xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision 7a7741af18d6c8a804cc643cb7ecda9d730c6aa6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, 2024, Klara, Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2019 Datto Inc.
31  * Copyright (c) 2022 Axcient.
32  */
33 
34 #include <sys/arc.h>
35 #include <sys/spa_impl.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_send.h>
39 #include <sys/dmu_recv.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dbuf.h>
42 #include <sys/dnode.h>
43 #include <sys/zfs_context.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/dmu_traverse.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_pool.h>
50 #include <sys/dsl_synctask.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zap.h>
53 #include <sys/zvol.h>
54 #include <sys/zio_checksum.h>
55 #include <sys/zfs_znode.h>
56 #include <zfs_fletcher.h>
57 #include <sys/avl.h>
58 #include <sys/ddt.h>
59 #include <sys/zfs_onexit.h>
60 #include <sys/dsl_destroy.h>
61 #include <sys/blkptr.h>
62 #include <sys/dsl_bookmark.h>
63 #include <sys/zfeature.h>
64 #include <sys/bqueue.h>
65 #include <sys/objlist.h>
66 #ifdef _KERNEL
67 #include <sys/zfs_vfsops.h>
68 #endif
69 #include <sys/zfs_file.h>
70 
71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72 static uint_t zfs_recv_queue_ff = 20;
73 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
74 static int zfs_recv_best_effort_corrective = 0;
75 
76 static const void *const dmu_recv_tag = "dmu_recv_tag";
77 const char *const recv_clone_name = "%recv";
78 
79 typedef enum {
80 	ORNS_NO,
81 	ORNS_YES,
82 	ORNS_MAYBE
83 } or_need_sync_t;
84 
85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86     void *buf);
87 
88 struct receive_record_arg {
89 	dmu_replay_record_t header;
90 	void *payload; /* Pointer to a buffer containing the payload */
91 	/*
92 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
93 	 * payload.
94 	 */
95 	abd_t *abd;
96 	int payload_size;
97 	uint64_t bytes_read; /* bytes read from stream when record created */
98 	boolean_t eos_marker; /* Marks the end of the stream */
99 	bqueue_node_t node;
100 };
101 
102 struct receive_writer_arg {
103 	objset_t *os;
104 	boolean_t byteswap;
105 	bqueue_t q;
106 
107 	/*
108 	 * These three members are used to signal to the main thread when
109 	 * we're done.
110 	 */
111 	kmutex_t mutex;
112 	kcondvar_t cv;
113 	boolean_t done;
114 
115 	int err;
116 	const char *tofs;
117 	boolean_t heal;
118 	boolean_t resumable;
119 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
120 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
121 	boolean_t full;  /* this is a full send stream */
122 	uint64_t last_object;
123 	uint64_t last_offset;
124 	uint64_t max_object; /* highest object ID referenced in stream */
125 	uint64_t bytes_read; /* bytes read when current record created */
126 
127 	list_t write_batch;
128 
129 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
130 	boolean_t or_crypt_params_present;
131 	uint64_t or_firstobj;
132 	uint64_t or_numslots;
133 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
134 	uint8_t or_iv[ZIO_DATA_IV_LEN];
135 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
136 	boolean_t or_byteorder;
137 	zio_t *heal_pio;
138 
139 	/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140 	or_need_sync_t or_need_sync;
141 };
142 
143 typedef struct dmu_recv_begin_arg {
144 	const char *drba_origin;
145 	dmu_recv_cookie_t *drba_cookie;
146 	cred_t *drba_cred;
147 	proc_t *drba_proc;
148 	dsl_crypto_params_t *drba_dcp;
149 } dmu_recv_begin_arg_t;
150 
151 static void
byteswap_record(dmu_replay_record_t * drr)152 byteswap_record(dmu_replay_record_t *drr)
153 {
154 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156 	drr->drr_type = BSWAP_32(drr->drr_type);
157 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158 
159 	switch (drr->drr_type) {
160 	case DRR_BEGIN:
161 		DO64(drr_begin.drr_magic);
162 		DO64(drr_begin.drr_versioninfo);
163 		DO64(drr_begin.drr_creation_time);
164 		DO32(drr_begin.drr_type);
165 		DO32(drr_begin.drr_flags);
166 		DO64(drr_begin.drr_toguid);
167 		DO64(drr_begin.drr_fromguid);
168 		break;
169 	case DRR_OBJECT:
170 		DO64(drr_object.drr_object);
171 		DO32(drr_object.drr_type);
172 		DO32(drr_object.drr_bonustype);
173 		DO32(drr_object.drr_blksz);
174 		DO32(drr_object.drr_bonuslen);
175 		DO32(drr_object.drr_raw_bonuslen);
176 		DO64(drr_object.drr_toguid);
177 		DO64(drr_object.drr_maxblkid);
178 		break;
179 	case DRR_FREEOBJECTS:
180 		DO64(drr_freeobjects.drr_firstobj);
181 		DO64(drr_freeobjects.drr_numobjs);
182 		DO64(drr_freeobjects.drr_toguid);
183 		break;
184 	case DRR_WRITE:
185 		DO64(drr_write.drr_object);
186 		DO32(drr_write.drr_type);
187 		DO64(drr_write.drr_offset);
188 		DO64(drr_write.drr_logical_size);
189 		DO64(drr_write.drr_toguid);
190 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191 		DO64(drr_write.drr_key.ddk_prop);
192 		DO64(drr_write.drr_compressed_size);
193 		break;
194 	case DRR_WRITE_EMBEDDED:
195 		DO64(drr_write_embedded.drr_object);
196 		DO64(drr_write_embedded.drr_offset);
197 		DO64(drr_write_embedded.drr_length);
198 		DO64(drr_write_embedded.drr_toguid);
199 		DO32(drr_write_embedded.drr_lsize);
200 		DO32(drr_write_embedded.drr_psize);
201 		break;
202 	case DRR_FREE:
203 		DO64(drr_free.drr_object);
204 		DO64(drr_free.drr_offset);
205 		DO64(drr_free.drr_length);
206 		DO64(drr_free.drr_toguid);
207 		break;
208 	case DRR_SPILL:
209 		DO64(drr_spill.drr_object);
210 		DO64(drr_spill.drr_length);
211 		DO64(drr_spill.drr_toguid);
212 		DO64(drr_spill.drr_compressed_size);
213 		DO32(drr_spill.drr_type);
214 		break;
215 	case DRR_OBJECT_RANGE:
216 		DO64(drr_object_range.drr_firstobj);
217 		DO64(drr_object_range.drr_numslots);
218 		DO64(drr_object_range.drr_toguid);
219 		break;
220 	case DRR_REDACT:
221 		DO64(drr_redact.drr_object);
222 		DO64(drr_redact.drr_offset);
223 		DO64(drr_redact.drr_length);
224 		DO64(drr_redact.drr_toguid);
225 		break;
226 	case DRR_END:
227 		DO64(drr_end.drr_toguid);
228 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229 		break;
230 	default:
231 		break;
232 	}
233 
234 	if (drr->drr_type != DRR_BEGIN) {
235 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236 	}
237 
238 #undef DO64
239 #undef DO32
240 }
241 
242 static boolean_t
redact_snaps_contains(uint64_t * snaps,uint64_t num_snaps,uint64_t guid)243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244 {
245 	for (int i = 0; i < num_snaps; i++) {
246 		if (snaps[i] == guid)
247 			return (B_TRUE);
248 	}
249 	return (B_FALSE);
250 }
251 
252 /*
253  * Check that the new stream we're trying to receive is redacted with respect to
254  * a subset of the snapshots that the origin was redacted with respect to.  For
255  * the reasons behind this, see the man page on redacted zfs sends and receives.
256  */
257 static boolean_t
compatible_redact_snaps(uint64_t * origin_snaps,uint64_t origin_num_snaps,uint64_t * redact_snaps,uint64_t num_redact_snaps)258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259     uint64_t *redact_snaps, uint64_t num_redact_snaps)
260 {
261 	/*
262 	 * Short circuit the comparison; if we are redacted with respect to
263 	 * more snapshots than the origin, we can't be redacted with respect
264 	 * to a subset.
265 	 */
266 	if (num_redact_snaps > origin_num_snaps) {
267 		return (B_FALSE);
268 	}
269 
270 	for (int i = 0; i < num_redact_snaps; i++) {
271 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272 		    redact_snaps[i])) {
273 			return (B_FALSE);
274 		}
275 	}
276 	return (B_TRUE);
277 }
278 
279 static boolean_t
redact_check(dmu_recv_begin_arg_t * drba,dsl_dataset_t * origin)280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281 {
282 	uint64_t *origin_snaps;
283 	uint64_t origin_num_snaps;
284 	dmu_recv_cookie_t *drc = drba->drba_cookie;
285 	struct drr_begin *drrb = drc->drc_drrb;
286 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287 	int err = 0;
288 	boolean_t ret = B_TRUE;
289 	uint64_t *redact_snaps;
290 	uint_t numredactsnaps;
291 
292 	/*
293 	 * If this is a full send stream, we're safe no matter what.
294 	 */
295 	if (drrb->drr_fromguid == 0)
296 		return (ret);
297 
298 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300 
301 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303 	    0) {
304 		/*
305 		 * If the send stream was sent from the redaction bookmark or
306 		 * the redacted version of the dataset, then we're safe.  Verify
307 		 * that this is from the a compatible redaction bookmark or
308 		 * redacted dataset.
309 		 */
310 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311 		    redact_snaps, numredactsnaps)) {
312 			err = EINVAL;
313 		}
314 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315 		/*
316 		 * If the stream is redacted, it must be redacted with respect
317 		 * to a subset of what the origin is redacted with respect to.
318 		 * See case number 2 in the zfs man page section on redacted zfs
319 		 * send.
320 		 */
321 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323 
324 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
325 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
326 			err = EINVAL;
327 		}
328 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329 	    drrb->drr_toguid)) {
330 		/*
331 		 * If the stream isn't redacted but the origin is, this must be
332 		 * one of the snapshots the origin is redacted with respect to.
333 		 * See case number 1 in the zfs man page section on redacted zfs
334 		 * send.
335 		 */
336 		err = EINVAL;
337 	}
338 
339 	if (err != 0)
340 		ret = B_FALSE;
341 	return (ret);
342 }
343 
344 /*
345  * If we previously received a stream with --large-block, we don't support
346  * receiving an incremental on top of it without --large-block.  This avoids
347  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348  * records.
349  */
350 static int
recv_check_large_blocks(dsl_dataset_t * ds,uint64_t featureflags)351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352 {
353 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356 	return (0);
357 }
358 
359 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid,uint64_t featureflags)360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361     uint64_t fromguid, uint64_t featureflags)
362 {
363 	uint64_t obj;
364 	uint64_t children;
365 	int error;
366 	dsl_dataset_t *snap;
367 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
368 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371 
372 	/* Temporary clone name must not exist. */
373 	error = zap_lookup(dp->dp_meta_objset,
374 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
375 	    8, 1, &obj);
376 	if (error != ENOENT)
377 		return (error == 0 ? SET_ERROR(EBUSY) : error);
378 
379 	/* Resume state must not be set. */
380 	if (dsl_dataset_has_resume_receive_state(ds))
381 		return (SET_ERROR(EBUSY));
382 
383 	/* New snapshot name must not exist if we're not healing it. */
384 	error = zap_lookup(dp->dp_meta_objset,
385 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
386 	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387 	if (drba->drba_cookie->drc_heal) {
388 		if (error != 0)
389 			return (error);
390 	} else if (error != ENOENT) {
391 		return (error == 0 ? SET_ERROR(EEXIST) : error);
392 	}
393 
394 	/* Must not have children if receiving a ZVOL. */
395 	error = zap_count(dp->dp_meta_objset,
396 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397 	if (error != 0)
398 		return (error);
399 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400 	    children > 0)
401 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402 
403 	/*
404 	 * Check snapshot limit before receiving. We'll recheck again at the
405 	 * end, but might as well abort before receiving if we're already over
406 	 * the limit.
407 	 *
408 	 * Note that we do not check the file system limit with
409 	 * dsl_dir_fscount_check because the temporary %clones don't count
410 	 * against that limit.
411 	 */
412 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
413 	    NULL, drba->drba_cred, drba->drba_proc);
414 	if (error != 0)
415 		return (error);
416 
417 	if (drba->drba_cookie->drc_heal) {
418 		/* Encryption is incompatible with embedded data. */
419 		if (encrypted && embed)
420 			return (SET_ERROR(EINVAL));
421 
422 		/* Healing is not supported when in 'force' mode. */
423 		if (drba->drba_cookie->drc_force)
424 			return (SET_ERROR(EINVAL));
425 
426 		/* Must have keys loaded if doing encrypted non-raw recv. */
427 		if (encrypted && !raw) {
428 			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429 			    NULL, NULL) != 0)
430 				return (SET_ERROR(EACCES));
431 		}
432 
433 		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434 		if (error != 0)
435 			return (error);
436 
437 		/*
438 		 * When not doing best effort corrective recv healing can only
439 		 * be done if the send stream is for the same snapshot as the
440 		 * one we are trying to heal.
441 		 */
442 		if (zfs_recv_best_effort_corrective == 0 &&
443 		    drba->drba_cookie->drc_drrb->drr_toguid !=
444 		    dsl_dataset_phys(snap)->ds_guid) {
445 			dsl_dataset_rele(snap, FTAG);
446 			return (SET_ERROR(ENOTSUP));
447 		}
448 		dsl_dataset_rele(snap, FTAG);
449 	} else if (fromguid != 0) {
450 		/* Sanity check the incremental recv */
451 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452 
453 		/* Can't perform a raw receive on top of a non-raw receive */
454 		if (!encrypted && raw)
455 			return (SET_ERROR(EINVAL));
456 
457 		/* Encryption is incompatible with embedded data */
458 		if (encrypted && embed)
459 			return (SET_ERROR(EINVAL));
460 
461 		/* Find snapshot in this dir that matches fromguid. */
462 		while (obj != 0) {
463 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
464 			    &snap);
465 			if (error != 0)
466 				return (SET_ERROR(ENODEV));
467 			if (snap->ds_dir != ds->ds_dir) {
468 				dsl_dataset_rele(snap, FTAG);
469 				return (SET_ERROR(ENODEV));
470 			}
471 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472 				break;
473 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474 			dsl_dataset_rele(snap, FTAG);
475 		}
476 		if (obj == 0)
477 			return (SET_ERROR(ENODEV));
478 
479 		if (drba->drba_cookie->drc_force) {
480 			drba->drba_cookie->drc_fromsnapobj = obj;
481 		} else {
482 			/*
483 			 * If we are not forcing, there must be no
484 			 * changes since fromsnap. Raw sends have an
485 			 * additional constraint that requires that
486 			 * no "noop" snapshots exist between fromsnap
487 			 * and tosnap for the IVset checking code to
488 			 * work properly.
489 			 */
490 			if (dsl_dataset_modified_since_snap(ds, snap) ||
491 			    (raw &&
492 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493 			    snap->ds_object)) {
494 				dsl_dataset_rele(snap, FTAG);
495 				return (SET_ERROR(ETXTBSY));
496 			}
497 			drba->drba_cookie->drc_fromsnapobj =
498 			    ds->ds_prev->ds_object;
499 		}
500 
501 		if (dsl_dataset_feature_is_active(snap,
502 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503 		    snap)) {
504 			dsl_dataset_rele(snap, FTAG);
505 			return (SET_ERROR(EINVAL));
506 		}
507 
508 		error = recv_check_large_blocks(snap, featureflags);
509 		if (error != 0) {
510 			dsl_dataset_rele(snap, FTAG);
511 			return (error);
512 		}
513 
514 		dsl_dataset_rele(snap, FTAG);
515 	} else {
516 		/* If full and not healing then must be forced. */
517 		if (!drba->drba_cookie->drc_force)
518 			return (SET_ERROR(EEXIST));
519 
520 		/*
521 		 * We don't support using zfs recv -F to blow away
522 		 * encrypted filesystems. This would require the
523 		 * dsl dir to point to the old encryption key and
524 		 * the new one at the same time during the receive.
