1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31
32 #include "of_private.h"
33
34 /**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
of_graph_is_present(const struct device_node * node)41 bool of_graph_is_present(const struct device_node *node)
42 {
43 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
44
45 if (ports)
46 node = ports;
47
48 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
49
50 return !!port;
51 }
52 EXPORT_SYMBOL(of_graph_is_present);
53
54 /**
55 * of_property_count_elems_of_size - Count the number of elements in a property
56 *
57 * @np: device node from which the property value is to be read.
58 * @propname: name of the property to be searched.
59 * @elem_size: size of the individual element
60 *
61 * Search for a property in a device node and count the number of elements of
62 * size elem_size in it.
63 *
64 * Return: The number of elements on sucess, -EINVAL if the property does not
65 * exist or its length does not match a multiple of elem_size and -ENODATA if
66 * the property does not have a value.
67 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)68 int of_property_count_elems_of_size(const struct device_node *np,
69 const char *propname, int elem_size)
70 {
71 const struct property *prop = of_find_property(np, propname, NULL);
72
73 if (!prop)
74 return -EINVAL;
75 if (!prop->value)
76 return -ENODATA;
77
78 if (prop->length % elem_size != 0) {
79 pr_err("size of %s in node %pOF is not a multiple of %d\n",
80 propname, np, elem_size);
81 return -EINVAL;
82 }
83
84 return prop->length / elem_size;
85 }
86 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
87
88 /**
89 * of_find_property_value_of_size
90 *
91 * @np: device node from which the property value is to be read.
92 * @propname: name of the property to be searched.
93 * @min: minimum allowed length of property value
94 * @max: maximum allowed length of property value (0 means unlimited)
95 * @len: if !=NULL, actual length is written to here
96 *
97 * Search for a property in a device node and valid the requested size.
98 *
99 * Return: The property value on success, -EINVAL if the property does not
100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
101 * property data is too small or too large.
102 *
103 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)104 static void *of_find_property_value_of_size(const struct device_node *np,
105 const char *propname, u32 min, u32 max, size_t *len)
106 {
107 const struct property *prop = of_find_property(np, propname, NULL);
108
109 if (!prop)
110 return ERR_PTR(-EINVAL);
111 if (!prop->value)
112 return ERR_PTR(-ENODATA);
113 if (prop->length < min)
114 return ERR_PTR(-EOVERFLOW);
115 if (max && prop->length > max)
116 return ERR_PTR(-EOVERFLOW);
117
118 if (len)
119 *len = prop->length;
120
121 return prop->value;
122 }
123
124 /**
125 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
126 *
127 * @np: device node from which the property value is to be read.
128 * @propname: name of the property to be searched.
129 * @index: index of the u32 in the list of values
130 * @out_value: pointer to return value, modified only if no error.
131 *
132 * Search for a property in a device node and read nth 32-bit value from
133 * it.
134 *
135 * Return: 0 on success, -EINVAL if the property does not exist,
136 * -ENODATA if property does not have a value, and -EOVERFLOW if the
137 * property data isn't large enough.
138 *
139 * The out_value is modified only if a valid u32 value can be decoded.
140 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)141 int of_property_read_u32_index(const struct device_node *np,
142 const char *propname,
143 u32 index, u32 *out_value)
144 {
145 const u32 *val = of_find_property_value_of_size(np, propname,
146 ((index + 1) * sizeof(*out_value)),
147 0,
148 NULL);
149
150 if (IS_ERR(val))
151 return PTR_ERR(val);
152
153 *out_value = be32_to_cpup(((__be32 *)val) + index);
154 return 0;
155 }
156 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
157
158 /**
159 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
160 *
161 * @np: device node from which the property value is to be read.
162 * @propname: name of the property to be searched.
163 * @index: index of the u64 in the list of values
164 * @out_value: pointer to return value, modified only if no error.
165 *
166 * Search for a property in a device node and read nth 64-bit value from
167 * it.
168 *
169 * Return: 0 on success, -EINVAL if the property does not exist,
170 * -ENODATA if property does not have a value, and -EOVERFLOW if the
171 * property data isn't large enough.
172 *
173 * The out_value is modified only if a valid u64 value can be decoded.
174 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)175 int of_property_read_u64_index(const struct device_node *np,
176 const char *propname,
177 u32 index, u64 *out_value)
178 {
179 const u64 *val = of_find_property_value_of_size(np, propname,
180 ((index + 1) * sizeof(*out_value)),
181 0, NULL);
182
183 if (IS_ERR(val))
184 return PTR_ERR(val);
185
186 *out_value = be64_to_cpup(((__be64 *)val) + index);
187 return 0;
188 }
189 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
190
191 /**
192 * of_property_read_variable_u8_array - Find and read an array of u8 from a
193 * property, with bounds on the minimum and maximum array size.
194 *
195 * @np: device node from which the property value is to be read.
196 * @propname: name of the property to be searched.
197 * @out_values: pointer to found values.
198 * @sz_min: minimum number of array elements to read
199 * @sz_max: maximum number of array elements to read, if zero there is no
200 * upper limit on the number of elements in the dts entry but only
201 * sz_min will be read.
202 *
203 * Search for a property in a device node and read 8-bit value(s) from
204 * it.
205 *
206 * dts entry of array should be like:
207 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
208 *
209 * Return: The number of elements read on success, -EINVAL if the property
210 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
211 * if the property data is smaller than sz_min or longer than sz_max.
212 *
213 * The out_values is modified only if a valid u8 value can be decoded.
214 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)215 int of_property_read_variable_u8_array(const struct device_node *np,
216 const char *propname, u8 *out_values,
217 size_t sz_min, size_t sz_max)
218 {
219 size_t sz, count;
220 const u8 *val = of_find_property_value_of_size(np, propname,
221 (sz_min * sizeof(*out_values)),
222 (sz_max * sizeof(*out_values)),
223 &sz);
224
225 if (IS_ERR(val))
226 return PTR_ERR(val);
227
228 if (!sz_max)
229 sz = sz_min;
230 else
231 sz /= sizeof(*out_values);
232
233 count = sz;
234 while (count--)
235 *out_values++ = *val++;
236
237 return sz;
238 }
239 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
240
241 /**
242 * of_property_read_variable_u16_array - Find and read an array of u16 from a
243 * property, with bounds on the minimum and maximum array size.
