1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
31 */
32
33 /* Portions Copyright 2010 Robert Milkowski */
34
35 #ifndef _SYS_DMU_H
36 #define _SYS_DMU_H
37
38 /*
39 * This file describes the interface that the DMU provides for its
40 * consumers.
41 *
42 * The DMU also interacts with the SPA. That interface is described in
43 * dmu_spa.h.
44 */
45
46 #include <sys/zfs_context.h>
47 #include <sys/inttypes.h>
48 #include <sys/cred.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/zio_compress.h>
51 #include <sys/zio_priority.h>
52 #include <sys/uio.h>
53 #include <sys/zfs_file.h>
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 struct page;
60 struct vnode;
61 struct spa;
62 struct zilog;
63 struct zio;
64 struct blkptr;
65 struct zap_cursor;
66 struct dsl_dataset;
67 struct dsl_pool;
68 struct dnode;
69 struct drr_begin;
70 struct drr_end;
71 struct zbookmark_phys;
72 struct spa;
73 struct nvlist;
74 struct arc_buf;
75 struct zio_prop;
76 struct sa_handle;
77 struct dsl_crypto_params;
78 struct locked_range;
79
80 typedef struct objset objset_t;
81 typedef struct dmu_tx dmu_tx_t;
82 typedef struct dsl_dir dsl_dir_t;
83 typedef struct dnode dnode_t;
84
85 typedef enum dmu_object_byteswap {
86 DMU_BSWAP_UINT8,
87 DMU_BSWAP_UINT16,
88 DMU_BSWAP_UINT32,
89 DMU_BSWAP_UINT64,
90 DMU_BSWAP_ZAP,
91 DMU_BSWAP_DNODE,
92 DMU_BSWAP_OBJSET,
93 DMU_BSWAP_ZNODE,
94 DMU_BSWAP_OLDACL,
95 DMU_BSWAP_ACL,
96 /*
97 * Allocating a new byteswap type number makes the on-disk format
98 * incompatible with any other format that uses the same number.
99 *
100 * Data can usually be structured to work with one of the
101 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
102 */
103 DMU_BSWAP_NUMFUNCS
104 } dmu_object_byteswap_t;
105
106 #define DMU_OT_NEWTYPE 0x80
107 #define DMU_OT_METADATA 0x40
108 #define DMU_OT_ENCRYPTED 0x20
109 #define DMU_OT_BYTESWAP_MASK 0x1f
110
111 /*
112 * Defines a uint8_t object type. Object types specify if the data
113 * in the object is metadata (boolean) and how to byteswap the data
114 * (dmu_object_byteswap_t). All of the types created by this method
115 * are cached in the dbuf metadata cache.
116 */
117 #define DMU_OT(byteswap, metadata, encrypted) \
118 (DMU_OT_NEWTYPE | \
119 ((metadata) ? DMU_OT_METADATA : 0) | \
120 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
121 ((byteswap) & DMU_OT_BYTESWAP_MASK))
122
123 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
124 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
125 (ot) < DMU_OT_NUMTYPES)
126
127 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
128 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
129
130 /*
131 * MDB doesn't have dmu_ot; it defines these macros itself.
132 */
133 #ifndef ZFS_MDB
134 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
135 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
136 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
137 #endif
138
139 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
140 (((ot) & DMU_OT_METADATA) != 0) : \
141 DMU_OT_IS_METADATA_IMPL(ot))
142
143 #define DMU_OT_IS_DDT(ot) \
144 ((ot) == DMU_OT_DDT_ZAP)
145
146 #define DMU_OT_IS_CRITICAL(ot) \
147 (DMU_OT_IS_METADATA(ot) && \
148 (ot) != DMU_OT_DNODE && \
149 (ot) != DMU_OT_DIRECTORY_CONTENTS && \
150 (ot) != DMU_OT_SA)
151
152 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
153 #define DMU_OT_IS_FILE(ot) \
154 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
155
156 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
157 (((ot) & DMU_OT_ENCRYPTED) != 0) : \
158 DMU_OT_IS_ENCRYPTED_IMPL(ot))
159
160 /*
161 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
162 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
163 * is repurposed for embedded BPs.
