, type);
1402 	if (ret)
1403 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1404 			type, ret);
1405 	return ret;
1406 }
1407 
hclgevf_set_reset_pending(struct hclgevf_dev * hdev,enum hnae3_reset_type reset_type)1408 static void hclgevf_set_reset_pending(struct hclgevf_dev *hdev,
1409 				      enum hnae3_reset_type reset_type)
1410 {
1411 	/* When an incorrect reset type is executed, the get_reset_level
1412 	 * function generates the HNAE3_NONE_RESET flag. As a result, this
1413 	 * type do not need to pending.
1414 	 */
1415 	if (reset_type != HNAE3_NONE_RESET)
1416 		set_bit(reset_type, &hdev->reset_pending);
1417 }
1418 
hclgevf_reset_wait(struct hclgevf_dev * hdev)1419 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1420 {
1421 #define HCLGEVF_RESET_WAIT_US	20000
1422 #define HCLGEVF_RESET_WAIT_CNT	2000
1423 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1424 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1425 
1426 	u32 val;
1427 	int ret;
1428 
1429 	if (hdev->reset_type == HNAE3_VF_RESET)
1430 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1431 					 HCLGEVF_VF_RST_ING, val,
1432 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1433 					 HCLGEVF_RESET_WAIT_US,
1434 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1435 	else
1436 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1437 					 HCLGEVF_RST_ING, val,
1438 					 !(val & HCLGEVF_RST_ING_BITS),
1439 					 HCLGEVF_RESET_WAIT_US,
1440 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1441 
1442 	/* hardware completion status should be available by this time */
1443 	if (ret) {
1444 		dev_err(&hdev->pdev->dev,
1445 			"couldn't get reset done status from h/w, timeout!\n");
1446 		return ret;
1447 	}
1448 
1449 	/* we will wait a bit more to let reset of the stack to complete. This
1450 	 * might happen in case reset assertion was made by PF. Yes, this also
1451 	 * means we might end up waiting bit more even for VF reset.
1452 	 */
1453 	if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1454 		msleep(5000);
1455 	else
1456 		msleep(500);
1457 
1458 	return 0;
1459 }
1460 
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1461 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1462 {
1463 	u32 reg_val;
1464 
1465 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1466 	if (enable)
1467 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1468 	else
1469 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1470 
1471 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1472 			  reg_val);
1473 }
1474 
hclgevf_reset_stack(struct hclgevf_dev * hdev)1475 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1476 {
1477 	int ret;
1478 
1479 	/* uninitialize the nic client */
1480 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1481 	if (ret)
1482 		return ret;
1483 
1484 	/* re-initialize the hclge device */
1485 	ret = hclgevf_reset_hdev(hdev);
1486 	if (ret) {
1487 		dev_err(&hdev->pdev->dev,
1488 			"hclge device re-init failed, VF is disabled!\n");
1489 		return ret;
1490 	}
1491 
1492 	/* bring up the nic client again */
1493 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1494 	if (ret)
1495 		return ret;
1496 
1497 	/* clear handshake status with IMP */
1498 	hclgevf_reset_handshake(hdev, false);
1499 
1500 	/* bring up the nic to enable TX/RX again */
1501 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1502 }
1503 
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1504 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1505 {
1506 #define HCLGEVF_RESET_SYNC_TIME 100
1507 
1508 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1509 		struct hclge_vf_to_pf_msg send_msg;
1510 		int ret;
1511 
1512 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1513 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1514 		if (ret) {
1515 			dev_err(&hdev->pdev->dev,
1516 				"failed to assert VF reset, ret = %d\n", ret);
1517 			return ret;
1518 		}
1519 		hdev->rst_stats.vf_func_rst_cnt++;
1520 	}
1521 
1522 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1523 	/* inform hardware that preparatory work is done */
1524 	msleep(HCLGEVF_RESET_SYNC_TIME);
1525 	hclgevf_reset_handshake(hdev, true);
1526 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1527 		 hdev->reset_type);
1528 
1529 	return 0;
1530 }
1531 
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1532 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1533 {
1534 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1535 		 hdev->rst_stats.vf_func_rst_cnt);
1536 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1537 		 hdev->rst_stats.flr_rst_cnt);
1538 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1539 		 hdev->rst_stats.vf_rst_cnt);
1540 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1541 		 hdev->rst_stats.rst_done_cnt);
1542 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1543 		 hdev->rst_stats.hw_rst_done_cnt);
1544 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1545 		 hdev->rst_stats.rst_cnt);
1546 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1547 		 hdev->rst_stats.rst_fail_cnt);
1548 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1549 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1550 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1551 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1552 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1553 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1554 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1555 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1556 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1557 }
1558 
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1559 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1560 {
1561 	/* recover handshake status with IMP when reset fail */
1562 	hclgevf_reset_handshake(hdev, true);
1563 	hdev->rst_stats.rst_fail_cnt++;
1564 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1565 		hdev->rst_stats.rst_fail_cnt);
1566 
1567 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1568 		hclgevf_set_reset_pending(hdev, hdev->reset_type);
1569 
1570 	if (hclgevf_is_reset_pending(hdev)) {
1571 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1572 		hclgevf_reset_task_schedule(hdev);
1573 	} else {
1574 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1575 		hclgevf_dump_rst_info(hdev);
1576 	}
1577 }
1578 
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1579 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1580 {
1581 	int ret;
1582 
1583 	hdev->rst_stats.rst_cnt++;
1584 
1585 	/* perform reset of the stack & ae device for a client */
1586 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1587 	if (ret)
1588 		return ret;
1589 
1590 	rtnl_lock();
1591 	/* bring down the nic to stop any ongoing TX/RX */
1592 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1593 	rtnl_unlock();
1594 	if (ret)
1595 		return ret;
1596 
1597 	return hclgevf_reset_prepare_wait(hdev);
1598 }
1599 
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1600 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1601 {
1602 	int ret;
1603 
1604 	hdev->rst_stats.hw_rst_done_cnt++;
1605 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1606 	if (ret)
1607 		return ret;
1608 
1609 	rtnl_lock();
1610 	/* now, re-initialize the nic client and ae device */
1611 	ret = hclgevf_reset_stack(hdev);
1612 	rtnl_unlock();
1613 	if (ret) {
1614 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1615 		return ret;
1616 	}
1617 
1618 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1619 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1620 	 * times
1621 	 */
1622 	if (ret &&
1623 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1624 		return ret;
1625 
1626 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1627 	if (ret)
1628 		return ret;
1629 
1630 	hdev->last_reset_time = jiffies;
1631 	hdev->rst_stats.rst_done_cnt++;
1632 	hdev->rst_stats.rst_fail_cnt = 0;
1633 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1634 
1635 	return 0;
1636 }
1637 
hclgevf_reset(struct hclgevf_dev * hdev)1638 static void hclgevf_reset(struct hclgevf_dev *hdev)
1639 {
1640 	if (hclgevf_reset_prepare(hdev))
1641 		goto err_reset;
1642 
1643 	/* check if VF could successfully fetch the hardware reset completion
1644 	 * status from the hardware
1645 	 */
1646 	if (hclgevf_reset_wait(hdev)) {
1647 		/* can't do much in this situation, will disable VF */
1648 		dev_err(&hdev->pdev->dev,
1649 			"failed to fetch H/W reset completion status\n");
1650 		goto err_reset;
1651 	}
1652 
1653 	if (hclgevf_reset_rebuild(hdev))
1654 		goto err_reset;
1655 
1656 	return;
1657 
1658 err_reset:
1659 	hclgevf_reset_err_handle(hdev);
1660 }
1661 
hclgevf_get_reset_level(unsigned long * addr)1662 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1663 {
