1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/rwsem.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/notifier.h>
22
23 /*
24 * All voltages, currents, charges, energies, time and temperatures in uV,
25 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
26 * stated. It's driver's job to convert its raw values to units in which
27 * this class operates.
28 */
29
30 /*
31 * For systems where the charger determines the maximum battery capacity
32 * the min and max fields should be used to present these values to user
33 * space. Unused/unknown fields will not appear in sysfs.
34 */
35
36 enum {
37 POWER_SUPPLY_STATUS_UNKNOWN = 0,
38 POWER_SUPPLY_STATUS_CHARGING,
39 POWER_SUPPLY_STATUS_DISCHARGING,
40 POWER_SUPPLY_STATUS_NOT_CHARGING,
41 POWER_SUPPLY_STATUS_FULL,
42 };
43
44 /* What algorithm is the charger using? */
45 enum power_supply_charge_type {
46 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
47 POWER_SUPPLY_CHARGE_TYPE_NONE,
48 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */
49 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */
50 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */
51 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */
52 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */
53 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */
54 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */
55 };
56
57 enum {
58 POWER_SUPPLY_HEALTH_UNKNOWN = 0,
59 POWER_SUPPLY_HEALTH_GOOD,
60 POWER_SUPPLY_HEALTH_OVERHEAT,
61 POWER_SUPPLY_HEALTH_DEAD,
62 POWER_SUPPLY_HEALTH_OVERVOLTAGE,
63 POWER_SUPPLY_HEALTH_UNDERVOLTAGE,
64 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
65 POWER_SUPPLY_HEALTH_COLD,
66 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
67 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
68 POWER_SUPPLY_HEALTH_OVERCURRENT,
69 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
70 POWER_SUPPLY_HEALTH_WARM,
71 POWER_SUPPLY_HEALTH_COOL,
72 POWER_SUPPLY_HEALTH_HOT,
73 POWER_SUPPLY_HEALTH_NO_BATTERY,
74 POWER_SUPPLY_HEALTH_BLOWN_FUSE,
75 POWER_SUPPLY_HEALTH_CELL_IMBALANCE,
76 };
77
78 enum {
79 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
80 POWER_SUPPLY_TECHNOLOGY_NiMH,
81 POWER_SUPPLY_TECHNOLOGY_LION,
82 POWER_SUPPLY_TECHNOLOGY_LIPO,
83 POWER_SUPPLY_TECHNOLOGY_LiFe,
84 POWER_SUPPLY_TECHNOLOGY_NiCd,
85 POWER_SUPPLY_TECHNOLOGY_LiMn,
86 };
87
88 enum {
89 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
90 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
91 POWER_SUPPLY_CAPACITY_LEVEL_LOW,
92 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
93 POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
94 POWER_SUPPLY_CAPACITY_LEVEL_FULL,
95 };
96
97 enum {
98 POWER_SUPPLY_SCOPE_UNKNOWN = 0,
99 POWER_SUPPLY_SCOPE_SYSTEM,
100 POWER_SUPPLY_SCOPE_DEVICE,
101 };
102
103 enum power_supply_property {
104 /* Properties of type `int' */
105 POWER_SUPPLY_PROP_STATUS = 0,
106 POWER_SUPPLY_PROP_CHARGE_TYPE,
107 POWER_SUPPLY_PROP_CHARGE_TYPES,
108 POWER_SUPPLY_PROP_HEALTH,
109 POWER_SUPPLY_PROP_PRESENT,
110 POWER_SUPPLY_PROP_ONLINE,
111 POWER_SUPPLY_PROP_AUTHENTIC,
112 POWER_SUPPLY_PROP_TECHNOLOGY,
113 POWER_SUPPLY_PROP_CYCLE_COUNT,
114 POWER_SUPPLY_PROP_VOLTAGE_MAX,
115 POWER_SUPPLY_PROP_VOLTAGE_MIN,
116 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
117 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
118 POWER_SUPPLY_PROP_VOLTAGE_NOW,
119 POWER_SUPPLY_PROP_VOLTAGE_AVG,
120 POWER_SUPPLY_PROP_VOLTAGE_OCV,
121 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
122 POWER_SUPPLY_PROP_CURRENT_MAX,
123 POWER_SUPPLY_PROP_CURRENT_NOW,
124 POWER_SUPPLY_PROP_CURRENT_AVG,
125 POWER_SUPPLY_PROP_CURRENT_BOOT,
126 POWER_SUPPLY_PROP_POWER_NOW,
127 POWER_SUPPLY_PROP_POWER_AVG,
128 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
129 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
130 POWER_SUPPLY_PROP_CHARGE_FULL,
131 POWER_SUPPLY_PROP_CHARGE_EMPTY,
132 POWER_SUPPLY_PROP_CHARGE_NOW,
133 POWER_SUPPLY_PROP_CHARGE_AVG,
134 POWER_SUPPLY_PROP_CHARGE_COUNTER,
135 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
136 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
137 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
138 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
139 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
140 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
141 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
142 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
143 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
144 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
145 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
146 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
147 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
148 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
149 POWER_SUPPLY_PROP_ENERGY_FULL,
150 POWER_SUPPLY_PROP_ENERGY_EMPTY,
151 POWER_SUPPLY_PROP_ENERGY_NOW,
152 POWER_SUPPLY_PROP_ENERGY_AVG,
153 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