164 */
165 #define DMU_OT_HAS_FILL(ot) \
166 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
167
168 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
169 ((ot) & DMU_OT_BYTESWAP_MASK) : \
170 DMU_OT_BYTESWAP_IMPL(ot))
171
172 typedef enum dmu_object_type {
173 DMU_OT_NONE,
174 /* general: */
175 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
176 DMU_OT_OBJECT_ARRAY, /* UINT64 */
177 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
178 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
179 DMU_OT_BPOBJ, /* UINT64 */
180 DMU_OT_BPOBJ_HDR, /* UINT64 */
181 /* spa: */
182 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
183 DMU_OT_SPACE_MAP, /* UINT64 */
184 /* zil: */
185 DMU_OT_INTENT_LOG, /* UINT64 */
186 /* dmu: */
187 DMU_OT_DNODE, /* DNODE */
188 DMU_OT_OBJSET, /* OBJSET */
189 /* dsl: */
190 DMU_OT_DSL_DIR, /* UINT64 */
191 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
192 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
193 DMU_OT_DSL_PROPS, /* ZAP */
194 DMU_OT_DSL_DATASET, /* UINT64 */
195 /* zpl: */
196 DMU_OT_ZNODE, /* ZNODE */
197 DMU_OT_OLDACL, /* Old ACL */
198 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
199 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
200 DMU_OT_MASTER_NODE, /* ZAP */
201 DMU_OT_UNLINKED_SET, /* ZAP */
202 /* zvol: */
203 DMU_OT_ZVOL, /* UINT8 */
204 DMU_OT_ZVOL_PROP, /* ZAP */
205 /* other; for testing only! */
206 DMU_OT_PLAIN_OTHER, /* UINT8 */
207 DMU_OT_UINT64_OTHER, /* UINT64 */
208 DMU_OT_ZAP_OTHER, /* ZAP */
209 /* new object types: */
210 DMU_OT_ERROR_LOG, /* ZAP */
211 DMU_OT_SPA_HISTORY, /* UINT8 */
212 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
213 DMU_OT_POOL_PROPS, /* ZAP */
214 DMU_OT_DSL_PERMS, /* ZAP */
215 DMU_OT_ACL, /* ACL */
216 DMU_OT_SYSACL, /* SYSACL */
217 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
218 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
219 DMU_OT_NEXT_CLONES, /* ZAP */
220 DMU_OT_SCAN_QUEUE, /* ZAP */
221 DMU_OT_USERGROUP_USED, /* ZAP */
222 DMU_OT_USERGROUP_QUOTA, /* ZAP */
223 DMU_OT_USERREFS, /* ZAP */
224 DMU_OT_DDT_ZAP, /* ZAP */
225 DMU_OT_DDT_STATS, /* ZAP */
226 DMU_OT_SA, /* System attr */
227 DMU_OT_SA_MASTER_NODE, /* ZAP */
228 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
229 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
230 DMU_OT_SCAN_XLATE, /* ZAP */
231 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
232 DMU_OT_DEADLIST, /* ZAP */
233 DMU_OT_DEADLIST_HDR, /* UINT64 */
234 DMU_OT_DSL_CLONES, /* ZAP */
235 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
236 /*
237 * Do not allocate new object types here. Doing so makes the on-disk
238 * format incompatible with any other format that uses the same object
239 * type number.
240 *
241 * When creating an object which does not have one of the above types
242 * use the DMU_OTN_* type with the correct byteswap and metadata
243 * values.
244 *
245 * The DMU_OTN_* types do not have entries in the dmu_ot table,
246 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
247 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
248 * and DMU_OTN_* types).
249 */
250 DMU_OT_NUMTYPES,
251
252 /*
253 * Names for valid types declared with DMU_OT().
254 */
255 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
256 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
257 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
258 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
259 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
260 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
261 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
262 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
263 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
264 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
265
266 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
267 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
268 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
269 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
270 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
271 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
272 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
273 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
274 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
275 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
276 } dmu_object_type_t;
277
278 /*
279 * These flags are intended to be used to specify the "txg_how"
280 * parameter when calling the dmu_tx_assign() function. See the comment
281 * above dmu_tx_assign() for more details on the meaning of these flags.
282 */
283 #define TXG_NOWAIT (0ULL)
284 #define TXG_WAIT (1ULL<<0)
285 #define TXG_NOTHROTTLE (1ULL<<1)
286
287 void byteswap_uint64_array(void *buf, size_t size);
288 void byteswap_uint32_array(void *buf, size_t size);
289 void byteswap_uint16_array(void *buf, size_t size);
290 void byteswap_uint8_array(void *buf, size_t size);
291 void zap_byteswap(void *buf, size_t size);
292 void zfs_oldacl_byteswap(void *buf, size_t size);
293 void zfs_acl_byteswap(void *buf, size_t size);
294 void zfs_znode_byteswap(void *buf, size_t size);
295
296 #define DS_FIND_SNAPSHOTS (1<<0)
297 #define DS_FIND_CHILDREN (1<<1)
298 #define DS_FIND_SERIALIZE (1<<2)
299
300 /*
301 * The maximum number of bytes that can be accessed as part of one
302 * operation, including metadata.