1664 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1665 
1666 	/* return the highest priority reset level amongst all */
1667 	if (test_bit(HNAE3_VF_RESET, addr)) {
1668 		rst_level = HNAE3_VF_RESET;
1669 		clear_bit(HNAE3_VF_RESET, addr);
1670 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1671 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1672 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1673 		rst_level = HNAE3_VF_FULL_RESET;
1674 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1675 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1676 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1677 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1678 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1679 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1680 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1681 		rst_level = HNAE3_VF_FUNC_RESET;
1682 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1683 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1684 		rst_level = HNAE3_FLR_RESET;
1685 		clear_bit(HNAE3_FLR_RESET, addr);
1686 	}
1687 
1688 	clear_bit(HNAE3_NONE_RESET, addr);
1689 
1690 	return rst_level;
1691 }
1692 
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1693 static void hclgevf_reset_event(struct pci_dev *pdev,
1694 				struct hnae3_handle *handle)
1695 {
1696 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1697 	struct hclgevf_dev *hdev = ae_dev->priv;
1698 
1699 	if (hdev->default_reset_request)
1700 		hdev->reset_level =
1701 			hclgevf_get_reset_level(&hdev->default_reset_request);
1702 	else
1703 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1704 
1705 	dev_info(&hdev->pdev->dev, "received reset request from VF enet, reset level is %d\n",
1706 		 hdev->reset_level);
1707 
1708 	/* reset of this VF requested */
1709 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1710 	hclgevf_reset_task_schedule(hdev);
1711 
1712 	hdev->last_reset_time = jiffies;
1713 }
1714 
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1715 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1716 					  enum hnae3_reset_type rst_type)
1717 {
1718 #define HCLGEVF_SUPPORT_RESET_TYPE \
1719 	(BIT(HNAE3_VF_RESET) | BIT(HNAE3_VF_FUNC_RESET) | \
1720 	BIT(HNAE3_VF_PF_FUNC_RESET) | BIT(HNAE3_VF_FULL_RESET) | \
1721 	BIT(HNAE3_FLR_RESET) | BIT(HNAE3_VF_EXP_RESET))
1722 
1723 	struct hclgevf_dev *hdev = ae_dev->priv;
1724 
1725 	if (!(BIT(rst_type) & HCLGEVF_SUPPORT_RESET_TYPE)) {
1726 		/* To prevent reset triggered by hclge_reset_event */
1727 		set_bit(HNAE3_NONE_RESET, &hdev->default_reset_request);
1728 		dev_info(&hdev->pdev->dev, "unsupported reset type %d\n",
1729 			 rst_type);
1730 		return;
1731 	}
1732 	set_bit(rst_type, &hdev->default_reset_request);
1733 }
1734 
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1735 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1736 {
1737 	writel(en ? 1 : 0, vector->addr);
1738 }
1739 
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1740 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1741 					  enum hnae3_reset_type rst_type)
1742 {
1743 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1744 #define HCLGEVF_RESET_RETRY_CNT		5
1745 
1746 	struct hclgevf_dev *hdev = ae_dev->priv;
1747 	int retry_cnt = 0;
1748 	int ret;
1749 
1750 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1751 		down(&hdev->reset_sem);
1752 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1753 		hdev->reset_type = rst_type;
1754 		ret = hclgevf_reset_prepare(hdev);
1755 		if (!ret && !hdev->reset_pending)
1756 			break;
1757 
1758 		dev_err(&hdev->pdev->dev,
1759 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1760 			ret, hdev->reset_pending, retry_cnt);
1761 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1762 		up(&hdev->reset_sem);
1763 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1764 	}
1765 
1766 	/* disable misc vector before reset done */
1767 	hclgevf_enable_vector(&hdev->misc_vector, false);
1768 
1769 	if (hdev->reset_type == HNAE3_FLR_RESET)
1770 		hdev->rst_stats.flr_rst_cnt++;
1771 }
1772 
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1773 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1774 {
1775 	struct hclgevf_dev *hdev = ae_dev->priv;
1776 	int ret;
1777 
1778 	hclgevf_enable_vector(&hdev->misc_vector, true);
1779 
1780 	ret = hclgevf_reset_rebuild(hdev);
1781 	if (ret)
1782 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1783 			 ret);
1784 
1785 	hdev->reset_type = HNAE3_NONE_RESET;
1786 	if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1787 		up(&hdev->reset_sem);
1788 }
1789 
hclgevf_get_fw_version(struct hnae3_handle * handle)1790 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1791 {
1792 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1793 
1794 	return hdev->fw_version;
1795 }
1796 
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1797 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1798 {
1799 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1800 
1801 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1802 					    HCLGEVF_MISC_VECTOR_NUM);
1803 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1804 	/* vector status always valid for Vector 0 */
1805 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1806 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1807 
1808 	hdev->num_msi_left -= 1;
1809 	hdev->num_msi_used += 1;
1810 }
1811 
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1812 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1813 {
1814 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1815 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1816 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1817 			      &hdev->state))
1818 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1819 }
1820 
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1821 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1822 {
1823 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1824 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1825 			      &hdev->state))
1826 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1827 }
1828 
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1829 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1830 				  unsigned long delay)
1831 {
1832 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1833 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1834 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1835 }
1836 
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1837 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1838 {
1839 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1840 
1841 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1842 		return;
1843 
1844 	down(&hdev->reset_sem);
1845 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1846 
1847 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1848 			       &hdev->reset_state)) {
1849 		/* PF has intimated that it is about to reset the hardware.
1850 		 * We now have to poll & check if hardware has actually
1851 		 * completed the reset sequence. On hardware reset completion,
1852 		 * VF needs to reset the client and ae device.
1853 		 */
1854 		hdev->reset_attempts = 0;
1855 
1856 		hdev->last_reset_time = jiffies;
1857 		hdev->reset_type =
1858 			hclgevf_get_reset_level(&hdev->reset_pending);
1859 		if (hdev->reset_type != HNAE3_NONE_RESET)
1860 			hclgevf_reset(hdev);
1861 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1862 				      &hdev->reset_state)) {
1863 		/* we could be here when either of below happens:
1864 		 * 1. reset was initiated due to watchdog timeout caused by
1865 		 *    a. IMP was earlier reset and our TX got choked down and
1866 		 *       which resulted in watchdog reacting and inducing VF
1867 		 *       reset. This also means our cmdq would be unreliable.
1868 		 *    b. problem in TX due to other lower layer(example link
1869 		 *       layer not functioning properly etc.)
1870 		 * 2. VF reset might have been initiated due to some config
1871 		 *    change.
1872 		 *
1873 		 * NOTE: Theres no clear way to detect above cases than to react
1874 		 * to the response of PF for this reset request. PF will ack the
1875 		 * 1b and 2. cases but we will not get any intimation about 1a
1876 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1877 		 * communication between PF and VF would be broken.
1878 		 *
1879 		 * if we are never geting into pending state it means either:
1880 		 * 1. PF is not receiving our request which could be due to IMP
1881 		 *    reset
1882 		 * 2. PF is screwed
1883 		 * We cannot do much for 2. but to check first we can try reset
1884 		 * our PCIe + stack and see if it alleviates the problem.