525 		 */
526 		if ((!encrypted && raw) || encrypted)
527 			return (SET_ERROR(EINVAL));
528 
529 		/*
530 		 * Perform the same encryption checks we would if
531 		 * we were creating a new dataset from scratch.
532 		 */
533 		if (!raw) {
534 			boolean_t will_encrypt;
535 
536 			error = dmu_objset_create_crypt_check(
537 			    ds->ds_dir->dd_parent, drba->drba_dcp,
538 			    &will_encrypt);
539 			if (error != 0)
540 				return (error);
541 
542 			if (will_encrypt && embed)
543 				return (SET_ERROR(EINVAL));
544 		}
545 	}
546 
547 	return (0);
548 }
549 
550 /*
551  * Check that any feature flags used in the data stream we're receiving are
552  * supported by the pool we are receiving into.
553  *
554  * Note that some of the features we explicitly check here have additional
555  * (implicit) features they depend on, but those dependencies are enforced
556  * through the zfeature_register() calls declaring the features that we
557  * explicitly check.
558  */
559 static int
recv_begin_check_feature_flags_impl(uint64_t featureflags,spa_t * spa)560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561 {
562 	/*
563 	 * Check if there are any unsupported feature flags.
564 	 */
565 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
566 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567 	}
568 
569 	/* Verify pool version supports SA if SA_SPILL feature set */
570 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571 	    spa_version(spa) < SPA_VERSION_SA)
572 		return (SET_ERROR(ENOTSUP));
573 
574 	/*
575 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576 	 * and large_dnodes in the stream can only be used if those pool
577 	 * features are enabled because we don't attempt to decompress /
578 	 * un-embed / un-mooch / split up the blocks / dnodes during the
579 	 * receive process.
580 	 */
581 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583 		return (SET_ERROR(ENOTSUP));
584 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586 		return (SET_ERROR(ENOTSUP));
587 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589 		return (SET_ERROR(ENOTSUP));
590 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592 		return (SET_ERROR(ENOTSUP));
593 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595 		return (SET_ERROR(ENOTSUP));
596 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) &&
597 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP))
598 		return (SET_ERROR(ENOTSUP));
599 
600 	/*
601 	 * Receiving redacted streams requires that redacted datasets are
602 	 * enabled.
603 	 */
604 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
605 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
606 		return (SET_ERROR(ENOTSUP));
607 
608 	/*
609 	 * If the LONGNAME is not enabled on the target, fail that request.
610 	 */
611 	if ((featureflags & DMU_BACKUP_FEATURE_LONGNAME) &&
612 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LONGNAME))
613 		return (SET_ERROR(ENOTSUP));
614 
615 	return (0);
616 }
617 
618 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)619 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
620 {
621 	dmu_recv_begin_arg_t *drba = arg;
622 	dsl_pool_t *dp = dmu_tx_pool(tx);
623 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
624 	uint64_t fromguid = drrb->drr_fromguid;
625 	int flags = drrb->drr_flags;
626 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
627 	int error;
628 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
629 	dsl_dataset_t *ds;
630 	const char *tofs = drba->drba_cookie->drc_tofs;
631 
632 	/* already checked */
633 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
634 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
635 
636 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
637 	    DMU_COMPOUNDSTREAM ||
638 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
639 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
640 		return (SET_ERROR(EINVAL));
641 
642 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
643 	if (error != 0)
644 		return (error);
645 
646 	/* Resumable receives require extensible datasets */
647 	if (drba->drba_cookie->drc_resumable &&
648 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
649 		return (SET_ERROR(ENOTSUP));
650 
651 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
652 		/* raw receives require the encryption feature */
653 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
654 			return (SET_ERROR(ENOTSUP));
655 
656 		/* embedded data is incompatible with encryption and raw recv */
657 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
658 			return (SET_ERROR(EINVAL));
659 
660 		/* raw receives require spill block allocation flag */
661 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
662 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
663 	} else {
664 		/*
665 		 * We support unencrypted datasets below encrypted ones now,
666 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
667 		 * with a dataset we may encrypt.
668 		 */
669 		if (drba->drba_dcp == NULL ||
670 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
671 			dsflags |= DS_HOLD_FLAG_DECRYPT;
672 		}
673 	}
674 
675 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
676 	if (error == 0) {
677 		/* target fs already exists; recv into temp clone */
678 
679 		/* Can't recv a clone into an existing fs */
680 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
681 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
682 			return (SET_ERROR(EINVAL));
683 		}
684 
685 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
686 		    featureflags);
687 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
688 	} else if (error == ENOENT) {
689 		/* target fs does not exist; must be a full backup or clone */
690 		char buf[ZFS_MAX_DATASET_NAME_LEN];
691 		objset_t *os;
692 
693 		/* healing recv must be done "into" an existing snapshot */
694 		if (drba->drba_cookie->drc_heal == B_TRUE)
695 			return (SET_ERROR(ENOTSUP));
696 
697 		/*
698 		 * If it's a non-clone incremental, we are missing the
699 		 * target fs, so fail the recv.
700 		 */
701 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
702 		    drba->drba_origin))
703 			return (SET_ERROR(ENOENT));
704 
705 		/*
706 		 * If we're receiving a full send as a clone, and it doesn't
707 		 * contain all the necessary free records and freeobject
708 		 * records, reject it.
709 		 */
710 		if (fromguid == 0 && drba->drba_origin != NULL &&
711 		    !(flags & DRR_FLAG_FREERECORDS))
712 			return (SET_ERROR(EINVAL));
713 
714 		/* Open the parent of tofs */
715 		ASSERT3U(strlen(tofs), <, sizeof (buf));
716 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
717 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
718 		if (error != 0)
719 			return (error);
720 
721 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
722 		    drba->drba_origin == NULL) {
723 			boolean_t will_encrypt;
724 
725 			/*
726 			 * Check that we aren't breaking any encryption rules
727 			 * and that we have all the parameters we need to
728 			 * create an encrypted dataset if necessary. If we are
729 			 * making an encrypted dataset the stream can't have
730 			 * embedded data.
731 			 */
732 			error = dmu_objset_create_crypt_check(ds->ds_dir,
733 			    drba->drba_dcp, &will_encrypt);
734 			if (error != 0) {
735 				dsl_dataset_rele(ds, FTAG);
736 				return (error);
737 			}
738 
739 			if (will_encrypt &&
740 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
741 				dsl_dataset_rele(ds, FTAG);
742 				return (SET_ERROR(EINVAL));
743 			}
744 		}
745 
746 		/*
747 		 * Check filesystem and snapshot limits before receiving. We'll
748 		 * recheck snapshot limits again at the end (we create the
749 		 * filesystems and increment those counts during begin_sync).
750 		 */
751 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
752 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
753 		    drba->drba_cred, drba->drba_proc);
754 		if (error != 0) {
755 			dsl_dataset_rele(ds, FTAG);
756 			return (error);
757 		}
758 
759 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
760 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
761 		    drba->drba_cred, drba->drba_proc);
762 		if (error != 0) {
763 			dsl_dataset_rele(ds, FTAG);
764 			return (error);
765 		}
766 
767 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
768 		error = dmu_objset_from_ds(ds, &os);
769 		if (error != 0) {
770 			dsl_dataset_rele(ds, FTAG);
771 			return (error);
772 		}
773 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
774 			dsl_dataset_rele(ds, FTAG);
775 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
776 		}
777 
778 		if (drba->drba_origin != NULL) {
779 			dsl_dataset_t *origin;
780 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
781 			    dsflags, FTAG, &origin);
782 			if (error != 0) {
783 				dsl_dataset_rele(ds, FTAG);
784 				return (error);
785 			}
786 			if (!origin->ds_is_snapshot) {
787 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
788 				dsl_dataset_rele(ds, FTAG);
789 				return (SET_ERROR(EINVAL));
790 			}
791 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
792 			    fromguid != 0) {
793 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
794 				dsl_dataset_rele(ds, FTAG);
795 				return (SET_ERROR(ENODEV));
796 			}
797 
798 			if (origin->ds_dir->dd_crypto_obj != 0 &&
799 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
800 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
801 				dsl_dataset_rele(ds, FTAG);
802 				return (SET_ERROR(EINVAL));
803 			}
804 
805 			/*
806 			 * If the origin is redacted we need to verify that this
807 			 * send stream can safely be received on top of the
808 			 * origin.
809 			 */
810 			if (dsl_dataset_feature_is_active(origin,
811 			    SPA_FEATURE_REDACTED_DATASETS)) {
812 				if (!redact_check(drba, origin)) {
813 					dsl_dataset_rele_flags(origin, dsflags,
814 					    FTAG);
815 					dsl_dataset_rele_flags(ds, dsflags,
816 					    FTAG);
817 					return (SET_ERROR(EINVAL));
818 				}
819 			}
820 
821 			error = recv_check_large_blocks(ds, featureflags);
822 			if (error != 0) {
823 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
824 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
825 				return (error);
826 			}
827 
828 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
829 		}
830 
831 		dsl_dataset_rele(ds, FTAG);
832 		error = 0;
833 	}
834 	return (error);
835 }
836 
837 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)838 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
839 {
840 	dmu_recv_begin_arg_t *drba = arg;
841 	dsl_pool_t *dp = dmu_tx_pool(tx);
842 	objset_t *mos = dp->dp_meta_objset;
843 	dmu_recv_cookie_t *drc = drba->drba_cookie;
844 	struct drr_begin *drrb = drc->drc_drrb;
845 	const char *tofs = drc->drc_tofs;
846 	uint64_t featureflags = drc->drc_featureflags;
847 	dsl_dataset_t *ds, *newds;
848 	objset_t *os;
849 	uint64_t dsobj;
850 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
851 	int error;
852 	uint64_t crflags = 0;
853 	dsl_crypto_params_t dummy_dcp = { 0 };
854 	dsl_crypto_params_t *dcp = drba->drba_dcp;
855 
856 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
857 		crflags |= DS_FLAG_CI_DATASET;
858 
859 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
860 		dsflags |= DS_HOLD_FLAG_DECRYPT;
861 
862 	/*
863 	 * Raw, non-incremental recvs always use a dummy dcp with
864 	 * the raw cmd set. Raw incremental recvs do not use a dcp
865 	 * since the encryption parameters are already set in stone.
866 	 */
867 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
868 	    drba->drba_origin == NULL) {
869 		ASSERT3P(dcp, ==, NULL);
870 		dcp = &dummy_dcp;
871 
872 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
873 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
874 	}
875 
876 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
877 	if (error == 0) {
878 		/* Create temporary clone unless we're doing corrective recv */
879 		dsl_dataset_t *snap = NULL;
880 
881 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
882 			VERIFY0(dsl_dataset_hold_obj(dp,
883 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
884 			ASSERT3P(dcp, ==, NULL);
885 		}
886 		if (drc->drc_heal) {
887 			/* When healing we want to use the provided snapshot */
888 			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
889 			    &dsobj));
890 		} else {
891 			dsobj = dsl_dataset_create_sync(ds->ds_dir,
892 			    recv_clone_name, snap, crflags, drba->drba_cred,
893 			    dcp, tx);
894 		}
895 		if (drba->drba_cookie->drc_fromsnapobj != 0)
896 			dsl_dataset_rele(snap, FTAG);
897 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
898 	} else {
899 		dsl_dir_t *dd;
900 		const char *tail;
901 		dsl_dataset_t *origin = NULL;
902 
903 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
904 
905 		if (drba->drba_origin != NULL) {
906 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
907 			    FTAG, &origin));
908 			ASSERT3P(dcp, ==, NULL);
909 		}
910 
911 		/* Create new dataset. */
912 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
913 		    origin, crflags, drba->drba_cred, dcp, tx);
914 		if (origin != NULL)
915 			dsl_dataset_rele(origin, FTAG);
916 		dsl_dir_rele(dd, FTAG);
917 		drc->drc_newfs = B_TRUE;
918 	}
919 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
920 	    &newds));
921 	if (dsl_dataset_feature_is_active(newds,
922 	    SPA_FEATURE_REDACTED_DATASETS)) {
923 		/*
924 		 * If the origin dataset is redacted, the child will be redacted
925 		 * when we create it.  We clear the new dataset's
926 		 * redaction info; if it should be redacted, we'll fill
927 		 * in its information later.
928 		 */
929 		dsl_dataset_deactivate_feature(newds,
930 		    SPA_FEATURE_REDACTED_DATASETS, tx);
931 	}
932 	VERIFY0(dmu_objset_from_ds(newds, &os));
933 
934 	if (drc->drc_resumable) {
935 		dsl_dataset_zapify(newds, tx);
936 		if (drrb->drr_fromguid != 0) {
937 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
938 			    8, 1, &drrb->drr_fromguid, tx));
939 		}
940 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
941 		    8, 1, &drrb->drr_toguid, tx));
942 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
943 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
944 		uint64_t one = 1;
945 		uint64_t zero = 0;
946 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
947 		    8, 1, &one, tx));
948 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
949 		    8, 1, &zero, tx));
950 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
951 		    8, 1, &zero, tx));
952 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
953 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
954 			    8, 1, &one, tx));
955 		}
956 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
957 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
958 			    8, 1, &one, tx));
959 		}
960 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
961 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
962 			    8, 1, &one, tx));
963 		}
964 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
965 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
966 			    8, 1, &one, tx));
967 		}
968 
969 		uint64_t *redact_snaps;
970 		uint_t numredactsnaps;
971 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
972 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
973 		    &numredactsnaps) == 0) {
974 			VERIFY0(zap_add(mos, dsobj,
975 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
976 			    sizeof (*redact_snaps), numredactsnaps,
977 			    redact_snaps, tx));
978 		}
979 	}
980 
981 	/*
982 	 * Usually the os->os_encrypted value is tied to the presence of a
983 	 * DSL Crypto Key object in the dd. However, that will not be received
984 	 * until dmu_recv_stream(), so we set the value manually for now.
985 	 */
986 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
987 		os->os_encrypted = B_TRUE;
988 		drba->drba_cookie->drc_raw = B_TRUE;
989 	}
990 
991 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
992 		uint64_t *redact_snaps;
993 		uint_t numredactsnaps;
994 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
995 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
996 		dsl_dataset_activate_redaction(newds, redact_snaps,
997 		    numredactsnaps, tx);
998 	}
999 
1000 	if (featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) {
1001 		/*
1002 		 * The source has seen a large microzap at least once in its
1003 		 * life, so we activate the feature here to match. It's not
1004 		 * strictly necessary since a large microzap is usable without
1005 		 * the feature active, but if that object is sent on from here,
1006 		 * we need this info to know to add the stream feature.
1007 		 *
1008 		 * There may be no large microzap in the incoming stream, or
1009 		 * ever again, but this is a very niche feature and its very
1010 		 * difficult to spot a large microzap in the stream, so its
1011 		 * not worth the effort of trying harder to activate the
1012 		 * feature at first use.