303 */
304 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
306
307 #define DMU_USERUSED_OBJECT (-1ULL)
308 #define DMU_GROUPUSED_OBJECT (-2ULL)
309 #define DMU_PROJECTUSED_OBJECT (-3ULL)
310
311 /*
312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
313 */
314 #define DMU_OBJACCT_PREFIX "obj-"
315 #define DMU_OBJACCT_PREFIX_LEN 4
316
317 /*
318 * artificial blkids for bonus buffer and spill blocks
319 */
320 #define DMU_BONUS_BLKID (-1ULL)
321 #define DMU_SPILL_BLKID (-2ULL)
322
323 /*
324 * Public routines to create, destroy, open, and close objsets.
325 */
326 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
327 cred_t *cr, dmu_tx_t *tx);
328
329 int dmu_objset_hold(const char *name, const void *tag, objset_t **osp);
330 int dmu_objset_own(const char *name, dmu_objset_type_t type,
331 boolean_t readonly, boolean_t key_required, const void *tag,
332 objset_t **osp);
333 void dmu_objset_rele(objset_t *os, const void *tag);
334 void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag);
335 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
336
337 void dmu_objset_evict_dbufs(objset_t *os);
338 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
339 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
340 void *arg);
341 int dmu_objset_clone(const char *name, const char *origin);
342 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
343 struct nvlist *errlist);
344 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
345 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
346 int flags);
347 void dmu_objset_byteswap(void *buf, size_t size);
348 int dsl_dataset_rename_snapshot(const char *fsname,
349 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
350
351 typedef struct dmu_buf {
352 uint64_t db_object; /* object that this buffer is part of */
353 uint64_t db_offset; /* byte offset in this object */
354 uint64_t db_size; /* size of buffer in bytes */
355 void *db_data; /* data in buffer */
356 } dmu_buf_t;
357
358 /*
359 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
360 */
361 #define DMU_POOL_DIRECTORY_OBJECT 1
362 #define DMU_POOL_CONFIG "config"
363 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
364 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
365 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
366 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
367 #define DMU_POOL_ROOT_DATASET "root_dataset"
368 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
369 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
370 #define DMU_POOL_ERRLOG_LAST "errlog_last"
371 #define DMU_POOL_SPARES "spares"
372 #define DMU_POOL_DEFLATE "deflate"
373 #define DMU_POOL_HISTORY "history"
374 #define DMU_POOL_PROPS "pool_props"
375 #define DMU_POOL_L2CACHE "l2cache"
376 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
377 #define DMU_POOL_DDT "DDT-%s-%s-%s"
378 #define DMU_POOL_DDT_LOG "DDT-log-%s-%u"
379 #define DMU_POOL_DDT_STATS "DDT-statistics"
380 #define DMU_POOL_DDT_DIR "DDT-%s"
381 #define DMU_POOL_CREATION_VERSION "creation_version"
382 #define DMU_POOL_SCAN "scan"
383 #define DMU_POOL_ERRORSCRUB "error_scrub"
384 #define DMU_POOL_LAST_SCRUBBED_TXG "last_scrubbed_txg"
385 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
386 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
387 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
388 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
389 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
390 #define DMU_POOL_REMOVING "com.delphix:removing"
391 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
392 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
393 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
394 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
395 #define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones"
396
397 /*
398 * Allocate an object from this objset. The range of object numbers
399 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
400 *
401 * The transaction must be assigned to a txg. The newly allocated
402 * object will be "held" in the transaction (ie. you can modify the
403 * newly allocated object in this transaction).
404 *
405 * dmu_object_alloc() chooses an object and returns it in *objectp.
406 *
407 * dmu_object_claim() allocates a specific object number. If that
408 * number is already allocated, it fails and returns EEXIST.
409 *
410 * Return 0 on success, or ENOSPC or EEXIST as specified above.
411 */
412 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
413 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
414 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
415 int indirect_blockshift,
416 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
417 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
418 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
419 int dnodesize, dmu_tx_t *tx);
420 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
421 int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
422 int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag,
423 dmu_tx_t *tx);
424 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
425 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
426 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
427 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
428 int dnodesize, dmu_tx_t *tx);
429 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
430 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
431 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
432 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
433 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
434 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
435
436 /*
437 * Free an object from this objset.