1885 		 */
1886 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1887 			/* prepare for full reset of stack + pcie interface */
1888 			hclgevf_set_reset_pending(hdev, HNAE3_VF_FULL_RESET);
1889 
1890 			/* "defer" schedule the reset task again */
1891 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1892 		} else {
1893 			hdev->reset_attempts++;
1894 
1895 			hclgevf_set_reset_pending(hdev, hdev->reset_level);
1896 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1897 		}
1898 		hclgevf_reset_task_schedule(hdev);
1899 	}
1900 
1901 	hdev->reset_type = HNAE3_NONE_RESET;
1902 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1903 	up(&hdev->reset_sem);
1904 }
1905 
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1906 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1907 {
1908 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1909 		return;
1910 
1911 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1912 		return;
1913 
1914 	hclgevf_mbx_async_handler(hdev);
1915 
1916 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1917 }
1918 
hclgevf_keep_alive(struct hclgevf_dev * hdev)1919 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1920 {
1921 	struct hclge_vf_to_pf_msg send_msg;
1922 	int ret;
1923 
1924 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1925 		return;
1926 
1927 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1928 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1929 	if (ret)
1930 		dev_err(&hdev->pdev->dev,
1931 			"VF sends keep alive cmd failed(=%d)\n", ret);
1932 }
1933 
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1934 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1935 {
1936 	unsigned long delta = round_jiffies_relative(HZ);
1937 	struct hnae3_handle *handle = &hdev->nic;
1938 
1939 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1940 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1941 		return;
1942 
1943 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1944 		delta = jiffies - hdev->last_serv_processed;
1945 
1946 		if (delta < round_jiffies_relative(HZ)) {
1947 			delta = round_jiffies_relative(HZ) - delta;
1948 			goto out;
1949 		}
1950 	}
1951 
1952 	hdev->serv_processed_cnt++;
1953 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1954 		hclgevf_keep_alive(hdev);
1955 
1956 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1957 		hdev->last_serv_processed = jiffies;
1958 		goto out;
1959 	}
1960 
1961 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1962 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1963 
1964 	/* VF does not need to request link status when this bit is set, because
1965 	 * PF will push its link status to VFs when link status changed.
1966 	 */
1967 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1968 		hclgevf_request_link_info(hdev);
1969 
1970 	hclgevf_update_link_mode(hdev);
1971 
1972 	hclgevf_sync_vlan_filter(hdev);
1973 
1974 	hclgevf_sync_mac_table(hdev);
1975 
1976 	hclgevf_sync_promisc_mode(hdev);
1977 
1978 	hdev->last_serv_processed = jiffies;
1979 
1980 out:
1981 	hclgevf_task_schedule(hdev, delta);
1982 }
1983 
hclgevf_service_task(struct work_struct * work)1984 static void hclgevf_service_task(struct work_struct *work)
1985 {
1986 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1987 						service_task.work);
1988 
1989 	hclgevf_reset_service_task(hdev);
1990 	hclgevf_mailbox_service_task(hdev);
1991 	hclgevf_periodic_service_task(hdev);
1992 
1993 	/* Handle reset and mbx again in case periodical task delays the
1994 	 * handling by calling hclgevf_task_schedule() in
1995 	 * hclgevf_periodic_service_task()
1996 	 */
1997 	hclgevf_reset_service_task(hdev);
1998 	hclgevf_mailbox_service_task(hdev);
1999 }
2000 
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)2001 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2002 {
2003 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
2004 }
2005 
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)2006 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2007 						      u32 *clearval)
2008 {
2009 	u32 val, cmdq_stat_reg, rst_ing_reg;
2010 
2011 	/* fetch the events from their corresponding regs */
2012 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2013 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2014 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2015 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2016 		dev_info(&hdev->pdev->dev,
2017 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2018 		hclgevf_set_reset_pending(hdev, HNAE3_VF_RESET);
2019 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2020 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2021 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2022 		hdev->rst_stats.vf_rst_cnt++;
2023 		/* set up VF hardware reset status, its PF will clear
2024 		 * this status when PF has initialized done.
2025 		 */
2026 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2027 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2028 				  val | HCLGEVF_VF_RST_ING_BIT);
2029 		return HCLGEVF_VECTOR0_EVENT_RST;
2030 	}
2031 
2032 	/* check for vector0 mailbox(=CMDQ RX) event source */
2033 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2034 		/* for revision 0x21, clearing interrupt is writing bit 0
2035 		 * to the clear register, writing bit 1 means to keep the
2036 		 * old value.
2037 		 * for revision 0x20, the clear register is a read & write
2038 		 * register, so we should just write 0 to the bit we are
2039 		 * handling, and keep other bits as cmdq_stat_reg.
2040 		 */
2041 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2042 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2043 		else
2044 			*clearval = cmdq_stat_reg &
2045 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2046 
2047 		return HCLGEVF_VECTOR0_EVENT_MBX;
2048 	}
2049 
2050 	/* print other vector0 event source */
2051 	dev_info(&hdev->pdev->dev,
2052 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2053 		 cmdq_stat_reg);
2054 
2055 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2056 }
2057 
hclgevf_reset_timer(struct timer_list * t)2058 static void hclgevf_reset_timer(struct timer_list *t)
2059 {
2060 	struct hclgevf_dev *hdev = timer_container_of(hdev, t, reset_timer);
2061 
2062 	hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2063 	hclgevf_reset_task_schedule(hdev);
2064 }
2065 
hclgevf_misc_irq_handle(int irq,void * data)2066 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2067 {
2068 #define HCLGEVF_RESET_DELAY	5
2069 
2070 	enum hclgevf_evt_cause event_cause;
2071 	struct hclgevf_dev *hdev = data;
2072 	u32 clearval;
2073 
2074 	hclgevf_enable_vector(&hdev->misc_vector, false);
2075 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2076 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2077 		hclgevf_clear_event_cause(hdev, clearval);
2078 
2079 	switch (event_cause) {
2080 	case HCLGEVF_VECTOR0_EVENT_RST:
2081 		mod_timer(&hdev->reset_timer,
2082 			  jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2083 		break;
2084 	case HCLGEVF_VECTOR0_EVENT_MBX:
2085 		hclgevf_mbx_handler(hdev);
2086 		break;
2087 	default:
2088 		break;
2089 	}
2090 
2091 	hclgevf_enable_vector(&hdev->misc_vector, true);
2092 
2093 	return IRQ_HANDLED;
2094 }
2095 
hclgevf_configure(struct hclgevf_dev * hdev)2096 static int hclgevf_configure(struct hclgevf_dev *hdev)
2097 {
2098 	int ret;
2099 
2100 	hdev->gro_en = true;
2101 
2102 	ret = hclgevf_get_basic_info(hdev);
2103 	if (ret)
2104 		return ret;
2105 
2106 	/* get current port based vlan state from PF */
2107 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2108 	if (ret)
2109 		return ret;
2110 
2111 	/* get queue configuration from PF */
2112 	ret = hclgevf_get_queue_info(hdev);
2113 	if (ret)
2114 		return ret;
2115 
2116 	/* get queue depth info from PF */
2117 	ret = hclgevf_get_queue_depth(hdev);
2118 	if (ret)
2119 		return ret;
2120 
2121 	return hclgevf_get_pf_media_type(hdev);
2122 }
2123 
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2124 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2125 {
2126 	struct pci_dev *pdev = ae_dev->pdev;
2127 	struct hclgevf_dev *hdev;
2128 
2129 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2130 	if (!hdev)
2131 		return -ENOMEM;
2132 
2133 	hdev->pdev = pdev;
2134 	hdev->ae_dev = ae_dev;
2135 	ae_dev->priv = hdev;
2136 
2137 	return 0;
2138 }
2139 
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2140 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2141 {
2142 	struct hnae3_handle *roce = &hdev->roce;
2143 	struct hnae3_handle *nic = &hdev->nic;
2144 
2145 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2146 
2147 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2148 	    hdev->num_msi_left == 0)
2149 		return -EINVAL;
2150 