244 *
245 * @np: device node from which the property value is to be read.
246 * @propname: name of the property to be searched.
247 * @out_values: pointer to found values.
248 * @sz_min: minimum number of array elements to read
249 * @sz_max: maximum number of array elements to read, if zero there is no
250 * upper limit on the number of elements in the dts entry but only
251 * sz_min will be read.
252 *
253 * Search for a property in a device node and read 16-bit value(s) from
254 * it.
255 *
256 * dts entry of array should be like:
257 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
258 *
259 * Return: The number of elements read on success, -EINVAL if the property
260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
261 * if the property data is smaller than sz_min or longer than sz_max.
262 *
263 * The out_values is modified only if a valid u16 value can be decoded.
264 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)265 int of_property_read_variable_u16_array(const struct device_node *np,
266 const char *propname, u16 *out_values,
267 size_t sz_min, size_t sz_max)
268 {
269 size_t sz, count;
270 const __be16 *val = of_find_property_value_of_size(np, propname,
271 (sz_min * sizeof(*out_values)),
272 (sz_max * sizeof(*out_values)),
273 &sz);
274
275 if (IS_ERR(val))
276 return PTR_ERR(val);
277
278 if (!sz_max)
279 sz = sz_min;
280 else
281 sz /= sizeof(*out_values);
282
283 count = sz;
284 while (count--)
285 *out_values++ = be16_to_cpup(val++);
286
287 return sz;
288 }
289 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
290
291 /**
292 * of_property_read_variable_u32_array - Find and read an array of 32 bit
293 * integers from a property, with bounds on the minimum and maximum array size.
294 *
295 * @np: device node from which the property value is to be read.
296 * @propname: name of the property to be searched.
297 * @out_values: pointer to return found values.
298 * @sz_min: minimum number of array elements to read
299 * @sz_max: maximum number of array elements to read, if zero there is no
300 * upper limit on the number of elements in the dts entry but only
301 * sz_min will be read.
302 *
303 * Search for a property in a device node and read 32-bit value(s) from
304 * it.
305 *
306 * Return: The number of elements read on success, -EINVAL if the property
307 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
308 * if the property data is smaller than sz_min or longer than sz_max.
309 *
310 * The out_values is modified only if a valid u32 value can be decoded.
311 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)312 int of_property_read_variable_u32_array(const struct device_node *np,
313 const char *propname, u32 *out_values,
314 size_t sz_min, size_t sz_max)
315 {
316 size_t sz, count;
317 const __be32 *val = of_find_property_value_of_size(np, propname,
318 (sz_min * sizeof(*out_values)),
319 (sz_max * sizeof(*out_values)),
320 &sz);
321
322 if (IS_ERR(val))
323 return PTR_ERR(val);
324
325 if (!sz_max)
326 sz = sz_min;
327 else
328 sz /= sizeof(*out_values);
329
330 count = sz;
331 while (count--)
332 *out_values++ = be32_to_cpup(val++);
333
334 return sz;
335 }
336 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
337
338 /**
339 * of_property_read_u64 - Find and read a 64 bit integer from a property
340 * @np: device node from which the property value is to be read.
341 * @propname: name of the property to be searched.
342 * @out_value: pointer to return value, modified only if return value is 0.
343 *
344 * Search for a property in a device node and read a 64-bit value from
345 * it.
346 *
347 * Return: 0 on success, -EINVAL if the property does not exist,
348 * -ENODATA if property does not have a value, and -EOVERFLOW if the
349 * property data isn't large enough.
350 *
351 * The out_value is modified only if a valid u64 value can be decoded.
352 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)353 int of_property_read_u64(const struct device_node *np, const char *propname,
354 u64 *out_value)
355 {
356 const __be32 *val = of_find_property_value_of_size(np, propname,
357 sizeof(*out_value),
358 0,
359 NULL);
360
361 if (IS_ERR(val))
362 return PTR_ERR(val);
363
364 *out_value = of_read_number(val, 2);
365 return 0;
366 }
367 EXPORT_SYMBOL_GPL(of_property_read_u64);
368
369 /**
370 * of_property_read_variable_u64_array - Find and read an array of 64 bit
371 * integers from a property, with bounds on the minimum and maximum array size.
372 *
373 * @np: device node from which the property value is to be read.
374 * @propname: name of the property to be searched.
375 * @out_values: pointer to found values.
376 * @sz_min: minimum number of array elements to read
377 * @sz_max: maximum number of array elements to read, if zero there is no
378 * upper limit on the number of elements in the dts entry but only
379 * sz_min will be read.
380 *
381 * Search for a property in a device node and read 64-bit value(s) from
382 * it.
383 *
384 * Return: The number of elements read on success, -EINVAL if the property
385 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
386 * if the property data is smaller than sz_min or longer than sz_max.
387 *
388 * The out_values is modified only if a valid u64 value can be decoded.
389 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)390 int of_property_read_variable_u64_array(const struct device_node *np,
391 const char *propname, u64 *out_values,
392 size_t sz_min, size_t sz_max)
393 {
394 size_t sz, count;
395 const __be32 *val = of_find_property_value_of_size(np, propname,
396 (sz_min * sizeof(*out_values)),
397 (sz_max * sizeof(*out_values)),
398 &sz);
399
400 if (IS_ERR(val))
401 return PTR_ERR(val);
402
403 if (!sz_max)
404 sz = sz_min;
405 else
406 sz /= sizeof(*out_values);
407
408 count = sz;
409 while (count--) {
410 *out_values++ = of_read_number(val, 2);
411 val += 2;
412 }
413
414 return sz;
415 }
416 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
417
418 /**
419 * of_property_read_string - Find and read a string from a property
420 * @np: device node from which the property value is to be read.