438 *
439 * The object's data will be freed as well (ie. you don't need to call
440 * dmu_free(object, 0, -1, tx)).
441 *
442 * The object need not be held in the transaction.
443 *
444 * If there are any holds on this object's buffers (via dmu_buf_hold()),
445 * or tx holds on the object (via dmu_tx_hold_object()), you can not
446 * free it; it fails and returns EBUSY.
447 *
448 * If the object is not allocated, it fails and returns ENOENT.
449 *
450 * Return 0 on success, or EBUSY or ENOENT as specified above.
451 */
452 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
453
454 /*
455 * Find the next allocated or free object.
456 *
457 * The objectp parameter is in-out. It will be updated to be the next
458 * object which is allocated. Ignore objects which have not been
459 * modified since txg.
460 *
461 * XXX Can only be called on a objset with no dirty data.
462 *
463 * Returns 0 on success, or ENOENT if there are no more objects.
464 */
465 int dmu_object_next(objset_t *os, uint64_t *objectp,
466 boolean_t hole, uint64_t txg);
467
468 /*
469 * Set the number of levels on a dnode. nlevels must be greater than the
470 * current number of levels or an EINVAL will be returned.
471 */
472 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
473 dmu_tx_t *tx);
474
475 /*
476 * Set the data blocksize for an object.
477 *
478 * The object cannot have any blocks allocated beyond the first. If
479 * the first block is allocated already, the new size must be greater
480 * than the current block size. If these conditions are not met,
481 * ENOTSUP will be returned.
482 *
483 * Returns 0 on success, or EBUSY if there are any holds on the object
484 * contents, or ENOTSUP as described above.
485 */
486 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
487 int ibs, dmu_tx_t *tx);
488
489 /*
490 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
491 * to accommodate the change. When calling this function, the caller must
492 * ensure that the object's nlevels can sufficiently support the new maxblkid.
493 */
494 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
495 dmu_tx_t *tx);
496
497 /*
498 * Set the checksum property on a dnode. The new checksum algorithm will
499 * apply to all newly written blocks; existing blocks will not be affected.
500 */
501 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
502 dmu_tx_t *tx);
503
504 /*
505 * Set the compress property on a dnode. The new compression algorithm will
506 * apply to all newly written blocks; existing blocks will not be affected.
507 */
508 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
509 dmu_tx_t *tx);
510
511 /*
512 * Get an estimated cache size for an object. Caller must expect races.
513 */
514 int dmu_object_cached_size(objset_t *os, uint64_t object,
515 uint64_t *l1sz, uint64_t *l2sz);
516
517 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
518 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
519 int compressed_size, int byteorder, dmu_tx_t *tx);
520 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
521 dmu_tx_t *tx);
522
523 /*
524 * Decide how to write a block: checksum, compression, number of copies, etc.
525 */
526 #define WP_NOFILL 0x1
527 #define WP_DMU_SYNC 0x2
528 #define WP_SPILL 0x4
529 #define WP_DIRECT_WR 0x8
530
531 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
532 struct zio_prop *zp);
533
534 /*
535 * The bonus data is accessed more or less like a regular buffer.
536 * You must dmu_bonus_hold() to get the buffer, which will give you a
537 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
538 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
539 * before modifying it, and the
540 * object must be held in an assigned transaction before calling
541 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
542 * buffer as well. You must release what you hold with dmu_buf_rele().
543 *
544 * Returns ENOENT, EIO, or 0.
545 */
546 int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag,
547 dmu_buf_t **dbp);
548 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
549 uint32_t flags);
550 int dmu_bonus_max(void);
551 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
552 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
553 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
554 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
555
556 /*
557 * Special spill buffer support used by "SA" framework
558 */
559
560 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
561 dmu_buf_t **dbp);
562 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
563 const void *tag, dmu_buf_t **dbp);
564 int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp);
565
566 /*
567 * Obtain the DMU buffer from the specified object which contains the
568 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
569 * that it will remain in memory. You must release the hold with
570 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
571 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
572 *
573 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
574 * on the returned buffer before reading or writing the buffer's
575 * db_data. The comments for those routines describe what particular
576 * operations are valid after calling them.
577 *
578 * The object number must be a valid, allocated object number.
579 */
580 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
581 const void *tag, dmu_buf_t **, int flags);
582 int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
583 uint64_t length, int read, const void *tag, int *numbufsp,
584 dmu_buf_t ***dbpp);
585 int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
586 const void *tag, dmu_buf_t **dbp);
587 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
588 const void *tag, dmu_buf_t **dbp, int flags);
589 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
590 uint64_t length, boolean_t read, const void *tag, int *numbufsp,
591 dmu_buf_t ***dbpp, uint32_t flags);
592 int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, const void *tag,
593 dmu_buf_t **dbp);
594
595 /*
596 * Add a reference to a dmu buffer that has already been held via
597 * dmu_buf_hold() in the current context.