2151 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2152 
2153 	roce->rinfo.netdev = nic->kinfo.netdev;
2154 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2155 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2156 
2157 	roce->pdev = nic->pdev;
2158 	roce->ae_algo = nic->ae_algo;
2159 	bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2160 		    MAX_NUMNODES);
2161 	return 0;
2162 }
2163 
hclgevf_config_gro(struct hclgevf_dev * hdev)2164 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2165 {
2166 	struct hclgevf_cfg_gro_status_cmd *req;
2167 	struct hclge_desc desc;
2168 	int ret;
2169 
2170 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2171 		return 0;
2172 
2173 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2174 				     false);
2175 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2176 
2177 	req->gro_en = hdev->gro_en ? 1 : 0;
2178 
2179 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2180 	if (ret)
2181 		dev_err(&hdev->pdev->dev,
2182 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2183 
2184 	return ret;
2185 }
2186 
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2187 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2188 {
2189 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2190 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2191 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2192 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2193 	int ret;
2194 
2195 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2196 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2197 						  rss_cfg->rss_algo,
2198 						  rss_cfg->rss_hash_key);
2199 		if (ret)
2200 			return ret;
2201 
2202 		ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2203 		if (ret)
2204 			return ret;
2205 	}
2206 
2207 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2208 					     rss_cfg->rss_indirection_tbl);
2209 	if (ret)
2210 		return ret;
2211 
2212 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2213 				   tc_offset, tc_valid, tc_size);
2214 
2215 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2216 					  tc_valid, tc_size);
2217 }
2218 
hclgevf_init_vlan_config(struct hclgevf_dev * hdev,bool rxvtag_strip_en)2219 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev,
2220 				    bool rxvtag_strip_en)
2221 {
2222 	struct hnae3_handle *nic = &hdev->nic;
2223 	int ret;
2224 
2225 	ret = hclgevf_en_hw_strip_rxvtag(nic, rxvtag_strip_en);
2226 	if (ret) {
2227 		dev_err(&hdev->pdev->dev,
2228 			"failed to enable rx vlan offload, ret = %d\n", ret);
2229 		return ret;
2230 	}
2231 
2232 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2233 				       false);
2234 }
2235 
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2236 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2237 {
2238 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2239 
2240 	unsigned long last = hdev->serv_processed_cnt;
2241 	int i = 0;
2242 
2243 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2244 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2245 	       last == hdev->serv_processed_cnt)
2246 		usleep_range(1, 1);
2247 }
2248 
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2249 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2250 {
2251 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2252 
2253 	if (enable) {
2254 		hclgevf_task_schedule(hdev, 0);
2255 	} else {
2256 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2257 
2258 		smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2259 		hclgevf_flush_link_update(hdev);
2260 	}
2261 }
2262 
hclgevf_ae_start(struct hnae3_handle * handle)2263 static int hclgevf_ae_start(struct hnae3_handle *handle)
2264 {
2265 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2266 
2267 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2268 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2269 
2270 	hclge_comm_reset_tqp_stats(handle);
2271 
2272 	hclgevf_request_link_info(hdev);
2273 
2274 	hclgevf_update_link_mode(hdev);
2275 
2276 	return 0;
2277 }
2278 
hclgevf_ae_stop(struct hnae3_handle * handle)2279 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2280 {
2281 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2282 
2283 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2284 
2285 	if (hdev->reset_type != HNAE3_VF_RESET)
2286 		hclgevf_reset_tqp(handle);
2287 
2288 	hclge_comm_reset_tqp_stats(handle);
2289 	hclgevf_update_link_status(hdev, 0);
2290 }
2291 
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2292 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2293 {
2294 #define HCLGEVF_STATE_ALIVE	1
2295 #define HCLGEVF_STATE_NOT_ALIVE	0
2296 
2297 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2298 	struct hclge_vf_to_pf_msg send_msg;
2299 
2300 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2301 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2302 				HCLGEVF_STATE_NOT_ALIVE;
2303 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2304 }
2305 
hclgevf_client_start(struct hnae3_handle * handle)2306 static int hclgevf_client_start(struct hnae3_handle *handle)
2307 {
2308 	return hclgevf_set_alive(handle, true);
2309 }
2310 
hclgevf_client_stop(struct hnae3_handle * handle)2311 static void hclgevf_client_stop(struct hnae3_handle *handle)
2312 {
2313 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2314 	int ret;
2315 
2316 	ret = hclgevf_set_alive(handle, false);
2317 	if (ret)
2318 		dev_warn(&hdev->pdev->dev,
2319 			 "%s failed %d\n", __func__, ret);
2320 }
2321 
hclgevf_state_init(struct hclgevf_dev * hdev)2322 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2323 {
2324 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2325 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2326 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2327 
2328 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2329 	/* timer needs to be initialized before misc irq */
2330 	timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2331 
2332 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2333 	sema_init(&hdev->reset_sem, 1);
2334 
2335 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2336 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2337 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2338 
2339 	/* bring the device down */
2340 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2341 }
2342 
hclgevf_state_uninit(struct hclgevf_dev * hdev)2343 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2344 {
2345 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2346 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2347 
2348 	if (hdev->service_task.work.func)
2349 		cancel_delayed_work_sync(&hdev->service_task);
2350 
2351 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2352 }
2353 
hclgevf_init_msi(struct hclgevf_dev * hdev)2354 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2355 {
2356 	struct pci_dev *pdev = hdev->pdev;
2357 	int vectors;
2358 	int i;
2359 
2360 	if (hnae3_dev_roce_supported(hdev))
2361 		vectors = pci_alloc_irq_vectors(pdev,
2362 						hdev->roce_base_msix_offset + 1,
2363 						hdev->num_msi,
2364 						PCI_IRQ_MSIX);
2365 	else
2366 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2367 						hdev->num_msi,
2368 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2369 
2370 	if (vectors < 0) {
2371 		dev_err(&pdev->dev,
2372 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2373 			vectors);
2374 		return vectors;
2375 	}
2376 	if (vectors < hdev->num_msi)
2377 		dev_warn(&hdev->pdev->dev,
2378 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2379 			 hdev->num_msi, vectors);
2380 
2381 	hdev->num_msi = vectors;
2382 	hdev->num_msi_left = vectors;
2383 
2384 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2385 					   sizeof(u16), GFP_KERNEL);
2386 	if (!hdev->vector_status) {
2387 		pci_free_irq_vectors(pdev);
2388 		return -ENOMEM;
2389 	}
2390 
2391 	for (i = 0; i < hdev->num_msi; i++)
2392 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2393 
2394 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2395 					sizeof(int), GFP_KERNEL);
2396 	if (!hdev->vector_irq) {
2397 		devm_kfree(&pdev->dev, hdev->vector_status);
2398 		pci_free_irq_vectors(pdev);
2399 		return -ENOMEM;
2400 	}
2401 
2402 	return 0;
2403 }
2404 
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2405 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2406 {
2407 	struct pci_dev *pdev = hdev->pdev;
2408 
2409 	devm_kfree(&pdev->dev, hdev->vector_status);
2410 	devm_kfree(&pdev->dev, hdev->vector_irq);
2411 	pci_free_irq_vectors(pdev);
2412 }
2413 
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2414 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2415 {
2416 	int ret;
2417 
2418 	hclgevf_get_misc_vector(hdev);
2419 
