1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_print.h"
210 #include "gt/intel_gt_regs.h"
211 #include "gt/intel_lrc.h"
212 #include "gt/intel_lrc_reg.h"
213 #include "gt/intel_rc6.h"
214 #include "gt/intel_ring.h"
215 #include "gt/uc/intel_guc_slpc.h"
216
217 #include "i915_drv.h"
218 #include "i915_file_private.h"
219 #include "i915_perf.h"
220 #include "i915_perf_oa_regs.h"
221 #include "i915_reg.h"
222
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
226 */
227 #define OA_BUFFER_SIZE SZ_16M
228
229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
230
231 /**
232 * DOC: OA Tail Pointer Race
233 *
234 * There's a HW race condition between OA unit tail pointer register updates and
235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 * been written out to the OA buffer so far (in terms of what's visible to the
237 * CPU).
238 *
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
241 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
242 * redundant read() attempts.
243 *
244 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
245 * in the OA buffer, starting from the tail reported by the HW until we find a
246 * report with its first 2 dwords not 0 meaning its previous report is
247 * completely in memory and ready to be read. Those dwords are also set to 0
248 * once read and the whole buffer is cleared upon OA buffer initialization. The
249 * first dword is the reason for this report while the second is the timestamp,
250 * making the chances of having those 2 fields at 0 fairly unlikely. A more
251 * detailed explanation is available in oa_buffer_check_unlocked().
252 *
253 * Most of the implementation details for this workaround are in
254 * oa_buffer_check_unlocked() and _append_oa_reports()
255 *
256 * Note for posterity: previously the driver used to define an effective tail
257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
259 * This was flawed considering that the OA unit may also automatically generate
260 * non-periodic reports (such as on context switch) or the OA unit may be
261 * enabled without any periodic sampling.
262 */
263 #define OA_TAIL_MARGIN_NSEC 100000ULL
264 #define INVALID_TAIL_PTR 0xffffffff
265
266 /* The default frequency for checking whether the OA unit has written new
267 * reports to the circular OA buffer...
268 */
269 #define DEFAULT_POLL_FREQUENCY_HZ 200
270 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
271
272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
273 static u32 i915_perf_stream_paranoid = true;
274
275 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
276 * of the 64bit timestamp bits to trigger reports from) but there's currently
277 * no known use case for sampling as infrequently as once per 47 thousand years.
278 *
279 * Since the timestamps included in OA reports are only 32bits it seems
280 * reasonable to limit the OA exponent where it's still possible to account for
281 * overflow in OA report timestamps.
282 */
283 #define OA_EXPONENT_MAX 31
284
285 #define INVALID_CTX_ID 0xffffffff
286
287 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
288 #define OAREPORT_REASON_MASK 0x3f
289 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
290 #define OAREPORT_REASON_SHIFT 19
291 #define OAREPORT_REASON_TIMER (1<<0)
292 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
293 #define OAREPORT_REASON_CLK_RATIO (1<<5)
294
295 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
296
297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
298 *
299 * The highest sampling frequency we can theoretically program the OA unit
300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
301 *
302 * Initialized just before we register the sysctl parameter.
303 */
304 static int oa_sample_rate_hard_limit;
305
306 /* Theoretically we can program the OA unit to sample every 160ns but don't
307 * allow that by default unless root...
308 *
309 * The default threshold of 100000Hz is based on perf's similar
310 * kernel.perf_event_max_sample_rate sysctl parameter.
311 */
312 static u32 i915_oa_max_sample_rate = 100000;
313
314 /* XXX: beware if future OA HW adds new report formats that the current
315 * code assumes all reports have a power-of-two size and ~(size - 1) can
316 * be used as a mask to align the OA tail pointer.
317 */
318 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
319 [I915_OA_FORMAT_A13] = { 0, 64 },
320 [I915_OA_FORMAT_A29] = { 1, 128 },
321 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
322 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
323 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
324 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
325 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
326 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
327 [I915_OA_FORMAT_A12] = { 0, 64 },
328 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
329 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
330 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
331 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 },
332 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT },
333 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT },
334 };
335
336 static const u32 mtl_oa_base[] = {
337 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
338 };
339
340 #define SAMPLE_OA_REPORT (1<<0)
341
342 /**
343 * struct perf_open_properties - for validated properties given to open a stream
344 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
345 * @single_context: Whether a single or all gpu contexts should be monitored
346 * @hold_preemption: Whether the preemption is disabled for the filtered
347 * context
348 * @ctx_handle: A gem ctx handle for use with @single_context
349 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
350 * @oa_format: An OA unit HW report format
351 * @oa_periodic: Whether to enable periodic OA unit sampling
352 * @oa_period_exponent: The OA unit sampling period is derived from this
353 * @engine: The engine (typically rcs0) being monitored by the OA unit
354 * @has_sseu: Whether @sseu was specified by userspace
355 * @sseu: internal SSEU configuration computed either from the userspace
356 * specified configuration in the opening parameters or a default value
357 * (see get_default_sseu_config())
358 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
359 * data availability
360 *
361 * As read_properties_unlocked() enumerates and validates the properties given
362 * to open a stream of metrics the configuration is built up in the structure
363 * which starts out zero initialized.
364 */
365 struct perf_open_properties {
366 u32 sample_flags;
367
368 u64 single_context:1;
369 u64 hold_preemption:1;
370 u64 ctx_handle;
371
372 /* OA sampling state */
373 int metrics_set;
374 int oa_format;
375 bool oa_periodic;
376 int oa_period_exponent;
377
378 struct intel_engine_cs *engine;
379
380 bool has_sseu;
381 struct intel_sseu sseu;
382
383 u64 poll_oa_period;
384 };
385
386 struct i915_oa_config_bo {
387 struct llist_node node;
388
389 struct i915_oa_config *oa_config;
390 struct i915_vma *vma;
391 };
392
393 static struct ctl_table_header *sysctl_header;
394
395 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
396
i915_oa_config_release(struct kref * ref)397 void i915_oa_config_release(struct kref *ref)
398 {
399 struct i915_oa_config *oa_config =
400 container_of(ref, typeof(*oa_config), ref);
401
402 kfree(oa_config->flex_regs);
403 kfree(oa_config->b_counter_regs);
404 kfree(oa_config->mux_regs);
405
406 kfree_rcu(oa_config, rcu);
407 }
408
409 struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf * perf,int metrics_set)410 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
411 {
412 struct i915_oa_config *oa_config;
413
414 rcu_read_lock();
415 oa_config = idr_find(&perf->metrics_idr, metrics_set);
416 if (oa_config)
417 oa_config = i915_oa_config_get(oa_config);
418 rcu_read_unlock();
419
420 return oa_config;
421 }
422
free_oa_config_bo(struct i915_oa_config_bo * oa_bo)423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
424 {
425 i915_oa_config_put(oa_bo->oa_config);
426 i915_vma_put(oa_bo->vma);
427 kfree(oa_bo);
428 }
429
430 static inline const
__oa_regs(struct i915_perf_stream * stream)431 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
432 {
433 return &stream->engine->oa_group->regs;
434 }
435
gen12_oa_hw_tail_read(struct i915_perf_stream * stream)436 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
437 {
438 struct intel_uncore *uncore = stream->uncore;
439
440 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
441 GEN12_OAG_OATAILPTR_MASK;
442 }
443
gen8_oa_hw_tail_read(struct i915_perf_stream * stream)444 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
445 {
446 struct intel_uncore *uncore = stream->uncore;
447
448 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
449 }
450
gen7_oa_hw_tail_read(struct i915_perf_stream * stream)451 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
452 {
453 struct intel_uncore *uncore = stream->uncore;
454 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
455
456 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
457 }
458
459 #define oa_report_header_64bit(__s) \
460 ((__s)->oa_buffer.format->header == HDR_64_BIT)
461
oa_report_id(struct i915_perf_stream * stream,void * report)462 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
463 {
464 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
465 }
466
oa_report_reason(struct i915_perf_stream * stream,void * report)467 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
468 {
469 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
470 (GRAPHICS_VER(stream->perf->i915) == 12 ?
471 OAREPORT_REASON_MASK_EXTENDED :
472 OAREPORT_REASON_MASK);
473 }
474
oa_report_id_clear(struct i915_perf_stream * stream,u32 * report)475 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
476 {
477 if (oa_report_header_64bit(stream))
478 *(u64 *)report = 0;
479 else
480 *report = 0;
481 }
482
oa_report_ctx_invalid(struct i915_perf_stream * stream,void * report)483 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
484 {
485 return !(oa_report_id(stream, report) &
486 stream->perf->gen8_valid_ctx_bit);
487 }
488
oa_timestamp(struct i915_perf_stream * stream,void * report)489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 return oa_report_header_64bit(stream) ?
492 *((u64 *)report + 1) :
493 *((u32 *)report + 1);
494 }
495
oa_timestamp_clear(struct i915_perf_stream * stream,u32 * report)496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 if (oa_report_header_64bit(stream))
499 *(u64 *)&report[2] = 0;
500 else
501 report[1] = 0;
502 }
503
oa_context_id(struct i915_perf_stream * stream,u32 * report)504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507
508 return ctx_id & stream->specific_ctx_id_mask;
509 }
510
oa_context_id_squash(struct i915_perf_stream * stream,u32 * report)511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 if (oa_report_header_64bit(stream))
514 report[4] = INVALID_CTX_ID;
515 else
516 report[2] = INVALID_CTX_ID;
517 }
518
519 /**
520 * oa_buffer_check_unlocked - check for data and update tail ptr state
521 * @stream: i915 stream instance
522 *
523 * This is either called via fops (for blocking reads in user ctx) or the poll
524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525 * if there is data available for userspace to read.
526 *
527 * This function is central to providing a workaround for the OA unit tail
528 * pointer having a race with respect to what data is visible to the CPU.
529 * It is responsible for reading tail pointers from the hardware and giving
530 * the pointers time to 'age' before they are made available for reading.
531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532 *
533 * Besides returning true when there is data available to read() this function
534 * also updates the tail in the oa_buffer object.
535 *
536 * Note: It's safe to read OA config state here unlocked, assuming that this is
537 * only called while the stream is enabled, while the global OA configuration
538 * can't be modified.
539 *
540 * Returns: %true if the OA buffer contains data, else %false
541 */
oa_buffer_check_unlocked(struct i915_perf_stream * stream)542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
543 {
544 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
545 int report_size = stream->oa_buffer.format->size;
546 u32 tail, hw_tail;
547 unsigned long flags;
548 bool pollin;
549 u32 partial_report_size;
550
551 /*
552 * We have to consider the (unlikely) possibility that read() errors
553 * could result in an OA buffer reset which might reset the head and
554 * tail state.
555 */
556 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
557
558 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
559 hw_tail -= gtt_offset;
560
561 /*
562 * The tail pointer increases in 64 byte increments, not in report_size
563 * steps. Also the report size may not be a power of 2. Compute
564 * potentially partially landed report in the OA buffer
565 */
566 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
567 partial_report_size %= report_size;
568
569 /* Subtract partial amount off the tail */
570 hw_tail = OA_TAKEN(hw_tail, partial_report_size);
571
572 tail = hw_tail;
573
574 /*
575 * Walk the stream backward until we find a report with report
576 * id and timestamp not at 0. Since the circular buffer pointers
577 * progress by increments of 64 bytes and that reports can be up
578 * to 256 bytes long, we can't tell whether a report has fully
579 * landed in memory before the report id and timestamp of the
580 * following report have effectively landed.
581 *
582 * This is assuming that the writes of the OA unit land in
583 * memory in the order they were written to.
584 * If not : (╯°□°)╯︵ ┻━┻
585 */
586 while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) {
587 void *report = stream->oa_buffer.vaddr + tail;
588
589 if (oa_report_id(stream, report) ||
590 oa_timestamp(stream, report))
591 break;
592
593 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
594 }
595
596 if (OA_TAKEN(hw_tail, tail) > report_size &&
597 __ratelimit(&stream->perf->tail_pointer_race))
598 drm_notice(&stream->uncore->i915->drm,
599 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
600 stream->oa_buffer.head, tail, hw_tail);
601
602 stream->oa_buffer.tail = tail;
603
604 pollin = OA_TAKEN(stream->oa_buffer.tail,
605 stream->oa_buffer.head) >= report_size;
606
607 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
608
609 return pollin;
610 }
611
612 /**
613 * append_oa_status - Appends a status record to a userspace read() buffer.
614 * @stream: An i915-perf stream opened for OA metrics
615 * @buf: destination buffer given by userspace
616 * @count: the number of bytes userspace wants to read
617 * @offset: (inout): the current position for writing into @buf
618 * @type: The kind of status to report to userspace
619 *
620 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
621 * into the userspace read() buffer.
622 *
623 * The @buf @offset will only be updated on success.
624 *
625 * Returns: 0 on success, negative error code on failure.
626 */
append_oa_status(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,enum drm_i915_perf_record_type type)627 static int append_oa_status(struct i915_perf_stream *stream,
628 char __user *buf,
629 size_t count,
630 size_t *offset,
631 enum drm_i915_perf_record_type type)
632 {
633 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
634
635 if ((count - *offset) < header.size)
636 return -ENOSPC;
637
638 if (copy_to_user(buf + *offset, &header, sizeof(header)))
639 return -EFAULT;
640
641 (*offset) += header.size;
642
643 return 0;
644 }
645
646 /**
647 * append_oa_sample - Copies single OA report into userspace read() buffer.
648 * @stream: An i915-perf stream opened for OA metrics
649 * @buf: destination buffer given by userspace
650 * @count: the number of bytes userspace wants to read
651 * @offset: (inout): the current position for writing into @buf
652 * @report: A single OA report to (optionally) include as part of the sample
653 *
654 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
655 * properties when opening a stream, tracked as `stream->sample_flags`. This
656 * function copies the requested components of a single sample to the given
657 * read() @buf.
658 *
659 * The @buf @offset will only be updated on success.
660 *
661 * Returns: 0 on success, negative error code on failure.
662 */
append_oa_sample(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,const u8 * report)663 static int append_oa_sample(struct i915_perf_stream *stream,
664 char __user *buf,
665 size_t count,
666 size_t *offset,
667 const u8 *report)
668 {
669 int report_size = stream->oa_buffer.format->size;
670 struct drm_i915_perf_record_header header;
671 int report_size_partial;
672 u8 *oa_buf_end;
673
674 header.type = DRM_I915_PERF_RECORD_SAMPLE;
675 header.pad = 0;
676 header.size = stream->sample_size;
677
678 if ((count - *offset) < header.size)
679 return -ENOSPC;
680
681 buf += *offset;
682 if (copy_to_user(buf, &header, sizeof(header)))
683 return -EFAULT;
684 buf += sizeof(header);
685
686 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
687 report_size_partial = oa_buf_end - report;
688
689 if (report_size_partial < report_size) {
690 if (copy_to_user(buf, report, report_size_partial))
691 return -EFAULT;
692 buf += report_size_partial;
693
694 if (copy_to_user(buf, stream->oa_buffer.vaddr,
695 report_size - report_size_partial))
696 return -EFAULT;
697 } else if (copy_to_user(buf, report, report_size)) {
698 return -EFAULT;
699 }
700
701 (*offset) += header.size;
702
703 return 0;
704 }
705
706 /**
707 * gen8_append_oa_reports - Copies all buffered OA reports into
708 * userspace read() buffer.
709 * @stream: An i915-perf stream opened for OA metrics
710 * @buf: destination buffer given by userspace
711 * @count: the number of bytes userspace wants to read
712 * @offset: (inout): the current position for writing into @buf
713 *
714 * Notably any error condition resulting in a short read (-%ENOSPC or
715 * -%EFAULT) will be returned even though one or more records may
716 * have been successfully copied. In this case it's up to the caller
717 * to decide if the error should be squashed before returning to
718 * userspace.
719 *
720 * Note: reports are consumed from the head, and appended to the
721 * tail, so the tail chases the head?... If you think that's mad
722 * and back-to-front you're not alone, but this follows the
723 * Gen PRM naming convention.
724 *
725 * Returns: 0 on success, negative error code on failure.
726 */
gen8_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)727 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
728 char __user *buf,
729 size_t count,
730 size_t *offset)
731 {
732 struct intel_uncore *uncore = stream->uncore;
733 int report_size = stream->oa_buffer.format->size;
734 u8 *oa_buf_base = stream->oa_buffer.vaddr;
735 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
736 u32 mask = (OA_BUFFER_SIZE - 1);
737 size_t start_offset = *offset;
738 unsigned long flags;
739 u32 head, tail;
740 int ret = 0;
741
742 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
743 return -EIO;
744
745 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
746
747 head = stream->oa_buffer.head;
748 tail = stream->oa_buffer.tail;
749
750 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
751
752 /*
753 * An out of bounds or misaligned head or tail pointer implies a driver
754 * bug since we validate + align the tail pointers we read from the
755 * hardware and we are in full control of the head pointer which should
756 * only be incremented by multiples of the report size.
757 */
758 if (drm_WARN_ONCE(&uncore->i915->drm,
759 head > OA_BUFFER_SIZE ||
760 tail > OA_BUFFER_SIZE,
761 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
762 head, tail))
763 return -EIO;
764
765
766 for (/* none */;
767 OA_TAKEN(tail, head);
768 head = (head + report_size) & mask) {
769 u8 *report = oa_buf_base + head;
770 u32 *report32 = (void *)report;
771 u32 ctx_id;
772 u64 reason;
773
774 /*
775 * The reason field includes flags identifying what
776 * triggered this specific report (mostly timer
777 * triggered or e.g. due to a context switch).
778 */
779 reason = oa_report_reason(stream, report);
780 ctx_id = oa_context_id(stream, report32);
781
782 /*
783 * Squash whatever is in the CTX_ID field if it's marked as
784 * invalid to be sure we avoid false-positive, single-context
785 * filtering below...
786 *
787 * Note: that we don't clear the valid_ctx_bit so userspace can
788 * understand that the ID has been squashed by the kernel.
789 *
790 * Update:
791 *
792 * On XEHP platforms the behavior of context id valid bit has
793 * changed compared to prior platforms. To describe this, we
794 * define a few terms:
795 *
796 * context-switch-report: This is a report with the reason type
797 * being context-switch. It is generated when a context switches
798 * out.
799 *
800 * context-valid-bit: A bit that is set in the report ID field
801 * to indicate that a valid context has been loaded.
802 *
803 * gpu-idle: A condition characterized by a
804 * context-switch-report with context-valid-bit set to 0.
805 *
806 * On prior platforms, context-id-valid bit is set to 0 only
807 * when GPU goes idle. In all other reports, it is set to 1.
808 *
809 * On XEHP platforms, context-valid-bit is set to 1 in a context
810 * switch report if a new context switched in. For all other
811 * reports it is set to 0.
812 *
813 * This change in behavior causes an issue with MMIO triggered
814 * reports. MMIO triggered reports have the markers in the
815 * context ID field and the context-valid-bit is 0. The logic
816 * below to squash the context ID would render the report
817 * useless since the user will not be able to find it in the OA
818 * buffer. Since MMIO triggered reports exist only on XEHP,
819 * we should avoid squashing these for XEHP platforms.
820 */
821
822 if (oa_report_ctx_invalid(stream, report) &&
823 GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 55)) {
824 ctx_id = INVALID_CTX_ID;
825 oa_context_id_squash(stream, report32);
826 }
827
828 /*
829 * NB: For Gen 8 the OA unit no longer supports clock gating
830 * off for a specific context and the kernel can't securely
831 * stop the counters from updating as system-wide / global
832 * values.
833 *
834 * Automatic reports now include a context ID so reports can be
835 * filtered on the cpu but it's not worth trying to
836 * automatically subtract/hide counter progress for other
837 * contexts while filtering since we can't stop userspace
838 * issuing MI_REPORT_PERF_COUNT commands which would still
839 * provide a side-band view of the real values.
840 *
841 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
842 * to normalize counters for a single filtered context then it
843 * needs be forwarded bookend context-switch reports so that it
844 * can track switches in between MI_REPORT_PERF_COUNT commands
845 * and can itself subtract/ignore the progress of counters
846 * associated with other contexts. Note that the hardware
847 * automatically triggers reports when switching to a new
848 * context which are tagged with the ID of the newly active
849 * context. To avoid the complexity (and likely fragility) of
850 * reading ahead while parsing reports to try and minimize
851 * forwarding redundant context switch reports (i.e. between
852 * other, unrelated contexts) we simply elect to forward them
853 * all.