598 */
599 void dmu_buf_add_ref(dmu_buf_t *db, const void *tag);
600
601 /*
602 * Attempt to add a reference to a dmu buffer that is in an unknown state,
603 * using a pointer that may have been invalidated by eviction processing.
604 * The request will succeed if the passed in dbuf still represents the
605 * same os/object/blkid, is ineligible for eviction, and has at least
606 * one hold by a user other than the syncer.
607 */
608 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
609 uint64_t blkid, const void *tag);
610
611 void dmu_buf_rele(dmu_buf_t *db, const void *tag);
612 uint64_t dmu_buf_refcount(dmu_buf_t *db);
613 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
614
615 /*
616 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
617 * range of an object. A pointer to an array of dmu_buf_t*'s is
618 * returned (in *dbpp).
619 *
620 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
621 * frees the array. The hold on the array of buffers MUST be released
622 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
623 * individually with dmu_buf_rele.
624 */
625 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
626 uint64_t length, boolean_t read, const void *tag,
627 int *numbufsp, dmu_buf_t ***dbpp);
628 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag);
629
630 typedef void dmu_buf_evict_func_t(void *user_ptr);
631
632 /*
633 * A DMU buffer user object may be associated with a dbuf for the
634 * duration of its lifetime. This allows the user of a dbuf (client)
635 * to attach private data to a dbuf (e.g. in-core only data such as a
636 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
637 * when that dbuf has been evicted. Clients typically respond to the
638 * eviction notification by freeing their private data, thus ensuring
639 * the same lifetime for both dbuf and private data.
640 *
641 * The mapping from a dmu_buf_user_t to any client private data is the
642 * client's responsibility. All current consumers of the API with private
643 * data embed a dmu_buf_user_t as the first member of the structure for
644 * their private data. This allows conversions between the two types
645 * with a simple cast. Since the DMU buf user API never needs access
646 * to the private data, other strategies can be employed if necessary
647 * or convenient for the client (e.g. using container_of() to do the
648 * conversion for private data that cannot have the dmu_buf_user_t as
649 * its first member).
650 *
651 * Eviction callbacks are executed without the dbuf mutex held or any
652 * other type of mechanism to guarantee that the dbuf is still available.
653 * For this reason, users must assume the dbuf has already been freed
654 * and not reference the dbuf from the callback context.
655 *
656 * Users requesting "immediate eviction" are notified as soon as the dbuf
657 * is only referenced by dirty records (dirties == holds). Otherwise the
658 * notification occurs after eviction processing for the dbuf begins.
659 */
660 typedef struct dmu_buf_user {
661 /*
662 * Asynchronous user eviction callback state.
663 */
664 taskq_ent_t dbu_tqent;
665
666 /* Size of user data, for inclusion in dbuf_cache accounting. */
667 uint64_t dbu_size;
668
669 /*
670 * This instance's eviction function pointers.
671 *
672 * dbu_evict_func_sync is called synchronously and then
673 * dbu_evict_func_async is executed asynchronously on a taskq.
674 */
675 dmu_buf_evict_func_t *dbu_evict_func_sync;
676 dmu_buf_evict_func_t *dbu_evict_func_async;
677 #ifdef ZFS_DEBUG
678 /*
679 * Pointer to user's dbuf pointer. NULL for clients that do
680 * not associate a dbuf with their user data.
681 *
682 * The dbuf pointer is cleared upon eviction so as to catch
683 * use-after-evict bugs in clients.
684 */
685 dmu_buf_t **dbu_clear_on_evict_dbufp;
686 #endif
687 } dmu_buf_user_t;
688
689 /*
690 * Initialize the given dmu_buf_user_t instance with the eviction function
691 * evict_func, to be called when the user is evicted.
692 *
693 * NOTE: This function should only be called once on a given dmu_buf_user_t.
694 * To allow enforcement of this, dbu must already be zeroed on entry.