2420 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2421 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2422 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2423 			  0, hdev->misc_vector.name, hdev);
2424 	if (ret) {
2425 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2426 			hdev->misc_vector.vector_irq);
2427 		return ret;
2428 	}
2429 
2430 	hclgevf_clear_event_cause(hdev, 0);
2431 
2432 	/* enable misc. vector(vector 0) */
2433 	hclgevf_enable_vector(&hdev->misc_vector, true);
2434 
2435 	return ret;
2436 }
2437 
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2438 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2439 {
2440 	/* disable misc vector(vector 0) */
2441 	hclgevf_enable_vector(&hdev->misc_vector, false);
2442 	synchronize_irq(hdev->misc_vector.vector_irq);
2443 	free_irq(hdev->misc_vector.vector_irq, hdev);
2444 	hclgevf_free_vector(hdev, 0);
2445 }
2446 
hclgevf_info_show(struct hclgevf_dev * hdev)2447 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2448 {
2449 	struct device *dev = &hdev->pdev->dev;
2450 
2451 	dev_info(dev, "VF info begin:\n");
2452 
2453 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2454 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2455 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2456 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2457 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2458 	dev_info(dev, "PF media type of this VF: %u\n",
2459 		 hdev->hw.mac.media_type);
2460 
2461 	dev_info(dev, "VF info end.\n");
2462 }
2463 
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2464 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2465 					    struct hnae3_client *client)
2466 {
2467 	struct hclgevf_dev *hdev = ae_dev->priv;
2468 	int rst_cnt = hdev->rst_stats.rst_cnt;
2469 	int ret;
2470 
2471 	ret = client->ops->init_instance(&hdev->nic);
2472 	if (ret)
2473 		return ret;
2474 
2475 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2476 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2477 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2478 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2479 
2480 		client->ops->uninit_instance(&hdev->nic, 0);
2481 		return -EBUSY;
2482 	}
2483 
2484 	hnae3_set_client_init_flag(client, ae_dev, 1);
2485 
2486 	if (netif_msg_drv(&hdev->nic))
2487 		hclgevf_info_show(hdev);
2488 
2489 	return 0;
2490 }
2491 
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2492 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2493 					     struct hnae3_client *client)
2494 {
2495 	struct hclgevf_dev *hdev = ae_dev->priv;
2496 	int ret;
2497 
2498 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2499 	    !hdev->nic_client)
2500 		return 0;
2501 
2502 	ret = hclgevf_init_roce_base_info(hdev);
2503 	if (ret)
2504 		return ret;
2505 
2506 	ret = client->ops->init_instance(&hdev->roce);
2507 	if (ret)
2508 		return ret;
2509 
2510 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2511 	hnae3_set_client_init_flag(client, ae_dev, 1);
2512 
2513 	return 0;
2514 }
2515 
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2516 static int hclgevf_init_client_instance(struct hnae3_client *client,
2517 					struct hnae3_ae_dev *ae_dev)
2518 {
2519 	struct hclgevf_dev *hdev = ae_dev->priv;
2520 	int ret;
2521 
2522 	switch (client->type) {
2523 	case HNAE3_CLIENT_KNIC:
2524 		hdev->nic_client = client;
2525 		hdev->nic.client = client;
2526 
2527 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2528 		if (ret)
2529 			goto clear_nic;
2530 
2531 		ret = hclgevf_init_roce_client_instance(ae_dev,
2532 							hdev->roce_client);
2533 		if (ret)
2534 			goto clear_roce;
2535 
2536 		break;
2537 	case HNAE3_CLIENT_ROCE:
2538 		if (hnae3_dev_roce_supported(hdev)) {
2539 			hdev->roce_client = client;
2540 			hdev->roce.client = client;
2541 		}
2542 
2543 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2544 		if (ret)
2545 			goto clear_roce;
2546 
2547 		break;
2548 	default:
2549 		return -EINVAL;
2550 	}
2551 
2552 	return 0;
2553 
2554 clear_nic:
2555 	hdev->nic_client = NULL;
2556 	hdev->nic.client = NULL;
2557 	return ret;
2558 clear_roce:
2559 	hdev->roce_client = NULL;
2560 	hdev->roce.client = NULL;
2561 	return ret;
2562 }
2563 
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2564 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2565 					   struct hnae3_ae_dev *ae_dev)
2566 {
2567 	struct hclgevf_dev *hdev = ae_dev->priv;
2568 
2569 	/* un-init roce, if it exists */
2570 	if (hdev->roce_client) {
2571 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2572 			msleep(HCLGEVF_WAIT_RESET_DONE);
2573 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2574 
2575 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2576 		hdev->roce_client = NULL;
2577 		hdev->roce.client = NULL;
2578 	}
2579 
2580 	/* un-init nic/unic, if this was not called by roce client */
2581 	if (client->ops->uninit_instance && hdev->nic_client &&
2582 	    client->type != HNAE3_CLIENT_ROCE) {
2583 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2584 			msleep(HCLGEVF_WAIT_RESET_DONE);
2585 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2586 
2587 		client->ops->uninit_instance(&hdev->nic, 0);
2588 		hdev->nic_client = NULL;
2589 		hdev->nic.client = NULL;
2590 	}
2591 }
2592 
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2593 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2594 {
2595 	struct pci_dev *pdev = hdev->pdev;
2596 	struct hclgevf_hw *hw = &hdev->hw;
2597 
2598 	/* for device does not have device memory, return directly */
2599 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2600 		return 0;
2601 
2602 	hw->hw.mem_base =
2603 		devm_ioremap_wc(&pdev->dev,
2604 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2605 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2606 	if (!hw->hw.mem_base) {
2607 		dev_err(&pdev->dev, "failed to map device memory\n");
2608 		return -EFAULT;
2609 	}
2610 
2611 	return 0;
2612 }
2613 
hclgevf_pci_init(struct hclgevf_dev * hdev)2614 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2615 {
2616 	struct pci_dev *pdev = hdev->pdev;
2617 	struct hclgevf_hw *hw;
2618 	int ret;
2619 
2620 	ret = pci_enable_device(pdev);
2621 	if (ret) {
2622 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2623 		return ret;
2624 	}
2625 
2626 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2627 	if (ret) {
2628 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2629 		goto err_disable_device;
2630 	}
2631 
2632 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2633 	if (ret) {
2634 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2635 		goto err_disable_device;
2636 	}
2637 
2638 	pci_set_master(pdev);
2639 	hw = &hdev->hw;
2640 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2641 	if (!hw->hw.io_base) {
2642 		dev_err(&pdev->dev, "can't map configuration register space\n");
2643 		ret = -ENOMEM;
2644 		goto err_release_regions;
2645 	}
2646 
2647 	ret = hclgevf_dev_mem_map(hdev);
2648 	if (ret)
2649 		goto err_unmap_io_base;
2650 
2651 	return 0;
2652 
2653 err_unmap_io_base:
2654 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2655 err_release_regions:
2656 	pci_release_regions(pdev);
2657 err_disable_device:
2658 	pci_disable_device(pdev);
2659 
2660 	return ret;
2661 }
2662 
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2663 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2664 {
2665 	struct pci_dev *pdev = hdev->pdev;
2666 
2667 	if (hdev->hw.hw.mem_base)
2668 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2669 
2670 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2671 	pci_release_regions(pdev);
2672 	pci_disable_device(pdev);
2673 }
2674 
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2675 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2676 {
2677 	struct hclgevf_query_res_cmd *req;
2678 	struct hclge_desc desc;
2679 	int ret;
2680 
2681 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2682 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2683 	if (ret) {
2684 		dev_err(&hdev->pdev->dev,
2685 			"query vf resource failed, ret = %d.\n", ret);
2686 		return ret;
2687 	}
2688 
2689 	req = (struct hclgevf_query_res_cmd *)desc.data;
2690 
2691 	if (hnae3_dev_roce_supported(hdev)) {
2692 		hdev->roce_base_msix_offset =
2693 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2694 				HCLGEVF_MSIX_OFT_ROCEE_M,
2695 				HCLGEVF_MSIX_OFT_ROCEE_S);
2696 		hdev->num_roce_msix =
2697 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2698 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2699 
2700 		/* nic's msix numbers is always equals to the roce's. */
2701 		hdev->num_nic_msix = hdev->num_roce_msix;
2702 
2703 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2704 		 * are queued before Roce vectors. The offset is fixed to 64.
