xref: /freebsd/sys/netpfil/ipfw/ip_fw_sockopt.c (revision 3daae1ac1d82ecdcd855101bab5206e914b12350)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  * Copyright (c) 2014-2025 Yandex LLC
6  * Copyright (c) 2014 Alexander V. Chernikov
7  *
8  * Supported by: Valeria Paoli
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 /*
34  * Control socket and rule management routines for ipfw.
35  * Control is currently implemented via IP_FW3 setsockopt() code.
36  */
37 
38 #include "opt_ipfw.h"
39 #include "opt_inet.h"
40 #ifndef INET
41 #error IPFIREWALL requires INET.
42 #endif /* INET */
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>	/* struct m_tag used by nested headers */
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/rwlock.h>
54 #include <sys/rmlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/fnv_hash.h>
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/vnet.h>
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/ip_var.h> /* hooks */
68 #include <netinet/ip_fw.h>
69 
70 #include <netpfil/ipfw/ip_fw_private.h>
71 #include <netpfil/ipfw/ip_fw_table.h>
72 
73 #ifdef MAC
74 #include <security/mac/mac_framework.h>
75 #endif
76 
77 static enum ipfw_opcheck_result
check_opcode_compat_nop(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)78 check_opcode_compat_nop(ipfw_insn **pcmd, int *plen,
79     struct rule_check_info *ci)
80 {
81 	/* Compatibility code is not registered */
82 	return (FAILED);
83 }
84 
85 static ipfw_check_opcode_t check_opcode_f = check_opcode_compat_nop;
86 
87 static int check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len,
88     struct rule_check_info *ci);
89 static int rewrite_rule_uidx(struct ip_fw_chain *chain,
90     struct rule_check_info *ci);
91 
92 struct namedobj_instance {
93 	struct namedobjects_head	*names;
94 	struct namedobjects_head	*values;
95 	uint32_t nn_size;		/* names hash size */
96 	uint32_t nv_size;		/* number hash size */
97 	u_long *idx_mask;		/* used items bitmask */
98 	uint32_t max_blocks;		/* number of "long" blocks in bitmask */
99 	uint32_t count;			/* number of items */
100 	uint16_t free_off[IPFW_MAX_SETS];	/* first possible free offset */
101 	objhash_hash_f	*hash_f;
102 	objhash_cmp_f	*cmp_f;
103 };
104 #define	BLOCK_ITEMS	(8 * sizeof(u_long))	/* Number of items for ffsl() */
105 
106 static uint32_t objhash_hash_name(struct namedobj_instance *ni,
107     const void *key, uint32_t kopt);
108 static uint32_t objhash_hash_idx(struct namedobj_instance *ni, uint32_t val);
109 static int objhash_cmp_name(struct named_object *no, const void *name,
110     uint32_t set);
111 
112 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
113 
114 /* ctl3 handler data */
115 static struct mtx ctl3_lock;
116 #define	CTL3_LOCK_INIT()	mtx_init(&ctl3_lock, "ctl3_lock", NULL, MTX_DEF)
117 #define	CTL3_LOCK_DESTROY()	mtx_destroy(&ctl3_lock)
118 #define	CTL3_LOCK()		mtx_lock(&ctl3_lock)
119 #define	CTL3_UNLOCK()		mtx_unlock(&ctl3_lock)
120 
121 static struct ipfw_sopt_handler *ctl3_handlers;
122 static size_t ctl3_hsize;
123 static uint64_t ctl3_refct, ctl3_gencnt;
124 #define	CTL3_SMALLBUF	4096			/* small page-size write buffer */
125 #define	CTL3_LARGEBUF	(16 * 1024 * 1024)	/* handle large rulesets */
126 
127 static int ipfw_flush_sopt_data(struct sockopt_data *sd);
128 
129 static sopt_handler_f dump_config, add_rules, del_rules, clear_rules,
130     move_rules, manage_sets, dump_soptcodes, dump_srvobjects,
131     manage_skiptocache;
132 
133 static struct ipfw_sopt_handler scodes[] = {
134     { IP_FW_XGET,		IP_FW3_OPVER, HDIR_GET, dump_config },
135     { IP_FW_XADD,		IP_FW3_OPVER, HDIR_BOTH, add_rules },
136     { IP_FW_XDEL,		IP_FW3_OPVER, HDIR_BOTH, del_rules },
137     { IP_FW_XZERO,		IP_FW3_OPVER, HDIR_SET, clear_rules },
138     { IP_FW_XRESETLOG,		IP_FW3_OPVER, HDIR_SET, clear_rules },
139     { IP_FW_XMOVE,		IP_FW3_OPVER, HDIR_SET, move_rules },
140     { IP_FW_SET_SWAP,		IP_FW3_OPVER, HDIR_SET, manage_sets },
141     { IP_FW_SET_MOVE,		IP_FW3_OPVER, HDIR_SET, manage_sets },
142     { IP_FW_SET_ENABLE,		IP_FW3_OPVER, HDIR_SET, manage_sets },
143     { IP_FW_DUMP_SOPTCODES,	IP_FW3_OPVER, HDIR_GET, dump_soptcodes },
144     { IP_FW_DUMP_SRVOBJECTS,	IP_FW3_OPVER, HDIR_GET, dump_srvobjects },
145     { IP_FW_SKIPTO_CACHE,	IP_FW3_OPVER, HDIR_BOTH, manage_skiptocache },
146 };
147 
148 static struct opcode_obj_rewrite *find_op_rw(ipfw_insn *cmd,
149     uint32_t *puidx, uint8_t *ptype);
150 static int ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
151     struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti);
152 static int ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd,
153     struct tid_info *ti, struct obj_idx *pidx, int *unresolved);
154 static void unref_rule_objects(struct ip_fw_chain *chain, struct ip_fw *rule);
155 static void unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd,
156     struct obj_idx *oib, struct obj_idx *end);
157 static int export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
158     struct sockopt_data *sd);
159 
160 /*
161  * Opcode object rewriter variables
162  */
163 struct opcode_obj_rewrite *ctl3_rewriters;
164 static size_t ctl3_rsize;
165 
166 /*
167  * static variables followed by global ones
168  */
169 
170 VNET_DEFINE_STATIC(uma_zone_t, ipfw_cntr_zone);
171 #define	V_ipfw_cntr_zone		VNET(ipfw_cntr_zone)
172 
173 void
ipfw_init_counters(void)174 ipfw_init_counters(void)
175 {
176 
177 	V_ipfw_cntr_zone = uma_zcreate("IPFW counters",
178 	    IPFW_RULE_CNTR_SIZE, NULL, NULL, NULL, NULL,
179 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
180 }
181 
182 void
ipfw_destroy_counters(void)183 ipfw_destroy_counters(void)
184 {
185 
186 	uma_zdestroy(V_ipfw_cntr_zone);
187 }
188 
189 struct ip_fw *
ipfw_alloc_rule(struct ip_fw_chain * chain,size_t rulesize)190 ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize)
191 {
192 	struct ip_fw *rule;
193 
194 	rule = malloc(rulesize, M_IPFW, M_WAITOK | M_ZERO);
195 	rule->cntr = uma_zalloc_pcpu(V_ipfw_cntr_zone, M_WAITOK | M_ZERO);
196 	rule->refcnt = 1;
197 
198 	return (rule);
199 }
200 
201 void
ipfw_free_rule(struct ip_fw * rule)202 ipfw_free_rule(struct ip_fw *rule)
203 {
204 
205 	/*
206 	 * We don't release refcnt here, since this function
207 	 * can be called without any locks held. The caller
208 	 * must release reference under IPFW_UH_WLOCK, and then
209 	 * call this function if refcount becomes 1.
210 	 */
211 	if (rule->refcnt > 1)
212 		return;
213 	if (ACTION_PTR(rule)->opcode == O_LOG)
214 		ipfw_tap_free(rule->rulenum);
215 	uma_zfree_pcpu(V_ipfw_cntr_zone, rule->cntr);
216 	free(rule, M_IPFW);
217 }
218 
219 /*
220  * Find the smallest rule >= key, id.
221  * We could use bsearch but it is so simple that we code it directly
222  */
223 int
ipfw_find_rule(struct ip_fw_chain * chain,uint32_t key,uint32_t id)224 ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id)
225 {
226 	int i, lo, hi;
227 	struct ip_fw *r;
228 
229   	for (lo = 0, hi = chain->n_rules - 1; lo < hi;) {
230 		i = (lo + hi) / 2;
231 		r = chain->map[i];
232 		if (r->rulenum < key)
233 			lo = i + 1;	/* continue from the next one */
234 		else if (r->rulenum > key)
235 			hi = i;		/* this might be good */
236 		else if (r->id < id)
237 			lo = i + 1;	/* continue from the next one */
238 		else /* r->id >= id */
239 			hi = i;		/* this might be good */
240 	}
241 	return hi;
242 }
243 
244 /*
245  * Builds skipto cache on rule set @map.
246  */
247 static void
update_skipto_cache(struct ip_fw_chain * chain,struct ip_fw ** map)248 update_skipto_cache(struct ip_fw_chain *chain, struct ip_fw **map)
249 {
250 	uint32_t *smap, rulenum;
251 	int i, mi;
252 
253 	IPFW_UH_WLOCK_ASSERT(chain);
254 
255 	mi = 0;
256 	rulenum = map[mi]->rulenum;
257 	smap = chain->idxmap_back;
258 
259 	if (smap == NULL)
260 		return;
261 
262 	for (i = 0; i <= IPFW_DEFAULT_RULE; i++) {
263 		smap[i] = mi;
264 		/* Use the same rule index until i < rulenum */
265 		if (i != rulenum || i == IPFW_DEFAULT_RULE)
266 			continue;
267 		/* Find next rule with num > i */
268 		rulenum = map[++mi]->rulenum;
269 		while (rulenum == i)
270 			rulenum = map[++mi]->rulenum;
271 	}
272 }
273 
274 /*
275  * Swaps prepared (backup) index with current one.
276  */
277 static void
swap_skipto_cache(struct ip_fw_chain * chain)278 swap_skipto_cache(struct ip_fw_chain *chain)
279 {
280 	uint32_t *map;
281 
282 	IPFW_UH_WLOCK_ASSERT(chain);
283 	IPFW_WLOCK_ASSERT(chain);
284 
285 	map = chain->idxmap;
286 	chain->idxmap = chain->idxmap_back;
287 	chain->idxmap_back = map;
288 }
289 
290 /*
291  * Allocate and initialize skipto cache.
292  */
293 void
ipfw_init_skipto_cache(struct ip_fw_chain * chain)294 ipfw_init_skipto_cache(struct ip_fw_chain *chain)
295 {
296 	uint32_t *idxmap, *idxmap_back;
297 
298 	idxmap = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
299 	    M_IPFW, M_WAITOK | M_ZERO);
300 	idxmap_back = malloc((IPFW_DEFAULT_RULE + 1) * sizeof(uint32_t),
301 	    M_IPFW, M_WAITOK | M_ZERO);
302 
303 	/*
304 	 * Note we may be called at any time after initialization,
305 	 * for example, on first skipto rule, so we need to
306 	 * provide valid chain->idxmap on return
307 	 */
308 
309 	IPFW_UH_WLOCK(chain);
310 	if (chain->idxmap != NULL) {
311 		IPFW_UH_WUNLOCK(chain);
312 		free(idxmap, M_IPFW);
313 		free(idxmap_back, M_IPFW);
314 		return;
315 	}
316 
317 	/* Set backup pointer first to permit building cache */
318 	chain->idxmap_back = idxmap_back;
319 	if (V_skipto_cache != 0)
320 		update_skipto_cache(chain, chain->map);
321 	IPFW_WLOCK(chain);
322 	/* It is now safe to set chain->idxmap ptr */
323 	chain->idxmap = idxmap;
324 	swap_skipto_cache(chain);
325 	IPFW_WUNLOCK(chain);
326 	IPFW_UH_WUNLOCK(chain);
327 }
328 
329 /*
330  * Destroys skipto cache.
331  */
332 void
ipfw_destroy_skipto_cache(struct ip_fw_chain * chain)333 ipfw_destroy_skipto_cache(struct ip_fw_chain *chain)
334 {
335 	free(chain->idxmap, M_IPFW);
336 	free(chain->idxmap_back, M_IPFW);
337 }
338 
339 /*
340  * allocate a new map, returns the chain locked. extra is the number
341  * of entries to add or delete.
342  */
343 static struct ip_fw **
get_map(struct ip_fw_chain * chain,int extra,int locked)344 get_map(struct ip_fw_chain *chain, int extra, int locked)
345 {
346 
347 	for (;;) {
348 		struct ip_fw **map;
349 		u_int i, mflags;
350 
351 		mflags = M_ZERO | ((locked != 0) ? M_NOWAIT : M_WAITOK);
352 
353 		i = chain->n_rules + extra;
354 		map = malloc(i * sizeof(struct ip_fw *), M_IPFW, mflags);
355 		if (map == NULL) {
356 			printf("%s: cannot allocate map\n", __FUNCTION__);
357 			return NULL;
358 		}
359 		if (!locked)
360 			IPFW_UH_WLOCK(chain);
361 		if (i >= chain->n_rules + extra) /* good */
362 			return map;
363 		/* otherwise we lost the race, free and retry */
364 		if (!locked)
365 			IPFW_UH_WUNLOCK(chain);
366 		free(map, M_IPFW);
367 	}
368 }
369 
370 /*
371  * swap the maps. It is supposed to be called with IPFW_UH_WLOCK
372  */
373 static struct ip_fw **
swap_map(struct ip_fw_chain * chain,struct ip_fw ** new_map,int new_len)374 swap_map(struct ip_fw_chain *chain, struct ip_fw **new_map, int new_len)
375 {
376 	struct ip_fw **old_map;
377 
378 	IPFW_WLOCK(chain);
379 	chain->id++;
380 	chain->n_rules = new_len;
381 	old_map = chain->map;
382 	chain->map = new_map;
383 	swap_skipto_cache(chain);
384 	IPFW_WUNLOCK(chain);
385 	return old_map;
386 }
387 
388 static void
export_cntr1_base(struct ip_fw * krule,struct ip_fw_bcounter * cntr)389 export_cntr1_base(struct ip_fw *krule, struct ip_fw_bcounter *cntr)
390 {
391 	struct timeval boottime;
392 
393 	cntr->size = sizeof(*cntr);
394 
395 	if (krule->cntr != NULL) {
396 		cntr->pcnt = counter_u64_fetch(krule->cntr);
397 		cntr->bcnt = counter_u64_fetch(krule->cntr + 1);
398 		cntr->timestamp = krule->timestamp;
399 	}
400 	if (cntr->timestamp > 0) {
401 		getboottime(&boottime);
402 		cntr->timestamp += boottime.tv_sec;
403 	}
404 }
405 
406 /*
407  * Export rule into v1 format (Current).
408  * Layout:
409  * [ ipfw_obj_tlv(IPFW_TLV_RULE_ENT)
410  *     [ ip_fw_rule ] OR
411  *     [ ip_fw_bcounter ip_fw_rule] (depends on rcntrs).
412  * ]
413  * Assume @data is zeroed.
414  */
415 static void
export_rule1(struct ip_fw * krule,caddr_t data,int len,int rcntrs)416 export_rule1(struct ip_fw *krule, caddr_t data, int len, int rcntrs)
417 {
418 	struct ip_fw_bcounter *cntr;
419 	struct ip_fw_rule *urule;
420 	ipfw_obj_tlv *tlv;
421 
422 	/* Fill in TLV header */
423 	tlv = (ipfw_obj_tlv *)data;
424 	tlv->type = IPFW_TLV_RULE_ENT;
425 	tlv->length = len;
426 
427 	if (rcntrs != 0) {
428 		/* Copy counters */
429 		cntr = (struct ip_fw_bcounter *)(tlv + 1);
430 		urule = (struct ip_fw_rule *)(cntr + 1);
431 		export_cntr1_base(krule, cntr);
432 	} else
433 		urule = (struct ip_fw_rule *)(tlv + 1);
434 
435 	/* copy header */
436 	urule->act_ofs = krule->act_ofs;
437 	urule->cmd_len = krule->cmd_len;
438 	urule->rulenum = krule->rulenum;
439 	urule->set = krule->set;
440 	urule->flags = krule->flags;
441 	urule->id = krule->id;
442 
443 	/* Copy opcodes */
444 	memcpy(urule->cmd, krule->cmd, krule->cmd_len * sizeof(uint32_t));
445 }
446 
447 /*
448  * Add new rule(s) to the list possibly creating rule number for each.
449  * Update the rule_number in the input struct so the caller knows it as well.
450  * Must be called without IPFW_UH held
451  */
452 int
ipfw_commit_rules(struct ip_fw_chain * chain,struct rule_check_info * rci,int count)453 ipfw_commit_rules(struct ip_fw_chain *chain, struct rule_check_info *rci,
454     int count)
455 {
456 	int error, i, insert_before, tcount, rule_idx, last_rule_idx;
457 	uint32_t rulenum;
458 	struct rule_check_info *ci;
459 	struct ip_fw *krule;
460 	struct ip_fw **map;	/* the new array of pointers */
461 
462 	/* Check if we need to do table/obj index remap */
463 	tcount = 0;
464 	for (ci = rci, i = 0; i < count; ci++, i++) {
465 		if (ci->object_opcodes == 0)
466 			continue;
467 
468 		/*
469 		 * Rule has some object opcodes.
470 		 * We need to find (and create non-existing)
471 		 * kernel objects, and reference existing ones.