854 *
855 * We don't rely solely on the reason field to identify context
856 * switches since it's not-uncommon for periodic samples to
857 * identify a switch before any 'context switch' report.
858 */
859 if (!stream->ctx ||
860 stream->specific_ctx_id == ctx_id ||
861 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
862 reason & OAREPORT_REASON_CTX_SWITCH) {
863
864 /*
865 * While filtering for a single context we avoid
866 * leaking the IDs of other contexts.
867 */
868 if (stream->ctx &&
869 stream->specific_ctx_id != ctx_id) {
870 oa_context_id_squash(stream, report32);
871 }
872
873 ret = append_oa_sample(stream, buf, count, offset,
874 report);
875 if (ret)
876 break;
877
878 stream->oa_buffer.last_ctx_id = ctx_id;
879 }
880
881 if (is_power_of_2(report_size)) {
882 /*
883 * Clear out the report id and timestamp as a means
884 * to detect unlanded reports.
885 */
886 oa_report_id_clear(stream, report32);
887 oa_timestamp_clear(stream, report32);
888 } else {
889 u8 *oa_buf_end = stream->oa_buffer.vaddr +
890 OA_BUFFER_SIZE;
891 u32 part = oa_buf_end - (u8 *)report32;
892
893 /* Zero out the entire report */
894 if (report_size <= part) {
895 memset(report32, 0, report_size);
896 } else {
897 memset(report32, 0, part);
898 memset(oa_buf_base, 0, report_size - part);
899 }
900 }
901 }
902
903 if (start_offset != *offset) {
904 i915_reg_t oaheadptr;
905
906 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
907 __oa_regs(stream)->oa_head_ptr :
908 GEN8_OAHEADPTR;
909
910 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
911
912 /*
913 * We removed the gtt_offset for the copy loop above, indexing
914 * relative to oa_buf_base so put back here...
915 */
916 intel_uncore_write(uncore, oaheadptr,
917 (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK);
918 stream->oa_buffer.head = head;
919
920 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
921 }
922
923 return ret;
924 }
925
926 /**
927 * gen8_oa_read - copy status records then buffered OA reports
928 * @stream: An i915-perf stream opened for OA metrics
929 * @buf: destination buffer given by userspace
930 * @count: the number of bytes userspace wants to read
931 * @offset: (inout): the current position for writing into @buf
932 *
933 * Checks OA unit status registers and if necessary appends corresponding
934 * status records for userspace (such as for a buffer full condition) and then
935 * initiate appending any buffered OA reports.
936 *
937 * Updates @offset according to the number of bytes successfully copied into
938 * the userspace buffer.
939 *
940 * NB: some data may be successfully copied to the userspace buffer
941 * even if an error is returned, and this is reflected in the
942 * updated @offset.
943 *
944 * Returns: zero on success or a negative error code
945 */
gen8_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)946 static int gen8_oa_read(struct i915_perf_stream *stream,
947 char __user *buf,
948 size_t count,
949 size_t *offset)
950 {
951 struct intel_uncore *uncore = stream->uncore;
952 u32 oastatus;
953 i915_reg_t oastatus_reg;
954 int ret;
955
956 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
957 return -EIO;
958
959 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
960 __oa_regs(stream)->oa_status :
961 GEN8_OASTATUS;
962
963 oastatus = intel_uncore_read(uncore, oastatus_reg);
964
965 /*
966 * We treat OABUFFER_OVERFLOW as a significant error:
967 *
968 * Although theoretically we could handle this more gracefully
969 * sometimes, some Gens don't correctly suppress certain
970 * automatically triggered reports in this condition and so we
971 * have to assume that old reports are now being trampled
972 * over.
973 *
974 * Considering how we don't currently give userspace control
975 * over the OA buffer size and always configure a large 16MB
976 * buffer, then a buffer overflow does anyway likely indicate
977 * that something has gone quite badly wrong.
978 */
979 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
980 ret = append_oa_status(stream, buf, count, offset,
981 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
982 if (ret)
983 return ret;
984
985 drm_dbg(&stream->perf->i915->drm,
986 "OA buffer overflow (exponent = %d): force restart\n",
987 stream->period_exponent);
988
989 stream->perf->ops.oa_disable(stream);
990 stream->perf->ops.oa_enable(stream);
991
992 /*
993 * Note: .oa_enable() is expected to re-init the oabuffer and
994 * reset GEN8_OASTATUS for us
995 */
996 oastatus = intel_uncore_read(uncore, oastatus_reg);
997 }
998
999 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
1000 ret = append_oa_status(stream, buf, count, offset,
1001 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1002 if (ret)
1003 return ret;
1004
1005 intel_uncore_rmw(uncore, oastatus_reg,
1006 GEN8_OASTATUS_COUNTER_OVERFLOW |
1007 GEN8_OASTATUS_REPORT_LOST,
1008 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
1009 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
1010 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
1011 }
1012
1013 return gen8_append_oa_reports(stream, buf, count, offset);
1014 }
1015
1016 /**
1017 * gen7_append_oa_reports - Copies all buffered OA reports into
1018 * userspace read() buffer.
1019 * @stream: An i915-perf stream opened for OA metrics
1020 * @buf: destination buffer given by userspace
1021 * @count: the number of bytes userspace wants to read
1022 * @offset: (inout): the current position for writing into @buf
1023 *
1024 * Notably any error condition resulting in a short read (-%ENOSPC or
1025 * -%EFAULT) will be returned even though one or more records may
1026 * have been successfully copied. In this case it's up to the caller
1027 * to decide if the error should be squashed before returning to
1028 * userspace.
1029 *
1030 * Note: reports are consumed from the head, and appended to the
1031 * tail, so the tail chases the head?... If you think that's mad
1032 * and back-to-front you're not alone, but this follows the
1033 * Gen PRM naming convention.
1034 *
1035 * Returns: 0 on success, negative error code on failure.
1036 */
gen7_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1037 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1038 char __user *buf,
1039 size_t count,
1040 size_t *offset)
1041 {
1042 struct intel_uncore *uncore = stream->uncore;
1043 int report_size = stream->oa_buffer.format->size;
1044 u8 *oa_buf_base = stream->oa_buffer.vaddr;
1045 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1046 u32 mask = (OA_BUFFER_SIZE - 1);
1047 size_t start_offset = *offset;
1048 unsigned long flags;
1049 u32 head, tail;
1050 int ret = 0;
1051
1052 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1053 return -EIO;
1054
1055 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1056
1057 head = stream->oa_buffer.head;
1058 tail = stream->oa_buffer.tail;
1059
1060 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1061
1062 /* An out of bounds or misaligned head or tail pointer implies a driver
1063 * bug since we validate + align the tail pointers we read from the
1064 * hardware and we are in full control of the head pointer which should
1065 * only be incremented by multiples of the report size (notably also
1066 * all a power of two).
1067 */
1068 if (drm_WARN_ONCE(&uncore->i915->drm,
1069 head > OA_BUFFER_SIZE || head % report_size ||
1070 tail > OA_BUFFER_SIZE || tail % report_size,
1071 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1072 head, tail))
1073 return -EIO;
1074
1075
1076 for (/* none */;
1077 OA_TAKEN(tail, head);
1078 head = (head + report_size) & mask) {
1079 u8 *report = oa_buf_base + head;
1080 u32 *report32 = (void *)report;
1081
1082 /* All the report sizes factor neatly into the buffer
1083 * size so we never expect to see a report split
1084 * between the beginning and end of the buffer.
1085 *
1086 * Given the initial alignment check a misalignment
1087 * here would imply a driver bug that would result
1088 * in an overrun.
1089 */
1090 if (drm_WARN_ON(&uncore->i915->drm,
1091 (OA_BUFFER_SIZE - head) < report_size)) {
1092 drm_err(&uncore->i915->drm,
1093 "Spurious OA head ptr: non-integral report offset\n");
1094 break;
1095 }
1096
1097 /* The report-ID field for periodic samples includes
1098 * some undocumented flags related to what triggered
1099 * the report and is never expected to be zero so we
1100 * can check that the report isn't invalid before
1101 * copying it to userspace...
1102 */
1103 if (report32[0] == 0) {
1104 if (__ratelimit(&stream->perf->spurious_report_rs))
1105 drm_notice(&uncore->i915->drm,
1106 "Skipping spurious, invalid OA report\n");
1107 continue;
1108 }
1109
1110 ret = append_oa_sample(stream, buf, count, offset, report);
1111 if (ret)
1112 break;
1113
1114 /* Clear out the first 2 dwords as a mean to detect unlanded
1115 * reports.
1116 */
1117 report32[0] = 0;
1118 report32[1] = 0;
1119 }
1120
1121 if (start_offset != *offset) {
1122 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1123
1124 intel_uncore_write(uncore, GEN7_OASTATUS2,
1125 ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) |
1126 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1127 stream->oa_buffer.head = head;
1128
1129 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1130 }
1131
1132 return ret;
1133 }
1134
1135 /**
1136 * gen7_oa_read - copy status records then buffered OA reports
1137 * @stream: An i915-perf stream opened for OA metrics
1138 * @buf: destination buffer given by userspace
1139 * @count: the number of bytes userspace wants to read
1140 * @offset: (inout): the current position for writing into @buf
1141 *
1142 * Checks Gen 7 specific OA unit status registers and if necessary appends
1143 * corresponding status records for userspace (such as for a buffer full
1144 * condition) and then initiate appending any buffered OA reports.
1145 *
1146 * Updates @offset according to the number of bytes successfully copied into
1147 * the userspace buffer.
1148 *
1149 * Returns: zero on success or a negative error code
1150 */
gen7_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1151 static int gen7_oa_read(struct i915_perf_stream *stream,
1152 char __user *buf,
1153 size_t count,
1154 size_t *offset)
1155 {
1156 struct intel_uncore *uncore = stream->uncore;
1157 u32 oastatus1;
1158 int ret;
1159
1160 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1161 return -EIO;
1162
1163 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1164
1165 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1166 * bits while the OA unit is enabled (while the tail pointer
1167 * may be updated asynchronously) so we ignore status bits
1168 * that have already been reported to userspace.
1169 */
1170 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1171
1172 /* We treat OABUFFER_OVERFLOW as a significant error:
1173 *
1174 * - The status can be interpreted to mean that the buffer is
1175 * currently full (with a higher precedence than OA_TAKEN()
1176 * which will start to report a near-empty buffer after an
1177 * overflow) but it's awkward that we can't clear the status
1178 * on Haswell, so without a reset we won't be able to catch
1179 * the state again.
1180 *
1181 * - Since it also implies the HW has started overwriting old
1182 * reports it may also affect our sanity checks for invalid
1183 * reports when copying to userspace that assume new reports
1184 * are being written to cleared memory.
1185 *
1186 * - In the future we may want to introduce a flight recorder
1187 * mode where the driver will automatically maintain a safe
1188 * guard band between head/tail, avoiding this overflow
1189 * condition, but we avoid the added driver complexity for
1190 * now.
1191 */
1192 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1193 ret = append_oa_status(stream, buf, count, offset,
1194 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1195 if (ret)
1196 return ret;
1197
1198 drm_dbg(&stream->perf->i915->drm,
1199 "OA buffer overflow (exponent = %d): force restart\n",
1200 stream->period_exponent);
1201
1202 stream->perf->ops.oa_disable(stream);
1203 stream->perf->ops.oa_enable(stream);
1204
1205 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1206 }
1207
1208 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1209 ret = append_oa_status(stream, buf, count, offset,
1210 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1211 if (ret)
1212 return ret;
1213 stream->perf->gen7_latched_oastatus1 |=
1214 GEN7_OASTATUS1_REPORT_LOST;
1215 }
1216
1217 return gen7_append_oa_reports(stream, buf, count, offset);
1218 }
1219
1220 /**
1221 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1222 * @stream: An i915-perf stream opened for OA metrics
1223 *
1224 * Called when userspace tries to read() from a blocking stream FD opened
1225 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1226 * OA buffer and wakes us.
1227 *
1228 * Note: it's acceptable to have this return with some false positives
1229 * since any subsequent read handling will return -EAGAIN if there isn't
1230 * really data ready for userspace yet.
1231 *
1232 * Returns: zero on success or a negative error code
1233 */
i915_oa_wait_unlocked(struct i915_perf_stream * stream)1234 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1235 {
1236 /* We would wait indefinitely if periodic sampling is not enabled */
1237 if (!stream->periodic)
1238 return -EIO;
1239
1240 return wait_event_interruptible(stream->poll_wq,
1241 oa_buffer_check_unlocked(stream));
1242 }
1243
1244 /**
1245 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1246 * @stream: An i915-perf stream opened for OA metrics
1247 * @file: An i915 perf stream file
1248 * @wait: poll() state table
1249 *
1250 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1251 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1252 * when it sees data ready to read in the circular OA buffer.
1253 */
i915_oa_poll_wait(struct i915_perf_stream * stream,struct file * file,poll_table * wait)1254 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1255 struct file *file,
1256 poll_table *wait)
1257 {
1258 poll_wait(file, &stream->poll_wq, wait);
1259 }
1260
1261 /**
1262 * i915_oa_read - just calls through to &i915_oa_ops->read
1263 * @stream: An i915-perf stream opened for OA metrics
1264 * @buf: destination buffer given by userspace
1265 * @count: the number of bytes userspace wants to read
1266 * @offset: (inout): the current position for writing into @buf
1267 *
1268 * Updates @offset according to the number of bytes successfully copied into
1269 * the userspace buffer.
1270 *
1271 * Returns: zero on success or a negative error code
1272 */
i915_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1273 static int i915_oa_read(struct i915_perf_stream *stream,
1274 char __user *buf,
1275 size_t count,
1276 size_t *offset)
1277 {
1278 return stream->perf->ops.read(stream, buf, count, offset);
1279 }
1280
oa_pin_context(struct i915_perf_stream * stream)1281 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1282 {
1283 struct i915_gem_engines_iter it;
1284 struct i915_gem_context *ctx = stream->ctx;
1285 struct intel_context *ce;
1286 struct i915_gem_ww_ctx ww;
1287 int err = -ENODEV;
1288
1289 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1290 if (ce->engine != stream->engine) /* first match! */
1291 continue;
1292
1293 err = 0;
1294 break;
1295 }
1296 i915_gem_context_unlock_engines(ctx);
1297
1298 if (err)
1299 return ERR_PTR(err);
1300
1301 i915_gem_ww_ctx_init(&ww, true);
1302 retry:
1303 /*
1304 * As the ID is the gtt offset of the context's vma we
1305 * pin the vma to ensure the ID remains fixed.
1306 */
1307 err = intel_context_pin_ww(ce, &ww);
1308 if (err == -EDEADLK) {
1309 err = i915_gem_ww_ctx_backoff(&ww);
1310 if (!err)
1311 goto retry;
1312 }
1313 i915_gem_ww_ctx_fini(&ww);
1314
1315 if (err)
1316 return ERR_PTR(err);
1317
1318 stream->pinned_ctx = ce;
1319 return stream->pinned_ctx;
1320 }
1321
1322 static int
__store_reg_to_mem(struct i915_request * rq,i915_reg_t reg,u32 ggtt_offset)1323 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1324 {
1325 u32 *cs, cmd;
1326
1327 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1328 if (GRAPHICS_VER(rq->i915) >= 8)
1329 cmd++;
1330
1331 cs = intel_ring_begin(rq, 4);
1332 if (IS_ERR(cs))
1333 return PTR_ERR(cs);
1334
1335 *cs++ = cmd;
1336 *cs++ = i915_mmio_reg_offset(reg);
1337 *cs++ = ggtt_offset;
1338 *cs++ = 0;
1339
1340 intel_ring_advance(rq, cs);
1341
1342 return 0;
1343 }
1344
1345 static int
__read_reg(struct intel_context * ce,i915_reg_t reg,u32 ggtt_offset)1346 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1347 {
1348 struct i915_request *rq;
1349 int err;
1350
1351 rq = i915_request_create(ce);
1352 if (IS_ERR(rq))
1353 return PTR_ERR(rq);
1354
1355 i915_request_get(rq);
1356
1357 err = __store_reg_to_mem(rq, reg, ggtt_offset);
1358
1359 i915_request_add(rq);
1360 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1361 err = -ETIME;
1362
1363 i915_request_put(rq);
1364
1365 return err;
1366 }
1367
1368 static int
gen12_guc_sw_ctx_id(struct intel_context * ce,u32 * ctx_id)1369 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1370 {
1371 struct i915_vma *scratch;
1372 u32 *val;
1373 int err;
1374
1375 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1376 if (IS_ERR(scratch))
1377 return PTR_ERR(scratch);
1378
1379 err = i915_vma_sync(scratch);
1380 if (err)
1381 goto err_scratch;
1382
1383 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1384 i915_ggtt_offset(scratch));
1385 if (err)
1386 goto err_scratch;
1387
1388 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1389 if (IS_ERR(val)) {
1390 err = PTR_ERR(val);
1391 goto err_scratch;
1392 }
1393
1394 *ctx_id = *val;
1395 i915_gem_object_unpin_map(scratch->obj);
1396
1397 err_scratch:
1398 i915_vma_unpin_and_release(&scratch, 0);
1399 return err;
1400 }
1401
1402 /*
1403 * For execlist mode of submission, pick an unused context id
1404 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1405 * XXX_MAX_CONTEXT_HW_ID is used by idle context
1406 *
1407 * For GuC mode of submission read context id from the upper dword of the
1408 * EXECLIST_STATUS register. Note that we read this value only once and expect
1409 * that the value stays fixed for the entire OA use case. There are cases where
1410 * GuC KMD implementation may deregister a context to reuse it's context id, but
1411 * we prevent that from happening to the OA context by pinning it.
1412 */
gen12_get_render_context_id(struct i915_perf_stream * stream)1413 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1414 {
1415 u32 ctx_id, mask;
1416 int ret;
1417
1418 if (intel_engine_uses_guc(stream->engine)) {
1419 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1420 if (ret)
1421 return ret;
1422
1423 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1424 (GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1425 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 55)) {
1426 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1427 (XEHP_SW_CTX_ID_SHIFT - 32);
1428
1429 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1430 (XEHP_SW_CTX_ID_SHIFT - 32);
1431 } else {
1432 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1433 (GEN11_SW_CTX_ID_SHIFT - 32);
1434
1435 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1436 (GEN11_SW_CTX_ID_SHIFT - 32);
1437 }
1438 stream->specific_ctx_id = ctx_id & mask;
1439 stream->specific_ctx_id_mask = mask;
1440
1441 return 0;
1442 }
1443
oa_find_reg_in_lri(u32 * state,u32 reg,u32 * offset,u32 end)1444 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1445 {
1446 u32 idx = *offset;
1447 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1448 bool found = false;
1449
1450 idx++;
1451 for (; idx < len; idx += 2) {
1452 if (state[idx] == reg) {
1453 found = true;
1454 break;
1455 }
1456 }
1457
1458 *offset = idx;
1459 return found;
1460 }
1461
oa_context_image_offset(struct intel_context * ce,u32 reg)1462 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1463 {
1464 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1465 u32 *state = ce->lrc_reg_state;
1466
1467 if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1468 return U32_MAX;
1469
1470 for (offset = 0; offset < len; ) {
1471 if (IS_MI_LRI_CMD(state[offset])) {
1472 /*
1473 * We expect reg-value pairs in MI_LRI command, so
1474 * MI_LRI_LEN() should be even, if not, issue a warning.