2705 		 */
2706 		hdev->num_msi = hdev->num_roce_msix +
2707 				hdev->roce_base_msix_offset;
2708 	} else {
2709 		hdev->num_msi =
2710 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2711 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2712 
2713 		hdev->num_nic_msix = hdev->num_msi;
2714 	}
2715 
2716 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2717 		dev_err(&hdev->pdev->dev,
2718 			"Just %u msi resources, not enough for vf(min:2).\n",
2719 			hdev->num_nic_msix);
2720 		return -EINVAL;
2721 	}
2722 
2723 	return 0;
2724 }
2725 
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2726 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2727 {
2728 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2729 
2730 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2731 
2732 	ae_dev->dev_specs.max_non_tso_bd_num =
2733 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2734 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2735 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2736 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2737 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2738 }
2739 
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2740 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2741 				    struct hclge_desc *desc)
2742 {
2743 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2744 	struct hclgevf_dev_specs_0_cmd *req0;
2745 	struct hclgevf_dev_specs_1_cmd *req1;
2746 
2747 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2748 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2749 
2750 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2751 	ae_dev->dev_specs.rss_ind_tbl_size =
2752 					le16_to_cpu(req0->rss_ind_tbl_size);
2753 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2754 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2755 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2756 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2757 }
2758 
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2759 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2760 {
2761 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2762 
2763 	if (!dev_specs->max_non_tso_bd_num)
2764 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2765 	if (!dev_specs->rss_ind_tbl_size)
2766 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2767 	if (!dev_specs->rss_key_size)
2768 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2769 	if (!dev_specs->max_int_gl)
2770 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2771 	if (!dev_specs->max_frm_size)
2772 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2773 }
2774 
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2775 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2776 {
2777 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2778 	int ret;
2779 	int i;
2780 
2781 	/* set default specifications as devices lower than version V3 do not
2782 	 * support querying specifications from firmware.
2783 	 */
2784 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2785 		hclgevf_set_default_dev_specs(hdev);
2786 		return 0;
2787 	}
2788 
2789 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2790 		hclgevf_cmd_setup_basic_desc(&desc[i],
2791 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2792 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2793 	}
2794 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2795 
2796 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2797 	if (ret)
2798 		return ret;
2799 
2800 	hclgevf_parse_dev_specs(hdev, desc);
2801 	hclgevf_check_dev_specs(hdev);
2802 
2803 	return 0;
2804 }
2805 
hclgevf_pci_reset(struct hclgevf_dev * hdev)2806 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2807 {
2808 	struct pci_dev *pdev = hdev->pdev;
2809 	int ret = 0;
2810 
2811 	if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2812 	     hdev->reset_type == HNAE3_FLR_RESET) &&
2813 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2814 		hclgevf_misc_irq_uninit(hdev);
2815 		hclgevf_uninit_msi(hdev);
2816 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2817 	}
2818 
2819 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2820 		pci_set_master(pdev);
2821 		ret = hclgevf_init_msi(hdev);
2822 		if (ret) {
2823 			dev_err(&pdev->dev,
2824 				"failed(%d) to init MSI/MSI-X\n", ret);
2825 			return ret;
2826 		}
2827 
2828 		ret = hclgevf_misc_irq_init(hdev);
2829 		if (ret) {
2830 			hclgevf_uninit_msi(hdev);
2831 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2832 				ret);
2833 			return ret;
2834 		}
2835 
2836 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2837 	}
2838 
2839 	return ret;
2840 }
2841 
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2842 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2843 {
2844 	struct hclge_vf_to_pf_msg send_msg;
2845 
2846 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2847 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2848 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2849 }
2850 
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2851 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2852 {
2853 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2854 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2855 }
2856 
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2857 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2858 {
2859 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2860 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2861 }
2862 
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2863 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2864 {
2865 	struct pci_dev *pdev = hdev->pdev;
2866 	int ret;
2867 
2868 	ret = hclgevf_pci_reset(hdev);
2869 	if (ret) {
2870 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2871 		return ret;
2872 	}
2873 
2874 	hclgevf_arq_init(hdev);
2875 
2876 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2877 				  &hdev->fw_version, false,
2878 				  hdev->reset_pending);
2879 	if (ret) {
2880 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2881 		return ret;
2882 	}
2883 
2884 	ret = hclgevf_rss_init_hw(hdev);
2885 	if (ret) {
2886 		dev_err(&hdev->pdev->dev,
2887 			"failed(%d) to initialize RSS\n", ret);
2888 		return ret;
2889 	}
2890 
2891 	ret = hclgevf_config_gro(hdev);
2892 	if (ret)
2893 		return ret;
2894 
2895 	ret = hclgevf_init_vlan_config(hdev, hdev->rxvtag_strip_en);
2896 	if (ret) {
2897 		dev_err(&hdev->pdev->dev,
2898 			"failed(%d) to initialize VLAN config\n", ret);
2899 		return ret;
2900 	}
2901 
2902 	/* get current port based vlan state from PF */
2903 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2904 	if (ret)
2905 		return ret;
2906 
2907 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2908 
2909 	hclgevf_init_rxd_adv_layout(hdev);
2910 
2911 	dev_info(&hdev->pdev->dev, "Reset done\n");
2912 
2913 	return 0;
2914 }
2915 
hclgevf_init_hdev(struct hclgevf_dev * hdev)2916 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2917 {