472 		 */
473 		error = rewrite_rule_uidx(chain, ci);
474 		if (error != 0) {
475 
476 			/*
477 			 * rewrite failed, state for current rule
478 			 * has been reverted. Check if we need to
479 			 * revert more.
480 			 */
481 			if (tcount > 0) {
482 
483 				/*
484 				 * We have some more table rules
485 				 * we need to rollback.
486 				 */
487 
488 				IPFW_UH_WLOCK(chain);
489 				while (ci != rci) {
490 					ci--;
491 					if (ci->object_opcodes == 0)
492 						continue;
493 					unref_rule_objects(chain,ci->krule);
494 
495 				}
496 				IPFW_UH_WUNLOCK(chain);
497 
498 			}
499 
500 			return (error);
501 		}
502 
503 		tcount++;
504 	}
505 
506 	/* get_map returns with IPFW_UH_WLOCK if successful */
507 	map = get_map(chain, count, 0 /* not locked */);
508 	if (map == NULL) {
509 		if (tcount > 0) {
510 			/* Unbind tables */
511 			IPFW_UH_WLOCK(chain);
512 			for (ci = rci, i = 0; i < count; ci++, i++) {
513 				if (ci->object_opcodes == 0)
514 					continue;
515 
516 				unref_rule_objects(chain, ci->krule);
517 			}
518 			IPFW_UH_WUNLOCK(chain);
519 		}
520 
521 		return (ENOSPC);
522 	}
523 
524 	if (V_autoinc_step < 1)
525 		V_autoinc_step = 1;
526 	else if (V_autoinc_step > 1000)
527 		V_autoinc_step = 1000;
528 
529 	last_rule_idx = 0;
530 	for (ci = rci, i = 0; i < count; ci++, i++) {
531 		krule = ci->krule;
532 		rulenum = krule->rulenum;
533 
534 		krule->id = chain->id + 1;
535 
536 		/* find the insertion point, we will insert before */
537 		insert_before = rulenum ? rulenum + 1 : IPFW_DEFAULT_RULE;
538 		rule_idx = ipfw_find_rule(chain, insert_before, 0);
539 		/* duplicate the previous part */
540 		if (last_rule_idx < rule_idx)
541 			bcopy(chain->map + last_rule_idx, map + last_rule_idx + i,
542 			    (rule_idx - last_rule_idx) * sizeof(struct ip_fw *));
543 		last_rule_idx = rule_idx;
544 		map[rule_idx + i] = krule;
545 		if (rulenum == 0) {
546 			/* Compute rule number and write it back */
547 			rulenum = rule_idx + i > 0 ? map[rule_idx + i - 1]->rulenum : 0;
548 			if (rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
549 				rulenum += V_autoinc_step;
550 			krule->rulenum = rulenum;
551 			/* Save number to userland rule */
552 			memcpy((char *)ci->urule + ci->urule_numoff, &rulenum,
553 			    sizeof(rulenum));
554 		}
555 	}
556 
557 	/* duplicate the remaining part, we always have the default rule */
558 	bcopy(chain->map + last_rule_idx, map + last_rule_idx + count,
559 	    (chain->n_rules - last_rule_idx) * sizeof(struct ip_fw *));
560 
561 	if (V_skipto_cache != 0)
562 		update_skipto_cache(chain, map);
563 	map = swap_map(chain, map, chain->n_rules + count);
564 	IPFW_UH_WUNLOCK(chain);
565 	if (map)
566 		free(map, M_IPFW);
567 	return (0);
568 }
569 
570 int
ipfw_add_protected_rule(struct ip_fw_chain * chain,struct ip_fw * rule,int locked)571 ipfw_add_protected_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
572     int locked)
573 {
574 	struct ip_fw **map;
575 
576 	map = get_map(chain, 1, locked);
577 	if (map == NULL)
578 		return (ENOMEM);
579 	if (chain->n_rules > 0)
580 		bcopy(chain->map, map,
581 		    chain->n_rules * sizeof(struct ip_fw *));
582 	map[chain->n_rules] = rule;
583 	rule->rulenum = IPFW_DEFAULT_RULE;
584 	rule->set = RESVD_SET;
585 	rule->id = chain->id + 1;
586 	/* We add rule in the end of chain, no need to update skipto cache */
587 	map = swap_map(chain, map, chain->n_rules + 1);
588 	IPFW_UH_WUNLOCK(chain);
589 	free(map, M_IPFW);
590 	return (0);
591 }
592 
593 /*
594  * Adds @rule to the list of rules to reap
595  */
596 void
ipfw_reap_add(struct ip_fw_chain * chain,struct ip_fw ** head,struct ip_fw * rule)597 ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head,
598     struct ip_fw *rule)
599 {
600 
601 	IPFW_UH_WLOCK_ASSERT(chain);
602 
603 	/* Unlink rule from everywhere */
604 	unref_rule_objects(chain, rule);
605 
606 	rule->next = *head;
607 	*head = rule;
608 }
609 
610 /*
611  * Reclaim storage associated with a list of rules.  This is
612  * typically the list created using remove_rule.
613  * A NULL pointer on input is handled correctly.
614  */
615 void
ipfw_reap_rules(struct ip_fw * head)616 ipfw_reap_rules(struct ip_fw *head)
617 {
618 	struct ip_fw *rule;
619 
620 	while ((rule = head) != NULL) {
621 		head = head->next;
622 		ipfw_free_rule(rule);
623 	}
624 }
625 
626 /*
627  * Rules to keep are
628  *	(default || reserved || !match_set || !match_number)
629  * where
630  *   default ::= (rule->rulenum == IPFW_DEFAULT_RULE)
631  *	// the default rule is always protected
632  *
633  *   reserved ::= (cmd == 0 && n == 0 && rule->set == RESVD_SET)
634  *	// RESVD_SET is protected only if cmd == 0 and n == 0 ("ipfw flush")
635  *
636  *   match_set ::= (cmd == 0 || rule->set == set)
637  *	// set number is ignored for cmd == 0
638  *
639  *   match_number ::= (cmd == 1 || n == 0 || n == rule->rulenum)
640  *	// number is ignored for cmd == 1 or n == 0
641  *
642  */
643 int
ipfw_match_range(struct ip_fw * rule,ipfw_range_tlv * rt)644 ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt)
645 {
646 
647 	/* Don't match default rule for modification queries */
648 	if (rule->rulenum == IPFW_DEFAULT_RULE &&
649 	    (rt->flags & IPFW_RCFLAG_DEFAULT) == 0)
650 		return (0);
651 
652 	/* Don't match rules in reserved set for flush requests */
653 	if ((rt->flags & IPFW_RCFLAG_ALL) != 0 && rule->set == RESVD_SET)
654 		return (0);
655 
656 	/* If we're filtering by set, don't match other sets */
657 	if ((rt->flags & IPFW_RCFLAG_SET) != 0 && rule->set != rt->set)
658 		return (0);
659 
660 	if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
661 	    (rule->rulenum < rt->start_rule || rule->rulenum > rt->end_rule))
662 		return (0);
663 
664 	return (1);
665 }
666 
667 struct manage_sets_args {
668 	uint32_t	set;
669 	uint8_t		new_set;
670 };
671 
672 static int
swap_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)673 swap_sets_cb(struct namedobj_instance *ni, struct named_object *no,
674     void *arg)
675 {
676 	struct manage_sets_args *args;
677 
678 	args = (struct manage_sets_args *)arg;
679 	if (no->set == (uint8_t)args->set)
680 		no->set = args->new_set;
681 	else if (no->set == args->new_set)
682 		no->set = (uint8_t)args->set;
683 	return (0);
684 }
685 
686 static int
move_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)687 move_sets_cb(struct namedobj_instance *ni, struct named_object *no,
688     void *arg)
689 {
690 	struct manage_sets_args *args;
691 
692 	args = (struct manage_sets_args *)arg;
693 	if (no->set == (uint8_t)args->set)
694 		no->set = args->new_set;
695 	return (0);
696 }
697 
698 static int
test_sets_cb(struct namedobj_instance * ni,struct named_object * no,void * arg)699 test_sets_cb(struct namedobj_instance *ni, struct named_object *no,
700     void *arg)
701 {
702 	struct manage_sets_args *args;
703 
704 	args = (struct manage_sets_args *)arg;
705 	if (no->set != (uint8_t)args->set)
706 		return (0);
707 	if (ipfw_objhash_lookup_name_type(ni, args->new_set,
708 	    no->etlv, no->name) != NULL)
709 		return (EEXIST);
710 	return (0);
711 }
712 
713 /*
714  * Generic function to handler moving and swapping sets.
715  */
716 int
ipfw_obj_manage_sets(struct namedobj_instance * ni,uint16_t type,uint32_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)717 ipfw_obj_manage_sets(struct namedobj_instance *ni, uint16_t type,
718     uint32_t set, uint8_t new_set, enum ipfw_sets_cmd cmd)
719 {
720 	struct manage_sets_args args;
721 	struct named_object *no;
722 
723 	args.set = set;
724 	args.new_set = new_set;
725 	switch (cmd) {
726 	case SWAP_ALL:
727 		return (ipfw_objhash_foreach_type(ni, swap_sets_cb,
728 		    &args, type));
729 	case TEST_ALL:
730 		return (ipfw_objhash_foreach_type(ni, test_sets_cb,
731 		    &args, type));
732 	case MOVE_ALL:
733 		return (ipfw_objhash_foreach_type(ni, move_sets_cb,
734 		    &args, type));
735 	case COUNT_ONE:
736 		/*
737 		 * @set used to pass kidx.
738 		 * When @new_set is zero - reset object counter,
739 		 * otherwise increment it.
740 		 */
741 		no = ipfw_objhash_lookup_kidx(ni, set);
742 		if (new_set != 0)
743 			no->ocnt++;
744 		else
745 			no->ocnt = 0;
746 		return (0);
747 	case TEST_ONE:
748 		/* @set used to pass kidx */
749 		no = ipfw_objhash_lookup_kidx(ni, set);
750 		/*
751 		 * First check number of references:
752 		 * when it differs, this mean other rules are holding
753 		 * reference to given object, so it is not possible to
754 		 * change its set. Note that refcnt may account references
755 		 * to some going-to-be-added rules. Since we don't know
756 		 * their numbers (and even if they will be added) it is
757 		 * perfectly OK to return error here.
758 		 */
759 		if (no->ocnt != no->refcnt)
760 			return (EBUSY);
761 		if (ipfw_objhash_lookup_name_type(ni, new_set, type,
762 		    no->name) != NULL)
763 			return (EEXIST);
764 		return (0);
765 	case MOVE_ONE:
766 		/* @set used to pass kidx */
767 		no = ipfw_objhash_lookup_kidx(ni, set);
768 		no->set = new_set;
769 		return (0);
770 	}
771 	return (EINVAL);
772 }
773 
774 /*
775  * Delete rules matching range @rt.
776  * Saves number of deleted rules in @ndel.
777  *
778  * Returns 0 on success.
779  */
780 int
delete_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int * ndel)781 delete_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int *ndel)
782 {
783 	struct ip_fw *reap, *rule, **map;
784 	uint32_t end, start;
785 	int i, n, ndyn, ofs;
786 
787 	reap = NULL;
788 	IPFW_UH_WLOCK(chain);	/* arbitrate writers */
789 
790 	/*
791 	 * Stage 1: Determine range to inspect.
792 	 * Range is half-inclusive, e.g [start, end).
793 	 */
794 	start = 0;
795 	end = chain->n_rules - 1;
796 
797 	if ((rt->flags & IPFW_RCFLAG_RANGE) != 0) {
798 		start = ipfw_find_rule(chain, rt->start_rule, 0);
799 
800 		if (rt->end_rule >= IPFW_DEFAULT_RULE)
801 			rt->end_rule = IPFW_DEFAULT_RULE - 1;
802 		end = ipfw_find_rule(chain, rt->end_rule, UINT32_MAX);
803 	}
804 
805 	if (rt->flags & IPFW_RCFLAG_DYNAMIC) {
806 		/*
807 		 * Requested deleting only for dynamic states.
808 		 */
809 		*ndel = 0;
810 		ipfw_expire_dyn_states(chain, rt);
811 		IPFW_UH_WUNLOCK(chain);
812 		return (0);
813 	}
814 
815 	/* Allocate new map of the same size */
816 	map = get_map(chain, 0, 1 /* locked */);
817 	if (map == NULL) {
818 		IPFW_UH_WUNLOCK(chain);
819 		return (ENOMEM);
820 	}
821 
822 	n = 0;
823 	ndyn = 0;
824 	ofs = start;
825 	/* 1. bcopy the initial part of the map */
826 	if (start > 0)
827 		bcopy(chain->map, map, start * sizeof(struct ip_fw *));
828 	/* 2. copy active rules between start and end */
829 	for (i = start; i < end; i++) {
830 		rule = chain->map[i];
831 		if (ipfw_match_range(rule, rt) == 0) {
832 			map[ofs++] = rule;
833 			continue;
834 		}
835 
836 		n++;
837 		if (ipfw_is_dyn_rule(rule) != 0)
838 			ndyn++;
839 	}
840 	/* 3. copy the final part of the map */
841 	bcopy(chain->map + end, map + ofs,
842 		(chain->n_rules - end) * sizeof(struct ip_fw *));
843 	/* 4. recalculate skipto cache */
844 	update_skipto_cache(chain, map);
845 	/* 5. swap the maps (under UH_WLOCK + WHLOCK) */
846 	map = swap_map(chain, map, chain->n_rules - n);
847 	/* 6. Remove all dynamic states originated by deleted rules */
848 	if (ndyn > 0)
849 		ipfw_expire_dyn_states(chain, rt);
850 	/* 7. now remove the rules deleted from the old map */
851 	for (i = start; i < end; i++) {
852 		rule = map[i];
853 		if (ipfw_match_range(rule, rt) == 0)
854 			continue;
855 		ipfw_reap_add(chain, &reap, rule);
856 	}
857 	IPFW_UH_WUNLOCK(chain);
858 
859 	ipfw_reap_rules(reap);
860 	if (map != NULL)
861 		free(map, M_IPFW);
862 	*ndel = n;
863 	return (0);
864 }
865 
866 static int
move_objects(struct ip_fw_chain * ch,ipfw_range_tlv * rt)867 move_objects(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
868 {
869 	struct opcode_obj_rewrite *rw;
870 	struct ip_fw *rule;
871 	ipfw_insn *cmd;
872 	uint32_t kidx;
873 	int cmdlen, i, l, c;
874 
875 	IPFW_UH_WLOCK_ASSERT(ch);
876 
877 	/* Stage 1: count number of references by given rules */
878 	for (c = 0, i = 0; i < ch->n_rules - 1; i++) {
879 		rule = ch->map[i];
880 		if (ipfw_match_range(rule, rt) == 0)
881 			continue;
882 		if (rule->set == rt->new_set) /* nothing to do */
883 			continue;
884 		/* Search opcodes with named objects */
885 		for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
886 		    l > 0; l -= cmdlen, cmd += cmdlen) {
887 			cmdlen = F_LEN(cmd);
888 			rw = find_op_rw(cmd, &kidx, NULL);
889 			if (rw == NULL || rw->manage_sets == NULL)
890 				continue;
891 			/*
892 			 * When manage_sets() returns non-zero value to
893 			 * COUNT_ONE command, consider this as an object
894 			 * doesn't support sets (e.g. disabled with sysctl).
895 			 * So, skip checks for this object.
896 			 */
897 			if (rw->manage_sets(ch, kidx, 1, COUNT_ONE) != 0)
898 				continue;
899 			c++;
900 		}
901 	}
902 	if (c == 0) /* No objects found */
903 		return (0);
904 	/* Stage 2: verify "ownership" */
905 	for (c = 0, i = 0; (i < ch->n_rules - 1) && c == 0; i++) {
906 		rule = ch->map[i];
907 		if (ipfw_match_range(rule, rt) == 0)
908 			continue;
909 		if (rule->set == rt->new_set) /* nothing to do */
910 			continue;
911 		/* Search opcodes with named objects */
912 		for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
913 		    l > 0 && c == 0; l -= cmdlen, cmd += cmdlen) {
914 			cmdlen = F_LEN(cmd);
915 			rw = find_op_rw(cmd, &kidx, NULL);
916 			if (rw == NULL || rw->manage_sets == NULL)
917 				continue;
918 			/* Test for ownership and conflicting names */
919 			c = rw->manage_sets(ch, kidx,
920 			    (uint8_t)rt->new_set, TEST_ONE);
921 		}
922 	}
923 	/* Stage 3: change set and cleanup */
924 	for (i = 0; i < ch->n_rules - 1; i++) {
925 		rule = ch->map[i];
926 		if (ipfw_match_range(rule, rt) == 0)
927 			continue;
928 		if (rule->set == rt->new_set) /* nothing to do */
929 			continue;
930 		/* Search opcodes with named objects */
931 		for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd;
932 		    l > 0; l -= cmdlen, cmd += cmdlen) {
933 			cmdlen = F_LEN(cmd);
934 			rw = find_op_rw(cmd, &kidx, NULL);
935 			if (rw == NULL || rw->manage_sets == NULL)
936 				continue;
937 			/* cleanup object counter */
938 			rw->manage_sets(ch, kidx,
939 			    0 /* reset counter */, COUNT_ONE);
940 			if (c != 0)
941 				continue;
942 			/* change set */
943 			rw->manage_sets(ch, kidx,
944 			    (uint8_t)rt->new_set, MOVE_ONE);
945 		}
946 	}
947 	return (c);
948 }
949 
950 /*
951  * Changes set of given rule rannge @rt
952  * with each other.
