1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2019, 2024, Klara, Inc.
29 * Copyright (c) 2019, Allan Jude
30 * Copyright (c) 2019 Datto Inc.
31 * Copyright (c) 2022 Axcient.
32 */
33
34 #include <sys/arc.h>
35 #include <sys/spa_impl.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_send.h>
39 #include <sys/dmu_recv.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dbuf.h>
42 #include <sys/dnode.h>
43 #include <sys/zfs_context.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/dmu_traverse.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_pool.h>
50 #include <sys/dsl_synctask.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zap.h>
53 #include <sys/zvol.h>
54 #include <sys/zio_checksum.h>
55 #include <sys/zfs_znode.h>
56 #include <zfs_fletcher.h>
57 #include <sys/avl.h>
58 #include <sys/ddt.h>
59 #include <sys/zfs_onexit.h>
60 #include <sys/dsl_destroy.h>
61 #include <sys/blkptr.h>
62 #include <sys/dsl_bookmark.h>
63 #include <sys/zfeature.h>
64 #include <sys/bqueue.h>
65 #include <sys/objlist.h>
66 #ifdef _KERNEL
67 #include <sys/zfs_vfsops.h>
68 #endif
69 #include <sys/zfs_file.h>
70
71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72 static uint_t zfs_recv_queue_ff = 20;
73 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
74 static int zfs_recv_best_effort_corrective = 0;
75
76 static const void *const dmu_recv_tag = "dmu_recv_tag";
77 const char *const recv_clone_name = "%recv";
78
79 typedef enum {
80 ORNS_NO,
81 ORNS_YES,
82 ORNS_MAYBE
83 } or_need_sync_t;
84
85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86 void *buf);
87
88 struct receive_record_arg {
89 dmu_replay_record_t header;
90 void *payload; /* Pointer to a buffer containing the payload */
91 /*
92 * If the record is a WRITE or SPILL, pointer to the abd containing the
93 * payload.
94 */
95 abd_t *abd;
96 int payload_size;
97 uint64_t bytes_read; /* bytes read from stream when record created */
98 boolean_t eos_marker; /* Marks the end of the stream */
99 bqueue_node_t node;
100 };
101
102 struct receive_writer_arg {
103 objset_t *os;
104 boolean_t byteswap;
105 bqueue_t q;
106
107 /*
108 * These three members are used to signal to the main thread when
109 * we're done.
110 */
111 kmutex_t mutex;
112 kcondvar_t cv;
113 boolean_t done;
114
115 int err;
116 const char *tofs;
117 boolean_t heal;
118 boolean_t resumable;
119 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
120 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
121 boolean_t full; /* this is a full send stream */
122 uint64_t last_object;
123 uint64_t last_offset;
124 uint64_t max_object; /* highest object ID referenced in stream */
125 uint64_t bytes_read; /* bytes read when current record created */
126
127 list_t write_batch;
128
129 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
130 boolean_t or_crypt_params_present;
131 uint64_t or_firstobj;
132 uint64_t or_numslots;
133 uint8_t or_salt[ZIO_DATA_SALT_LEN];
134 uint8_t or_iv[ZIO_DATA_IV_LEN];
135 uint8_t or_mac[ZIO_DATA_MAC_LEN];
136 boolean_t or_byteorder;
137 zio_t *heal_pio;
138
139 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140 or_need_sync_t or_need_sync;
141 };
142
143 typedef struct dmu_recv_begin_arg {
144 const char *drba_origin;
145 dmu_recv_cookie_t *drba_cookie;
146 cred_t *drba_cred;
147 proc_t *drba_proc;
148 dsl_crypto_params_t *drba_dcp;
149 } dmu_recv_begin_arg_t;
150
151 static void
byteswap_record(dmu_replay_record_t * drr)152 byteswap_record(dmu_replay_record_t *drr)
153 {
154 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156 drr->drr_type = BSWAP_32(drr->drr_type);
157 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158
159 switch (drr->drr_type) {
160 case DRR_BEGIN:
161 DO64(drr_begin.drr_magic);
162 DO64(drr_begin.drr_versioninfo);
163 DO64(drr_begin.drr_creation_time);
164 DO32(drr_begin.drr_type);
165 DO32(drr_begin.drr_flags);
166 DO64(drr_begin.drr_toguid);
167 DO64(drr_begin.drr_fromguid);
168 break;
169 case DRR_OBJECT:
170 DO64(drr_object.drr_object);
171 DO32(drr_object.drr_type);
172 DO32(drr_object.drr_bonustype);
173 DO32(drr_object.drr_blksz);
174 DO32(drr_object.drr_bonuslen);
175 DO32(drr_object.drr_raw_bonuslen);
176 DO64(drr_object.drr_toguid);
177 DO64(drr_object.drr_maxblkid);
178 break;
179 case DRR_FREEOBJECTS:
180 DO64(drr_freeobjects.drr_firstobj);
181 DO64(drr_freeobjects.drr_numobjs);
182 DO64(drr_freeobjects.drr_toguid);
183 break;
184 case DRR_WRITE:
185 DO64(drr_write.drr_object);
186 DO32(drr_write.drr_type);
187 DO64(drr_write.drr_offset);
188 DO64(drr_write.drr_logical_size);
189 DO64(drr_write.drr_toguid);
190 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191 DO64(drr_write.drr_key.ddk_prop);
192 DO64(drr_write.drr_compressed_size);
193 break;
194 case DRR_WRITE_EMBEDDED:
195 DO64(drr_write_embedded.drr_object);
196 DO64(drr_write_embedded.drr_offset);
197 DO64(drr_write_embedded.drr_length);
198 DO64(drr_write_embedded.drr_toguid);
199 DO32(drr_write_embedded.drr_lsize);
200 DO32(drr_write_embedded.drr_psize);
201 break;
202 case DRR_FREE:
203 DO64(drr_free.drr_object);
204 DO64(drr_free.drr_offset);
205 DO64(drr_free.drr_length);
206 DO64(drr_free.drr_toguid);
207 break;
208 case DRR_SPILL:
209 DO64(drr_spill.drr_object);
210 DO64(drr_spill.drr_length);
211 DO64(drr_spill.drr_toguid);
212 DO64(drr_spill.drr_compressed_size);
213 DO32(drr_spill.drr_type);
214 break;
215 case DRR_OBJECT_RANGE:
216 DO64(drr_object_range.drr_firstobj);
217 DO64(drr_object_range.drr_numslots);
218 DO64(drr_object_range.drr_toguid);
219 break;
220 case DRR_REDACT:
221 DO64(drr_redact.drr_object);
222 DO64(drr_redact.drr_offset);
223 DO64(drr_redact.drr_length);
224 DO64(drr_redact.drr_toguid);
225 break;
226 case DRR_END:
227 DO64(drr_end.drr_toguid);
228 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229 break;
230 default:
231 break;
232 }
233
234 if (drr->drr_type != DRR_BEGIN) {
235 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236 }
237
238 #undef DO64
239 #undef DO32
240 }
241
242 static boolean_t
redact_snaps_contains(uint64_t * snaps,uint64_t num_snaps,uint64_t guid)243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244 {
245 for (int i = 0; i < num_snaps; i++) {
246 if (snaps[i] == guid)
247 return (B_TRUE);
248 }
249 return (B_FALSE);
250 }
251
252 /*
253 * Check that the new stream we're trying to receive is redacted with respect to
254 * a subset of the snapshots that the origin was redacted with respect to. For
255 * the reasons behind this, see the man page on redacted zfs sends and receives.
256 */
257 static boolean_t
compatible_redact_snaps(uint64_t * origin_snaps,uint64_t origin_num_snaps,uint64_t * redact_snaps,uint64_t num_redact_snaps)258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259 uint64_t *redact_snaps, uint64_t num_redact_snaps)
260 {
261 /*
262 * Short circuit the comparison; if we are redacted with respect to
263 * more snapshots than the origin, we can't be redacted with respect
264 * to a subset.
265 */
266 if (num_redact_snaps > origin_num_snaps) {
267 return (B_FALSE);
268 }
269
270 for (int i = 0; i < num_redact_snaps; i++) {
271 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272 redact_snaps[i])) {
273 return (B_FALSE);
274 }
275 }
276 return (B_TRUE);
277 }
278
279 static boolean_t
redact_check(dmu_recv_begin_arg_t * drba,dsl_dataset_t * origin)280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281 {
282 uint64_t *origin_snaps;
283 uint64_t origin_num_snaps;
284 dmu_recv_cookie_t *drc = drba->drba_cookie;
285 struct drr_begin *drrb = drc->drc_drrb;
286 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287 int err = 0;
288 boolean_t ret = B_TRUE;
289 uint64_t *redact_snaps;
290 uint_t numredactsnaps;
291
292 /*
293 * If this is a full send stream, we're safe no matter what.
294 */
295 if (drrb->drr_fromguid == 0)
296 return (ret);
297
298 VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300
301 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303 0) {
304 /*
305 * If the send stream was sent from the redaction bookmark or
306 * the redacted version of the dataset, then we're safe. Verify
307 * that this is from the a compatible redaction bookmark or
308 * redacted dataset.
309 */
310 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311 redact_snaps, numredactsnaps)) {
312 err = EINVAL;
313 }
314 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315 /*
316 * If the stream is redacted, it must be redacted with respect
317 * to a subset of what the origin is redacted with respect to.
318 * See case number 2 in the zfs man page section on redacted zfs
319 * send.
320 */
321 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323
324 if (err != 0 || !compatible_redact_snaps(origin_snaps,
325 origin_num_snaps, redact_snaps, numredactsnaps)) {
326 err = EINVAL;
327 }
328 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329 drrb->drr_toguid)) {
330 /*
331 * If the stream isn't redacted but the origin is, this must be
332 * one of the snapshots the origin is redacted with respect to.
333 * See case number 1 in the zfs man page section on redacted zfs
334 * send.
335 */
336 err = EINVAL;
337 }
338
339 if (err != 0)
340 ret = B_FALSE;
341 return (ret);
342 }
343
344 /*
345 * If we previously received a stream with --large-block, we don't support
346 * receiving an incremental on top of it without --large-block. This avoids
347 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348 * records.
349 */
350 static int
recv_check_large_blocks(dsl_dataset_t * ds,uint64_t featureflags)351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352 {
353 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356 return (0);
357 }
358
359 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid,uint64_t featureflags)360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361 uint64_t fromguid, uint64_t featureflags)
362 {
363 uint64_t obj;
364 uint64_t children;
365 int error;
366 dsl_dataset_t *snap;
367 dsl_pool_t *dp = ds->ds_dir->dd_pool;
368 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371
372 /* Temporary clone name must not exist. */
373 error = zap_lookup(dp->dp_meta_objset,
374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
375 8, 1, &obj);
376 if (error != ENOENT)
377 return (error == 0 ? SET_ERROR(EBUSY) : error);
378
379 /* Resume state must not be set. */
380 if (dsl_dataset_has_resume_receive_state(ds))
381 return (SET_ERROR(EBUSY));
382
383 /* New snapshot name must not exist if we're not healing it. */
384 error = zap_lookup(dp->dp_meta_objset,
385 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
386 drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387 if (drba->drba_cookie->drc_heal) {
388 if (error != 0)
389 return (error);
390 } else if (error != ENOENT) {
391 return (error == 0 ? SET_ERROR(EEXIST) : error);
392 }
393
394 /* Must not have children if receiving a ZVOL. */
395 error = zap_count(dp->dp_meta_objset,
396 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397 if (error != 0)
398 return (error);
399 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400 children > 0)
401 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402
403 /*
404 * Check snapshot limit before receiving. We'll recheck again at the
405 * end, but might as well abort before receiving if we're already over
406 * the limit.
407 *
408 * Note that we do not check the file system limit with
409 * dsl_dir_fscount_check because the temporary %clones don't count
410 * against that limit.
411 */
412 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
413 NULL, drba->drba_cred, drba->drba_proc);
414 if (error != 0)
415 return (error);
416
417 if (drba->drba_cookie->drc_heal) {
418 /* Encryption is incompatible with embedded data. */
419 if (encrypted && embed)
420 return (SET_ERROR(EINVAL));
421
422 /* Healing is not supported when in 'force' mode. */
423 if (drba->drba_cookie->drc_force)
424 return (SET_ERROR(EINVAL));
425
426 /* Must have keys loaded if doing encrypted non-raw recv. */
427 if (encrypted && !raw) {
428 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429 NULL, NULL) != 0)
430 return (SET_ERROR(EACCES));
431 }
432
433 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434 if (error != 0)
435 return (error);
436
437 /*
438 * When not doing best effort corrective recv healing can only
439 * be done if the send stream is for the same snapshot as the
440 * one we are trying to heal.
441 */
442 if (zfs_recv_best_effort_corrective == 0 &&
443 drba->drba_cookie->drc_drrb->drr_toguid !=
444 dsl_dataset_phys(snap)->ds_guid) {
445 dsl_dataset_rele(snap, FTAG);
446 return (SET_ERROR(ENOTSUP));
447 }
448 dsl_dataset_rele(snap, FTAG);
449 } else if (fromguid != 0) {
450 /* Sanity check the incremental recv */
451 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452
453 /* Can't perform a raw receive on top of a non-raw receive */
454 if (!encrypted && raw)
455 return (SET_ERROR(EINVAL));
456
457 /* Encryption is incompatible with embedded data */
458 if (encrypted && embed)
459 return (SET_ERROR(EINVAL));
460
461 /* Find snapshot in this dir that matches fromguid. */
462 while (obj != 0) {
463 error = dsl_dataset_hold_obj(dp, obj, FTAG,
464 &snap);
465 if (error != 0)
466 return (SET_ERROR(ENODEV));
467 if (snap->ds_dir != ds->ds_dir) {
468 dsl_dataset_rele(snap, FTAG);
469 return (SET_ERROR(ENODEV));
470 }
471 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472 break;
473 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474 dsl_dataset_rele(snap, FTAG);
475 }
476 if (obj == 0)
477 return (SET_ERROR(ENODEV));
478
479 if (drba->drba_cookie->drc_force) {
480 drba->drba_cookie->drc_fromsnapobj = obj;
481 } else {
482 /*
483 * If we are not forcing, there must be no
484 * changes since fromsnap. Raw sends have an
485 * additional constraint that requires that
486 * no "noop" snapshots exist between fromsnap
487 * and tosnap for the IVset checking code to
488 * work properly.
489 */
490 if (dsl_dataset_modified_since_snap(ds, snap) ||
491 (raw &&
492 dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493 snap->ds_object)) {
494 dsl_dataset_rele(snap, FTAG);
495 return (SET_ERROR(ETXTBSY));
496 }
497 drba->drba_cookie->drc_fromsnapobj =
498 ds->ds_prev->ds_object;
499 }
500
501 if (dsl_dataset_feature_is_active(snap,
502 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503 snap)) {
504 dsl_dataset_rele(snap, FTAG);
505 return (SET_ERROR(EINVAL));
506 }
507
508 error = recv_check_large_blocks(snap, featureflags);
509 if (error != 0) {
510 dsl_dataset_rele(snap, FTAG);
511 return (error);
512 }
513
514 dsl_dataset_rele(snap, FTAG);
515 } else {
516 /* If full and not healing then must be forced. */
517 if (!drba->drba_cookie->drc_force)
518 return (SET_ERROR(EEXIST));
519
520 /*
521 * We don't support using zfs recv -F to blow away
522 * encrypted filesystems. This would require the
523 * dsl dir to point to the old encryption key and
524 * the new one at the same time during the receive.