2918 	struct pci_dev *pdev = hdev->pdev;
2919 	int ret;
2920 
2921 	ret = hclgevf_pci_init(hdev);
2922 	if (ret)
2923 		return ret;
2924 
2925 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2926 	if (ret)
2927 		goto err_cmd_queue_init;
2928 
2929 	hclgevf_arq_init(hdev);
2930 
2931 	hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2932 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2933 				  &hdev->fw_version, false,
2934 				  hdev->reset_pending);
2935 	if (ret)
2936 		goto err_cmd_init;
2937 
2938 	/* Get vf resource */
2939 	ret = hclgevf_query_vf_resource(hdev);
2940 	if (ret)
2941 		goto err_cmd_init;
2942 
2943 	ret = hclgevf_query_dev_specs(hdev);
2944 	if (ret) {
2945 		dev_err(&pdev->dev,
2946 			"failed to query dev specifications, ret = %d\n", ret);
2947 		goto err_cmd_init;
2948 	}
2949 
2950 	ret = hclgevf_init_msi(hdev);
2951 	if (ret) {
2952 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2953 		goto err_cmd_init;
2954 	}
2955 
2956 	hclgevf_state_init(hdev);
2957 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2958 	hdev->reset_type = HNAE3_NONE_RESET;
2959 
2960 	ret = hclgevf_misc_irq_init(hdev);
2961 	if (ret)
2962 		goto err_misc_irq_init;
2963 
2964 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2965 
2966 	ret = hclgevf_configure(hdev);
2967 	if (ret) {
2968 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2969 		goto err_config;
2970 	}
2971 
2972 	ret = hclgevf_alloc_tqps(hdev);
2973 	if (ret) {
2974 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2975 		goto err_config;
2976 	}
2977 
2978 	ret = hclgevf_set_handle_info(hdev);
2979 	if (ret)
2980 		goto err_config;
2981 
2982 	ret = hclgevf_config_gro(hdev);
2983 	if (ret)
2984 		goto err_config;
2985 
2986 	/* Initialize RSS for this VF */
2987 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2988 				      &hdev->rss_cfg);
2989 	if (ret) {
2990 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2991 		goto err_config;
2992 	}
2993 
2994 	ret = hclgevf_rss_init_hw(hdev);
2995 	if (ret) {
2996 		dev_err(&hdev->pdev->dev,
2997 			"failed(%d) to initialize RSS\n", ret);
2998 		goto err_config;
2999 	}
3000 
3001 	/* ensure vf tbl list as empty before init */
3002 	ret = hclgevf_clear_vport_list(hdev);
3003 	if (ret) {
3004 		dev_err(&pdev->dev,
3005 			"failed to clear tbl list configuration, ret = %d.\n",
3006 			ret);
3007 		goto err_config;
3008 	}
3009 
3010 	ret = hclgevf_init_vlan_config(hdev, true);
3011 	if (ret) {
3012 		dev_err(&hdev->pdev->dev,
3013 			"failed(%d) to initialize VLAN config\n", ret);
3014 		goto err_config;
3015 	}
3016 
3017 	hclgevf_init_rxd_adv_layout(hdev);
3018 
3019 	ret = hclgevf_devlink_init(hdev);
3020 	if (ret)
3021 		goto err_config;
3022 
3023 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3024 
3025 	hdev->last_reset_time = jiffies;
3026 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3027 		 HCLGEVF_DRIVER_NAME);
3028 
3029 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3030 
3031 	return 0;
3032 
3033 err_config:
3034 	hclgevf_misc_irq_uninit(hdev);
3035 err_misc_irq_init:
3036 	hclgevf_state_uninit(hdev);
3037 	hclgevf_uninit_msi(hdev);
3038 err_cmd_init:
3039 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3040 err_cmd_queue_init:
3041 	hclgevf_pci_uninit(hdev);
3042 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3043 	return ret;
3044 }
3045 
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3046 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3047 {
3048 	struct hclge_vf_to_pf_msg send_msg;
3049 
3050 	hclgevf_state_uninit(hdev);
3051 	hclgevf_uninit_rxd_adv_layout(hdev);
3052 
3053 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3054 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3055 
3056 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3057 		hclgevf_misc_irq_uninit(hdev);
3058 		hclgevf_uninit_msi(hdev);
3059 	}
3060 
3061 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3062 	hclgevf_devlink_uninit(hdev);
3063 	hclgevf_pci_uninit(hdev);
3064 	hclgevf_uninit_mac_list(hdev);
3065 }
3066 
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3067 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3068 {
3069 	struct pci_dev *pdev = ae_dev->pdev;
3070 	int ret;
3071 
3072 	ret = hclgevf_alloc_hdev(ae_dev);
3073 	if (ret) {
3074 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3075 		return ret;
3076 	}
3077 
3078 	ret = hclgevf_init_hdev(ae_dev->priv);
3079 	if (ret) {
3080 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3081 		return ret;
3082 	}
3083 
3084 	return 0;
3085 }
3086 
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3087 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3088 {
3089 	struct hclgevf_dev *hdev = ae_dev->priv;
3090 
3091 	hclgevf_uninit_hdev(hdev);
3092 	ae_dev->priv = NULL;
3093 }
3094 
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3095 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3096 {
3097 	struct hnae3_handle *nic = &hdev->nic;
3098 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3099 
3100 	return min_t(u32, hdev->rss_size_max,
3101 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3102 }
3103 
3104 /**
3105  * hclgevf_get_channels - Get the current channels enabled and max supported.
3106  * @handle: hardware information for network interface
3107  * @ch: ethtool channels structure
3108  *
3109  * We don't support separate tx and rx queues as channels. The other count
3110  * represents how many queues are being used for control. max_combined counts
3111  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3112  * q_vectors since we support a lot more queue pairs than q_vectors.
3113  **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3114 static void hclgevf_get_channels(struct hnae3_handle *handle,
3115 				 struct ethtool_channels *ch)
3116 {
3117 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3118 
3119 	ch->max_combined = hclgevf_get_max_channels(hdev);
3120 	ch->other_count = 0;
3121 	ch->max_other = 0;
3122 	ch->combined_count = handle->kinfo.rss_size;
3123 }
3124 
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3125 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3126 					  u16 *alloc_tqps, u16 *max_rss_size)
3127 {
3128 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3129 
3130 	*alloc_tqps = hdev->num_tqps;
3131 	*max_rss_size = hdev->rss_size_max;
3132 }
3133 
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3134 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3135 				    u32 new_tqps_num)
3136 {
3137 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3138 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3139 	u16 max_rss_size;
3140 
3141 	kinfo->req_rss_size = new_tqps_num;
3142 
3143 	max_rss_size = min_t(u16, hdev->rss_size_max,
3144 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3145 
3146 	/* Use the user's configuration when it is not larger than
3147 	 * max_rss_size, otherwise, use the maximum specification value.