421 * @propname: name of the property to be searched.
422 * @out_string: pointer to null terminated return string, modified only if
423 * return value is 0.
424 *
425 * Search for a property in a device tree node and retrieve a null
426 * terminated string value (pointer to data, not a copy).
427 *
428 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
429 * property does not have a value, and -EILSEQ if the string is not
430 * null-terminated within the length of the property data.
431 *
432 * Note that the empty string "" has length of 1, thus -ENODATA cannot
433 * be interpreted as an empty string.
434 *
435 * The out_string pointer is modified only if a valid string can be decoded.
436 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)437 int of_property_read_string(const struct device_node *np, const char *propname,
438 const char **out_string)
439 {
440 const struct property *prop = of_find_property(np, propname, NULL);
441
442 if (!prop)
443 return -EINVAL;
444 if (!prop->length)
445 return -ENODATA;
446 if (strnlen(prop->value, prop->length) >= prop->length)
447 return -EILSEQ;
448 *out_string = prop->value;
449 return 0;
450 }
451 EXPORT_SYMBOL_GPL(of_property_read_string);
452
453 /**
454 * of_property_match_string() - Find string in a list and return index
455 * @np: pointer to the node containing the string list property
456 * @propname: string list property name
457 * @string: pointer to the string to search for in the string list
458 *
459 * Search for an exact match of string in a device node property which is a
460 * string of lists.
461 *
462 * Return: the index of the first occurrence of the string on success, -EINVAL
463 * if the property does not exist, -ENODATA if the property does not have a
464 * value, and -EILSEQ if the string is not null-terminated within the length of
465 * the property data.
466 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)467 int of_property_match_string(const struct device_node *np, const char *propname,
468 const char *string)
469 {
470 const struct property *prop = of_find_property(np, propname, NULL);
471 size_t l;
472 int i;
473 const char *p, *end;
474
475 if (!prop)
476 return -EINVAL;
477 if (!prop->value)
478 return -ENODATA;
479
480 p = prop->value;
481 end = p + prop->length;
482
483 for (i = 0; p < end; i++, p += l) {
484 l = strnlen(p, end - p) + 1;
485 if (p + l > end)
486 return -EILSEQ;
487 pr_debug("comparing %s with %s\n", string, p);
488 if (strcmp(string, p) == 0)
489 return i; /* Found it; return index */
490 }
491 return -ENODATA;
492 }
493 EXPORT_SYMBOL_GPL(of_property_match_string);
494
495 /**
496 * of_property_read_string_helper() - Utility helper for parsing string properties
497 * @np: device node from which the property value is to be read.
498 * @propname: name of the property to be searched.
499 * @out_strs: output array of string pointers.
500 * @sz: number of array elements to read.
501 * @skip: Number of strings to skip over at beginning of list.
502 *
503 * Don't call this function directly. It is a utility helper for the
504 * of_property_read_string*() family of functions.
505 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)506 int of_property_read_string_helper(const struct device_node *np,
507 const char *propname, const char **out_strs,
508 size_t sz, int skip)
509 {
510 const struct property *prop = of_find_property(np, propname, NULL);
511 int l = 0, i = 0;
512 const char *p, *end;
513
514 if (!prop)
515 return -EINVAL;
516 if (!prop->value)
517 return -ENODATA;
518 p = prop->value;
519 end = p + prop->length;
520
521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
522 l = strnlen(p, end - p) + 1;
523 if (p + l > end)
524 return -EILSEQ;
525 if (out_strs && i >= skip)
526 *out_strs++ = p;
527 }
528 i -= skip;
529 return i <= 0 ? -ENODATA : i;
530 }
531 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
532
of_prop_next_u32(const struct property * prop,const __be32 * cur,u32 * pu)533 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur,
534 u32 *pu)
535 {
536 const void *curv = cur;
537
538 if (!prop)
539 return NULL;
540
541 if (!cur) {
542 curv = prop->value;
543 goto out_val;
544 }
545
546 curv += sizeof(*cur);
547 if (curv >= prop->value + prop->length)
548 return NULL;
549
550 out_val:
551 *pu = be32_to_cpup(curv);
552 return curv;
553 }
554 EXPORT_SYMBOL_GPL(of_prop_next_u32);
555
of_prop_next_string(const struct property * prop,const char * cur)556 const char *of_prop_next_string(const struct property *prop, const char *cur)
557 {
558 const void *curv = cur;
559
560 if (!prop)
561 return NULL;
562
563 if (!cur)
564 return prop->value;
565
566 curv += strlen(cur) + 1;
567 if (curv >= prop->value + prop->length)
568 return NULL;
569
570 return curv;
571 }
572 EXPORT_SYMBOL_GPL(of_prop_next_string);
573
574 /**
575 * of_graph_parse_endpoint() - parse common endpoint node properties
576 * @node: pointer to endpoint device_node
577 * @endpoint: pointer to the OF endpoint data structure
578 *
579 * The caller should hold a reference to @node.
580 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)581 int of_graph_parse_endpoint(const struct device_node *node,
582 struct of_endpoint *endpoint)
583 {
584 struct device_node *port_node __free(device_node) =
585 of_get_parent(node);
586
587 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
588 __func__, node);
589
590 memset(endpoint, 0, sizeof(*endpoint));
591
592 endpoint->local_node = node;
593 /*
594 * It doesn't matter whether the two calls below succeed.
595 * If they don't then the default value 0 is used.
596 */
597 of_property_read_u32(port_node, "reg", &endpoint->port);
598 of_property_read_u32(node, "reg", &endpoint->id);
599
600 return 0;
601 }
602 EXPORT_SYMBOL(of_graph_parse_endpoint);
603
604 /**
605 * of_graph_get_port_by_id() - get the port matching a given id
606 * @parent: pointer to the parent device node
607 * @id: id of the port
608 *
609 * Return: A 'port' node pointer with refcount incremented. The caller
610 * has to use of_node_put() on it when done.