525 */
526 if ((!encrypted && raw) || encrypted)
527 return (SET_ERROR(EINVAL));
528
529 /*
530 * Perform the same encryption checks we would if
531 * we were creating a new dataset from scratch.
532 */
533 if (!raw) {
534 boolean_t will_encrypt;
535
536 error = dmu_objset_create_crypt_check(
537 ds->ds_dir->dd_parent, drba->drba_dcp,
538 &will_encrypt);
539 if (error != 0)
540 return (error);
541
542 if (will_encrypt && embed)
543 return (SET_ERROR(EINVAL));
544 }
545 }
546
547 return (0);
548 }
549
550 /*
551 * Check that any feature flags used in the data stream we're receiving are
552 * supported by the pool we are receiving into.
553 *
554 * Note that some of the features we explicitly check here have additional
555 * (implicit) features they depend on, but those dependencies are enforced
556 * through the zfeature_register() calls declaring the features that we
557 * explicitly check.
558 */
559 static int
recv_begin_check_feature_flags_impl(uint64_t featureflags,spa_t * spa)560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561 {
562 /*
563 * Check if there are any unsupported feature flags.
564 */
565 if (!DMU_STREAM_SUPPORTED(featureflags)) {
566 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567 }
568
569 /* Verify pool version supports SA if SA_SPILL feature set */
570 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571 spa_version(spa) < SPA_VERSION_SA)
572 return (SET_ERROR(ENOTSUP));
573
574 /*
575 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576 * and large_dnodes in the stream can only be used if those pool
577 * features are enabled because we don't attempt to decompress /
578 * un-embed / un-mooch / split up the blocks / dnodes during the
579 * receive process.
580 */
581 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583 return (SET_ERROR(ENOTSUP));
584 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586 return (SET_ERROR(ENOTSUP));
587 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589 return (SET_ERROR(ENOTSUP));
590 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592 return (SET_ERROR(ENOTSUP));
593 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595 return (SET_ERROR(ENOTSUP));
596 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) &&
597 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP))
598 return (SET_ERROR(ENOTSUP));
599
600 /*
601 * Receiving redacted streams requires that redacted datasets are
602 * enabled.
603 */
604 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
605 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
606 return (SET_ERROR(ENOTSUP));
607
608 /*
609 * If the LONGNAME is not enabled on the target, fail that request.
610 */
611 if ((featureflags & DMU_BACKUP_FEATURE_LONGNAME) &&
612 !spa_feature_is_enabled(spa, SPA_FEATURE_LONGNAME))
613 return (SET_ERROR(ENOTSUP));
614
615 return (0);
616 }
617
618 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)619 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
620 {
621 dmu_recv_begin_arg_t *drba = arg;
622 dsl_pool_t *dp = dmu_tx_pool(tx);
623 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
624 uint64_t fromguid = drrb->drr_fromguid;
625 int flags = drrb->drr_flags;
626 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
627 int error;
628 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
629 dsl_dataset_t *ds;
630 const char *tofs = drba->drba_cookie->drc_tofs;
631
632 /* already checked */
633 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
634 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
635
636 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
637 DMU_COMPOUNDSTREAM ||
638 drrb->drr_type >= DMU_OST_NUMTYPES ||
639 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
640 return (SET_ERROR(EINVAL));
641
642 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
643 if (error != 0)
644 return (error);
645
646 /* Resumable receives require extensible datasets */
647 if (drba->drba_cookie->drc_resumable &&
648 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
649 return (SET_ERROR(ENOTSUP));
650
651 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
652 /* raw receives require the encryption feature */
653 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
654 return (SET_ERROR(ENOTSUP));
655
656 /* embedded data is incompatible with encryption and raw recv */
657 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
658 return (SET_ERROR(EINVAL));
659
660 /* raw receives require spill block allocation flag */
661 if (!(flags & DRR_FLAG_SPILL_BLOCK))
662 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
663 } else {
664 /*
665 * We support unencrypted datasets below encrypted ones now,
666 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
667 * with a dataset we may encrypt.
668 */
669 if (drba->drba_dcp == NULL ||
670 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
671 dsflags |= DS_HOLD_FLAG_DECRYPT;
672 }
673 }
674
675 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
676 if (error == 0) {
677 /* target fs already exists; recv into temp clone */
678
679 /* Can't recv a clone into an existing fs */
680 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
681 dsl_dataset_rele_flags(ds, dsflags, FTAG);
682 return (SET_ERROR(EINVAL));
683 }
684
685 error = recv_begin_check_existing_impl(drba, ds, fromguid,
686 featureflags);
687 dsl_dataset_rele_flags(ds, dsflags, FTAG);
688 } else if (error == ENOENT) {
689 /* target fs does not exist; must be a full backup or clone */
690 char buf[ZFS_MAX_DATASET_NAME_LEN];
691 objset_t *os;
692
693 /* healing recv must be done "into" an existing snapshot */
694 if (drba->drba_cookie->drc_heal == B_TRUE)
695 return (SET_ERROR(ENOTSUP));
696
697 /*
698 * If it's a non-clone incremental, we are missing the
699 * target fs, so fail the recv.
700 */
701 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
702 drba->drba_origin))
703 return (SET_ERROR(ENOENT));
704
705 /*
706 * If we're receiving a full send as a clone, and it doesn't
707 * contain all the necessary free records and freeobject
708 * records, reject it.
709 */
710 if (fromguid == 0 && drba->drba_origin != NULL &&
711 !(flags & DRR_FLAG_FREERECORDS))
712 return (SET_ERROR(EINVAL));
713
714 /* Open the parent of tofs */
715 ASSERT3U(strlen(tofs), <, sizeof (buf));
716 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
717 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
718 if (error != 0)
719 return (error);
720
721 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
722 drba->drba_origin == NULL) {
723 boolean_t will_encrypt;
724
725 /*
726 * Check that we aren't breaking any encryption rules
727 * and that we have all the parameters we need to
728 * create an encrypted dataset if necessary. If we are
729 * making an encrypted dataset the stream can't have
730 * embedded data.
731 */
732 error = dmu_objset_create_crypt_check(ds->ds_dir,
733 drba->drba_dcp, &will_encrypt);
734 if (error != 0) {
735 dsl_dataset_rele(ds, FTAG);
736 return (error);
737 }
738
739 if (will_encrypt &&
740 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
741 dsl_dataset_rele(ds, FTAG);
742 return (SET_ERROR(EINVAL));
743 }
744 }
745
746 /*
747 * Check filesystem and snapshot limits before receiving. We'll
748 * recheck snapshot limits again at the end (we create the
749 * filesystems and increment those counts during begin_sync).
750 */
751 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
752 ZFS_PROP_FILESYSTEM_LIMIT, NULL,
753 drba->drba_cred, drba->drba_proc);
754 if (error != 0) {
755 dsl_dataset_rele(ds, FTAG);
756 return (error);
757 }
758
759 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
760 ZFS_PROP_SNAPSHOT_LIMIT, NULL,
761 drba->drba_cred, drba->drba_proc);
762 if (error != 0) {
763 dsl_dataset_rele(ds, FTAG);
764 return (error);
765 }
766
767 /* can't recv below anything but filesystems (eg. no ZVOLs) */
768 error = dmu_objset_from_ds(ds, &os);
769 if (error != 0) {
770 dsl_dataset_rele(ds, FTAG);
771 return (error);
772 }
773 if (dmu_objset_type(os) != DMU_OST_ZFS) {
774 dsl_dataset_rele(ds, FTAG);
775 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
776 }
777
778 if (drba->drba_origin != NULL) {
779 dsl_dataset_t *origin;
780 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
781 dsflags, FTAG, &origin);
782 if (error != 0) {
783 dsl_dataset_rele(ds, FTAG);
784 return (error);
785 }
786 if (!origin->ds_is_snapshot) {
787 dsl_dataset_rele_flags(origin, dsflags, FTAG);
788 dsl_dataset_rele(ds, FTAG);
789 return (SET_ERROR(EINVAL));
790 }
791 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
792 fromguid != 0) {
793 dsl_dataset_rele_flags(origin, dsflags, FTAG);
794 dsl_dataset_rele(ds, FTAG);
795 return (SET_ERROR(ENODEV));
796 }
797
798 if (origin->ds_dir->dd_crypto_obj != 0 &&
799 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
800 dsl_dataset_rele_flags(origin, dsflags, FTAG);
801 dsl_dataset_rele(ds, FTAG);
802 return (SET_ERROR(EINVAL));
803 }
804
805 /*
806 * If the origin is redacted we need to verify that this
807 * send stream can safely be received on top of the
808 * origin.
809 */
810 if (dsl_dataset_feature_is_active(origin,
811 SPA_FEATURE_REDACTED_DATASETS)) {
812 if (!redact_check(drba, origin)) {
813 dsl_dataset_rele_flags(origin, dsflags,
814 FTAG);
815 dsl_dataset_rele_flags(ds, dsflags,
816 FTAG);
817 return (SET_ERROR(EINVAL));
818 }
819 }
820
821 error = recv_check_large_blocks(ds, featureflags);
822 if (error != 0) {
823 dsl_dataset_rele_flags(origin, dsflags, FTAG);
824 dsl_dataset_rele_flags(ds, dsflags, FTAG);
825 return (error);
826 }
827
828 dsl_dataset_rele_flags(origin, dsflags, FTAG);
829 }
830
831 dsl_dataset_rele(ds, FTAG);
832 error = 0;
833 }
834 return (error);
835 }
836
837 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)838 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
839 {
840 dmu_recv_begin_arg_t *drba = arg;
841 dsl_pool_t *dp = dmu_tx_pool(tx);
842 objset_t *mos = dp->dp_meta_objset;
843 dmu_recv_cookie_t *drc = drba->drba_cookie;
844 struct drr_begin *drrb = drc->drc_drrb;
845 const char *tofs = drc->drc_tofs;
846 uint64_t featureflags = drc->drc_featureflags;
847 dsl_dataset_t *ds, *newds;
848 objset_t *os;
849 uint64_t dsobj;
850 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
851 int error;
852 uint64_t crflags = 0;
853 dsl_crypto_params_t dummy_dcp = { 0 };
854 dsl_crypto_params_t *dcp = drba->drba_dcp;
855
856 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
857 crflags |= DS_FLAG_CI_DATASET;
858
859 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
860 dsflags |= DS_HOLD_FLAG_DECRYPT;
861
862 /*
863 * Raw, non-incremental recvs always use a dummy dcp with
864 * the raw cmd set. Raw incremental recvs do not use a dcp
865 * since the encryption parameters are already set in stone.
866 */
867 if (dcp == NULL && drrb->drr_fromguid == 0 &&
868 drba->drba_origin == NULL) {
869 ASSERT3P(dcp, ==, NULL);
870 dcp = &dummy_dcp;
871
872 if (featureflags & DMU_BACKUP_FEATURE_RAW)
873 dcp->cp_cmd = DCP_CMD_RAW_RECV;
874 }
875
876 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
877 if (error == 0) {
878 /* Create temporary clone unless we're doing corrective recv */
879 dsl_dataset_t *snap = NULL;
880
881 if (drba->drba_cookie->drc_fromsnapobj != 0) {
882 VERIFY0(dsl_dataset_hold_obj(dp,
883 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
884 ASSERT3P(dcp, ==, NULL);
885 }
886 if (drc->drc_heal) {
887 /* When healing we want to use the provided snapshot */
888 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
889 &dsobj));
890 } else {
891 dsobj = dsl_dataset_create_sync(ds->ds_dir,
892 recv_clone_name, snap, crflags, drba->drba_cred,
893 dcp, tx);
894 }
895 if (drba->drba_cookie->drc_fromsnapobj != 0)
896 dsl_dataset_rele(snap, FTAG);
897 dsl_dataset_rele_flags(ds, dsflags, FTAG);
898 } else {
899 dsl_dir_t *dd;
900 const char *tail;
901 dsl_dataset_t *origin = NULL;
902
903 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
904
905 if (drba->drba_origin != NULL) {
906 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
907 FTAG, &origin));
908 ASSERT3P(dcp, ==, NULL);
909 }
910
911 /* Create new dataset. */
912 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
913 origin, crflags, drba->drba_cred, dcp, tx);
914 if (origin != NULL)
915 dsl_dataset_rele(origin, FTAG);
916 dsl_dir_rele(dd, FTAG);
917 drc->drc_newfs = B_TRUE;
918 }
919 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
920 &newds));
921 if (dsl_dataset_feature_is_active(newds,
922 SPA_FEATURE_REDACTED_DATASETS)) {
923 /*
924 * If the origin dataset is redacted, the child will be redacted
925 * when we create it. We clear the new dataset's
926 * redaction info; if it should be redacted, we'll fill
927 * in its information later.
928 */
929 dsl_dataset_deactivate_feature(newds,
930 SPA_FEATURE_REDACTED_DATASETS, tx);
931 }
932 VERIFY0(dmu_objset_from_ds(newds, &os));
933
934 if (drc->drc_resumable) {
935 dsl_dataset_zapify(newds, tx);
936 if (drrb->drr_fromguid != 0) {
937 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
938 8, 1, &drrb->drr_fromguid, tx));
939 }
940 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
941 8, 1, &drrb->drr_toguid, tx));
942 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
943 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
944 uint64_t one = 1;
945 uint64_t zero = 0;
946 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
947 8, 1, &one, tx));
948 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
949 8, 1, &zero, tx));
950 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
951 8, 1, &zero, tx));
952 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
953 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
954 8, 1, &one, tx));
955 }
956 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
957 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
958 8, 1, &one, tx));
959 }
960 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
961 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
962 8, 1, &one, tx));
963 }
964 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
965 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
966 8, 1, &one, tx));
967 }
968
969 uint64_t *redact_snaps;
970 uint_t numredactsnaps;
971 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
972 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
973 &numredactsnaps) == 0) {
974 VERIFY0(zap_add(mos, dsobj,
975 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
976 sizeof (*redact_snaps), numredactsnaps,
977 redact_snaps, tx));
978 }
979 }
980
981 /*
982 * Usually the os->os_encrypted value is tied to the presence of a
983 * DSL Crypto Key object in the dd. However, that will not be received
984 * until dmu_recv_stream(), so we set the value manually for now.
985 */
986 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
987 os->os_encrypted = B_TRUE;
988 drba->drba_cookie->drc_raw = B_TRUE;
989 }
990
991 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
992 uint64_t *redact_snaps;
993 uint_t numredactsnaps;
994 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
995 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
996 dsl_dataset_activate_redaction(newds, redact_snaps,
997 numredactsnaps, tx);
998 }
999
1000 if (featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) {
1001 /*
1002 * The source has seen a large microzap at least once in its
1003 * life, so we activate the feature here to match. It's not
1004 * strictly necessary since a large microzap is usable without
1005 * the feature active, but if that object is sent on from here,
1006 * we need this info to know to add the stream feature.