1013 		 */
1014 		dsl_dataset_activate_feature(dsobj, SPA_FEATURE_LARGE_MICROZAP,
1015 		    (void *)B_TRUE, tx);
1016 	}
1017 
1018 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1019 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1020 
1021 	/*
1022 	 * Activate longname feature if received
1023 	 */
1024 	if (featureflags & DMU_BACKUP_FEATURE_LONGNAME &&
1025 	    !dsl_dataset_feature_is_active(newds, SPA_FEATURE_LONGNAME)) {
1026 		dsl_dataset_activate_feature(newds->ds_object,
1027 		    SPA_FEATURE_LONGNAME, (void *)B_TRUE, tx);
1028 		newds->ds_feature[SPA_FEATURE_LONGNAME] = (void *)B_TRUE;
1029 	}
1030 
1031 	/*
1032 	 * If we actually created a non-clone, we need to create the objset
1033 	 * in our new dataset. If this is a raw send we postpone this until
1034 	 * dmu_recv_stream() so that we can allocate the metadnode with the
1035 	 * properties from the DRR_BEGIN payload.
1036 	 */
1037 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1038 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1039 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1040 	    !drc->drc_heal) {
1041 		(void) dmu_objset_create_impl(dp->dp_spa,
1042 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1043 	}
1044 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1045 
1046 	drba->drba_cookie->drc_ds = newds;
1047 	drba->drba_cookie->drc_os = os;
1048 
1049 	spa_history_log_internal_ds(newds, "receive", tx, " ");
1050 }
1051 
1052 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)1053 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1054 {
1055 	dmu_recv_begin_arg_t *drba = arg;
1056 	dmu_recv_cookie_t *drc = drba->drba_cookie;
1057 	dsl_pool_t *dp = dmu_tx_pool(tx);
1058 	struct drr_begin *drrb = drc->drc_drrb;
1059 	int error;
1060 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1061 	dsl_dataset_t *ds;
1062 	const char *tofs = drc->drc_tofs;
1063 
1064 	/* already checked */
1065 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1066 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1067 
1068 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1069 	    DMU_COMPOUNDSTREAM ||
1070 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1071 		return (SET_ERROR(EINVAL));
1072 
1073 	/*
1074 	 * This is mostly a sanity check since we should have already done these
1075 	 * checks during a previous attempt to receive the data.
1076 	 */
1077 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1078 	    dp->dp_spa);
1079 	if (error != 0)
1080 		return (error);
1081 
1082 	/* 6 extra bytes for /%recv */
1083 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1084 
1085 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1086 	    tofs, recv_clone_name);
1087 
1088 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1089 		/* raw receives require spill block allocation flag */
1090 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1091 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1092 	} else {
1093 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1094 	}
1095 
1096 	boolean_t recvexist = B_TRUE;
1097 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1098 		/* %recv does not exist; continue in tofs */
1099 		recvexist = B_FALSE;
1100 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1101 		if (error != 0)
1102 			return (error);
1103 	}
1104 
1105 	/*
1106 	 * Resume of full/newfs recv on existing dataset should be done with
1107 	 * force flag
1108 	 */
1109 	if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1110 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1111 		return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1112 	}
1113 
1114 	/* check that ds is marked inconsistent */
1115 	if (!DS_IS_INCONSISTENT(ds)) {
1116 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1117 		return (SET_ERROR(EINVAL));
1118 	}
1119 
1120 	/* check that there is resuming data, and that the toguid matches */
1121 	if (!dsl_dataset_is_zapified(ds)) {
1122 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1123 		return (SET_ERROR(EINVAL));
1124 	}
1125 	uint64_t val;
1126 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1127 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1128 	if (error != 0 || drrb->drr_toguid != val) {
1129 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1130 		return (SET_ERROR(EINVAL));
1131 	}
1132 
1133 	/*
1134 	 * Check if the receive is still running.  If so, it will be owned.
1135 	 * Note that nothing else can own the dataset (e.g. after the receive
1136 	 * fails) because it will be marked inconsistent.
1137 	 */
1138 	if (dsl_dataset_has_owner(ds)) {
1139 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1140 		return (SET_ERROR(EBUSY));
1141 	}
1142 
1143 	/* There should not be any snapshots of this fs yet. */
1144 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1145 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1146 		return (SET_ERROR(EINVAL));
1147 	}
1148 
1149 	/*
1150 	 * Note: resume point will be checked when we process the first WRITE
1151 	 * record.
1152 	 */
1153 
1154 	/* check that the origin matches */
1155 	val = 0;
1156 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1157 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1158 	if (drrb->drr_fromguid != val) {
1159 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1160 		return (SET_ERROR(EINVAL));
1161 	}
1162 
1163 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1164 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1165 
1166 	/*
1167 	 * If we're resuming, and the send is redacted, then the original send
1168 	 * must have been redacted, and must have been redacted with respect to
1169 	 * the same snapshots.
1170 	 */
1171 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1172 		uint64_t num_ds_redact_snaps;
1173 		uint64_t *ds_redact_snaps;
1174 
1175 		uint_t num_stream_redact_snaps;
1176 		uint64_t *stream_redact_snaps;
1177 
1178 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1179 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1180 		    &num_stream_redact_snaps) != 0) {
1181 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1182 			return (SET_ERROR(EINVAL));
1183 		}
1184 
1185 		if (!dsl_dataset_get_uint64_array_feature(ds,
1186 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1187 		    &ds_redact_snaps)) {
1188 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1189 			return (SET_ERROR(EINVAL));
1190 		}
1191 
1192 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1193 			if (!redact_snaps_contains(ds_redact_snaps,
1194 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1195 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1196 				return (SET_ERROR(EINVAL));
1197 			}
1198 		}
1199 	}
1200 
1201 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1202 	if (error != 0) {
1203 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1204 		return (error);
1205 	}
1206 
1207 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1208 	return (0);
1209 }
1210 
1211 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)1212 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1213 {
1214 	dmu_recv_begin_arg_t *drba = arg;
1215 	dsl_pool_t *dp = dmu_tx_pool(tx);
1216 	const char *tofs = drba->drba_cookie->drc_tofs;
1217 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1218 	dsl_dataset_t *ds;
1219 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1220 	/* 6 extra bytes for /%recv */
1221 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1222 
1223 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1224 	    recv_clone_name);
1225 
1226 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1227 		drba->drba_cookie->drc_raw = B_TRUE;
1228 	} else {
1229 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1230 	}
1231 
1232 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1233 	    != 0) {
1234 		/* %recv does not exist; continue in tofs */
1235 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1236 		    &ds));
1237 		drba->drba_cookie->drc_newfs = B_TRUE;
1238 	}
1239 
1240 	ASSERT(DS_IS_INCONSISTENT(ds));
1241 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1242 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1243 	    drba->drba_cookie->drc_raw);
1244 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1245 
1246 	drba->drba_cookie->drc_ds = ds;
1247 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1248 	drba->drba_cookie->drc_should_save = B_TRUE;
1249 
1250 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1251 }
1252 
1253 /*
1254  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1255  * succeeds; otherwise we will leak the holds on the datasets.
1256  */
1257 int
dmu_recv_begin(const char * tofs,const char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t heal,boolean_t resumable,nvlist_t * localprops,nvlist_t * hidden_args,const char * origin,dmu_recv_cookie_t * drc,zfs_file_t * fp,offset_t * voffp)1258 dmu_recv_begin(const char *tofs, const char *tosnap,
1259     dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1260     boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1261     const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1262     offset_t *voffp)
1263 {
1264 	dmu_recv_begin_arg_t drba = { 0 };
1265 	int err = 0;
1266 
1267 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1268 	drc->drc_drr_begin = drr_begin;
1269 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1270 	drc->drc_tosnap = tosnap;
1271 	drc->drc_tofs = tofs;
1272 	drc->drc_force = force;
1273 	drc->drc_heal = heal;
1274 	drc->drc_resumable = resumable;
1275 	drc->drc_cred = CRED();
1276 	drc->drc_proc = curproc;
1277 	drc->drc_clone = (origin != NULL);
1278 
1279 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1280 		drc->drc_byteswap = B_TRUE;
1281 		(void) fletcher_4_incremental_byteswap(drr_begin,
1282 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1283 		byteswap_record(drr_begin);
1284 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1285 		(void) fletcher_4_incremental_native(drr_begin,
1286 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1287 	} else {
1288 		return (SET_ERROR(EINVAL));
1289 	}
1290 
1291 	drc->drc_fp = fp;
1292 	drc->drc_voff = *voffp;
1293 	drc->drc_featureflags =
1294 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1295 
1296 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1297 
1298 	/*
1299 	 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1300 	 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1301 	 * upper limit. Systems with less than 1GB of RAM will see a lower
1302 	 * limit from `arc_all_memory() / 4`.
1303 	 */
1304 	if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1305 		return (E2BIG);
1306 
1307 
1308 	if (payloadlen != 0) {
1309 		void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1310 		/*
1311 		 * For compatibility with recursive send streams, we don't do
1312 		 * this here if the stream could be part of a package. Instead,
1313 		 * we'll do it in dmu_recv_stream. If we pull the next header
1314 		 * too early, and it's the END record, we break the `recv_skip`
1315 		 * logic.
1316 		 */
1317 
1318 		err = receive_read_payload_and_next_header(drc, payloadlen,
1319 		    payload);
1320 		if (err != 0) {
1321 			vmem_free(payload, payloadlen);
1322 			return (err);
1323 		}
1324 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1325 		    KM_SLEEP);
1326 		vmem_free(payload, payloadlen);
1327 		if (err != 0) {
1328 			kmem_free(drc->drc_next_rrd,
1329 			    sizeof (*drc->drc_next_rrd));
1330 			return (err);
1331 		}
1332 	}
1333 
1334 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1335 		drc->drc_spill = B_TRUE;
1336 
1337 	drba.drba_origin = origin;
1338 	drba.drba_cookie = drc;
1339 	drba.drba_cred = CRED();
1340 	drba.drba_proc = curproc;
1341 
1342 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1343 		err = dsl_sync_task(tofs,
1344 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1345 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1346 	} else {
1347 		/*
1348 		 * For non-raw, non-incremental, non-resuming receives the
1349 		 * user can specify encryption parameters on the command line
1350 		 * with "zfs recv -o". For these receives we create a dcp and
1351 		 * pass it to the sync task. Creating the dcp will implicitly
1352 		 * remove the encryption params from the localprops nvlist,
1353 		 * which avoids errors when trying to set these normally
1354 		 * read-only properties. Any other kind of receive that
1355 		 * attempts to set these properties will fail as a result.
1356 		 */
1357 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1358 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1359 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1360 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1361 			    localprops, hidden_args, &drba.drba_dcp);
1362 		}
1363 
1364 		if (err == 0) {
1365 			err = dsl_sync_task(tofs,
1366 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1367 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1368 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1369 		}
1370 	}
1371 
1372 	if (err != 0) {
1373 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1374 		nvlist_free(drc->drc_begin_nvl);
1375 	}
1376 	return (err);
1377 }
1378 
1379 /*
1380  * Holds data need for corrective recv callback
1381  */
1382 typedef struct cr_cb_data {
1383 	uint64_t size;
1384 	zbookmark_phys_t zb;
1385 	spa_t *spa;
1386 } cr_cb_data_t;
1387 
1388 static void
corrective_read_done(zio_t * zio)1389 corrective_read_done(zio_t *zio)
1390 {
1391 	cr_cb_data_t *data = zio->io_private;
1392 	/* Corruption corrected; update error log if needed */
1393 	if (zio->io_error == 0) {
1394 		spa_remove_error(data->spa, &data->zb,
1395 		    BP_GET_LOGICAL_BIRTH(zio->io_bp));
1396 	}
1397 	kmem_free(data, sizeof (cr_cb_data_t));
1398 	abd_free(zio->io_abd);
1399 }
1400 
1401 /*
1402  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1403  */
1404 static int
do_corrective_recv(struct receive_writer_arg * rwa,struct drr_write * drrw,struct receive_record_arg * rrd,blkptr_t * bp)1405 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1406     struct receive_record_arg *rrd, blkptr_t *bp)
1407 {
1408 	int err;
1409 	zio_t *io;
1410 	zbookmark_phys_t zb;
1411 	dnode_t *dn;
1412 	abd_t *abd = rrd->abd;
1413 	zio_cksum_t bp_cksum = bp->blk_cksum;
1414 	zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1415 	    ZIO_FLAG_CANFAIL;
1416 
1417 	if (rwa->raw)
1418 		flags |= ZIO_FLAG_RAW;
1419 
1420 	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1421 	if (err != 0)
1422 		return (err);
1423 	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1424 	    dbuf_whichblock(dn, 0, drrw->drr_offset));
1425 	dnode_rele(dn, FTAG);
1426 
1427 	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1428 		/* Decompress the stream data */
1429 		abd_t *dabd = abd_alloc_linear(
1430 		    drrw->drr_logical_size, B_FALSE);
1431 		err = zio_decompress_data(drrw->drr_compressiontype,
1432 		    abd, dabd, abd_get_size(abd),
1433 		    abd_get_size(dabd), NULL);
1434 
1435 		if (err != 0) {
1436 			abd_free(dabd);
1437 			return (err);
1438 		}
1439 		/* Swap in the newly decompressed data into the abd */
1440 		abd_free(abd);
1441 		abd = dabd;
1442 	}
1443 
1444 	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1445 		/* Recompress the data */
1446 		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1447 		    B_FALSE);
1448 		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1449 		    abd, &cabd, abd_get_size(abd), BP_GET_PSIZE(bp),
1450 		    rwa->os->os_complevel);
1451 		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1452 		/* Swap in newly compressed data into the abd */
1453 		abd_free(abd);
1454 		abd = cabd;
1455 		flags |= ZIO_FLAG_RAW_COMPRESS;
1456 	}
1457 
1458 	/*
1459 	 * The stream is not encrypted but the data on-disk is.
1460 	 * We need to re-encrypt the buf using the same
1461 	 * encryption type, salt, iv, and mac that was used to encrypt
1462 	 * the block previosly.
1463 	 */
1464 	if (!rwa->raw && BP_USES_CRYPT(bp)) {
1465 		dsl_dataset_t *ds;
1466 		dsl_crypto_key_t *dck = NULL;
1467 		uint8_t salt[ZIO_DATA_SALT_LEN];
1468 		uint8_t iv[ZIO_DATA_IV_LEN];
1469 		uint8_t mac[ZIO_DATA_MAC_LEN];
1470 		boolean_t no_crypt = B_FALSE;
1471 		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1472 		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1473 
1474 		zio_crypt_decode_params_bp(bp, salt, iv);
1475 		zio_crypt_decode_mac_bp(bp, mac);
1476 
1477 		dsl_pool_config_enter(dp, FTAG);
1478 		err = dsl_dataset_hold_flags(dp, rwa->tofs,
1479 		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1480 		if (err != 0) {
1481 			dsl_pool_config_exit(dp, FTAG);
1482 			abd_free(eabd);
1483 			return (SET_ERROR(EACCES));
1484 		}
1485 
1486 		/* Look up the key from the spa's keystore */
1487 		err = spa_keystore_lookup_key(rwa->os->os_spa,
1488 		    zb.zb_objset, FTAG, &dck);
1489 		if (err != 0) {
1490 			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1491 			    FTAG);
1492 			dsl_pool_config_exit(dp, FTAG);
1493 			abd_free(eabd);
1494 			return (SET_ERROR(EACCES));
1495 		}
1496 
1497 		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1498 		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1499 		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
1500 
1501 		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1502 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1503 		dsl_pool_config_exit(dp, FTAG);
1504 
1505 		ASSERT0(no_crypt);
1506 		if (err != 0) {
1507 			abd_free(eabd);
1508 			return (err);
1509 		}
1510 		/* Swap in the newly encrypted data into the abd */
1511 		abd_free(abd);
1512 		abd = eabd;
1513 
1514 		/*
1515 		 * We want to prevent zio_rewrite() from trying to
1516 		 * encrypt the data again
1517 		 */
1518 		flags |= ZIO_FLAG_RAW_ENCRYPT;
1519 	}
1520 	rrd->abd = abd;
1521 
1522 	io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp,
1523 	    abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags,
1524 	    &zb);
1525 
1526 	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1527 	    abd_get_size(abd) == BP_GET_PSIZE(bp));
1528 
1529 	/* compute new bp checksum value and make sure it matches the old one */
1530 	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1531 	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1532 		zio_destroy(io);
1533 		if (zfs_recv_best_effort_corrective != 0)
1534 			return (0);
1535 		return (SET_ERROR(ECKSUM));
1536 	}
1537 
1538 	/* Correct the corruption in place */
1539 	err = zio_wait(io);
1540 	if (err == 0) {
1541 		cr_cb_data_t *cb_data =
1542 		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1543 		cb_data->spa = rwa->os->os_spa;
1544 		cb_data->size = drrw->drr_logical_size;
1545 		cb_data->zb = zb;
1546 		/* Test if healing worked by re-reading the bp */
1547 		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1548 		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1549 		    drrw->drr_logical_size, corrective_read_done,
1550 		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1551 	}
1552 	if (err != 0 && zfs_recv_best_effort_corrective != 0)
1553 		err = 0;
1554 
1555 	return (err);
1556 }
1557 
1558 static int
receive_read(dmu_recv_cookie_t * drc,int len,void * buf)1559 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1560 {
1561 	int done = 0;
1562 
1563 	/*
1564 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1565 	 * comment in dump_bytes.