154 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
155 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
156 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
157 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
158 POWER_SUPPLY_PROP_TEMP,
159 POWER_SUPPLY_PROP_TEMP_MAX,
160 POWER_SUPPLY_PROP_TEMP_MIN,
161 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
162 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
163 POWER_SUPPLY_PROP_TEMP_AMBIENT,
164 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
165 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
166 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
167 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
168 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
169 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
170 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
171 POWER_SUPPLY_PROP_USB_TYPE,
172 POWER_SUPPLY_PROP_SCOPE,
173 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
174 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
175 POWER_SUPPLY_PROP_CALIBRATE,
176 POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
177 POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
178 POWER_SUPPLY_PROP_MANUFACTURE_DAY,
179 /* Properties of type `const char *' */
180 POWER_SUPPLY_PROP_MODEL_NAME,
181 POWER_SUPPLY_PROP_MANUFACTURER,
182 POWER_SUPPLY_PROP_SERIAL_NUMBER,
183 };
184
185 enum power_supply_type {
186 POWER_SUPPLY_TYPE_UNKNOWN = 0,
187 POWER_SUPPLY_TYPE_BATTERY,
188 POWER_SUPPLY_TYPE_UPS,
189 POWER_SUPPLY_TYPE_MAINS,
190 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */
191 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */
192 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */
193 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */
194 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */
195 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */
196 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */
197 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
198 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */
199 };
200
201 enum power_supply_usb_type {
202 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
203 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
204 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
205 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
206 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
207 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
208 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
209 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
210 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
211 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
212 };
213
214 enum power_supply_charge_behaviour {
215 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
216 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
217 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE,
218 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
219 };
220
221 enum power_supply_notifier_events {
222 PSY_EVENT_PROP_CHANGED,
223 };
224
225 union power_supply_propval {
226 int intval;
227 const char *strval;
228 };
229
230 struct device_node;
231 struct power_supply;
232
233 /* Run-time specific power supply configuration */
234 struct power_supply_config {
235 struct device_node *of_node;
236 struct fwnode_handle *fwnode;
237
238 /* Driver private data */
239 void *drv_data;
240
241 /* Device specific sysfs attributes */
242 const struct attribute_group **attr_grp;
243
244 char **supplied_to;
245 size_t num_supplicants;
246
247 bool no_wakeup_source;
248 };
249
250 /* Description of power supply */
251 struct power_supply_desc {
252 const char *name;
253 enum power_supply_type type;
254 u8 charge_behaviours;
255 u32 charge_types;
256 u32 usb_types;
257 const enum power_supply_property *properties;
258 size_t num_properties;
259
260 /*
261 * Functions for drivers implementing power supply class.
262 * These shouldn't be called directly by other drivers for accessing
263 * this power supply. Instead use power_supply_*() functions (for
264 * example power_supply_get_property()).
265 */
266 int (*get_property)(struct power_supply *psy,
267 enum power_supply_property psp,
268 union power_supply_propval *val);
269 int (*set_property)(struct power_supply *psy,
270 enum power_supply_property psp,
271 const union power_supply_propval *val);
272 /*
273 * property_is_writeable() will be called during registration
274 * of power supply. If this happens during device probe then it must
275 * not access internal data of device (because probe did not end).
276 */
277 int (*property_is_writeable)(struct power_supply *psy,
278 enum power_supply_property psp);
279 void (*external_power_changed)(struct power_supply *psy);
280
281 /*
282 * Set if thermal zone should not be created for this power supply.
283 * For example for virtual supplies forwarding calls to actual
284 * sensors or other supplies.