3148 	 */
3149 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3150 	    kinfo->req_rss_size <= max_rss_size)
3151 		kinfo->rss_size = kinfo->req_rss_size;
3152 	else if (kinfo->rss_size > max_rss_size ||
3153 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3154 		kinfo->rss_size = max_rss_size;
3155 
3156 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3157 }
3158 
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3159 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3160 				bool rxfh_configured)
3161 {
3162 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3164 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3165 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3166 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3167 	u16 cur_rss_size = kinfo->rss_size;
3168 	u16 cur_tqps = kinfo->num_tqps;
3169 	u32 *rss_indir;
3170 	unsigned int i;
3171 	int ret;
3172 
3173 	hclgevf_update_rss_size(handle, new_tqps_num);
3174 
3175 	hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3176 				   tc_offset, tc_valid, tc_size);
3177 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3178 					 tc_valid, tc_size);
3179 	if (ret)
3180 		return ret;
3181 
3182 	/* RSS indirection table has been configured by user */
3183 	if (rxfh_configured)
3184 		goto out;
3185 
3186 	/* Reinitializes the rss indirect table according to the new RSS size */
3187 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3188 			    sizeof(u32), GFP_KERNEL);
3189 	if (!rss_indir)
3190 		return -ENOMEM;
3191 
3192 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3193 		rss_indir[i] = i % kinfo->rss_size;
3194 
3195 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3196 
3197 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3198 	if (ret)
3199 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3200 			ret);
3201 
3202 	kfree(rss_indir);
3203 
3204 out:
3205 	if (!ret)
3206 		dev_info(&hdev->pdev->dev,
3207 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3208 			 cur_rss_size, kinfo->rss_size,
3209 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3210 
3211 	return ret;
3212 }
3213 
hclgevf_get_status(struct hnae3_handle * handle)3214 static int hclgevf_get_status(struct hnae3_handle *handle)
3215 {
3216 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3217 
3218 	return hdev->hw.mac.link;
3219 }
3220 
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3221 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3222 					    u8 *auto_neg, u32 *speed,
3223 					    u8 *duplex, u32 *lane_num)
3224 {
3225 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3226 
3227 	if (speed)
3228 		*speed = hdev->hw.mac.speed;
3229 	if (duplex)
3230 		*duplex = hdev->hw.mac.duplex;
3231 	if (auto_neg)
3232 		*auto_neg = AUTONEG_DISABLE;
3233 }
3234 
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3235 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3236 				 u8 duplex)
3237 {
3238 	hdev->hw.mac.speed = speed;
3239 	hdev->hw.mac.duplex = duplex;
3240 }
3241 
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3242 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3243 {
3244 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3245 	bool gro_en_old = hdev->gro_en;
3246 	int ret;
3247 
3248 	hdev->gro_en = enable;
3249 	ret = hclgevf_config_gro(hdev);
3250 	if (ret)
3251 		hdev->gro_en = gro_en_old;
3252 
3253 	return ret;
3254 }
3255 
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3256 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3257 				   u8 *module_type)
3258 {
3259 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3260 
3261 	if (media_type)
3262 		*media_type = hdev->hw.mac.media_type;
3263 
3264 	if (module_type)
3265 		*module_type = hdev->hw.mac.module_type;
3266 }
3267 
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3268 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3269 {
3270 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3271 
3272 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3273 }
3274 
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3275 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3276 {
3277 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3278 
3279 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3280 }
3281 
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3282 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3283 {
3284 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3285 
3286 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3287 }
3288 
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3289 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3290 {
3291 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3292 
3293 	return hdev->rst_stats.hw_rst_done_cnt;
3294 }
3295 
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3296 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3297 				  unsigned long *supported,
3298 				  unsigned long *advertising)
3299 {
3300 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3301 
3302 	*supported = hdev->hw.mac.supported;
3303 	*advertising = hdev->hw.mac.advertising;
3304 }
3305 
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3306 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3307 				struct hclge_mbx_port_base_vlan *port_base_vlan)
3308 {
3309 	struct hnae3_handle *nic = &hdev->nic;
3310 	struct hclge_vf_to_pf_msg send_msg;
3311 	int ret;
3312 
3313 	rtnl_lock();
3314 
3315 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3316 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3317 		dev_warn(&hdev->pdev->dev,
3318 			 "is resetting when updating port based vlan info\n");
3319 		rtnl_unlock();
3320 		return;
3321 	}
3322 
3323 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3324 	if (ret) {
3325 		rtnl_unlock();
3326 		return;
3327 	}
3328 
3329 	/* send msg to PF and wait update port based vlan info */
3330 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3331 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3332 	memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3333 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3334 	if (!ret) {
3335 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3336 			nic->port_base_vlan_state = state;
3337 		else
3338 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3339 	}
3340 
3341 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3342 	rtnl_unlock();
3343 }
3344 
3345 static const struct hnae3_ae_ops hclgevf_ops = {
3346 	.init_ae_dev = hclgevf_init_ae_dev,
3347 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3348 	.reset_prepare = hclgevf_reset_prepare_general,
3349 	.reset_done = hclgevf_reset_done,
3350 	.init_client_instance = hclgevf_init_client_instance,
3351 	.uninit_client_instance = hclgevf_uninit_client_instance,
3352 	.start = hclgevf_ae_start,
3353 	.stop = hclgevf_ae_stop,
3354 	.client_start = hclgevf_client_start,
3355 	.client_stop = hclgevf_client_stop,
3356 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3357 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3358 	.get_vector = hclgevf_get_vector,
3359 	.put_vector = hclgevf_put_vector,
3360 	.reset_queue = hclgevf_reset_tqp,
3361 	.get_mac_addr = hclgevf_get_mac_addr,
3362 	.set_mac_addr = hclgevf_set_mac_addr,
3363 	.add_uc_addr = hclgevf_add_uc_addr,
3364 	.rm_uc_addr = hclgevf_rm_uc_addr,
3365 	.add_mc_addr = hclgevf_add_mc_addr,
3366 	.rm_mc_addr = hclgevf_rm_mc_addr,
3367 	.get_stats = hclgevf_get_stats,
3368 	.update_stats = hclgevf_update_stats,
3369 	.get_strings = hclgevf_get_strings,
3370 	.get_sset_count = hclgevf_get_sset_count,
3371 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3372 	.get_rss = hclgevf_get_rss,
3373 	.set_rss = hclgevf_set_rss,
3374 	.get_rss_tuple = hclgevf_get_rss_tuple,
3375 	.set_rss_tuple = hclgevf_set_rss_tuple,
3376 	.get_tc_size = hclgevf_get_tc_size,
3377 	.get_fw_version = hclgevf_get_fw_version,
3378 	.set_vlan_filter = hclgevf_set_vlan_filter,
3379 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3380 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3381 	.reset_event = hclgevf_reset_event,
3382 	.set_default_reset_request = hclgevf_set_def_reset_request,
3383 	.set_channels = hclgevf_set_channels,
3384 	.get_channels = hclgevf_get_channels,
3385 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3386 	.get_regs_len = hclgevf_get_regs_len,
3387 	.get_regs = hclgevf_get_regs,
3388 	.get_status = hclgevf_get_status,
3389 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3390 	.get_media_type = hclgevf_get_media_type,
3391 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3392 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3393 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3394 	.set_gro_en = hclgevf_gro_en,
3395 	.set_mtu = hclgevf_set_mtu,
3396 	.get_global_queue_id = hclgevf_get_qid_global,
3397 	.set_timer_task = hclgevf_set_timer_task,
3398 	.get_link_mode = hclgevf_get_link_mode,
3399 	.set_promisc_mode = hclgevf_set_promisc_mode,
3400 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3401 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3402 };
3403 
3404 static struct hnae3_ae_algo ae_algovf = {
3405 	.ops = &hclgevf_ops,
3406 	.pdev_id_table = ae_algovf_pci_tbl,
3407 };
3408 
hclgevf_init(void)3409 static int __init hclgevf_init(void)
3410 {
3411 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3412 
3413 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3414 	if (!hclgevf_wq) {
3415 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3416 		return -ENOMEM;
3417 	}
3418 
3419 	hnae3_register_ae_algo(&ae_algovf);
3420 
3421 	return 0;
3422 }
3423 
hclgevf_exit(void)3424 static void __exit hclgevf_exit(void)
3425 {
3426 	hnae3_acquire_unload_lock();
3427 	hnae3_unregister_ae_algo(&ae_algovf);
3428 	destroy_workqueue(hclgevf_wq);
3429 	hnae3_release_unload_lock();
3430 }
3431 module_init(hclgevf_init);
3432 module_exit(hclgevf_exit);
3433 
3434 MODULE_LICENSE("GPL");
3435 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3436 MODULE_DESCRIPTION("HCLGEVF Driver");
3437 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3438