695 */
696 static inline void
dmu_buf_init_user(dmu_buf_user_t * dbu,dmu_buf_evict_func_t * evict_func_sync,dmu_buf_evict_func_t * evict_func_async,dmu_buf_t ** clear_on_evict_dbufp __maybe_unused)697 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
698 dmu_buf_evict_func_t *evict_func_async,
699 dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
700 {
701 ASSERT(dbu->dbu_evict_func_sync == NULL);
702 ASSERT(dbu->dbu_evict_func_async == NULL);
703
704 /* must have at least one evict func */
705 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
706 dbu->dbu_evict_func_sync = evict_func_sync;
707 dbu->dbu_evict_func_async = evict_func_async;
708 taskq_init_ent(&dbu->dbu_tqent);
709 #ifdef ZFS_DEBUG
710 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
711 #endif
712 }
713
714 /*
715 * Attach user data to a dbuf and mark it for normal (when the dbuf's
716 * data is cleared or its reference count goes to zero) eviction processing.
717 *
718 * Returns NULL on success, or the existing user if another user currently
719 * owns the buffer.
720 */
721 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
722
723 /*
724 * Attach user data to a dbuf and mark it for immediate (its dirty and
725 * reference counts are equal) eviction processing.
726 *
727 * Returns NULL on success, or the existing user if another user currently
728 * owns the buffer.
729 */
730 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
731
732 /*
733 * Replace the current user of a dbuf.
734 *
735 * If given the current user of a dbuf, replaces the dbuf's user with
736 * "new_user" and returns the user data pointer that was replaced.
737 * Otherwise returns the current, and unmodified, dbuf user pointer.
738 */
739 void *dmu_buf_replace_user(dmu_buf_t *db,
740 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
741
742 /*
743 * Remove the specified user data for a DMU buffer.
744 *
745 * Returns the user that was removed on success, or the current user if
746 * another user currently owns the buffer.
747 */
748 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
749
750 /*
751 * User data size accounting. This can be used to artifically inflate the size
752 * of the dbuf during cache accounting, so that dbuf_evict_thread evicts enough
753 * to satisfy memory reclaim requests. It's not used for anything else, and
754 * defaults to 0.
755 */
756 uint64_t dmu_buf_user_size(dmu_buf_t *db);
757 void dmu_buf_add_user_size(dmu_buf_t *db, uint64_t nadd);
758 void dmu_buf_sub_user_size(dmu_buf_t *db, uint64_t nsub);
759
760 /*
761 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
762 */
763 void *dmu_buf_get_user(dmu_buf_t *db);
764
765 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
766
767 /* Block until any in-progress dmu buf user evictions complete. */
768 void dmu_buf_user_evict_wait(void);
769
770 /*
771 * Returns the blkptr associated with this dbuf, or NULL if not set.
772 */
773 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
774
775 /*
776 * Indicate that you are going to modify the buffer's data (db_data).
777 *
778 * The transaction (tx) must be assigned to a txg (ie. you've called
779 * dmu_tx_assign()). The buffer's object must be held in the tx
780 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
781 */
782 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
783 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
784 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
785 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
786
787 /*
788 * You must create a transaction, then hold the objects which you will
789 * (or might) modify as part of this transaction. Then you must assign
790 * the transaction to a transaction group. Once the transaction has
791 * been assigned, you can modify buffers which belong to held objects as
792 * part of this transaction. You can't modify buffers before the
793 * transaction has been assigned; you can't modify buffers which don't
794 * belong to objects which this transaction holds; you can't hold
795 * objects once the transaction has been assigned. You may hold an
796 * object which you are going to free (with dmu_object_free()), but you
797 * don't have to.
798 *
799 * You can abort the transaction before it has been assigned.
800 *
801 * Note that you may hold buffers (with dmu_buf_hold) at any time,
802 * regardless of transaction state.
803 */
804
805 #define DMU_NEW_OBJECT (-1ULL)
806 #define DMU_OBJECT_END (-1ULL)
807
808 dmu_tx_t *dmu_tx_create(objset_t *os);
809 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
810 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
811 int len);
812 void dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
813 void dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
814 int len);
815 void dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
816 int len);
817 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
818 uint64_t len);
819 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
820 uint64_t len);
821 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
822 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
823 const char *name);
824 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
825 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
826 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
827 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
828 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
829 void dmu_tx_abort(dmu_tx_t *tx);
830 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
831 void dmu_tx_wait(dmu_tx_t *tx);
832 void dmu_tx_commit(dmu_tx_t *tx);
833 void dmu_tx_mark_netfree(dmu_tx_t *tx);
834
835 /*
836 * To register a commit callback, dmu_tx_callback_register() must be called.
837 *
838 * dcb_data is a pointer to caller private data that is passed on as a
839 * callback parameter. The caller is responsible for properly allocating and
840 * freeing it.
841 *
842 * When registering a callback, the transaction must be already created, but
843 * it cannot be committed or aborted. It can be assigned to a txg or not.