285 */
286 bool no_thermal;
287 /* For APM emulation, think legacy userspace. */
288 int use_for_apm;
289 };
290
291 struct power_supply_ext {
292 const char *const name;
293 u8 charge_behaviours;
294 u32 charge_types;
295 const enum power_supply_property *properties;
296 size_t num_properties;
297
298 int (*get_property)(struct power_supply *psy,
299 const struct power_supply_ext *ext,
300 void *data,
301 enum power_supply_property psp,
302 union power_supply_propval *val);
303 int (*set_property)(struct power_supply *psy,
304 const struct power_supply_ext *ext,
305 void *data,
306 enum power_supply_property psp,
307 const union power_supply_propval *val);
308 int (*property_is_writeable)(struct power_supply *psy,
309 const struct power_supply_ext *ext,
310 void *data,
311 enum power_supply_property psp);
312 };
313
314 struct power_supply {
315 const struct power_supply_desc *desc;
316
317 char **supplied_to;
318 size_t num_supplicants;
319
320 char **supplied_from;
321 size_t num_supplies;
322
323 /* Driver private data */
324 void *drv_data;
325
326 /* private */
327 struct device dev;
328 struct work_struct changed_work;
329 struct delayed_work deferred_register_work;
330 spinlock_t changed_lock;
331 bool changed;
332 bool update_groups;
333 bool initialized;
334 bool removing;
335 atomic_t use_cnt;
336 struct power_supply_battery_info *battery_info;
337 struct rw_semaphore extensions_sem; /* protects "extensions" */
338 struct list_head extensions;
339 #ifdef CONFIG_THERMAL
340 struct thermal_zone_device *tzd;
341 struct thermal_cooling_device *tcd;
342 #endif
343
344 #ifdef CONFIG_LEDS_TRIGGERS
345 struct led_trigger *trig;
346 struct led_trigger *charging_trig;
347 struct led_trigger *full_trig;
348 struct led_trigger *charging_blink_full_solid_trig;
349 struct led_trigger *charging_orange_full_green_trig;
350 #endif
351 };
352
353 #define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev)
354
355 /*
356 * This is recommended structure to specify static power supply parameters.
357 * Generic one, parametrizable for different power supplies. Power supply
358 * class itself does not use it, but that's what implementing most platform
359 * drivers, should try reuse for consistency.
360 */
361
362 struct power_supply_info {
363 const char *name;
364 int technology;
365 int voltage_max_design;
366 int voltage_min_design;
367 int charge_full_design;
368 int charge_empty_design;
369 int energy_full_design;
370 int energy_empty_design;
371 int use_for_apm;
372 };
373
374 struct power_supply_battery_ocv_table {
375 int ocv; /* microVolts */
376 int capacity; /* percent */
377 };
378
379 struct power_supply_resistance_temp_table {
380 int temp; /* celsius */
381 int resistance; /* internal resistance percent */
382 };
383
384 struct power_supply_vbat_ri_table {
385 int vbat_uv; /* Battery voltage in microvolt */
386 int ri_uohm; /* Internal resistance in microohm */
387 };
388
389 /**
390 * struct power_supply_maintenance_charge_table - setting for maintenace charging
391 * @charge_current_max_ua: maintenance charging current that is used to keep
392 * the charge of the battery full as current is consumed after full charging.
393 * The corresponding charge_voltage_max_uv is used as a safeguard: when we
394 * reach this voltage the maintenance charging current is turned off. It is
395 * turned back on if we fall below this voltage.
396 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
397 * lower than the constant_charge_voltage_max_uv. We can apply this settings
398 * charge_current_max_ua until we get back up to this voltage.
399 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
400 * time in minutes. We will only use maintenance charging in this setting
401 * for a certain amount of time, then we will first move to the next
402 * maintenance charge current and voltage pair in respective array and wait
403 * for the next safety timer timeout, or, if we reached the last maintencance
404 * charging setting, disable charging until we reach
405 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
406 * These timers should be chosen to align with the typical discharge curve
407 * for the battery.
408 *
409 * Ordinary CC/CV charging will stop charging when the charge current goes
410 * below charge_term_current_ua, and then restart it (if the device is still
411 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
412 * consumer products because the power usage while connected to a charger is
413 * not zero, and devices are not manufactured to draw power directly from the
414 * charger: instead they will at all times dissipate the battery a little, like
415 * the power used in standby mode. This will over time give a charge graph
416 * such as this:
417 *
418 * Energy
419 * ^ ... ... ... ... ... ... ...
420 * | . . . . . . . . . . . . .
421 * | .. . .. . .. . .. . .. . .. . ..
422 * |. .. .. .. .. .. ..
423 * +-------------------------------------------------------------------> t
424 *
425 * Practically this means that the Li-ions are wandering back and forth in the
426 * battery and this causes degeneration of the battery anode and cathode.
427 * To prolong the life of the battery, maintenance charging is applied after
428 * reaching charge_term_current_ua to hold up the charge in the battery while
429 * consuming power, thus lowering the wear on the battery:
430 *
431 * Energy
432 * ^ .......................................