1007 *
1008 * There may be no large microzap in the incoming stream, or
1009 * ever again, but this is a very niche feature and its very
1010 * difficult to spot a large microzap in the stream, so its
1011 * not worth the effort of trying harder to activate the
1012 * feature at first use.
1013 */
1014 dsl_dataset_activate_feature(dsobj, SPA_FEATURE_LARGE_MICROZAP,
1015 (void *)B_TRUE, tx);
1016 }
1017
1018 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1019 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1020
1021 /*
1022 * Activate longname feature if received
1023 */
1024 if (featureflags & DMU_BACKUP_FEATURE_LONGNAME &&
1025 !dsl_dataset_feature_is_active(newds, SPA_FEATURE_LONGNAME)) {
1026 dsl_dataset_activate_feature(newds->ds_object,
1027 SPA_FEATURE_LONGNAME, (void *)B_TRUE, tx);
1028 newds->ds_feature[SPA_FEATURE_LONGNAME] = (void *)B_TRUE;
1029 }
1030
1031 /*
1032 * If we actually created a non-clone, we need to create the objset
1033 * in our new dataset. If this is a raw send we postpone this until
1034 * dmu_recv_stream() so that we can allocate the metadnode with the
1035 * properties from the DRR_BEGIN payload.
1036 */
1037 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1038 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1039 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1040 !drc->drc_heal) {
1041 (void) dmu_objset_create_impl(dp->dp_spa,
1042 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1043 }
1044 rrw_exit(&newds->ds_bp_rwlock, FTAG);
1045
1046 drba->drba_cookie->drc_ds = newds;
1047 drba->drba_cookie->drc_os = os;
1048
1049 spa_history_log_internal_ds(newds, "receive", tx, " ");
1050 }
1051
1052 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)1053 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1054 {
1055 dmu_recv_begin_arg_t *drba = arg;
1056 dmu_recv_cookie_t *drc = drba->drba_cookie;
1057 dsl_pool_t *dp = dmu_tx_pool(tx);
1058 struct drr_begin *drrb = drc->drc_drrb;
1059 int error;
1060 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1061 dsl_dataset_t *ds;
1062 const char *tofs = drc->drc_tofs;
1063
1064 /* already checked */
1065 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1066 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1067
1068 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1069 DMU_COMPOUNDSTREAM ||
1070 drrb->drr_type >= DMU_OST_NUMTYPES)
1071 return (SET_ERROR(EINVAL));
1072
1073 /*
1074 * This is mostly a sanity check since we should have already done these
1075 * checks during a previous attempt to receive the data.
1076 */
1077 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1078 dp->dp_spa);
1079 if (error != 0)
1080 return (error);
1081
1082 /* 6 extra bytes for /%recv */
1083 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1084
1085 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1086 tofs, recv_clone_name);
1087
1088 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1089 /* raw receives require spill block allocation flag */
1090 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1091 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1092 } else {
1093 dsflags |= DS_HOLD_FLAG_DECRYPT;
1094 }
1095
1096 boolean_t recvexist = B_TRUE;
1097 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1098 /* %recv does not exist; continue in tofs */
1099 recvexist = B_FALSE;
1100 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1101 if (error != 0)
1102 return (error);
1103 }
1104
1105 /*
1106 * Resume of full/newfs recv on existing dataset should be done with
1107 * force flag
1108 */
1109 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1110 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1111 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1112 }
1113
1114 /* check that ds is marked inconsistent */
1115 if (!DS_IS_INCONSISTENT(ds)) {
1116 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1117 return (SET_ERROR(EINVAL));
1118 }
1119
1120 /* check that there is resuming data, and that the toguid matches */
1121 if (!dsl_dataset_is_zapified(ds)) {
1122 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1123 return (SET_ERROR(EINVAL));
1124 }
1125 uint64_t val;
1126 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1127 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1128 if (error != 0 || drrb->drr_toguid != val) {
1129 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1130 return (SET_ERROR(EINVAL));
1131 }
1132
1133 /*
1134 * Check if the receive is still running. If so, it will be owned.
1135 * Note that nothing else can own the dataset (e.g. after the receive
1136 * fails) because it will be marked inconsistent.
1137 */
1138 if (dsl_dataset_has_owner(ds)) {
1139 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1140 return (SET_ERROR(EBUSY));
1141 }
1142
1143 /* There should not be any snapshots of this fs yet. */
1144 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1145 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1146 return (SET_ERROR(EINVAL));
1147 }
1148
1149 /*
1150 * Note: resume point will be checked when we process the first WRITE
1151 * record.
1152 */
1153
1154 /* check that the origin matches */
1155 val = 0;
1156 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1157 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1158 if (drrb->drr_fromguid != val) {
1159 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1160 return (SET_ERROR(EINVAL));
1161 }
1162
1163 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1164 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1165
1166 /*
1167 * If we're resuming, and the send is redacted, then the original send
1168 * must have been redacted, and must have been redacted with respect to
1169 * the same snapshots.
1170 */
1171 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1172 uint64_t num_ds_redact_snaps;
1173 uint64_t *ds_redact_snaps;
1174
1175 uint_t num_stream_redact_snaps;
1176 uint64_t *stream_redact_snaps;
1177
1178 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1179 BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1180 &num_stream_redact_snaps) != 0) {
1181 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1182 return (SET_ERROR(EINVAL));
1183 }
1184
1185 if (!dsl_dataset_get_uint64_array_feature(ds,
1186 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1187 &ds_redact_snaps)) {
1188 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1189 return (SET_ERROR(EINVAL));
1190 }
1191
1192 for (int i = 0; i < num_ds_redact_snaps; i++) {
1193 if (!redact_snaps_contains(ds_redact_snaps,
1194 num_ds_redact_snaps, stream_redact_snaps[i])) {
1195 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1196 return (SET_ERROR(EINVAL));
1197 }
1198 }
1199 }
1200
1201 error = recv_check_large_blocks(ds, drc->drc_featureflags);
1202 if (error != 0) {
1203 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1204 return (error);
1205 }
1206
1207 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1208 return (0);
1209 }
1210
1211 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)1212 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1213 {
1214 dmu_recv_begin_arg_t *drba = arg;
1215 dsl_pool_t *dp = dmu_tx_pool(tx);
1216 const char *tofs = drba->drba_cookie->drc_tofs;
1217 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1218 dsl_dataset_t *ds;
1219 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1220 /* 6 extra bytes for /%recv */
1221 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1222
1223 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1224 recv_clone_name);
1225
1226 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1227 drba->drba_cookie->drc_raw = B_TRUE;
1228 } else {
1229 dsflags |= DS_HOLD_FLAG_DECRYPT;
1230 }
1231
1232 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1233 != 0) {
1234 /* %recv does not exist; continue in tofs */
1235 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1236 &ds));
1237 drba->drba_cookie->drc_newfs = B_TRUE;
1238 }
1239
1240 ASSERT(DS_IS_INCONSISTENT(ds));
1241 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1242 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1243 drba->drba_cookie->drc_raw);
1244 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1245
1246 drba->drba_cookie->drc_ds = ds;
1247 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1248 drba->drba_cookie->drc_should_save = B_TRUE;
1249
1250 spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1251 }
1252
1253 /*
1254 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1255 * succeeds; otherwise we will leak the holds on the datasets.
1256 */
1257 int
dmu_recv_begin(const char * tofs,const char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t heal,boolean_t resumable,nvlist_t * localprops,nvlist_t * hidden_args,const char * origin,dmu_recv_cookie_t * drc,zfs_file_t * fp,offset_t * voffp)1258 dmu_recv_begin(const char *tofs, const char *tosnap,
1259 dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1260 boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1261 const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1262 offset_t *voffp)
1263 {
1264 dmu_recv_begin_arg_t drba = { 0 };
1265 int err = 0;
1266
1267 memset(drc, 0, sizeof (dmu_recv_cookie_t));
1268 drc->drc_drr_begin = drr_begin;
1269 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1270 drc->drc_tosnap = tosnap;
1271 drc->drc_tofs = tofs;
1272 drc->drc_force = force;
1273 drc->drc_heal = heal;
1274 drc->drc_resumable = resumable;
1275 drc->drc_cred = CRED();
1276 drc->drc_proc = curproc;
1277 drc->drc_clone = (origin != NULL);
1278
1279 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1280 drc->drc_byteswap = B_TRUE;
1281 (void) fletcher_4_incremental_byteswap(drr_begin,
1282 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1283 byteswap_record(drr_begin);
1284 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1285 (void) fletcher_4_incremental_native(drr_begin,
1286 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1287 } else {
1288 return (SET_ERROR(EINVAL));
1289 }
1290
1291 drc->drc_fp = fp;
1292 drc->drc_voff = *voffp;
1293 drc->drc_featureflags =
1294 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1295
1296 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1297
1298 /*
1299 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1300 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1301 * upper limit. Systems with less than 1GB of RAM will see a lower
1302 * limit from `arc_all_memory() / 4`.
1303 */
1304 if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1305 return (E2BIG);
1306
1307
1308 if (payloadlen != 0) {
1309 void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1310 /*
1311 * For compatibility with recursive send streams, we don't do
1312 * this here if the stream could be part of a package. Instead,
1313 * we'll do it in dmu_recv_stream. If we pull the next header
1314 * too early, and it's the END record, we break the `recv_skip`
1315 * logic.
1316 */
1317
1318 err = receive_read_payload_and_next_header(drc, payloadlen,
1319 payload);
1320 if (err != 0) {
1321 vmem_free(payload, payloadlen);
1322 return (err);
1323 }
1324 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1325 KM_SLEEP);
1326 vmem_free(payload, payloadlen);
1327 if (err != 0) {
1328 kmem_free(drc->drc_next_rrd,
1329 sizeof (*drc->drc_next_rrd));
1330 return (err);
1331 }
1332 }
1333
1334 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1335 drc->drc_spill = B_TRUE;
1336
1337 drba.drba_origin = origin;
1338 drba.drba_cookie = drc;
1339 drba.drba_cred = CRED();
1340 drba.drba_proc = curproc;
1341
1342 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1343 err = dsl_sync_task(tofs,
1344 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1345 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1346 } else {
1347 /*
1348 * For non-raw, non-incremental, non-resuming receives the
1349 * user can specify encryption parameters on the command line
1350 * with "zfs recv -o". For these receives we create a dcp and
1351 * pass it to the sync task. Creating the dcp will implicitly
1352 * remove the encryption params from the localprops nvlist,
1353 * which avoids errors when trying to set these normally
1354 * read-only properties. Any other kind of receive that
1355 * attempts to set these properties will fail as a result.
1356 */
1357 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1358 DMU_BACKUP_FEATURE_RAW) == 0 &&
1359 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1360 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1361 localprops, hidden_args, &drba.drba_dcp);
1362 }
1363
1364 if (err == 0) {
1365 err = dsl_sync_task(tofs,
1366 dmu_recv_begin_check, dmu_recv_begin_sync,
1367 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1368 dsl_crypto_params_free(drba.drba_dcp, !!err);
1369 }
1370 }
1371
1372 if (err != 0) {
1373 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1374 nvlist_free(drc->drc_begin_nvl);
1375 }
1376 return (err);
1377 }
1378
1379 /*
1380 * Holds data need for corrective recv callback
1381 */
1382 typedef struct cr_cb_data {
1383 uint64_t size;
1384 zbookmark_phys_t zb;
1385 spa_t *spa;
1386 } cr_cb_data_t;
1387
1388 static void
corrective_read_done(zio_t * zio)1389 corrective_read_done(zio_t *zio)
1390 {
1391 cr_cb_data_t *data = zio->io_private;
1392 /* Corruption corrected; update error log if needed */
1393 if (zio->io_error == 0) {
1394 spa_remove_error(data->spa, &data->zb,
1395 BP_GET_LOGICAL_BIRTH(zio->io_bp));
1396 }
1397 kmem_free(data, sizeof (cr_cb_data_t));
1398 abd_free(zio->io_abd);
1399 }
1400
1401 /*
1402 * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1403 */
1404 static int
do_corrective_recv(struct receive_writer_arg * rwa,struct drr_write * drrw,struct receive_record_arg * rrd,blkptr_t * bp)1405 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1406 struct receive_record_arg *rrd, blkptr_t *bp)
1407 {
1408 int err;
1409 zio_t *io;
1410 zbookmark_phys_t zb;
1411 dnode_t *dn;
1412 abd_t *abd = rrd->abd;
1413 zio_cksum_t bp_cksum = bp->blk_cksum;
1414 zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1415 ZIO_FLAG_CANFAIL;
1416
1417 if (rwa->raw)
1418 flags |= ZIO_FLAG_RAW;
1419
1420 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1421 if (err != 0)
1422 return (err);
1423 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1424 dbuf_whichblock(dn, 0, drrw->drr_offset));
1425 dnode_rele(dn, FTAG);
1426
1427 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1428 /* Decompress the stream data */
1429 abd_t *dabd = abd_alloc_linear(
1430 drrw->drr_logical_size, B_FALSE);
1431 err = zio_decompress_data(drrw->drr_compressiontype,
1432 abd, dabd, abd_get_size(abd),
1433 abd_get_size(dabd), NULL);
1434
1435 if (err != 0) {
1436 abd_free(dabd);
1437 return (err);
1438 }
1439 /* Swap in the newly decompressed data into the abd */
1440 abd_free(abd);
1441 abd = dabd;
1442 }
1443
1444 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1445 /* Recompress the data */
1446 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1447 B_FALSE);
1448 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1449 abd, &cabd, abd_get_size(abd), BP_GET_PSIZE(bp),
1450 rwa->os->os_complevel);
1451 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1452 /* Swap in newly compressed data into the abd */
1453 abd_free(abd);
1454 abd = cabd;
1455 flags |= ZIO_FLAG_RAW_COMPRESS;
1456 }
1457
1458 /*
1459 * The stream is not encrypted but the data on-disk is.
1460 * We need to re-encrypt the buf using the same
1461 * encryption type, salt, iv, and mac that was used to encrypt
1462 * the block previosly.