1475 */
1476 drm_WARN_ON(&ce->engine->i915->drm,
1477 MI_LRI_LEN(state[offset]) & 0x1);
1478
1479 if (oa_find_reg_in_lri(state, reg, &offset, len))
1480 break;
1481 } else {
1482 offset++;
1483 }
1484 }
1485
1486 return offset < len ? offset : U32_MAX;
1487 }
1488
set_oa_ctx_ctrl_offset(struct intel_context * ce)1489 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1490 {
1491 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1492 struct i915_perf *perf = &ce->engine->i915->perf;
1493 u32 offset = perf->ctx_oactxctrl_offset;
1494
1495 /* Do this only once. Failure is stored as offset of U32_MAX */
1496 if (offset)
1497 goto exit;
1498
1499 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1500 perf->ctx_oactxctrl_offset = offset;
1501
1502 drm_dbg(&ce->engine->i915->drm,
1503 "%s oa ctx control at 0x%08x dword offset\n",
1504 ce->engine->name, offset);
1505
1506 exit:
1507 return offset && offset != U32_MAX ? 0 : -ENODEV;
1508 }
1509
engine_supports_mi_query(struct intel_engine_cs * engine)1510 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1511 {
1512 return engine->class == RENDER_CLASS;
1513 }
1514
1515 /**
1516 * oa_get_render_ctx_id - determine and hold ctx hw id
1517 * @stream: An i915-perf stream opened for OA metrics
1518 *
1519 * Determine the render context hw id, and ensure it remains fixed for the
1520 * lifetime of the stream. This ensures that we don't have to worry about
1521 * updating the context ID in OACONTROL on the fly.
1522 *
1523 * Returns: zero on success or a negative error code
1524 */
oa_get_render_ctx_id(struct i915_perf_stream * stream)1525 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1526 {
1527 struct intel_context *ce;
1528 int ret = 0;
1529
1530 ce = oa_pin_context(stream);
1531 if (IS_ERR(ce))
1532 return PTR_ERR(ce);
1533
1534 if (engine_supports_mi_query(stream->engine) &&
1535 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1536 /*
1537 * We are enabling perf query here. If we don't find the context
1538 * offset here, just return an error.
1539 */
1540 ret = set_oa_ctx_ctrl_offset(ce);
1541 if (ret) {
1542 intel_context_unpin(ce);
1543 drm_err(&stream->perf->i915->drm,
1544 "Enabling perf query failed for %s\n",
1545 stream->engine->name);
1546 return ret;
1547 }
1548 }
1549
1550 switch (GRAPHICS_VER(ce->engine->i915)) {
1551 case 7: {
1552 /*
1553 * On Haswell we don't do any post processing of the reports
1554 * and don't need to use the mask.
1555 */
1556 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1557 stream->specific_ctx_id_mask = 0;
1558 break;
1559 }
1560
1561 case 8:
1562 case 9:
1563 if (intel_engine_uses_guc(ce->engine)) {
1564 /*
1565 * When using GuC, the context descriptor we write in
1566 * i915 is read by GuC and rewritten before it's
1567 * actually written into the hardware. The LRCA is
1568 * what is put into the context id field of the
1569 * context descriptor by GuC. Because it's aligned to
1570 * a page, the lower 12bits are always at 0 and
1571 * dropped by GuC. They won't be part of the context
1572 * ID in the OA reports, so squash those lower bits.
1573 */
1574 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1575
1576 /*
1577 * GuC uses the top bit to signal proxy submission, so
1578 * ignore that bit.
1579 */
1580 stream->specific_ctx_id_mask =
1581 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1582 } else {
1583 stream->specific_ctx_id_mask =
1584 (1U << GEN8_CTX_ID_WIDTH) - 1;
1585 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1586 }
1587 break;
1588
1589 case 11:
1590 case 12:
1591 ret = gen12_get_render_context_id(stream);
1592 break;
1593
1594 default:
1595 MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1596 }
1597
1598 ce->tag = stream->specific_ctx_id;
1599
1600 drm_dbg(&stream->perf->i915->drm,
1601 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1602 stream->specific_ctx_id,
1603 stream->specific_ctx_id_mask);
1604
1605 return ret;
1606 }
1607
1608 /**
1609 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1610 * @stream: An i915-perf stream opened for OA metrics
1611 *
1612 * In case anything needed doing to ensure the context HW ID would remain valid
1613 * for the lifetime of the stream, then that can be undone here.
1614 */
oa_put_render_ctx_id(struct i915_perf_stream * stream)1615 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1616 {
1617 struct intel_context *ce;
1618
1619 ce = fetch_and_zero(&stream->pinned_ctx);
1620 if (ce) {
1621 ce->tag = 0; /* recomputed on next submission after parking */
1622 intel_context_unpin(ce);
1623 }
1624
1625 stream->specific_ctx_id = INVALID_CTX_ID;
1626 stream->specific_ctx_id_mask = 0;
1627 }
1628
1629 static void
free_oa_buffer(struct i915_perf_stream * stream)1630 free_oa_buffer(struct i915_perf_stream *stream)
1631 {
1632 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1633 I915_VMA_RELEASE_MAP);
1634
1635 stream->oa_buffer.vaddr = NULL;
1636 }
1637
1638 static void
free_oa_configs(struct i915_perf_stream * stream)1639 free_oa_configs(struct i915_perf_stream *stream)
1640 {
1641 struct i915_oa_config_bo *oa_bo, *tmp;
1642
1643 i915_oa_config_put(stream->oa_config);
1644 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1645 free_oa_config_bo(oa_bo);
1646 }
1647
1648 static void
free_noa_wait(struct i915_perf_stream * stream)1649 free_noa_wait(struct i915_perf_stream *stream)
1650 {
1651 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1652 }
1653
engine_supports_oa(const struct intel_engine_cs * engine)1654 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1655 {
1656 return engine->oa_group;
1657 }
1658
engine_supports_oa_format(struct intel_engine_cs * engine,int type)1659 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1660 {
1661 return engine->oa_group && engine->oa_group->type == type;
1662 }
1663
i915_oa_stream_destroy(struct i915_perf_stream * stream)1664 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1665 {
1666 struct i915_perf *perf = stream->perf;
1667 struct intel_gt *gt = stream->engine->gt;
1668 struct i915_perf_group *g = stream->engine->oa_group;
1669 int m;
1670
1671 if (WARN_ON(stream != g->exclusive_stream))
1672 return;
1673
1674 /*
1675 * Unset exclusive_stream first, it will be checked while disabling
1676 * the metric set on gen8+.
1677 *
1678 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1679 */
1680 WRITE_ONCE(g->exclusive_stream, NULL);
1681 perf->ops.disable_metric_set(stream);
1682
1683 free_oa_buffer(stream);
1684
1685 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1686 intel_engine_pm_put(stream->engine);
1687
1688 if (stream->ctx)
1689 oa_put_render_ctx_id(stream);
1690
1691 free_oa_configs(stream);
1692 free_noa_wait(stream);
1693
1694 m = ratelimit_state_get_miss(&perf->spurious_report_rs);
1695 if (m)
1696 gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n", m);
1697 }
1698
gen7_init_oa_buffer(struct i915_perf_stream * stream)1699 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1700 {
1701 struct intel_uncore *uncore = stream->uncore;
1702 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1703 unsigned long flags;
1704
1705 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1706
1707 /* Pre-DevBDW: OABUFFER must be set with counters off,
1708 * before OASTATUS1, but after OASTATUS2
1709 */
1710 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1711 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1712 stream->oa_buffer.head = 0;
1713
1714 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1715
1716 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1717 gtt_offset | OABUFFER_SIZE_16M);
1718
1719 /* Mark that we need updated tail pointers to read from... */
1720 stream->oa_buffer.tail = 0;
1721
1722 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1723
1724 /* On Haswell we have to track which OASTATUS1 flags we've
1725 * already seen since they can't be cleared while periodic
1726 * sampling is enabled.
1727 */
1728 stream->perf->gen7_latched_oastatus1 = 0;
1729
1730 /* NB: although the OA buffer will initially be allocated
1731 * zeroed via shmfs (and so this memset is redundant when
1732 * first allocating), we may re-init the OA buffer, either
1733 * when re-enabling a stream or in error/reset paths.
1734 *
1735 * The reason we clear the buffer for each re-init is for the
1736 * sanity check in gen7_append_oa_reports() that looks at the
1737 * report-id field to make sure it's non-zero which relies on
1738 * the assumption that new reports are being written to zeroed
1739 * memory...
1740 */
1741 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1742 }
1743
gen8_init_oa_buffer(struct i915_perf_stream * stream)1744 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1745 {
1746 struct intel_uncore *uncore = stream->uncore;
1747 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1748 unsigned long flags;
1749
1750 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1751
1752 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1753 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1754 stream->oa_buffer.head = 0;
1755
1756 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1757
1758 /*
1759 * PRM says:
1760 *
1761 * "This MMIO must be set before the OATAILPTR
1762 * register and after the OAHEADPTR register. This is
1763 * to enable proper functionality of the overflow
1764 * bit."
1765 */
1766 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1767 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1768 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1769
1770 /* Mark that we need updated tail pointers to read from... */
1771 stream->oa_buffer.tail = 0;
1772
1773 /*
1774 * Reset state used to recognise context switches, affecting which
1775 * reports we will forward to userspace while filtering for a single
1776 * context.
1777 */
1778 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1779
1780 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1781
1782 /*
1783 * NB: although the OA buffer will initially be allocated
1784 * zeroed via shmfs (and so this memset is redundant when
1785 * first allocating), we may re-init the OA buffer, either
1786 * when re-enabling a stream or in error/reset paths.
1787 *
1788 * The reason we clear the buffer for each re-init is for the
1789 * sanity check in gen8_append_oa_reports() that looks at the
1790 * reason field to make sure it's non-zero which relies on
1791 * the assumption that new reports are being written to zeroed
1792 * memory...
1793 */
1794 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1795 }
1796
gen12_init_oa_buffer(struct i915_perf_stream * stream)1797 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1798 {
1799 struct intel_uncore *uncore = stream->uncore;
1800 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1801 unsigned long flags;
1802
1803 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1804
1805 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1806 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1807 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1808 stream->oa_buffer.head = 0;
1809
1810 /*
1811 * PRM says:
1812 *
1813 * "This MMIO must be set before the OATAILPTR
1814 * register and after the OAHEADPTR register. This is
1815 * to enable proper functionality of the overflow
1816 * bit."
1817 */
1818 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1819 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1820 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1821 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1822
1823 /* Mark that we need updated tail pointers to read from... */
1824 stream->oa_buffer.tail = 0;
1825
1826 /*
1827 * Reset state used to recognise context switches, affecting which
1828 * reports we will forward to userspace while filtering for a single
1829 * context.
1830 */
1831 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1832
1833 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1834
1835 /*
1836 * NB: although the OA buffer will initially be allocated
1837 * zeroed via shmfs (and so this memset is redundant when
1838 * first allocating), we may re-init the OA buffer, either
1839 * when re-enabling a stream or in error/reset paths.
1840 *
1841 * The reason we clear the buffer for each re-init is for the
1842 * sanity check in gen8_append_oa_reports() that looks at the
1843 * reason field to make sure it's non-zero which relies on
1844 * the assumption that new reports are being written to zeroed
1845 * memory...
1846 */
1847 memset(stream->oa_buffer.vaddr, 0,
1848 stream->oa_buffer.vma->size);
1849 }
1850
alloc_oa_buffer(struct i915_perf_stream * stream)1851 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1852 {
1853 struct drm_i915_private *i915 = stream->perf->i915;
1854 struct intel_gt *gt = stream->engine->gt;
1855 struct drm_i915_gem_object *bo;
1856 struct i915_vma *vma;
1857 int ret;
1858
1859 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1860 return -ENODEV;
1861
1862 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1863 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1864
1865 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1866 if (IS_ERR(bo)) {
1867 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1868 return PTR_ERR(bo);
1869 }
1870
1871 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1872
1873 /* PreHSW required 512K alignment, HSW requires 16M */
1874 vma = i915_vma_instance(bo, >->ggtt->vm, NULL);
1875 if (IS_ERR(vma)) {
1876 ret = PTR_ERR(vma);
1877 goto err_unref;
1878 }
1879
1880 /*
1881 * PreHSW required 512K alignment.
1882 * HSW and onwards, align to requested size of OA buffer.
1883 */
1884 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1885 if (ret) {
1886 gt_err(gt, "Failed to pin OA buffer %d\n", ret);
1887 goto err_unref;
1888 }
1889
1890 stream->oa_buffer.vma = vma;
1891
1892 stream->oa_buffer.vaddr =
1893 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1894 if (IS_ERR(stream->oa_buffer.vaddr)) {
1895 ret = PTR_ERR(stream->oa_buffer.vaddr);
1896 goto err_unpin;
1897 }
1898
1899 return 0;
1900
1901 err_unpin:
1902 __i915_vma_unpin(vma);
1903
1904 err_unref:
1905 i915_gem_object_put(bo);
1906
1907 stream->oa_buffer.vaddr = NULL;
1908 stream->oa_buffer.vma = NULL;
1909
1910 return ret;
1911 }
1912
save_restore_register(struct i915_perf_stream * stream,u32 * cs,bool save,i915_reg_t reg,u32 offset,u32 dword_count)1913 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1914 bool save, i915_reg_t reg, u32 offset,
1915 u32 dword_count)
1916 {
1917 u32 cmd;
1918 u32 d;
1919
1920 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1921 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1922 if (GRAPHICS_VER(stream->perf->i915) >= 8)
1923 cmd++;
1924
1925 for (d = 0; d < dword_count; d++) {
1926 *cs++ = cmd;
1927 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1928 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1929 *cs++ = 0;
1930 }
1931
1932 return cs;
1933 }
1934
alloc_noa_wait(struct i915_perf_stream * stream)1935 static int alloc_noa_wait(struct i915_perf_stream *stream)
1936 {
1937 struct drm_i915_private *i915 = stream->perf->i915;
1938 struct intel_gt *gt = stream->engine->gt;
1939 struct drm_i915_gem_object *bo;
1940 struct i915_vma *vma;
1941 const u64 delay_ticks = 0xffffffffffffffff -
1942 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1943 atomic64_read(&stream->perf->noa_programming_delay));
1944 const u32 base = stream->engine->mmio_base;
1945 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1946 u32 *batch, *ts0, *cs, *jump;
1947 struct i915_gem_ww_ctx ww;
1948 int ret, i;
1949 enum {
1950 START_TS,
1951 NOW_TS,
1952 DELTA_TS,
1953 JUMP_PREDICATE,
1954 DELTA_TARGET,
1955 N_CS_GPR
1956 };
1957 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1958 MI_PREDICATE_RESULT_2_ENGINE(base) :
1959 MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1960
1961 /*
1962 * gt->scratch was being used to save/restore the GPR registers, but on
1963 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1964 * causes an engine hang. Instead allocate an additional page here to
1965 * save/restore GPR registers
1966 */
1967 bo = i915_gem_object_create_internal(i915, 8192);
1968 if (IS_ERR(bo)) {
1969 drm_err(&i915->drm,
1970 "Failed to allocate NOA wait batchbuffer\n");
1971 return PTR_ERR(bo);
1972 }
1973
1974 i915_gem_ww_ctx_init(&ww, true);
1975 retry:
1976 ret = i915_gem_object_lock(bo, &ww);
1977 if (ret)
1978 goto out_ww;
1979
1980 /*
1981 * We pin in GGTT because we jump into this buffer now because
1982 * multiple OA config BOs will have a jump to this address and it
1983 * needs to be fixed during the lifetime of the i915/perf stream.
1984 */
1985 vma = i915_vma_instance(bo, >->ggtt->vm, NULL);
1986 if (IS_ERR(vma)) {
1987 ret = PTR_ERR(vma);
1988 goto out_ww;
1989 }
1990
1991 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1992 if (ret)
1993 goto out_ww;
1994
1995 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1996 if (IS_ERR(batch)) {
1997 ret = PTR_ERR(batch);
1998 goto err_unpin;
1999 }
2000
2001 stream->noa_wait = vma;
2002
2003 #define GPR_SAVE_OFFSET 4096
2004 #define PREDICATE_SAVE_OFFSET 4160
2005
2006 /* Save registers. */
2007 for (i = 0; i < N_CS_GPR; i++)
2008 cs = save_restore_register(
2009 stream, cs, true /* save */, CS_GPR(i),
2010 GPR_SAVE_OFFSET + 8 * i, 2);
2011 cs = save_restore_register(
2012 stream, cs, true /* save */, mi_predicate_result,
2013 PREDICATE_SAVE_OFFSET, 1);
2014
2015 /* First timestamp snapshot location. */
2016 ts0 = cs;
2017
2018 /*
2019 * Initial snapshot of the timestamp register to implement the wait.
2020 * We work with 32b values, so clear out the top 32b bits of the
2021 * register because the ALU works 64bits.
2022 */
2023 *cs++ = MI_LOAD_REGISTER_IMM(1);
2024 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2025 *cs++ = 0;
2026 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2027 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2028 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2029
2030 /*
2031 * This is the location we're going to jump back into until the
2032 * required amount of time has passed.
2033 */
2034 jump = cs;
2035
2036 /*
2037 * Take another snapshot of the timestamp register. Take care to clear
2038 * up the top 32bits of CS_GPR(1) as we're using it for other
2039 * operations below.
2040 */
2041 *cs++ = MI_LOAD_REGISTER_IMM(1);
2042 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2043 *cs++ = 0;
2044 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2045 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2046 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2047
2048 /*
2049 * Do a diff between the 2 timestamps and store the result back into
2050 * CS_GPR(1).
2051 */
2052 *cs++ = MI_MATH(5);
2053 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2054 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2055 *cs++ = MI_MATH_SUB;
2056 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2057 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2058
2059 /*
2060 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2061 * timestamp have rolled over the 32bits) into the predicate register
2062 * to be used for the predicated jump.
2063 */
2064 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2065 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2066 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2067
2068 if (HAS_MI_SET_PREDICATE(i915))
2069 *cs++ = MI_SET_PREDICATE | 1;
2070
2071 /* Restart from the beginning if we had timestamps roll over. */
2072 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2073 MI_BATCH_BUFFER_START :
2074 MI_BATCH_BUFFER_START_GEN8) |
2075 MI_BATCH_PREDICATE;
2076 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2077 *cs++ = 0;
2078
2079 if (HAS_MI_SET_PREDICATE(i915))
2080 *cs++ = MI_SET_PREDICATE;
2081
2082 /*
2083 * Now add the diff between to previous timestamps and add it to :
2084 * (((1 * << 64) - 1) - delay_ns)
2085 *
2086 * When the Carry Flag contains 1 this means the elapsed time is
2087 * longer than the expected delay, and we can exit the wait loop.
2088 */
2089 *cs++ = MI_LOAD_REGISTER_IMM(2);
2090 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2091 *cs++ = lower_32_bits(delay_ticks);
2092 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2093 *cs++ = upper_32_bits(delay_ticks);
2094
2095 *cs++ = MI_MATH(4);
2096 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2097 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2098 *cs++ = MI_MATH_ADD;
2099 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2100
2101 *cs++ = MI_ARB_CHECK;
2102
2103 /*
2104 * Transfer the result into the predicate register to be used for the
2105 * predicated jump.