611 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)612 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
613 {
614 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
615
616 if (node)
617 parent = node;
618
619 for_each_child_of_node_scoped(parent, port) {
620 u32 port_id = 0;
621
622 if (!of_node_name_eq(port, "port"))
623 continue;
624 of_property_read_u32(port, "reg", &port_id);
625 if (id == port_id)
626 return_ptr(port);
627 }
628
629 return NULL;
630 }
631 EXPORT_SYMBOL(of_graph_get_port_by_id);
632
633 /**
634 * of_graph_get_next_port() - get next port node.
635 * @parent: pointer to the parent device node, or parent ports node
636 * @prev: previous port node, or NULL to get first
637 *
638 * Parent device node can be used as @parent whether device node has ports node
639 * or not. It will work same as ports@0 node.
640 *
641 * Return: A 'port' node pointer with refcount incremented. Refcount
642 * of the passed @prev node is decremented.
643 */
of_graph_get_next_port(const struct device_node * parent,struct device_node * prev)644 struct device_node *of_graph_get_next_port(const struct device_node *parent,
645 struct device_node *prev)
646 {
647 if (!parent)
648 return NULL;
649
650 if (!prev) {
651 struct device_node *node __free(device_node) =
652 of_get_child_by_name(parent, "ports");
653
654 if (node)
655 parent = node;
656
657 return of_get_child_by_name(parent, "port");
658 }
659
660 do {
661 prev = of_get_next_child(parent, prev);
662 if (!prev)
663 break;
664 } while (!of_node_name_eq(prev, "port"));
665
666 return prev;
667 }
668 EXPORT_SYMBOL(of_graph_get_next_port);
669
670 /**
671 * of_graph_get_next_port_endpoint() - get next endpoint node in port.
672 * If it reached to end of the port, it will return NULL.
673 * @port: pointer to the target port node
674 * @prev: previous endpoint node, or NULL to get first
675 *
676 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
677 * of the passed @prev node is decremented.
678 */
of_graph_get_next_port_endpoint(const struct device_node * port,struct device_node * prev)679 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port,
680 struct device_node *prev)
681 {
682 while (1) {
683 prev = of_get_next_child(port, prev);
684 if (!prev)
685 break;
686 if (WARN(!of_node_name_eq(prev, "endpoint"),
687 "non endpoint node is used (%pOF)", prev))
688 continue;
689
690 break;
691 }
692
693 return prev;
694 }
695 EXPORT_SYMBOL(of_graph_get_next_port_endpoint);
696
697 /**
698 * of_graph_get_next_endpoint() - get next endpoint node
699 * @parent: pointer to the parent device node
700 * @prev: previous endpoint node, or NULL to get first
701 *
702 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
703 * of the passed @prev node is decremented.
704 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)705 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
706 struct device_node *prev)
707 {
708 struct device_node *endpoint;
709 struct device_node *port;
710
711 if (!parent)
712 return NULL;
713
714 /*
715 * Start by locating the port node. If no previous endpoint is specified
716 * search for the first port node, otherwise get the previous endpoint
717 * parent port node.
718 */
719 if (!prev) {
720 port = of_graph_get_next_port(parent, NULL);
721 if (!port) {
722 pr_debug("graph: no port node found in %pOF\n", parent);
723 return NULL;
724 }
725 } else {
726 port = of_get_parent(prev);
727 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
728 __func__, prev))
729 return NULL;
730 }
731
732 while (1) {
733 /*
734 * Now that we have a port node, get the next endpoint by
735 * getting the next child. If the previous endpoint is NULL this
736 * will return the first child.
737 */
738 endpoint = of_graph_get_next_port_endpoint(port, prev);
739 if (endpoint) {
740 of_node_put(port);
741 return endpoint;
742 }
743
744 /* No more endpoints under this port, try the next one. */
745 prev = NULL;
746
747 port = of_graph_get_next_port(parent, port);
748 if (!port)
749 return NULL;
750 }
751 }
752 EXPORT_SYMBOL(of_graph_get_next_endpoint);
753
754 /**
755 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
756 * @parent: pointer to the parent device node
757 * @port_reg: identifier (value of reg property) of the parent port node
758 * @reg: identifier (value of reg property) of the endpoint node
759 *
760 * Return: An 'endpoint' node pointer which is identified by reg and at the same
761 * is the child of a port node identified by port_reg. reg and port_reg are
762 * ignored when they are -1. Use of_node_put() on the pointer when done.
763 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)764 struct device_node *of_graph_get_endpoint_by_regs(
765 const struct device_node *parent, int port_reg, int reg)
766 {
767 struct of_endpoint endpoint;
768 struct device_node *node = NULL;
769
770 for_each_endpoint_of_node(parent, node) {
771 of_graph_parse_endpoint(node, &endpoint);
772 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
773 ((reg == -1) || (endpoint.id == reg)))
774 return node;
775 }
776
777 return NULL;
778 }
779 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
780
781 /**
782 * of_graph_get_remote_endpoint() - get remote endpoint node
783 * @node: pointer to a local endpoint device_node
784 *
785 * Return: Remote endpoint node associated with remote endpoint node linked
786 * to @node. Use of_node_put() on it when done.
787 */
of_graph_get_remote_endpoint(const struct device_node * node)788 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
789 {
790 /* Get remote endpoint node. */
791 return of_parse_phandle(node, "remote-endpoint", 0);
792 }
793 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
794
795 /**
796 * of_graph_get_port_parent() - get port's parent node
797 * @node: pointer to a local endpoint device_node
798 *
799 * Return: device node associated with endpoint node linked
800 * to @node. Use of_node_put() on it when done.
