1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2015, 2017 by Delphix. All rights reserved.
25 * Copyright 2018 RackTop Systems.
26 */
27
28 /*
29 * Links to Illumos.org for more information on Interface Libraries:
30 * [1] https://illumos.org/man/3lib/libnvpair
31 * [2] https://illumos.org/man/3nvpair/nvlist_alloc
32 * [3] https://illumos.org/man/9f/nvlist_alloc
33 * [4] https://illumos.org/man/9f/nvlist_next_nvpair
34 * [5] https://illumos.org/man/9f/nvpair_value_byte
35 */
36
37 #include <sys/debug.h>
38 #include <sys/isa_defs.h>
39 #include <sys/nvpair.h>
40 #include <sys/nvpair_impl.h>
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/string.h>
44 #include <rpc/types.h>
45 #include <rpc/xdr.h>
46 #include <sys/mod.h>
47
48 #if defined(_KERNEL)
49 #include <sys/sunddi.h>
50 #include <sys/sysmacros.h>
51 #else
52 #include <stdarg.h>
53 #include <stdlib.h>
54 #include <stddef.h>
55 #endif
56
57 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) (p)++
58
59 /*
60 * nvpair.c - Provides kernel & userland interfaces for manipulating
61 * name-value pairs.
62 *
63 * Overview Diagram
64 *
65 * +--------------+
66 * | nvlist_t |
67 * |--------------|
68 * | nvl_version |
69 * | nvl_nvflag |
70 * | nvl_priv -+-+
71 * | nvl_flag | |
72 * | nvl_pad | |
73 * +--------------+ |
74 * V
75 * +--------------+ last i_nvp in list
76 * | nvpriv_t | +--------------------->
77 * |--------------| |
78 * +--+- nvp_list | | +------------+
79 * | | nvp_last -+--+ + nv_alloc_t |
80 * | | nvp_curr | |------------|
81 * | | nvp_nva -+----> | nva_ops |
82 * | | nvp_stat | | nva_arg |
83 * | +--------------+ +------------+
84 * |
85 * +-------+
86 * V
87 * +---------------------+ +-------------------+
88 * | i_nvp_t | +-->| i_nvp_t | +-->
89 * |---------------------| | |-------------------| |
90 * | nvi_next -+--+ | nvi_next -+--+
91 * | nvi_prev (NULL) | <----+ nvi_prev |
92 * | . . . . . . . . . . | | . . . . . . . . . |
93 * | nvp (nvpair_t) | | nvp (nvpair_t) |
94 * | - nvp_size | | - nvp_size |
95 * | - nvp_name_sz | | - nvp_name_sz |
96 * | - nvp_value_elem | | - nvp_value_elem |
97 * | - nvp_type | | - nvp_type |
98 * | - data ... | | - data ... |
99 * +---------------------+ +-------------------+
100 *
101 *
102 *
103 * +---------------------+ +---------------------+
104 * | i_nvp_t | +--> +-->| i_nvp_t (last) |
105 * |---------------------| | | |---------------------|
106 * | nvi_next -+--+ ... --+ | nvi_next (NULL) |
107 * <-+- nvi_prev |<-- ... <----+ nvi_prev |
108 * | . . . . . . . . . | | . . . . . . . . . |
109 * | nvp (nvpair_t) | | nvp (nvpair_t) |
110 * | - nvp_size | | - nvp_size |
111 * | - nvp_name_sz | | - nvp_name_sz |
112 * | - nvp_value_elem | | - nvp_value_elem |
113 * | - DATA_TYPE_NVLIST | | - nvp_type |
114 * | - data (embedded) | | - data ... |
115 * | nvlist name | +---------------------+
116 * | +--------------+ |
117 * | | nvlist_t | |
118 * | |--------------| |
119 * | | nvl_version | |
120 * | | nvl_nvflag | |
121 * | | nvl_priv --+---+---->
122 * | | nvl_flag | |
123 * | | nvl_pad | |
124 * | +--------------+ |
125 * +---------------------+
126 *
127 *
128 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
129 * allow value to be aligned on 8 byte boundary