1463 */
1464 if (!rwa->raw && BP_USES_CRYPT(bp)) {
1465 dsl_dataset_t *ds;
1466 dsl_crypto_key_t *dck = NULL;
1467 uint8_t salt[ZIO_DATA_SALT_LEN];
1468 uint8_t iv[ZIO_DATA_IV_LEN];
1469 uint8_t mac[ZIO_DATA_MAC_LEN];
1470 boolean_t no_crypt = B_FALSE;
1471 dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1472 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1473
1474 zio_crypt_decode_params_bp(bp, salt, iv);
1475 zio_crypt_decode_mac_bp(bp, mac);
1476
1477 dsl_pool_config_enter(dp, FTAG);
1478 err = dsl_dataset_hold_flags(dp, rwa->tofs,
1479 DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1480 if (err != 0) {
1481 dsl_pool_config_exit(dp, FTAG);
1482 abd_free(eabd);
1483 return (SET_ERROR(EACCES));
1484 }
1485
1486 /* Look up the key from the spa's keystore */
1487 err = spa_keystore_lookup_key(rwa->os->os_spa,
1488 zb.zb_objset, FTAG, &dck);
1489 if (err != 0) {
1490 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1491 FTAG);
1492 dsl_pool_config_exit(dp, FTAG);
1493 abd_free(eabd);
1494 return (SET_ERROR(EACCES));
1495 }
1496
1497 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1498 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1499 mac, abd_get_size(abd), abd, eabd, &no_crypt);
1500
1501 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1502 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1503 dsl_pool_config_exit(dp, FTAG);
1504
1505 ASSERT0(no_crypt);
1506 if (err != 0) {
1507 abd_free(eabd);
1508 return (err);
1509 }
1510 /* Swap in the newly encrypted data into the abd */
1511 abd_free(abd);
1512 abd = eabd;
1513
1514 /*
1515 * We want to prevent zio_rewrite() from trying to
1516 * encrypt the data again
1517 */
1518 flags |= ZIO_FLAG_RAW_ENCRYPT;
1519 }
1520 rrd->abd = abd;
1521
1522 io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp,
1523 abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags,
1524 &zb);
1525
1526 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1527 abd_get_size(abd) == BP_GET_PSIZE(bp));
1528
1529 /* compute new bp checksum value and make sure it matches the old one */
1530 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1531 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1532 zio_destroy(io);
1533 if (zfs_recv_best_effort_corrective != 0)
1534 return (0);
1535 return (SET_ERROR(ECKSUM));
1536 }
1537
1538 /* Correct the corruption in place */
1539 err = zio_wait(io);
1540 if (err == 0) {
1541 cr_cb_data_t *cb_data =
1542 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1543 cb_data->spa = rwa->os->os_spa;
1544 cb_data->size = drrw->drr_logical_size;
1545 cb_data->zb = zb;
1546 /* Test if healing worked by re-reading the bp */
1547 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1548 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1549 drrw->drr_logical_size, corrective_read_done,
1550 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1551 }
1552 if (err != 0 && zfs_recv_best_effort_corrective != 0)
1553 err = 0;
1554
1555 return (err);
1556 }
1557
1558 static int
receive_read(dmu_recv_cookie_t * drc,int len,void * buf)1559 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1560 {
1561 int done = 0;
1562
1563 /*
1564 * The code doesn't rely on this (lengths being multiples of 8). See
1565 * comment in dump_bytes.
1566 */
1567 ASSERT(len % 8 == 0 ||
1568 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1569
1570 while (done < len) {
1571 ssize_t resid = len - done;
1572 zfs_file_t *fp = drc->drc_fp;
1573 int err = zfs_file_read(fp, (char *)buf + done,
1574 len - done, &resid);
1575 if (err == 0 && resid == len - done) {
1576 /*
1577 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1578 * that the receive was interrupted and can
1579 * potentially be resumed.
1580 */
1581 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1582 }
1583 drc->drc_voff += len - done - resid;
1584 done = len - resid;
1585 if (err != 0)
1586 return (err);
1587 }
1588
1589 drc->drc_bytes_read += len;
1590
1591 ASSERT3U(done, ==, len);
1592 return (0);
1593 }
1594
1595 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1596 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1597 {
1598 if (bonus_type == DMU_OT_SA) {
1599 return (1);
1600 } else {
1601 return (1 +
1602 ((DN_OLD_MAX_BONUSLEN -
1603 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1604 }
1605 }
1606
1607 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1608 save_resume_state(struct receive_writer_arg *rwa,
1609 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1610 {
1611 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1612
1613 if (!rwa->resumable)
1614 return;
1615
1616 /*
1617 * We use ds_resume_bytes[] != 0 to indicate that we need to
1618 * update this on disk, so it must not be 0.
1619 */
1620 ASSERT(rwa->bytes_read != 0);
1621
1622 /*
1623 * We only resume from write records, which have a valid
1624 * (non-meta-dnode) object number.
1625 */
1626 ASSERT(object != 0);
1627
1628 /*
1629 * For resuming to work correctly, we must receive records in order,
1630 * sorted by object,offset. This is checked by the callers, but
1631 * assert it here for good measure.
1632 */
1633 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1634 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1635 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1636 ASSERT3U(rwa->bytes_read, >=,
1637 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1638
1639 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1640 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1641 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1642 }
1643
1644 static int
receive_object_is_same_generation(objset_t * os,uint64_t object,dmu_object_type_t old_bonus_type,dmu_object_type_t new_bonus_type,const void * new_bonus,boolean_t * samegenp)1645 receive_object_is_same_generation(objset_t *os, uint64_t object,
1646 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1647 const void *new_bonus, boolean_t *samegenp)
1648 {
1649 zfs_file_info_t zoi;
1650 int err;
1651
1652 dmu_buf_t *old_bonus_dbuf;
1653 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1654 if (err != 0)
1655 return (err);
1656 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1657 &zoi);
1658 dmu_buf_rele(old_bonus_dbuf, FTAG);
1659 if (err != 0)
1660 return (err);
1661 uint64_t old_gen = zoi.zfi_generation;
1662
1663 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1664 if (err != 0)
1665 return (err);
1666 uint64_t new_gen = zoi.zfi_generation;
1667
1668 *samegenp = (old_gen == new_gen);
1669 return (0);
1670 }
1671
1672 static int
receive_handle_existing_object(const struct receive_writer_arg * rwa,const struct drr_object * drro,const dmu_object_info_t * doi,const void * bonus_data,uint64_t * object_to_hold,uint32_t * new_blksz)1673 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1674 const struct drr_object *drro, const dmu_object_info_t *doi,
1675 const void *bonus_data,
1676 uint64_t *object_to_hold, uint32_t *new_blksz)
1677 {
1678 uint32_t indblksz = drro->drr_indblkshift ?
1679 1ULL << drro->drr_indblkshift : 0;
1680 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1681 drro->drr_bonuslen);
1682 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1683 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1684 boolean_t do_free_range = B_FALSE;
1685 int err;
1686
1687 *object_to_hold = drro->drr_object;
1688
1689 /* nblkptr should be bounded by the bonus size and type */
1690 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1691 return (SET_ERROR(EINVAL));
1692
1693 /*
1694 * After the previous send stream, the sending system may
1695 * have freed this object, and then happened to re-allocate
1696 * this object number in a later txg. In this case, we are
1697 * receiving a different logical file, and the block size may
1698 * appear to be different. i.e. we may have a different
1699 * block size for this object than what the send stream says.
1700 * In this case we need to remove the object's contents,
1701 * so that its structure can be changed and then its contents
1702 * entirely replaced by subsequent WRITE records.
1703 *
1704 * If this is a -L (--large-block) incremental stream, and
1705 * the previous stream was not -L, the block size may appear
1706 * to increase. i.e. we may have a smaller block size for
1707 * this object than what the send stream says. In this case
1708 * we need to keep the object's contents and block size
1709 * intact, so that we don't lose parts of the object's
1710 * contents that are not changed by this incremental send
1711 * stream.
1712 *
1713 * We can distinguish between the two above cases by using
1714 * the ZPL's generation number (see
1715 * receive_object_is_same_generation()). However, we only
1716 * want to rely on the generation number when absolutely
1717 * necessary, because with raw receives, the generation is
1718 * encrypted. We also want to minimize dependence on the
1719 * ZPL, so that other types of datasets can also be received
1720 * (e.g. ZVOLs, although note that ZVOLS currently do not
1721 * reallocate their objects or change their structure).
1722 * Therefore, we check a number of different cases where we
1723 * know it is safe to discard the object's contents, before
1724 * using the ZPL's generation number to make the above
1725 * distinction.
1726 */
1727 if (drro->drr_blksz != doi->doi_data_block_size) {
1728 if (rwa->raw) {
1729 /*
1730 * RAW streams always have large blocks, so
1731 * we are sure that the data is not needed
1732 * due to changing --large-block to be on.
1733 * Which is fortunate since the bonus buffer
1734 * (which contains the ZPL generation) is
1735 * encrypted, and the key might not be
1736 * loaded.
1737 */
1738 do_free_range = B_TRUE;
1739 } else if (rwa->full) {
1740 /*
1741 * This is a full send stream, so it always
1742 * replaces what we have. Even if the
1743 * generation numbers happen to match, this
1744 * can not actually be the same logical file.
1745 * This is relevant when receiving a full
1746 * send as a clone.
1747 */
1748 do_free_range = B_TRUE;
1749 } else if (drro->drr_type !=
1750 DMU_OT_PLAIN_FILE_CONTENTS ||
1751 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1752 /*
1753 * PLAIN_FILE_CONTENTS are the only type of
1754 * objects that have ever been stored with
1755 * large blocks, so we don't need the special
1756 * logic below. ZAP blocks can shrink (when
1757 * there's only one block), so we don't want
1758 * to hit the error below about block size
1759 * only increasing.
1760 */
1761 do_free_range = B_TRUE;
1762 } else if (doi->doi_max_offset <=
1763 doi->doi_data_block_size) {
1764 /*
1765 * There is only one block. We can free it,
1766 * because its contents will be replaced by a
1767 * WRITE record. This can not be the no-L ->
1768 * -L case, because the no-L case would have
1769 * resulted in multiple blocks. If we
1770 * supported -L -> no-L, it would not be safe
1771 * to free the file's contents. Fortunately,
1772 * that is not allowed (see
1773 * recv_check_large_blocks()).
1774 */
1775 do_free_range = B_TRUE;
1776 } else {
1777 boolean_t is_same_gen;
1778 err = receive_object_is_same_generation(rwa->os,
1779 drro->drr_object, doi->doi_bonus_type,
1780 drro->drr_bonustype, bonus_data, &is_same_gen);
1781 if (err != 0)
1782 return (SET_ERROR(EINVAL));
1783
1784 if (is_same_gen) {
1785 /*
1786 * This is the same logical file, and
1787 * the block size must be increasing.
1788 * It could only decrease if
1789 * --large-block was changed to be
1790 * off, which is checked in
1791 * recv_check_large_blocks().
1792 */
1793 if (drro->drr_blksz <=
1794 doi->doi_data_block_size)
1795 return (SET_ERROR(EINVAL));
1796 /*
1797 * We keep the existing blocksize and
1798 * contents.
1799 */
1800 *new_blksz =
1801 doi->doi_data_block_size;
1802 } else {
1803 do_free_range = B_TRUE;
1804 }
1805 }
1806 }
1807
1808 /* nblkptr can only decrease if the object was reallocated */
1809 if (nblkptr < doi->doi_nblkptr)
1810 do_free_range = B_TRUE;
1811
1812 /* number of slots can only change on reallocation */
1813 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1814 do_free_range = B_TRUE;
1815
1816 /*
1817 * For raw sends we also check a few other fields to
1818 * ensure we are preserving the objset structure exactly
1819 * as it was on the receive side:
1820 * - A changed indirect block size
1821 * - A smaller nlevels
1822 */
1823 if (rwa->raw) {
1824 if (indblksz != doi->doi_metadata_block_size)
1825 do_free_range = B_TRUE;
1826 if (drro->drr_nlevels < doi->doi_indirection)
1827 do_free_range = B_TRUE;
1828 }
1829
1830 if (do_free_range) {
1831 err = dmu_free_long_range(rwa->os, drro->drr_object,
1832 0, DMU_OBJECT_END);
1833 if (err != 0)
1834 return (SET_ERROR(EINVAL));
1835 }
1836
1837 /*
1838 * The dmu does not currently support decreasing nlevels or changing
1839 * indirect block size if there is already one, same as changing the
1840 * number of of dnode slots on an object. For non-raw sends this
1841 * does not matter and the new object can just use the previous one's
1842 * parameters. For raw sends, however, the structure of the received
1843 * dnode (including indirects and dnode slots) must match that of the
1844 * send side. Therefore, instead of using dmu_object_reclaim(), we
1845 * must free the object completely and call dmu_object_claim_dnsize()
1846 * instead.
1847 */
1848 if ((rwa->raw && ((doi->doi_indirection > 1 &&
1849 indblksz != doi->doi_metadata_block_size) ||
1850 drro->drr_nlevels < doi->doi_indirection)) ||
1851 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1852 err = dmu_free_long_object(rwa->os, drro->drr_object);
1853 if (err != 0)
1854 return (SET_ERROR(EINVAL));
1855
1856 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1857 *object_to_hold = DMU_NEW_OBJECT;
1858 }
1859
1860 /*
1861 * For raw receives, free everything beyond the new incoming
1862 * maxblkid. Normally this would be done with a DRR_FREE
1863 * record that would come after this DRR_OBJECT record is
1864 * processed. However, for raw receives we manually set the
1865 * maxblkid from the drr_maxblkid and so we must first free
1866 * everything above that blkid to ensure the DMU is always
1867 * consistent with itself. We will never free the first block
1868 * of the object here because a maxblkid of 0 could indicate
1869 * an object with a single block or one with no blocks. This
1870 * free may be skipped when dmu_free_long_range() was called
1871 * above since it covers the entire object's contents.
1872 */
1873 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1874 err = dmu_free_long_range(rwa->os, drro->drr_object,
1875 (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1876 DMU_OBJECT_END);
1877 if (err != 0)
1878 return (SET_ERROR(EINVAL));
1879 }
1880 return (0);
1881 }
1882
1883 noinline static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1884 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1885 void *data)
1886 {
1887 dmu_object_info_t doi;
1888 dmu_tx_t *tx;
1889 int err;
1890 uint32_t new_blksz = drro->drr_blksz;
1891 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1892 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1893
1894 if (drro->drr_type == DMU_OT_NONE ||
1895 !DMU_OT_IS_VALID(drro->drr_type) ||
1896 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1897 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1898 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1899 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1900 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1901 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1902 drro->drr_bonuslen >
1903 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1904 dn_slots >
1905 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1906 return (SET_ERROR(EINVAL));
1907 }
1908
1909 if (rwa->raw) {
1910 /*
1911 * We should have received a DRR_OBJECT_RANGE record
1912 * containing this block and stored it in rwa.
1913 */
1914 if (drro->drr_object < rwa->or_firstobj ||
1915 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1916 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1917 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1918 drro->drr_nlevels > DN_MAX_LEVELS ||
1919 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1920 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1921 drro->drr_raw_bonuslen)
1922 return (SET_ERROR(EINVAL));
1923 } else {
1924 /*
1925 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1926 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1927 */
1928 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1929 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1930 return (SET_ERROR(EINVAL));
1931 }
1932
1933 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1934 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1935 return (SET_ERROR(EINVAL));
1936 }
1937 }
1938
1939 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1940
1941 if (err != 0 && err != ENOENT && err != EEXIST)
1942 return (SET_ERROR(EINVAL));
1943
1944 if (drro->drr_object > rwa->max_object)
1945 rwa->max_object = drro->drr_object;
1946
1947 /*
1948 * If we are losing blkptrs or changing the block size this must
1949 * be a new file instance. We must clear out the previous file
1950 * contents before we can change this type of metadata in the dnode.
1951 * Raw receives will also check that the indirect structure of the
1952 * dnode hasn't changed.