953  *
954  * Returns 0 on success.
955  */
956 static int
move_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt)957 move_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
958 {
959 	struct ip_fw *rule;
960 	int i;
961 
962 	IPFW_UH_WLOCK(chain);
963 
964 	/*
965 	 * Move rules with matching paramenerts to a new set.
966 	 * This one is much more complex. We have to ensure
967 	 * that all referenced tables (if any) are referenced
968 	 * by given rule subset only. Otherwise, we can't move
969 	 * them to new set and have to return error.
970 	 */
971 	if ((i = move_objects(chain, rt)) != 0) {
972 		IPFW_UH_WUNLOCK(chain);
973 		return (i);
974 	}
975 
976 	/* XXX: We have to do swap holding WLOCK */
977 	for (i = 0; i < chain->n_rules; i++) {
978 		rule = chain->map[i];
979 		if (ipfw_match_range(rule, rt) == 0)
980 			continue;
981 		rule->set = rt->new_set;
982 	}
983 
984 	IPFW_UH_WUNLOCK(chain);
985 
986 	return (0);
987 }
988 
989 /*
990  * Returns pointer to action instruction, skips all possible rule
991  * modifiers like O_LOG, O_TAG, O_ALTQ.
992  */
993 ipfw_insn *
ipfw_get_action(struct ip_fw * rule)994 ipfw_get_action(struct ip_fw *rule)
995 {
996 	ipfw_insn *cmd;
997 	int l, cmdlen;
998 
999 	cmd = ACTION_PTR(rule);
1000 	l = rule->cmd_len - rule->act_ofs;
1001 	while (l > 0) {
1002 		switch (cmd->opcode) {
1003 		case O_ALTQ:
1004 		case O_LOG:
1005 		case O_TAG:
1006 			break;
1007 		default:
1008 			return (cmd);
1009 		}
1010 		cmdlen = F_LEN(cmd);
1011 		l -= cmdlen;
1012 		cmd += cmdlen;
1013 	}
1014 	panic("%s: rule (%p) has not action opcode", __func__, rule);
1015 	return (NULL);
1016 }
1017 
1018 /*
1019  * Clear counters for a specific rule.
1020  * Normally run under IPFW_UH_RLOCK, but these are idempotent ops
1021  * so we only care that rules do not disappear.
1022  */
1023 static void
clear_counters(struct ip_fw * rule,int log_only)1024 clear_counters(struct ip_fw *rule, int log_only)
1025 {
1026 	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
1027 
1028 	if (log_only == 0)
1029 		IPFW_ZERO_RULE_COUNTER(rule);
1030 	if (l->o.opcode == O_LOG)
1031 		l->log_left = l->max_log;
1032 }
1033 
1034 /*
1035  * Flushes rules counters and/or log values on matching range.
1036  *
1037  * Returns number of items cleared.
1038  */
1039 static int
clear_range(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int log_only)1040 clear_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int log_only)
1041 {
1042 	struct ip_fw *rule;
1043 	int num;
1044 	int i;
1045 
1046 	num = 0;
1047 	rt->flags |= IPFW_RCFLAG_DEFAULT;
1048 
1049 	IPFW_UH_WLOCK(chain);	/* arbitrate writers */
1050 	for (i = 0; i < chain->n_rules; i++) {
1051 		rule = chain->map[i];
1052 		if (ipfw_match_range(rule, rt) == 0)
1053 			continue;
1054 		clear_counters(rule, log_only);
1055 		num++;
1056 	}
1057 	IPFW_UH_WUNLOCK(chain);
1058 
1059 	return (num);
1060 }
1061 
1062 static int
check_range_tlv(ipfw_range_tlv * rt)1063 check_range_tlv(ipfw_range_tlv *rt)
1064 {
1065 
1066 	if (rt->head.length != sizeof(*rt))
1067 		return (1);
1068 	if (rt->start_rule > rt->end_rule)
1069 		return (1);
1070 	if (rt->set >= IPFW_MAX_SETS || rt->new_set >= IPFW_MAX_SETS)
1071 		return (1);
1072 
1073 	if ((rt->flags & IPFW_RCFLAG_USER) != rt->flags)
1074 		return (1);
1075 
1076 	return (0);
1077 }
1078 
1079 /*
1080  * Delete rules matching specified parameters
1081  * Data layout (v0)(current):
1082  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1083  * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1084  *
1085  * Saves number of deleted rules in ipfw_range_tlv->new_set.
1086  *
1087  * Returns 0 on success.
1088  */
1089 static int
del_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1090 del_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1091     struct sockopt_data *sd)
1092 {
1093 	ipfw_range_header *rh;
1094 	int error, ndel;
1095 
1096 	if (sd->valsize != sizeof(*rh))
1097 		return (EINVAL);
1098 
1099 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1100 
1101 	if (check_range_tlv(&rh->range) != 0)
1102 		return (EINVAL);
1103 
1104 	ndel = 0;
1105 	if ((error = delete_range(chain, &rh->range, &ndel)) != 0)
1106 		return (error);
1107 
1108 	/* Save number of rules deleted */
1109 	rh->range.new_set = ndel;
1110 	return (0);
1111 }
1112 
1113 /*
1114  * Move rules/sets matching specified parameters
1115  * Data layout (v0)(current):
1116  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1117  *
1118  * Returns 0 on success.
1119  */
1120 static int
move_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1121 move_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1122     struct sockopt_data *sd)
1123 {
1124 	ipfw_range_header *rh;
1125 
1126 	if (sd->valsize != sizeof(*rh))
1127 		return (EINVAL);
1128 
1129 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1130 
1131 	if (check_range_tlv(&rh->range) != 0)
1132 		return (EINVAL);
1133 
1134 	return (move_range(chain, &rh->range));
1135 }
1136 
1137 /*
1138  * Clear rule accounting data matching specified parameters
1139  * Data layout (v0)(current):
1140  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1141  * Reply: [ ipfw_obj_header ipfw_range_tlv ]
1142  *
1143  * Saves number of cleared rules in ipfw_range_tlv->new_set.
1144  *
1145  * Returns 0 on success.
1146  */
1147 static int
clear_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1148 clear_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1149     struct sockopt_data *sd)
1150 {
1151 	ipfw_range_header *rh;
1152 	int log_only, num;
1153 	char *msg;
1154 
1155 	if (sd->valsize != sizeof(*rh))
1156 		return (EINVAL);
1157 
1158 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1159 
1160 	if (check_range_tlv(&rh->range) != 0)
1161 		return (EINVAL);
1162 
1163 	log_only = (op3->opcode == IP_FW_XRESETLOG);
1164 
1165 	num = clear_range(chain, &rh->range, log_only);
1166 
1167 	if (rh->range.flags & IPFW_RCFLAG_ALL)
1168 		msg = log_only ? "All logging counts reset" :
1169 		    "Accounting cleared";
1170 	else
1171 		msg = log_only ? "logging count reset" : "cleared";
1172 
1173 	if (V_fw_verbose) {
1174 		int lev = LOG_SECURITY | LOG_NOTICE;
1175 		log(lev, "ipfw: %s.\n", msg);
1176 	}
1177 
1178 	/* Save number of rules cleared */
1179 	rh->range.new_set = num;
1180 	return (0);
1181 }
1182 
1183 static void
enable_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt)1184 enable_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1185 {
1186 	uint32_t v_set;
1187 
1188 	IPFW_UH_WLOCK_ASSERT(chain);
1189 
1190 	/* Change enabled/disabled sets mask */
1191 	v_set = (V_set_disable | rt->set) & ~rt->new_set;
1192 	v_set &= ~(1 << RESVD_SET); /* set RESVD_SET always enabled */
1193 	IPFW_WLOCK(chain);
1194 	V_set_disable = v_set;
1195 	IPFW_WUNLOCK(chain);
1196 }
1197 
1198 static int
swap_sets(struct ip_fw_chain * chain,ipfw_range_tlv * rt,int mv)1199 swap_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int mv)
1200 {
1201 	struct opcode_obj_rewrite *rw;
1202 	struct ip_fw *rule;
1203 	int i;
1204 
1205 	IPFW_UH_WLOCK_ASSERT(chain);
1206 
1207 	if (rt->set == rt->new_set) /* nothing to do */
1208 		return (0);
1209 
1210 	if (mv != 0) {
1211 		/*
1212 		 * Berfore moving the rules we need to check that
1213 		 * there aren't any conflicting named objects.
1214 		 */
1215 		for (rw = ctl3_rewriters;
1216 		    rw < ctl3_rewriters + ctl3_rsize; rw++) {
1217 			if (rw->manage_sets == NULL)
1218 				continue;
1219 			i = rw->manage_sets(chain, (uint8_t)rt->set,
1220 			    (uint8_t)rt->new_set, TEST_ALL);
1221 			if (i != 0)
1222 				return (EEXIST);
1223 		}
1224 	}
1225 	/* Swap or move two sets */
1226 	for (i = 0; i < chain->n_rules - 1; i++) {
1227 		rule = chain->map[i];
1228 		if (rule->set == (uint8_t)rt->set)
1229 			rule->set = (uint8_t)rt->new_set;
1230 		else if (rule->set == (uint8_t)rt->new_set && mv == 0)
1231 			rule->set = (uint8_t)rt->set;
1232 	}
1233 	for (rw = ctl3_rewriters; rw < ctl3_rewriters + ctl3_rsize; rw++) {
1234 		if (rw->manage_sets == NULL)
1235 			continue;
1236 		rw->manage_sets(chain, (uint8_t)rt->set,
1237 		    (uint8_t)rt->new_set, mv != 0 ? MOVE_ALL: SWAP_ALL);
1238 	}
1239 	return (0);
1240 }
1241 
1242 /*
1243  * Swaps or moves set
1244  * Data layout (v0)(current):
1245  * Request: [ ipfw_obj_header ipfw_range_tlv ]
1246  *
1247  * Returns 0 on success.
1248  */
1249 static int
manage_sets(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1250 manage_sets(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1251     struct sockopt_data *sd)
1252 {
1253 	ipfw_range_header *rh;
1254 	int ret;
1255 
1256 	if (sd->valsize != sizeof(*rh))
1257 		return (EINVAL);
1258 
1259 	rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize);
1260 
1261 	if (rh->range.head.length != sizeof(ipfw_range_tlv))
1262 		return (1);
1263 	/* enable_sets() expects bitmasks. */
1264 	if (op3->opcode != IP_FW_SET_ENABLE &&
1265 	    (rh->range.set >= IPFW_MAX_SETS ||
1266 	    rh->range.new_set >= IPFW_MAX_SETS))
1267 		return (EINVAL);
1268 
1269 	ret = 0;
1270 	IPFW_UH_WLOCK(chain);
1271 	switch (op3->opcode) {
1272 	case IP_FW_SET_SWAP:
1273 	case IP_FW_SET_MOVE:
1274 		ret = swap_sets(chain, &rh->range,
1275 		    op3->opcode == IP_FW_SET_MOVE);
1276 		break;
1277 	case IP_FW_SET_ENABLE:
1278 		enable_sets(chain, &rh->range);
1279 		break;
1280 	}
1281 	IPFW_UH_WUNLOCK(chain);
1282 
1283 	return (ret);
1284 }
1285 
1286 /* Check rule format */
1287 int
ipfw_check_rule(struct ip_fw_rule * rule,size_t size,struct rule_check_info * ci)1288 ipfw_check_rule(struct ip_fw_rule *rule, size_t size,
1289     struct rule_check_info *ci)
1290 {
1291 	int l;
1292 
1293 	if (size < sizeof(*rule)) {
1294 		printf("ipfw: rule too short\n");
1295 		return (EINVAL);
1296 	}
1297 
1298 	/* Check for valid cmd_len */
1299 	l = roundup2(RULESIZE(rule), sizeof(uint64_t));
1300 	if (l != size) {
1301 		printf("ipfw: size mismatch (have %zu want %d)\n", size, l);
1302 		return (EINVAL);
1303 	}
1304 	if (rule->act_ofs >= rule->cmd_len) {
1305 		printf("ipfw: bogus action offset (%u > %u)\n",
1306 		    rule->act_ofs, rule->cmd_len - 1);
1307 		return (EINVAL);
1308 	}
1309 
1310 	if (rule->rulenum > IPFW_DEFAULT_RULE - 1)
1311 		return (EINVAL);
1312 
1313 	return (check_ipfw_rule_body(rule->cmd, rule->cmd_len, ci));
1314 }
1315 
1316 #define	CHECK_TARG(a, c)	\
1317     ((a) == IP_FW_TARG && ((c)->flags & IPFW_RCIFLAG_HAS_STATE))
1318 
1319 enum ipfw_opcheck_result
ipfw_check_opcode(ipfw_insn ** pcmd,int * plen,struct rule_check_info * ci)1320 ipfw_check_opcode(ipfw_insn **pcmd, int *plen, struct rule_check_info *ci)
1321 {
1322 	ipfw_insn *cmd;
1323 	size_t cmdlen;
1324 
1325 	cmd = *pcmd;
1326 	cmdlen = F_LEN(cmd);
1327 
1328 	switch (cmd->opcode) {
1329 	case O_PROBE_STATE:
1330 	case O_KEEP_STATE:
1331 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1332 			return (BAD_SIZE);
1333 		ci->object_opcodes++;
1334 		ci->flags |= IPFW_RCIFLAG_HAS_STATE;
1335 		break;
1336 	case O_PROTO:
1337 	case O_IP_SRC_ME:
1338 	case O_IP_DST_ME:
1339 	case O_LAYER2:
1340 	case O_IN:
1341 	case O_FRAG:
1342 	case O_DIVERTED:
1343 	case O_IPOPT:
1344 	case O_IPTOS:
1345 	case O_IPPRECEDENCE:
1346 	case O_IPVER:
1347 	case O_SOCKARG:
1348 	case O_TCPFLAGS:
1349 	case O_TCPOPTS:
1350 	case O_ESTAB:
1351 	case O_VERREVPATH:
1352 	case O_VERSRCREACH:
1353 	case O_ANTISPOOF:
1354 	case O_IPSEC:
1355 #ifdef INET6
1356 	case O_IP6_SRC_ME:
1357 	case O_IP6_DST_ME:
1358 	case O_EXT_HDR:
1359 	case O_IP6:
1360 #endif
1361 	case O_IP4:
1362 	case O_TAG:
1363 	case O_SKIP_ACTION:
1364 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1365 			return (BAD_SIZE);
1366 		break;
1367 
1368 	case O_EXTERNAL_ACTION:
1369 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1370 			return (BAD_SIZE);
1371 
1372 		if (insntod(cmd, kidx)->kidx == 0)
1373 			return (FAILED);
1374 		ci->object_opcodes++;
1375 		/*
1376 		 * Do we have O_EXTERNAL_INSTANCE or O_EXTERNAL_DATA
1377 		 * opcode?