2106 */
2107 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2108 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2109 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2110
2111 if (HAS_MI_SET_PREDICATE(i915))
2112 *cs++ = MI_SET_PREDICATE | 1;
2113
2114 /* Predicate the jump. */
2115 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2116 MI_BATCH_BUFFER_START :
2117 MI_BATCH_BUFFER_START_GEN8) |
2118 MI_BATCH_PREDICATE;
2119 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2120 *cs++ = 0;
2121
2122 if (HAS_MI_SET_PREDICATE(i915))
2123 *cs++ = MI_SET_PREDICATE;
2124
2125 /* Restore registers. */
2126 for (i = 0; i < N_CS_GPR; i++)
2127 cs = save_restore_register(
2128 stream, cs, false /* restore */, CS_GPR(i),
2129 GPR_SAVE_OFFSET + 8 * i, 2);
2130 cs = save_restore_register(
2131 stream, cs, false /* restore */, mi_predicate_result,
2132 PREDICATE_SAVE_OFFSET, 1);
2133
2134 /* And return to the ring. */
2135 *cs++ = MI_BATCH_BUFFER_END;
2136
2137 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2138
2139 i915_gem_object_flush_map(bo);
2140 __i915_gem_object_release_map(bo);
2141
2142 goto out_ww;
2143
2144 err_unpin:
2145 i915_vma_unpin_and_release(&vma, 0);
2146 out_ww:
2147 if (ret == -EDEADLK) {
2148 ret = i915_gem_ww_ctx_backoff(&ww);
2149 if (!ret)
2150 goto retry;
2151 }
2152 i915_gem_ww_ctx_fini(&ww);
2153 if (ret)
2154 i915_gem_object_put(bo);
2155 return ret;
2156 }
2157
write_cs_mi_lri(u32 * cs,const struct i915_oa_reg * reg_data,u32 n_regs)2158 static u32 *write_cs_mi_lri(u32 *cs,
2159 const struct i915_oa_reg *reg_data,
2160 u32 n_regs)
2161 {
2162 u32 i;
2163
2164 for (i = 0; i < n_regs; i++) {
2165 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2166 u32 n_lri = min_t(u32,
2167 n_regs - i,
2168 MI_LOAD_REGISTER_IMM_MAX_REGS);
2169
2170 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2171 }
2172 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2173 *cs++ = reg_data[i].value;
2174 }
2175
2176 return cs;
2177 }
2178
num_lri_dwords(int num_regs)2179 static int num_lri_dwords(int num_regs)
2180 {
2181 int count = 0;
2182
2183 if (num_regs > 0) {
2184 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2185 count += num_regs * 2;
2186 }
2187
2188 return count;
2189 }
2190
2191 static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)2192 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2193 struct i915_oa_config *oa_config)
2194 {
2195 struct drm_i915_gem_object *obj;
2196 struct i915_oa_config_bo *oa_bo;
2197 struct i915_gem_ww_ctx ww;
2198 size_t config_length = 0;
2199 u32 *cs;
2200 int err;
2201
2202 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2203 if (!oa_bo)
2204 return ERR_PTR(-ENOMEM);
2205
2206 config_length += num_lri_dwords(oa_config->mux_regs_len);
2207 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2208 config_length += num_lri_dwords(oa_config->flex_regs_len);
2209 config_length += 3; /* MI_BATCH_BUFFER_START */
2210 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2211
2212 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2213 if (IS_ERR(obj)) {
2214 err = PTR_ERR(obj);
2215 goto err_free;
2216 }
2217
2218 i915_gem_ww_ctx_init(&ww, true);
2219 retry:
2220 err = i915_gem_object_lock(obj, &ww);
2221 if (err)
2222 goto out_ww;
2223
2224 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2225 if (IS_ERR(cs)) {
2226 err = PTR_ERR(cs);
2227 goto out_ww;
2228 }
2229
2230 cs = write_cs_mi_lri(cs,
2231 oa_config->mux_regs,
2232 oa_config->mux_regs_len);
2233 cs = write_cs_mi_lri(cs,
2234 oa_config->b_counter_regs,
2235 oa_config->b_counter_regs_len);
2236 cs = write_cs_mi_lri(cs,
2237 oa_config->flex_regs,
2238 oa_config->flex_regs_len);
2239
2240 /* Jump into the active wait. */
2241 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2242 MI_BATCH_BUFFER_START :
2243 MI_BATCH_BUFFER_START_GEN8);
2244 *cs++ = i915_ggtt_offset(stream->noa_wait);
2245 *cs++ = 0;
2246
2247 i915_gem_object_flush_map(obj);
2248 __i915_gem_object_release_map(obj);
2249
2250 oa_bo->vma = i915_vma_instance(obj,
2251 &stream->engine->gt->ggtt->vm,
2252 NULL);
2253 if (IS_ERR(oa_bo->vma)) {
2254 err = PTR_ERR(oa_bo->vma);
2255 goto out_ww;
2256 }
2257
2258 oa_bo->oa_config = i915_oa_config_get(oa_config);
2259 llist_add(&oa_bo->node, &stream->oa_config_bos);
2260
2261 out_ww:
2262 if (err == -EDEADLK) {
2263 err = i915_gem_ww_ctx_backoff(&ww);
2264 if (!err)
2265 goto retry;
2266 }
2267 i915_gem_ww_ctx_fini(&ww);
2268
2269 if (err)
2270 i915_gem_object_put(obj);
2271 err_free:
2272 if (err) {
2273 kfree(oa_bo);
2274 return ERR_PTR(err);
2275 }
2276 return oa_bo;
2277 }
2278
2279 static struct i915_vma *
get_oa_vma(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)2280 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2281 {
2282 struct i915_oa_config_bo *oa_bo;
2283
2284 /*
2285 * Look for the buffer in the already allocated BOs attached
2286 * to the stream.
2287 */
2288 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2289 if (oa_bo->oa_config == oa_config &&
2290 memcmp(oa_bo->oa_config->uuid,
2291 oa_config->uuid,
2292 sizeof(oa_config->uuid)) == 0)
2293 goto out;
2294 }
2295
2296 oa_bo = alloc_oa_config_buffer(stream, oa_config);
2297 if (IS_ERR(oa_bo))
2298 return ERR_CAST(oa_bo);
2299
2300 out:
2301 return i915_vma_get(oa_bo->vma);
2302 }
2303
2304 static int
emit_oa_config(struct i915_perf_stream * stream,struct i915_oa_config * oa_config,struct intel_context * ce,struct i915_active * active)2305 emit_oa_config(struct i915_perf_stream *stream,
2306 struct i915_oa_config *oa_config,
2307 struct intel_context *ce,
2308 struct i915_active *active)
2309 {
2310 struct i915_request *rq;
2311 struct i915_vma *vma;
2312 struct i915_gem_ww_ctx ww;
2313 int err;
2314
2315 vma = get_oa_vma(stream, oa_config);
2316 if (IS_ERR(vma))
2317 return PTR_ERR(vma);
2318
2319 i915_gem_ww_ctx_init(&ww, true);
2320 retry:
2321 err = i915_gem_object_lock(vma->obj, &ww);
2322 if (err)
2323 goto err;
2324
2325 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2326 if (err)
2327 goto err;
2328
2329 intel_engine_pm_get(ce->engine);
2330 rq = i915_request_create(ce);
2331 intel_engine_pm_put(ce->engine);
2332 if (IS_ERR(rq)) {
2333 err = PTR_ERR(rq);
2334 goto err_vma_unpin;
2335 }
2336
2337 if (!IS_ERR_OR_NULL(active)) {
2338 /* After all individual context modifications */
2339 err = i915_request_await_active(rq, active,
2340 I915_ACTIVE_AWAIT_ACTIVE);
2341 if (err)
2342 goto err_add_request;
2343
2344 err = i915_active_add_request(active, rq);
2345 if (err)
2346 goto err_add_request;
2347 }
2348
2349 err = i915_vma_move_to_active(vma, rq, 0);
2350 if (err)
2351 goto err_add_request;
2352
2353 err = rq->engine->emit_bb_start(rq,
2354 i915_vma_offset(vma), 0,
2355 I915_DISPATCH_SECURE);
2356 if (err)
2357 goto err_add_request;
2358
2359 err_add_request:
2360 i915_request_add(rq);
2361 err_vma_unpin:
2362 i915_vma_unpin(vma);
2363 err:
2364 if (err == -EDEADLK) {
2365 err = i915_gem_ww_ctx_backoff(&ww);
2366 if (!err)
2367 goto retry;
2368 }
2369
2370 i915_gem_ww_ctx_fini(&ww);
2371 i915_vma_put(vma);
2372 return err;
2373 }
2374
oa_context(struct i915_perf_stream * stream)2375 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2376 {
2377 return stream->pinned_ctx ?: stream->engine->kernel_context;
2378 }
2379
2380 static int
hsw_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2381 hsw_enable_metric_set(struct i915_perf_stream *stream,
2382 struct i915_active *active)
2383 {
2384 struct intel_uncore *uncore = stream->uncore;
2385
2386 /*
2387 * PRM:
2388 *
2389 * OA unit is using “crclk” for its functionality. When trunk
2390 * level clock gating takes place, OA clock would be gated,
2391 * unable to count the events from non-render clock domain.
2392 * Render clock gating must be disabled when OA is enabled to
2393 * count the events from non-render domain. Unit level clock
2394 * gating for RCS should also be disabled.
2395 */
2396 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2397 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2398 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2399 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2400
2401 return emit_oa_config(stream,
2402 stream->oa_config, oa_context(stream),
2403 active);
2404 }
2405
hsw_disable_metric_set(struct i915_perf_stream * stream)2406 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2407 {
2408 struct intel_uncore *uncore = stream->uncore;
2409
2410 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2411 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2412 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2413 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2414
2415 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2416 }
2417
oa_config_flex_reg(const struct i915_oa_config * oa_config,i915_reg_t reg)2418 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2419 i915_reg_t reg)
2420 {
2421 u32 mmio = i915_mmio_reg_offset(reg);
2422 int i;
2423
2424 /*
2425 * This arbitrary default will select the 'EU FPU0 Pipeline
2426 * Active' event. In the future it's anticipated that there
2427 * will be an explicit 'No Event' we can select, but not yet...
2428 */
2429 if (!oa_config)
2430 return 0;
2431
2432 for (i = 0; i < oa_config->flex_regs_len; i++) {
2433 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2434 return oa_config->flex_regs[i].value;
2435 }
2436
2437 return 0;
2438 }
2439 /*
2440 * NB: It must always remain pointer safe to run this even if the OA unit
2441 * has been disabled.
2442 *
2443 * It's fine to put out-of-date values into these per-context registers
2444 * in the case that the OA unit has been disabled.
2445 */
2446 static void
gen8_update_reg_state_unlocked(const struct intel_context * ce,const struct i915_perf_stream * stream)2447 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2448 const struct i915_perf_stream *stream)
2449 {
2450 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2451 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2452 /* The MMIO offsets for Flex EU registers aren't contiguous */
2453 static const i915_reg_t flex_regs[] = {
2454 EU_PERF_CNTL0,
2455 EU_PERF_CNTL1,
2456 EU_PERF_CNTL2,
2457 EU_PERF_CNTL3,
2458 EU_PERF_CNTL4,
2459 EU_PERF_CNTL5,
2460 EU_PERF_CNTL6,
2461 };
2462 u32 *reg_state = ce->lrc_reg_state;
2463 int i;
2464
2465 reg_state[ctx_oactxctrl + 1] =
2466 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2467 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2468 GEN8_OA_COUNTER_RESUME;
2469
2470 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2471 reg_state[ctx_flexeu0 + i * 2 + 1] =
2472 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2473 }
2474
2475 struct flex {
2476 i915_reg_t reg;
2477 u32 offset;
2478 u32 value;
2479 };
2480
2481 static int
gen8_store_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2482 gen8_store_flex(struct i915_request *rq,
2483 struct intel_context *ce,
2484 const struct flex *flex, unsigned int count)
2485 {
2486 u32 offset;
2487 u32 *cs;
2488
2489 cs = intel_ring_begin(rq, 4 * count);
2490 if (IS_ERR(cs))
2491 return PTR_ERR(cs);
2492
2493 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2494 do {
2495 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2496 *cs++ = offset + flex->offset * sizeof(u32);
2497 *cs++ = 0;
2498 *cs++ = flex->value;
2499 } while (flex++, --count);
2500
2501 intel_ring_advance(rq, cs);
2502
2503 return 0;
2504 }
2505
2506 static int
gen8_load_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2507 gen8_load_flex(struct i915_request *rq,
2508 struct intel_context *ce,
2509 const struct flex *flex, unsigned int count)
2510 {
2511 u32 *cs;
2512
2513 GEM_BUG_ON(!count || count > 63);
2514
2515 cs = intel_ring_begin(rq, 2 * count + 2);
2516 if (IS_ERR(cs))
2517 return PTR_ERR(cs);
2518
2519 *cs++ = MI_LOAD_REGISTER_IMM(count);
2520 do {
2521 *cs++ = i915_mmio_reg_offset(flex->reg);
2522 *cs++ = flex->value;
2523 } while (flex++, --count);
2524 *cs++ = MI_NOOP;
2525
2526 intel_ring_advance(rq, cs);
2527
2528 return 0;
2529 }
2530
gen8_modify_context(struct intel_context * ce,const struct flex * flex,unsigned int count)2531 static int gen8_modify_context(struct intel_context *ce,
2532 const struct flex *flex, unsigned int count)
2533 {
2534 struct i915_request *rq;
2535 int err;
2536
2537 rq = intel_engine_create_kernel_request(ce->engine);
2538 if (IS_ERR(rq))
2539 return PTR_ERR(rq);
2540
2541 /* Serialise with the remote context */
2542 err = intel_context_prepare_remote_request(ce, rq);
2543 if (err == 0)
2544 err = gen8_store_flex(rq, ce, flex, count);
2545
2546 i915_request_add(rq);
2547 return err;
2548 }
2549
2550 static int
gen8_modify_self(struct intel_context * ce,const struct flex * flex,unsigned int count,struct i915_active * active)2551 gen8_modify_self(struct intel_context *ce,
2552 const struct flex *flex, unsigned int count,
2553 struct i915_active *active)
2554 {
2555 struct i915_request *rq;
2556 int err;
2557
2558 intel_engine_pm_get(ce->engine);
2559 rq = i915_request_create(ce);
2560 intel_engine_pm_put(ce->engine);
2561 if (IS_ERR(rq))
2562 return PTR_ERR(rq);
2563
2564 if (!IS_ERR_OR_NULL(active)) {
2565 err = i915_active_add_request(active, rq);
2566 if (err)
2567 goto err_add_request;
2568 }
2569
2570 err = gen8_load_flex(rq, ce, flex, count);
2571 if (err)
2572 goto err_add_request;
2573
2574 err_add_request:
2575 i915_request_add(rq);
2576 return err;
2577 }
2578
gen8_configure_context(struct i915_perf_stream * stream,struct i915_gem_context * ctx,struct flex * flex,unsigned int count)2579 static int gen8_configure_context(struct i915_perf_stream *stream,
2580 struct i915_gem_context *ctx,
2581 struct flex *flex, unsigned int count)
2582 {
2583 struct i915_gem_engines_iter it;
2584 struct intel_context *ce;
2585 int err = 0;
2586
2587 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2588 GEM_BUG_ON(ce == ce->engine->kernel_context);
2589
2590 if (ce->engine->class != RENDER_CLASS)
2591 continue;
2592
2593 /* Otherwise OA settings will be set upon first use */
2594 if (!intel_context_pin_if_active(ce))
2595 continue;
2596
2597 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2598 err = gen8_modify_context(ce, flex, count);
2599
2600 intel_context_unpin(ce);
2601 if (err)
2602 break;
2603 }
2604 i915_gem_context_unlock_engines(ctx);
2605
2606 return err;
2607 }
2608
gen12_configure_oar_context(struct i915_perf_stream * stream,struct i915_active * active)2609 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2610 struct i915_active *active)
2611 {
2612 int err;
2613 struct intel_context *ce = stream->pinned_ctx;
2614 u32 format = stream->oa_buffer.format->format;
2615 u32 offset = stream->perf->ctx_oactxctrl_offset;
2616 struct flex regs_context[] = {
2617 {
2618 GEN8_OACTXCONTROL,
2619 offset + 1,
2620 active ? GEN8_OA_COUNTER_RESUME : 0,
2621 },
2622 };
2623 /* Offsets in regs_lri are not used since this configuration is only
2624 * applied using LRI. Initialize the correct offsets for posterity.
2625 */
2626 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2627 struct flex regs_lri[] = {
2628 {
2629 GEN12_OAR_OACONTROL,
2630 GEN12_OAR_OACONTROL_OFFSET + 1,
2631 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2632 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2633 },
2634 {
2635 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2636 CTX_CONTEXT_CONTROL,
2637 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2638 active ?
2639 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2640 0)
2641 },
2642 };
2643
2644 /* Modify the context image of pinned context with regs_context */
2645 err = intel_context_lock_pinned(ce);
2646 if (err)
2647 return err;
2648
2649 err = gen8_modify_context(ce, regs_context,
2650 ARRAY_SIZE(regs_context));
2651 intel_context_unlock_pinned(ce);
2652 if (err)
2653 return err;
2654
2655 /* Apply regs_lri using LRI with pinned context */
2656 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2657 }
2658
2659 /*
2660 * Manages updating the per-context aspects of the OA stream
2661 * configuration across all contexts.
2662 *
2663 * The awkward consideration here is that OACTXCONTROL controls the
2664 * exponent for periodic sampling which is primarily used for system
2665 * wide profiling where we'd like a consistent sampling period even in
2666 * the face of context switches.
2667 *
2668 * Our approach of updating the register state context (as opposed to
2669 * say using a workaround batch buffer) ensures that the hardware
2670 * won't automatically reload an out-of-date timer exponent even
2671 * transiently before a WA BB could be parsed.
2672 *
2673 * This function needs to:
2674 * - Ensure the currently running context's per-context OA state is
2675 * updated
2676 * - Ensure that all existing contexts will have the correct per-context
2677 * OA state if they are scheduled for use.
2678 * - Ensure any new contexts will be initialized with the correct
2679 * per-context OA state.
2680 *
2681 * Note: it's only the RCS/Render context that has any OA state.
2682 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2683 */
2684 static int
oa_configure_all_contexts(struct i915_perf_stream * stream,struct flex * regs,size_t num_regs,struct i915_active * active)2685 oa_configure_all_contexts(struct i915_perf_stream *stream,
2686 struct flex *regs,
2687 size_t num_regs,
2688 struct i915_active *active)
2689 {
2690 struct drm_i915_private *i915 = stream->perf->i915;
2691 struct intel_engine_cs *engine;
2692 struct intel_gt *gt = stream->engine->gt;
2693 struct i915_gem_context *ctx, *cn;
2694 int err;
2695
2696 lockdep_assert_held(>->perf.lock);
2697
2698 /*
2699 * The OA register config is setup through the context image. This image
2700 * might be written to by the GPU on context switch (in particular on
2701 * lite-restore). This means we can't safely update a context's image,
2702 * if this context is scheduled/submitted to run on the GPU.
2703 *
2704 * We could emit the OA register config through the batch buffer but
2705 * this might leave small interval of time where the OA unit is
2706 * configured at an invalid sampling period.
2707 *
2708 * Note that since we emit all requests from a single ring, there
2709 * is still an implicit global barrier here that may cause a high
2710 * priority context to wait for an otherwise independent low priority
2711 * context. Contexts idle at the time of reconfiguration are not
2712 * trapped behind the barrier.
2713 */
2714 spin_lock(&i915->gem.contexts.lock);
2715 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2716 if (!kref_get_unless_zero(&ctx->ref))
2717 continue;
2718
2719 spin_unlock(&i915->gem.contexts.lock);
2720
2721 err = gen8_configure_context(stream, ctx, regs, num_regs);
2722 if (err) {
2723 i915_gem_context_put(ctx);
2724 return err;
2725 }
2726
2727 spin_lock(&i915->gem.contexts.lock);
2728 list_safe_reset_next(ctx, cn, link);
2729 i915_gem_context_put(ctx);
2730 }
2731 spin_unlock(&i915->gem.contexts.lock);
2732
2733 /*
2734 * After updating all other contexts, we need to modify ourselves.
2735 * If we don't modify the kernel_context, we do not get events while
2736 * idle.
2737 */
2738 for_each_uabi_engine(engine, i915) {
2739 struct intel_context *ce = engine->kernel_context;
2740
2741 if (engine->class != RENDER_CLASS)
2742 continue;
2743
2744 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2745
2746 err = gen8_modify_self(ce, regs, num_regs, active);
2747 if (err)
2748 return err;
2749 }
2750
2751 return 0;
2752 }
2753
2754 static int
lrc_configure_all_contexts(struct i915_perf_stream * stream,const struct i915_oa_config * oa_config,struct i915_active * active)2755 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2756 const struct i915_oa_config *oa_config,
2757 struct i915_active *active)
2758 {
2759 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2760 /* The MMIO offsets for Flex EU registers aren't contiguous */
2761 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2762 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2763 struct flex regs[] = {
2764 {
2765 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2766 CTX_R_PWR_CLK_STATE,
2767 },
2768 {
2769 GEN8_OACTXCONTROL,
2770 ctx_oactxctrl + 1,
2771 },
2772 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2773 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2774 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2775 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2776 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2777 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2778 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2779 };
2780 #undef ctx_flexeuN
2781 int i;
2782
2783 regs[1].value =
2784 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2785 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2786 GEN8_OA_COUNTER_RESUME;
2787
2788 for (i = 2; i < ARRAY_SIZE(regs); i++)
2789 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2790
2791 return oa_configure_all_contexts(stream,
2792 regs, ARRAY_SIZE(regs),
2793 active);
2794 }
2795
2796 static int
gen8_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2797 gen8_enable_metric_set(struct i915_perf_stream *stream,
2798 struct i915_active *active)
2799 {
2800 struct intel_uncore *uncore = stream->uncore;
2801 struct i915_oa_config *oa_config = stream->oa_config;
2802 int ret;
2803
2804 /*
2805 * We disable slice/unslice clock ratio change reports on SKL since
2806 * they are too noisy. The HW generates a lot of redundant reports
2807 * where the ratio hasn't really changed causing a lot of redundant
2808 * work to processes and increasing the chances we'll hit buffer
2809 * overruns.