1953 */
1954 uint64_t object_to_hold;
1955 if (err == 0) {
1956 err = receive_handle_existing_object(rwa, drro, &doi, data,
1957 &object_to_hold, &new_blksz);
1958 if (err != 0)
1959 return (err);
1960 } else if (err == EEXIST) {
1961 /*
1962 * The object requested is currently an interior slot of a
1963 * multi-slot dnode. This will be resolved when the next txg
1964 * is synced out, since the send stream will have told us
1965 * to free this slot when we freed the associated dnode
1966 * earlier in the stream.
1967 */
1968 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1969
1970 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1971 return (SET_ERROR(EINVAL));
1972
1973 /* object was freed and we are about to allocate a new one */
1974 object_to_hold = DMU_NEW_OBJECT;
1975 } else {
1976 /*
1977 * If the only record in this range so far was DRR_FREEOBJECTS
1978 * with at least one actually freed object, it's possible that
1979 * the block will now be converted to a hole. We need to wait
1980 * for the txg to sync to prevent races.
1981 */
1982 if (rwa->or_need_sync == ORNS_YES)
1983 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1984
1985 /* object is free and we are about to allocate a new one */
1986 object_to_hold = DMU_NEW_OBJECT;
1987 }
1988
1989 /* Only relevant for the first object in the range */
1990 rwa->or_need_sync = ORNS_NO;
1991
1992 /*
1993 * If this is a multi-slot dnode there is a chance that this
1994 * object will expand into a slot that is already used by
1995 * another object from the previous snapshot. We must free
1996 * these objects before we attempt to allocate the new dnode.
1997 */
1998 if (dn_slots > 1) {
1999 boolean_t need_sync = B_FALSE;
2000
2001 for (uint64_t slot = drro->drr_object + 1;
2002 slot < drro->drr_object + dn_slots;
2003 slot++) {
2004 dmu_object_info_t slot_doi;
2005
2006 err = dmu_object_info(rwa->os, slot, &slot_doi);
2007 if (err == ENOENT || err == EEXIST)
2008 continue;
2009 else if (err != 0)
2010 return (err);
2011
2012 err = dmu_free_long_object(rwa->os, slot);
2013 if (err != 0)
2014 return (err);
2015
2016 need_sync = B_TRUE;
2017 }
2018
2019 if (need_sync)
2020 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
2021 }
2022
2023 tx = dmu_tx_create(rwa->os);
2024 dmu_tx_hold_bonus(tx, object_to_hold);
2025 dmu_tx_hold_write(tx, object_to_hold, 0, 0);
2026 err = dmu_tx_assign(tx, TXG_WAIT);
2027 if (err != 0) {
2028 dmu_tx_abort(tx);
2029 return (err);
2030 }
2031
2032 if (object_to_hold == DMU_NEW_OBJECT) {
2033 /* Currently free, wants to be allocated */
2034 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
2035 drro->drr_type, new_blksz,
2036 drro->drr_bonustype, drro->drr_bonuslen,
2037 dn_slots << DNODE_SHIFT, tx);
2038 } else if (drro->drr_type != doi.doi_type ||
2039 new_blksz != doi.doi_data_block_size ||
2040 drro->drr_bonustype != doi.doi_bonus_type ||
2041 drro->drr_bonuslen != doi.doi_bonus_size) {
2042 /* Currently allocated, but with different properties */
2043 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
2044 drro->drr_type, new_blksz,
2045 drro->drr_bonustype, drro->drr_bonuslen,
2046 dn_slots << DNODE_SHIFT, rwa->spill ?
2047 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2048 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2049 /*
2050 * Currently allocated, the existing version of this object
2051 * may reference a spill block that is no longer allocated
2052 * at the source and needs to be freed.
2053 */
2054 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2055 }
2056
2057 if (err != 0) {
2058 dmu_tx_commit(tx);
2059 return (SET_ERROR(EINVAL));
2060 }
2061
2062 if (rwa->or_crypt_params_present) {
2063 /*
2064 * Set the crypt params for the buffer associated with this
2065 * range of dnodes. This causes the blkptr_t to have the
2066 * same crypt params (byteorder, salt, iv, mac) as on the
2067 * sending side.
2068 *
2069 * Since we are committing this tx now, it is possible for
2070 * the dnode block to end up on-disk with the incorrect MAC,
2071 * if subsequent objects in this block are received in a
2072 * different txg. However, since the dataset is marked as
2073 * inconsistent, no code paths will do a non-raw read (or
2074 * decrypt the block / verify the MAC). The receive code and
2075 * scrub code can safely do raw reads and verify the
2076 * checksum. They don't need to verify the MAC.
2077 */
2078 dmu_buf_t *db = NULL;
2079 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2080
2081 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2082 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2083 if (err != 0) {
2084 dmu_tx_commit(tx);
2085 return (SET_ERROR(EINVAL));
2086 }
2087
2088 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2089 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2090
2091 dmu_buf_rele(db, FTAG);
2092
2093 rwa->or_crypt_params_present = B_FALSE;
2094 }
2095
2096 dmu_object_set_checksum(rwa->os, drro->drr_object,
2097 drro->drr_checksumtype, tx);
2098 dmu_object_set_compress(rwa->os, drro->drr_object,
2099 drro->drr_compress, tx);
2100
2101 /* handle more restrictive dnode structuring for raw recvs */
2102 if (rwa->raw) {
2103 /*
2104 * Set the indirect block size, block shift, nlevels.
2105 * This will not fail because we ensured all of the
2106 * blocks were freed earlier if this is a new object.
2107 * For non-new objects block size and indirect block
2108 * shift cannot change and nlevels can only increase.
2109 */
2110 ASSERT3U(new_blksz, ==, drro->drr_blksz);
2111 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2112 drro->drr_blksz, drro->drr_indblkshift, tx));
2113 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2114 drro->drr_nlevels, tx));
2115
2116 /*
2117 * Set the maxblkid. This will always succeed because
2118 * we freed all blocks beyond the new maxblkid above.
2119 */
2120 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2121 drro->drr_maxblkid, tx));
2122 }
2123
2124 if (data != NULL) {
2125 dmu_buf_t *db;
2126 dnode_t *dn;
2127 uint32_t flags = DMU_READ_NO_PREFETCH;
2128
2129 if (rwa->raw)
2130 flags |= DMU_READ_NO_DECRYPT;
2131
2132 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2133 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2134
2135 dmu_buf_will_dirty(db, tx);
2136
2137 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2138 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2139
2140 /*
2141 * Raw bonus buffers have their byteorder determined by the
2142 * DRR_OBJECT_RANGE record.
2143 */
2144 if (rwa->byteswap && !rwa->raw) {
2145 dmu_object_byteswap_t byteswap =
2146 DMU_OT_BYTESWAP(drro->drr_bonustype);
2147 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2148 DRR_OBJECT_PAYLOAD_SIZE(drro));
2149 }
2150 dmu_buf_rele(db, FTAG);
2151 dnode_rele(dn, FTAG);
2152 }
2153
2154 /*
2155 * If the receive fails, we want the resume stream to start with the
2156 * same record that we last successfully received. There is no way to
2157 * request resume from the object record, but we can benefit from the
2158 * fact that sender always sends object record before anything else,
2159 * after which it will "resend" data at offset 0 and resume normally.
2160 */
2161 save_resume_state(rwa, drro->drr_object, 0, tx);
2162
2163 dmu_tx_commit(tx);
2164
2165 return (0);
2166 }
2167
2168 noinline static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)2169 receive_freeobjects(struct receive_writer_arg *rwa,
2170 struct drr_freeobjects *drrfo)
2171 {
2172 uint64_t obj;
2173 int next_err = 0;
2174
2175 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2176 return (SET_ERROR(EINVAL));
2177
2178 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2179 obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2180 obj < DN_MAX_OBJECT && next_err == 0;
2181 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2182 dmu_object_info_t doi;
2183 int err;
2184
2185 err = dmu_object_info(rwa->os, obj, &doi);
2186 if (err == ENOENT)
2187 continue;
2188 else if (err != 0)
2189 return (err);
2190
2191 err = dmu_free_long_object(rwa->os, obj);
2192
2193 if (err != 0)
2194 return (err);
2195
2196 if (rwa->or_need_sync == ORNS_MAYBE)
2197 rwa->or_need_sync = ORNS_YES;
2198 }
2199 if (next_err != ESRCH)
2200 return (next_err);
2201 return (0);
2202 }
2203
2204 /*
2205 * Note: if this fails, the caller will clean up any records left on the
2206 * rwa->write_batch list.
2207 */
2208 static int
flush_write_batch_impl(struct receive_writer_arg * rwa)2209 flush_write_batch_impl(struct receive_writer_arg *rwa)
2210 {
2211 dnode_t *dn;
2212 int err;
2213
2214 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2215 return (SET_ERROR(EINVAL));
2216
2217 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2218 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2219
2220 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2221 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2222
2223 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2224 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2225
2226 dmu_tx_t *tx = dmu_tx_create(rwa->os);
2227 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2228 last_drrw->drr_offset - first_drrw->drr_offset +
2229 last_drrw->drr_logical_size);
2230 err = dmu_tx_assign(tx, TXG_WAIT);
2231 if (err != 0) {
2232 dmu_tx_abort(tx);
2233 dnode_rele(dn, FTAG);
2234 return (err);
2235 }
2236
2237 struct receive_record_arg *rrd;
2238 while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2239 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2240 abd_t *abd = rrd->abd;
2241
2242 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2243
2244 if (drrw->drr_logical_size != dn->dn_datablksz) {
2245 /*
2246 * The WRITE record is larger than the object's block
2247 * size. We must be receiving an incremental
2248 * large-block stream into a dataset that previously did
2249 * a non-large-block receive. Lightweight writes must
2250 * be exactly one block, so we need to decompress the
2251 * data (if compressed) and do a normal dmu_write().
2252 */
2253 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2254 if (DRR_WRITE_COMPRESSED(drrw)) {
2255 abd_t *decomp_abd =
2256 abd_alloc_linear(drrw->drr_logical_size,
2257 B_FALSE);
2258
2259 err = zio_decompress_data(
2260 drrw->drr_compressiontype,
2261 abd, decomp_abd,
2262 abd_get_size(abd),
2263 abd_get_size(decomp_abd), NULL);
2264
2265 if (err == 0) {
2266 dmu_write_by_dnode(dn,
2267 drrw->drr_offset,
2268 drrw->drr_logical_size,
2269 abd_to_buf(decomp_abd), tx);
2270 }
2271 abd_free(decomp_abd);
2272 } else {
2273 dmu_write_by_dnode(dn,
2274 drrw->drr_offset,
2275 drrw->drr_logical_size,
2276 abd_to_buf(abd), tx);
2277 }
2278 if (err == 0)
2279 abd_free(abd);
2280 } else {
2281 zio_prop_t zp = {0};
2282 dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2283
2284 zio_flag_t zio_flags = 0;
2285
2286 if (rwa->raw) {
2287 zp.zp_encrypt = B_TRUE;
2288 zp.zp_compress = drrw->drr_compressiontype;
2289 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2290 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2291 rwa->byteswap;
2292 memcpy(zp.zp_salt, drrw->drr_salt,
2293 ZIO_DATA_SALT_LEN);
2294 memcpy(zp.zp_iv, drrw->drr_iv,
2295 ZIO_DATA_IV_LEN);
2296 memcpy(zp.zp_mac, drrw->drr_mac,
2297 ZIO_DATA_MAC_LEN);
2298 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2299 zp.zp_nopwrite = B_FALSE;
2300 zp.zp_copies = MIN(zp.zp_copies,
2301 SPA_DVAS_PER_BP - 1);
2302 }
2303 zio_flags |= ZIO_FLAG_RAW;
2304 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2305 ASSERT3U(drrw->drr_compressed_size, >, 0);
2306 ASSERT3U(drrw->drr_logical_size, >=,
2307 drrw->drr_compressed_size);
2308 zp.zp_compress = drrw->drr_compressiontype;
2309 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2310 } else if (rwa->byteswap) {
2311 /*
2312 * Note: compressed blocks never need to be
2313 * byteswapped, because WRITE records for
2314 * metadata blocks are never compressed. The
2315 * exception is raw streams, which are written
2316 * in the original byteorder, and the byteorder
2317 * bit is preserved in the BP by setting
2318 * zp_byteorder above.
2319 */
2320 dmu_object_byteswap_t byteswap =
2321 DMU_OT_BYTESWAP(drrw->drr_type);
2322 dmu_ot_byteswap[byteswap].ob_func(
2323 abd_to_buf(abd),
2324 DRR_WRITE_PAYLOAD_SIZE(drrw));
2325 }
2326
2327 /*
2328 * Since this data can't be read until the receive
2329 * completes, we can do a "lightweight" write for
2330 * improved performance.
2331 */
2332 err = dmu_lightweight_write_by_dnode(dn,
2333 drrw->drr_offset, abd, &zp, zio_flags, tx);
2334 }
2335
2336 if (err != 0) {
2337 /*
2338 * This rrd is left on the list, so the caller will
2339 * free it (and the abd).
2340 */
2341 break;
2342 }
2343
2344 /*
2345 * Note: If the receive fails, we want the resume stream to
2346 * start with the same record that we last successfully
2347 * received (as opposed to the next record), so that we can
2348 * verify that we are resuming from the correct location.
2349 */
2350 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2351
2352 list_remove(&rwa->write_batch, rrd);
2353 kmem_free(rrd, sizeof (*rrd));
2354 }
2355
2356 dmu_tx_commit(tx);
2357 dnode_rele(dn, FTAG);
2358 return (err);
2359 }
2360
2361 noinline static int
flush_write_batch(struct receive_writer_arg * rwa)2362 flush_write_batch(struct receive_writer_arg *rwa)
2363 {
2364 if (list_is_empty(&rwa->write_batch))
2365 return (0);
2366 int err = rwa->err;
2367 if (err == 0)
2368 err = flush_write_batch_impl(rwa);
2369 if (err != 0) {
2370 struct receive_record_arg *rrd;
2371 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2372 abd_free(rrd->abd);
2373 kmem_free(rrd, sizeof (*rrd));
2374 }
2375 }
2376 ASSERT(list_is_empty(&rwa->write_batch));
2377 return (err);
2378 }
2379
2380 noinline static int
receive_process_write_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2381 receive_process_write_record(struct receive_writer_arg *rwa,
2382 struct receive_record_arg *rrd)
2383 {
2384 int err = 0;
2385
2386 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2387 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2388
2389 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2390 !DMU_OT_IS_VALID(drrw->drr_type))
2391 return (SET_ERROR(EINVAL));
2392
2393 if (rwa->heal) {
2394 blkptr_t *bp;
2395 dmu_buf_t *dbp;
2396 int flags = DB_RF_CANFAIL;
2397
2398 if (rwa->raw)
2399 flags |= DB_RF_NO_DECRYPT;
2400
2401 if (rwa->byteswap) {
2402 dmu_object_byteswap_t byteswap =
2403 DMU_OT_BYTESWAP(drrw->drr_type);
2404 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2405 DRR_WRITE_PAYLOAD_SIZE(drrw));
2406 }
2407
2408 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2409 drrw->drr_offset, FTAG, &dbp);
2410 if (err != 0)
2411 return (err);
2412
2413 /* Try to read the object to see if it needs healing */
2414 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2415 /*
2416 * We only try to heal when dbuf_read() returns a ECKSUMs.