1378 		 */
1379 		if (*plen != cmdlen) {
1380 			*plen -= cmdlen;
1381 			cmd += cmdlen;
1382 			*pcmd = cmd;
1383 			cmdlen = F_LEN(cmd);
1384 			if (cmd->opcode == O_EXTERNAL_DATA)
1385 				return (CHECK_ACTION);
1386 			if (cmd->opcode != O_EXTERNAL_INSTANCE) {
1387 				printf("ipfw: invalid opcode "
1388 				    "next to external action %u\n",
1389 				    cmd->opcode);
1390 				return (FAILED);
1391 			}
1392 			if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1393 				return (BAD_SIZE);
1394 			if (insntod(cmd, kidx)->kidx == 0)
1395 				return (FAILED);
1396 			ci->object_opcodes++;
1397 		}
1398 		return (CHECK_ACTION);
1399 
1400 	case O_FIB:
1401 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1402 			return (BAD_SIZE);
1403 		if (cmd->arg1 >= rt_numfibs) {
1404 			printf("ipfw: invalid fib number %d\n",
1405 				cmd->arg1);
1406 			return (FAILED);
1407 		}
1408 		break;
1409 
1410 	case O_SETFIB:
1411 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1412 			return (BAD_SIZE);
1413 		if ((cmd->arg1 != IP_FW_TARG) &&
1414 		    ((cmd->arg1 & 0x7FFF) >= rt_numfibs)) {
1415 			printf("ipfw: invalid fib number %d\n",
1416 				cmd->arg1 & 0x7FFF);
1417 			return (FAILED);
1418 		}
1419 		if (CHECK_TARG(cmd->arg1, ci))
1420 			goto bad_targ;
1421 		return (CHECK_ACTION);
1422 
1423 	case O_UID:
1424 	case O_GID:
1425 	case O_JAIL:
1426 	case O_IP_SRC:
1427 	case O_IP_DST:
1428 	case O_TCPSEQ:
1429 	case O_TCPACK:
1430 	case O_PROB:
1431 	case O_ICMPTYPE:
1432 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1433 			return (BAD_SIZE);
1434 		break;
1435 
1436 	case O_LIMIT:
1437 		if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
1438 			return (BAD_SIZE);
1439 		ci->object_opcodes++;
1440 		break;
1441 
1442 	case O_LOG:
1443 		if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
1444 			return (BAD_SIZE);
1445 		insntod(cmd, log)->log_left = insntod(cmd, log)->max_log;
1446 		break;
1447 
1448 	case O_IP_SRC_MASK:
1449 	case O_IP_DST_MASK:
1450 		/* only odd command lengths */
1451 		if ((cmdlen & 1) == 0)
1452 			return (BAD_SIZE);
1453 		break;
1454 
1455 	case O_IP_SRC_SET:
1456 	case O_IP_DST_SET:
1457 		if (cmd->arg1 == 0 || cmd->arg1 > 256) {
1458 			printf("ipfw: invalid set size %d\n",
1459 				cmd->arg1);
1460 			return (FAILED);
1461 		}
1462 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1463 		    (cmd->arg1+31)/32 )
1464 			return (BAD_SIZE);
1465 		break;
1466 
1467 	case O_IP_SRC_LOOKUP:
1468 	case O_IP_DST_LOOKUP:
1469 	case O_IP_FLOW_LOOKUP:
1470 	case O_MAC_SRC_LOOKUP:
1471 	case O_MAC_DST_LOOKUP:
1472 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx) &&
1473 		    cmdlen != F_INSN_SIZE(ipfw_insn_table))
1474 			return (BAD_SIZE);
1475 		if (insntod(cmd, kidx)->kidx >= V_fw_tables_max) {
1476 			printf("ipfw: invalid table index %u\n",
1477 			    insntod(cmd, kidx)->kidx);
1478 			return (FAILED);
1479 		}
1480 		ci->object_opcodes++;
1481 		break;
1482 	case O_MACADDR2:
1483 		if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
1484 			return (BAD_SIZE);
1485 		break;
1486 
1487 	case O_NOP:
1488 	case O_IPID:
1489 	case O_IPTTL:
1490 	case O_IPLEN:
1491 	case O_TCPDATALEN:
1492 	case O_TCPMSS:
1493 	case O_TCPWIN:
1494 	case O_TAGGED:
1495 		if (cmdlen < 1 || cmdlen > 31)
1496 			return (BAD_SIZE);
1497 		break;
1498 
1499 	case O_DSCP:
1500 	case O_MARK:
1501 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + 1)
1502 			return (BAD_SIZE);
1503 		break;
1504 
1505 	case O_MAC_TYPE:
1506 	case O_IP_SRCPORT:
1507 	case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
1508 		if (cmdlen < 2 || cmdlen > 31)
1509 			return (BAD_SIZE);
1510 		break;
1511 
1512 	case O_RECV:
1513 	case O_XMIT:
1514 	case O_VIA:
1515 		if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
1516 			return (BAD_SIZE);
1517 		ci->object_opcodes++;
1518 		break;
1519 
1520 	case O_ALTQ:
1521 		if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
1522 			return (BAD_SIZE);
1523 		break;
1524 
1525 	case O_PIPE:
1526 	case O_QUEUE:
1527 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1528 			return (BAD_SIZE);
1529 		if (CHECK_TARG(cmd->arg1, ci))
1530 			goto bad_targ;
1531 		return (CHECK_ACTION);
1532 
1533 	case O_FORWARD_IP:
1534 		if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
1535 			return (BAD_SIZE);
1536 		if (insntoc(cmd, sa)->sa.sin_addr.s_addr == INADDR_ANY &&
1537 		    (ci->flags & IPFW_RCIFLAG_HAS_STATE))
1538 			goto bad_targ;
1539 		return (CHECK_ACTION);
1540 #ifdef INET6
1541 	case O_FORWARD_IP6:
1542 		if (cmdlen != F_INSN_SIZE(ipfw_insn_sa6))
1543 			return (BAD_SIZE);
1544 		return (CHECK_ACTION);
1545 #endif /* INET6 */
1546 
1547 	case O_DIVERT:
1548 	case O_TEE:
1549 		if (ip_divert_ptr == NULL)
1550 			return (FAILED);
1551 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1552 			return (BAD_SIZE);
1553 		if (CHECK_TARG(cmd->arg1, ci))
1554 			goto bad_targ;
1555 		return (CHECK_ACTION);
1556 	case O_NETGRAPH:
1557 	case O_NGTEE:
1558 		if (ng_ipfw_input_p == NULL)
1559 			return (FAILED);
1560 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1561 			return (BAD_SIZE);
1562 		if (CHECK_TARG(cmd->arg1, ci))
1563 			goto bad_targ;
1564 		return (CHECK_ACTION);
1565 	case O_NAT:
1566 		if (!IPFW_NAT_LOADED)
1567 			return (FAILED);
1568 		if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
1569 			return (BAD_SIZE);
1570 		if (CHECK_TARG(cmd->arg1, ci))
1571 			goto bad_targ;
1572 		return (CHECK_ACTION);
1573 
1574 	case O_SKIPTO:
1575 	case O_CALLRETURN:
1576 	case O_SETMARK:
1577 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
1578 			return (BAD_SIZE);
1579 		/* O_CALLRETURN + F_NOT means 'return' opcode. */
1580 		if (cmd->opcode != O_CALLRETURN || (cmd->len & F_NOT) == 0) {
1581 			if (CHECK_TARG(insntoc(cmd, u32)->d[0], ci))
1582 				goto bad_targ;
1583 		}
1584 		return (CHECK_ACTION);
1585 
1586 	case O_CHECK_STATE:
1587 		if (cmdlen != F_INSN_SIZE(ipfw_insn_kidx))
1588 			return (BAD_SIZE);
1589 		ci->object_opcodes++;
1590 		return (CHECK_ACTION);
1591 
1592 	case O_FORWARD_MAC: /* XXX not implemented yet */
1593 	case O_COUNT:
1594 	case O_ACCEPT:
1595 	case O_DENY:
1596 	case O_REJECT:
1597 	case O_SETDSCP:
1598 #ifdef INET6
1599 	case O_UNREACH6:
1600 #endif
1601 	case O_REASS:
1602 		if (cmdlen != F_INSN_SIZE(ipfw_insn))
1603 			return (BAD_SIZE);
1604 		if (cmd->opcode == O_SETDSCP && CHECK_TARG(cmd->arg1, ci))
1605 			goto bad_targ;
1606 		return (CHECK_ACTION);
1607 #ifdef INET6
1608 	case O_IP6_SRC:
1609 	case O_IP6_DST:
1610 		if (cmdlen != F_INSN_SIZE(struct in6_addr) +
1611 		    F_INSN_SIZE(ipfw_insn))
1612 			return (BAD_SIZE);
1613 		break;
1614 
1615 	case O_FLOW6ID:
1616 		if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
1617 		    ((ipfw_insn_u32 *)cmd)->o.arg1)
1618 			return (BAD_SIZE);
1619 		break;
1620 
1621 	case O_IP6_SRC_MASK:
1622 	case O_IP6_DST_MASK:
1623 		if ( !(cmdlen & 1) || cmdlen > 127)
1624 			return (BAD_SIZE);
1625 		break;
1626 	case O_ICMP6TYPE:
1627 		if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
1628 			return (BAD_SIZE);
1629 		break;
1630 #endif
1631 
1632 	default:
1633 		switch (cmd->opcode) {
1634 #ifndef INET6
1635 		case O_IP6_SRC_ME:
1636 		case O_IP6_DST_ME:
1637 		case O_EXT_HDR:
1638 		case O_IP6:
1639 		case O_UNREACH6:
1640 		case O_IP6_SRC:
1641 		case O_IP6_DST:
1642 		case O_FLOW6ID:
1643 		case O_IP6_SRC_MASK:
1644 		case O_IP6_DST_MASK:
1645 		case O_ICMP6TYPE:
1646 			printf("ipfw: no IPv6 support in kernel\n");
1647 			return (FAILED);
1648 #endif
1649 		default:
1650 			printf("ipfw: opcode %d: unknown opcode\n",
1651 				cmd->opcode);
1652 			return (FAILED);
1653 		}
1654 	}
1655 	return (SUCCESS);
1656 bad_targ:
1657 	/*
1658 	 * For dynamic states we can not correctly initialize tablearg value,
1659 	 * because we don't go through rule's opcodes except rule action.
1660 	 */
1661 	printf("ipfw: tablearg is not allowed with dynamic states\n");
1662 	return (FAILED);
1663 }
1664 
1665 static __noinline int
check_ipfw_rule_body(ipfw_insn * cmd,int cmd_len,struct rule_check_info * ci)1666 check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len, struct rule_check_info *ci)
1667 {
1668 	int cmdlen, l;
1669 	int have_action, ret;
1670 
1671 	/*
1672 	 * Now go for the individual checks. Very simple ones, basically only
1673 	 * instruction sizes.
1674 	 */
1675 	have_action = 0;
1676 	for (l = cmd_len; l > 0 ; l -= cmdlen, cmd += cmdlen) {
1677 		cmdlen = F_LEN(cmd);
1678 		if (cmdlen > l) {
1679 			printf("ipfw: opcode %d: size truncated\n",
1680 			    cmd->opcode);
1681 			return (EINVAL);
1682 		}
1683 		if (ci->version != IP_FW3_OPVER)
1684 			ret = (*check_opcode_f)(&cmd, &l, ci);
1685 		else
1686 			ret = ipfw_check_opcode(&cmd, &l, ci);
1687 
1688 		if (ret == CHECK_ACTION) {
1689 			if (have_action != 0) {
1690 				printf("ipfw: opcode %d: multiple actions"
1691 				    " not allowed\n", cmd->opcode);
1692 				ret = FAILED;
1693 			} else
1694 				have_action = 1;
1695 
1696 			if (l != F_LEN(cmd)) {
1697 				printf("ipfw: opcode %d: action must be"
1698 				    " last opcode\n", cmd->opcode);
1699 				ret = FAILED;
1700 			}
1701 		}
1702 		switch (ret) {
1703 		case SUCCESS:
1704 			continue;
1705 		case BAD_SIZE:
1706 			printf("ipfw: opcode %d: wrong size %d\n",
1707 			    cmd->opcode, cmdlen);
1708 			/* FALLTHROUGH */
1709 		case FAILED:
1710 			return (EINVAL);
1711 		}
1712 	}
1713 	if (have_action == 0) {
1714 		printf("ipfw: missing action\n");
1715 		return (EINVAL);
1716 	}
1717 	return (0);
1718 }
1719 
1720 struct dump_args {
1721 	uint32_t	b;	/* start rule */
1722 	uint32_t	e;	/* end rule */
1723 	uint32_t	rcount;	/* number of rules */
1724 	uint32_t	rsize;	/* rules size */
1725 	uint32_t	tcount;	/* number of tables */
1726 	int		rcounters;	/* counters */
1727 	uint32_t	*bmask;	/* index bitmask of used named objects */
1728 };
1729 
1730 void
ipfw_export_obj_ntlv(struct named_object * no,ipfw_obj_ntlv * ntlv)1731 ipfw_export_obj_ntlv(struct named_object *no, ipfw_obj_ntlv *ntlv)
1732 {
1733 
1734 	ntlv->head.type = no->etlv;
1735 	ntlv->head.length = sizeof(*ntlv);
1736 	ntlv->idx = no->kidx;
1737 	strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1738 }
1739 
1740 /*
1741  * Export named object info in instance @ni, identified by @kidx
1742  * to ipfw_obj_ntlv. TLV is allocated from @sd space.
1743  *
1744  * Returns 0 on success.
1745  */
1746 static int
export_objhash_ntlv(struct namedobj_instance * ni,uint32_t kidx,struct sockopt_data * sd)1747 export_objhash_ntlv(struct namedobj_instance *ni, uint32_t kidx,
1748     struct sockopt_data *sd)
1749 {
1750 	struct named_object *no;
1751 	ipfw_obj_ntlv *ntlv;
1752 
1753 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1754 	KASSERT(no != NULL, ("invalid object kernel index passed"));
1755 
1756 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1757 	if (ntlv == NULL)
1758 		return (ENOMEM);
1759 
1760 	ipfw_export_obj_ntlv(no, ntlv);
1761 	return (0);
1762 }
1763 
1764 static int
export_named_objects(struct namedobj_instance * ni,struct dump_args * da,struct sockopt_data * sd)1765 export_named_objects(struct namedobj_instance *ni, struct dump_args *da,
1766     struct sockopt_data *sd)
1767 {
1768 	uint32_t i;
1769 	int error;
1770 
1771 	for (i = 0; i < IPFW_TABLES_MAX && da->tcount > 0; i++) {
1772 		if ((da->bmask[i / 32] & (1 << (i % 32))) == 0)
1773 			continue;
1774 		if ((error = export_objhash_ntlv(ni, i, sd)) != 0)
1775 			return (error);
1776 		da->tcount--;
1777 	}
1778 	return (0);
1779 }
1780 
1781 static int
dump_named_objects(struct ip_fw_chain * ch,struct dump_args * da,struct sockopt_data * sd)1782 dump_named_objects(struct ip_fw_chain *ch, struct dump_args *da,
1783     struct sockopt_data *sd)
1784 {
1785 	ipfw_obj_ctlv *ctlv;
1786 	int error;
1787 
1788 	MPASS(da->tcount > 0);
1789 	/* Header first */
1790 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1791 	if (ctlv == NULL)
1792 		return (ENOMEM);
1793 	ctlv->head.type = IPFW_TLV_TBLNAME_LIST;
1794 	ctlv->head.length = da->tcount * sizeof(ipfw_obj_ntlv) +
1795 	    sizeof(*ctlv);
1796 	ctlv->count = da->tcount;
1797 	ctlv->objsize = sizeof(ipfw_obj_ntlv);
1798 
1799 	/* Dump table names first (if any) */
1800 	error = export_named_objects(ipfw_get_table_objhash(ch), da, sd);
1801 	if (error != 0)
1802 		return (error);
1803 	/* Then dump another named objects */
1804 	da->bmask += IPFW_TABLES_MAX / 32;
1805 	return (export_named_objects(CHAIN_TO_SRV(ch), da, sd));
1806 }
1807 
1808 /*
1809  * Dumps static rules with table TLVs in buffer @sd.
1810  *
1811  * Returns 0 on success.
1812  */
1813 static int
dump_static_rules(struct ip_fw_chain * chain,struct dump_args * da,struct sockopt_data * sd)1814 dump_static_rules(struct ip_fw_chain *chain, struct dump_args *da,
1815     struct sockopt_data *sd)
1816 {
1817 	ipfw_obj_ctlv *ctlv;
1818 	struct ip_fw *krule;
1819 	caddr_t dst;
1820 	int i, l;
1821 
1822 	/* Dump rules */
1823 	ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1824 	if (ctlv == NULL)
1825 		return (ENOMEM);
1826 	ctlv->head.type = IPFW_TLV_RULE_LIST;
1827 	ctlv->head.length = da->rsize + sizeof(*ctlv);
1828 	ctlv->count = da->rcount;
1829 
1830 	for (i = da->b; i < da->e; i++) {
1831 		krule = chain->map[i];
1832 
1833 		l = RULEUSIZE1(krule) + sizeof(ipfw_obj_tlv);
1834 		if (da->rcounters != 0)
1835 			l += sizeof(struct ip_fw_bcounter);
1836 		dst = (caddr_t)ipfw_get_sopt_space(sd, l);
1837 		if (dst == NULL)
1838 			return (ENOMEM);
1839 
1840 		export_rule1(krule, dst, l, da->rcounters);
1841 	}
1842 
1843 	return (0);
1844 }
1845 
1846 int
ipfw_mark_object_kidx(uint32_t * bmask,uint16_t etlv,uint32_t kidx)1847 ipfw_mark_object_kidx(uint32_t *bmask, uint16_t etlv, uint32_t kidx)
1848 {
1849 	uint32_t bidx;
1850 
1851 	/*
1852 	 * Maintain separate bitmasks for table and non-table objects.
1853 	 */
1854 	bidx = (etlv == IPFW_TLV_TBL_NAME) ? 0: IPFW_TABLES_MAX / 32;
1855 	bidx += kidx / 32;
1856 	if ((bmask[bidx] & (1 << (kidx % 32))) != 0)
1857 		return (0);
1858 
1859 	bmask[bidx] |= 1 << (kidx % 32);
1860 	return (1);
1861 }
1862 
1863 /*
1864  * Marks every object index used in @rule with bit in @bmask.
1865  * Used to generate bitmask of referenced tables/objects for given ruleset
1866  * or its part.
1867  */
1868 static void
mark_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct dump_args * da)1869 mark_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
1870     struct dump_args *da)
1871 {
1872 	struct opcode_obj_rewrite *rw;
1873 	ipfw_insn *cmd;
1874 	uint32_t kidx;
1875 	int cmdlen, l;
1876 	uint8_t subtype;
1877 
1878 	l = rule->cmd_len;
1879 	cmd = rule->cmd;
1880 	cmdlen = 0;
1881 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
1882 		cmdlen = F_LEN(cmd);
1883 
1884 		rw = find_op_rw(cmd, &kidx, &subtype);
1885 		if (rw == NULL)
1886 			continue;
1887 
1888 		if (ipfw_mark_object_kidx(da->bmask, rw->etlv, kidx))
1889 			da->tcount++;
1890 	}
1891 }
1892 
1893 /*
1894  * Dumps requested objects data
1895  * Data layout (version 0)(current):
1896  * Request: [ ipfw_cfg_lheader ] + IPFW_CFG_GET_* flags
1897  *   size = ipfw_cfg_lheader.size
1898  * Reply: [ ipfw_cfg_lheader
1899  *   [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
1900  *   [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST)
1901  *     ipfw_obj_tlv(IPFW_TLV_RULE_ENT) [ ip_fw_bcounter (optional) ip_fw_rule ]
1902  *   ] (optional)
1903  *   [ ipfw_obj_ctlv(IPFW_TLV_STATE_LIST) ipfw_obj_dyntlv x N ] (optional)
1904  * ]
1905  * * NOTE IPFW_TLV_STATE_LIST has the single valid field: objsize.