1566 	 */
1567 	ASSERT(len % 8 == 0 ||
1568 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1569 
1570 	while (done < len) {
1571 		ssize_t resid = len - done;
1572 		zfs_file_t *fp = drc->drc_fp;
1573 		int err = zfs_file_read(fp, (char *)buf + done,
1574 		    len - done, &resid);
1575 		if (err == 0 && resid == len - done) {
1576 			/*
1577 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1578 			 * that the receive was interrupted and can
1579 			 * potentially be resumed.
1580 			 */
1581 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1582 		}
1583 		drc->drc_voff += len - done - resid;
1584 		done = len - resid;
1585 		if (err != 0)
1586 			return (err);
1587 	}
1588 
1589 	drc->drc_bytes_read += len;
1590 
1591 	ASSERT3U(done, ==, len);
1592 	return (0);
1593 }
1594 
1595 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1596 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1597 {
1598 	if (bonus_type == DMU_OT_SA) {
1599 		return (1);
1600 	} else {
1601 		return (1 +
1602 		    ((DN_OLD_MAX_BONUSLEN -
1603 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1604 	}
1605 }
1606 
1607 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1608 save_resume_state(struct receive_writer_arg *rwa,
1609     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1610 {
1611 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1612 
1613 	if (!rwa->resumable)
1614 		return;
1615 
1616 	/*
1617 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1618 	 * update this on disk, so it must not be 0.
1619 	 */
1620 	ASSERT(rwa->bytes_read != 0);
1621 
1622 	/*
1623 	 * We only resume from write records, which have a valid
1624 	 * (non-meta-dnode) object number.
1625 	 */
1626 	ASSERT(object != 0);
1627 
1628 	/*
1629 	 * For resuming to work correctly, we must receive records in order,
1630 	 * sorted by object,offset.  This is checked by the callers, but
1631 	 * assert it here for good measure.
1632 	 */
1633 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1634 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1635 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1636 	ASSERT3U(rwa->bytes_read, >=,
1637 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1638 
1639 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1640 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1641 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1642 }
1643 
1644 static int
receive_object_is_same_generation(objset_t * os,uint64_t object,dmu_object_type_t old_bonus_type,dmu_object_type_t new_bonus_type,const void * new_bonus,boolean_t * samegenp)1645 receive_object_is_same_generation(objset_t *os, uint64_t object,
1646     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1647     const void *new_bonus, boolean_t *samegenp)
1648 {
1649 	zfs_file_info_t zoi;
1650 	int err;
1651 
1652 	dmu_buf_t *old_bonus_dbuf;
1653 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1654 	if (err != 0)
1655 		return (err);
1656 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1657 	    &zoi);
1658 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1659 	if (err != 0)
1660 		return (err);
1661 	uint64_t old_gen = zoi.zfi_generation;
1662 
1663 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1664 	if (err != 0)
1665 		return (err);
1666 	uint64_t new_gen = zoi.zfi_generation;
1667 
1668 	*samegenp = (old_gen == new_gen);
1669 	return (0);
1670 }
1671 
1672 static int
receive_handle_existing_object(const struct receive_writer_arg * rwa,const struct drr_object * drro,const dmu_object_info_t * doi,const void * bonus_data,uint64_t * object_to_hold,uint32_t * new_blksz)1673 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1674     const struct drr_object *drro, const dmu_object_info_t *doi,
1675     const void *bonus_data,
1676     uint64_t *object_to_hold, uint32_t *new_blksz)
1677 {
1678 	uint32_t indblksz = drro->drr_indblkshift ?
1679 	    1ULL << drro->drr_indblkshift : 0;
1680 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1681 	    drro->drr_bonuslen);
1682 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1683 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1684 	boolean_t do_free_range = B_FALSE;
1685 	int err;
1686 
1687 	*object_to_hold = drro->drr_object;
1688 
1689 	/* nblkptr should be bounded by the bonus size and type */
1690 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1691 		return (SET_ERROR(EINVAL));
1692 
1693 	/*
1694 	 * After the previous send stream, the sending system may
1695 	 * have freed this object, and then happened to re-allocate
1696 	 * this object number in a later txg. In this case, we are
1697 	 * receiving a different logical file, and the block size may
1698 	 * appear to be different.  i.e. we may have a different
1699 	 * block size for this object than what the send stream says.
1700 	 * In this case we need to remove the object's contents,
1701 	 * so that its structure can be changed and then its contents
1702 	 * entirely replaced by subsequent WRITE records.
1703 	 *
1704 	 * If this is a -L (--large-block) incremental stream, and
1705 	 * the previous stream was not -L, the block size may appear
1706 	 * to increase.  i.e. we may have a smaller block size for
1707 	 * this object than what the send stream says.  In this case
1708 	 * we need to keep the object's contents and block size
1709 	 * intact, so that we don't lose parts of the object's
1710 	 * contents that are not changed by this incremental send
1711 	 * stream.
1712 	 *
1713 	 * We can distinguish between the two above cases by using
1714 	 * the ZPL's generation number (see
1715 	 * receive_object_is_same_generation()).  However, we only
1716 	 * want to rely on the generation number when absolutely
1717 	 * necessary, because with raw receives, the generation is
1718 	 * encrypted.  We also want to minimize dependence on the
1719 	 * ZPL, so that other types of datasets can also be received
1720 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1721 	 * reallocate their objects or change their structure).
1722 	 * Therefore, we check a number of different cases where we
1723 	 * know it is safe to discard the object's contents, before
1724 	 * using the ZPL's generation number to make the above
1725 	 * distinction.
1726 	 */
1727 	if (drro->drr_blksz != doi->doi_data_block_size) {
1728 		if (rwa->raw) {
1729 			/*
1730 			 * RAW streams always have large blocks, so
1731 			 * we are sure that the data is not needed
1732 			 * due to changing --large-block to be on.
1733 			 * Which is fortunate since the bonus buffer
1734 			 * (which contains the ZPL generation) is
1735 			 * encrypted, and the key might not be
1736 			 * loaded.
1737 			 */
1738 			do_free_range = B_TRUE;
1739 		} else if (rwa->full) {
1740 			/*
1741 			 * This is a full send stream, so it always
1742 			 * replaces what we have.  Even if the
1743 			 * generation numbers happen to match, this
1744 			 * can not actually be the same logical file.
1745 			 * This is relevant when receiving a full
1746 			 * send as a clone.
1747 			 */
1748 			do_free_range = B_TRUE;
1749 		} else if (drro->drr_type !=
1750 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1751 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1752 			/*
1753 			 * PLAIN_FILE_CONTENTS are the only type of
1754 			 * objects that have ever been stored with
1755 			 * large blocks, so we don't need the special
1756 			 * logic below.  ZAP blocks can shrink (when
1757 			 * there's only one block), so we don't want
1758 			 * to hit the error below about block size
1759 			 * only increasing.
1760 			 */
1761 			do_free_range = B_TRUE;
1762 		} else if (doi->doi_max_offset <=
1763 		    doi->doi_data_block_size) {
1764 			/*
1765 			 * There is only one block.  We can free it,
1766 			 * because its contents will be replaced by a
1767 			 * WRITE record.  This can not be the no-L ->
1768 			 * -L case, because the no-L case would have
1769 			 * resulted in multiple blocks.  If we
1770 			 * supported -L -> no-L, it would not be safe
1771 			 * to free the file's contents.  Fortunately,
1772 			 * that is not allowed (see
1773 			 * recv_check_large_blocks()).
1774 			 */
1775 			do_free_range = B_TRUE;
1776 		} else {
1777 			boolean_t is_same_gen;
1778 			err = receive_object_is_same_generation(rwa->os,
1779 			    drro->drr_object, doi->doi_bonus_type,
1780 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1781 			if (err != 0)
1782 				return (SET_ERROR(EINVAL));
1783 
1784 			if (is_same_gen) {
1785 				/*
1786 				 * This is the same logical file, and
1787 				 * the block size must be increasing.
1788 				 * It could only decrease if
1789 				 * --large-block was changed to be
1790 				 * off, which is checked in
1791 				 * recv_check_large_blocks().
1792 				 */
1793 				if (drro->drr_blksz <=
1794 				    doi->doi_data_block_size)
1795 					return (SET_ERROR(EINVAL));
1796 				/*
1797 				 * We keep the existing blocksize and
1798 				 * contents.
1799 				 */
1800 				*new_blksz =
1801 				    doi->doi_data_block_size;
1802 			} else {
1803 				do_free_range = B_TRUE;
1804 			}
1805 		}
1806 	}
1807 
1808 	/* nblkptr can only decrease if the object was reallocated */
1809 	if (nblkptr < doi->doi_nblkptr)
1810 		do_free_range = B_TRUE;
1811 
1812 	/* number of slots can only change on reallocation */
1813 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1814 		do_free_range = B_TRUE;
1815 
1816 	/*
1817 	 * For raw sends we also check a few other fields to
1818 	 * ensure we are preserving the objset structure exactly
1819 	 * as it was on the receive side:
1820 	 *     - A changed indirect block size
1821 	 *     - A smaller nlevels
1822 	 */
1823 	if (rwa->raw) {
1824 		if (indblksz != doi->doi_metadata_block_size)
1825 			do_free_range = B_TRUE;
1826 		if (drro->drr_nlevels < doi->doi_indirection)
1827 			do_free_range = B_TRUE;
1828 	}
1829 
1830 	if (do_free_range) {
1831 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1832 		    0, DMU_OBJECT_END);
1833 		if (err != 0)
1834 			return (SET_ERROR(EINVAL));
1835 	}
1836 
1837 	/*
1838 	 * The dmu does not currently support decreasing nlevels or changing
1839 	 * indirect block size if there is already one, same as changing the
1840 	 * number of of dnode slots on an object.  For non-raw sends this
1841 	 * does not matter and the new object can just use the previous one's
1842 	 * parameters.  For raw sends, however, the structure of the received
1843 	 * dnode (including indirects and dnode slots) must match that of the
1844 	 * send side.  Therefore, instead of using dmu_object_reclaim(), we
1845 	 * must free the object completely and call dmu_object_claim_dnsize()
1846 	 * instead.
1847 	 */
1848 	if ((rwa->raw && ((doi->doi_indirection > 1 &&
1849 	    indblksz != doi->doi_metadata_block_size) ||
1850 	    drro->drr_nlevels < doi->doi_indirection)) ||
1851 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1852 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1853 		if (err != 0)
1854 			return (SET_ERROR(EINVAL));
1855 
1856 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1857 		*object_to_hold = DMU_NEW_OBJECT;
1858 	}
1859 
1860 	/*
1861 	 * For raw receives, free everything beyond the new incoming
1862 	 * maxblkid. Normally this would be done with a DRR_FREE
1863 	 * record that would come after this DRR_OBJECT record is
1864 	 * processed. However, for raw receives we manually set the
1865 	 * maxblkid from the drr_maxblkid and so we must first free
1866 	 * everything above that blkid to ensure the DMU is always
1867 	 * consistent with itself. We will never free the first block
1868 	 * of the object here because a maxblkid of 0 could indicate
1869 	 * an object with a single block or one with no blocks. This
1870 	 * free may be skipped when dmu_free_long_range() was called
1871 	 * above since it covers the entire object's contents.
1872 	 */
1873 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1874 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1875 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1876 		    DMU_OBJECT_END);
1877 		if (err != 0)
1878 			return (SET_ERROR(EINVAL));
1879 	}
1880 	return (0);
1881 }
1882 
1883 noinline static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1884 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1885     void *data)
1886 {
1887 	dmu_object_info_t doi;
1888 	dmu_tx_t *tx;
1889 	int err;
1890 	uint32_t new_blksz = drro->drr_blksz;
1891 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1892 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1893 
1894 	if (drro->drr_type == DMU_OT_NONE ||
1895 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1896 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1897 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1898 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1899 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1900 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1901 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1902 	    drro->drr_bonuslen >
1903 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1904 	    dn_slots >
1905 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1906 		return (SET_ERROR(EINVAL));
1907 	}
1908 
1909 	if (rwa->raw) {
1910 		/*
1911 		 * We should have received a DRR_OBJECT_RANGE record
1912 		 * containing this block and stored it in rwa.
1913 		 */
1914 		if (drro->drr_object < rwa->or_firstobj ||
1915 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1916 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1917 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1918 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1919 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1920 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1921 		    drro->drr_raw_bonuslen)
1922 			return (SET_ERROR(EINVAL));
1923 	} else {
1924 		/*
1925 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1926 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1927 		 */
1928 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1929 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1930 			return (SET_ERROR(EINVAL));
1931 		}
1932 
1933 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1934 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1935 			return (SET_ERROR(EINVAL));
1936 		}
1937 	}
1938 
1939 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1940 
1941 	if (err != 0 && err != ENOENT && err != EEXIST)
1942 		return (SET_ERROR(EINVAL));
1943 
1944 	if (drro->drr_object > rwa->max_object)
1945 		rwa->max_object = drro->drr_object;
1946 
1947 	/*
1948 	 * If we are losing blkptrs or changing the block size this must
1949 	 * be a new file instance.  We must clear out the previous file
1950 	 * contents before we can change this type of metadata in the dnode.
1951 	 * Raw receives will also check that the indirect structure of the
1952 	 * dnode hasn't changed.
1953 	 */
1954 	uint64_t object_to_hold;
1955 	if (err == 0) {
1956 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1957 		    &object_to_hold, &new_blksz);
1958 		if (err != 0)
1959 			return (err);
1960 	} else if (err == EEXIST) {
1961 		/*
1962 		 * The object requested is currently an interior slot of a
1963 		 * multi-slot dnode. This will be resolved when the next txg
1964 		 * is synced out, since the send stream will have told us
1965 		 * to free this slot when we freed the associated dnode
1966 		 * earlier in the stream.