2417 * Other errors (even EIO) get returned to caller.
2418 * EIO indicates that the device is not present/accessible,
2419 * so writing to it will likely fail.
2420 * If the block is healthy, we don't want to overwrite it
2421 * unnecessarily.
2422 */
2423 if (err != ECKSUM) {
2424 dmu_buf_rele(dbp, FTAG);
2425 return (err);
2426 }
2427 /* Make sure the on-disk block and recv record sizes match */
2428 if (drrw->drr_logical_size != dbp->db_size) {
2429 err = ENOTSUP;
2430 dmu_buf_rele(dbp, FTAG);
2431 return (err);
2432 }
2433 /* Get the block pointer for the corrupted block */
2434 bp = dmu_buf_get_blkptr(dbp);
2435 err = do_corrective_recv(rwa, drrw, rrd, bp);
2436 dmu_buf_rele(dbp, FTAG);
2437 return (err);
2438 }
2439
2440 /*
2441 * For resuming to work, records must be in increasing order
2442 * by (object, offset).
2443 */
2444 if (drrw->drr_object < rwa->last_object ||
2445 (drrw->drr_object == rwa->last_object &&
2446 drrw->drr_offset < rwa->last_offset)) {
2447 return (SET_ERROR(EINVAL));
2448 }
2449
2450 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2451 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2452 uint64_t batch_size =
2453 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2454 if (first_rrd != NULL &&
2455 (drrw->drr_object != first_drrw->drr_object ||
2456 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2457 err = flush_write_batch(rwa);
2458 if (err != 0)
2459 return (err);
2460 }
2461
2462 rwa->last_object = drrw->drr_object;
2463 rwa->last_offset = drrw->drr_offset;
2464
2465 if (rwa->last_object > rwa->max_object)
2466 rwa->max_object = rwa->last_object;
2467
2468 list_insert_tail(&rwa->write_batch, rrd);
2469 /*
2470 * Return EAGAIN to indicate that we will use this rrd again,
2471 * so the caller should not free it
2472 */
2473 return (EAGAIN);
2474 }
2475
2476 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)2477 receive_write_embedded(struct receive_writer_arg *rwa,
2478 struct drr_write_embedded *drrwe, void *data)
2479 {
2480 dmu_tx_t *tx;
2481 int err;
2482
2483 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2484 return (SET_ERROR(EINVAL));
2485
2486 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2487 return (SET_ERROR(EINVAL));
2488
2489 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2490 return (SET_ERROR(EINVAL));
2491 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2492 return (SET_ERROR(EINVAL));
2493 if (rwa->raw)
2494 return (SET_ERROR(EINVAL));
2495
2496 if (drrwe->drr_object > rwa->max_object)
2497 rwa->max_object = drrwe->drr_object;
2498
2499 tx = dmu_tx_create(rwa->os);
2500
2501 dmu_tx_hold_write(tx, drrwe->drr_object,
2502 drrwe->drr_offset, drrwe->drr_length);
2503 err = dmu_tx_assign(tx, TXG_WAIT);
2504 if (err != 0) {
2505 dmu_tx_abort(tx);
2506 return (err);
2507 }
2508
2509 dmu_write_embedded(rwa->os, drrwe->drr_object,
2510 drrwe->drr_offset, data, drrwe->drr_etype,
2511 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2512 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2513
2514 /* See comment in restore_write. */
2515 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2516 dmu_tx_commit(tx);
2517 return (0);
2518 }
2519
2520 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,abd_t * abd)2521 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2522 abd_t *abd)
2523 {
2524 dmu_buf_t *db, *db_spill;
2525 int err;
2526
2527 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2528 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2529 return (SET_ERROR(EINVAL));
2530
2531 /*
2532 * This is an unmodified spill block which was added to the stream
2533 * to resolve an issue with incorrectly removing spill blocks. It
2534 * should be ignored by current versions of the code which support
2535 * the DRR_FLAG_SPILL_BLOCK flag.
2536 */
2537 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2538 abd_free(abd);
2539 return (0);
2540 }
2541
2542 if (rwa->raw) {
2543 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2544 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2545 drrs->drr_compressed_size == 0)
2546 return (SET_ERROR(EINVAL));
2547 }
2548
2549 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2550 return (SET_ERROR(EINVAL));
2551
2552 if (drrs->drr_object > rwa->max_object)
2553 rwa->max_object = drrs->drr_object;
2554
2555 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2556 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2557 &db_spill)) != 0) {
2558 dmu_buf_rele(db, FTAG);
2559 return (err);
2560 }
2561
2562 dmu_tx_t *tx = dmu_tx_create(rwa->os);
2563
2564 dmu_tx_hold_spill(tx, db->db_object);
2565
2566 err = dmu_tx_assign(tx, TXG_WAIT);
2567 if (err != 0) {
2568 dmu_buf_rele(db, FTAG);
2569 dmu_buf_rele(db_spill, FTAG);
2570 dmu_tx_abort(tx);
2571 return (err);
2572 }
2573
2574 /*
2575 * Spill blocks may both grow and shrink. When a change in size
2576 * occurs any existing dbuf must be updated to match the logical
2577 * size of the provided arc_buf_t.
2578 */
2579 if (db_spill->db_size != drrs->drr_length) {
2580 dmu_buf_will_fill(db_spill, tx, B_FALSE);
2581 VERIFY0(dbuf_spill_set_blksz(db_spill,
2582 drrs->drr_length, tx));
2583 }
2584
2585 arc_buf_t *abuf;
2586 if (rwa->raw) {
2587 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2588 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2589 rwa->byteswap;
2590
2591 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2592 drrs->drr_object, byteorder, drrs->drr_salt,
2593 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2594 drrs->drr_compressed_size, drrs->drr_length,
2595 drrs->drr_compressiontype, 0);
2596 } else {
2597 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2598 DMU_OT_IS_METADATA(drrs->drr_type),
2599 drrs->drr_length);
2600 if (rwa->byteswap) {
2601 dmu_object_byteswap_t byteswap =
2602 DMU_OT_BYTESWAP(drrs->drr_type);
2603 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2604 DRR_SPILL_PAYLOAD_SIZE(drrs));
2605 }
2606 }
2607
2608 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2609 abd_free(abd);
2610 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2611
2612 dmu_buf_rele(db, FTAG);
2613 dmu_buf_rele(db_spill, FTAG);
2614
2615 dmu_tx_commit(tx);
2616 return (0);
2617 }
2618
2619 noinline static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)2620 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2621 {
2622 int err;
2623
2624 if (drrf->drr_length != -1ULL &&
2625 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2626 return (SET_ERROR(EINVAL));
2627
2628 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2629 return (SET_ERROR(EINVAL));
2630
2631 if (drrf->drr_object > rwa->max_object)
2632 rwa->max_object = drrf->drr_object;
2633
2634 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2635 drrf->drr_offset, drrf->drr_length);
2636
2637 return (err);
2638 }
2639
2640 static int
receive_object_range(struct receive_writer_arg * rwa,struct drr_object_range * drror)2641 receive_object_range(struct receive_writer_arg *rwa,
2642 struct drr_object_range *drror)
2643 {
2644 /*
2645 * By default, we assume this block is in our native format
2646 * (ZFS_HOST_BYTEORDER). We then take into account whether
2647 * the send stream is byteswapped (rwa->byteswap). Finally,
2648 * we need to byteswap again if this particular block was
2649 * in non-native format on the send side.
2650 */
2651 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2652 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2653
2654 /*
2655 * Since dnode block sizes are constant, we should not need to worry
2656 * about making sure that the dnode block size is the same on the
2657 * sending and receiving sides for the time being. For non-raw sends,
2658 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2659 * record at all). Raw sends require this record type because the
2660 * encryption parameters are used to protect an entire block of bonus
2661 * buffers. If the size of dnode blocks ever becomes variable,
2662 * handling will need to be added to ensure that dnode block sizes
2663 * match on the sending and receiving side.
2664 */
2665 if (drror->drr_numslots != DNODES_PER_BLOCK ||
2666 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2667 !rwa->raw)
2668 return (SET_ERROR(EINVAL));
2669
2670 if (drror->drr_firstobj > rwa->max_object)
2671 rwa->max_object = drror->drr_firstobj;
2672
2673 /*
2674 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2675 * so that the block of dnodes is not written out when it's empty,
2676 * and converted to a HOLE BP.
2677 */
2678 rwa->or_crypt_params_present = B_TRUE;
2679 rwa->or_firstobj = drror->drr_firstobj;
2680 rwa->or_numslots = drror->drr_numslots;
2681 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2682 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2683 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2684 rwa->or_byteorder = byteorder;
2685
2686 rwa->or_need_sync = ORNS_MAYBE;
2687
2688 return (0);
2689 }
2690
2691 /*
2692 * Until we have the ability to redact large ranges of data efficiently, we
2693 * process these records as frees.
2694 */
2695 noinline static int
receive_redact(struct receive_writer_arg * rwa,struct drr_redact * drrr)2696 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2697 {
2698 struct drr_free drrf = {0};
2699 drrf.drr_length = drrr->drr_length;
2700 drrf.drr_object = drrr->drr_object;
2701 drrf.drr_offset = drrr->drr_offset;
2702 drrf.drr_toguid = drrr->drr_toguid;
2703 return (receive_free(rwa, &drrf));
2704 }
2705
2706 /* used to destroy the drc_ds on error */
2707 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)2708 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2709 {
2710 dsl_dataset_t *ds = drc->drc_ds;
2711 ds_hold_flags_t dsflags;
2712
2713 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2714 /*
2715 * Wait for the txg sync before cleaning up the receive. For
2716 * resumable receives, this ensures that our resume state has
2717 * been written out to disk. For raw receives, this ensures
2718 * that the user accounting code will not attempt to do anything
2719 * after we stopped receiving the dataset.
2720 */
2721 txg_wait_synced(ds->ds_dir->dd_pool, 0);
2722 ds->ds_objset->os_raw_receive = B_FALSE;
2723
2724 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2725 if (drc->drc_resumable && drc->drc_should_save &&
2726 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2727 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2728 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2729 } else {
2730 char name[ZFS_MAX_DATASET_NAME_LEN];
2731 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2732 dsl_dataset_name(ds, name);
2733 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2734 if (!drc->drc_heal)
2735 (void) dsl_destroy_head(name);
2736 }
2737 }
2738
2739 static void
receive_cksum(dmu_recv_cookie_t * drc,int len,void * buf)2740 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2741 {
2742 if (drc->drc_byteswap) {
2743 (void) fletcher_4_incremental_byteswap(buf, len,
2744 &drc->drc_cksum);
2745 } else {
2746 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2747 }
2748 }
2749
2750 /*
2751 * Read the payload into a buffer of size len, and update the current record's
2752 * payload field.
2753 * Allocate drc->drc_next_rrd and read the next record's header into
2754 * drc->drc_next_rrd->header.
2755 * Verify checksum of payload and next record.
2756 */
2757 static int
receive_read_payload_and_next_header(dmu_recv_cookie_t * drc,int len,void * buf)2758 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2759 {
2760 int err;
2761
2762 if (len != 0) {
2763 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2764 err = receive_read(drc, len, buf);
2765 if (err != 0)
2766 return (err);
2767 receive_cksum(drc, len, buf);
2768
2769 /* note: rrd is NULL when reading the begin record's payload */
2770 if (drc->drc_rrd != NULL) {
2771 drc->drc_rrd->payload = buf;
2772 drc->drc_rrd->payload_size = len;
2773 drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2774 }
2775 } else {
2776 ASSERT3P(buf, ==, NULL);
2777 }
2778
2779 drc->drc_prev_cksum = drc->drc_cksum;
2780
2781 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2782 err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2783 &drc->drc_next_rrd->header);
2784 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2785
2786 if (err != 0) {
2787 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2788 drc->drc_next_rrd = NULL;
2789 return (err);
2790 }
2791 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2792 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2793 drc->drc_next_rrd = NULL;
2794 return (SET_ERROR(EINVAL));
2795 }
2796
2797 /*
2798 * Note: checksum is of everything up to but not including the
2799 * checksum itself.
2800 */
2801 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2802 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2803 receive_cksum(drc,
2804 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2805 &drc->drc_next_rrd->header);
2806
2807 zio_cksum_t cksum_orig =
2808 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2809 zio_cksum_t *cksump =
2810 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2811
2812 if (drc->drc_byteswap)
2813 byteswap_record(&drc->drc_next_rrd->header);
2814
2815 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2816 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2817 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2818 drc->drc_next_rrd = NULL;
2819 return (SET_ERROR(ECKSUM));
2820 }
2821
2822 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2823
2824 return (0);
2825 }
2826
2827 /*
2828 * Issue the prefetch reads for any necessary indirect blocks.
2829 *
2830 * We use the object ignore list to tell us whether or not to issue prefetches
2831 * for a given object. We do this for both correctness (in case the blocksize
2832 * of an object has changed) and performance (if the object doesn't exist, don't
2833 * needlessly try to issue prefetches). We also trim the list as we go through
2834 * the stream to prevent it from growing to an unbounded size.
2835 *
2836 * The object numbers within will always be in sorted order, and any write
2837 * records we see will also be in sorted order, but they're not sorted with
2838 * respect to each other (i.e. we can get several object records before
2839 * receiving each object's write records). As a result, once we've reached a
2840 * given object number, we can safely remove any reference to lower object
2841 * numbers in the ignore list. In practice, we receive up to 32 object records
2842 * before receiving write records, so the list can have up to 32 nodes in it.
2843 */
2844 static void
receive_read_prefetch(dmu_recv_cookie_t * drc,uint64_t object,uint64_t offset,uint64_t length)2845 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2846 uint64_t length)
2847 {
2848 if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2849 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2850 ZIO_PRIORITY_SYNC_READ);
2851 }
2852 }
2853
2854 /*
2855 * Read records off the stream, issuing any necessary prefetches.
2856 */
2857 static int
receive_read_record(dmu_recv_cookie_t * drc)2858 receive_read_record(dmu_recv_cookie_t *drc)
2859 {
2860 int err;
2861
2862 switch (drc->drc_rrd->header.drr_type) {
2863 case DRR_OBJECT:
2864 {
2865 struct drr_object *drro =
2866 &drc->drc_rrd->header.drr_u.drr_object;
2867 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2868 void *buf = NULL;
2869 dmu_object_info_t doi;
2870
2871 if (size != 0)
2872 buf = kmem_zalloc(size, KM_SLEEP);
2873
2874 err = receive_read_payload_and_next_header(drc, size, buf);
2875 if (err != 0) {
2876 kmem_free(buf, size);
2877 return (err);
2878 }
2879 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2880 /*
2881 * See receive_read_prefetch for an explanation why we're
2882 * storing this object in the ignore_obj_list.