801 */
of_graph_get_port_parent(struct device_node * node)802 struct device_node *of_graph_get_port_parent(struct device_node *node)
803 {
804 unsigned int depth;
805
806 if (!node)
807 return NULL;
808
809 /*
810 * Preserve usecount for passed in node as of_get_next_parent()
811 * will do of_node_put() on it.
812 */
813 of_node_get(node);
814
815 /* Walk 3 levels up only if there is 'ports' node. */
816 for (depth = 3; depth && node; depth--) {
817 node = of_get_next_parent(node);
818 if (depth == 2 && !of_node_name_eq(node, "ports") &&
819 !of_node_name_eq(node, "in-ports") &&
820 !of_node_name_eq(node, "out-ports"))
821 break;
822 }
823 return node;
824 }
825 EXPORT_SYMBOL(of_graph_get_port_parent);
826
827 /**
828 * of_graph_get_remote_port_parent() - get remote port's parent node
829 * @node: pointer to a local endpoint device_node
830 *
831 * Return: Remote device node associated with remote endpoint node linked
832 * to @node. Use of_node_put() on it when done.
833 */
of_graph_get_remote_port_parent(const struct device_node * node)834 struct device_node *of_graph_get_remote_port_parent(
835 const struct device_node *node)
836 {
837 /* Get remote endpoint node. */
838 struct device_node *np __free(device_node) =
839 of_graph_get_remote_endpoint(node);
840
841 return of_graph_get_port_parent(np);
842 }
843 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
844
845 /**
846 * of_graph_get_remote_port() - get remote port node
847 * @node: pointer to a local endpoint device_node
848 *
849 * Return: Remote port node associated with remote endpoint node linked
850 * to @node. Use of_node_put() on it when done.
851 */
of_graph_get_remote_port(const struct device_node * node)852 struct device_node *of_graph_get_remote_port(const struct device_node *node)
853 {
854 struct device_node *np;
855
856 /* Get remote endpoint node. */
857 np = of_graph_get_remote_endpoint(node);
858 if (!np)
859 return NULL;
860 return of_get_next_parent(np);
861 }
862 EXPORT_SYMBOL(of_graph_get_remote_port);
863
864 /**
865 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
866 * @np: parent device node containing ports and endpoints
867 *
868 * Return: count of endpoint of this device node
869 */
of_graph_get_endpoint_count(const struct device_node * np)870 unsigned int of_graph_get_endpoint_count(const struct device_node *np)
871 {
872 struct device_node *endpoint;
873 unsigned int num = 0;
874
875 for_each_endpoint_of_node(np, endpoint)
876 num++;
877
878 return num;
879 }
880 EXPORT_SYMBOL(of_graph_get_endpoint_count);
881
882 /**
883 * of_graph_get_port_count() - get the number of port in a device or ports node
884 * @np: pointer to the device or ports node
885 *
886 * Return: count of port of this device or ports node
887 */
of_graph_get_port_count(struct device_node * np)888 unsigned int of_graph_get_port_count(struct device_node *np)
889 {
890 unsigned int num = 0;
891
892 for_each_of_graph_port(np, port)
893 num++;
894
895 return num;
896 }
897 EXPORT_SYMBOL(of_graph_get_port_count);
898
899 /**
900 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
901 * @node: pointer to parent device_node containing graph port/endpoint
902 * @port: identifier (value of reg property) of the parent port node
903 * @endpoint: identifier (value of reg property) of the endpoint node
904 *
905 * Return: Remote device node associated with remote endpoint node linked
906 * to @node. Use of_node_put() on it when done.
907 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)908 struct device_node *of_graph_get_remote_node(const struct device_node *node,
909 u32 port, u32 endpoint)
910 {
911 struct device_node *endpoint_node, *remote;
912
913 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
914 if (!endpoint_node) {
915 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
916 port, endpoint, node);
917 return NULL;
918 }
919
920 remote = of_graph_get_remote_port_parent(endpoint_node);
921 of_node_put(endpoint_node);
922 if (!remote) {
923 pr_debug("no valid remote node\n");
924 return NULL;
925 }
926
927 if (!of_device_is_available(remote)) {
928 pr_debug("not available for remote node\n");
929 of_node_put(remote);
930 return NULL;
931 }
932
933 return remote;
934 }
935 EXPORT_SYMBOL(of_graph_get_remote_node);
936
of_fwnode_get(struct fwnode_handle * fwnode)937 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
938 {
939 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
940 }
941
of_fwnode_put(struct fwnode_handle * fwnode)942 static void of_fwnode_put(struct fwnode_handle *fwnode)
943 {
944 of_node_put(to_of_node(fwnode));
945 }
946
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)947 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
948 {
949 return of_device_is_available(to_of_node(fwnode));
950 }
951
of_fwnode_device_dma_supported(const struct fwnode_handle * fwnode)952 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
953 {
954 return true;
955 }
956
957 static enum dev_dma_attr
of_fwnode_device_get_dma_attr(const struct fwnode_handle * fwnode)958 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
959 {
960 if (of_dma_is_coherent(to_of_node(fwnode)))
961 return DEV_DMA_COHERENT;
962 else
963 return DEV_DMA_NON_COHERENT;
964 }
965
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)966 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
967 const char *propname)
968 {
969 return of_property_read_bool(to_of_node(fwnode), propname);
970 }
971
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)972 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
973 const char *propname,
974 unsigned int elem_size, void *val,
975 size_t nval)
976 {
977 const struct device_node *node = to_of_node(fwnode);
978
979 if (!val)
980 return of_property_count_elems_of_size(node, propname,
981 elem_size);
982
983 switch (elem_size) {
984 case sizeof(u8):
985 return of_property_read_u8_array(node, propname, val, nval);
986 case sizeof(u16):
987 return of_property_read_u16_array(node, propname, val, nval);
988 case sizeof(u32):
989 return of_property_read_u32_array(node, propname, val, nval);
990 case sizeof(u64):
991 return of_property_read_u64_array(node, propname, val, nval);
992 }
993
994 return -ENXIO;
995 }
996
997 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)998 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
999 const char *propname, const char **val,
1000 size_t nval)
1001 {
1002 const struct device_node *node = to_of_node(fwnode);
1003
1004 return val ?