433 * | . ......................
434 * | ..
435 * |.
436 * +-------------------------------------------------------------------> t
437 *
438 * Maintenance charging uses the voltages from this table: a table of settings
439 * is traversed using a slightly lower current and voltage than what is used for
440 * CC/CV charging. The maintenance charging will for safety reasons not go on
441 * indefinately: we lower the current and voltage with successive maintenance
442 * settings, then disable charging completely after we reach the last one,
443 * and after that we do not restart charging until we reach
444 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
445 * ordinary CC/CV charging from there.
446 *
447 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
448 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
449 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
450 * After this the charge cycle is restarted waiting for
451 * charge_restart_voltage_uv.
452 *
453 * For most mobile electronics this type of maintenance charging is enough for
454 * the user to disconnect the device and make use of it before both maintenance
455 * charging cycles are complete, if the current and voltage has been chosen
456 * appropriately. These need to be determined from battery discharge curves
457 * and expected standby current.
458 *
459 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
460 * charging, ordinary CC/CV charging is restarted. This can happen if the
461 * device is e.g. actively used during charging, so more current is drawn than
462 * the expected stand-by current. Also overvoltage protection will be applied
463 * as usual.
464 */
465 struct power_supply_maintenance_charge_table {
466 int charge_current_max_ua;
467 int charge_voltage_max_uv;
468 int charge_safety_timer_minutes;
469 };
470
471 #define POWER_SUPPLY_OCV_TEMP_MAX 20
472
473 /**
474 * struct power_supply_battery_info - information about batteries
475 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
476 * @energy_full_design_uwh: energy content when fully charged in microwatt
477 * hours
478 * @charge_full_design_uah: charge content when fully charged in microampere
479 * hours
480 * @voltage_min_design_uv: minimum voltage across the poles when the battery
481 * is at minimum voltage level in microvolts. If the voltage drops below this
482 * level the battery will need precharging when using CC/CV charging.
483 * @voltage_max_design_uv: voltage across the poles when the battery is fully
484 * charged in microvolts. This is the "nominal voltage" i.e. the voltage
485 * printed on the label of the battery.
486 * @tricklecharge_current_ua: the tricklecharge current used when trickle
487 * charging the battery in microamperes. This is the charging phase when the
488 * battery is completely empty and we need to carefully trickle in some
489 * charge until we reach the precharging voltage.
490 * @precharge_current_ua: current to use in the precharge phase in microamperes,
491 * the precharge rate is limited by limiting the current to this value.
492 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
493 * microvolts. When we pass this voltage we will nominally switch over to the
494 * CC (constant current) charging phase defined by constant_charge_current_ua
495 * and constant_charge_voltage_max_uv.
496 * @charge_term_current_ua: when the current in the CV (constant voltage)
497 * charging phase drops below this value in microamperes the charging will
498 * terminate completely and not restart until the voltage over the battery
499 * poles reach charge_restart_voltage_uv unless we use maintenance charging.
500 * @charge_restart_voltage_uv: when the battery has been fully charged by
501 * CC/CV charging and charging has been disabled, and the voltage subsequently
502 * drops below this value in microvolts, the charging will be restarted
503 * (typically using CV charging).
504 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
505 * voltage_max_design_uv and we reach this voltage level, all charging must
506 * stop and emergency procedures take place, such as shutting down the system
507 * in some cases.
508 * @constant_charge_current_max_ua: current in microamperes to use in the CC
509 * (constant current) charging phase. The charging rate is limited
510 * by this current. This is the main charging phase and as the current is
511 * constant into the battery the voltage slowly ascends to
512 * constant_charge_voltage_max_uv.
513 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
514 * the CC (constant current) charging phase and the beginning of the CV
515 * (constant voltage) charging phase.
516 * @maintenance_charge: an array of maintenance charging settings to be used
517 * after the main CC/CV charging phase is complete.
518 * @maintenance_charge_size: the number of maintenance charging settings in
519 * maintenance_charge.
520 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
521 * enters low alert temperature, i.e. if the internal temperature is between
522 * temp_alert_min and temp_min. No matter the charging phase, this
523 * and alert_high_temp_charge_voltage_uv will be applied.
524 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
525 * but for the charging voltage.
526 * @alert_high_temp_charge_current_ua: The charging current to use if the
527 * battery enters high alert temperature, i.e. if the internal temperature is
528 * between temp_alert_max and temp_max. No matter the charging phase, this
529 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
530 * the charging current as an evasive manouver.
531 * @alert_high_temp_charge_voltage_uv: Same as
532 * alert_high_temp_charge_current_ua, but for the charging voltage.