2883 */
2884 if (err == ENOENT || err == EEXIST ||
2885 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2886 objlist_insert(drc->drc_ignore_objlist,
2887 drro->drr_object);
2888 err = 0;
2889 }
2890 return (err);
2891 }
2892 case DRR_FREEOBJECTS:
2893 {
2894 err = receive_read_payload_and_next_header(drc, 0, NULL);
2895 return (err);
2896 }
2897 case DRR_WRITE:
2898 {
2899 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2900 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2901 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2902 err = receive_read_payload_and_next_header(drc, size,
2903 abd_to_buf(abd));
2904 if (err != 0) {
2905 abd_free(abd);
2906 return (err);
2907 }
2908 drc->drc_rrd->abd = abd;
2909 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2910 drrw->drr_logical_size);
2911 return (err);
2912 }
2913 case DRR_WRITE_EMBEDDED:
2914 {
2915 struct drr_write_embedded *drrwe =
2916 &drc->drc_rrd->header.drr_u.drr_write_embedded;
2917 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2918 void *buf = kmem_zalloc(size, KM_SLEEP);
2919
2920 err = receive_read_payload_and_next_header(drc, size, buf);
2921 if (err != 0) {
2922 kmem_free(buf, size);
2923 return (err);
2924 }
2925
2926 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2927 drrwe->drr_length);
2928 return (err);
2929 }
2930 case DRR_FREE:
2931 case DRR_REDACT:
2932 {
2933 /*
2934 * It might be beneficial to prefetch indirect blocks here, but
2935 * we don't really have the data to decide for sure.
2936 */
2937 err = receive_read_payload_and_next_header(drc, 0, NULL);
2938 return (err);
2939 }
2940 case DRR_END:
2941 {
2942 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2943 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2944 drre->drr_checksum))
2945 return (SET_ERROR(ECKSUM));
2946 return (0);
2947 }
2948 case DRR_SPILL:
2949 {
2950 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2951 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2952 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2953 err = receive_read_payload_and_next_header(drc, size,
2954 abd_to_buf(abd));
2955 if (err != 0)
2956 abd_free(abd);
2957 else
2958 drc->drc_rrd->abd = abd;
2959 return (err);
2960 }
2961 case DRR_OBJECT_RANGE:
2962 {
2963 err = receive_read_payload_and_next_header(drc, 0, NULL);
2964 return (err);
2965
2966 }
2967 default:
2968 return (SET_ERROR(EINVAL));
2969 }
2970 }
2971
2972
2973
2974 static void
dprintf_drr(struct receive_record_arg * rrd,int err)2975 dprintf_drr(struct receive_record_arg *rrd, int err)
2976 {
2977 #ifdef ZFS_DEBUG
2978 switch (rrd->header.drr_type) {
2979 case DRR_OBJECT:
2980 {
2981 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2982 dprintf("drr_type = OBJECT obj = %llu type = %u "
2983 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2984 "compress = %u dn_slots = %u err = %d\n",
2985 (u_longlong_t)drro->drr_object, drro->drr_type,
2986 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2987 drro->drr_checksumtype, drro->drr_compress,
2988 drro->drr_dn_slots, err);
2989 break;
2990 }
2991 case DRR_FREEOBJECTS:
2992 {
2993 struct drr_freeobjects *drrfo =
2994 &rrd->header.drr_u.drr_freeobjects;
2995 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2996 "numobjs = %llu err = %d\n",
2997 (u_longlong_t)drrfo->drr_firstobj,
2998 (u_longlong_t)drrfo->drr_numobjs, err);
2999 break;
3000 }
3001 case DRR_WRITE:
3002 {
3003 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
3004 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
3005 "lsize = %llu cksumtype = %u flags = %u "
3006 "compress = %u psize = %llu err = %d\n",
3007 (u_longlong_t)drrw->drr_object, drrw->drr_type,
3008 (u_longlong_t)drrw->drr_offset,
3009 (u_longlong_t)drrw->drr_logical_size,
3010 drrw->drr_checksumtype, drrw->drr_flags,
3011 drrw->drr_compressiontype,
3012 (u_longlong_t)drrw->drr_compressed_size, err);
3013 break;
3014 }
3015 case DRR_WRITE_BYREF:
3016 {
3017 struct drr_write_byref *drrwbr =
3018 &rrd->header.drr_u.drr_write_byref;
3019 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
3020 "length = %llu toguid = %llx refguid = %llx "
3021 "refobject = %llu refoffset = %llu cksumtype = %u "
3022 "flags = %u err = %d\n",
3023 (u_longlong_t)drrwbr->drr_object,
3024 (u_longlong_t)drrwbr->drr_offset,
3025 (u_longlong_t)drrwbr->drr_length,
3026 (u_longlong_t)drrwbr->drr_toguid,
3027 (u_longlong_t)drrwbr->drr_refguid,
3028 (u_longlong_t)drrwbr->drr_refobject,
3029 (u_longlong_t)drrwbr->drr_refoffset,
3030 drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
3031 break;
3032 }
3033 case DRR_WRITE_EMBEDDED:
3034 {
3035 struct drr_write_embedded *drrwe =
3036 &rrd->header.drr_u.drr_write_embedded;
3037 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
3038 "length = %llu compress = %u etype = %u lsize = %u "
3039 "psize = %u err = %d\n",
3040 (u_longlong_t)drrwe->drr_object,
3041 (u_longlong_t)drrwe->drr_offset,
3042 (u_longlong_t)drrwe->drr_length,
3043 drrwe->drr_compression, drrwe->drr_etype,
3044 drrwe->drr_lsize, drrwe->drr_psize, err);
3045 break;
3046 }
3047 case DRR_FREE:
3048 {
3049 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3050 dprintf("drr_type = FREE obj = %llu offset = %llu "
3051 "length = %lld err = %d\n",
3052 (u_longlong_t)drrf->drr_object,
3053 (u_longlong_t)drrf->drr_offset,
3054 (longlong_t)drrf->drr_length,
3055 err);
3056 break;
3057 }
3058 case DRR_SPILL:
3059 {
3060 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3061 dprintf("drr_type = SPILL obj = %llu length = %llu "
3062 "err = %d\n", (u_longlong_t)drrs->drr_object,
3063 (u_longlong_t)drrs->drr_length, err);
3064 break;
3065 }
3066 case DRR_OBJECT_RANGE:
3067 {
3068 struct drr_object_range *drror =
3069 &rrd->header.drr_u.drr_object_range;
3070 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3071 "numslots = %llu flags = %u err = %d\n",
3072 (u_longlong_t)drror->drr_firstobj,
3073 (u_longlong_t)drror->drr_numslots,
3074 drror->drr_flags, err);
3075 break;
3076 }
3077 default:
3078 return;
3079 }
3080 #endif
3081 }
3082
3083 /*
3084 * Commit the records to the pool.
3085 */
3086 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)3087 receive_process_record(struct receive_writer_arg *rwa,
3088 struct receive_record_arg *rrd)
3089 {
3090 int err;
3091
3092 /* Processing in order, therefore bytes_read should be increasing. */
3093 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3094 rwa->bytes_read = rrd->bytes_read;
3095
3096 /* We can only heal write records; other ones get ignored */
3097 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3098 if (rrd->abd != NULL) {
3099 abd_free(rrd->abd);
3100 rrd->abd = NULL;
3101 } else if (rrd->payload != NULL) {
3102 kmem_free(rrd->payload, rrd->payload_size);
3103 rrd->payload = NULL;
3104 }
3105 return (0);
3106 }
3107
3108 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3109 err = flush_write_batch(rwa);
3110 if (err != 0) {
3111 if (rrd->abd != NULL) {
3112 abd_free(rrd->abd);
3113 rrd->abd = NULL;
3114 rrd->payload = NULL;
3115 } else if (rrd->payload != NULL) {
3116 kmem_free(rrd->payload, rrd->payload_size);
3117 rrd->payload = NULL;
3118 }
3119
3120 return (err);
3121 }
3122 }
3123
3124 switch (rrd->header.drr_type) {
3125 case DRR_OBJECT:
3126 {
3127 struct drr_object *drro = &rrd->header.drr_u.drr_object;
3128 err = receive_object(rwa, drro, rrd->payload);
3129 kmem_free(rrd->payload, rrd->payload_size);
3130 rrd->payload = NULL;
3131 break;
3132 }
3133 case DRR_FREEOBJECTS:
3134 {
3135 struct drr_freeobjects *drrfo =
3136 &rrd->header.drr_u.drr_freeobjects;
3137 err = receive_freeobjects(rwa, drrfo);
3138 break;
3139 }
3140 case DRR_WRITE:
3141 {
3142 err = receive_process_write_record(rwa, rrd);
3143 if (rwa->heal) {
3144 /*
3145 * If healing - always free the abd after processing
3146 */
3147 abd_free(rrd->abd);
3148 rrd->abd = NULL;
3149 } else if (err != EAGAIN) {
3150 /*
3151 * On success, a non-healing
3152 * receive_process_write_record() returns
3153 * EAGAIN to indicate that we do not want to free
3154 * the rrd or arc_buf.
3155 */
3156 ASSERT(err != 0);
3157 abd_free(rrd->abd);
3158 rrd->abd = NULL;
3159 }
3160 break;
3161 }
3162 case DRR_WRITE_EMBEDDED:
3163 {
3164 struct drr_write_embedded *drrwe =
3165 &rrd->header.drr_u.drr_write_embedded;
3166 err = receive_write_embedded(rwa, drrwe, rrd->payload);
3167 kmem_free(rrd->payload, rrd->payload_size);
3168 rrd->payload = NULL;
3169 break;
3170 }
3171 case DRR_FREE:
3172 {
3173 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3174 err = receive_free(rwa, drrf);
3175 break;
3176 }
3177 case DRR_SPILL:
3178 {
3179 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3180 err = receive_spill(rwa, drrs, rrd->abd);
3181 if (err != 0)
3182 abd_free(rrd->abd);
3183 rrd->abd = NULL;
3184 rrd->payload = NULL;
3185 break;
3186 }
3187 case DRR_OBJECT_RANGE:
3188 {
3189 struct drr_object_range *drror =
3190 &rrd->header.drr_u.drr_object_range;
3191 err = receive_object_range(rwa, drror);
3192 break;
3193 }
3194 case DRR_REDACT:
3195 {
3196 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3197 err = receive_redact(rwa, drrr);
3198 break;
3199 }
3200 default:
3201 err = (SET_ERROR(EINVAL));
3202 }
3203
3204 if (err != 0)
3205 dprintf_drr(rrd, err);
3206
3207 return (err);
3208 }
3209
3210 /*
3211 * dmu_recv_stream's worker thread; pull records off the queue, and then call
3212 * receive_process_record When we're done, signal the main thread and exit.
3213 */
3214 static __attribute__((noreturn)) void
receive_writer_thread(void * arg)3215 receive_writer_thread(void *arg)
3216 {
3217 struct receive_writer_arg *rwa = arg;
3218 struct receive_record_arg *rrd;
3219 fstrans_cookie_t cookie = spl_fstrans_mark();
3220
3221 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3222 rrd = bqueue_dequeue(&rwa->q)) {
3223 /*
3224 * If there's an error, the main thread will stop putting things
3225 * on the queue, but we need to clear everything in it before we
3226 * can exit.
3227 */
3228 int err = 0;
3229 if (rwa->err == 0) {
3230 err = receive_process_record(rwa, rrd);
3231 } else if (rrd->abd != NULL) {
3232 abd_free(rrd->abd);
3233 rrd->abd = NULL;
3234 rrd->payload = NULL;
3235 } else if (rrd->payload != NULL) {
3236 kmem_free(rrd->payload, rrd->payload_size);
3237 rrd->payload = NULL;
3238 }
3239 /*
3240 * EAGAIN indicates that this record has been saved (on
3241 * raw->write_batch), and will be used again, so we don't
3242 * free it.
3243 * When healing data we always need to free the record.
3244 */
3245 if (err != EAGAIN || rwa->heal) {
3246 if (rwa->err == 0)
3247 rwa->err = err;
3248 kmem_free(rrd, sizeof (*rrd));
3249 }
3250 }
3251 kmem_free(rrd, sizeof (*rrd));
3252
3253 if (rwa->heal) {
3254 zio_wait(rwa->heal_pio);
3255 } else {
3256 int err = flush_write_batch(rwa);
3257 if (rwa->err == 0)
3258 rwa->err = err;
3259 }
3260 mutex_enter(&rwa->mutex);
3261 rwa->done = B_TRUE;
3262 cv_signal(&rwa->cv);
3263 mutex_exit(&rwa->mutex);
3264 spl_fstrans_unmark(cookie);
3265 thread_exit();
3266 }
3267
3268 static int
resume_check(dmu_recv_cookie_t * drc,nvlist_t * begin_nvl)3269 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3270 {
3271 uint64_t val;
3272 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3273 uint64_t dsobj = dmu_objset_id(drc->drc_os);
3274 uint64_t resume_obj, resume_off;
3275
3276 if (nvlist_lookup_uint64(begin_nvl,
3277 "resume_object", &resume_obj) != 0 ||
3278 nvlist_lookup_uint64(begin_nvl,
3279 "resume_offset", &resume_off) != 0) {
3280 return (SET_ERROR(EINVAL));
3281 }
3282 VERIFY0(zap_lookup(mos, dsobj,
3283 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3284 if (resume_obj != val)
3285 return (SET_ERROR(EINVAL));
3286 VERIFY0(zap_lookup(mos, dsobj,
3287 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3288 if (resume_off != val)
3289 return (SET_ERROR(EINVAL));
3290
3291 return (0);
3292 }
3293
3294 /*
3295 * Read in the stream's records, one by one, and apply them to the pool. There
3296 * are two threads involved; the thread that calls this function will spin up a
3297 * worker thread, read the records off the stream one by one, and issue
3298 * prefetches for any necessary indirect blocks. It will then push the records
3299 * onto an internal blocking queue. The worker thread will pull the records off
3300 * the queue, and actually write the data into the DMU. This way, the worker
3301 * thread doesn't have to wait for reads to complete, since everything it needs
3302 * (the indirect blocks) will be prefetched.
3303 *
3304 * NB: callers *must* call dmu_recv_end() if this succeeds.
3305 */
3306 int
dmu_recv_stream(dmu_recv_cookie_t * drc,offset_t * voffp)3307 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3308 {
3309 int err = 0;
3310 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3311
3312 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3313 uint64_t bytes = 0;
3314 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3315 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3316 sizeof (bytes), 1, &bytes);
3317 drc->drc_bytes_read += bytes;
3318 }
3319
3320 drc->drc_ignore_objlist = objlist_create();
3321
3322 /* these were verified in dmu_recv_begin */
3323 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3324 DMU_SUBSTREAM);
3325 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3326
3327 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3328 ASSERT0(drc->drc_os->os_encrypted &&
3329 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3330
3331 /* handle DSL encryption key payload */
3332 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3333 nvlist_t *keynvl = NULL;
3334
3335 ASSERT(drc->drc_os->os_encrypted);
3336 ASSERT(drc->drc_raw);
3337
3338 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3339 &keynvl);
3340 if (err != 0)
3341 goto out;
3342
3343 if (!drc->drc_heal) {
3344 /*
3345 * If this is a new dataset we set the key immediately.
3346 * Otherwise we don't want to change the key until we
3347 * are sure the rest of the receive succeeded so we
3348 * stash the keynvl away until then.