1906  * The rest (size, count) are set to zero and needs to be ignored.
1907  *
1908  * Returns 0 on success.
1909  */
1910 static int
dump_config(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)1911 dump_config(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
1912     struct sockopt_data *sd)
1913 {
1914 	struct dump_args da;
1915 	ipfw_cfg_lheader *hdr;
1916 	struct ip_fw *rule;
1917 	size_t sz, rnum;
1918 	uint32_t hdr_flags, *bmask;
1919 	int error, i;
1920 
1921 	hdr = (ipfw_cfg_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
1922 	if (hdr == NULL)
1923 		return (EINVAL);
1924 
1925 	error = 0;
1926 	bmask = NULL;
1927 	memset(&da, 0, sizeof(da));
1928 	/*
1929 	 * Allocate needed state.
1930 	 * Note we allocate 2xspace mask, for table & srv
1931 	 */
1932 	if (hdr->flags & (IPFW_CFG_GET_STATIC | IPFW_CFG_GET_STATES))
1933 		da.bmask = bmask = malloc(
1934 		    sizeof(uint32_t) * IPFW_TABLES_MAX * 2 / 32, M_TEMP,
1935 		    M_WAITOK | M_ZERO);
1936 	IPFW_UH_RLOCK(chain);
1937 
1938 	/*
1939 	 * STAGE 1: Determine size/count for objects in range.
1940 	 * Prepare used tables bitmask.
1941 	 */
1942 	sz = sizeof(ipfw_cfg_lheader);
1943 	da.e = chain->n_rules;
1944 
1945 	if (hdr->end_rule != 0) {
1946 		/* Handle custom range */
1947 		if ((rnum = hdr->start_rule) > IPFW_DEFAULT_RULE)
1948 			rnum = IPFW_DEFAULT_RULE;
1949 		da.b = ipfw_find_rule(chain, rnum, 0);
1950 		rnum = (hdr->end_rule < IPFW_DEFAULT_RULE) ?
1951 		    hdr->end_rule + 1: IPFW_DEFAULT_RULE;
1952 		da.e = ipfw_find_rule(chain, rnum, UINT32_MAX) + 1;
1953 	}
1954 
1955 	if (hdr->flags & IPFW_CFG_GET_STATIC) {
1956 		for (i = da.b; i < da.e; i++) {
1957 			rule = chain->map[i];
1958 			da.rsize += RULEUSIZE1(rule) + sizeof(ipfw_obj_tlv);
1959 			da.rcount++;
1960 			/* Update bitmask of used objects for given range */
1961 			mark_rule_objects(chain, rule, &da);
1962 		}
1963 		/* Add counters if requested */
1964 		if (hdr->flags & IPFW_CFG_GET_COUNTERS) {
1965 			da.rsize += sizeof(struct ip_fw_bcounter) * da.rcount;
1966 			da.rcounters = 1;
1967 		}
1968 		sz += da.rsize + sizeof(ipfw_obj_ctlv);
1969 	}
1970 
1971 	if (hdr->flags & IPFW_CFG_GET_STATES) {
1972 		sz += sizeof(ipfw_obj_ctlv) +
1973 		    ipfw_dyn_get_count(bmask, &i) * sizeof(ipfw_obj_dyntlv);
1974 		da.tcount += i;
1975 	}
1976 
1977 	if (da.tcount > 0)
1978 		sz += da.tcount * sizeof(ipfw_obj_ntlv) +
1979 		    sizeof(ipfw_obj_ctlv);
1980 
1981 	/*
1982 	 * Fill header anyway.
1983 	 * Note we have to save header fields to stable storage
1984 	 * buffer inside @sd can be flushed after dumping rules
1985 	 */
1986 	hdr->size = sz;
1987 	hdr->set_mask = ~V_set_disable;
1988 	hdr_flags = hdr->flags;
1989 	hdr = NULL;
1990 
1991 	if (sd->valsize < sz) {
1992 		error = ENOMEM;
1993 		goto cleanup;
1994 	}
1995 
1996 	/* STAGE2: Store actual data */
1997 	if (da.tcount > 0) {
1998 		error = dump_named_objects(chain, &da, sd);
1999 		if (error != 0)
2000 			goto cleanup;
2001 	}
2002 
2003 	if (hdr_flags & IPFW_CFG_GET_STATIC) {
2004 		error = dump_static_rules(chain, &da, sd);
2005 		if (error != 0)
2006 			goto cleanup;
2007 	}
2008 
2009 	if (hdr_flags & IPFW_CFG_GET_STATES)
2010 		error = ipfw_dump_states(chain, sd);
2011 
2012 cleanup:
2013 	IPFW_UH_RUNLOCK(chain);
2014 
2015 	if (bmask != NULL)
2016 		free(bmask, M_TEMP);
2017 
2018 	return (error);
2019 }
2020 
2021 int
ipfw_check_object_name_generic(const char * name)2022 ipfw_check_object_name_generic(const char *name)
2023 {
2024 	int nsize;
2025 
2026 	nsize = sizeof(((ipfw_obj_ntlv *)0)->name);
2027 	if (strnlen(name, nsize) == nsize)
2028 		return (EINVAL);
2029 	if (name[0] == '\0')
2030 		return (EINVAL);
2031 	return (0);
2032 }
2033 
2034 /*
2035  * Creates non-existent objects referenced by rule.
2036  *
2037  * Return 0 on success.
2038  */
2039 int
create_objects_compat(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * pidx,struct tid_info * ti)2040 create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd,
2041     struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti)
2042 {
2043 	struct opcode_obj_rewrite *rw;
2044 	struct obj_idx *p;
2045 	uint32_t kidx;
2046 	int error;
2047 
2048 	/*
2049 	 * Compatibility stuff: do actual creation for non-existing,
2050 	 * but referenced objects.
2051 	 */
2052 	for (p = oib; p < pidx; p++) {
2053 		if (p->kidx != 0)
2054 			continue;
2055 
2056 		ti->uidx = p->uidx;
2057 		ti->type = p->type;
2058 		ti->atype = 0;
2059 
2060 		rw = find_op_rw(cmd + p->off, NULL, NULL);
2061 		KASSERT(rw != NULL, ("Unable to find handler for op %d",
2062 		    (cmd + p->off)->opcode));
2063 
2064 		if (rw->create_object == NULL)
2065 			error = EOPNOTSUPP;
2066 		else
2067 			error = rw->create_object(ch, ti, &kidx);
2068 		if (error == 0) {
2069 			p->kidx = kidx;
2070 			continue;
2071 		}
2072 
2073 		/*
2074 		 * Error happened. We have to rollback everything.
2075 		 * Drop all already acquired references.
2076 		 */
2077 		IPFW_UH_WLOCK(ch);
2078 		unref_oib_objects(ch, cmd, oib, pidx);
2079 		IPFW_UH_WUNLOCK(ch);
2080 
2081 		return (error);
2082 	}
2083 
2084 	return (0);
2085 }
2086 
2087 /*
2088  * Unreferences all already-referenced objects in given @cmd rule,
2089  * using information in @oib.
2090  *
2091  * Used to rollback partially converted rule on error.
2092  */
2093 static void
unref_oib_objects(struct ip_fw_chain * ch,ipfw_insn * cmd,struct obj_idx * oib,struct obj_idx * end)2094 unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib,
2095     struct obj_idx *end)
2096 {
2097 	struct opcode_obj_rewrite *rw;
2098 	struct named_object *no;
2099 	struct obj_idx *p;
2100 
2101 	IPFW_UH_WLOCK_ASSERT(ch);
2102 
2103 	for (p = oib; p < end; p++) {
2104 		if (p->kidx == 0)
2105 			continue;
2106 
2107 		rw = find_op_rw(cmd + p->off, NULL, NULL);
2108 		KASSERT(rw != NULL, ("Unable to find handler for op %d",
2109 		    (cmd + p->off)->opcode));
2110 
2111 		/* Find & unref by existing idx */
2112 		no = rw->find_bykidx(ch, p->kidx);
2113 		KASSERT(no != NULL, ("Ref'd object %d disappeared", p->kidx));
2114 		no->refcnt--;
2115 	}
2116 }
2117 
2118 /*
2119  * Remove references from every object used in @rule.
2120  * Used at rule removal code.
2121  */
2122 static void
unref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule)2123 unref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule)
2124 {
2125 	struct opcode_obj_rewrite *rw;
2126 	struct named_object *no;
2127 	ipfw_insn *cmd;
2128 	uint32_t kidx;
2129 	int cmdlen, l;
2130 	uint8_t subtype;
2131 
2132 	IPFW_UH_WLOCK_ASSERT(ch);
2133 
2134 	l = rule->cmd_len;
2135 	cmd = rule->cmd;
2136 	cmdlen = 0;
2137 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
2138 		cmdlen = F_LEN(cmd);
2139 
2140 		rw = find_op_rw(cmd, &kidx, &subtype);
2141 		if (rw == NULL)
2142 			continue;
2143 		no = rw->find_bykidx(ch, kidx);
2144 
2145 		KASSERT(no != NULL, ("object id %d not found", kidx));
2146 		KASSERT(no->subtype == subtype,
2147 		    ("wrong type %d (%d) for object id %d",
2148 		    no->subtype, subtype, kidx));
2149 		KASSERT(no->refcnt > 0, ("refcount for object %d is %d",
2150 		    kidx, no->refcnt));
2151 
2152 		if (no->refcnt == 1 && rw->destroy_object != NULL)
2153 			rw->destroy_object(ch, no);
2154 		else
2155 			no->refcnt--;
2156 	}
2157 }
2158 
2159 /*
2160  * Find and reference object (if any) stored in instruction @cmd.
2161  *
2162  * Saves object info in @pidx, sets
2163  *  - @unresolved to 1 if object should exists but not found
2164  *
2165  * Returns non-zero value in case of error.
2166  */
2167 static int
ref_opcode_object(struct ip_fw_chain * ch,ipfw_insn * cmd,struct tid_info * ti,struct obj_idx * pidx,int * unresolved)2168 ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd, struct tid_info *ti,
2169     struct obj_idx *pidx, int *unresolved)
2170 {
2171 	struct named_object *no;
2172 	struct opcode_obj_rewrite *rw;
2173 	int error;
2174 
2175 	/* Check if this opcode is candidate for rewrite */
2176 	rw = find_op_rw(cmd, &ti->uidx, &ti->type);
2177 	if (rw == NULL)
2178 		return (0);
2179 
2180 	/* Need to rewrite. Save necessary fields */
2181 	pidx->uidx = ti->uidx;
2182 	pidx->type = ti->type;
2183 
2184 	/* Try to find referenced kernel object */
2185 	error = rw->find_byname(ch, ti, &no);
2186 	if (error != 0)
2187 		return (error);
2188 	if (no == NULL) {
2189 		/*
2190 		 * Report about unresolved object for automaic
2191 		 * creation.
2192 		 */
2193 		*unresolved = 1;
2194 		return (0);
2195 	}
2196 
2197 	/*
2198 	 * Object is already exist.
2199 	 * Its subtype should match with expected value.
2200 	 */
2201 	if (ti->type != no->subtype)
2202 		return (EINVAL);
2203 
2204 	/* Bump refcount and update kidx. */
2205 	no->refcnt++;
2206 	rw->update(cmd, no->kidx);
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Finds and bumps refcount for objects referenced by given @rule.
2212  * Auto-creates non-existing tables.
2213  * Fills in @oib array with userland/kernel indexes.
2214  *
2215  * Returns 0 on success.
2216  */
2217 static int
ref_rule_objects(struct ip_fw_chain * ch,struct ip_fw * rule,struct rule_check_info * ci,struct obj_idx * oib,struct tid_info * ti)2218 ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule,
2219     struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti)
2220 {
2221 	struct obj_idx *pidx;
2222 	ipfw_insn *cmd;
2223 	int cmdlen, error, l, unresolved;
2224 
2225 	pidx = oib;
2226 	l = rule->cmd_len;
2227 	cmd = rule->cmd;
2228 	cmdlen = 0;
2229 	error = 0;
2230 
2231 	IPFW_UH_WLOCK(ch);
2232 
2233 	/* Increase refcount on each existing referenced table. */
2234 	for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
2235 		cmdlen = F_LEN(cmd);
2236 		unresolved = 0;
2237 
2238 		error = ref_opcode_object(ch, cmd, ti, pidx, &unresolved);
2239 		if (error != 0)
2240 			break;
2241 		/*
2242 		 * Compatibility stuff for old clients:
2243 		 * prepare to automaitcally create non-existing objects.
2244 		 */
2245 		if (unresolved != 0) {
2246 			pidx->off = rule->cmd_len - l;
2247 			pidx++;
2248 		}
2249 	}
2250 
2251 	if (error != 0) {
2252 		/* Unref everything we have already done */
2253 		unref_oib_objects(ch, rule->cmd, oib, pidx);
2254 		IPFW_UH_WUNLOCK(ch);
2255 		return (error);
2256 	}
2257 	IPFW_UH_WUNLOCK(ch);
2258 
2259 	/* Perform auto-creation for non-existing objects */
2260 	if (pidx != oib)
2261 		error = create_objects_compat(ch, rule->cmd, oib, pidx, ti);
2262 
2263 	/* Calculate real number of dynamic objects */
2264 	ci->object_opcodes = (uint16_t)(pidx - oib);
2265 
2266 	return (error);
2267 }
2268 
2269 /*
2270  * Checks is opcode is referencing table of appropriate type.
2271  * Adds reference count for found table if true.
2272  * Rewrites user-supplied opcode values with kernel ones.
2273  *
2274  * Returns 0 on success and appropriate error code otherwise.
2275  */
2276 static int
rewrite_rule_uidx(struct ip_fw_chain * chain,struct rule_check_info * ci)2277 rewrite_rule_uidx(struct ip_fw_chain *chain, struct rule_check_info *ci)
2278 {
2279 	int error;
2280 	ipfw_insn *cmd;
2281 	struct obj_idx *p, *pidx_first, *pidx_last;
2282 	struct tid_info ti;
2283 
2284 	/*
2285 	 * Prepare an array for storing opcode indices.
2286 	 * Use stack allocation by default.
2287 	 */
2288 	if (ci->object_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) {
2289 		/* Stack */
2290 		pidx_first = ci->obuf;
2291 	} else
2292 		pidx_first = malloc(
2293 		    ci->object_opcodes * sizeof(struct obj_idx),
2294 		    M_IPFW, M_WAITOK | M_ZERO);
2295 
2296 	error = 0;
2297 	memset(&ti, 0, sizeof(ti));
2298 
2299 	/* Use set rule is assigned to. */
2300 	ti.set = ci->krule->set;
2301 	if (ci->ctlv != NULL) {
2302 		ti.tlvs = (void *)(ci->ctlv + 1);
2303 		ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv);
2304 	}
2305 
2306 	/* Reference all used tables and other objects */
2307 	error = ref_rule_objects(chain, ci->krule, ci, pidx_first, &ti);
2308 	if (error != 0)
2309 		goto free;
2310 	/*
2311 	 * Note that ref_rule_objects() might have updated ci->object_opcodes
2312 	 * to reflect actual number of object opcodes.
2313 	 */
2314 
2315 	/* Perform rewrite of remaining opcodes */
2316 	p = pidx_first;
2317 	pidx_last = pidx_first + ci->object_opcodes;
2318 	for (p = pidx_first; p < pidx_last; p++) {
2319 		cmd = ci->krule->cmd + p->off;
2320 		update_opcode_kidx(cmd, p->kidx);
2321 	}
2322 
2323 free:
2324 	if (pidx_first != ci->obuf)
2325 		free(pidx_first, M_IPFW);
2326 
2327 	return (error);
2328 }
2329 
2330 /*
2331  * Parses one or more rules from userland.
2332  * Data layout (version 1)(current):
2333  * Request:
2334  * [
2335  *   ip_fw3_opheader
2336  *   [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional *1)
2337  *   [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ] (*2) (*3)
2338  * ]
2339  * Reply:
2340  * [
2341  *   ip_fw3_opheader
2342  *   [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional)
2343  *   [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ]
2344  * ]
2345  *
2346  * Rules in reply are modified to store their actual ruleset number.
2347  *
2348  * (*1) TLVs inside IPFW_TLV_TBL_LIST needs to be sorted ascending
2349  * according to their idx field and there has to be no duplicates.
2350  * (*2) Numbered rules inside IPFW_TLV_RULE_LIST needs to be sorted ascending.
2351  * (*3) Each ip_fw structure needs to be aligned to u64 boundary.
2352  *
2353  * Returns 0 on success.
2354  */
2355 static __noinline int
parse_rules_v1(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd,ipfw_obj_ctlv ** prtlv,struct rule_check_info ** pci)2356 parse_rules_v1(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2357     struct sockopt_data *sd, ipfw_obj_ctlv **prtlv,
2358     struct rule_check_info **pci)
2359 {
2360 	ipfw_obj_ctlv *ctlv, *rtlv, *tstate;
2361 	ipfw_obj_ntlv *ntlv;
2362 	struct rule_check_info *ci, *cbuf;
2363 	struct ip_fw_rule *r;
2364 	size_t count, clen, read, rsize;
2365 	uint32_t idx, rulenum;
2366 	int error;
2367 
2368 	op3 = (ip_fw3_opheader *)ipfw_get_sopt_space(sd, sd->valsize);
2369 	ctlv = (ipfw_obj_ctlv *)(op3 + 1);
2370 	read = sizeof(ip_fw3_opheader);
2371 	if (read + sizeof(*ctlv) > sd->valsize)
2372 		return (EINVAL);
2373 
2374 	rtlv = NULL;
2375 	tstate = NULL;
2376 	cbuf = NULL;
2377 	/* Table names or other named objects. */
2378 	if (ctlv->head.type == IPFW_TLV_TBLNAME_LIST) {
2379 		/* Check size and alignment. */
2380 		clen = ctlv->head.length;
2381 		if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2382 		    (clen % sizeof(uint64_t)) != 0)
2383 			return (EINVAL);
2384 		/* Check for validness. */
2385 		count = (ctlv->head.length - sizeof(*ctlv)) / sizeof(*ntlv);
2386 		if (ctlv->count != count || ctlv->objsize != sizeof(*ntlv))
2387 			return (EINVAL);
2388 		/*
2389 		 * Check each TLV.