130 *
131 * name_len is the length of the name string including the null terminator
132 * so it must be >= 1
133 */
134 #define NVP_SIZE_CALC(name_len, data_len) \
135 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
136
137 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
138 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
139 uint_t nelem, const void *data);
140
141 #define NV_STAT_EMBEDDED 0x1
142 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp))
143 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
144
145 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
146 #define NVPAIR2I_NVP(nvp) \
147 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
148
149 #ifdef _KERNEL
150 static const int nvpair_max_recursion = 20;
151 #else
152 static const int nvpair_max_recursion = 100;
153 #endif
154
155 static const uint64_t nvlist_hashtable_init_size = (1 << 4);
156
157 int
nv_alloc_init(nv_alloc_t * nva,const nv_alloc_ops_t * nvo,...)158 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
159 {
160 va_list valist;
161 int err = 0;
162
163 nva->nva_ops = nvo;
164 nva->nva_arg = NULL;
165
166 va_start(valist, nvo);
167 if (nva->nva_ops->nv_ao_init != NULL)
168 err = nva->nva_ops->nv_ao_init(nva, valist);
169 va_end(valist);
170
171 return (err);
172 }
173
174 void
nv_alloc_reset(nv_alloc_t * nva)175 nv_alloc_reset(nv_alloc_t *nva)
176 {
177 if (nva->nva_ops->nv_ao_reset != NULL)
178 nva->nva_ops->nv_ao_reset(nva);
179 }
180
181 void
nv_alloc_fini(nv_alloc_t * nva)182 nv_alloc_fini(nv_alloc_t *nva)
183 {
184 if (nva->nva_ops->nv_ao_fini != NULL)
185 nva->nva_ops->nv_ao_fini(nva);
186 }
187
188 nv_alloc_t *
nvlist_lookup_nv_alloc(nvlist_t * nvl)189 nvlist_lookup_nv_alloc(nvlist_t *nvl)
190 {
191 nvpriv_t *priv;
192
193 if (nvl == NULL ||
194 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
195 return (NULL);
196
197 return (priv->nvp_nva);
198 }
199
200 static void *
nv_mem_zalloc(nvpriv_t * nvp,size_t size)201 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
202 {
203 nv_alloc_t *nva = nvp->nvp_nva;
204 void *buf;
205
206 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
207 memset(buf, 0, size);
208
209 return (buf);
210 }
211
212 static void
nv_mem_free(nvpriv_t * nvp,void * buf,size_t size)213 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
214 {
215 nv_alloc_t *nva = nvp->nvp_nva;
216
217 nva->nva_ops->nv_ao_free(nva, buf, size);
218 }
219
220 static void
nv_priv_init(nvpriv_t * priv,nv_alloc_t * nva,uint32_t stat)221 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
222 {
223 memset(priv, 0, sizeof (nvpriv_t));
224
225 priv->nvp_nva = nva;
226 priv->nvp_stat = stat;
227 }
228
229 static nvpriv_t *
nv_priv_alloc(nv_alloc_t * nva)230 nv_priv_alloc(nv_alloc_t *nva)
231 {
232 nvpriv_t *priv;
233
234 /*
235 * nv_mem_alloc() cannot called here because it needs the priv
236 * argument.
237 */
238 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
239 return (NULL);
240
241 nv_priv_init(priv, nva, 0);
242
243 return (priv);
244 }
245
246 /*
247 * Embedded lists need their own nvpriv_t's. We create a new
248 * nvpriv_t using the parameters and allocator from the parent
249 * list's nvpriv_t.