1005 of_property_read_string_array(node, propname, val, nval) :
1006 of_property_count_strings(node, propname);
1007 }
1008
of_fwnode_get_name(const struct fwnode_handle * fwnode)1009 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
1010 {
1011 return kbasename(to_of_node(fwnode)->full_name);
1012 }
1013
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)1014 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
1015 {
1016 /* Root needs no prefix here (its name is "/"). */
1017 if (!to_of_node(fwnode)->parent)
1018 return "";
1019
1020 return "/";
1021 }
1022
1023 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)1024 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
1025 {
1026 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
1027 }
1028
1029 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)1030 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1031 struct fwnode_handle *child)
1032 {
1033 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
1034 to_of_node(child)));
1035 }
1036
1037 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)1038 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1039 const char *childname)
1040 {
1041 const struct device_node *node = to_of_node(fwnode);
1042 struct device_node *child;
1043
1044 for_each_available_child_of_node(node, child)
1045 if (of_node_name_eq(child, childname))
1046 return of_fwnode_handle(child);
1047
1048 return NULL;
1049 }
1050
1051 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)1052 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
1053 const char *prop, const char *nargs_prop,
1054 unsigned int nargs, unsigned int index,
1055 struct fwnode_reference_args *args)
1056 {
1057 struct of_phandle_args of_args;
1058 unsigned int i;
1059 int ret;
1060
1061 if (nargs_prop)
1062 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
1063 nargs_prop, index, &of_args);
1064 else
1065 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
1066 nargs, index, &of_args);
1067 if (ret < 0)
1068 return ret;
1069 if (!args) {
1070 of_node_put(of_args.np);
1071 return 0;
1072 }
1073
1074 args->nargs = of_args.args_count;
1075 args->fwnode = of_fwnode_handle(of_args.np);
1076
1077 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1078 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1079
1080 return 0;
1081 }
1082
1083 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1084 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1085 struct fwnode_handle *prev)
1086 {
1087 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1088 to_of_node(prev)));
1089 }
1090
1091 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1092 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1093 {
1094 return of_fwnode_handle(
1095 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1096 }
1097
1098 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1099 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1100 {
1101 struct device_node *np;
1102
1103 /* Get the parent of the port */
1104 np = of_get_parent(to_of_node(fwnode));
1105 if (!np)
1106 return NULL;
1107
1108 /* Is this the "ports" node? If not, it's the port parent. */
1109 if (!of_node_name_eq(np, "ports"))
1110 return of_fwnode_handle(np);
1111
1112 return of_fwnode_handle(of_get_next_parent(np));
1113 }
1114
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1115 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1116 struct fwnode_endpoint *endpoint)
1117 {
1118 const struct device_node *node = to_of_node(fwnode);
1119 struct device_node *port_node __free(device_node) = of_get_parent(node);
1120
1121 endpoint->local_fwnode = fwnode;
1122
1123 of_property_read_u32(port_node, "reg", &endpoint->port);
1124 of_property_read_u32(node, "reg", &endpoint->id);
1125
1126 return 0;
1127 }
1128
1129 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1130 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1131 const struct device *dev)
1132 {
1133 return of_device_get_match_data(dev);
1134 }
1135
of_link_to_phandle(struct device_node * con_np,struct device_node * sup_np,u8 flags)1136 static void of_link_to_phandle(struct device_node *con_np,
1137 struct device_node *sup_np,
1138 u8 flags)
1139 {
1140 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1141
1142 /* Check that sup_np and its ancestors are available. */
1143 while (tmp_np) {
1144 if (of_fwnode_handle(tmp_np)->dev)
1145 break;
1146
1147 if (!of_device_is_available(tmp_np))
1148 return;
1149
1150 tmp_np = of_get_next_parent(tmp_np);
1151 }
1152
1153 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1154 }
1155
1156 /**
1157 * parse_prop_cells - Property parsing function for suppliers
1158 *
1159 * @np: Pointer to device tree node containing a list
1160 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1161 * @index: For properties holding a list of phandles, this is the index
1162 * into the list.
1163 * @list_name: Property name that is known to contain list of phandle(s) to
1164 * supplier(s)
1165 * @cells_name: property name that specifies phandles' arguments count
1166 *
1167 * This is a helper function to parse properties that have a known fixed name
1168 * and are a list of phandles and phandle arguments.
1169 *
1170 * Returns:
1171 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1172 * on it when done.
1173 * - NULL if no phandle found at index
1174 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1175 static struct device_node *parse_prop_cells(struct device_node *np,
1176 const char *prop_name, int index,
1177 const char *list_name,
1178 const char *cells_name)
1179 {
1180 struct of_phandle_args sup_args;
1181
1182 if (strcmp(prop_name, list_name))
1183 return NULL;
1184
1185 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1186 &sup_args))
1187 return NULL;
1188
1189 return sup_args.np;
1190 }
1191
1192 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1193 static struct device_node *parse_##fname(struct device_node *np, \
1194 const char *prop_name, int index) \
1195 { \
1196 return parse_prop_cells(np, prop_name, index, name, cells); \
1197 }
1198
strcmp_suffix(const char * str,const char * suffix)1199 static int strcmp_suffix(const char *str, const char *suffix)
1200 {
1201 unsigned int len, suffix_len;
1202
1203 len = strlen(str);
1204 suffix_len = strlen(suffix);
1205 if (len <= suffix_len)
1206 return -1;
1207 return strcmp(str + len - suffix_len, suffix);
1208 }
1209
1210 /**
1211 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1212 *
1213 * @np: Pointer to device tree node containing a list
1214 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1215 * @index: For properties holding a list of phandles, this is the index
1216 * into the list.