844 *
845 * The callback will be called after the transaction has been safely written
846 * to stable storage and will also be called if the dmu_tx is aborted.
847 * If there is any error which prevents the transaction from being committed to
848 * disk, the callback will be called with a value of error != 0.
849 *
850 * When multiple callbacks are registered to the transaction, the callbacks
851 * will be called in reverse order to let Lustre, the only user of commit
852 * callback currently, take the fast path of its commit callback handling.
853 */
854 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
855
856 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
857 void *dcb_data);
858 void dmu_tx_do_callbacks(list_t *cb_list, int error);
859
860 /*
861 * Free up the data blocks for a defined range of a file. If size is
862 * -1, the range from offset to end-of-file is freed.
863 */
864 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
865 uint64_t size, dmu_tx_t *tx);
866 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
867 uint64_t size);
868 int dmu_free_long_object(objset_t *os, uint64_t object);
869
870 /*
871 * Convenience functions.
872 *
873 * Canfail routines will return 0 on success, or an errno if there is a
874 * nonrecoverable I/O error.
875 */
876 #define DMU_READ_PREFETCH 0 /* prefetch */
877 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
878 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
879 #define DMU_DIRECTIO 4 /* use Direct I/O */
880
881 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
882 void *buf, uint32_t flags);
883 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
884 uint32_t flags);
885 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
886 const void *buf, dmu_tx_t *tx);
887 int dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
888 const void *buf, dmu_tx_t *tx);
889 int dmu_write_by_dnode_flags(dnode_t *dn, uint64_t offset, uint64_t size,
890 const void *buf, dmu_tx_t *tx, uint32_t flags);
891 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
892 dmu_tx_t *tx);
893 #ifdef _KERNEL
894 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
895 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
896 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
897 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
898 dmu_tx_t *tx);
899 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
900 dmu_tx_t *tx);
901 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
902 dmu_tx_t *tx);
903 #endif
904 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
905 void dmu_return_arcbuf(struct arc_buf *buf);
906 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
907 struct arc_buf *buf, dmu_tx_t *tx);
908 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
909 struct arc_buf *buf, dmu_tx_t *tx);
910 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
911 extern uint_t zfs_max_recordsize;
912
913 /*
914 * Asynchronously try to read in the data.
915 */
916 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
917 uint64_t len, enum zio_priority pri);
918 void dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
919 uint64_t len, enum zio_priority pri);
920 void dmu_prefetch_dnode(objset_t *os, uint64_t object, enum zio_priority pri);
921 int dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset,
922 uint64_t size);
923
924 typedef struct dmu_object_info {
925 /* All sizes are in bytes unless otherwise indicated. */
926 uint32_t doi_data_block_size;
927 uint32_t doi_metadata_block_size;
928 dmu_object_type_t doi_type;
929 dmu_object_type_t doi_bonus_type;
930 uint64_t doi_bonus_size;
931 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
932 uint8_t doi_checksum;
933 uint8_t doi_compress;
934 uint8_t doi_nblkptr;
935 uint8_t doi_pad[4];
936 uint64_t doi_dnodesize;
937 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
938 uint64_t doi_max_offset;
939 uint64_t doi_fill_count; /* number of non-empty blocks */
940 } dmu_object_info_t;
941
942 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
943
944 typedef struct dmu_object_type_info {
945 dmu_object_byteswap_t ot_byteswap;
946 boolean_t ot_metadata;
947 boolean_t ot_dbuf_metadata_cache;
948 boolean_t ot_encrypt;
949 const char *ot_name;
950 } dmu_object_type_info_t;
951
952 typedef const struct dmu_object_byteswap_info {
953 arc_byteswap_func_t ob_func;
954 const char *ob_name;
955 } dmu_object_byteswap_info_t;
956
957 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
958 extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
959
960 /*
961 * Get information on a DMU object.
962 *
963 * Return 0 on success or ENOENT if object is not allocated.
964 *
965 * If doi is NULL, just indicates whether the object exists.
966 */
967 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
968 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
969 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
970 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
971 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
972 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
973 /*
974 * Like dmu_object_info_from_db, but faster still when you only care about
975 * the size.
976 */
977 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
978 u_longlong_t *nblk512);
979
980 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
981
982 typedef struct dmu_objset_stats {
983 uint64_t dds_num_clones; /* number of clones of this */
984 uint64_t dds_creation_txg;
985 uint64_t dds_guid;
986 dmu_objset_type_t dds_type;
987 uint8_t dds_is_snapshot;
988 uint8_t dds_inconsistent;
989 uint8_t dds_redacted;
990 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
991 } dmu_objset_stats_t;
992
993 /*
994 * Get stats on a dataset.