533 * @factory_internal_resistance_uohm: the internal resistance of the battery
534 * at fabrication time, expressed in microohms. This resistance will vary
535 * depending on the lifetime and charge of the battery, so this is just a
536 * nominal ballpark figure. This internal resistance is given for the state
537 * when the battery is discharging.
538 * @factory_internal_resistance_charging_uohm: the internal resistance of the
539 * battery at fabrication time while charging, expressed in microohms.
540 * The charging process will affect the internal resistance of the battery
541 * so this value provides a better resistance under these circumstances.
542 * This resistance will vary depending on the lifetime and charge of the
543 * battery, so this is just a nominal ballpark figure.
544 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
545 * temperature indices. This is an array of temperatures in degrees Celsius
546 * indicating which capacity table to use for a certain temperature, since
547 * the capacity for reasons of chemistry will be different at different
548 * temperatures. Determining capacity is a multivariate problem and the
549 * temperature is the first variable we determine.
550 * @temp_ambient_alert_min: the battery will go outside of operating conditions
551 * when the ambient temperature goes below this temperature in degrees
552 * Celsius.
553 * @temp_ambient_alert_max: the battery will go outside of operating conditions
554 * when the ambient temperature goes above this temperature in degrees
555 * Celsius.
556 * @temp_alert_min: the battery should issue an alert if the internal
557 * temperature goes below this temperature in degrees Celsius.
558 * @temp_alert_max: the battery should issue an alert if the internal
559 * temperature goes above this temperature in degrees Celsius.
560 * @temp_min: the battery will go outside of operating conditions when
561 * the internal temperature goes below this temperature in degrees Celsius.
562 * Normally this means the system should shut down.
563 * @temp_max: the battery will go outside of operating conditions when
564 * the internal temperature goes above this temperature in degrees Celsius.
565 * Normally this means the system should shut down.
566 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
567 * ocv_table and a size for each entry in ocv_table_size. These arrays
568 * determine the capacity in percent in relation to the voltage in microvolts
569 * at the indexed temperature.
570 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
571 * each entry in the array of capacity arrays in ocv_table.
572 * @resist_table: this is a table that correlates a battery temperature to the
573 * expected internal resistance at this temperature. The resistance is given
574 * as a percentage of factory_internal_resistance_uohm. Knowing the
575 * resistance of the battery is usually necessary for calculating the open
576 * circuit voltage (OCV) that is then used with the ocv_table to calculate
577 * the capacity of the battery. The resist_table must be ordered descending
578 * by temperature: highest temperature with lowest resistance first, lowest
579 * temperature with highest resistance last.
580 * @resist_table_size: the number of items in the resist_table.
581 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
582 * to internal resistance (Ri). The resistance is given in microohm for the
583 * corresponding voltage in microvolts. The internal resistance is used to
584 * determine the open circuit voltage so that we can determine the capacity
585 * of the battery. These voltages to resistance tables apply when the battery
586 * is discharging. The table must be ordered descending by voltage: highest
587 * voltage first.
588 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
589 * table.
590 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
591 * when the battery is charging. Being under charge changes the battery's
592 * internal resistance characteristics so a separate table is needed.*
593 * The table must be ordered descending by voltage: highest voltage first.
594 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
595 * table.
596 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
597 * in ohms for this battery, if an identification resistor is mounted
598 * between a third battery terminal and ground. This scheme is used by a lot
599 * of mobile device batteries.
600 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
601 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
602 * tolerance is 10% we will detect a proper battery if the BTI resistance
603 * is between 6300 and 7700 Ohm.
604 *
605 * This is the recommended struct to manage static battery parameters,
606 * populated by power_supply_get_battery_info(). Most platform drivers should
607 * use these for consistency.
608 *
609 * Its field names must correspond to elements in enum power_supply_property.
610 * The default field value is -EINVAL or NULL for pointers.
611 *
612 * CC/CV CHARGING:
613 *
614 * The charging parameters here assume a CC/CV charging scheme. This method
615 * is most common with Lithium Ion batteries (other methods are possible) and
616 * looks as follows:
617 *
618 * ^ Battery voltage
619 * | --- overvoltage_limit_uv
620 * |
621 * | ...................................................
622 * | .. constant_charge_voltage_max_uv
623 * | ..
624 * | .
625 * | .
626 * | .
627 * | .
628 * | .
629 * | .. precharge_voltage_max_uv
630 * | ..
631 * |. (trickle charging)
632 * +------------------------------------------------------------------> time
633 *
634 * ^ Current into the battery
635 * |
636 * | ............. constant_charge_current_max_ua
637 * | . .
638 * | . .
639 * | . .
640 * | . .
641 * | . ..
642 * | . ....
643 * | . .....