1217 * @suffix: Property suffix that is known to contain list of phandle(s) to
1218 * supplier(s)
1219 * @cells_name: property name that specifies phandles' arguments count
1220 *
1221 * This is a helper function to parse properties that have a known fixed suffix
1222 * and are a list of phandles and phandle arguments.
1223 *
1224 * Returns:
1225 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1226 * on it when done.
1227 * - NULL if no phandle found at index
1228 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1229 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1230 const char *prop_name, int index,
1231 const char *suffix,
1232 const char *cells_name)
1233 {
1234 struct of_phandle_args sup_args;
1235
1236 if (strcmp_suffix(prop_name, suffix))
1237 return NULL;
1238
1239 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1240 &sup_args))
1241 return NULL;
1242
1243 return sup_args.np;
1244 }
1245
1246 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1247 static struct device_node *parse_##fname(struct device_node *np, \
1248 const char *prop_name, int index) \
1249 { \
1250 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1251 }
1252
1253 /**
1254 * struct supplier_bindings - Property parsing functions for suppliers
1255 *
1256 * @parse_prop: function name
1257 * parse_prop() finds the node corresponding to a supplier phandle
1258 * parse_prop.np: Pointer to device node holding supplier phandle property
1259 * parse_prop.prop_name: Name of property holding a phandle value
1260 * parse_prop.index: For properties holding a list of phandles, this is the
1261 * index into the list
1262 * @get_con_dev: If the consumer node containing the property is never converted
1263 * to a struct device, implement this ops so fw_devlink can use it
1264 * to find the true consumer.
1265 * @optional: Describes whether a supplier is mandatory or not
1266 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1267 * for this property.
1268 *
1269 * Returns:
1270 * parse_prop() return values are
1271 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1272 * on it when done.
1273 * - NULL if no phandle found at index
1274 */
1275 struct supplier_bindings {
1276 struct device_node *(*parse_prop)(struct device_node *np,
1277 const char *prop_name, int index);
1278 struct device_node *(*get_con_dev)(struct device_node *np);
1279 bool optional;
1280 u8 fwlink_flags;
1281 };
1282
1283 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1284 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1285 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1286 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1287 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1288 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1289 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1290 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1291 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1292 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1293 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1294 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1295 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1296 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1297 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1298 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1299 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1300 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1301 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1302 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1303 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1304 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1305 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1306 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1307 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1308 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1309 DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1310 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1311 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1312 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1313 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1314 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1315 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1316 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1317
parse_gpios(struct device_node * np,const char * prop_name,int index)1318 static struct device_node *parse_gpios(struct device_node *np,
1319 const char *prop_name, int index)
1320 {
1321 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1322 return NULL;
1323
1324 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1325 "#gpio-cells");
1326 }
1327
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1328 static struct device_node *parse_iommu_maps(struct device_node *np,
1329 const char *prop_name, int index)
1330 {
1331 if (strcmp(prop_name, "iommu-map"))
1332 return NULL;
1333
1334 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1335 }
1336
parse_gpio_compat(struct device_node * np,const char * prop_name,int index)1337 static struct device_node *parse_gpio_compat(struct device_node *np,
1338 const char *prop_name, int index)
1339 {
1340 struct of_phandle_args sup_args;
1341
1342 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1343 return NULL;
1344
1345 /*
1346 * Ignore node with gpio-hog property since its gpios are all provided
1347 * by its parent.
1348 */
1349 if (of_property_read_bool(np, "gpio-hog"))
1350 return NULL;
1351
1352 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1353 &sup_args))
1354 return NULL;
1355
1356 return sup_args.np;
1357 }
1358
parse_interrupts(struct device_node * np,const char * prop_name,int index)1359 static struct device_node *parse_interrupts(struct device_node *np,
1360 const char *prop_name, int index)
1361 {
1362 struct of_phandle_args sup_args;
1363
1364 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1365 return NULL;
1366
1367 if (strcmp(prop_name, "interrupts") &&
1368 strcmp(prop_name, "interrupts-extended"))
1369 return NULL;
1370
1371 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1372 }
1373
parse_interrupt_map(struct device_node * np,const char * prop_name,int index)1374 static struct device_node *parse_interrupt_map(struct device_node *np,
1375 const char *prop_name, int index)
1376 {
1377 const __be32 *imap, *imap_end;
1378 struct of_phandle_args sup_args;
1379 u32 addrcells, intcells;
1380 int imaplen;
1381
1382 if (!IS_ENABLED(CONFIG_OF_IRQ))
1383 return NULL;
1384
1385 if (strcmp(prop_name, "interrupt-map"))
1386 return NULL;
1387
1388 if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1389 return NULL;
1390 addrcells = of_bus_n_addr_cells(np);