2810 *
2811 * Although we don't currently use the 'disable overrun' OABUFFER
2812 * feature it's worth noting that clock ratio reports have to be
2813 * disabled before considering to use that feature since the HW doesn't
2814 * correctly block these reports.
2815 *
2816 * Currently none of the high-level metrics we have depend on knowing
2817 * this ratio to normalize.
2818 *
2819 * Note: This register is not power context saved and restored, but
2820 * that's OK considering that we disable RC6 while the OA unit is
2821 * enabled.
2822 *
2823 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2824 * be read back from automatically triggered reports, as part of the
2825 * RPT_ID field.
2826 */
2827 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2828 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2829 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2830 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2831 }
2832
2833 /*
2834 * Update all contexts prior writing the mux configurations as we need
2835 * to make sure all slices/subslices are ON before writing to NOA
2836 * registers.
2837 */
2838 ret = lrc_configure_all_contexts(stream, oa_config, active);
2839 if (ret)
2840 return ret;
2841
2842 return emit_oa_config(stream,
2843 stream->oa_config, oa_context(stream),
2844 active);
2845 }
2846
oag_report_ctx_switches(const struct i915_perf_stream * stream)2847 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2848 {
2849 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2850 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2851 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2852 }
2853
2854 static int
gen12_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2855 gen12_enable_metric_set(struct i915_perf_stream *stream,
2856 struct i915_active *active)
2857 {
2858 struct drm_i915_private *i915 = stream->perf->i915;
2859 struct intel_uncore *uncore = stream->uncore;
2860 bool periodic = stream->periodic;
2861 u32 period_exponent = stream->period_exponent;
2862 u32 sqcnt1;
2863 int ret;
2864
2865 /*
2866 * Wa_1508761755
2867 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2868 * Disable thread stall DOP gating and EU DOP gating.
2869 */
2870 if (IS_DG2(i915)) {
2871 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2872 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2873 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2874 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2875 }
2876
2877 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2878 /* Disable clk ratio reports, like previous Gens. */
2879 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2880 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2881 /*
2882 * If the user didn't require OA reports, instruct
2883 * the hardware not to emit ctx switch reports.
2884 */
2885 oag_report_ctx_switches(stream));
2886
2887 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2888 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2889 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2890 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2891 : 0);
2892
2893 /*
2894 * Initialize Super Queue Internal Cnt Register
2895 * Set PMON Enable in order to collect valid metrics.
2896 * Enable bytes per clock reporting in OA.
2897 */
2898 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2899 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2900
2901 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2902
2903 /*
2904 * For Gen12, performance counters are context
2905 * saved/restored. Only enable it for the context that
2906 * requested this.
2907 */
2908 if (stream->ctx) {
2909 ret = gen12_configure_oar_context(stream, active);
2910 if (ret)
2911 return ret;
2912 }
2913
2914 return emit_oa_config(stream,
2915 stream->oa_config, oa_context(stream),
2916 active);
2917 }
2918
gen8_disable_metric_set(struct i915_perf_stream * stream)2919 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2920 {
2921 struct intel_uncore *uncore = stream->uncore;
2922
2923 /* Reset all contexts' slices/subslices configurations. */
2924 lrc_configure_all_contexts(stream, NULL, NULL);
2925
2926 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2927 }
2928
gen11_disable_metric_set(struct i915_perf_stream * stream)2929 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2930 {
2931 struct intel_uncore *uncore = stream->uncore;
2932
2933 /* Reset all contexts' slices/subslices configurations. */
2934 lrc_configure_all_contexts(stream, NULL, NULL);
2935
2936 /* Make sure we disable noa to save power. */
2937 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2938 }
2939
gen12_disable_metric_set(struct i915_perf_stream * stream)2940 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2941 {
2942 struct intel_uncore *uncore = stream->uncore;
2943 struct drm_i915_private *i915 = stream->perf->i915;
2944 u32 sqcnt1;
2945
2946 /*
2947 * Wa_1508761755: Enable thread stall DOP gating and EU DOP gating.
2948 */
2949 if (IS_DG2(i915)) {
2950 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2951 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2952 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2953 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2954 }
2955
2956 /* disable the context save/restore or OAR counters */
2957 if (stream->ctx)
2958 gen12_configure_oar_context(stream, NULL);
2959
2960 /* Make sure we disable noa to save power. */
2961 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2962
2963 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2964 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2965
2966 /* Reset PMON Enable to save power. */
2967 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2968 }
2969
gen7_oa_enable(struct i915_perf_stream * stream)2970 static void gen7_oa_enable(struct i915_perf_stream *stream)
2971 {
2972 struct intel_uncore *uncore = stream->uncore;
2973 struct i915_gem_context *ctx = stream->ctx;
2974 u32 ctx_id = stream->specific_ctx_id;
2975 bool periodic = stream->periodic;
2976 u32 period_exponent = stream->period_exponent;
2977 u32 report_format = stream->oa_buffer.format->format;
2978
2979 /*
2980 * Reset buf pointers so we don't forward reports from before now.
2981 *
2982 * Think carefully if considering trying to avoid this, since it
2983 * also ensures status flags and the buffer itself are cleared
2984 * in error paths, and we have checks for invalid reports based
2985 * on the assumption that certain fields are written to zeroed
2986 * memory which this helps maintains.
2987 */
2988 gen7_init_oa_buffer(stream);
2989
2990 intel_uncore_write(uncore, GEN7_OACONTROL,
2991 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2992 (period_exponent <<
2993 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2994 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2995 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2996 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2997 GEN7_OACONTROL_ENABLE);
2998 }
2999
gen8_oa_enable(struct i915_perf_stream * stream)3000 static void gen8_oa_enable(struct i915_perf_stream *stream)
3001 {
3002 struct intel_uncore *uncore = stream->uncore;
3003 u32 report_format = stream->oa_buffer.format->format;
3004
3005 /*
3006 * Reset buf pointers so we don't forward reports from before now.
3007 *
3008 * Think carefully if considering trying to avoid this, since it
3009 * also ensures status flags and the buffer itself are cleared
3010 * in error paths, and we have checks for invalid reports based
3011 * on the assumption that certain fields are written to zeroed
3012 * memory which this helps maintains.
3013 */
3014 gen8_init_oa_buffer(stream);
3015
3016 /*
3017 * Note: we don't rely on the hardware to perform single context
3018 * filtering and instead filter on the cpu based on the context-id
3019 * field of reports
3020 */
3021 intel_uncore_write(uncore, GEN8_OACONTROL,
3022 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3023 GEN8_OA_COUNTER_ENABLE);
3024 }
3025
gen12_oa_enable(struct i915_perf_stream * stream)3026 static void gen12_oa_enable(struct i915_perf_stream *stream)
3027 {
3028 const struct i915_perf_regs *regs;
3029 u32 val;
3030
3031 /*
3032 * If we don't want OA reports from the OA buffer, then we don't even
3033 * need to program the OAG unit.
3034 */
3035 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3036 return;
3037
3038 gen12_init_oa_buffer(stream);
3039
3040 regs = __oa_regs(stream);
3041 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3042 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3043
3044 intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3045 }
3046
3047 /**
3048 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3049 * @stream: An i915 perf stream opened for OA metrics
3050 *
3051 * [Re]enables hardware periodic sampling according to the period configured
3052 * when opening the stream. This also starts a hrtimer that will periodically
3053 * check for data in the circular OA buffer for notifying userspace (e.g.
3054 * during a read() or poll()).
3055 */
i915_oa_stream_enable(struct i915_perf_stream * stream)3056 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3057 {
3058 stream->pollin = false;
3059
3060 stream->perf->ops.oa_enable(stream);
3061
3062 if (stream->sample_flags & SAMPLE_OA_REPORT)
3063 hrtimer_start(&stream->poll_check_timer,
3064 ns_to_ktime(stream->poll_oa_period),
3065 HRTIMER_MODE_REL_PINNED);
3066 }
3067
gen7_oa_disable(struct i915_perf_stream * stream)3068 static void gen7_oa_disable(struct i915_perf_stream *stream)
3069 {
3070 struct intel_uncore *uncore = stream->uncore;
3071
3072 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3073 if (intel_wait_for_register(uncore,
3074 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3075 50))
3076 drm_err(&stream->perf->i915->drm,
3077 "wait for OA to be disabled timed out\n");
3078 }
3079
gen8_oa_disable(struct i915_perf_stream * stream)3080 static void gen8_oa_disable(struct i915_perf_stream *stream)
3081 {
3082 struct intel_uncore *uncore = stream->uncore;
3083
3084 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3085 if (intel_wait_for_register(uncore,
3086 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3087 50))
3088 drm_err(&stream->perf->i915->drm,
3089 "wait for OA to be disabled timed out\n");
3090 }
3091
gen12_oa_disable(struct i915_perf_stream * stream)3092 static void gen12_oa_disable(struct i915_perf_stream *stream)
3093 {
3094 struct intel_uncore *uncore = stream->uncore;
3095
3096 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3097 if (intel_wait_for_register(uncore,
3098 __oa_regs(stream)->oa_ctrl,
3099 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3100 50))
3101 drm_err(&stream->perf->i915->drm,
3102 "wait for OA to be disabled timed out\n");
3103
3104 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3105 if (intel_wait_for_register(uncore,
3106 GEN12_OA_TLB_INV_CR,
3107 1, 0,
3108 50))
3109 drm_err(&stream->perf->i915->drm,
3110 "wait for OA tlb invalidate timed out\n");
3111 }
3112
3113 /**
3114 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3115 * @stream: An i915 perf stream opened for OA metrics
3116 *
3117 * Stops the OA unit from periodically writing counter reports into the
3118 * circular OA buffer. This also stops the hrtimer that periodically checks for
3119 * data in the circular OA buffer, for notifying userspace.
3120 */
i915_oa_stream_disable(struct i915_perf_stream * stream)3121 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3122 {
3123 stream->perf->ops.oa_disable(stream);
3124
3125 if (stream->sample_flags & SAMPLE_OA_REPORT)
3126 hrtimer_cancel(&stream->poll_check_timer);
3127 }
3128
3129 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3130 .destroy = i915_oa_stream_destroy,
3131 .enable = i915_oa_stream_enable,
3132 .disable = i915_oa_stream_disable,
3133 .wait_unlocked = i915_oa_wait_unlocked,
3134 .poll_wait = i915_oa_poll_wait,
3135 .read = i915_oa_read,
3136 };
3137
i915_perf_stream_enable_sync(struct i915_perf_stream * stream)3138 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3139 {
3140 struct i915_active *active;
3141 int err;
3142
3143 active = i915_active_create();
3144 if (!active)
3145 return -ENOMEM;
3146
3147 err = stream->perf->ops.enable_metric_set(stream, active);
3148 if (err == 0)
3149 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3150
3151 i915_active_put(active);
3152 return err;
3153 }
3154
3155 static void
get_default_sseu_config(struct intel_sseu * out_sseu,struct intel_engine_cs * engine)3156 get_default_sseu_config(struct intel_sseu *out_sseu,
3157 struct intel_engine_cs *engine)
3158 {
3159 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3160
3161 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3162
3163 if (GRAPHICS_VER(engine->i915) == 11) {
3164 /*
3165 * We only need subslice count so it doesn't matter which ones
3166 * we select - just turn off low bits in the amount of half of
3167 * all available subslices per slice.
3168 */
3169 out_sseu->subslice_mask =
3170 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3171 out_sseu->slice_mask = 0x1;
3172 }
3173 }
3174
3175 static int
get_sseu_config(struct intel_sseu * out_sseu,struct intel_engine_cs * engine,const struct drm_i915_gem_context_param_sseu * drm_sseu)3176 get_sseu_config(struct intel_sseu *out_sseu,
3177 struct intel_engine_cs *engine,
3178 const struct drm_i915_gem_context_param_sseu *drm_sseu)
3179 {
3180 if (drm_sseu->engine.engine_class != engine->uabi_class ||
3181 drm_sseu->engine.engine_instance != engine->uabi_instance)
3182 return -EINVAL;
3183
3184 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3185 }
3186
3187 /*
3188 * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3189 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3190 * cases, return the adjusted CS timestamp frequency to the user.
3191 */
i915_perf_oa_timestamp_frequency(struct drm_i915_private * i915)3192 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3193 {
3194 struct intel_gt *gt = to_gt(i915);
3195
3196 /* Wa_18013179988 */
3197 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
3198 intel_wakeref_t wakeref;
3199 u32 reg, shift;
3200
3201 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3202 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3203
3204 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3205 reg);
3206
3207 return to_gt(i915)->clock_frequency << (3 - shift);
3208 }
3209
3210 return to_gt(i915)->clock_frequency;
3211 }
3212
3213 /**
3214 * i915_oa_stream_init - validate combined props for OA stream and init
3215 * @stream: An i915 perf stream
3216 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3217 * @props: The property state that configures stream (individually validated)
3218 *
3219 * While read_properties_unlocked() validates properties in isolation it
3220 * doesn't ensure that the combination necessarily makes sense.
3221 *
3222 * At this point it has been determined that userspace wants a stream of
3223 * OA metrics, but still we need to further validate the combined
3224 * properties are OK.
3225 *
3226 * If the configuration makes sense then we can allocate memory for
3227 * a circular OA buffer and apply the requested metric set configuration.
3228 *
3229 * Returns: zero on success or a negative error code.
3230 */
i915_oa_stream_init(struct i915_perf_stream * stream,struct drm_i915_perf_open_param * param,struct perf_open_properties * props)3231 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3232 struct drm_i915_perf_open_param *param,
3233 struct perf_open_properties *props)
3234 {
3235 struct drm_i915_private *i915 = stream->perf->i915;
3236 struct i915_perf *perf = stream->perf;
3237 struct i915_perf_group *g;
3238 int ret;
3239
3240 if (!props->engine) {
3241 drm_dbg(&stream->perf->i915->drm,
3242 "OA engine not specified\n");
3243 return -EINVAL;
3244 }
3245 g = props->engine->oa_group;
3246
3247 /*
3248 * If the sysfs metrics/ directory wasn't registered for some
3249 * reason then don't let userspace try their luck with config
3250 * IDs
3251 */
3252 if (!perf->metrics_kobj) {
3253 drm_dbg(&stream->perf->i915->drm,
3254 "OA metrics weren't advertised via sysfs\n");
3255 return -EINVAL;
3256 }
3257
3258 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3259 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3260 drm_dbg(&stream->perf->i915->drm,
3261 "Only OA report sampling supported\n");
3262 return -EINVAL;
3263 }
3264
3265 if (!perf->ops.enable_metric_set) {
3266 drm_dbg(&stream->perf->i915->drm,
3267 "OA unit not supported\n");
3268 return -ENODEV;
3269 }
3270
3271 /*
3272 * To avoid the complexity of having to accurately filter
3273 * counter reports and marshal to the appropriate client
3274 * we currently only allow exclusive access
3275 */
3276 if (g->exclusive_stream) {
3277 drm_dbg(&stream->perf->i915->drm,
3278 "OA unit already in use\n");
3279 return -EBUSY;
3280 }
3281
3282 if (!props->oa_format) {
3283 drm_dbg(&stream->perf->i915->drm,
3284 "OA report format not specified\n");
3285 return -EINVAL;
3286 }
3287
3288 stream->engine = props->engine;
3289 stream->uncore = stream->engine->gt->uncore;
3290
3291 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3292
3293 stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3294 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3295 return -EINVAL;
3296
3297 stream->sample_flags = props->sample_flags;
3298 stream->sample_size += stream->oa_buffer.format->size;
3299
3300 stream->hold_preemption = props->hold_preemption;
3301
3302 stream->periodic = props->oa_periodic;
3303 if (stream->periodic)
3304 stream->period_exponent = props->oa_period_exponent;
3305
3306 if (stream->ctx) {
3307 ret = oa_get_render_ctx_id(stream);
3308 if (ret) {
3309 drm_dbg(&stream->perf->i915->drm,
3310 "Invalid context id to filter with\n");
3311 return ret;
3312 }
3313 }
3314
3315 ret = alloc_noa_wait(stream);
3316 if (ret) {
3317 drm_dbg(&stream->perf->i915->drm,
3318 "Unable to allocate NOA wait batch buffer\n");
3319 goto err_noa_wait_alloc;
3320 }
3321
3322 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3323 if (!stream->oa_config) {
3324 drm_dbg(&stream->perf->i915->drm,
3325 "Invalid OA config id=%i\n", props->metrics_set);
3326 ret = -EINVAL;
3327 goto err_config;
3328 }
3329
3330 /* PRM - observability performance counters:
3331 *
3332 * OACONTROL, performance counter enable, note:
3333 *
3334 * "When this bit is set, in order to have coherent counts,
3335 * RC6 power state and trunk clock gating must be disabled.
3336 * This can be achieved by programming MMIO registers as
3337 * 0xA094=0 and 0xA090[31]=1"
3338 *
3339 * In our case we are expecting that taking pm + FORCEWAKE
3340 * references will effectively disable RC6.
3341 */
3342 intel_engine_pm_get(stream->engine);
3343 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3344
3345 ret = alloc_oa_buffer(stream);
3346 if (ret)
3347 goto err_oa_buf_alloc;
3348
3349 stream->ops = &i915_oa_stream_ops;
3350
3351 stream->engine->gt->perf.sseu = props->sseu;
3352 WRITE_ONCE(g->exclusive_stream, stream);
3353
3354 ret = i915_perf_stream_enable_sync(stream);
3355 if (ret) {
3356 drm_dbg(&stream->perf->i915->drm,
3357 "Unable to enable metric set\n");
3358 goto err_enable;
3359 }
3360
3361 drm_dbg(&stream->perf->i915->drm,
3362 "opening stream oa config uuid=%s\n",
3363 stream->oa_config->uuid);
3364
3365 hrtimer_setup(&stream->poll_check_timer, oa_poll_check_timer_cb, CLOCK_MONOTONIC,
3366 HRTIMER_MODE_REL);
3367 init_waitqueue_head(&stream->poll_wq);
3368 spin_lock_init(&stream->oa_buffer.ptr_lock);
3369 mutex_init(&stream->lock);
3370
3371 return 0;
3372
3373 err_enable:
3374 WRITE_ONCE(g->exclusive_stream, NULL);
3375 perf->ops.disable_metric_set(stream);
3376
3377 free_oa_buffer(stream);
3378
3379 err_oa_buf_alloc:
3380 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3381 intel_engine_pm_put(stream->engine);
3382
3383 free_oa_configs(stream);
3384
3385 err_config:
3386 free_noa_wait(stream);
3387
3388 err_noa_wait_alloc:
3389 if (stream->ctx)
3390 oa_put_render_ctx_id(stream);
3391
3392 return ret;
3393 }
3394
i915_oa_init_reg_state(const struct intel_context * ce,const struct intel_engine_cs * engine)3395 void i915_oa_init_reg_state(const struct intel_context *ce,
3396 const struct intel_engine_cs *engine)
3397 {
3398 struct i915_perf_stream *stream;
3399
3400 if (engine->class != RENDER_CLASS)
3401 return;
3402
3403 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3404 stream = READ_ONCE(engine->oa_group->exclusive_stream);
3405 if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3406 gen8_update_reg_state_unlocked(ce, stream);
3407 }
3408
3409 /**
3410 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3411 * @file: An i915 perf stream file
3412 * @buf: destination buffer given by userspace
3413 * @count: the number of bytes userspace wants to read
3414 * @ppos: (inout) file seek position (unused)
3415 *
3416 * The entry point for handling a read() on a stream file descriptor from
3417 * userspace. Most of the work is left to the i915_perf_read_locked() and
3418 * &i915_perf_stream_ops->read but to save having stream implementations (of
3419 * which we might have multiple later) we handle blocking read here.