644 * | ... precharge_current_ua ....... charge_term_current_ua
645 * | . .
646 * | . .
647 * |.... tricklecharge_current_ua .
648 * | .
649 * +-----------------------------------------------------------------> time
650 *
651 * These diagrams are synchronized on time and the voltage and current
652 * follow each other.
653 *
654 * With CC/CV charging commence over time like this for an empty battery:
655 *
656 * 1. When the battery is completely empty it may need to be charged with
657 * an especially small current so that electrons just "trickle in",
658 * this is the tricklecharge_current_ua.
659 *
660 * 2. Next a small initial pre-charge current (precharge_current_ua)
661 * is applied if the voltage is below precharge_voltage_max_uv until we
662 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
663 * to as "trickle charging" but the use in the Linux kernel is different
664 * see below!
665 *
666 * 3. Then the main charging current is applied, which is called the constant
667 * current (CC) phase. A current regulator is set up to allow
668 * constant_charge_current_max_ua of current to flow into the battery.
669 * The chemical reaction in the battery will make the voltage go up as
670 * charge goes into the battery. This current is applied until we reach
671 * the constant_charge_voltage_max_uv voltage.
672 *
673 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
674 * means we allow current to go into the battery, but we keep the voltage
675 * fixed. This current will continue to charge the battery while keeping
676 * the voltage the same. A chemical reaction in the battery goes on
677 * storing energy without affecting the voltage. Over time the current
678 * will slowly drop and when we reach charge_term_current_ua we will
679 * end the constant voltage phase.
680 *
681 * After this the battery is fully charged, and if we do not support maintenance
682 * charging, the charging will not restart until power dissipation makes the
683 * voltage fall so that we reach charge_restart_voltage_uv and at this point
684 * we restart charging at the appropriate phase, usually this will be inside
685 * the CV phase.
686 *
687 * If we support maintenance charging the voltage is however kept high after
688 * the CV phase with a very low current. This is meant to let the same charge
689 * go in for usage while the charger is still connected, mainly for
690 * dissipation for the power consuming entity while connected to the
691 * charger.
692 *
693 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
694 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
695 * explosions.
696 *
697 * DETERMINING BATTERY CAPACITY:
698 *
699 * Several members of the struct deal with trying to determine the remaining
700 * capacity in the battery, usually as a percentage of charge. In practice
701 * many chargers uses a so-called fuel gauge or coloumb counter that measure
702 * how much charge goes into the battery and how much goes out (+/- leak
703 * consumption). This does not help if we do not know how much capacity the
704 * battery has to begin with, such as when it is first used or was taken out
705 * and charged in a separate charger. Therefore many capacity algorithms use
706 * the open circuit voltage with a look-up table to determine the rough
707 * capacity of the battery. The open circuit voltage can be conceptualized
708 * with an ideal voltage source (V) in series with an internal resistance (Ri)
709 * like this:
710 *
711 * +-------> IBAT >----------------+
712 * | ^ |
713 * [ ] Ri | |
714 * | | VBAT |
715 * o <---------- | |
716 * +| ^ | [ ] Rload
717 * .---. | | |
718 * | V | | OCV | |
719 * '---' | | |
720 * | | | |
721 * GND +-------------------------------+
722 *
723 * If we disconnect the load (here simplified as a fixed resistance Rload)
724 * and measure VBAT with a infinite impedance voltage meter we will get
725 * VBAT = OCV and this assumption is sometimes made even under load, assuming
726 * Rload is insignificant. However this will be of dubious quality because the
727 * load is rarely that small and Ri is strongly nonlinear depending on
728 * temperature and how much capacity is left in the battery due to the
729 * chemistry involved.
730 *
731 * In many practical applications we cannot just disconnect the battery from
732 * the load, so instead we often try to measure the instantaneous IBAT (the
733 * current out from the battery), estimate the Ri and thus calculate the
734 * voltage drop over Ri and compensate like this:
735 *
736 * OCV = VBAT - (IBAT * Ri)
737 *
738 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
739 * (by interpolation) the Ri from the VBAT under load. These curves are highly
740 * nonlinear and may need many datapoints but can be found in datasheets for
741 * some batteries. This gives the compensated open circuit voltage (OCV) for
742 * the battery even under load. Using this method will also compensate for
743 * temperature changes in the environment: this will also make the internal
744 * resistance change, and it will affect the VBAT under load, so correlating
745 * VBAT to Ri takes both remaining capacity and temperature into consideration.
746 *
747 * Alternatively a manufacturer can specify how the capacity of the battery
748 * is dependent on the battery temperature which is the main factor affecting
749 * Ri. As we know all checmical reactions are faster when it is warm and slower
750 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
751 * voltage drops too low for example. This effect is also highly nonlinear and
752 * the purpose of the table resist_table: this will take a temperature and
753 * tell us how big percentage of Ri the specified temperature correlates to.