3349 */
3350 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3351 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3352 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3353 if (err != 0)
3354 goto out;
3355 }
3356
3357 /* see comment in dmu_recv_end_sync() */
3358 drc->drc_ivset_guid = 0;
3359 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3360 &drc->drc_ivset_guid);
3361
3362 if (!drc->drc_newfs)
3363 drc->drc_keynvl = fnvlist_dup(keynvl);
3364 }
3365
3366 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3367 err = resume_check(drc, drc->drc_begin_nvl);
3368 if (err != 0)
3369 goto out;
3370 }
3371
3372 /*
3373 * For compatibility with recursive send streams, we do this here,
3374 * rather than in dmu_recv_begin. If we pull the next header too
3375 * early, and it's the END record, we break the `recv_skip` logic.
3376 */
3377 if (drc->drc_drr_begin->drr_payloadlen == 0) {
3378 err = receive_read_payload_and_next_header(drc, 0, NULL);
3379 if (err != 0)
3380 goto out;
3381 }
3382
3383 /*
3384 * If we failed before this point we will clean up any new resume
3385 * state that was created. Now that we've gotten past the initial
3386 * checks we are ok to retain that resume state.
3387 */
3388 drc->drc_should_save = B_TRUE;
3389
3390 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3391 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3392 offsetof(struct receive_record_arg, node));
3393 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3394 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3395 rwa->os = drc->drc_os;
3396 rwa->byteswap = drc->drc_byteswap;
3397 rwa->heal = drc->drc_heal;
3398 rwa->tofs = drc->drc_tofs;
3399 rwa->resumable = drc->drc_resumable;
3400 rwa->raw = drc->drc_raw;
3401 rwa->spill = drc->drc_spill;
3402 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3403 rwa->os->os_raw_receive = drc->drc_raw;
3404 if (drc->drc_heal) {
3405 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3406 ZIO_FLAG_GODFATHER);
3407 }
3408 list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3409 offsetof(struct receive_record_arg, node.bqn_node));
3410
3411 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3412 TS_RUN, minclsyspri);
3413 /*
3414 * We're reading rwa->err without locks, which is safe since we are the
3415 * only reader, and the worker thread is the only writer. It's ok if we
3416 * miss a write for an iteration or two of the loop, since the writer
3417 * thread will keep freeing records we send it until we send it an eos
3418 * marker.
3419 *
3420 * We can leave this loop in 3 ways: First, if rwa->err is
3421 * non-zero. In that case, the writer thread will free the rrd we just
3422 * pushed. Second, if we're interrupted; in that case, either it's the
3423 * first loop and drc->drc_rrd was never allocated, or it's later, and
3424 * drc->drc_rrd has been handed off to the writer thread who will free
3425 * it. Finally, if receive_read_record fails or we're at the end of the
3426 * stream, then we free drc->drc_rrd and exit.
3427 */
3428 while (rwa->err == 0) {
3429 if (issig()) {
3430 err = SET_ERROR(EINTR);
3431 break;
3432 }
3433
3434 ASSERT3P(drc->drc_rrd, ==, NULL);
3435 drc->drc_rrd = drc->drc_next_rrd;
3436 drc->drc_next_rrd = NULL;
3437 /* Allocates and loads header into drc->drc_next_rrd */
3438 err = receive_read_record(drc);
3439
3440 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3441 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3442 drc->drc_rrd = NULL;
3443 break;
3444 }
3445
3446 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3447 sizeof (struct receive_record_arg) +
3448 drc->drc_rrd->payload_size);
3449 drc->drc_rrd = NULL;
3450 }
3451
3452 ASSERT3P(drc->drc_rrd, ==, NULL);
3453 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3454 drc->drc_rrd->eos_marker = B_TRUE;
3455 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3456
3457 mutex_enter(&rwa->mutex);
3458 while (!rwa->done) {
3459 /*
3460 * We need to use cv_wait_sig() so that any process that may
3461 * be sleeping here can still fork.
3462 */
3463 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3464 }
3465 mutex_exit(&rwa->mutex);
3466
3467 /*
3468 * If we are receiving a full stream as a clone, all object IDs which
3469 * are greater than the maximum ID referenced in the stream are
3470 * by definition unused and must be freed.
3471 */
3472 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3473 uint64_t obj = rwa->max_object + 1;
3474 int free_err = 0;
3475 int next_err = 0;
3476
3477 while (next_err == 0) {
3478 free_err = dmu_free_long_object(rwa->os, obj);
3479 if (free_err != 0 && free_err != ENOENT)
3480 break;
3481
3482 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3483 }
3484
3485 if (err == 0) {
3486 if (free_err != 0 && free_err != ENOENT)
3487 err = free_err;
3488 else if (next_err != ESRCH)
3489 err = next_err;
3490 }
3491 }
3492
3493 cv_destroy(&rwa->cv);
3494 mutex_destroy(&rwa->mutex);
3495 bqueue_destroy(&rwa->q);
3496 list_destroy(&rwa->write_batch);
3497 if (err == 0)
3498 err = rwa->err;
3499
3500 out:
3501 /*
3502 * If we hit an error before we started the receive_writer_thread
3503 * we need to clean up the next_rrd we create by processing the
3504 * DRR_BEGIN record.
3505 */
3506 if (drc->drc_next_rrd != NULL)
3507 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3508
3509 /*
3510 * The objset will be invalidated by dmu_recv_end() when we do
3511 * dsl_dataset_clone_swap_sync_impl().
3512 */
3513 drc->drc_os = NULL;
3514
3515 kmem_free(rwa, sizeof (*rwa));
3516 nvlist_free(drc->drc_begin_nvl);
3517
3518 if (err != 0) {
3519 /*
3520 * Clean up references. If receive is not resumable,
3521 * destroy what we created, so we don't leave it in
3522 * the inconsistent state.
3523 */
3524 dmu_recv_cleanup_ds(drc);
3525 nvlist_free(drc->drc_keynvl);
3526 }
3527
3528 objlist_destroy(drc->drc_ignore_objlist);
3529 drc->drc_ignore_objlist = NULL;
3530 *voffp = drc->drc_voff;
3531 return (err);
3532 }
3533
3534 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)3535 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3536 {
3537 dmu_recv_cookie_t *drc = arg;
3538 dsl_pool_t *dp = dmu_tx_pool(tx);
3539 int error;
3540
3541 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3542
3543 if (drc->drc_heal) {
3544 error = 0;
3545 } else if (!drc->drc_newfs) {
3546 dsl_dataset_t *origin_head;
3547
3548 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3549 if (error != 0)
3550 return (error);
3551 if (drc->drc_force) {
3552 /*
3553 * We will destroy any snapshots in tofs (i.e. before
3554 * origin_head) that are after the origin (which is
3555 * the snap before drc_ds, because drc_ds can not
3556 * have any snaps of its own).
3557 */
3558 uint64_t obj;
3559
3560 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3561 while (obj !=
3562 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3563 dsl_dataset_t *snap;
3564 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3565 &snap);
3566 if (error != 0)
3567 break;
3568 if (snap->ds_dir != origin_head->ds_dir)
3569 error = SET_ERROR(EINVAL);
3570 if (error == 0) {
3571 error = dsl_destroy_snapshot_check_impl(
3572 snap, B_FALSE);
3573 }
3574 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3575 dsl_dataset_rele(snap, FTAG);
3576 if (error != 0)
3577 break;
3578 }
3579 if (error != 0) {
3580 dsl_dataset_rele(origin_head, FTAG);
3581 return (error);
3582 }
3583 }
3584 if (drc->drc_keynvl != NULL) {
3585 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3586 drc->drc_keynvl, tx);
3587 if (error != 0) {
3588 dsl_dataset_rele(origin_head, FTAG);
3589 return (error);
3590 }
3591 }
3592
3593 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3594 origin_head, drc->drc_force, drc->drc_owner, tx);
3595 if (error != 0) {
3596 dsl_dataset_rele(origin_head, FTAG);
3597 return (error);
3598 }
3599 error = dsl_dataset_snapshot_check_impl(origin_head,
3600 drc->drc_tosnap, tx, B_TRUE, 1,
3601 drc->drc_cred, drc->drc_proc);
3602 dsl_dataset_rele(origin_head, FTAG);
3603 if (error != 0)
3604 return (error);
3605
3606 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3607 } else {
3608 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3609 drc->drc_tosnap, tx, B_TRUE, 1,
3610 drc->drc_cred, drc->drc_proc);
3611 }
3612 return (error);
3613 }
3614
3615 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)3616 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3617 {
3618 dmu_recv_cookie_t *drc = arg;
3619 dsl_pool_t *dp = dmu_tx_pool(tx);
3620 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3621 uint64_t newsnapobj = 0;
3622
3623 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3624 tx, "snap=%s", drc->drc_tosnap);
3625 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3626
3627 if (drc->drc_heal) {
3628 if (drc->drc_keynvl != NULL) {
3629 nvlist_free(drc->drc_keynvl);
3630 drc->drc_keynvl = NULL;
3631 }
3632 } else if (!drc->drc_newfs) {
3633 dsl_dataset_t *origin_head;
3634
3635 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3636 &origin_head));
3637
3638 if (drc->drc_force) {
3639 /*
3640 * Destroy any snapshots of drc_tofs (origin_head)
3641 * after the origin (the snap before drc_ds).
3642 */
3643 uint64_t obj;
3644
3645 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3646 while (obj !=
3647 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3648 dsl_dataset_t *snap;
3649 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3650 &snap));
3651 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3652 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3653 dsl_destroy_snapshot_sync_impl(snap,
3654 B_FALSE, tx);
3655 dsl_dataset_rele(snap, FTAG);
3656 }
3657 }
3658 if (drc->drc_keynvl != NULL) {
3659 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3660 drc->drc_keynvl, tx);
3661 nvlist_free(drc->drc_keynvl);
3662 drc->drc_keynvl = NULL;
3663 }
3664
3665 VERIFY3P(drc->drc_ds->ds_prev, ==,
3666 origin_head->ds_prev);
3667
3668 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3669 origin_head, tx);
3670 /*
3671 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3672 * so drc_os is no longer valid.
3673 */
3674 drc->drc_os = NULL;
3675
3676 dsl_dataset_snapshot_sync_impl(origin_head,
3677 drc->drc_tosnap, tx);
3678
3679 /* set snapshot's creation time and guid */
3680 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3681 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3682 drc->drc_drrb->drr_creation_time;
3683 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3684 drc->drc_drrb->drr_toguid;
3685 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3686 ~DS_FLAG_INCONSISTENT;
3687
3688 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3689 dsl_dataset_phys(origin_head)->ds_flags &=
3690 ~DS_FLAG_INCONSISTENT;
3691
3692 newsnapobj =
3693 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3694
3695 dsl_dataset_rele(origin_head, FTAG);
3696 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3697
3698 if (drc->drc_owner != NULL)
3699 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3700 } else {
3701 dsl_dataset_t *ds = drc->drc_ds;
3702
3703 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3704
3705 /* set snapshot's creation time and guid */
3706 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3707 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3708 drc->drc_drrb->drr_creation_time;
3709 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3710 drc->drc_drrb->drr_toguid;
3711 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3712 ~DS_FLAG_INCONSISTENT;
3713
3714 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3715 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3716 if (dsl_dataset_has_resume_receive_state(ds)) {
3717 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3718 DS_FIELD_RESUME_FROMGUID, tx);
3719 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3720 DS_FIELD_RESUME_OBJECT, tx);
3721 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3722 DS_FIELD_RESUME_OFFSET, tx);
3723 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3724 DS_FIELD_RESUME_BYTES, tx);
3725 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3726 DS_FIELD_RESUME_TOGUID, tx);
3727 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3728 DS_FIELD_RESUME_TONAME, tx);
3729 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3730 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3731 }
3732 newsnapobj =
3733 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3734 }
3735
3736 /*
3737 * If this is a raw receive, the crypt_keydata nvlist will include
3738 * a to_ivset_guid for us to set on the new snapshot. This value
3739 * will override the value generated by the snapshot code. However,
3740 * this value may not be present, because older implementations of
3741 * the raw send code did not include this value, and we are still
3742 * allowed to receive them if the zfs_disable_ivset_guid_check
3743 * tunable is set, in which case we will leave the newly-generated
3744 * value.
3745 */
3746 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3747 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3748 DMU_OT_DSL_DATASET, tx);
3749 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3750 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3751 &drc->drc_ivset_guid, tx));
3752 }
3753
3754 /*
3755 * Release the hold from dmu_recv_begin. This must be done before
3756 * we return to open context, so that when we free the dataset's dnode
3757 * we can evict its bonus buffer. Since the dataset may be destroyed
3758 * at this point (and therefore won't have a valid pointer to the spa)
3759 * we release the key mapping manually here while we do have a valid
3760 * pointer, if it exists.
3761 */
3762 if (!drc->drc_raw && encrypted) {
3763 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3764 drc->drc_ds->ds_object, drc->drc_ds);
3765 }
3766 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3767 drc->drc_ds = NULL;
3768 }
3769
3770 static int dmu_recv_end_modified_blocks = 3;
3771
3772 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)3773 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3774 {
3775 #ifdef _KERNEL
3776 /*
3777 * We will be destroying the ds; make sure its origin is unmounted if
3778 * necessary.
3779 */
3780 char name[ZFS_MAX_DATASET_NAME_LEN];
3781 dsl_dataset_name(drc->drc_ds, name);
3782 zfs_destroy_unmount_origin(name);
3783 #endif
3784
3785 return (dsl_sync_task(drc->drc_tofs,
3786 dmu_recv_end_check, dmu_recv_end_sync, drc,
3787 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3788 }
3789
3790 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)3791 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3792 {
3793 return (dsl_sync_task(drc->drc_tofs,
3794 dmu_recv_end_check, dmu_recv_end_sync, drc,
3795 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3796 }
3797
3798 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)3799 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3800 {
3801 int error;
3802
3803 drc->drc_owner = owner;
3804
3805 if (drc->drc_newfs)
3806 error = dmu_recv_new_end(drc);
3807 else
3808 error = dmu_recv_existing_end(drc);
3809
3810 if (error != 0) {
3811 dmu_recv_cleanup_ds(drc);
3812 nvlist_free(drc->drc_keynvl);
3813 } else if (!drc->drc_heal) {
3814 if (drc->drc_newfs) {
3815 zvol_create_minor(drc->drc_tofs);
3816 }
3817 char *snapname = kmem_asprintf("%s@%s",
3818 drc->drc_tofs, drc->drc_tosnap);
3819 zvol_create_minor(snapname);
3820 kmem_strfree(snapname);
3821 }
3822 return (error);
3823 }
3824
3825 /*
3826 * Return TRUE if this objset is currently being received into.
3827 */
3828 boolean_t
dmu_objset_is_receiving(objset_t * os)3829 dmu_objset_is_receiving(objset_t *os)
3830 {
3831 return (os->os_dsl_dataset != NULL &&
3832 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3833 }
3834
3835 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3836 "Maximum receive queue length");
3837
3838 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3839 "Receive queue fill fraction");
3840
3841 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3842 "Maximum amount of writes to batch into one transaction");
3843
3844 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3845 "Ignore errors during corrective receive");
3846 /* END CSTYLED */
3847