1967 		 */
1968 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1969 
1970 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1971 			return (SET_ERROR(EINVAL));
1972 
1973 		/* object was freed and we are about to allocate a new one */
1974 		object_to_hold = DMU_NEW_OBJECT;
1975 	} else {
1976 		/*
1977 		 * If the only record in this range so far was DRR_FREEOBJECTS
1978 		 * with at least one actually freed object, it's possible that
1979 		 * the block will now be converted to a hole. We need to wait
1980 		 * for the txg to sync to prevent races.
1981 		 */
1982 		if (rwa->or_need_sync == ORNS_YES)
1983 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1984 
1985 		/* object is free and we are about to allocate a new one */
1986 		object_to_hold = DMU_NEW_OBJECT;
1987 	}
1988 
1989 	/* Only relevant for the first object in the range */
1990 	rwa->or_need_sync = ORNS_NO;
1991 
1992 	/*
1993 	 * If this is a multi-slot dnode there is a chance that this
1994 	 * object will expand into a slot that is already used by
1995 	 * another object from the previous snapshot. We must free
1996 	 * these objects before we attempt to allocate the new dnode.
1997 	 */
1998 	if (dn_slots > 1) {
1999 		boolean_t need_sync = B_FALSE;
2000 
2001 		for (uint64_t slot = drro->drr_object + 1;
2002 		    slot < drro->drr_object + dn_slots;
2003 		    slot++) {
2004 			dmu_object_info_t slot_doi;
2005 
2006 			err = dmu_object_info(rwa->os, slot, &slot_doi);
2007 			if (err == ENOENT || err == EEXIST)
2008 				continue;
2009 			else if (err != 0)
2010 				return (err);
2011 
2012 			err = dmu_free_long_object(rwa->os, slot);
2013 			if (err != 0)
2014 				return (err);
2015 
2016 			need_sync = B_TRUE;
2017 		}
2018 
2019 		if (need_sync)
2020 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
2021 	}
2022 
2023 	tx = dmu_tx_create(rwa->os);
2024 	dmu_tx_hold_bonus(tx, object_to_hold);
2025 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
2026 	err = dmu_tx_assign(tx, TXG_WAIT);
2027 	if (err != 0) {
2028 		dmu_tx_abort(tx);
2029 		return (err);
2030 	}
2031 
2032 	if (object_to_hold == DMU_NEW_OBJECT) {
2033 		/* Currently free, wants to be allocated */
2034 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
2035 		    drro->drr_type, new_blksz,
2036 		    drro->drr_bonustype, drro->drr_bonuslen,
2037 		    dn_slots << DNODE_SHIFT, tx);
2038 	} else if (drro->drr_type != doi.doi_type ||
2039 	    new_blksz != doi.doi_data_block_size ||
2040 	    drro->drr_bonustype != doi.doi_bonus_type ||
2041 	    drro->drr_bonuslen != doi.doi_bonus_size) {
2042 		/* Currently allocated, but with different properties */
2043 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
2044 		    drro->drr_type, new_blksz,
2045 		    drro->drr_bonustype, drro->drr_bonuslen,
2046 		    dn_slots << DNODE_SHIFT, rwa->spill ?
2047 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2048 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2049 		/*
2050 		 * Currently allocated, the existing version of this object
2051 		 * may reference a spill block that is no longer allocated
2052 		 * at the source and needs to be freed.
2053 		 */
2054 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2055 	}
2056 
2057 	if (err != 0) {
2058 		dmu_tx_commit(tx);
2059 		return (SET_ERROR(EINVAL));
2060 	}
2061 
2062 	if (rwa->or_crypt_params_present) {
2063 		/*
2064 		 * Set the crypt params for the buffer associated with this
2065 		 * range of dnodes.  This causes the blkptr_t to have the
2066 		 * same crypt params (byteorder, salt, iv, mac) as on the
2067 		 * sending side.
2068 		 *
2069 		 * Since we are committing this tx now, it is possible for
2070 		 * the dnode block to end up on-disk with the incorrect MAC,
2071 		 * if subsequent objects in this block are received in a
2072 		 * different txg.  However, since the dataset is marked as
2073 		 * inconsistent, no code paths will do a non-raw read (or
2074 		 * decrypt the block / verify the MAC). The receive code and
2075 		 * scrub code can safely do raw reads and verify the
2076 		 * checksum.  They don't need to verify the MAC.
2077 		 */
2078 		dmu_buf_t *db = NULL;
2079 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2080 
2081 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2082 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2083 		if (err != 0) {
2084 			dmu_tx_commit(tx);
2085 			return (SET_ERROR(EINVAL));
2086 		}
2087 
2088 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2089 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2090 
2091 		dmu_buf_rele(db, FTAG);
2092 
2093 		rwa->or_crypt_params_present = B_FALSE;
2094 	}
2095 
2096 	dmu_object_set_checksum(rwa->os, drro->drr_object,
2097 	    drro->drr_checksumtype, tx);
2098 	dmu_object_set_compress(rwa->os, drro->drr_object,
2099 	    drro->drr_compress, tx);
2100 
2101 	/* handle more restrictive dnode structuring for raw recvs */
2102 	if (rwa->raw) {
2103 		/*
2104 		 * Set the indirect block size, block shift, nlevels.
2105 		 * This will not fail because we ensured all of the
2106 		 * blocks were freed earlier if this is a new object.
2107 		 * For non-new objects block size and indirect block
2108 		 * shift cannot change and nlevels can only increase.
2109 		 */
2110 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
2111 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2112 		    drro->drr_blksz, drro->drr_indblkshift, tx));
2113 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2114 		    drro->drr_nlevels, tx));
2115 
2116 		/*
2117 		 * Set the maxblkid. This will always succeed because
2118 		 * we freed all blocks beyond the new maxblkid above.
2119 		 */
2120 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2121 		    drro->drr_maxblkid, tx));
2122 	}
2123 
2124 	if (data != NULL) {
2125 		dmu_buf_t *db;
2126 		dnode_t *dn;
2127 		uint32_t flags = DMU_READ_NO_PREFETCH;
2128 
2129 		if (rwa->raw)
2130 			flags |= DMU_READ_NO_DECRYPT;
2131 
2132 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2133 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2134 
2135 		dmu_buf_will_dirty(db, tx);
2136 
2137 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2138 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2139 
2140 		/*
2141 		 * Raw bonus buffers have their byteorder determined by the
2142 		 * DRR_OBJECT_RANGE record.
2143 		 */
2144 		if (rwa->byteswap && !rwa->raw) {
2145 			dmu_object_byteswap_t byteswap =
2146 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2147 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2148 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
2149 		}
2150 		dmu_buf_rele(db, FTAG);
2151 		dnode_rele(dn, FTAG);
2152 	}
2153 
2154 	/*
2155 	 * If the receive fails, we want the resume stream to start with the
2156 	 * same record that we last successfully received. There is no way to
2157 	 * request resume from the object record, but we can benefit from the
2158 	 * fact that sender always sends object record before anything else,
2159 	 * after which it will "resend" data at offset 0 and resume normally.
2160 	 */
2161 	save_resume_state(rwa, drro->drr_object, 0, tx);
2162 
2163 	dmu_tx_commit(tx);
2164 
2165 	return (0);
2166 }
2167 
2168 noinline static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)2169 receive_freeobjects(struct receive_writer_arg *rwa,
2170     struct drr_freeobjects *drrfo)
2171 {
2172 	uint64_t obj;
2173 	int next_err = 0;
2174 
2175 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2176 		return (SET_ERROR(EINVAL));
2177 
2178 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2179 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2180 	    obj < DN_MAX_OBJECT && next_err == 0;
2181 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2182 		dmu_object_info_t doi;
2183 		int err;
2184 
2185 		err = dmu_object_info(rwa->os, obj, &doi);
2186 		if (err == ENOENT)
2187 			continue;
2188 		else if (err != 0)
2189 			return (err);
2190 
2191 		err = dmu_free_long_object(rwa->os, obj);
2192 
2193 		if (err != 0)
2194 			return (err);
2195 
2196 		if (rwa->or_need_sync == ORNS_MAYBE)
2197 			rwa->or_need_sync = ORNS_YES;
2198 	}
2199 	if (next_err != ESRCH)
2200 		return (next_err);
2201 	return (0);
2202 }
2203 
2204 /*
2205  * Note: if this fails, the caller will clean up any records left on the
2206  * rwa->write_batch list.
2207  */
2208 static int
flush_write_batch_impl(struct receive_writer_arg * rwa)2209 flush_write_batch_impl(struct receive_writer_arg *rwa)
2210 {
2211 	dnode_t *dn;
2212 	int err;
2213 
2214 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2215 		return (SET_ERROR(EINVAL));
2216 
2217 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2218 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2219 
2220 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2221 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2222 
2223 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2224 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2225 
2226 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2227 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2228 	    last_drrw->drr_offset - first_drrw->drr_offset +
2229 	    last_drrw->drr_logical_size);
2230 	err = dmu_tx_assign(tx, TXG_WAIT);
2231 	if (err != 0) {
2232 		dmu_tx_abort(tx);
2233 		dnode_rele(dn, FTAG);
2234 		return (err);
2235 	}
2236 
2237 	struct receive_record_arg *rrd;
2238 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2239 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2240 		abd_t *abd = rrd->abd;
2241 
2242 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2243 
2244 		if (drrw->drr_logical_size != dn->dn_datablksz) {
2245 			/*
2246 			 * The WRITE record is larger than the object's block
2247 			 * size.  We must be receiving an incremental
2248 			 * large-block stream into a dataset that previously did
2249 			 * a non-large-block receive.  Lightweight writes must
2250 			 * be exactly one block, so we need to decompress the
2251 			 * data (if compressed) and do a normal dmu_write().
2252 			 */
2253 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2254 			if (DRR_WRITE_COMPRESSED(drrw)) {
2255 				abd_t *decomp_abd =
2256 				    abd_alloc_linear(drrw->drr_logical_size,
2257 				    B_FALSE);
2258 
2259 				err = zio_decompress_data(
2260 				    drrw->drr_compressiontype,
2261 				    abd, decomp_abd,
2262 				    abd_get_size(abd),
2263 				    abd_get_size(decomp_abd), NULL);
2264 
2265 				if (err == 0) {
2266 					dmu_write_by_dnode(dn,
2267 					    drrw->drr_offset,
2268 					    drrw->drr_logical_size,
2269 					    abd_to_buf(decomp_abd), tx);
2270 				}
2271 				abd_free(decomp_abd);
2272 			} else {
2273 				dmu_write_by_dnode(dn,
2274 				    drrw->drr_offset,
2275 				    drrw->drr_logical_size,
2276 				    abd_to_buf(abd), tx);
2277 			}
2278 			if (err == 0)
2279 				abd_free(abd);
2280 		} else {
2281 			zio_prop_t zp = {0};
2282 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2283 
2284 			zio_flag_t zio_flags = 0;
2285 
2286 			if (rwa->raw) {
2287 				zp.zp_encrypt = B_TRUE;
2288 				zp.zp_compress = drrw->drr_compressiontype;
2289 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2290 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2291 				    rwa->byteswap;
2292 				memcpy(zp.zp_salt, drrw->drr_salt,
2293 				    ZIO_DATA_SALT_LEN);
2294 				memcpy(zp.zp_iv, drrw->drr_iv,
2295 				    ZIO_DATA_IV_LEN);
2296 				memcpy(zp.zp_mac, drrw->drr_mac,
2297 				    ZIO_DATA_MAC_LEN);
2298 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2299 					zp.zp_nopwrite = B_FALSE;
2300 					zp.zp_copies = MIN(zp.zp_copies,
2301 					    SPA_DVAS_PER_BP - 1);
2302 				}
2303 				zio_flags |= ZIO_FLAG_RAW;
2304 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
2305 				ASSERT3U(drrw->drr_compressed_size, >, 0);
2306 				ASSERT3U(drrw->drr_logical_size, >=,
2307 				    drrw->drr_compressed_size);
2308 				zp.zp_compress = drrw->drr_compressiontype;
2309 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2310 			} else if (rwa->byteswap) {
2311 				/*
2312 				 * Note: compressed blocks never need to be
2313 				 * byteswapped, because WRITE records for
2314 				 * metadata blocks are never compressed. The
2315 				 * exception is raw streams, which are written
2316 				 * in the original byteorder, and the byteorder
2317 				 * bit is preserved in the BP by setting
2318 				 * zp_byteorder above.
2319 				 */
2320 				dmu_object_byteswap_t byteswap =
2321 				    DMU_OT_BYTESWAP(drrw->drr_type);
2322 				dmu_ot_byteswap[byteswap].ob_func(
2323 				    abd_to_buf(abd),
2324 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
2325 			}
2326 
2327 			/*
2328 			 * Since this data can't be read until the receive
2329 			 * completes, we can do a "lightweight" write for
2330 			 * improved performance.
2331 			 */
2332 			err = dmu_lightweight_write_by_dnode(dn,
2333 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
2334 		}
2335 
2336 		if (err != 0) {
2337 			/*
2338 			 * This rrd is left on the list, so the caller will
2339 			 * free it (and the abd).
2340 			 */
2341 			break;
2342 		}
2343 
2344 		/*
2345 		 * Note: If the receive fails, we want the resume stream to
2346 		 * start with the same record that we last successfully
2347 		 * received (as opposed to the next record), so that we can
2348 		 * verify that we are resuming from the correct location.
2349 		 */
2350 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2351 
2352 		list_remove(&rwa->write_batch, rrd);
2353 		kmem_free(rrd, sizeof (*rrd));
2354 	}
2355 
2356 	dmu_tx_commit(tx);
2357 	dnode_rele(dn, FTAG);
2358 	return (err);
2359 }
2360 
2361 noinline static int
flush_write_batch(struct receive_writer_arg * rwa)2362 flush_write_batch(struct receive_writer_arg *rwa)
2363 {
2364 	if (list_is_empty(&rwa->write_batch))
2365 		return (0);
2366 	int err = rwa->err;
2367 	if (err == 0)
2368 		err = flush_write_batch_impl(rwa);
2369 	if (err != 0) {
2370 		struct receive_record_arg *rrd;
2371 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2372 			abd_free(rrd->abd);
2373 			kmem_free(rrd, sizeof (*rrd));
2374 		}
2375 	}
2376 	ASSERT(list_is_empty(&rwa->write_batch));
2377 	return (err);
2378 }
2379 
2380 noinline static int
receive_process_write_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2381 receive_process_write_record(struct receive_writer_arg *rwa,
2382     struct receive_record_arg *rrd)
2383 {
2384 	int err = 0;
2385 
2386 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2387 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2388 
2389 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2390 	    !DMU_OT_IS_VALID(drrw->drr_type))
2391 		return (SET_ERROR(EINVAL));
2392 
2393 	if (rwa->heal) {
2394 		blkptr_t *bp;
2395 		dmu_buf_t *dbp;
2396 		int flags = DB_RF_CANFAIL;
2397 
2398 		if (rwa->raw)
2399 			flags |= DB_RF_NO_DECRYPT;
2400 
2401 		if (rwa->byteswap) {
2402 			dmu_object_byteswap_t byteswap =
2403 			    DMU_OT_BYTESWAP(drrw->drr_type);
2404 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2405 			    DRR_WRITE_PAYLOAD_SIZE(drrw));
2406 		}
2407 
2408 		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2409 		    drrw->drr_offset, FTAG, &dbp);
2410 		if (err != 0)
2411 			return (err);
2412 
2413 		/* Try to read the object to see if it needs healing */
2414 		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2415 		/*
2416 		 * We only try to heal when dbuf_read() returns a ECKSUMs.
2417 		 * Other errors (even EIO) get returned to caller.