754 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
755 * Celsius.
756 *
757 * The power supply class itself doesn't use this struct as of now.
758 */
759
760 struct power_supply_battery_info {
761 unsigned int technology;
762 int energy_full_design_uwh;
763 int charge_full_design_uah;
764 int voltage_min_design_uv;
765 int voltage_max_design_uv;
766 int tricklecharge_current_ua;
767 int precharge_current_ua;
768 int precharge_voltage_max_uv;
769 int charge_term_current_ua;
770 int charge_restart_voltage_uv;
771 int overvoltage_limit_uv;
772 int constant_charge_current_max_ua;
773 int constant_charge_voltage_max_uv;
774 const struct power_supply_maintenance_charge_table *maintenance_charge;
775 int maintenance_charge_size;
776 int alert_low_temp_charge_current_ua;
777 int alert_low_temp_charge_voltage_uv;
778 int alert_high_temp_charge_current_ua;
779 int alert_high_temp_charge_voltage_uv;
780 int factory_internal_resistance_uohm;
781 int factory_internal_resistance_charging_uohm;
782 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
783 int temp_ambient_alert_min;
784 int temp_ambient_alert_max;
785 int temp_alert_min;
786 int temp_alert_max;
787 int temp_min;
788 int temp_max;
789 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
790 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
791 const struct power_supply_resistance_temp_table *resist_table;
792 int resist_table_size;
793 const struct power_supply_vbat_ri_table *vbat2ri_discharging;
794 int vbat2ri_discharging_size;
795 const struct power_supply_vbat_ri_table *vbat2ri_charging;
796 int vbat2ri_charging_size;
797 int bti_resistance_ohm;
798 int bti_resistance_tolerance;
799 };
800
801 extern int power_supply_reg_notifier(struct notifier_block *nb);
802 extern void power_supply_unreg_notifier(struct notifier_block *nb);
803 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
804 extern struct power_supply *power_supply_get_by_name(const char *name);
805 extern void power_supply_put(struct power_supply *psy);
806 #else
power_supply_put(struct power_supply * psy)807 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)808 static inline struct power_supply *power_supply_get_by_name(const char *name)
809 { return NULL; }
810 #endif
811 #ifdef CONFIG_OF
812 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
813 const char *property);
814 extern struct power_supply *devm_power_supply_get_by_phandle(
815 struct device *dev, const char *property);
816 #else /* !CONFIG_OF */
817 static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)818 power_supply_get_by_phandle(struct device_node *np, const char *property)
819 { return NULL; }
820 static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)821 devm_power_supply_get_by_phandle(struct device *dev, const char *property)
822 { return NULL; }
823 #endif /* CONFIG_OF */
824
825 extern const enum power_supply_property power_supply_battery_info_properties[];
826 extern const size_t power_supply_battery_info_properties_size;
827 extern int power_supply_get_battery_info(struct power_supply *psy,
828 struct power_supply_battery_info **info_out);
829 extern void power_supply_put_battery_info(struct power_supply *psy,
830 struct power_supply_battery_info *info);
831 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
832 enum power_supply_property psp);
833 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
834 enum power_supply_property psp,
835 union power_supply_propval *val);
836 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
837 int table_len, int ocv);
838 extern const struct power_supply_battery_ocv_table *
839 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
840 int temp, int *table_len);
841 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
842 int ocv, int temp);
843 extern int
844 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
845 int table_len, int temp);
846 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
847 int vbat_uv, bool charging);
848 extern const struct power_supply_maintenance_charge_table *
849 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
850 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
851 int resistance);
852 extern void power_supply_changed(struct power_supply *psy);
853 extern int power_supply_am_i_supplied(struct power_supply *psy);
854 int power_supply_get_property_from_supplier(struct power_supply *psy,
855 enum power_supply_property psp,
856 union power_supply_propval *val);
857
858 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)859 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
860 {
861 const struct power_supply_maintenance_charge_table *mt;
862
863 mt = power_supply_get_maintenance_charging_setting(info, 0);
864
865 return (mt != NULL);
866 }
867
868 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)869 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
870 {
871 return ((info->vbat2ri_discharging != NULL) &&
872 info->vbat2ri_discharging_size > 0);
873 }
874
875 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)876 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
877 {
878 return ((info->resist_table != NULL) &&
879 info->resist_table_size > 0);
880 }
881
882 #ifdef CONFIG_POWER_SUPPLY
883 extern int power_supply_is_system_supplied(void);
884 #else