3420 *
3421 * We can also consistently treat trying to read from a disabled stream
3422 * as an IO error so implementations can assume the stream is enabled
3423 * while reading.
3424 *
3425 * Returns: The number of bytes copied or a negative error code on failure.
3426 */
i915_perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3427 static ssize_t i915_perf_read(struct file *file,
3428 char __user *buf,
3429 size_t count,
3430 loff_t *ppos)
3431 {
3432 struct i915_perf_stream *stream = file->private_data;
3433 size_t offset = 0;
3434 int ret;
3435
3436 /* To ensure it's handled consistently we simply treat all reads of a
3437 * disabled stream as an error. In particular it might otherwise lead
3438 * to a deadlock for blocking file descriptors...
3439 */
3440 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3441 return -EIO;
3442
3443 if (!(file->f_flags & O_NONBLOCK)) {
3444 /* There's the small chance of false positives from
3445 * stream->ops->wait_unlocked.
3446 *
3447 * E.g. with single context filtering since we only wait until
3448 * oabuffer has >= 1 report we don't immediately know whether
3449 * any reports really belong to the current context
3450 */
3451 do {
3452 ret = stream->ops->wait_unlocked(stream);
3453 if (ret)
3454 return ret;
3455
3456 mutex_lock(&stream->lock);
3457 ret = stream->ops->read(stream, buf, count, &offset);
3458 mutex_unlock(&stream->lock);
3459 } while (!offset && !ret);
3460 } else {
3461 mutex_lock(&stream->lock);
3462 ret = stream->ops->read(stream, buf, count, &offset);
3463 mutex_unlock(&stream->lock);
3464 }
3465
3466 /* We allow the poll checking to sometimes report false positive EPOLLIN
3467 * events where we might actually report EAGAIN on read() if there's
3468 * not really any data available. In this situation though we don't
3469 * want to enter a busy loop between poll() reporting a EPOLLIN event
3470 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3471 * effectively ensures we back off until the next hrtimer callback
3472 * before reporting another EPOLLIN event.
3473 * The exception to this is if ops->read() returned -ENOSPC which means
3474 * that more OA data is available than could fit in the user provided
3475 * buffer. In this case we want the next poll() call to not block.
3476 */
3477 if (ret != -ENOSPC)
3478 stream->pollin = false;
3479
3480 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3481 return offset ?: (ret ?: -EAGAIN);
3482 }
3483
oa_poll_check_timer_cb(struct hrtimer * hrtimer)3484 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3485 {
3486 struct i915_perf_stream *stream =
3487 container_of(hrtimer, typeof(*stream), poll_check_timer);
3488
3489 if (oa_buffer_check_unlocked(stream)) {
3490 stream->pollin = true;
3491 wake_up(&stream->poll_wq);
3492 }
3493
3494 hrtimer_forward_now(hrtimer,
3495 ns_to_ktime(stream->poll_oa_period));
3496
3497 return HRTIMER_RESTART;
3498 }
3499
3500 /**
3501 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3502 * @stream: An i915 perf stream
3503 * @file: An i915 perf stream file
3504 * @wait: poll() state table
3505 *
3506 * For handling userspace polling on an i915 perf stream, this calls through to
3507 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3508 * will be woken for new stream data.
3509 *
3510 * Returns: any poll events that are ready without sleeping
3511 */
i915_perf_poll_locked(struct i915_perf_stream * stream,struct file * file,poll_table * wait)3512 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3513 struct file *file,
3514 poll_table *wait)
3515 {
3516 __poll_t events = 0;
3517
3518 stream->ops->poll_wait(stream, file, wait);
3519
3520 /* Note: we don't explicitly check whether there's something to read
3521 * here since this path may be very hot depending on what else
3522 * userspace is polling, or on the timeout in use. We rely solely on
3523 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3524 * samples to read.
3525 */
3526 if (stream->pollin)
3527 events |= EPOLLIN;
3528
3529 return events;
3530 }
3531
3532 /**
3533 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3534 * @file: An i915 perf stream file
3535 * @wait: poll() state table
3536 *
3537 * For handling userspace polling on an i915 perf stream, this ensures
3538 * poll_wait() gets called with a wait queue that will be woken for new stream
3539 * data.
3540 *
3541 * Note: Implementation deferred to i915_perf_poll_locked()
3542 *
3543 * Returns: any poll events that are ready without sleeping
3544 */
i915_perf_poll(struct file * file,poll_table * wait)3545 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3546 {
3547 struct i915_perf_stream *stream = file->private_data;
3548 __poll_t ret;
3549
3550 mutex_lock(&stream->lock);
3551 ret = i915_perf_poll_locked(stream, file, wait);
3552 mutex_unlock(&stream->lock);
3553
3554 return ret;
3555 }
3556
3557 /**
3558 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3559 * @stream: A disabled i915 perf stream
3560 *
3561 * [Re]enables the associated capture of data for this stream.
3562 *
3563 * If a stream was previously enabled then there's currently no intention
3564 * to provide userspace any guarantee about the preservation of previously
3565 * buffered data.
3566 */
i915_perf_enable_locked(struct i915_perf_stream * stream)3567 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3568 {
3569 if (stream->enabled)
3570 return;
3571
3572 /* Allow stream->ops->enable() to refer to this */
3573 stream->enabled = true;
3574
3575 if (stream->ops->enable)
3576 stream->ops->enable(stream);
3577
3578 if (stream->hold_preemption)
3579 intel_context_set_nopreempt(stream->pinned_ctx);
3580 }
3581
3582 /**
3583 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3584 * @stream: An enabled i915 perf stream
3585 *
3586 * Disables the associated capture of data for this stream.
3587 *
3588 * The intention is that disabling an re-enabling a stream will ideally be
3589 * cheaper than destroying and re-opening a stream with the same configuration,
3590 * though there are no formal guarantees about what state or buffered data
3591 * must be retained between disabling and re-enabling a stream.
3592 *
3593 * Note: while a stream is disabled it's considered an error for userspace
3594 * to attempt to read from the stream (-EIO).
3595 */
i915_perf_disable_locked(struct i915_perf_stream * stream)3596 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3597 {
3598 if (!stream->enabled)
3599 return;
3600
3601 /* Allow stream->ops->disable() to refer to this */
3602 stream->enabled = false;
3603
3604 if (stream->hold_preemption)
3605 intel_context_clear_nopreempt(stream->pinned_ctx);
3606
3607 if (stream->ops->disable)
3608 stream->ops->disable(stream);
3609 }
3610
i915_perf_config_locked(struct i915_perf_stream * stream,unsigned long metrics_set)3611 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3612 unsigned long metrics_set)
3613 {
3614 struct i915_oa_config *config;
3615 long ret = stream->oa_config->id;
3616
3617 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3618 if (!config)
3619 return -EINVAL;
3620
3621 if (config != stream->oa_config) {
3622 int err;
3623
3624 /*
3625 * If OA is bound to a specific context, emit the
3626 * reconfiguration inline from that context. The update
3627 * will then be ordered with respect to submission on that
3628 * context.
3629 *
3630 * When set globally, we use a low priority kernel context,
3631 * so it will effectively take effect when idle.
3632 */
3633 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3634 if (!err)
3635 config = xchg(&stream->oa_config, config);
3636 else
3637 ret = err;
3638 }
3639
3640 i915_oa_config_put(config);
3641
3642 return ret;
3643 }
3644
3645 /**
3646 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3647 * @stream: An i915 perf stream
3648 * @cmd: the ioctl request
3649 * @arg: the ioctl data
3650 *
3651 * Returns: zero on success or a negative error code. Returns -EINVAL for
3652 * an unknown ioctl request.
3653 */
i915_perf_ioctl_locked(struct i915_perf_stream * stream,unsigned int cmd,unsigned long arg)3654 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3655 unsigned int cmd,
3656 unsigned long arg)
3657 {
3658 switch (cmd) {
3659 case I915_PERF_IOCTL_ENABLE:
3660 i915_perf_enable_locked(stream);
3661 return 0;
3662 case I915_PERF_IOCTL_DISABLE:
3663 i915_perf_disable_locked(stream);
3664 return 0;
3665 case I915_PERF_IOCTL_CONFIG:
3666 return i915_perf_config_locked(stream, arg);
3667 }
3668
3669 return -EINVAL;
3670 }
3671
3672 /**
3673 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3674 * @file: An i915 perf stream file
3675 * @cmd: the ioctl request
3676 * @arg: the ioctl data
3677 *
3678 * Implementation deferred to i915_perf_ioctl_locked().
3679 *
3680 * Returns: zero on success or a negative error code. Returns -EINVAL for
3681 * an unknown ioctl request.
3682 */
i915_perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3683 static long i915_perf_ioctl(struct file *file,
3684 unsigned int cmd,
3685 unsigned long arg)
3686 {
3687 struct i915_perf_stream *stream = file->private_data;
3688 long ret;
3689
3690 mutex_lock(&stream->lock);
3691 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3692 mutex_unlock(&stream->lock);
3693
3694 return ret;
3695 }
3696
3697 /**
3698 * i915_perf_destroy_locked - destroy an i915 perf stream
3699 * @stream: An i915 perf stream
3700 *
3701 * Frees all resources associated with the given i915 perf @stream, disabling
3702 * any associated data capture in the process.
3703 *
3704 * Note: The >->perf.lock mutex has been taken to serialize
3705 * with any non-file-operation driver hooks.
3706 */
i915_perf_destroy_locked(struct i915_perf_stream * stream)3707 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3708 {
3709 if (stream->enabled)
3710 i915_perf_disable_locked(stream);
3711
3712 if (stream->ops->destroy)
3713 stream->ops->destroy(stream);
3714
3715 if (stream->ctx)
3716 i915_gem_context_put(stream->ctx);
3717
3718 kfree(stream);
3719 }
3720
3721 /**
3722 * i915_perf_release - handles userspace close() of a stream file
3723 * @inode: anonymous inode associated with file
3724 * @file: An i915 perf stream file
3725 *
3726 * Cleans up any resources associated with an open i915 perf stream file.
3727 *
3728 * NB: close() can't really fail from the userspace point of view.
3729 *
3730 * Returns: zero on success or a negative error code.
3731 */
i915_perf_release(struct inode * inode,struct file * file)3732 static int i915_perf_release(struct inode *inode, struct file *file)
3733 {
3734 struct i915_perf_stream *stream = file->private_data;
3735 struct i915_perf *perf = stream->perf;
3736 struct intel_gt *gt = stream->engine->gt;
3737
3738 /*
3739 * Within this call, we know that the fd is being closed and we have no
3740 * other user of stream->lock. Use the perf lock to destroy the stream
3741 * here.
3742 */
3743 mutex_lock(>->perf.lock);
3744 i915_perf_destroy_locked(stream);
3745 mutex_unlock(>->perf.lock);
3746
3747 /* Release the reference the perf stream kept on the driver. */
3748 drm_dev_put(&perf->i915->drm);
3749
3750 return 0;
3751 }
3752
3753
3754 static const struct file_operations fops = {
3755 .owner = THIS_MODULE,
3756 .release = i915_perf_release,
3757 .poll = i915_perf_poll,
3758 .read = i915_perf_read,
3759 .unlocked_ioctl = i915_perf_ioctl,
3760 /* Our ioctl have no arguments, so it's safe to use the same function
3761 * to handle 32bits compatibility.
3762 */
3763 .compat_ioctl = i915_perf_ioctl,
3764 };
3765
3766
3767 /**
3768 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3769 * @perf: i915 perf instance
3770 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3771 * @props: individually validated u64 property value pairs
3772 * @file: drm file
3773 *
3774 * See i915_perf_ioctl_open() for interface details.
3775 *
3776 * Implements further stream config validation and stream initialization on
3777 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex
3778 * taken to serialize with any non-file-operation driver hooks.
3779 *
3780 * Note: at this point the @props have only been validated in isolation and
3781 * it's still necessary to validate that the combination of properties makes
3782 * sense.
3783 *
3784 * In the case where userspace is interested in OA unit metrics then further
3785 * config validation and stream initialization details will be handled by
3786 * i915_oa_stream_init(). The code here should only validate config state that
3787 * will be relevant to all stream types / backends.
3788 *
3789 * Returns: zero on success or a negative error code.
3790 */
3791 static int
i915_perf_open_ioctl_locked(struct i915_perf * perf,struct drm_i915_perf_open_param * param,struct perf_open_properties * props,struct drm_file * file)3792 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3793 struct drm_i915_perf_open_param *param,
3794 struct perf_open_properties *props,
3795 struct drm_file *file)
3796 {
3797 struct i915_gem_context *specific_ctx = NULL;
3798 struct i915_perf_stream *stream = NULL;
3799 unsigned long f_flags = 0;
3800 bool privileged_op = true;
3801 int stream_fd;
3802 int ret;
3803
3804 if (props->single_context) {
3805 u32 ctx_handle = props->ctx_handle;
3806 struct drm_i915_file_private *file_priv = file->driver_priv;
3807
3808 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3809 if (IS_ERR(specific_ctx)) {
3810 drm_dbg(&perf->i915->drm,
3811 "Failed to look up context with ID %u for opening perf stream\n",
3812 ctx_handle);
3813 ret = PTR_ERR(specific_ctx);
3814 goto err;
3815 }
3816 }
3817
3818 /*
3819 * On Haswell the OA unit supports clock gating off for a specific
3820 * context and in this mode there's no visibility of metrics for the
3821 * rest of the system, which we consider acceptable for a
3822 * non-privileged client.
3823 *
3824 * For Gen8->11 the OA unit no longer supports clock gating off for a
3825 * specific context and the kernel can't securely stop the counters
3826 * from updating as system-wide / global values. Even though we can
3827 * filter reports based on the included context ID we can't block
3828 * clients from seeing the raw / global counter values via
3829 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3830 * enable the OA unit by default.
3831 *
3832 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3833 * per context basis. So we can relax requirements there if the user
3834 * doesn't request global stream access (i.e. query based sampling
3835 * using MI_RECORD_PERF_COUNT.
3836 */
3837 if (IS_HASWELL(perf->i915) && specific_ctx)
3838 privileged_op = false;
3839 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3840 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3841 privileged_op = false;
3842
3843 if (props->hold_preemption) {
3844 if (!props->single_context) {
3845 drm_dbg(&perf->i915->drm,
3846 "preemption disable with no context\n");
3847 ret = -EINVAL;
3848 goto err;
3849 }
3850 privileged_op = true;
3851 }
3852
3853 /*
3854 * Asking for SSEU configuration is a privileged operation.
3855 */
3856 if (props->has_sseu)
3857 privileged_op = true;
3858 else
3859 get_default_sseu_config(&props->sseu, props->engine);
3860
3861 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3862 * we check a dev.i915.perf_stream_paranoid sysctl option
3863 * to determine if it's ok to access system wide OA counters
3864 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3865 */
3866 if (privileged_op &&
3867 i915_perf_stream_paranoid && !perfmon_capable()) {
3868 drm_dbg(&perf->i915->drm,
3869 "Insufficient privileges to open i915 perf stream\n");
3870 ret = -EACCES;
3871 goto err_ctx;
3872 }
3873
3874 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3875 if (!stream) {
3876 ret = -ENOMEM;
3877 goto err_ctx;
3878 }
3879
3880 stream->perf = perf;
3881 stream->ctx = specific_ctx;
3882 stream->poll_oa_period = props->poll_oa_period;
3883
3884 ret = i915_oa_stream_init(stream, param, props);
3885 if (ret)
3886 goto err_alloc;
3887
3888 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3889 * to have _stream_init check the combination of sample flags more
3890 * thoroughly, but still this is the expected result at this point.
3891 */
3892 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3893 ret = -ENODEV;
3894 goto err_flags;
3895 }
3896
3897 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3898 f_flags |= O_CLOEXEC;
3899 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3900 f_flags |= O_NONBLOCK;
3901
3902 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3903 if (stream_fd < 0) {
3904 ret = stream_fd;
3905 goto err_flags;
3906 }
3907
3908 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3909 i915_perf_enable_locked(stream);
3910
3911 /* Take a reference on the driver that will be kept with stream_fd
3912 * until its release.
3913 */
3914 drm_dev_get(&perf->i915->drm);
3915
3916 return stream_fd;
3917
3918 err_flags:
3919 if (stream->ops->destroy)
3920 stream->ops->destroy(stream);
3921 err_alloc:
3922 kfree(stream);
3923 err_ctx:
3924 if (specific_ctx)
3925 i915_gem_context_put(specific_ctx);
3926 err:
3927 return ret;
3928 }
3929
oa_exponent_to_ns(struct i915_perf * perf,int exponent)3930 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3931 {
3932 u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3933 u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3934
3935 return div_u64(nom + den - 1, den);
3936 }
3937
3938 static __always_inline bool
oa_format_valid(struct i915_perf * perf,enum drm_i915_oa_format format)3939 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3940 {
3941 return test_bit(format, perf->format_mask);
3942 }
3943
3944 static __always_inline void
oa_format_add(struct i915_perf * perf,enum drm_i915_oa_format format)3945 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3946 {
3947 __set_bit(format, perf->format_mask);
3948 }
3949
3950 /**
3951 * read_properties_unlocked - validate + copy userspace stream open properties
3952 * @perf: i915 perf instance
3953 * @uprops: The array of u64 key value pairs given by userspace
3954 * @n_props: The number of key value pairs expected in @uprops
3955 * @props: The stream configuration built up while validating properties
3956 *
3957 * Note this function only validates properties in isolation it doesn't
3958 * validate that the combination of properties makes sense or that all
3959 * properties necessary for a particular kind of stream have been set.
3960 *
3961 * Note that there currently aren't any ordering requirements for properties so
3962 * we shouldn't validate or assume anything about ordering here. This doesn't
3963 * rule out defining new properties with ordering requirements in the future.
3964 */
read_properties_unlocked(struct i915_perf * perf,u64 __user * uprops,u32 n_props,struct perf_open_properties * props)3965 static int read_properties_unlocked(struct i915_perf *perf,
3966 u64 __user *uprops,
3967 u32 n_props,
3968 struct perf_open_properties *props)
3969 {
3970 struct drm_i915_gem_context_param_sseu user_sseu;
3971 const struct i915_oa_format *f;
3972 u64 __user *uprop = uprops;
3973 bool config_instance = false;
3974 bool config_class = false;
3975 bool config_sseu = false;
3976 u8 class, instance;
3977 u32 i;
3978 int ret;
3979
3980 memset(props, 0, sizeof(struct perf_open_properties));
3981 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3982
3983 /* Considering that ID = 0 is reserved and assuming that we don't
3984 * (currently) expect any configurations to ever specify duplicate
3985 * values for a particular property ID then the last _PROP_MAX value is
3986 * one greater than the maximum number of properties we expect to get
3987 * from userspace.