2390 		 * Ensure TLVs are sorted ascending and
2391 		 * there are no duplicates.
2392 		 */
2393 		idx = 0;
2394 		ntlv = (ipfw_obj_ntlv *)(ctlv + 1);
2395 		while (count > 0) {
2396 			if (ntlv->head.length != sizeof(ipfw_obj_ntlv))
2397 				return (EINVAL);
2398 
2399 			error = ipfw_check_object_name_generic(ntlv->name);
2400 			if (error != 0)
2401 				return (error);
2402 
2403 			if (ntlv->idx <= idx)
2404 				return (EINVAL);
2405 
2406 			idx = ntlv->idx;
2407 			count--;
2408 			ntlv++;
2409 		}
2410 
2411 		tstate = ctlv;
2412 		read += ctlv->head.length;
2413 		ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2414 
2415 		if (read + sizeof(*ctlv) > sd->valsize)
2416 			return (EINVAL);
2417 	}
2418 
2419 	/* List of rules. */
2420 	if (ctlv->head.type == IPFW_TLV_RULE_LIST) {
2421 		clen = ctlv->head.length;
2422 		if (read + clen > sd->valsize || clen < sizeof(*ctlv) ||
2423 		    (clen % sizeof(uint64_t)) != 0)
2424 			return (EINVAL);
2425 
2426 		clen -= sizeof(*ctlv);
2427 		if (ctlv->count == 0 ||
2428 		    ctlv->count > clen / sizeof(struct ip_fw_rule))
2429 			return (EINVAL);
2430 
2431 		/* Allocate state for each rule */
2432 		cbuf = malloc(ctlv->count * sizeof(struct rule_check_info),
2433 		    M_TEMP, M_WAITOK | M_ZERO);
2434 
2435 		/*
2436 		 * Check each rule for validness.
2437 		 * Ensure numbered rules are sorted ascending
2438 		 * and properly aligned
2439 		 */
2440 		rulenum = 0;
2441 		count = 0;
2442 		error = 0;
2443 		ci = cbuf;
2444 		r = (struct ip_fw_rule *)(ctlv + 1);
2445 		while (clen > 0) {
2446 			rsize = RULEUSIZE1(r);
2447 			if (rsize > clen || count > ctlv->count) {
2448 				error = EINVAL;
2449 				break;
2450 			}
2451 			ci->ctlv = tstate;
2452 			ci->version = IP_FW3_OPVER;
2453 			error = ipfw_check_rule(r, rsize, ci);
2454 			if (error != 0)
2455 				break;
2456 
2457 			/* Check sorting */
2458 			if (count != 0 && ((rulenum == 0) != (r->rulenum == 0) ||
2459 			    r->rulenum < rulenum)) {
2460 				printf("ipfw: wrong order: rulenum %u"
2461 				    " vs %u\n", r->rulenum, rulenum);
2462 				error = EINVAL;
2463 				break;
2464 			}
2465 			rulenum = r->rulenum;
2466 			ci->urule = (caddr_t)r;
2467 			clen -= rsize;
2468 			r = (struct ip_fw_rule *)((caddr_t)r + rsize);
2469 			count++;
2470 			ci++;
2471 		}
2472 
2473 		if (ctlv->count != count || error != 0) {
2474 			free(cbuf, M_TEMP);
2475 			return (EINVAL);
2476 		}
2477 
2478 		rtlv = ctlv;
2479 		read += ctlv->head.length;
2480 		ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length);
2481 	}
2482 
2483 	if (read != sd->valsize || rtlv == NULL) {
2484 		free(cbuf, M_TEMP);
2485 		return (EINVAL);
2486 	}
2487 
2488 	*prtlv = rtlv;
2489 	*pci = cbuf;
2490 	return (0);
2491 }
2492 
2493 /*
2494  * Copy rule @urule from v1 userland format (current) to kernel @krule.
2495  */
2496 static void
import_rule_v1(struct ip_fw_chain * chain,struct rule_check_info * ci)2497 import_rule_v1(struct ip_fw_chain *chain, struct rule_check_info *ci)
2498 {
2499 	struct ip_fw_rule *urule;
2500 	struct ip_fw *krule;
2501 
2502 	urule = (struct ip_fw_rule *)ci->urule;
2503 	krule = ci->krule = ipfw_alloc_rule(chain, RULEKSIZE1(urule));
2504 
2505 	krule->act_ofs = urule->act_ofs;
2506 	krule->cmd_len = urule->cmd_len;
2507 	krule->rulenum = urule->rulenum;
2508 	krule->set = urule->set;
2509 	krule->flags = urule->flags;
2510 
2511 	/* Save rulenum offset */
2512 	ci->urule_numoff = offsetof(struct ip_fw_rule, rulenum);
2513 
2514 	/* Copy opcodes */
2515 	memcpy(krule->cmd, urule->cmd, krule->cmd_len * sizeof(uint32_t));
2516 
2517 	if (ACTION_PTR(krule)->opcode == O_LOG)
2518 		ipfw_tap_alloc(krule->rulenum);
2519 }
2520 
2521 /*
2522  * Adds one or more rules to ipfw @chain.
2523  */
2524 static int
add_rules(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2525 add_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2526     struct sockopt_data *sd)
2527 {
2528 	ipfw_obj_ctlv *rtlv;
2529 	struct rule_check_info *ci, *nci;
2530 	int i, ret;
2531 
2532 	/*
2533 	 * Check rules buffer for validness.
2534 	 */
2535 	ret = parse_rules_v1(chain, op3, sd, &rtlv, &nci);
2536 	if (ret != 0)
2537 		return (ret);
2538 	/*
2539 	 * Allocate storage for the kernel representation of rules.
2540 	 */
2541 	for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2542 		import_rule_v1(chain, ci);
2543 	/*
2544 	 * Try to add new rules to the chain.
2545 	 */
2546 	if ((ret = ipfw_commit_rules(chain, nci, rtlv->count)) != 0) {
2547 		for (i = 0, ci = nci; i < rtlv->count; i++, ci++)
2548 			ipfw_free_rule(ci->krule);
2549 	}
2550 	/* Cleanup after parse_rules() */
2551 	free(nci, M_TEMP);
2552 	return (ret);
2553 }
2554 
2555 /*
2556  * Lists all sopts currently registered.
2557  * Data layout (v1)(current):
2558  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2559  * Reply: [ ipfw_obj_lheader ipfw_sopt_info x N ]
2560  *
2561  * Returns 0 on success
2562  */
2563 static int
dump_soptcodes(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2564 dump_soptcodes(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2565     struct sockopt_data *sd)
2566 {
2567 	struct _ipfw_obj_lheader *olh;
2568 	ipfw_sopt_info *i;
2569 	struct ipfw_sopt_handler *sh;
2570 	uint32_t count, n, size;
2571 
2572 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,
2573 	    sizeof(*olh));
2574 	if (olh == NULL)
2575 		return (EINVAL);
2576 	if (sd->valsize < olh->size)
2577 		return (EINVAL);
2578 
2579 	CTL3_LOCK();
2580 	count = ctl3_hsize;
2581 	size = count * sizeof(ipfw_sopt_info) + sizeof(ipfw_obj_lheader);
2582 
2583 	/* Fill in header regadless of buffer size */
2584 	olh->count = count;
2585 	olh->objsize = sizeof(ipfw_sopt_info);
2586 
2587 	if (size > olh->size) {
2588 		olh->size = size;
2589 		CTL3_UNLOCK();
2590 		return (ENOMEM);
2591 	}
2592 	olh->size = size;
2593 
2594 	for (n = 0; n < count; n++) {
2595 		i = (ipfw_sopt_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2596 		KASSERT(i != NULL, ("previously checked buffer is not enough"));
2597 		sh = &ctl3_handlers[n];
2598 		i->opcode = sh->opcode;
2599 		i->version = sh->version;
2600 		i->refcnt = sh->refcnt;
2601 	}
2602 	CTL3_UNLOCK();
2603 
2604 	return (0);
2605 }
2606 
2607 /*
2608  * Compares two opcodes.
2609  * Used both in qsort() and bsearch().
2610  *
2611  * Returns 0 if match is found.
2612  */
2613 static int
compare_opcodes(const void * _a,const void * _b)2614 compare_opcodes(const void *_a, const void *_b)
2615 {
2616 	const struct opcode_obj_rewrite *a, *b;
2617 
2618 	a = (const struct opcode_obj_rewrite *)_a;
2619 	b = (const struct opcode_obj_rewrite *)_b;
2620 
2621 	if (a->opcode < b->opcode)
2622 		return (-1);
2623 	else if (a->opcode > b->opcode)
2624 		return (1);
2625 
2626 	return (0);
2627 }
2628 
2629 /*
2630  * XXX: Rewrite bsearch()
2631  */
2632 static int
find_op_rw_range(uint16_t op,struct opcode_obj_rewrite ** plo,struct opcode_obj_rewrite ** phi)2633 find_op_rw_range(uint16_t op, struct opcode_obj_rewrite **plo,
2634     struct opcode_obj_rewrite **phi)
2635 {
2636 	struct opcode_obj_rewrite *ctl3_max, *lo, *hi, h, *rw;
2637 
2638 	memset(&h, 0, sizeof(h));
2639 	h.opcode = op;
2640 
2641 	rw = (struct opcode_obj_rewrite *)bsearch(&h, ctl3_rewriters,
2642 	    ctl3_rsize, sizeof(h), compare_opcodes);
2643 	if (rw == NULL)
2644 		return (1);
2645 
2646 	/* Find the first element matching the same opcode */
2647 	lo = rw;
2648 	for ( ; lo > ctl3_rewriters && (lo - 1)->opcode == op; lo--)
2649 		;
2650 
2651 	/* Find the last element matching the same opcode */
2652 	hi = rw;
2653 	ctl3_max = ctl3_rewriters + ctl3_rsize;
2654 	for ( ; (hi + 1) < ctl3_max && (hi + 1)->opcode == op; hi++)
2655 		;
2656 
2657 	*plo = lo;
2658 	*phi = hi;
2659 
2660 	return (0);
2661 }
2662 
2663 /*
2664  * Finds opcode object rewriter based on @code.
2665  *
2666  * Returns pointer to handler or NULL.
2667  */
2668 static struct opcode_obj_rewrite *
find_op_rw(ipfw_insn * cmd,uint32_t * puidx,uint8_t * ptype)2669 find_op_rw(ipfw_insn *cmd, uint32_t *puidx, uint8_t *ptype)
2670 {
2671 	struct opcode_obj_rewrite *rw, *lo, *hi;
2672 	uint32_t uidx;
2673 	uint8_t subtype;
2674 
2675 	if (find_op_rw_range(cmd->opcode, &lo, &hi) != 0)
2676 		return (NULL);
2677 
2678 	for (rw = lo; rw <= hi; rw++) {
2679 		if (rw->classifier(cmd, &uidx, &subtype) == 0) {
2680 			if (puidx != NULL)
2681 				*puidx = uidx;
2682 			if (ptype != NULL)
2683 				*ptype = subtype;
2684 			return (rw);
2685 		}
2686 	}
2687 
2688 	return (NULL);
2689 }
2690 int
classify_opcode_kidx(ipfw_insn * cmd,uint32_t * puidx)2691 classify_opcode_kidx(ipfw_insn *cmd, uint32_t *puidx)
2692 {
2693 
2694 	if (find_op_rw(cmd, puidx, NULL) == NULL)
2695 		return (1);
2696 	return (0);
2697 }
2698 
2699 void
update_opcode_kidx(ipfw_insn * cmd,uint32_t idx)2700 update_opcode_kidx(ipfw_insn *cmd, uint32_t idx)
2701 {
2702 	struct opcode_obj_rewrite *rw;
2703 
2704 	rw = find_op_rw(cmd, NULL, NULL);
2705 	KASSERT(rw != NULL, ("No handler to update opcode %d", cmd->opcode));
2706 	rw->update(cmd, idx);
2707 }
2708 
2709 void
ipfw_init_obj_rewriter(void)2710 ipfw_init_obj_rewriter(void)
2711 {
2712 	ctl3_rewriters = NULL;
2713 	ctl3_rsize = 0;
2714 }
2715 
2716 void
ipfw_destroy_obj_rewriter(void)2717 ipfw_destroy_obj_rewriter(void)
2718 {
2719 	if (ctl3_rewriters != NULL)
2720 		free(ctl3_rewriters, M_IPFW);
2721 	ctl3_rewriters = NULL;
2722 	ctl3_rsize = 0;
2723 }
2724 
2725 /*
2726  * Adds one or more opcode object rewrite handlers to the global array.
2727  * Function may sleep.
2728  */
2729 void
ipfw_add_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2730 ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2731 {
2732 	size_t sz;
2733 	struct opcode_obj_rewrite *tmp;
2734 
2735 	CTL3_LOCK();
2736 
2737 	for (;;) {
2738 		sz = ctl3_rsize + count;
2739 		CTL3_UNLOCK();
2740 		tmp = malloc(sizeof(*rw) * sz, M_IPFW, M_WAITOK | M_ZERO);
2741 		CTL3_LOCK();
2742 		if (ctl3_rsize + count <= sz)
2743 			break;
2744 
2745 		/* Retry */
2746 		free(tmp, M_IPFW);
2747 	}
2748 
2749 	/* Merge old & new arrays */
2750 	sz = ctl3_rsize + count;
2751 	memcpy(tmp, ctl3_rewriters, ctl3_rsize * sizeof(*rw));
2752 	memcpy(&tmp[ctl3_rsize], rw, count * sizeof(*rw));
2753 	qsort(tmp, sz, sizeof(*rw), compare_opcodes);
2754 	/* Switch new and free old */
2755 	if (ctl3_rewriters != NULL)
2756 		free(ctl3_rewriters, M_IPFW);
2757 	ctl3_rewriters = tmp;
2758 	ctl3_rsize = sz;
2759 
2760 	CTL3_UNLOCK();
2761 }
2762 
2763 /*
2764  * Removes one or more object rewrite handlers from the global array.
2765  */
2766 int
ipfw_del_obj_rewriter(struct opcode_obj_rewrite * rw,size_t count)2767 ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count)
2768 {
2769 	size_t sz;
2770 	struct opcode_obj_rewrite *ctl3_max, *ktmp, *lo, *hi;
2771 	int i;
2772 
2773 	CTL3_LOCK();
2774 
2775 	for (i = 0; i < count; i++) {
2776 		if (find_op_rw_range(rw[i].opcode, &lo, &hi) != 0)
2777 			continue;
2778 
2779 		for (ktmp = lo; ktmp <= hi; ktmp++) {
2780 			if (ktmp->classifier != rw[i].classifier)
2781 				continue;
2782 
2783 			ctl3_max = ctl3_rewriters + ctl3_rsize;
2784 			sz = (ctl3_max - (ktmp + 1)) * sizeof(*ktmp);
2785 			memmove(ktmp, ktmp + 1, sz);
2786 			ctl3_rsize--;
2787 			break;
2788 		}
2789 	}
2790 
2791 	if (ctl3_rsize == 0) {
2792 		if (ctl3_rewriters != NULL)
2793 			free(ctl3_rewriters, M_IPFW);
2794 		ctl3_rewriters = NULL;
2795 	}
2796 
2797 	CTL3_UNLOCK();
2798 
2799 	return (0);
2800 }
2801 
2802 static int
export_objhash_ntlv_internal(struct namedobj_instance * ni,struct named_object * no,void * arg)2803 export_objhash_ntlv_internal(struct namedobj_instance *ni,
2804     struct named_object *no, void *arg)
2805 {
2806 	struct sockopt_data *sd;
2807 	ipfw_obj_ntlv *ntlv;
2808 
2809 	sd = (struct sockopt_data *)arg;
2810 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
2811 	if (ntlv == NULL)
2812 		return (ENOMEM);
2813 	ipfw_export_obj_ntlv(no, ntlv);
2814 	return (0);
2815 }
2816 
2817 /*
2818  * Lists all service objects.