2418 		 * EIO indicates that the device is not present/accessible,
2419 		 * so writing to it will likely fail.
2420 		 * If the block is healthy, we don't want to overwrite it
2421 		 * unnecessarily.
2422 		 */
2423 		if (err != ECKSUM) {
2424 			dmu_buf_rele(dbp, FTAG);
2425 			return (err);
2426 		}
2427 		/* Make sure the on-disk block and recv record sizes match */
2428 		if (drrw->drr_logical_size != dbp->db_size) {
2429 			err = ENOTSUP;
2430 			dmu_buf_rele(dbp, FTAG);
2431 			return (err);
2432 		}
2433 		/* Get the block pointer for the corrupted block */
2434 		bp = dmu_buf_get_blkptr(dbp);
2435 		err = do_corrective_recv(rwa, drrw, rrd, bp);
2436 		dmu_buf_rele(dbp, FTAG);
2437 		return (err);
2438 	}
2439 
2440 	/*
2441 	 * For resuming to work, records must be in increasing order
2442 	 * by (object, offset).
2443 	 */
2444 	if (drrw->drr_object < rwa->last_object ||
2445 	    (drrw->drr_object == rwa->last_object &&
2446 	    drrw->drr_offset < rwa->last_offset)) {
2447 		return (SET_ERROR(EINVAL));
2448 	}
2449 
2450 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2451 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2452 	uint64_t batch_size =
2453 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2454 	if (first_rrd != NULL &&
2455 	    (drrw->drr_object != first_drrw->drr_object ||
2456 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2457 		err = flush_write_batch(rwa);
2458 		if (err != 0)
2459 			return (err);
2460 	}
2461 
2462 	rwa->last_object = drrw->drr_object;
2463 	rwa->last_offset = drrw->drr_offset;
2464 
2465 	if (rwa->last_object > rwa->max_object)
2466 		rwa->max_object = rwa->last_object;
2467 
2468 	list_insert_tail(&rwa->write_batch, rrd);
2469 	/*
2470 	 * Return EAGAIN to indicate that we will use this rrd again,
2471 	 * so the caller should not free it
2472 	 */
2473 	return (EAGAIN);
2474 }
2475 
2476 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)2477 receive_write_embedded(struct receive_writer_arg *rwa,
2478     struct drr_write_embedded *drrwe, void *data)
2479 {
2480 	dmu_tx_t *tx;
2481 	int err;
2482 
2483 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2484 		return (SET_ERROR(EINVAL));
2485 
2486 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2487 		return (SET_ERROR(EINVAL));
2488 
2489 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2490 		return (SET_ERROR(EINVAL));
2491 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2492 		return (SET_ERROR(EINVAL));
2493 	if (rwa->raw)
2494 		return (SET_ERROR(EINVAL));
2495 
2496 	if (drrwe->drr_object > rwa->max_object)
2497 		rwa->max_object = drrwe->drr_object;
2498 
2499 	tx = dmu_tx_create(rwa->os);
2500 
2501 	dmu_tx_hold_write(tx, drrwe->drr_object,
2502 	    drrwe->drr_offset, drrwe->drr_length);
2503 	err = dmu_tx_assign(tx, TXG_WAIT);
2504 	if (err != 0) {
2505 		dmu_tx_abort(tx);
2506 		return (err);
2507 	}
2508 
2509 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2510 	    drrwe->drr_offset, data, drrwe->drr_etype,
2511 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2512 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2513 
2514 	/* See comment in restore_write. */
2515 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2516 	dmu_tx_commit(tx);
2517 	return (0);
2518 }
2519 
2520 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,abd_t * abd)2521 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2522     abd_t *abd)
2523 {
2524 	dmu_buf_t *db, *db_spill;
2525 	int err;
2526 
2527 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2528 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2529 		return (SET_ERROR(EINVAL));
2530 
2531 	/*
2532 	 * This is an unmodified spill block which was added to the stream
2533 	 * to resolve an issue with incorrectly removing spill blocks.  It
2534 	 * should be ignored by current versions of the code which support
2535 	 * the DRR_FLAG_SPILL_BLOCK flag.
2536 	 */
2537 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2538 		abd_free(abd);
2539 		return (0);
2540 	}
2541 
2542 	if (rwa->raw) {
2543 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2544 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2545 		    drrs->drr_compressed_size == 0)
2546 			return (SET_ERROR(EINVAL));
2547 	}
2548 
2549 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2550 		return (SET_ERROR(EINVAL));
2551 
2552 	if (drrs->drr_object > rwa->max_object)
2553 		rwa->max_object = drrs->drr_object;
2554 
2555 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2556 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2557 	    &db_spill)) != 0) {
2558 		dmu_buf_rele(db, FTAG);
2559 		return (err);
2560 	}
2561 
2562 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2563 
2564 	dmu_tx_hold_spill(tx, db->db_object);
2565 
2566 	err = dmu_tx_assign(tx, TXG_WAIT);
2567 	if (err != 0) {
2568 		dmu_buf_rele(db, FTAG);
2569 		dmu_buf_rele(db_spill, FTAG);
2570 		dmu_tx_abort(tx);
2571 		return (err);
2572 	}
2573 
2574 	/*
2575 	 * Spill blocks may both grow and shrink.  When a change in size
2576 	 * occurs any existing dbuf must be updated to match the logical
2577 	 * size of the provided arc_buf_t.
2578 	 */
2579 	if (db_spill->db_size != drrs->drr_length) {
2580 		dmu_buf_will_fill(db_spill, tx, B_FALSE);
2581 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2582 		    drrs->drr_length, tx));
2583 	}
2584 
2585 	arc_buf_t *abuf;
2586 	if (rwa->raw) {
2587 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2588 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2589 		    rwa->byteswap;
2590 
2591 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2592 		    drrs->drr_object, byteorder, drrs->drr_salt,
2593 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2594 		    drrs->drr_compressed_size, drrs->drr_length,
2595 		    drrs->drr_compressiontype, 0);
2596 	} else {
2597 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2598 		    DMU_OT_IS_METADATA(drrs->drr_type),
2599 		    drrs->drr_length);
2600 		if (rwa->byteswap) {
2601 			dmu_object_byteswap_t byteswap =
2602 			    DMU_OT_BYTESWAP(drrs->drr_type);
2603 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2604 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2605 		}
2606 	}
2607 
2608 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2609 	abd_free(abd);
2610 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2611 
2612 	dmu_buf_rele(db, FTAG);
2613 	dmu_buf_rele(db_spill, FTAG);
2614 
2615 	dmu_tx_commit(tx);
2616 	return (0);
2617 }
2618 
2619 noinline static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)2620 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2621 {
2622 	int err;
2623 
2624 	if (drrf->drr_length != -1ULL &&
2625 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2626 		return (SET_ERROR(EINVAL));
2627 
2628 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2629 		return (SET_ERROR(EINVAL));
2630 
2631 	if (drrf->drr_object > rwa->max_object)
2632 		rwa->max_object = drrf->drr_object;
2633 
2634 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2635 	    drrf->drr_offset, drrf->drr_length);
2636 
2637 	return (err);
2638 }
2639 
2640 static int
receive_object_range(struct receive_writer_arg * rwa,struct drr_object_range * drror)2641 receive_object_range(struct receive_writer_arg *rwa,
2642     struct drr_object_range *drror)
2643 {
2644 	/*
2645 	 * By default, we assume this block is in our native format
2646 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2647 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2648 	 * we need to byteswap again if this particular block was
2649 	 * in non-native format on the send side.
2650 	 */
2651 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2652 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2653 
2654 	/*
2655 	 * Since dnode block sizes are constant, we should not need to worry
2656 	 * about making sure that the dnode block size is the same on the
2657 	 * sending and receiving sides for the time being. For non-raw sends,
2658 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2659 	 * record at all). Raw sends require this record type because the
2660 	 * encryption parameters are used to protect an entire block of bonus
2661 	 * buffers. If the size of dnode blocks ever becomes variable,
2662 	 * handling will need to be added to ensure that dnode block sizes
2663 	 * match on the sending and receiving side.
2664 	 */
2665 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2666 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2667 	    !rwa->raw)
2668 		return (SET_ERROR(EINVAL));
2669 
2670 	if (drror->drr_firstobj > rwa->max_object)
2671 		rwa->max_object = drror->drr_firstobj;
2672 
2673 	/*
2674 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2675 	 * so that the block of dnodes is not written out when it's empty,
2676 	 * and converted to a HOLE BP.
2677 	 */
2678 	rwa->or_crypt_params_present = B_TRUE;
2679 	rwa->or_firstobj = drror->drr_firstobj;
2680 	rwa->or_numslots = drror->drr_numslots;
2681 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2682 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2683 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2684 	rwa->or_byteorder = byteorder;
2685 
2686 	rwa->or_need_sync = ORNS_MAYBE;
2687 
2688 	return (0);
2689 }
2690 
2691 /*
2692  * Until we have the ability to redact large ranges of data efficiently, we
2693  * process these records as frees.
2694  */
2695 noinline static int
receive_redact(struct receive_writer_arg * rwa,struct drr_redact * drrr)2696 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2697 {
2698 	struct drr_free drrf = {0};
2699 	drrf.drr_length = drrr->drr_length;
2700 	drrf.drr_object = drrr->drr_object;
2701 	drrf.drr_offset = drrr->drr_offset;
2702 	drrf.drr_toguid = drrr->drr_toguid;
2703 	return (receive_free(rwa, &drrf));
2704 }
2705 
2706 /* used to destroy the drc_ds on error */
2707 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)2708 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2709 {
2710 	dsl_dataset_t *ds = drc->drc_ds;
2711 	ds_hold_flags_t dsflags;
2712 
2713 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2714 	/*
2715 	 * Wait for the txg sync before cleaning up the receive. For
2716 	 * resumable receives, this ensures that our resume state has
2717 	 * been written out to disk. For raw receives, this ensures
2718 	 * that the user accounting code will not attempt to do anything
2719 	 * after we stopped receiving the dataset.
2720 	 */
2721 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2722 	ds->ds_objset->os_raw_receive = B_FALSE;
2723 
2724 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2725 	if (drc->drc_resumable && drc->drc_should_save &&
2726 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2727 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2728 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2729 	} else {
2730 		char name[ZFS_MAX_DATASET_NAME_LEN];
2731 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2732 		dsl_dataset_name(ds, name);
2733 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2734 		if (!drc->drc_heal)
2735 			(void) dsl_destroy_head(name);
2736 	}
2737 }
2738 
2739 static void
receive_cksum(dmu_recv_cookie_t * drc,int len,void * buf)2740 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2741 {
2742 	if (drc->drc_byteswap) {
2743 		(void) fletcher_4_incremental_byteswap(buf, len,
2744 		    &drc->drc_cksum);
2745 	} else {
2746 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2747 	}
2748 }
2749 
2750 /*
2751  * Read the payload into a buffer of size len, and update the current record's
2752  * payload field.
2753  * Allocate drc->drc_next_rrd and read the next record's header into
2754  * drc->drc_next_rrd->header.
2755  * Verify checksum of payload and next record.
2756  */
2757 static int
receive_read_payload_and_next_header(dmu_recv_cookie_t * drc,int len,void * buf)2758 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2759 {
2760 	int err;
2761 
2762 	if (len != 0) {
2763 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2764 		err = receive_read(drc, len, buf);
2765 		if (err != 0)
2766 			return (err);
2767 		receive_cksum(drc, len, buf);
2768 
2769 		/* note: rrd is NULL when reading the begin record's payload */
2770 		if (drc->drc_rrd != NULL) {
2771 			drc->drc_rrd->payload = buf;
2772 			drc->drc_rrd->payload_size = len;
2773 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2774 		}
2775 	} else {
2776 		ASSERT3P(buf, ==, NULL);
2777 	}
2778 
2779 	drc->drc_prev_cksum = drc->drc_cksum;
2780 
2781 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2782 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2783 	    &drc->drc_next_rrd->header);
2784 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2785 
2786 	if (err != 0) {
2787 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2788 		drc->drc_next_rrd = NULL;
2789 		return (err);
2790 	}
2791 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2792 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2793 		drc->drc_next_rrd = NULL;
2794 		return (SET_ERROR(EINVAL));
2795 	}
2796 
2797 	/*
2798 	 * Note: checksum is of everything up to but not including the
2799 	 * checksum itself.
2800 	 */
2801 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2802 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2803 	receive_cksum(drc,
2804 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2805 	    &drc->drc_next_rrd->header);
2806 
2807 	zio_cksum_t cksum_orig =
2808 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2809 	zio_cksum_t *cksump =
2810 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2811 
2812 	if (drc->drc_byteswap)
2813 		byteswap_record(&drc->drc_next_rrd->header);
2814 
2815 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2816 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2817 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2818 		drc->drc_next_rrd = NULL;
2819 		return (SET_ERROR(ECKSUM));
2820 	}
2821 
2822 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2823 
2824 	return (0);
2825 }
2826 
2827 /*
2828  * Issue the prefetch reads for any necessary indirect blocks.
2829  *
2830  * We use the object ignore list to tell us whether or not to issue prefetches
2831  * for a given object.  We do this for both correctness (in case the blocksize
2832  * of an object has changed) and performance (if the object doesn't exist, don't
2833  * needlessly try to issue prefetches).  We also trim the list as we go through
2834  * the stream to prevent it from growing to an unbounded size.
2835  *
2836  * The object numbers within will always be in sorted order, and any write
2837  * records we see will also be in sorted order, but they're not sorted with
2838  * respect to each other (i.e. we can get several object records before
2839  * receiving each object's write records).  As a result, once we've reached a
2840  * given object number, we can safely remove any reference to lower object
2841  * numbers in the ignore list. In practice, we receive up to 32 object records
2842  * before receiving write records, so the list can have up to 32 nodes in it.
2843  */
2844 static void
receive_read_prefetch(dmu_recv_cookie_t * drc,uint64_t object,uint64_t offset,uint64_t length)2845 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2846     uint64_t length)
2847 {
2848 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2849 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2850 		    ZIO_PRIORITY_SYNC_READ);
2851 	}
2852 }
2853 
2854 /*
2855  * Read records off the stream, issuing any necessary prefetches.
2856  */
2857 static int
receive_read_record(dmu_recv_cookie_t * drc)2858 receive_read_record(dmu_recv_cookie_t *drc)
2859 {
2860 	int err;
2861 
2862 	switch (drc->drc_rrd->header.drr_type) {
2863 	case DRR_OBJECT:
2864 	{
2865 		struct drr_object *drro =
2866 		    &drc->drc_rrd->header.drr_u.drr_object;
2867 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2868 		void *buf = NULL;
2869 		dmu_object_info_t doi;
2870 
2871 		if (size != 0)
2872 			buf = kmem_zalloc(size, KM_SLEEP);
2873 
2874 		err = receive_read_payload_and_next_header(drc, size, buf);
2875 		if (err != 0) {
2876 			kmem_free(buf, size);
2877 			return (err);
2878 		}
2879 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2880 		/*
2881 		 * See receive_read_prefetch for an explanation why we're
2882 		 * storing this object in the ignore_obj_list.