3988 */
3989 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
3990 drm_dbg(&perf->i915->drm,
3991 "Invalid number of i915 perf properties given\n");
3992 return -EINVAL;
3993 }
3994
3995 /* Defaults when class:instance is not passed */
3996 class = I915_ENGINE_CLASS_RENDER;
3997 instance = 0;
3998
3999 for (i = 0; i < n_props; i++) {
4000 u64 oa_period, oa_freq_hz;
4001 u64 id, value;
4002
4003 ret = get_user(id, uprop);
4004 if (ret)
4005 return ret;
4006
4007 ret = get_user(value, uprop + 1);
4008 if (ret)
4009 return ret;
4010
4011 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4012 drm_dbg(&perf->i915->drm,
4013 "Unknown i915 perf property ID\n");
4014 return -EINVAL;
4015 }
4016
4017 switch ((enum drm_i915_perf_property_id)id) {
4018 case DRM_I915_PERF_PROP_CTX_HANDLE:
4019 props->single_context = 1;
4020 props->ctx_handle = value;
4021 break;
4022 case DRM_I915_PERF_PROP_SAMPLE_OA:
4023 if (value)
4024 props->sample_flags |= SAMPLE_OA_REPORT;
4025 break;
4026 case DRM_I915_PERF_PROP_OA_METRICS_SET:
4027 if (value == 0) {
4028 drm_dbg(&perf->i915->drm,
4029 "Unknown OA metric set ID\n");
4030 return -EINVAL;
4031 }
4032 props->metrics_set = value;
4033 break;
4034 case DRM_I915_PERF_PROP_OA_FORMAT:
4035 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4036 drm_dbg(&perf->i915->drm,
4037 "Out-of-range OA report format %llu\n",
4038 value);
4039 return -EINVAL;
4040 }
4041 if (!oa_format_valid(perf, value)) {
4042 drm_dbg(&perf->i915->drm,
4043 "Unsupported OA report format %llu\n",
4044 value);
4045 return -EINVAL;
4046 }
4047 props->oa_format = value;
4048 break;
4049 case DRM_I915_PERF_PROP_OA_EXPONENT:
4050 if (value > OA_EXPONENT_MAX) {
4051 drm_dbg(&perf->i915->drm,
4052 "OA timer exponent too high (> %u)\n",
4053 OA_EXPONENT_MAX);
4054 return -EINVAL;
4055 }
4056
4057 /* Theoretically we can program the OA unit to sample
4058 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4059 * for BXT. We don't allow such high sampling
4060 * frequencies by default unless root.
4061 */
4062
4063 BUILD_BUG_ON(sizeof(oa_period) != 8);
4064 oa_period = oa_exponent_to_ns(perf, value);
4065
4066 /* This check is primarily to ensure that oa_period <=
4067 * UINT32_MAX (before passing to do_div which only
4068 * accepts a u32 denominator), but we can also skip
4069 * checking anything < 1Hz which implicitly can't be
4070 * limited via an integer oa_max_sample_rate.
4071 */
4072 if (oa_period <= NSEC_PER_SEC) {
4073 u64 tmp = NSEC_PER_SEC;
4074 do_div(tmp, oa_period);
4075 oa_freq_hz = tmp;
4076 } else
4077 oa_freq_hz = 0;
4078
4079 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4080 drm_dbg(&perf->i915->drm,
4081 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4082 i915_oa_max_sample_rate);
4083 return -EACCES;
4084 }
4085
4086 props->oa_periodic = true;
4087 props->oa_period_exponent = value;
4088 break;
4089 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4090 props->hold_preemption = !!value;
4091 break;
4092 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4093 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 55)) {
4094 drm_dbg(&perf->i915->drm,
4095 "SSEU config not supported on gfx %x\n",
4096 GRAPHICS_VER_FULL(perf->i915));
4097 return -ENODEV;
4098 }
4099
4100 if (copy_from_user(&user_sseu,
4101 u64_to_user_ptr(value),
4102 sizeof(user_sseu))) {
4103 drm_dbg(&perf->i915->drm,
4104 "Unable to copy global sseu parameter\n");
4105 return -EFAULT;
4106 }
4107 config_sseu = true;
4108 break;
4109 }
4110 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4111 if (value < 100000 /* 100us */) {
4112 drm_dbg(&perf->i915->drm,
4113 "OA availability timer too small (%lluns < 100us)\n",
4114 value);
4115 return -EINVAL;
4116 }
4117 props->poll_oa_period = value;
4118 break;
4119 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4120 class = (u8)value;
4121 config_class = true;
4122 break;
4123 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4124 instance = (u8)value;
4125 config_instance = true;
4126 break;
4127 default:
4128 MISSING_CASE(id);
4129 return -EINVAL;
4130 }
4131
4132 uprop += 2;
4133 }
4134
4135 if ((config_class && !config_instance) ||
4136 (config_instance && !config_class)) {
4137 drm_dbg(&perf->i915->drm,
4138 "OA engine-class and engine-instance parameters must be passed together\n");
4139 return -EINVAL;
4140 }
4141
4142 props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4143 if (!props->engine) {
4144 drm_dbg(&perf->i915->drm,
4145 "OA engine class and instance invalid %d:%d\n",
4146 class, instance);
4147 return -EINVAL;
4148 }
4149
4150 if (!engine_supports_oa(props->engine)) {
4151 drm_dbg(&perf->i915->drm,
4152 "Engine not supported by OA %d:%d\n",
4153 class, instance);
4154 return -EINVAL;
4155 }
4156
4157 /*
4158 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4159 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4160 * does not work as expected.
4161 */
4162 if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
4163 props->engine->oa_group->type == TYPE_OAM &&
4164 intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4165 drm_dbg(&perf->i915->drm,
4166 "OAM requires media C6 to be disabled in BIOS\n");
4167 return -EINVAL;
4168 }
4169
4170 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4171 f = &perf->oa_formats[i];
4172 if (!engine_supports_oa_format(props->engine, f->type)) {
4173 drm_dbg(&perf->i915->drm,
4174 "Invalid OA format %d for class %d\n",
4175 f->type, props->engine->class);
4176 return -EINVAL;
4177 }
4178
4179 if (config_sseu) {
4180 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4181 if (ret) {
4182 drm_dbg(&perf->i915->drm,
4183 "Invalid SSEU configuration\n");
4184 return ret;
4185 }
4186 props->has_sseu = true;
4187 }
4188
4189 return 0;
4190 }
4191
4192 /**
4193 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4194 * @dev: drm device
4195 * @data: ioctl data copied from userspace (unvalidated)
4196 * @file: drm file
4197 *
4198 * Validates the stream open parameters given by userspace including flags
4199 * and an array of u64 key, value pair properties.
4200 *
4201 * Very little is assumed up front about the nature of the stream being
4202 * opened (for instance we don't assume it's for periodic OA unit metrics). An
4203 * i915-perf stream is expected to be a suitable interface for other forms of
4204 * buffered data written by the GPU besides periodic OA metrics.
4205 *
4206 * Note we copy the properties from userspace outside of the i915 perf
4207 * mutex to avoid an awkward lockdep with mmap_lock.
4208 *
4209 * Most of the implementation details are handled by
4210 * i915_perf_open_ioctl_locked() after taking the >->perf.lock
4211 * mutex for serializing with any non-file-operation driver hooks.
4212 *
4213 * Return: A newly opened i915 Perf stream file descriptor or negative
4214 * error code on failure.
4215 */
i915_perf_open_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4216 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4217 struct drm_file *file)
4218 {
4219 struct i915_perf *perf = &to_i915(dev)->perf;
4220 struct drm_i915_perf_open_param *param = data;
4221 struct intel_gt *gt;
4222 struct perf_open_properties props;
4223 u32 known_open_flags;
4224 int ret;
4225
4226 if (!perf->i915)
4227 return -ENOTSUPP;
4228
4229 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4230 I915_PERF_FLAG_FD_NONBLOCK |
4231 I915_PERF_FLAG_DISABLED;
4232 if (param->flags & ~known_open_flags) {
4233 drm_dbg(&perf->i915->drm,
4234 "Unknown drm_i915_perf_open_param flag\n");
4235 return -EINVAL;
4236 }
4237
4238 ret = read_properties_unlocked(perf,
4239 u64_to_user_ptr(param->properties_ptr),
4240 param->num_properties,
4241 &props);
4242 if (ret)
4243 return ret;
4244
4245 gt = props.engine->gt;
4246
4247 mutex_lock(>->perf.lock);
4248 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4249 mutex_unlock(>->perf.lock);
4250
4251 return ret;
4252 }
4253
4254 /**
4255 * i915_perf_register - exposes i915-perf to userspace
4256 * @i915: i915 device instance
4257 *
4258 * In particular OA metric sets are advertised under a sysfs metrics/
4259 * directory allowing userspace to enumerate valid IDs that can be
4260 * used to open an i915-perf stream.
4261 */
i915_perf_register(struct drm_i915_private * i915)4262 void i915_perf_register(struct drm_i915_private *i915)
4263 {
4264 struct i915_perf *perf = &i915->perf;
4265 struct intel_gt *gt = to_gt(i915);
4266
4267 if (!perf->i915)
4268 return;
4269
4270 /* To be sure we're synchronized with an attempted
4271 * i915_perf_open_ioctl(); considering that we register after
4272 * being exposed to userspace.
4273 */
4274 mutex_lock(>->perf.lock);
4275
4276 perf->metrics_kobj =
4277 kobject_create_and_add("metrics",
4278 &i915->drm.primary->kdev->kobj);
4279
4280 mutex_unlock(>->perf.lock);
4281 }
4282
4283 /**
4284 * i915_perf_unregister - hide i915-perf from userspace
4285 * @i915: i915 device instance
4286 *
4287 * i915-perf state cleanup is split up into an 'unregister' and
4288 * 'deinit' phase where the interface is first hidden from
4289 * userspace by i915_perf_unregister() before cleaning up
4290 * remaining state in i915_perf_fini().
4291 */
i915_perf_unregister(struct drm_i915_private * i915)4292 void i915_perf_unregister(struct drm_i915_private *i915)
4293 {
4294 struct i915_perf *perf = &i915->perf;
4295
4296 if (!perf->metrics_kobj)
4297 return;
4298
4299 kobject_put(perf->metrics_kobj);
4300 perf->metrics_kobj = NULL;
4301 }
4302
gen8_is_valid_flex_addr(struct i915_perf * perf,u32 addr)4303 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4304 {
4305 static const i915_reg_t flex_eu_regs[] = {
4306 EU_PERF_CNTL0,
4307 EU_PERF_CNTL1,
4308 EU_PERF_CNTL2,
4309 EU_PERF_CNTL3,
4310 EU_PERF_CNTL4,
4311 EU_PERF_CNTL5,
4312 EU_PERF_CNTL6,
4313 };
4314 int i;
4315
4316 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4317 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4318 return true;
4319 }
4320 return false;
4321 }
4322
reg_in_range_table(u32 addr,const struct i915_range * table)4323 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4324 {
4325 while (table->start || table->end) {
4326 if (addr >= table->start && addr <= table->end)
4327 return true;
4328
4329 table++;
4330 }
4331
4332 return false;
4333 }
4334
4335 #define REG_EQUAL(addr, mmio) \
4336 ((addr) == i915_mmio_reg_offset(mmio))
4337
4338 static const struct i915_range gen7_oa_b_counters[] = {
4339 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */
4340 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */
4341 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */
4342 {}
4343 };
4344
4345 static const struct i915_range gen12_oa_b_counters[] = {
4346 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */
4347 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */
4348 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */
4349 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */
4350 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */
4351 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */
4352 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */
4353 {}
4354 };
4355
4356 static const struct i915_range mtl_oam_b_counters[] = {
4357 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */
4358 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */
4359 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */
4360 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */
4361 {}
4362 };
4363
4364 static const struct i915_range xehp_oa_b_counters[] = {
4365 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */
4366 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */
4367 {}
4368 };
4369
4370 static const struct i915_range gen7_oa_mux_regs[] = {
4371 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */
4372 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */
4373 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */
4374 {}
4375 };
4376
4377 static const struct i915_range hsw_oa_mux_regs[] = {
4378 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4379 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4380 { .start = 0x25100, .end = 0x2ff90 },
4381 {}
4382 };
4383
4384 static const struct i915_range chv_oa_mux_regs[] = {
4385 { .start = 0x182300, .end = 0x1823a4 },
4386 {}
4387 };
4388
4389 static const struct i915_range gen8_oa_mux_regs[] = {
4390 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4391 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4392 {}
4393 };
4394
4395 static const struct i915_range gen11_oa_mux_regs[] = {
4396 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */
4397 {}
4398 };
4399
4400 static const struct i915_range gen12_oa_mux_regs[] = {
4401 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4402 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4403 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4404 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4405 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4406 {}
4407 };
4408
4409 /*
4410 * Ref: 14010536224:
4411 * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4412 */
4413 static const struct i915_range mtl_oa_mux_regs[] = {
4414 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4415 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4416 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4417 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4418 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */
4419 {}
4420 };
4421
gen7_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)4422 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4423 {
4424 return reg_in_range_table(addr, gen7_oa_b_counters);
4425 }
4426
gen8_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4427 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4428 {
4429 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4430 reg_in_range_table(addr, gen8_oa_mux_regs);
4431 }
4432
gen11_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4433 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4434 {
4435 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4436 reg_in_range_table(addr, gen8_oa_mux_regs) ||
4437 reg_in_range_table(addr, gen11_oa_mux_regs);
4438 }
4439
hsw_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4440 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4441 {
4442 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4443 reg_in_range_table(addr, hsw_oa_mux_regs);
4444 }
4445
chv_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4446 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4447 {
4448 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4449 reg_in_range_table(addr, chv_oa_mux_regs);
4450 }
4451
gen12_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)4452 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4453 {
4454 return reg_in_range_table(addr, gen12_oa_b_counters);
4455 }
4456
mtl_is_valid_oam_b_counter_addr(struct i915_perf * perf,u32 addr)4457 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4458 {
4459 if (HAS_OAM(perf->i915) &&
4460 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4461 return reg_in_range_table(addr, mtl_oam_b_counters);
4462
4463 return false;
4464 }
4465
xehp_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)4466 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4467 {
4468 return reg_in_range_table(addr, xehp_oa_b_counters) ||
4469 reg_in_range_table(addr, gen12_oa_b_counters) ||
4470 mtl_is_valid_oam_b_counter_addr(perf, addr);
4471 }
4472
gen12_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4473 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4474 {
4475 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4476 return reg_in_range_table(addr, mtl_oa_mux_regs);
4477 else
4478 return reg_in_range_table(addr, gen12_oa_mux_regs);
4479 }
4480
mask_reg_value(u32 reg,u32 val)4481 static u32 mask_reg_value(u32 reg, u32 val)
4482 {
4483 /*
4484 * HALF_SLICE_CHICKEN2 is programmed with a the
4485 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4486 * programmed by userspace doesn't change this.
4487 */
4488 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4489 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4490
4491 /*
4492 * WAIT_FOR_RC6_EXIT has only one bit fulfilling the function
4493 * indicated by its name and a bunch of selection fields used by OA
4494 * configs.
4495 */
4496 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4497 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4498
4499 return val;
4500 }
4501
alloc_oa_regs(struct i915_perf * perf,bool (* is_valid)(struct i915_perf * perf,u32 addr),u32 __user * regs,u32 n_regs)4502 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4503 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4504 u32 __user *regs,
4505 u32 n_regs)
4506 {
4507 struct i915_oa_reg *oa_regs;
4508 int err;
4509 u32 i;
4510
4511 if (!n_regs)
4512 return NULL;
4513
4514 /* No is_valid function means we're not allowing any register to be programmed. */
4515 GEM_BUG_ON(!is_valid);
4516 if (!is_valid)
4517 return ERR_PTR(-EINVAL);
4518
4519 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4520 if (!oa_regs)
4521 return ERR_PTR(-ENOMEM);
4522
4523 for (i = 0; i < n_regs; i++) {
4524 u32 addr, value;
4525
4526 err = get_user(addr, regs);
4527 if (err)
4528 goto addr_err;
4529
4530 if (!is_valid(perf, addr)) {
4531 drm_dbg(&perf->i915->drm,
4532 "Invalid oa_reg address: %X\n", addr);
4533 err = -EINVAL;
4534 goto addr_err;
4535 }
4536
4537 err = get_user(value, regs + 1);
4538 if (err)
4539 goto addr_err;
4540
4541 oa_regs[i].addr = _MMIO(addr);
4542 oa_regs[i].value = mask_reg_value(addr, value);
4543
4544 regs += 2;
4545 }
4546
4547 return oa_regs;
4548
4549 addr_err:
4550 kfree(oa_regs);
4551 return ERR_PTR(err);
4552 }
4553
show_dynamic_id(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4554 static ssize_t show_dynamic_id(struct kobject *kobj,
4555 struct kobj_attribute *attr,
4556 char *buf)
4557 {
4558 struct i915_oa_config *oa_config =
4559 container_of(attr, typeof(*oa_config), sysfs_metric_id);
4560
4561 return sprintf(buf, "%d\n", oa_config->id);
4562 }
4563
create_dynamic_oa_sysfs_entry(struct i915_perf * perf,struct i915_oa_config * oa_config)4564 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4565 struct i915_oa_config *oa_config)
4566 {
4567 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4568 oa_config->sysfs_metric_id.attr.name = "id";
4569 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4570 oa_config->sysfs_metric_id.show = show_dynamic_id;
4571 oa_config->sysfs_metric_id.store = NULL;
4572
4573 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4574 oa_config->attrs[1] = NULL;
4575
4576 oa_config->sysfs_metric.name = oa_config->uuid;
4577 oa_config->sysfs_metric.attrs = oa_config->attrs;
4578
4579 return sysfs_create_group(perf->metrics_kobj,
4580 &oa_config->sysfs_metric);
4581 }
4582
4583 /**
4584 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4585 * @dev: drm device
4586 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4587 * userspace (unvalidated)
4588 * @file: drm file
4589 *
4590 * Validates the submitted OA register to be saved into a new OA config that
4591 * can then be used for programming the OA unit and its NOA network.
4592 *
4593 * Returns: A new allocated config number to be used with the perf open ioctl
4594 * or a negative error code on failure.
4595 */
i915_perf_add_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4596 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4597 struct drm_file *file)
4598 {
4599 struct i915_perf *perf = &to_i915(dev)->perf;
4600 struct drm_i915_perf_oa_config *args = data;
4601 struct i915_oa_config *oa_config, *tmp;
4602 struct i915_oa_reg *regs;
4603 int err, id;
4604
4605 if (!perf->i915)
4606 return -ENOTSUPP;
4607
4608 if (!perf->metrics_kobj) {
4609 drm_dbg(&perf->i915->drm,
4610 "OA metrics weren't advertised via sysfs\n");
4611 return -EINVAL;
4612 }
4613
4614 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4615 drm_dbg(&perf->i915->drm,
4616 "Insufficient privileges to add i915 OA config\n");
4617 return -EACCES;
4618 }
4619
4620 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4621 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4622 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4623 drm_dbg(&perf->i915->drm,
4624 "No OA registers given\n");
4625 return -EINVAL;
4626 }
4627
4628 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4629 if (!oa_config) {
4630 drm_dbg(&perf->i915->drm,
4631 "Failed to allocate memory for the OA config\n");
4632 return -ENOMEM;
4633 }
4634
4635 oa_config->perf = perf;
4636 kref_init(&oa_config->ref);
4637
4638 if (!uuid_is_valid(args->uuid)) {
4639 drm_dbg(&perf->i915->drm,
4640 "Invalid uuid format for OA config\n");
4641 err = -EINVAL;
4642 goto reg_err;
4643 }
4644
4645 /* Last character in oa_config->uuid will be 0 because oa_config is
4646 * kzalloc.
4647 */
4648 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4649
4650 oa_config->mux_regs_len = args->n_mux_regs;
4651 regs = alloc_oa_regs(perf,
4652 perf->ops.is_valid_mux_reg,
4653 u64_to_user_ptr(args->mux_regs_ptr),
4654 args->n_mux_regs);
4655
4656 if (IS_ERR(regs)) {
4657 drm_dbg(&perf->i915->drm,
4658 "Failed to create OA config for mux_regs\n");
4659 err = PTR_ERR(regs);
4660 goto reg_err;
4661 }
4662 oa_config->mux_regs = regs;
4663
4664 oa_config->b_counter_regs_len = args->n_boolean_regs;
4665 regs = alloc_oa_regs(perf,
4666 perf->ops.is_valid_b_counter_reg,
4667 u64_to_user_ptr(args->boolean_regs_ptr),
4668 args->n_boolean_regs);
4669
4670 if (IS_ERR(regs)) {
4671 drm_dbg(&perf->i915->drm,
4672 "Failed to create OA config for b_counter_regs\n");
4673 err = PTR_ERR(regs);
4674 goto reg_err;
4675 }
4676 oa_config->b_counter_regs = regs;
4677
4678 if (GRAPHICS_VER(perf->i915) < 8) {
4679 if (args->n_flex_regs != 0) {
4680 err = -EINVAL;
4681 goto reg_err;
4682 }
4683 } else {
4684 oa_config->flex_regs_len = args->n_flex_regs;
4685 regs = alloc_oa_regs(perf,
4686 perf->ops.is_valid_flex_reg,
4687 u64_to_user_ptr(args->flex_regs_ptr),
4688 args->n_flex_regs);
4689
4690 if (IS_ERR(regs)) {
4691 drm_dbg(&perf->i915->drm,
4692 "Failed to create OA config for flex_regs\n");
4693 err = PTR_ERR(regs);
4694 goto reg_err;
4695 }
4696 oa_config->flex_regs = regs;
4697 }
4698
4699 err = mutex_lock_interruptible(&perf->metrics_lock);
4700 if (err)
4701 goto reg_err;
4702
4703 /* We shouldn't have too many configs, so this iteration shouldn't be
4704 * too costly.