2819  * Data layout (v0)(current):
2820  * Request: [ ipfw_obj_lheader ] size = ipfw_obj_lheader.size
2821  * Reply: [ ipfw_obj_lheader [ ipfw_obj_ntlv x N ] (optional) ]
2822  * Returns 0 on success
2823  */
2824 static int
dump_srvobjects(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2825 dump_srvobjects(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2826     struct sockopt_data *sd)
2827 {
2828 	ipfw_obj_lheader *hdr;
2829 	int count;
2830 
2831 	hdr = (ipfw_obj_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr));
2832 	if (hdr == NULL)
2833 		return (EINVAL);
2834 
2835 	IPFW_UH_RLOCK(chain);
2836 	count = ipfw_objhash_count(CHAIN_TO_SRV(chain));
2837 	hdr->size = sizeof(ipfw_obj_lheader) + count * sizeof(ipfw_obj_ntlv);
2838 	if (sd->valsize < hdr->size) {
2839 		IPFW_UH_RUNLOCK(chain);
2840 		return (ENOMEM);
2841 	}
2842 	hdr->count = count;
2843 	hdr->objsize = sizeof(ipfw_obj_ntlv);
2844 	if (count > 0)
2845 		ipfw_objhash_foreach(CHAIN_TO_SRV(chain),
2846 		    export_objhash_ntlv_internal, sd);
2847 	IPFW_UH_RUNLOCK(chain);
2848 	return (0);
2849 }
2850 
2851 void
ipfw_enable_skipto_cache(struct ip_fw_chain * chain)2852 ipfw_enable_skipto_cache(struct ip_fw_chain *chain)
2853 {
2854 
2855 	IPFW_UH_WLOCK_ASSERT(chain);
2856 	update_skipto_cache(chain, chain->map);
2857 
2858 	IPFW_WLOCK(chain);
2859 	swap_skipto_cache(chain);
2860 	V_skipto_cache = 1;
2861 	IPFW_WUNLOCK(chain);
2862 }
2863 
2864 /*
2865  * Enables or disable skipto cache.
2866  * Request: [ ipfw_cmd_header ] size = ipfw_cmd_header.size
2867  * Reply: [ ipfw_cmd_header ]
2868  * Returns 0 on success
2869  */
2870 static int
manage_skiptocache(struct ip_fw_chain * chain,ip_fw3_opheader * op3,struct sockopt_data * sd)2871 manage_skiptocache(struct ip_fw_chain *chain, ip_fw3_opheader *op3,
2872     struct sockopt_data *sd)
2873 {
2874 	ipfw_cmd_header *hdr;
2875 
2876 	if (sd->valsize != sizeof(*hdr))
2877 		return (EINVAL);
2878 
2879 	hdr = (ipfw_cmd_header *)ipfw_get_sopt_space(sd, sd->valsize);
2880 	if (hdr->cmd != SKIPTO_CACHE_DISABLE &&
2881 	    hdr->cmd != SKIPTO_CACHE_ENABLE)
2882 		return (EOPNOTSUPP);
2883 
2884 	IPFW_UH_WLOCK(chain);
2885 	if (hdr->cmd != V_skipto_cache) {
2886 		if (hdr->cmd == SKIPTO_CACHE_ENABLE)
2887 			ipfw_enable_skipto_cache(chain);
2888 		V_skipto_cache = hdr->cmd;
2889 	}
2890 	IPFW_UH_WUNLOCK(chain);
2891 	return (0);
2892 }
2893 
2894 /*
2895  * Compares two sopt handlers (code, version and handler ptr).
2896  * Used both as qsort() and bsearch().
2897  * Does not compare handler for latter case.
2898  *
2899  * Returns 0 if match is found.
2900  */
2901 static int
compare_sh(const void * _a,const void * _b)2902 compare_sh(const void *_a, const void *_b)
2903 {
2904 	const struct ipfw_sopt_handler *a, *b;
2905 
2906 	a = (const struct ipfw_sopt_handler *)_a;
2907 	b = (const struct ipfw_sopt_handler *)_b;
2908 
2909 	if (a->opcode < b->opcode)
2910 		return (-1);
2911 	else if (a->opcode > b->opcode)
2912 		return (1);
2913 
2914 	if (a->version < b->version)
2915 		return (-1);
2916 	else if (a->version > b->version)
2917 		return (1);
2918 
2919 	/* bsearch helper */
2920 	if (a->handler == NULL)
2921 		return (0);
2922 
2923 	if ((uintptr_t)a->handler < (uintptr_t)b->handler)
2924 		return (-1);
2925 	else if ((uintptr_t)a->handler > (uintptr_t)b->handler)
2926 		return (1);
2927 
2928 	return (0);
2929 }
2930 
2931 /*
2932  * Finds sopt handler based on @code and @version.
2933  *
2934  * Returns pointer to handler or NULL.
2935  */
2936 static struct ipfw_sopt_handler *
find_sh(uint16_t code,uint8_t version,sopt_handler_f * handler)2937 find_sh(uint16_t code, uint8_t version, sopt_handler_f *handler)
2938 {
2939 	struct ipfw_sopt_handler *sh, h;
2940 
2941 	memset(&h, 0, sizeof(h));
2942 	h.opcode = code;
2943 	h.version = version;
2944 	h.handler = handler;
2945 
2946 	sh = (struct ipfw_sopt_handler *)bsearch(&h, ctl3_handlers,
2947 	    ctl3_hsize, sizeof(h), compare_sh);
2948 
2949 	return (sh);
2950 }
2951 
2952 static int
find_ref_sh(uint16_t opcode,uint8_t version,struct ipfw_sopt_handler * psh)2953 find_ref_sh(uint16_t opcode, uint8_t version, struct ipfw_sopt_handler *psh)
2954 {
2955 	struct ipfw_sopt_handler *sh;
2956 
2957 	CTL3_LOCK();
2958 	if ((sh = find_sh(opcode, version, NULL)) == NULL) {
2959 		CTL3_UNLOCK();
2960 		printf("ipfw: ipfw_ctl3 invalid option %d""v""%d\n",
2961 		    opcode, version);
2962 		return (EINVAL);
2963 	}
2964 	sh->refcnt++;
2965 	ctl3_refct++;
2966 	/* Copy handler data to requested buffer */
2967 	*psh = *sh;
2968 	CTL3_UNLOCK();
2969 
2970 	return (0);
2971 }
2972 
2973 static void
find_unref_sh(struct ipfw_sopt_handler * psh)2974 find_unref_sh(struct ipfw_sopt_handler *psh)
2975 {
2976 	struct ipfw_sopt_handler *sh;
2977 
2978 	CTL3_LOCK();
2979 	sh = find_sh(psh->opcode, psh->version, NULL);
2980 	KASSERT(sh != NULL, ("ctl3 handler disappeared"));
2981 	sh->refcnt--;
2982 	ctl3_refct--;
2983 	CTL3_UNLOCK();
2984 }
2985 
2986 void
ipfw_init_sopt_handler(void)2987 ipfw_init_sopt_handler(void)
2988 {
2989 	CTL3_LOCK_INIT();
2990 	IPFW_ADD_SOPT_HANDLER(1, scodes);
2991 }
2992 
2993 void
ipfw_destroy_sopt_handler(void)2994 ipfw_destroy_sopt_handler(void)
2995 {
2996 	IPFW_DEL_SOPT_HANDLER(1, scodes);
2997 	CTL3_LOCK_DESTROY();
2998 }
2999 
3000 void
ipfw_register_compat(ipfw_check_opcode_t f)3001 ipfw_register_compat(ipfw_check_opcode_t f)
3002 {
3003 	check_opcode_f = f;
3004 }
3005 
3006 void
ipfw_unregister_compat(void)3007 ipfw_unregister_compat(void)
3008 {
3009 	check_opcode_f = check_opcode_compat_nop;
3010 }
3011 
3012 /*
3013  * Adds one or more sockopt handlers to the global array.
3014  * Function may sleep.
3015  */
3016 void
ipfw_add_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)3017 ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
3018 {
3019 	size_t sz;
3020 	struct ipfw_sopt_handler *tmp;
3021 
3022 	CTL3_LOCK();
3023 
3024 	for (;;) {
3025 		sz = ctl3_hsize + count;
3026 		CTL3_UNLOCK();
3027 		tmp = malloc(sizeof(*sh) * sz, M_IPFW, M_WAITOK | M_ZERO);
3028 		CTL3_LOCK();
3029 		if (ctl3_hsize + count <= sz)
3030 			break;
3031 
3032 		/* Retry */
3033 		free(tmp, M_IPFW);
3034 	}
3035 
3036 	/* Merge old & new arrays */
3037 	sz = ctl3_hsize + count;
3038 	memcpy(tmp, ctl3_handlers, ctl3_hsize * sizeof(*sh));
3039 	memcpy(&tmp[ctl3_hsize], sh, count * sizeof(*sh));
3040 	qsort(tmp, sz, sizeof(*sh), compare_sh);
3041 	/* Switch new and free old */
3042 	if (ctl3_handlers != NULL)
3043 		free(ctl3_handlers, M_IPFW);
3044 	ctl3_handlers = tmp;
3045 	ctl3_hsize = sz;
3046 	ctl3_gencnt++;
3047 
3048 	CTL3_UNLOCK();
3049 }
3050 
3051 /*
3052  * Removes one or more sockopt handlers from the global array.
3053  */
3054 int
ipfw_del_sopt_handler(struct ipfw_sopt_handler * sh,size_t count)3055 ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count)
3056 {
3057 	size_t sz;
3058 	struct ipfw_sopt_handler *tmp, *h;
3059 	int i;
3060 
3061 	CTL3_LOCK();
3062 
3063 	for (i = 0; i < count; i++) {
3064 		tmp = &sh[i];
3065 		h = find_sh(tmp->opcode, tmp->version, tmp->handler);
3066 		if (h == NULL)
3067 			continue;
3068 
3069 		sz = (ctl3_handlers + ctl3_hsize - (h + 1)) * sizeof(*h);
3070 		memmove(h, h + 1, sz);
3071 		ctl3_hsize--;
3072 	}
3073 
3074 	if (ctl3_hsize == 0) {
3075 		if (ctl3_handlers != NULL)
3076 			free(ctl3_handlers, M_IPFW);
3077 		ctl3_handlers = NULL;
3078 	}
3079 
3080 	ctl3_gencnt++;
3081 
3082 	CTL3_UNLOCK();
3083 
3084 	return (0);
3085 }
3086 
3087 /*
3088  * Writes data accumulated in @sd to sockopt buffer.
3089  * Zeroes internal @sd buffer.
3090  */
3091 static int
ipfw_flush_sopt_data(struct sockopt_data * sd)3092 ipfw_flush_sopt_data(struct sockopt_data *sd)
3093 {
3094 	struct sockopt *sopt;
3095 	int error;
3096 	size_t sz;
3097 
3098 	sz = sd->koff;
3099 	if (sz == 0)
3100 		return (0);
3101 
3102 	sopt = sd->sopt;
3103 
3104 	if (sopt->sopt_dir == SOPT_GET) {
3105 		error = copyout(sd->kbuf, sopt->sopt_val, sz);
3106 		if (error != 0)
3107 			return (error);
3108 	}
3109 
3110 	memset(sd->kbuf, 0, sd->ksize);
3111 	sd->ktotal += sz;
3112 	sd->koff = 0;
3113 	if (sd->ktotal + sd->ksize < sd->valsize)
3114 		sd->kavail = sd->ksize;
3115 	else
3116 		sd->kavail = sd->valsize - sd->ktotal;
3117 
3118 	/* Update sopt buffer data */
3119 	sopt->sopt_valsize = sd->ktotal;
3120 	sopt->sopt_val = sd->sopt_val + sd->ktotal;
3121 
3122 	return (0);
3123 }
3124 
3125 /*
3126  * Ensures that @sd buffer has contiguous @neeeded number of
3127  * bytes.
3128  *
3129  * Returns pointer to requested space or NULL.
3130  */
3131 caddr_t
ipfw_get_sopt_space(struct sockopt_data * sd,size_t needed)3132 ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed)
3133 {
3134 	int error;
3135 	caddr_t addr;
3136 
3137 	if (sd->kavail < needed) {
3138 		/*
3139 		 * Flush data and try another time.
3140 		 */
3141 		error = ipfw_flush_sopt_data(sd);
3142 
3143 		if (sd->kavail < needed || error != 0)
3144 			return (NULL);
3145 	}
3146 
3147 	addr = sd->kbuf + sd->koff;
3148 	sd->koff += needed;
3149 	sd->kavail -= needed;
3150 	return (addr);
3151 }
3152 
3153 /*
3154  * Requests @needed contiguous bytes from @sd buffer.
3155  * Function is used to notify subsystem that we are
3156  * interesed in first @needed bytes (request header)
3157  * and the rest buffer can be safely zeroed.
3158  *
3159  * Returns pointer to requested space or NULL.
3160  */
3161 caddr_t
ipfw_get_sopt_header(struct sockopt_data * sd,size_t needed)3162 ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed)
3163 {
3164 	caddr_t addr;
3165 
3166 	if ((addr = ipfw_get_sopt_space(sd, needed)) == NULL)
3167 		return (NULL);
3168 
3169 	if (sd->kavail > 0)
3170 		memset(sd->kbuf + sd->koff, 0, sd->kavail);
3171 
3172 	return (addr);
3173 }
3174 
3175 /*
3176  * New sockopt handler.
3177  */
3178 int
ipfw_ctl3(struct sockopt * sopt)3179 ipfw_ctl3(struct sockopt *sopt)
3180 {
3181 	int error, locked;
3182 	size_t size, valsize;
3183 	struct ip_fw_chain *chain;
3184 	char xbuf[256];
3185 	struct sockopt_data sdata;
3186 	struct ipfw_sopt_handler h;
3187 	ip_fw3_opheader *op3 = NULL;
3188 
3189 	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
3190 	if (error != 0)
3191 		return (error);
3192 
3193 	if (sopt->sopt_name != IP_FW3)
3194 		return (EOPNOTSUPP);
3195 
3196 	chain = &V_layer3_chain;
3197 	error = 0;
3198 
3199 	/* Save original valsize before it is altered via sooptcopyin() */
3200 	valsize = sopt->sopt_valsize;
3201 	memset(&sdata, 0, sizeof(sdata));
3202 	/* Read op3 header first to determine actual operation */
3203 	op3 = (ip_fw3_opheader *)xbuf;
3204 	error = sooptcopyin(sopt, op3, sizeof(*op3), sizeof(*op3));
3205 	if (error != 0)
3206 		return (error);
3207 	sopt->sopt_valsize = valsize;
3208 
3209 	/*
3210 	 * Find and reference command.
3211 	 */
3212 	error = find_ref_sh(op3->opcode, op3->version, &h);
3213 	if (error != 0)
3214 		return (error);
3215 
3216 	/*
3217 	 * Disallow modifications in really-really secure mode, but still allow
3218 	 * the logging counters to be reset.
3219 	 */
3220 	if ((h.dir & HDIR_SET) != 0 && h.opcode != IP_FW_XRESETLOG) {
3221 		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3222 		if (error != 0) {
3223 			find_unref_sh(&h);
3224 			return (error);
3225 		}
3226 	}
3227 
3228 	/*
3229 	 * Fill in sockopt_data structure that may be useful for
3230 	 * IP_FW3 get requests.
3231 	 */
3232 	locked = 0;
3233 	if (valsize <= sizeof(xbuf)) {
3234 		/* use on-stack buffer */
3235 		sdata.kbuf = xbuf;
3236 		sdata.ksize = sizeof(xbuf);
3237 		sdata.kavail = valsize;
3238 	} else {
3239 		/*
3240 		 * Determine opcode type/buffer size:
3241 		 * allocate sliding-window buf for data export or
3242 		 * contiguous buffer for special ops.
3243 		 */
3244 		if ((h.dir & HDIR_SET) != 0) {
3245 			/* Set request. Allocate contigous buffer. */
3246 			if (valsize > CTL3_LARGEBUF) {
3247 				find_unref_sh(&h);
3248 				return (EFBIG);
3249 			}
3250 
3251 			size = valsize;
3252 		} else {
3253 			/* Get request. Allocate sliding window buffer */
3254 			size = (valsize<CTL3_SMALLBUF) ? valsize:CTL3_SMALLBUF;
3255 
3256 			if (size < valsize) {
3257 				/* We have to wire user buffer */
3258 				error = vslock(sopt->sopt_val, valsize);
3259 				if (error != 0)
3260 					return (error);
3261 				locked = 1;
3262 			}
3263 		}
3264 
3265 		sdata.kbuf = malloc(size, M_TEMP, M_WAITOK | M_ZERO);
3266 		sdata.ksize = size;
3267 		sdata.kavail = size;
3268 	}
3269 
3270 	sdata.sopt = sopt;
3271 	sdata.sopt_val = sopt->sopt_val;
3272 	sdata.valsize = valsize;
3273 
3274 	/*
3275 	 * Copy either all request (if valsize < bsize_max)
3276 	 * or first bsize_max bytes to guarantee most consumers
3277 	 * that all necessary data has been copied).
3278 	 * Anyway, copy not less than sizeof(ip_fw3_opheader).
3279 	 */
3280 	if ((error = sooptcopyin(sopt, sdata.kbuf, sdata.ksize,
3281 	    sizeof(ip_fw3_opheader))) != 0)
3282 		return (error);
3283 	op3 = (ip_fw3_opheader *)sdata.kbuf;
3284 
3285 	/* Finally, run handler */
3286 	error = h.handler(chain, op3, &sdata);
3287 	find_unref_sh(&h);
3288 
3289 	/* Flush state and free buffers */
3290 	if (error == 0)
3291 		error = ipfw_flush_sopt_data(&sdata);
3292 	else
3293 		ipfw_flush_sopt_data(&sdata);
3294 
3295 	if (locked != 0)
3296 		vsunlock(sdata.sopt_val, valsize);
3297 
3298 	/* Restore original pointer and set number of bytes written */
3299 	sopt->sopt_val = sdata.sopt_val;
3300 	sopt->sopt_valsize = sdata.ktotal;
3301 	if (sdata.kbuf != xbuf)
3302 		free(sdata.kbuf, M_TEMP);
3303 
3304 	return (error);
3305 }
3306 
3307 /*
3308  * Named object api
3309  *
3310  */
3311 
3312 void
ipfw_init_srv(struct ip_fw_chain * ch)3313 ipfw_init_srv(struct ip_fw_chain *ch)
3314 {
3315 	ch->srvmap = ipfw_objhash_create(IPFW_OBJECTS_DEFAULT,
3316 	    DEFAULT_OBJHASH_SIZE);
3317 	ch->srvstate = malloc(sizeof(void *) * IPFW_OBJECTS_DEFAULT,
3318 	    M_IPFW, M_WAITOK | M_ZERO);
3319 }
3320 
3321 void
ipfw_destroy_srv(struct ip_fw_chain * ch)3322 ipfw_destroy_srv(struct ip_fw_chain *ch)
3323 {
3324 	free(ch->srvstate, M_IPFW);
3325 	ipfw_objhash_destroy(ch->srvmap);
3326 }
3327 
3328 /*
3329  * Allocate new bitmask which can be used to enlarge/shrink
3330  * named instance index.