power_supply_is_system_supplied(void)885 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
886 #endif
887
888 extern int power_supply_get_property(struct power_supply *psy,
889 enum power_supply_property psp,
890 union power_supply_propval *val);
891 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
892 extern int power_supply_set_property(struct power_supply *psy,
893 enum power_supply_property psp,
894 const union power_supply_propval *val);
895 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)896 static inline int power_supply_set_property(struct power_supply *psy,
897 enum power_supply_property psp,
898 const union power_supply_propval *val)
899 { return 0; }
900 #endif
901 extern void power_supply_external_power_changed(struct power_supply *psy);
902
903 extern struct power_supply *__must_check
904 power_supply_register(struct device *parent,
905 const struct power_supply_desc *desc,
906 const struct power_supply_config *cfg);
907 extern struct power_supply *__must_check
908 devm_power_supply_register(struct device *parent,
909 const struct power_supply_desc *desc,
910 const struct power_supply_config *cfg);
911 extern void power_supply_unregister(struct power_supply *psy);
912 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
913
914 extern int __must_check
915 power_supply_register_extension(struct power_supply *psy,
916 const struct power_supply_ext *ext,
917 struct device *dev,
918 void *data);
919 extern void power_supply_unregister_extension(struct power_supply *psy,
920 const struct power_supply_ext *ext);
921
922 #define to_power_supply(device) container_of(device, struct power_supply, dev)
923
924 extern void *power_supply_get_drvdata(struct power_supply *psy);
925 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data));
926
power_supply_is_amp_property(enum power_supply_property psp)927 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
928 {
929 switch (psp) {
930 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
931 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
932 case POWER_SUPPLY_PROP_CHARGE_FULL:
933 case POWER_SUPPLY_PROP_CHARGE_EMPTY:
934 case POWER_SUPPLY_PROP_CHARGE_NOW:
935 case POWER_SUPPLY_PROP_CHARGE_AVG:
936 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
937 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
938 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
940 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
941 case POWER_SUPPLY_PROP_CURRENT_MAX:
942 case POWER_SUPPLY_PROP_CURRENT_NOW:
943 case POWER_SUPPLY_PROP_CURRENT_AVG:
944 case POWER_SUPPLY_PROP_CURRENT_BOOT:
945 return true;
946 default:
947 break;
948 }
949
950 return false;
951 }
952
power_supply_is_watt_property(enum power_supply_property psp)953 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
954 {
955 switch (psp) {
956 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
957 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
958 case POWER_SUPPLY_PROP_ENERGY_FULL:
959 case POWER_SUPPLY_PROP_ENERGY_EMPTY:
960 case POWER_SUPPLY_PROP_ENERGY_NOW:
961 case POWER_SUPPLY_PROP_ENERGY_AVG:
962 case POWER_SUPPLY_PROP_VOLTAGE_MAX:
963 case POWER_SUPPLY_PROP_VOLTAGE_MIN:
964 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
965 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
966 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
967 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
968 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
969 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
970 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
971 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
972 case POWER_SUPPLY_PROP_POWER_NOW:
973 return true;
974 default:
975 break;
976 }
977
978 return false;
979 }
980
981 #ifdef CONFIG_SYSFS
982 ssize_t power_supply_charge_behaviour_show(struct device *dev,
983 unsigned int available_behaviours,
984 enum power_supply_charge_behaviour behaviour,
985 char *buf);
986
987 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
988 ssize_t power_supply_charge_types_show(struct device *dev,
989 unsigned int available_types,
990 enum power_supply_charge_type current_type,
991 char *buf);
992 int power_supply_charge_types_parse(unsigned int available_types, const char *buf);
993 #else
994 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)995 ssize_t power_supply_charge_behaviour_show(struct device *dev,
996 unsigned int available_behaviours,
997 enum power_supply_charge_behaviour behaviour,
998 char *buf)
999 {
1000 return -EOPNOTSUPP;
1001 }
1002
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)1003 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
1004 const char *buf)
1005 {
1006 return -EOPNOTSUPP;
1007 }
1008
1009 static inline
power_supply_charge_types_show(struct device * dev,unsigned int available_types,enum power_supply_charge_type current_type,char * buf)1010 ssize_t power_supply_charge_types_show(struct device *dev,
1011 unsigned int available_types,
1012 enum power_supply_charge_type current_type,
1013 char *buf)
1014 {
1015 return -EOPNOTSUPP;
1016 }
1017
power_supply_charge_types_parse(unsigned int available_types,const char * buf)1018 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf)
1019 {
1020 return -EOPNOTSUPP;
1021 }
1022 #endif
1023
1024 #endif /* __LINUX_POWER_SUPPLY_H__ */
1025