4705 */
4706 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4707 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4708 drm_dbg(&perf->i915->drm,
4709 "OA config already exists with this uuid\n");
4710 err = -EADDRINUSE;
4711 goto sysfs_err;
4712 }
4713 }
4714
4715 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4716 if (err) {
4717 drm_dbg(&perf->i915->drm,
4718 "Failed to create sysfs entry for OA config\n");
4719 goto sysfs_err;
4720 }
4721
4722 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4723 oa_config->id = idr_alloc(&perf->metrics_idr,
4724 oa_config, 2,
4725 0, GFP_KERNEL);
4726 if (oa_config->id < 0) {
4727 drm_dbg(&perf->i915->drm,
4728 "Failed to create sysfs entry for OA config\n");
4729 err = oa_config->id;
4730 goto sysfs_err;
4731 }
4732 id = oa_config->id;
4733
4734 drm_dbg(&perf->i915->drm,
4735 "Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4736 mutex_unlock(&perf->metrics_lock);
4737
4738 return id;
4739
4740 sysfs_err:
4741 mutex_unlock(&perf->metrics_lock);
4742 reg_err:
4743 i915_oa_config_put(oa_config);
4744 drm_dbg(&perf->i915->drm,
4745 "Failed to add new OA config\n");
4746 return err;
4747 }
4748
4749 /**
4750 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4751 * @dev: drm device
4752 * @data: ioctl data (pointer to u64 integer) copied from userspace
4753 * @file: drm file
4754 *
4755 * Configs can be removed while being used, the will stop appearing in sysfs
4756 * and their content will be freed when the stream using the config is closed.
4757 *
4758 * Returns: 0 on success or a negative error code on failure.
4759 */
i915_perf_remove_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4760 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4761 struct drm_file *file)
4762 {
4763 struct i915_perf *perf = &to_i915(dev)->perf;
4764 u64 *arg = data;
4765 struct i915_oa_config *oa_config;
4766 int ret;
4767
4768 if (!perf->i915)
4769 return -ENOTSUPP;
4770
4771 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4772 drm_dbg(&perf->i915->drm,
4773 "Insufficient privileges to remove i915 OA config\n");
4774 return -EACCES;
4775 }
4776
4777 ret = mutex_lock_interruptible(&perf->metrics_lock);
4778 if (ret)
4779 return ret;
4780
4781 oa_config = idr_find(&perf->metrics_idr, *arg);
4782 if (!oa_config) {
4783 drm_dbg(&perf->i915->drm,
4784 "Failed to remove unknown OA config\n");
4785 ret = -ENOENT;
4786 goto err_unlock;
4787 }
4788
4789 GEM_BUG_ON(*arg != oa_config->id);
4790
4791 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4792
4793 idr_remove(&perf->metrics_idr, *arg);
4794
4795 mutex_unlock(&perf->metrics_lock);
4796
4797 drm_dbg(&perf->i915->drm,
4798 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4799
4800 i915_oa_config_put(oa_config);
4801
4802 return 0;
4803
4804 err_unlock:
4805 mutex_unlock(&perf->metrics_lock);
4806 return ret;
4807 }
4808
4809 static const struct ctl_table oa_table[] = {
4810 {
4811 .procname = "perf_stream_paranoid",
4812 .data = &i915_perf_stream_paranoid,
4813 .maxlen = sizeof(i915_perf_stream_paranoid),
4814 .mode = 0644,
4815 .proc_handler = proc_dointvec_minmax,
4816 .extra1 = SYSCTL_ZERO,
4817 .extra2 = SYSCTL_ONE,
4818 },
4819 {
4820 .procname = "oa_max_sample_rate",
4821 .data = &i915_oa_max_sample_rate,
4822 .maxlen = sizeof(i915_oa_max_sample_rate),
4823 .mode = 0644,
4824 .proc_handler = proc_dointvec_minmax,
4825 .extra1 = SYSCTL_ZERO,
4826 .extra2 = &oa_sample_rate_hard_limit,
4827 },
4828 };
4829
num_perf_groups_per_gt(struct intel_gt * gt)4830 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4831 {
4832 return 1;
4833 }
4834
__oam_engine_group(struct intel_engine_cs * engine)4835 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4836 {
4837 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4838 /*
4839 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4840 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4841 */
4842 drm_WARN_ON(&engine->i915->drm,
4843 engine->gt->type != GT_MEDIA);
4844
4845 return PERF_GROUP_OAM_SAMEDIA_0;
4846 }
4847
4848 return PERF_GROUP_INVALID;
4849 }
4850
__oa_engine_group(struct intel_engine_cs * engine)4851 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4852 {
4853 switch (engine->class) {
4854 case RENDER_CLASS:
4855 return PERF_GROUP_OAG;
4856
4857 case VIDEO_DECODE_CLASS:
4858 case VIDEO_ENHANCEMENT_CLASS:
4859 return __oam_engine_group(engine);
4860
4861 default:
4862 return PERF_GROUP_INVALID;
4863 }
4864 }
4865
__oam_regs(u32 base)4866 static struct i915_perf_regs __oam_regs(u32 base)
4867 {
4868 return (struct i915_perf_regs) {
4869 base,
4870 GEN12_OAM_HEAD_POINTER(base),
4871 GEN12_OAM_TAIL_POINTER(base),
4872 GEN12_OAM_BUFFER(base),
4873 GEN12_OAM_CONTEXT_CONTROL(base),
4874 GEN12_OAM_CONTROL(base),
4875 GEN12_OAM_DEBUG(base),
4876 GEN12_OAM_STATUS(base),
4877 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4878 };
4879 }
4880
__oag_regs(void)4881 static struct i915_perf_regs __oag_regs(void)
4882 {
4883 return (struct i915_perf_regs) {
4884 0,
4885 GEN12_OAG_OAHEADPTR,
4886 GEN12_OAG_OATAILPTR,
4887 GEN12_OAG_OABUFFER,
4888 GEN12_OAG_OAGLBCTXCTRL,
4889 GEN12_OAG_OACONTROL,
4890 GEN12_OAG_OA_DEBUG,
4891 GEN12_OAG_OASTATUS,
4892 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4893 };
4894 }
4895
oa_init_groups(struct intel_gt * gt)4896 static void oa_init_groups(struct intel_gt *gt)
4897 {
4898 int i, num_groups = gt->perf.num_perf_groups;
4899
4900 for (i = 0; i < num_groups; i++) {
4901 struct i915_perf_group *g = >->perf.group[i];
4902
4903 /* Fused off engines can result in a group with num_engines == 0 */
4904 if (g->num_engines == 0)
4905 continue;
4906
4907 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4908 g->regs = __oag_regs();
4909 g->type = TYPE_OAG;
4910 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4911 g->regs = __oam_regs(mtl_oa_base[i]);
4912 g->type = TYPE_OAM;
4913 }
4914 }
4915 }
4916
oa_init_gt(struct intel_gt * gt)4917 static int oa_init_gt(struct intel_gt *gt)
4918 {
4919 u32 num_groups = num_perf_groups_per_gt(gt);
4920 struct intel_engine_cs *engine;
4921 struct i915_perf_group *g;
4922 intel_engine_mask_t tmp;
4923
4924 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4925 if (!g)
4926 return -ENOMEM;
4927
4928 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4929 u32 index = __oa_engine_group(engine);
4930
4931 engine->oa_group = NULL;
4932 if (index < num_groups) {
4933 g[index].num_engines++;
4934 engine->oa_group = &g[index];
4935 }
4936 }
4937
4938 gt->perf.num_perf_groups = num_groups;
4939 gt->perf.group = g;
4940
4941 oa_init_groups(gt);
4942
4943 return 0;
4944 }
4945
oa_init_engine_groups(struct i915_perf * perf)4946 static int oa_init_engine_groups(struct i915_perf *perf)
4947 {
4948 struct intel_gt *gt;
4949 int i, ret;
4950
4951 for_each_gt(gt, perf->i915, i) {
4952 ret = oa_init_gt(gt);
4953 if (ret)
4954 return ret;
4955 }
4956
4957 return 0;
4958 }
4959
oa_init_supported_formats(struct i915_perf * perf)4960 static void oa_init_supported_formats(struct i915_perf *perf)
4961 {
4962 struct drm_i915_private *i915 = perf->i915;
4963 enum intel_platform platform = INTEL_INFO(i915)->platform;
4964
4965 switch (platform) {
4966 case INTEL_HASWELL:
4967 oa_format_add(perf, I915_OA_FORMAT_A13);
4968 oa_format_add(perf, I915_OA_FORMAT_A13);
4969 oa_format_add(perf, I915_OA_FORMAT_A29);
4970 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4971 oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4972 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4973 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4974 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4975 break;
4976
4977 case INTEL_BROADWELL:
4978 case INTEL_CHERRYVIEW:
4979 case INTEL_SKYLAKE:
4980 case INTEL_BROXTON:
4981 case INTEL_KABYLAKE:
4982 case INTEL_GEMINILAKE:
4983 case INTEL_COFFEELAKE:
4984 case INTEL_COMETLAKE:
4985 case INTEL_ICELAKE:
4986 case INTEL_ELKHARTLAKE:
4987 case INTEL_JASPERLAKE:
4988 case INTEL_TIGERLAKE:
4989 case INTEL_ROCKETLAKE:
4990 case INTEL_DG1:
4991 case INTEL_ALDERLAKE_S:
4992 case INTEL_ALDERLAKE_P:
4993 oa_format_add(perf, I915_OA_FORMAT_A12);
4994 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4995 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4996 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4997 break;
4998
4999 case INTEL_DG2:
5000 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5001 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5002 break;
5003
5004 case INTEL_METEORLAKE:
5005 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5006 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5007 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5008 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5009 break;
5010
5011 default:
5012 MISSING_CASE(platform);
5013 }
5014 }
5015
i915_perf_init_info(struct drm_i915_private * i915)5016 static void i915_perf_init_info(struct drm_i915_private *i915)
5017 {
5018 struct i915_perf *perf = &i915->perf;
5019
5020 switch (GRAPHICS_VER(i915)) {
5021 case 8:
5022 perf->ctx_oactxctrl_offset = 0x120;
5023 perf->ctx_flexeu0_offset = 0x2ce;
5024 perf->gen8_valid_ctx_bit = BIT(25);
5025 break;
5026 case 9:
5027 perf->ctx_oactxctrl_offset = 0x128;
5028 perf->ctx_flexeu0_offset = 0x3de;
5029 perf->gen8_valid_ctx_bit = BIT(16);
5030 break;
5031 case 11:
5032 perf->ctx_oactxctrl_offset = 0x124;
5033 perf->ctx_flexeu0_offset = 0x78e;
5034 perf->gen8_valid_ctx_bit = BIT(16);
5035 break;
5036 case 12:
5037 perf->gen8_valid_ctx_bit = BIT(16);
5038 /*
5039 * Calculate offset at runtime in oa_pin_context for gen12 and
5040 * cache the value in perf->ctx_oactxctrl_offset.
5041 */
5042 break;
5043 default:
5044 MISSING_CASE(GRAPHICS_VER(i915));
5045 }
5046 }
5047
5048 /**
5049 * i915_perf_init - initialize i915-perf state on module bind
5050 * @i915: i915 device instance
5051 *
5052 * Initializes i915-perf state without exposing anything to userspace.
5053 *
5054 * Note: i915-perf initialization is split into an 'init' and 'register'
5055 * phase with the i915_perf_register() exposing state to userspace.
5056 */
i915_perf_init(struct drm_i915_private * i915)5057 int i915_perf_init(struct drm_i915_private *i915)
5058 {
5059 struct i915_perf *perf = &i915->perf;
5060
5061 perf->oa_formats = oa_formats;
5062 if (IS_HASWELL(i915)) {
5063 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5064 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5065 perf->ops.is_valid_flex_reg = NULL;
5066 perf->ops.enable_metric_set = hsw_enable_metric_set;
5067 perf->ops.disable_metric_set = hsw_disable_metric_set;
5068 perf->ops.oa_enable = gen7_oa_enable;
5069 perf->ops.oa_disable = gen7_oa_disable;
5070 perf->ops.read = gen7_oa_read;
5071 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5072 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5073 /* Note: that although we could theoretically also support the
5074 * legacy ringbuffer mode on BDW (and earlier iterations of
5075 * this driver, before upstreaming did this) it didn't seem
5076 * worth the complexity to maintain now that BDW+ enable
5077 * execlist mode by default.
5078 */
5079 perf->ops.read = gen8_oa_read;
5080 i915_perf_init_info(i915);
5081
5082 if (IS_GRAPHICS_VER(i915, 8, 9)) {
5083 perf->ops.is_valid_b_counter_reg =
5084 gen7_is_valid_b_counter_addr;
5085 perf->ops.is_valid_mux_reg =
5086 gen8_is_valid_mux_addr;
5087 perf->ops.is_valid_flex_reg =
5088 gen8_is_valid_flex_addr;
5089
5090 if (IS_CHERRYVIEW(i915)) {
5091 perf->ops.is_valid_mux_reg =
5092 chv_is_valid_mux_addr;
5093 }
5094
5095 perf->ops.oa_enable = gen8_oa_enable;
5096 perf->ops.oa_disable = gen8_oa_disable;
5097 perf->ops.enable_metric_set = gen8_enable_metric_set;
5098 perf->ops.disable_metric_set = gen8_disable_metric_set;
5099 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5100 } else if (GRAPHICS_VER(i915) == 11) {
5101 perf->ops.is_valid_b_counter_reg =
5102 gen7_is_valid_b_counter_addr;
5103 perf->ops.is_valid_mux_reg =
5104 gen11_is_valid_mux_addr;
5105 perf->ops.is_valid_flex_reg =
5106 gen8_is_valid_flex_addr;
5107
5108 perf->ops.oa_enable = gen8_oa_enable;
5109 perf->ops.oa_disable = gen8_oa_disable;
5110 perf->ops.enable_metric_set = gen8_enable_metric_set;
5111 perf->ops.disable_metric_set = gen11_disable_metric_set;
5112 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5113 } else if (GRAPHICS_VER(i915) == 12) {
5114 perf->ops.is_valid_b_counter_reg =
5115 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5116 xehp_is_valid_b_counter_addr :
5117 gen12_is_valid_b_counter_addr;
5118 perf->ops.is_valid_mux_reg =
5119 gen12_is_valid_mux_addr;
5120 perf->ops.is_valid_flex_reg =
5121 gen8_is_valid_flex_addr;
5122
5123 perf->ops.oa_enable = gen12_oa_enable;
5124 perf->ops.oa_disable = gen12_oa_disable;
5125 perf->ops.enable_metric_set = gen12_enable_metric_set;
5126 perf->ops.disable_metric_set = gen12_disable_metric_set;
5127 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5128 }
5129 }
5130
5131 if (perf->ops.enable_metric_set) {
5132 struct intel_gt *gt;
5133 int i, ret;
5134
5135 for_each_gt(gt, i915, i)
5136 mutex_init(>->perf.lock);
5137
5138 /* Choose a representative limit */
5139 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5140
5141 mutex_init(&perf->metrics_lock);
5142 idr_init_base(&perf->metrics_idr, 1);
5143
5144 /* We set up some ratelimit state to potentially throttle any
5145 * _NOTES about spurious, invalid OA reports which we don't
5146 * forward to userspace.
5147 *
5148 * We print a _NOTE about any throttling when closing the
5149 * stream instead of waiting until driver _fini which no one
5150 * would ever see.
5151 *
5152 * Using the same limiting factors as printk_ratelimit()
5153 */
5154 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5155 /* Since we use a DRM_NOTE for spurious reports it would be
5156 * inconsistent to let __ratelimit() automatically print a
5157 * warning for throttling.
5158 */
5159 ratelimit_set_flags(&perf->spurious_report_rs,
5160 RATELIMIT_MSG_ON_RELEASE);
5161
5162 ratelimit_state_init(&perf->tail_pointer_race,
5163 5 * HZ, 10);
5164 ratelimit_set_flags(&perf->tail_pointer_race,
5165 RATELIMIT_MSG_ON_RELEASE);
5166
5167 atomic64_set(&perf->noa_programming_delay,
5168 500 * 1000 /* 500us */);
5169
5170 perf->i915 = i915;
5171
5172 ret = oa_init_engine_groups(perf);
5173 if (ret) {
5174 drm_err(&i915->drm,
5175 "OA initialization failed %d\n", ret);
5176 return ret;
5177 }
5178
5179 oa_init_supported_formats(perf);
5180 }
5181
5182 return 0;
5183 }
5184
destroy_config(int id,void * p,void * data)5185 static int destroy_config(int id, void *p, void *data)
5186 {
5187 i915_oa_config_put(p);
5188 return 0;
5189 }
5190
i915_perf_sysctl_register(void)5191 int i915_perf_sysctl_register(void)
5192 {
5193 sysctl_header = register_sysctl("dev/i915", oa_table);
5194 return 0;
5195 }
5196
i915_perf_sysctl_unregister(void)5197 void i915_perf_sysctl_unregister(void)
5198 {
5199 unregister_sysctl_table(sysctl_header);
5200 }
5201
5202 /**
5203 * i915_perf_fini - Counter part to i915_perf_init()
5204 * @i915: i915 device instance
5205 */
i915_perf_fini(struct drm_i915_private * i915)5206 void i915_perf_fini(struct drm_i915_private *i915)
5207 {
5208 struct i915_perf *perf = &i915->perf;
5209 struct intel_gt *gt;
5210 int i;
5211
5212 if (!perf->i915)
5213 return;
5214
5215 for_each_gt(gt, perf->i915, i)
5216 kfree(gt->perf.group);
5217
5218 idr_for_each(&perf->metrics_idr, destroy_config, perf);
5219 idr_destroy(&perf->metrics_idr);
5220
5221 memset(&perf->ops, 0, sizeof(perf->ops));
5222 perf->i915 = NULL;
5223 }
5224
5225 /**
5226 * i915_perf_ioctl_version - Version of the i915-perf subsystem
5227 * @i915: The i915 device
5228 *
5229 * This version number is used by userspace to detect available features.
5230 */
i915_perf_ioctl_version(struct drm_i915_private * i915)5231 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5232 {
5233 /*
5234 * 1: Initial version
5235 * I915_PERF_IOCTL_ENABLE
5236 * I915_PERF_IOCTL_DISABLE
5237 *
5238 * 2: Added runtime modification of OA config.
5239 * I915_PERF_IOCTL_CONFIG
5240 *
5241 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5242 * preemption on a particular context so that performance data is
5243 * accessible from a delta of MI_RPC reports without looking at the
5244 * OA buffer.
5245 *
5246 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5247 * be run for the duration of the performance recording based on
5248 * their SSEU configuration.
5249 *
5250 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5251 * interval for the hrtimer used to check for OA data.
5252 *
5253 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5254 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5255 *
5256 * 7: Add support for video decode and enhancement classes.
5257 */
5258
5259 /*
5260 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5261 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5262 * to indicate that OA media is not supported.
5263 */
5264 if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
5265 intel_check_bios_c6_setup(&i915->media_gt->rc6))
5266 return 6;
5267
5268 return 7;
5269 }
5270
5271 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5272 #include "selftests/i915_perf.c"
5273 #endif
5274