3331  */
3332 void
ipfw_objhash_bitmap_alloc(uint32_t items,void ** idx,int * pblocks)3333 ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks)
3334 {
3335 	size_t size;
3336 	int max_blocks;
3337 	u_long *idx_mask;
3338 
3339 	KASSERT((items % BLOCK_ITEMS) == 0,
3340 	   ("bitmask size needs to power of 2 and greater or equal to %zu",
3341 	    BLOCK_ITEMS));
3342 
3343 	max_blocks = items / BLOCK_ITEMS;
3344 	size = items / 8;
3345 	idx_mask = malloc(size * IPFW_MAX_SETS, M_IPFW, M_WAITOK);
3346 	/* Mark all as free */
3347 	memset(idx_mask, 0xFF, size * IPFW_MAX_SETS);
3348 	*idx_mask &= ~(u_long)1; /* Skip index 0 */
3349 
3350 	*idx = idx_mask;
3351 	*pblocks = max_blocks;
3352 }
3353 
3354 /*
3355  * Copy current bitmask index to new one.
3356  */
3357 void
ipfw_objhash_bitmap_merge(struct namedobj_instance * ni,void ** idx,int * blocks)3358 ipfw_objhash_bitmap_merge(struct namedobj_instance *ni, void **idx, int *blocks)
3359 {
3360 	int old_blocks, new_blocks;
3361 	u_long *old_idx, *new_idx;
3362 	int i;
3363 
3364 	old_idx = ni->idx_mask;
3365 	old_blocks = ni->max_blocks;
3366 	new_idx = *idx;
3367 	new_blocks = *blocks;
3368 
3369 	for (i = 0; i < IPFW_MAX_SETS; i++) {
3370 		memcpy(&new_idx[new_blocks * i], &old_idx[old_blocks * i],
3371 		    old_blocks * sizeof(u_long));
3372 	}
3373 }
3374 
3375 /*
3376  * Swaps current @ni index with new one.
3377  */
3378 void
ipfw_objhash_bitmap_swap(struct namedobj_instance * ni,void ** idx,int * blocks)3379 ipfw_objhash_bitmap_swap(struct namedobj_instance *ni, void **idx, int *blocks)
3380 {
3381 	int old_blocks;
3382 	u_long *old_idx;
3383 
3384 	old_idx = ni->idx_mask;
3385 	old_blocks = ni->max_blocks;
3386 
3387 	ni->idx_mask = *idx;
3388 	ni->max_blocks = *blocks;
3389 
3390 	/* Save old values */
3391 	*idx = old_idx;
3392 	*blocks = old_blocks;
3393 }
3394 
3395 void
ipfw_objhash_bitmap_free(void * idx,int blocks)3396 ipfw_objhash_bitmap_free(void *idx, int blocks)
3397 {
3398 	free(idx, M_IPFW);
3399 }
3400 
3401 /*
3402  * Creates named hash instance.
3403  * Must be called without holding any locks.
3404  * Return pointer to new instance.
3405  */
3406 struct namedobj_instance *
ipfw_objhash_create(uint32_t items,size_t hash_size)3407 ipfw_objhash_create(uint32_t items, size_t hash_size)
3408 {
3409 	struct namedobj_instance *ni;
3410 	int i;
3411 	size_t size;
3412 
3413 	size = sizeof(struct namedobj_instance) +
3414 	    sizeof(struct namedobjects_head) * hash_size +
3415 	    sizeof(struct namedobjects_head) * hash_size;
3416 
3417 	ni = malloc(size, M_IPFW, M_WAITOK | M_ZERO);
3418 	ni->nn_size = hash_size;
3419 	ni->nv_size = hash_size;
3420 
3421 	ni->names = (struct namedobjects_head *)(ni +1);
3422 	ni->values = &ni->names[ni->nn_size];
3423 
3424 	for (i = 0; i < ni->nn_size; i++)
3425 		TAILQ_INIT(&ni->names[i]);
3426 
3427 	for (i = 0; i < ni->nv_size; i++)
3428 		TAILQ_INIT(&ni->values[i]);
3429 
3430 	/* Set default hashing/comparison functions */
3431 	ni->hash_f = objhash_hash_name;
3432 	ni->cmp_f = objhash_cmp_name;
3433 
3434 	/* Allocate bitmask separately due to possible resize */
3435 	ipfw_objhash_bitmap_alloc(items, (void*)&ni->idx_mask, &ni->max_blocks);
3436 
3437 	return (ni);
3438 }
3439 
3440 void
ipfw_objhash_destroy(struct namedobj_instance * ni)3441 ipfw_objhash_destroy(struct namedobj_instance *ni)
3442 {
3443 	free(ni->idx_mask, M_IPFW);
3444 	free(ni, M_IPFW);
3445 }
3446 
3447 void
ipfw_objhash_set_funcs(struct namedobj_instance * ni,objhash_hash_f * hash_f,objhash_cmp_f * cmp_f)3448 ipfw_objhash_set_funcs(struct namedobj_instance *ni, objhash_hash_f *hash_f,
3449     objhash_cmp_f *cmp_f)
3450 {
3451 
3452 	ni->hash_f = hash_f;
3453 	ni->cmp_f = cmp_f;
3454 }
3455 
3456 static uint32_t
objhash_hash_name(struct namedobj_instance * ni,const void * name,uint32_t set)3457 objhash_hash_name(struct namedobj_instance *ni, const void *name, uint32_t set)
3458 {
3459 
3460 	return (fnv_32_str((const char *)name, FNV1_32_INIT));
3461 }
3462 
3463 static int
objhash_cmp_name(struct named_object * no,const void * name,uint32_t set)3464 objhash_cmp_name(struct named_object *no, const void *name, uint32_t set)
3465 {
3466 
3467 	if ((strcmp(no->name, (const char *)name) == 0) && (no->set == set))
3468 		return (0);
3469 
3470 	return (1);
3471 }
3472 
3473 static uint32_t
objhash_hash_idx(struct namedobj_instance * ni,uint32_t val)3474 objhash_hash_idx(struct namedobj_instance *ni, uint32_t val)
3475 {
3476 	uint32_t v;
3477 
3478 	v = val % (ni->nv_size - 1);
3479 
3480 	return (v);
3481 }
3482 
3483 struct named_object *
ipfw_objhash_lookup_name(struct namedobj_instance * ni,uint32_t set,const char * name)3484 ipfw_objhash_lookup_name(struct namedobj_instance *ni, uint32_t set,
3485     const char *name)
3486 {
3487 	struct named_object *no;
3488 	uint32_t hash;
3489 
3490 	hash = ni->hash_f(ni, name, set) % ni->nn_size;
3491 
3492 	TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3493 		if (ni->cmp_f(no, name, set) == 0)
3494 			return (no);
3495 	}
3496 
3497 	return (NULL);
3498 }
3499 
3500 /*
3501  * Find named object by @uid.
3502  * Check @tlvs for valid data inside.
3503  *
3504  * Returns pointer to found TLV or NULL.
3505  */
3506 ipfw_obj_ntlv *
ipfw_find_name_tlv_type(void * tlvs,int len,uint32_t uidx,uint32_t etlv)3507 ipfw_find_name_tlv_type(void *tlvs, int len, uint32_t uidx, uint32_t etlv)
3508 {
3509 	ipfw_obj_ntlv *ntlv;
3510 	uintptr_t pa, pe;
3511 	int l;
3512 
3513 	pa = (uintptr_t)tlvs;
3514 	pe = pa + len;
3515 	l = 0;
3516 	for (; pa < pe; pa += l) {
3517 		ntlv = (ipfw_obj_ntlv *)pa;
3518 		l = ntlv->head.length;
3519 
3520 		if (l != sizeof(*ntlv))
3521 			return (NULL);
3522 
3523 		if (ntlv->idx != uidx)
3524 			continue;
3525 		/*
3526 		 * When userland has specified zero TLV type, do
3527 		 * not compare it with eltv. In some cases userland
3528 		 * doesn't know what type should it have. Use only
3529 		 * uidx and name for search named_object.
3530 		 */
3531 		if (ntlv->head.type != 0 &&
3532 		    ntlv->head.type != (uint16_t)etlv)
3533 			continue;
3534 
3535 		if (ipfw_check_object_name_generic(ntlv->name) != 0)
3536 			return (NULL);
3537 
3538 		return (ntlv);
3539 	}
3540 
3541 	return (NULL);
3542 }
3543 
3544 /*
3545  * Finds object config based on either legacy index
3546  * or name in ntlv.
3547  * Note @ti structure contains unchecked data from userland.
3548  *
3549  * Returns 0 in success and fills in @pno with found config
3550  */
3551 int
ipfw_objhash_find_type(struct namedobj_instance * ni,struct tid_info * ti,uint32_t etlv,struct named_object ** pno)3552 ipfw_objhash_find_type(struct namedobj_instance *ni, struct tid_info *ti,
3553     uint32_t etlv, struct named_object **pno)
3554 {
3555 	char *name;
3556 	ipfw_obj_ntlv *ntlv;
3557 	uint32_t set;
3558 
3559 	if (ti->tlvs == NULL)
3560 		return (EINVAL);
3561 
3562 	ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, etlv);
3563 	if (ntlv == NULL)
3564 		return (EINVAL);
3565 	name = ntlv->name;
3566 
3567 	/*
3568 	 * Use set provided by @ti instead of @ntlv one.
3569 	 * This is needed due to different sets behavior
3570 	 * controlled by V_fw_tables_sets.
3571 	 */
3572 	set = ti->set;
3573 	*pno = ipfw_objhash_lookup_name(ni, set, name);
3574 	if (*pno == NULL)
3575 		return (ESRCH);
3576 	return (0);
3577 }
3578 
3579 /*
3580  * Find named object by name, considering also its TLV type.
3581  */
3582 struct named_object *
ipfw_objhash_lookup_name_type(struct namedobj_instance * ni,uint32_t set,uint32_t type,const char * name)3583 ipfw_objhash_lookup_name_type(struct namedobj_instance *ni, uint32_t set,
3584     uint32_t type, const char *name)
3585 {
3586 	struct named_object *no;
3587 	uint32_t hash;
3588 
3589 	hash = ni->hash_f(ni, name, set) % ni->nn_size;
3590 
3591 	TAILQ_FOREACH(no, &ni->names[hash], nn_next) {
3592 		if (ni->cmp_f(no, name, set) == 0 &&
3593 		    no->etlv == (uint16_t)type)
3594 			return (no);
3595 	}
3596 
3597 	return (NULL);
3598 }
3599 
3600 struct named_object *
ipfw_objhash_lookup_kidx(struct namedobj_instance * ni,uint32_t kidx)3601 ipfw_objhash_lookup_kidx(struct namedobj_instance *ni, uint32_t kidx)
3602 {
3603 	struct named_object *no;
3604 	uint32_t hash;
3605 
3606 	hash = objhash_hash_idx(ni, kidx);
3607 
3608 	TAILQ_FOREACH(no, &ni->values[hash], nv_next) {
3609 		if (no->kidx == kidx)
3610 			return (no);
3611 	}
3612 
3613 	return (NULL);
3614 }
3615 
3616 int
ipfw_objhash_same_name(struct namedobj_instance * ni,struct named_object * a,struct named_object * b)3617 ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a,
3618     struct named_object *b)
3619 {
3620 
3621 	if ((strcmp(a->name, b->name) == 0) && a->set == b->set)
3622 		return (1);
3623 
3624 	return (0);
3625 }
3626 
3627 void
ipfw_objhash_add(struct namedobj_instance * ni,struct named_object * no)3628 ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no)
3629 {
3630 	uint32_t hash;
3631 
3632 	hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3633 	TAILQ_INSERT_HEAD(&ni->names[hash], no, nn_next);
3634 
3635 	hash = objhash_hash_idx(ni, no->kidx);
3636 	TAILQ_INSERT_HEAD(&ni->values[hash], no, nv_next);
3637 
3638 	ni->count++;
3639 }
3640 
3641 void
ipfw_objhash_del(struct namedobj_instance * ni,struct named_object * no)3642 ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no)
3643 {
3644 	uint32_t hash;
3645 
3646 	hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size;
3647 	TAILQ_REMOVE(&ni->names[hash], no, nn_next);
3648 
3649 	hash = objhash_hash_idx(ni, no->kidx);
3650 	TAILQ_REMOVE(&ni->values[hash], no, nv_next);
3651 
3652 	ni->count--;
3653 }
3654 
3655 uint32_t
ipfw_objhash_count(struct namedobj_instance * ni)3656 ipfw_objhash_count(struct namedobj_instance *ni)
3657 {
3658 
3659 	return (ni->count);
3660 }
3661 
3662 uint32_t
ipfw_objhash_count_type(struct namedobj_instance * ni,uint16_t type)3663 ipfw_objhash_count_type(struct namedobj_instance *ni, uint16_t type)
3664 {
3665 	struct named_object *no;
3666 	uint32_t count;
3667 	int i;
3668 
3669 	count = 0;
3670 	for (i = 0; i < ni->nn_size; i++) {
3671 		TAILQ_FOREACH(no, &ni->names[i], nn_next) {
3672 			if (no->etlv == type)
3673 				count++;
3674 		}
3675 	}
3676 	return (count);
3677 }
3678 
3679 /*
3680  * Runs @func for each found named object.
3681  * It is safe to delete objects from callback
3682  */
3683 int
ipfw_objhash_foreach(struct namedobj_instance * ni,objhash_cb_t * f,void * arg)3684 ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f, void *arg)
3685 {
3686 	struct named_object *no, *no_tmp;
3687 	int i, ret;
3688 
3689 	for (i = 0; i < ni->nn_size; i++) {
3690 		TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3691 			ret = f(ni, no, arg);
3692 			if (ret != 0)
3693 				return (ret);
3694 		}
3695 	}
3696 	return (0);
3697 }
3698 
3699 /*
3700  * Runs @f for each found named object with type @type.
3701  * It is safe to delete objects from callback
3702  */
3703 int
ipfw_objhash_foreach_type(struct namedobj_instance * ni,objhash_cb_t * f,void * arg,uint16_t type)3704 ipfw_objhash_foreach_type(struct namedobj_instance *ni, objhash_cb_t *f,
3705     void *arg, uint16_t type)
3706 {
3707 	struct named_object *no, *no_tmp;
3708 	int i, ret;
3709 
3710 	for (i = 0; i < ni->nn_size; i++) {
3711 		TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) {
3712 			if (no->etlv != type)
3713 				continue;
3714 			ret = f(ni, no, arg);
3715 			if (ret != 0)
3716 				return (ret);
3717 		}
3718 	}
3719 	return (0);
3720 }
3721 
3722 /*
3723  * Removes index from given set.
3724  * Returns 0 on success.
3725  */
3726 int
ipfw_objhash_free_idx(struct namedobj_instance * ni,uint32_t idx)3727 ipfw_objhash_free_idx(struct namedobj_instance *ni, uint32_t idx)
3728 {
3729 	u_long *mask;
3730 	int i, v;
3731 
3732 	i = idx / BLOCK_ITEMS;
3733 	v = idx % BLOCK_ITEMS;
3734 
3735 	if (i >= ni->max_blocks)
3736 		return (1);
3737 
3738 	mask = &ni->idx_mask[i];
3739 
3740 	if ((*mask & ((u_long)1 << v)) != 0)
3741 		return (1);
3742 
3743 	/* Mark as free */
3744 	*mask |= (u_long)1 << v;
3745 
3746 	/* Update free offset */
3747 	if (ni->free_off[0] > i)
3748 		ni->free_off[0] = i;
3749 
3750 	return (0);
3751 }
3752 
3753 /*
3754  * Allocate new index in given instance and stores in in @pidx.
3755  * Returns 0 on success.
3756  */
3757 int
ipfw_objhash_alloc_idx(void * n,uint32_t * pidx)3758 ipfw_objhash_alloc_idx(void *n, uint32_t *pidx)
3759 {
3760 	struct namedobj_instance *ni;
3761 	u_long *mask;
3762 	int i, off, v;
3763 
3764 	ni = (struct namedobj_instance *)n;
3765 
3766 	off = ni->free_off[0];
3767 	mask = &ni->idx_mask[off];
3768 
3769 	for (i = off; i < ni->max_blocks; i++, mask++) {
3770 		if ((v = ffsl(*mask)) == 0)
3771 			continue;
3772 
3773 		/* Mark as busy */
3774 		*mask &= ~ ((u_long)1 << (v - 1));
3775 
3776 		ni->free_off[0] = i;
3777 
3778 		v = BLOCK_ITEMS * i + v - 1;
3779 
3780 		*pidx = v;
3781 		return (0);
3782 	}
3783 
3784 	return (1);
3785 }
3786 
3787 /* end of file */
3788