2883 		 */
2884 		if (err == ENOENT || err == EEXIST ||
2885 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2886 			objlist_insert(drc->drc_ignore_objlist,
2887 			    drro->drr_object);
2888 			err = 0;
2889 		}
2890 		return (err);
2891 	}
2892 	case DRR_FREEOBJECTS:
2893 	{
2894 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2895 		return (err);
2896 	}
2897 	case DRR_WRITE:
2898 	{
2899 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2900 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2901 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2902 		err = receive_read_payload_and_next_header(drc, size,
2903 		    abd_to_buf(abd));
2904 		if (err != 0) {
2905 			abd_free(abd);
2906 			return (err);
2907 		}
2908 		drc->drc_rrd->abd = abd;
2909 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2910 		    drrw->drr_logical_size);
2911 		return (err);
2912 	}
2913 	case DRR_WRITE_EMBEDDED:
2914 	{
2915 		struct drr_write_embedded *drrwe =
2916 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2917 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2918 		void *buf = kmem_zalloc(size, KM_SLEEP);
2919 
2920 		err = receive_read_payload_and_next_header(drc, size, buf);
2921 		if (err != 0) {
2922 			kmem_free(buf, size);
2923 			return (err);
2924 		}
2925 
2926 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2927 		    drrwe->drr_length);
2928 		return (err);
2929 	}
2930 	case DRR_FREE:
2931 	case DRR_REDACT:
2932 	{
2933 		/*
2934 		 * It might be beneficial to prefetch indirect blocks here, but
2935 		 * we don't really have the data to decide for sure.
2936 		 */
2937 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2938 		return (err);
2939 	}
2940 	case DRR_END:
2941 	{
2942 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2943 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2944 		    drre->drr_checksum))
2945 			return (SET_ERROR(ECKSUM));
2946 		return (0);
2947 	}
2948 	case DRR_SPILL:
2949 	{
2950 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2951 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2952 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2953 		err = receive_read_payload_and_next_header(drc, size,
2954 		    abd_to_buf(abd));
2955 		if (err != 0)
2956 			abd_free(abd);
2957 		else
2958 			drc->drc_rrd->abd = abd;
2959 		return (err);
2960 	}
2961 	case DRR_OBJECT_RANGE:
2962 	{
2963 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2964 		return (err);
2965 
2966 	}
2967 	default:
2968 		return (SET_ERROR(EINVAL));
2969 	}
2970 }
2971 
2972 
2973 
2974 static void
dprintf_drr(struct receive_record_arg * rrd,int err)2975 dprintf_drr(struct receive_record_arg *rrd, int err)
2976 {
2977 #ifdef ZFS_DEBUG
2978 	switch (rrd->header.drr_type) {
2979 	case DRR_OBJECT:
2980 	{
2981 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2982 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2983 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2984 		    "compress = %u dn_slots = %u err = %d\n",
2985 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2986 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2987 		    drro->drr_checksumtype, drro->drr_compress,
2988 		    drro->drr_dn_slots, err);
2989 		break;
2990 	}
2991 	case DRR_FREEOBJECTS:
2992 	{
2993 		struct drr_freeobjects *drrfo =
2994 		    &rrd->header.drr_u.drr_freeobjects;
2995 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2996 		    "numobjs = %llu err = %d\n",
2997 		    (u_longlong_t)drrfo->drr_firstobj,
2998 		    (u_longlong_t)drrfo->drr_numobjs, err);
2999 		break;
3000 	}
3001 	case DRR_WRITE:
3002 	{
3003 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
3004 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
3005 		    "lsize = %llu cksumtype = %u flags = %u "
3006 		    "compress = %u psize = %llu err = %d\n",
3007 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
3008 		    (u_longlong_t)drrw->drr_offset,
3009 		    (u_longlong_t)drrw->drr_logical_size,
3010 		    drrw->drr_checksumtype, drrw->drr_flags,
3011 		    drrw->drr_compressiontype,
3012 		    (u_longlong_t)drrw->drr_compressed_size, err);
3013 		break;
3014 	}
3015 	case DRR_WRITE_BYREF:
3016 	{
3017 		struct drr_write_byref *drrwbr =
3018 		    &rrd->header.drr_u.drr_write_byref;
3019 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
3020 		    "length = %llu toguid = %llx refguid = %llx "
3021 		    "refobject = %llu refoffset = %llu cksumtype = %u "
3022 		    "flags = %u err = %d\n",
3023 		    (u_longlong_t)drrwbr->drr_object,
3024 		    (u_longlong_t)drrwbr->drr_offset,
3025 		    (u_longlong_t)drrwbr->drr_length,
3026 		    (u_longlong_t)drrwbr->drr_toguid,
3027 		    (u_longlong_t)drrwbr->drr_refguid,
3028 		    (u_longlong_t)drrwbr->drr_refobject,
3029 		    (u_longlong_t)drrwbr->drr_refoffset,
3030 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
3031 		break;
3032 	}
3033 	case DRR_WRITE_EMBEDDED:
3034 	{
3035 		struct drr_write_embedded *drrwe =
3036 		    &rrd->header.drr_u.drr_write_embedded;
3037 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
3038 		    "length = %llu compress = %u etype = %u lsize = %u "
3039 		    "psize = %u err = %d\n",
3040 		    (u_longlong_t)drrwe->drr_object,
3041 		    (u_longlong_t)drrwe->drr_offset,
3042 		    (u_longlong_t)drrwe->drr_length,
3043 		    drrwe->drr_compression, drrwe->drr_etype,
3044 		    drrwe->drr_lsize, drrwe->drr_psize, err);
3045 		break;
3046 	}
3047 	case DRR_FREE:
3048 	{
3049 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3050 		dprintf("drr_type = FREE obj = %llu offset = %llu "
3051 		    "length = %lld err = %d\n",
3052 		    (u_longlong_t)drrf->drr_object,
3053 		    (u_longlong_t)drrf->drr_offset,
3054 		    (longlong_t)drrf->drr_length,
3055 		    err);
3056 		break;
3057 	}
3058 	case DRR_SPILL:
3059 	{
3060 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3061 		dprintf("drr_type = SPILL obj = %llu length = %llu "
3062 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
3063 		    (u_longlong_t)drrs->drr_length, err);
3064 		break;
3065 	}
3066 	case DRR_OBJECT_RANGE:
3067 	{
3068 		struct drr_object_range *drror =
3069 		    &rrd->header.drr_u.drr_object_range;
3070 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3071 		    "numslots = %llu flags = %u err = %d\n",
3072 		    (u_longlong_t)drror->drr_firstobj,
3073 		    (u_longlong_t)drror->drr_numslots,
3074 		    drror->drr_flags, err);
3075 		break;
3076 	}
3077 	default:
3078 		return;
3079 	}
3080 #endif
3081 }
3082 
3083 /*
3084  * Commit the records to the pool.
3085  */
3086 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)3087 receive_process_record(struct receive_writer_arg *rwa,
3088     struct receive_record_arg *rrd)
3089 {
3090 	int err;
3091 
3092 	/* Processing in order, therefore bytes_read should be increasing. */
3093 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3094 	rwa->bytes_read = rrd->bytes_read;
3095 
3096 	/* We can only heal write records; other ones get ignored */
3097 	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3098 		if (rrd->abd != NULL) {
3099 			abd_free(rrd->abd);
3100 			rrd->abd = NULL;
3101 		} else if (rrd->payload != NULL) {
3102 			kmem_free(rrd->payload, rrd->payload_size);
3103 			rrd->payload = NULL;
3104 		}
3105 		return (0);
3106 	}
3107 
3108 	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3109 		err = flush_write_batch(rwa);
3110 		if (err != 0) {
3111 			if (rrd->abd != NULL) {
3112 				abd_free(rrd->abd);
3113 				rrd->abd = NULL;
3114 				rrd->payload = NULL;
3115 			} else if (rrd->payload != NULL) {
3116 				kmem_free(rrd->payload, rrd->payload_size);
3117 				rrd->payload = NULL;
3118 			}
3119 
3120 			return (err);
3121 		}
3122 	}
3123 
3124 	switch (rrd->header.drr_type) {
3125 	case DRR_OBJECT:
3126 	{
3127 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
3128 		err = receive_object(rwa, drro, rrd->payload);
3129 		kmem_free(rrd->payload, rrd->payload_size);
3130 		rrd->payload = NULL;
3131 		break;
3132 	}
3133 	case DRR_FREEOBJECTS:
3134 	{
3135 		struct drr_freeobjects *drrfo =
3136 		    &rrd->header.drr_u.drr_freeobjects;
3137 		err = receive_freeobjects(rwa, drrfo);
3138 		break;
3139 	}
3140 	case DRR_WRITE:
3141 	{
3142 		err = receive_process_write_record(rwa, rrd);
3143 		if (rwa->heal) {
3144 			/*
3145 			 * If healing - always free the abd after processing
3146 			 */
3147 			abd_free(rrd->abd);
3148 			rrd->abd = NULL;
3149 		} else if (err != EAGAIN) {
3150 			/*
3151 			 * On success, a non-healing
3152 			 * receive_process_write_record() returns
3153 			 * EAGAIN to indicate that we do not want to free
3154 			 * the rrd or arc_buf.
3155 			 */
3156 			ASSERT(err != 0);
3157 			abd_free(rrd->abd);
3158 			rrd->abd = NULL;
3159 		}
3160 		break;
3161 	}
3162 	case DRR_WRITE_EMBEDDED:
3163 	{
3164 		struct drr_write_embedded *drrwe =
3165 		    &rrd->header.drr_u.drr_write_embedded;
3166 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
3167 		kmem_free(rrd->payload, rrd->payload_size);
3168 		rrd->payload = NULL;
3169 		break;
3170 	}
3171 	case DRR_FREE:
3172 	{
3173 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3174 		err = receive_free(rwa, drrf);
3175 		break;
3176 	}
3177 	case DRR_SPILL:
3178 	{
3179 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3180 		err = receive_spill(rwa, drrs, rrd->abd);
3181 		if (err != 0)
3182 			abd_free(rrd->abd);
3183 		rrd->abd = NULL;
3184 		rrd->payload = NULL;
3185 		break;
3186 	}
3187 	case DRR_OBJECT_RANGE:
3188 	{
3189 		struct drr_object_range *drror =
3190 		    &rrd->header.drr_u.drr_object_range;
3191 		err = receive_object_range(rwa, drror);
3192 		break;
3193 	}
3194 	case DRR_REDACT:
3195 	{
3196 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3197 		err = receive_redact(rwa, drrr);
3198 		break;
3199 	}
3200 	default:
3201 		err = (SET_ERROR(EINVAL));
3202 	}
3203 
3204 	if (err != 0)
3205 		dprintf_drr(rrd, err);
3206 
3207 	return (err);
3208 }
3209 
3210 /*
3211  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3212  * receive_process_record  When we're done, signal the main thread and exit.
3213  */
3214 static __attribute__((noreturn)) void
receive_writer_thread(void * arg)3215 receive_writer_thread(void *arg)
3216 {
3217 	struct receive_writer_arg *rwa = arg;
3218 	struct receive_record_arg *rrd;
3219 	fstrans_cookie_t cookie = spl_fstrans_mark();
3220 
3221 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3222 	    rrd = bqueue_dequeue(&rwa->q)) {
3223 		/*
3224 		 * If there's an error, the main thread will stop putting things
3225 		 * on the queue, but we need to clear everything in it before we
3226 		 * can exit.
3227 		 */
3228 		int err = 0;
3229 		if (rwa->err == 0) {
3230 			err = receive_process_record(rwa, rrd);
3231 		} else if (rrd->abd != NULL) {
3232 			abd_free(rrd->abd);
3233 			rrd->abd = NULL;
3234 			rrd->payload = NULL;
3235 		} else if (rrd->payload != NULL) {
3236 			kmem_free(rrd->payload, rrd->payload_size);
3237 			rrd->payload = NULL;
3238 		}
3239 		/*
3240 		 * EAGAIN indicates that this record has been saved (on
3241 		 * raw->write_batch), and will be used again, so we don't
3242 		 * free it.
3243 		 * When healing data we always need to free the record.
3244 		 */
3245 		if (err != EAGAIN || rwa->heal) {
3246 			if (rwa->err == 0)
3247 				rwa->err = err;
3248 			kmem_free(rrd, sizeof (*rrd));
3249 		}
3250 	}
3251 	kmem_free(rrd, sizeof (*rrd));
3252 
3253 	if (rwa->heal) {
3254 		zio_wait(rwa->heal_pio);
3255 	} else {
3256 		int err = flush_write_batch(rwa);
3257 		if (rwa->err == 0)
3258 			rwa->err = err;
3259 	}
3260 	mutex_enter(&rwa->mutex);
3261 	rwa->done = B_TRUE;
3262 	cv_signal(&rwa->cv);
3263 	mutex_exit(&rwa->mutex);
3264 	spl_fstrans_unmark(cookie);
3265 	thread_exit();
3266 }
3267 
3268 static int
resume_check(dmu_recv_cookie_t * drc,nvlist_t * begin_nvl)3269 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3270 {
3271 	uint64_t val;
3272 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3273 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
3274 	uint64_t resume_obj, resume_off;
3275 
3276 	if (nvlist_lookup_uint64(begin_nvl,
3277 	    "resume_object", &resume_obj) != 0 ||
3278 	    nvlist_lookup_uint64(begin_nvl,
3279 	    "resume_offset", &resume_off) != 0) {
3280 		return (SET_ERROR(EINVAL));
3281 	}
3282 	VERIFY0(zap_lookup(mos, dsobj,
3283 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3284 	if (resume_obj != val)
3285 		return (SET_ERROR(EINVAL));
3286 	VERIFY0(zap_lookup(mos, dsobj,
3287 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3288 	if (resume_off != val)
3289 		return (SET_ERROR(EINVAL));
3290 
3291 	return (0);
3292 }
3293 
3294 /*
3295  * Read in the stream's records, one by one, and apply them to the pool.  There
3296  * are two threads involved; the thread that calls this function will spin up a
3297  * worker thread, read the records off the stream one by one, and issue
3298  * prefetches for any necessary indirect blocks.  It will then push the records
3299  * onto an internal blocking queue.  The worker thread will pull the records off
3300  * the queue, and actually write the data into the DMU.  This way, the worker
3301  * thread doesn't have to wait for reads to complete, since everything it needs
3302  * (the indirect blocks) will be prefetched.
3303  *
3304  * NB: callers *must* call dmu_recv_end() if this succeeds.
3305  */
3306 int
dmu_recv_stream(dmu_recv_cookie_t * drc,offset_t * voffp)3307 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3308 {
3309 	int err = 0;
3310 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3311 
3312 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3313 		uint64_t bytes = 0;
3314 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3315 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3316 		    sizeof (bytes), 1, &bytes);
3317 		drc->drc_bytes_read += bytes;
3318 	}
3319 
3320 	drc->drc_ignore_objlist = objlist_create();
3321 
3322 	/* these were verified in dmu_recv_begin */
3323 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3324 	    DMU_SUBSTREAM);
3325 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3326 
3327 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3328 	ASSERT0(drc->drc_os->os_encrypted &&
3329 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3330 
3331 	/* handle DSL encryption key payload */
3332 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3333 		nvlist_t *keynvl = NULL;
3334 
3335 		ASSERT(drc->drc_os->os_encrypted);
3336 		ASSERT(drc->drc_raw);
3337 
3338 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3339 		    &keynvl);
3340 		if (err != 0)
3341 			goto out;
3342 
3343 		if (!drc->drc_heal) {
3344 			/*
3345 			 * If this is a new dataset we set the key immediately.
3346 			 * Otherwise we don't want to change the key until we
3347 			 * are sure the rest of the receive succeeded so we
3348 			 * stash the keynvl away until then.