1391
1392 imap = of_get_property(np, "interrupt-map", &imaplen);
1393 imaplen /= sizeof(*imap);
1394 if (!imap)
1395 return NULL;
1396
1397 imap_end = imap + imaplen;
1398
1399 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1400 imap += addrcells + intcells;
1401
1402 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1403 if (!imap)
1404 return NULL;
1405
1406 if (i == index)
1407 return sup_args.np;
1408
1409 of_node_put(sup_args.np);
1410 }
1411
1412 return NULL;
1413 }
1414
parse_remote_endpoint(struct device_node * np,const char * prop_name,int index)1415 static struct device_node *parse_remote_endpoint(struct device_node *np,
1416 const char *prop_name,
1417 int index)
1418 {
1419 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1420 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1421 return NULL;
1422
1423 return of_graph_get_remote_port_parent(np);
1424 }
1425
1426 static const struct supplier_bindings of_supplier_bindings[] = {
1427 { .parse_prop = parse_clocks, },
1428 { .parse_prop = parse_interconnects, },
1429 { .parse_prop = parse_iommus, .optional = true, },
1430 { .parse_prop = parse_iommu_maps, .optional = true, },
1431 { .parse_prop = parse_mboxes, },
1432 { .parse_prop = parse_io_channels, },
1433 { .parse_prop = parse_io_backends, },
1434 { .parse_prop = parse_dmas, .optional = true, },
1435 { .parse_prop = parse_power_domains, },
1436 { .parse_prop = parse_hwlocks, },
1437 { .parse_prop = parse_extcon, },
1438 { .parse_prop = parse_nvmem_cells, },
1439 { .parse_prop = parse_phys, },
1440 { .parse_prop = parse_wakeup_parent, },
1441 { .parse_prop = parse_pinctrl0, },
1442 { .parse_prop = parse_pinctrl1, },
1443 { .parse_prop = parse_pinctrl2, },
1444 { .parse_prop = parse_pinctrl3, },
1445 { .parse_prop = parse_pinctrl4, },
1446 { .parse_prop = parse_pinctrl5, },
1447 { .parse_prop = parse_pinctrl6, },
1448 { .parse_prop = parse_pinctrl7, },
1449 { .parse_prop = parse_pinctrl8, },
1450 {
1451 .parse_prop = parse_remote_endpoint,
1452 .get_con_dev = of_graph_get_port_parent,
1453 },
1454 { .parse_prop = parse_pwms, },
1455 { .parse_prop = parse_resets, },
1456 { .parse_prop = parse_leds, },
1457 { .parse_prop = parse_backlight, },
1458 { .parse_prop = parse_panel, },
1459 { .parse_prop = parse_msi_parent, },
1460 { .parse_prop = parse_pses, },
1461 { .parse_prop = parse_power_supplies, },
1462 { .parse_prop = parse_gpio_compat, },
1463 { .parse_prop = parse_interrupts, },
1464 { .parse_prop = parse_interrupt_map, },
1465 { .parse_prop = parse_access_controllers, },
1466 { .parse_prop = parse_regulators, },
1467 { .parse_prop = parse_gpio, },
1468 { .parse_prop = parse_gpios, },
1469 {
1470 .parse_prop = parse_post_init_providers,
1471 .fwlink_flags = FWLINK_FLAG_IGNORE,
1472 },
1473 {}
1474 };
1475
1476 /**
1477 * of_link_property - Create device links to suppliers listed in a property
1478 * @con_np: The consumer device tree node which contains the property
1479 * @prop_name: Name of property to be parsed
1480 *
1481 * This function checks if the property @prop_name that is present in the
1482 * @con_np device tree node is one of the known common device tree bindings
1483 * that list phandles to suppliers. If @prop_name isn't one, this function
1484 * doesn't do anything.
1485 *
1486 * If @prop_name is one, this function attempts to create fwnode links from the
1487 * consumer device tree node @con_np to all the suppliers device tree nodes
1488 * listed in @prop_name.
1489 *
1490 * Any failed attempt to create a fwnode link will NOT result in an immediate
1491 * return. of_link_property() must create links to all the available supplier
1492 * device tree nodes even when attempts to create a link to one or more
1493 * suppliers fail.
1494 */
of_link_property(struct device_node * con_np,const char * prop_name)1495 static int of_link_property(struct device_node *con_np, const char *prop_name)
1496 {
1497 struct device_node *phandle;
1498 const struct supplier_bindings *s = of_supplier_bindings;
1499 unsigned int i = 0;
1500 bool matched = false;
1501
1502 /* Do not stop at first failed link, link all available suppliers. */
1503 while (!matched && s->parse_prop) {
1504 if (s->optional && !fw_devlink_is_strict()) {
1505 s++;
1506 continue;
1507 }
1508
1509 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1510 struct device_node *con_dev_np __free(device_node) =
1511 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1512
1513 matched = true;
1514 i++;
1515 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1516 of_node_put(phandle);
1517 }
1518 s++;
1519 }
1520 return 0;
1521 }
1522
of_fwnode_iomap(struct fwnode_handle * fwnode,int index)1523 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1524 {
1525 #ifdef CONFIG_OF_ADDRESS
1526 return of_iomap(to_of_node(fwnode), index);
1527 #else
1528 return NULL;
1529 #endif
1530 }
1531
of_fwnode_irq_get(const struct fwnode_handle * fwnode,unsigned int index)1532 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1533 unsigned int index)
1534 {
1535 return of_irq_get(to_of_node(fwnode), index);
1536 }
1537
of_fwnode_add_links(struct fwnode_handle * fwnode)1538 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1539 {
1540 const struct property *p;
1541 struct device_node *con_np = to_of_node(fwnode);
1542
1543 if (IS_ENABLED(CONFIG_X86))
1544 return 0;
1545
1546 if (!con_np)
1547 return -EINVAL;
1548
1549 for_each_property_of_node(con_np, p)
1550 of_link_property(con_np, p->name);
1551
1552 return 0;
1553 }
1554
1555 const struct fwnode_operations of_fwnode_ops = {
1556 .get = of_fwnode_get,
1557 .put = of_fwnode_put,
1558 .device_is_available = of_fwnode_device_is_available,
1559 .device_get_match_data = of_fwnode_device_get_match_data,
1560 .device_dma_supported = of_fwnode_device_dma_supported,
1561 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1562 .property_present = of_fwnode_property_present,
1563 .property_read_int_array = of_fwnode_property_read_int_array,
1564 .property_read_string_array = of_fwnode_property_read_string_array,
1565 .get_name = of_fwnode_get_name,
1566 .get_name_prefix = of_fwnode_get_name_prefix,
1567 .get_parent = of_fwnode_get_parent,
1568 .get_next_child_node = of_fwnode_get_next_child_node,
1569 .get_named_child_node = of_fwnode_get_named_child_node,
1570 .get_reference_args = of_fwnode_get_reference_args,
1571 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1572 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1573 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1574 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1575 .iomap = of_fwnode_iomap,
1576 .irq_get = of_fwnode_irq_get,
1577 .add_links = of_fwnode_add_links,
1578 };
1579 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1580