995 */
996 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
997
998 /*
999 * Add entries to the nvlist for all the objset's properties. See
1000 * zfs_prop_table[] and zfs(1m) for details on the properties.
1001 */
1002 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
1003
1004 /*
1005 * Get the space usage statistics for statvfs().
1006 *
1007 * refdbytes is the amount of space "referenced" by this objset.
1008 * availbytes is the amount of space available to this objset, taking
1009 * into account quotas & reservations, assuming that no other objsets
1010 * use the space first. These values correspond to the 'referenced' and
1011 * 'available' properties, described in the zfs(1m) manpage.
1012 *
1013 * usedobjs and availobjs are the number of objects currently allocated,
1014 * and available.
1015 */
1016 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
1017 uint64_t *usedobjsp, uint64_t *availobjsp);
1018
1019 /*
1020 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
1021 * (Contrast with the ds_guid which is a 64-bit ID that will never
1022 * change, so there is a small probability that it will collide.)
1023 */
1024 uint64_t dmu_objset_fsid_guid(objset_t *os);
1025
1026 /*
1027 * Get the [cm]time for an objset's snapshot dir
1028 */
1029 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
1030
1031 int dmu_objset_is_snapshot(objset_t *os);
1032
1033 extern struct spa *dmu_objset_spa(objset_t *os);
1034 extern struct zilog *dmu_objset_zil(objset_t *os);
1035 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
1036 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
1037 extern void dmu_objset_name(objset_t *os, char *buf);
1038 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
1039 extern uint64_t dmu_objset_id(objset_t *os);
1040 extern uint64_t dmu_objset_dnodesize(objset_t *os);
1041 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
1042 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
1043 extern int dmu_objset_blksize(objset_t *os);
1044 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1045 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
1046 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
1047 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
1048 int maxlen, boolean_t *conflict);
1049 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
1050 uint64_t *idp, uint64_t *offp);
1051
1052 typedef struct zfs_file_info {
1053 uint64_t zfi_user;
1054 uint64_t zfi_group;
1055 uint64_t zfi_project;
1056 uint64_t zfi_generation;
1057 } zfs_file_info_t;
1058
1059 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
1060 struct zfs_file_info *zoi);
1061 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1062 file_info_cb_t *cb);
1063 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1064 extern void *dmu_objset_get_user(objset_t *os);
1065
1066 /*
1067 * Return the txg number for the given assigned transaction.
1068 */
1069 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1070
1071 /*
1072 * Synchronous write.
1073 * If a parent zio is provided this function initiates a write on the
1074 * provided buffer as a child of the parent zio.
1075 * In the absence of a parent zio, the write is completed synchronously.
1076 * At write completion, blk is filled with the bp of the written block.
1077 * Note that while the data covered by this function will be on stable
1078 * storage when the write completes this new data does not become a
1079 * permanent part of the file until the associated transaction commits.
1080 */
1081
1082 /*
1083 * {zfs,zvol,ztest}_get_done() args
1084 */
1085 typedef struct zgd {
1086 struct lwb *zgd_lwb;
1087 struct blkptr *zgd_bp;
1088 dmu_buf_t *zgd_db;
1089 struct zfs_locked_range *zgd_lr;
1090 void *zgd_private;
1091 } zgd_t;
1092
1093 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1094 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1095
1096 /*
1097 * Find the next hole or data block in file starting at *off
1098 * Return found offset in *off. Return ESRCH for end of file.
1099 */
1100 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1101 uint64_t *off);
1102
1103 int dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset,
1104 uint64_t length, struct blkptr *bps, size_t *nbpsp);
1105 int dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset,
1106 uint64_t length, dmu_tx_t *tx, const struct blkptr *bps, size_t nbps);
1107
1108 /*
1109 * Initial setup and final teardown.
1110 */
1111 extern void dmu_init(void);
1112 extern void dmu_fini(void);
1113
1114 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1115 uint64_t object, uint64_t offset, int len);
1116 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1117 dmu_traverse_cb_t cb, void *arg);
1118
1119 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1120 zfs_file_t *fp, offset_t *offp);
1121
1122 /* CRC64 table */
1123 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
1124 extern uint64_t zfs_crc64_table[256];
1125
1126 extern uint_t dmu_prefetch_max;
1127
1128 #ifdef __cplusplus
1129 }
1130 #endif
1131
1132 #endif /* _SYS_DMU_H */
1133