3349 			 */
3350 			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3351 			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3352 			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3353 			if (err != 0)
3354 				goto out;
3355 		}
3356 
3357 		/* see comment in dmu_recv_end_sync() */
3358 		drc->drc_ivset_guid = 0;
3359 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3360 		    &drc->drc_ivset_guid);
3361 
3362 		if (!drc->drc_newfs)
3363 			drc->drc_keynvl = fnvlist_dup(keynvl);
3364 	}
3365 
3366 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3367 		err = resume_check(drc, drc->drc_begin_nvl);
3368 		if (err != 0)
3369 			goto out;
3370 	}
3371 
3372 	/*
3373 	 * For compatibility with recursive send streams, we do this here,
3374 	 * rather than in dmu_recv_begin. If we pull the next header too
3375 	 * early, and it's the END record, we break the `recv_skip` logic.
3376 	 */
3377 	if (drc->drc_drr_begin->drr_payloadlen == 0) {
3378 		err = receive_read_payload_and_next_header(drc, 0, NULL);
3379 		if (err != 0)
3380 			goto out;
3381 	}
3382 
3383 	/*
3384 	 * If we failed before this point we will clean up any new resume
3385 	 * state that was created. Now that we've gotten past the initial
3386 	 * checks we are ok to retain that resume state.
3387 	 */
3388 	drc->drc_should_save = B_TRUE;
3389 
3390 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3391 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3392 	    offsetof(struct receive_record_arg, node));
3393 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3394 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3395 	rwa->os = drc->drc_os;
3396 	rwa->byteswap = drc->drc_byteswap;
3397 	rwa->heal = drc->drc_heal;
3398 	rwa->tofs = drc->drc_tofs;
3399 	rwa->resumable = drc->drc_resumable;
3400 	rwa->raw = drc->drc_raw;
3401 	rwa->spill = drc->drc_spill;
3402 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3403 	rwa->os->os_raw_receive = drc->drc_raw;
3404 	if (drc->drc_heal) {
3405 		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3406 		    ZIO_FLAG_GODFATHER);
3407 	}
3408 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3409 	    offsetof(struct receive_record_arg, node.bqn_node));
3410 
3411 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3412 	    TS_RUN, minclsyspri);
3413 	/*
3414 	 * We're reading rwa->err without locks, which is safe since we are the
3415 	 * only reader, and the worker thread is the only writer.  It's ok if we
3416 	 * miss a write for an iteration or two of the loop, since the writer
3417 	 * thread will keep freeing records we send it until we send it an eos
3418 	 * marker.
3419 	 *
3420 	 * We can leave this loop in 3 ways:  First, if rwa->err is
3421 	 * non-zero.  In that case, the writer thread will free the rrd we just
3422 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3423 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
3424 	 * drc->drc_rrd has been handed off to the writer thread who will free
3425 	 * it.  Finally, if receive_read_record fails or we're at the end of the
3426 	 * stream, then we free drc->drc_rrd and exit.
3427 	 */
3428 	while (rwa->err == 0) {
3429 		if (issig()) {
3430 			err = SET_ERROR(EINTR);
3431 			break;
3432 		}
3433 
3434 		ASSERT3P(drc->drc_rrd, ==, NULL);
3435 		drc->drc_rrd = drc->drc_next_rrd;
3436 		drc->drc_next_rrd = NULL;
3437 		/* Allocates and loads header into drc->drc_next_rrd */
3438 		err = receive_read_record(drc);
3439 
3440 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3441 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3442 			drc->drc_rrd = NULL;
3443 			break;
3444 		}
3445 
3446 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3447 		    sizeof (struct receive_record_arg) +
3448 		    drc->drc_rrd->payload_size);
3449 		drc->drc_rrd = NULL;
3450 	}
3451 
3452 	ASSERT3P(drc->drc_rrd, ==, NULL);
3453 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3454 	drc->drc_rrd->eos_marker = B_TRUE;
3455 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3456 
3457 	mutex_enter(&rwa->mutex);
3458 	while (!rwa->done) {
3459 		/*
3460 		 * We need to use cv_wait_sig() so that any process that may
3461 		 * be sleeping here can still fork.
3462 		 */
3463 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3464 	}
3465 	mutex_exit(&rwa->mutex);
3466 
3467 	/*
3468 	 * If we are receiving a full stream as a clone, all object IDs which
3469 	 * are greater than the maximum ID referenced in the stream are
3470 	 * by definition unused and must be freed.
3471 	 */
3472 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3473 		uint64_t obj = rwa->max_object + 1;
3474 		int free_err = 0;
3475 		int next_err = 0;
3476 
3477 		while (next_err == 0) {
3478 			free_err = dmu_free_long_object(rwa->os, obj);
3479 			if (free_err != 0 && free_err != ENOENT)
3480 				break;
3481 
3482 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3483 		}
3484 
3485 		if (err == 0) {
3486 			if (free_err != 0 && free_err != ENOENT)
3487 				err = free_err;
3488 			else if (next_err != ESRCH)
3489 				err = next_err;
3490 		}
3491 	}
3492 
3493 	cv_destroy(&rwa->cv);
3494 	mutex_destroy(&rwa->mutex);
3495 	bqueue_destroy(&rwa->q);
3496 	list_destroy(&rwa->write_batch);
3497 	if (err == 0)
3498 		err = rwa->err;
3499 
3500 out:
3501 	/*
3502 	 * If we hit an error before we started the receive_writer_thread
3503 	 * we need to clean up the next_rrd we create by processing the
3504 	 * DRR_BEGIN record.
3505 	 */
3506 	if (drc->drc_next_rrd != NULL)
3507 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3508 
3509 	/*
3510 	 * The objset will be invalidated by dmu_recv_end() when we do
3511 	 * dsl_dataset_clone_swap_sync_impl().
3512 	 */
3513 	drc->drc_os = NULL;
3514 
3515 	kmem_free(rwa, sizeof (*rwa));
3516 	nvlist_free(drc->drc_begin_nvl);
3517 
3518 	if (err != 0) {
3519 		/*
3520 		 * Clean up references. If receive is not resumable,
3521 		 * destroy what we created, so we don't leave it in
3522 		 * the inconsistent state.
3523 		 */
3524 		dmu_recv_cleanup_ds(drc);
3525 		nvlist_free(drc->drc_keynvl);
3526 	}
3527 
3528 	objlist_destroy(drc->drc_ignore_objlist);
3529 	drc->drc_ignore_objlist = NULL;
3530 	*voffp = drc->drc_voff;
3531 	return (err);
3532 }
3533 
3534 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)3535 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3536 {
3537 	dmu_recv_cookie_t *drc = arg;
3538 	dsl_pool_t *dp = dmu_tx_pool(tx);
3539 	int error;
3540 
3541 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3542 
3543 	if (drc->drc_heal) {
3544 		error = 0;
3545 	} else if (!drc->drc_newfs) {
3546 		dsl_dataset_t *origin_head;
3547 
3548 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3549 		if (error != 0)
3550 			return (error);
3551 		if (drc->drc_force) {
3552 			/*
3553 			 * We will destroy any snapshots in tofs (i.e. before
3554 			 * origin_head) that are after the origin (which is
3555 			 * the snap before drc_ds, because drc_ds can not
3556 			 * have any snaps of its own).
3557 			 */
3558 			uint64_t obj;
3559 
3560 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3561 			while (obj !=
3562 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3563 				dsl_dataset_t *snap;
3564 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3565 				    &snap);
3566 				if (error != 0)
3567 					break;
3568 				if (snap->ds_dir != origin_head->ds_dir)
3569 					error = SET_ERROR(EINVAL);
3570 				if (error == 0)  {
3571 					error = dsl_destroy_snapshot_check_impl(
3572 					    snap, B_FALSE);
3573 				}
3574 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3575 				dsl_dataset_rele(snap, FTAG);
3576 				if (error != 0)
3577 					break;
3578 			}
3579 			if (error != 0) {
3580 				dsl_dataset_rele(origin_head, FTAG);
3581 				return (error);
3582 			}
3583 		}
3584 		if (drc->drc_keynvl != NULL) {
3585 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3586 			    drc->drc_keynvl, tx);
3587 			if (error != 0) {
3588 				dsl_dataset_rele(origin_head, FTAG);
3589 				return (error);
3590 			}
3591 		}
3592 
3593 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3594 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3595 		if (error != 0) {
3596 			dsl_dataset_rele(origin_head, FTAG);
3597 			return (error);
3598 		}
3599 		error = dsl_dataset_snapshot_check_impl(origin_head,
3600 		    drc->drc_tosnap, tx, B_TRUE, 1,
3601 		    drc->drc_cred, drc->drc_proc);
3602 		dsl_dataset_rele(origin_head, FTAG);
3603 		if (error != 0)
3604 			return (error);
3605 
3606 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3607 	} else {
3608 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3609 		    drc->drc_tosnap, tx, B_TRUE, 1,
3610 		    drc->drc_cred, drc->drc_proc);
3611 	}
3612 	return (error);
3613 }
3614 
3615 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)3616 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3617 {
3618 	dmu_recv_cookie_t *drc = arg;
3619 	dsl_pool_t *dp = dmu_tx_pool(tx);
3620 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3621 	uint64_t newsnapobj = 0;
3622 
3623 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3624 	    tx, "snap=%s", drc->drc_tosnap);
3625 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3626 
3627 	if (drc->drc_heal) {
3628 		if (drc->drc_keynvl != NULL) {
3629 			nvlist_free(drc->drc_keynvl);
3630 			drc->drc_keynvl = NULL;
3631 		}
3632 	} else if (!drc->drc_newfs) {
3633 		dsl_dataset_t *origin_head;
3634 
3635 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3636 		    &origin_head));
3637 
3638 		if (drc->drc_force) {
3639 			/*
3640 			 * Destroy any snapshots of drc_tofs (origin_head)
3641 			 * after the origin (the snap before drc_ds).
3642 			 */
3643 			uint64_t obj;
3644 
3645 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3646 			while (obj !=
3647 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3648 				dsl_dataset_t *snap;
3649 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3650 				    &snap));
3651 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3652 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3653 				dsl_destroy_snapshot_sync_impl(snap,
3654 				    B_FALSE, tx);
3655 				dsl_dataset_rele(snap, FTAG);
3656 			}
3657 		}
3658 		if (drc->drc_keynvl != NULL) {
3659 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3660 			    drc->drc_keynvl, tx);
3661 			nvlist_free(drc->drc_keynvl);
3662 			drc->drc_keynvl = NULL;
3663 		}
3664 
3665 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3666 		    origin_head->ds_prev);
3667 
3668 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3669 		    origin_head, tx);
3670 		/*
3671 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3672 		 * so drc_os is no longer valid.
3673 		 */
3674 		drc->drc_os = NULL;
3675 
3676 		dsl_dataset_snapshot_sync_impl(origin_head,
3677 		    drc->drc_tosnap, tx);
3678 
3679 		/* set snapshot's creation time and guid */
3680 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3681 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3682 		    drc->drc_drrb->drr_creation_time;
3683 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3684 		    drc->drc_drrb->drr_toguid;
3685 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3686 		    ~DS_FLAG_INCONSISTENT;
3687 
3688 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3689 		dsl_dataset_phys(origin_head)->ds_flags &=
3690 		    ~DS_FLAG_INCONSISTENT;
3691 
3692 		newsnapobj =
3693 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3694 
3695 		dsl_dataset_rele(origin_head, FTAG);
3696 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3697 
3698 		if (drc->drc_owner != NULL)
3699 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3700 	} else {
3701 		dsl_dataset_t *ds = drc->drc_ds;
3702 
3703 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3704 
3705 		/* set snapshot's creation time and guid */
3706 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3707 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3708 		    drc->drc_drrb->drr_creation_time;
3709 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3710 		    drc->drc_drrb->drr_toguid;
3711 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3712 		    ~DS_FLAG_INCONSISTENT;
3713 
3714 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3715 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3716 		if (dsl_dataset_has_resume_receive_state(ds)) {
3717 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3718 			    DS_FIELD_RESUME_FROMGUID, tx);
3719 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3720 			    DS_FIELD_RESUME_OBJECT, tx);
3721 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3722 			    DS_FIELD_RESUME_OFFSET, tx);
3723 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3724 			    DS_FIELD_RESUME_BYTES, tx);
3725 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3726 			    DS_FIELD_RESUME_TOGUID, tx);
3727 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3728 			    DS_FIELD_RESUME_TONAME, tx);
3729 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3730 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3731 		}
3732 		newsnapobj =
3733 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3734 	}
3735 
3736 	/*
3737 	 * If this is a raw receive, the crypt_keydata nvlist will include
3738 	 * a to_ivset_guid for us to set on the new snapshot. This value
3739 	 * will override the value generated by the snapshot code. However,
3740 	 * this value may not be present, because older implementations of
3741 	 * the raw send code did not include this value, and we are still
3742 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3743 	 * tunable is set, in which case we will leave the newly-generated
3744 	 * value.
3745 	 */
3746 	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3747 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3748 		    DMU_OT_DSL_DATASET, tx);
3749 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3750 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3751 		    &drc->drc_ivset_guid, tx));
3752 	}
3753 
3754 	/*
3755 	 * Release the hold from dmu_recv_begin.  This must be done before
3756 	 * we return to open context, so that when we free the dataset's dnode
3757 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3758 	 * at this point (and therefore won't have a valid pointer to the spa)
3759 	 * we release the key mapping manually here while we do have a valid
3760 	 * pointer, if it exists.
3761 	 */
3762 	if (!drc->drc_raw && encrypted) {
3763 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3764 		    drc->drc_ds->ds_object, drc->drc_ds);
3765 	}
3766 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3767 	drc->drc_ds = NULL;
3768 }
3769 
3770 static int dmu_recv_end_modified_blocks = 3;
3771 
3772 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)3773 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3774 {
3775 #ifdef _KERNEL
3776 	/*
3777 	 * We will be destroying the ds; make sure its origin is unmounted if
3778 	 * necessary.
3779 	 */
3780 	char name[ZFS_MAX_DATASET_NAME_LEN];
3781 	dsl_dataset_name(drc->drc_ds, name);
3782 	zfs_destroy_unmount_origin(name);
3783 #endif
3784 
3785 	return (dsl_sync_task(drc->drc_tofs,
3786 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3787 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3788 }
3789 
3790 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)3791 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3792 {
3793 	return (dsl_sync_task(drc->drc_tofs,
3794 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3795 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3796 }
3797 
3798 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)3799 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3800 {
3801 	int error;
3802 
3803 	drc->drc_owner = owner;
3804 
3805 	if (drc->drc_newfs)
3806 		error = dmu_recv_new_end(drc);
3807 	else
3808 		error = dmu_recv_existing_end(drc);
3809 
3810 	if (error != 0) {
3811 		dmu_recv_cleanup_ds(drc);
3812 		nvlist_free(drc->drc_keynvl);
3813 	} else if (!drc->drc_heal) {
3814 		if (drc->drc_newfs) {
3815 			zvol_create_minor(drc->drc_tofs);
3816 		}
3817 		char *snapname = kmem_asprintf("%s@%s",
3818 		    drc->drc_tofs, drc->drc_tosnap);
3819 		zvol_create_minor(snapname);
3820 		kmem_strfree(snapname);
3821 	}
3822 	return (error);
3823 }
3824 
3825 /*
3826  * Return TRUE if this objset is currently being received into.
3827  */
3828 boolean_t
dmu_objset_is_receiving(objset_t * os)3829 dmu_objset_is_receiving(objset_t *os)
3830 {
3831 	return (os->os_dsl_dataset != NULL &&
3832 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3833 }
3834 
3835 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3836 	"Maximum receive queue length");
3837 
3838 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3839 	"Receive queue fill fraction");
3840 
3841 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3842 	"Maximum amount of writes to batch into one transaction");
3843 
3844 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3845 	"Ignore errors during corrective receive");
3846 /* END CSTYLED */
3847