250 */
251 static nvpriv_t *
nv_priv_alloc_embedded(nvpriv_t * priv)252 nv_priv_alloc_embedded(nvpriv_t *priv)
253 {
254 nvpriv_t *emb_priv;
255
256 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
257 return (NULL);
258
259 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
260
261 return (emb_priv);
262 }
263
264 static int
nvt_tab_alloc(nvpriv_t * priv,uint64_t buckets)265 nvt_tab_alloc(nvpriv_t *priv, uint64_t buckets)
266 {
267 ASSERT3P(priv->nvp_hashtable, ==, NULL);
268 ASSERT0(priv->nvp_nbuckets);
269 ASSERT0(priv->nvp_nentries);
270
271 i_nvp_t **tab = nv_mem_zalloc(priv, buckets * sizeof (i_nvp_t *));
272 if (tab == NULL)
273 return (ENOMEM);
274
275 priv->nvp_hashtable = tab;
276 priv->nvp_nbuckets = buckets;
277 return (0);
278 }
279
280 static void
nvt_tab_free(nvpriv_t * priv)281 nvt_tab_free(nvpriv_t *priv)
282 {
283 i_nvp_t **tab = priv->nvp_hashtable;
284 if (tab == NULL) {
285 ASSERT0(priv->nvp_nbuckets);
286 ASSERT0(priv->nvp_nentries);
287 return;
288 }
289
290 nv_mem_free(priv, tab, priv->nvp_nbuckets * sizeof (i_nvp_t *));
291
292 priv->nvp_hashtable = NULL;
293 priv->nvp_nbuckets = 0;
294 priv->nvp_nentries = 0;
295 }
296
297 static uint32_t
nvt_hash(const char * p)298 nvt_hash(const char *p)
299 {
300 uint32_t g, hval = 0;
301
302 while (*p) {
303 hval = (hval << 4) + *p++;
304 if ((g = (hval & 0xf0000000)) != 0)
305 hval ^= g >> 24;
306 hval &= ~g;
307 }
308 return (hval);
309 }
310
311 static boolean_t
nvt_nvpair_match(const nvpair_t * nvp1,const nvpair_t * nvp2,uint32_t nvflag)312 nvt_nvpair_match(const nvpair_t *nvp1, const nvpair_t *nvp2, uint32_t nvflag)
313 {
314 boolean_t match = B_FALSE;
315 if (nvflag & NV_UNIQUE_NAME_TYPE) {
316 if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0 &&
317 NVP_TYPE(nvp1) == NVP_TYPE(nvp2))
318 match = B_TRUE;
319 } else {
320 ASSERT(nvflag == 0 || nvflag & NV_UNIQUE_NAME);
321 if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0)
322 match = B_TRUE;
323 }
324 return (match);
325 }
326
327 static nvpair_t *
nvt_lookup_name_type(const nvlist_t * nvl,const char * name,data_type_t type)328 nvt_lookup_name_type(const nvlist_t *nvl, const char *name, data_type_t type)
329 {
330 const nvpriv_t *priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv;
331 ASSERT(priv != NULL);
332
333 i_nvp_t **tab = priv->nvp_hashtable;
334
335 if (tab == NULL) {
336 ASSERT3P(priv->nvp_list, ==, NULL);
337 ASSERT0(priv->nvp_nbuckets);
338 ASSERT0(priv->nvp_nentries);
339 return (NULL);
340 } else {
341 ASSERT(priv->nvp_nbuckets != 0);
342 }
343
344 uint64_t hash = nvt_hash(name);
345 uint64_t index = hash & (priv->nvp_nbuckets - 1);
346
347 ASSERT3U(index, <, priv->nvp_nbuckets);
348 i_nvp_t *entry = tab[index];
349
350 for (i_nvp_t *e = entry; e != NULL; e = e->nvi_hashtable_next) {
351 if (strcmp(NVP_NAME(&e->nvi_nvp), name) == 0 &&
352 (type == DATA_TYPE_DONTCARE ||
353 NVP_TYPE(&e->nvi_nvp) == type))
354 return (&e->nvi_nvp);
355 }
356 return (NULL);
357 }
358
359 static nvpair_t *
nvt_lookup_name(const nvlist_t * nvl,const char * name)360 nvt_lookup_name(const nvlist_t *nvl, const char *name)
361 {
362 return (nvt_lookup_name_type(nvl, name, DATA_TYPE_DONTCARE));
363 }
364
365 static int
nvt_resize(nvpriv_t * priv,uint32_t new_size)366 nvt_resize(nvpriv_t *priv, uint32_t new_size)
367 {
368 i_nvp_t **tab = priv->nvp_hashtable;
369
370 /*
371 * Migrate all the entries from the current table
372 * to a newly-allocated table with the new size by
373 * re-adjusting the pointers of their entries.
374 */
375 uint32_t size = priv->nvp_nbuckets;
376 uint32_t new_mask = new_size - 1;
377 ASSERT(ISP2(new_size));
378
379 i_nvp_t **new_tab = nv_mem_zalloc(priv, new_size * sizeof (i_nvp_t *));
380 if (new_tab == NULL)
381 return (ENOMEM);
382
383 uint32_t nentries = 0;
384 for (uint32_t i = 0; i < size; i++) {
385 i_nvp_t *next, *e = tab[i];
386
387 while (e != NULL) {
388 next = e->nvi_hashtable_next;
389
390 uint32_t hash = nvt_hash(NVP_NAME(&e->nvi_nvp));
391 uint32_t index = hash & new_mask;
392
393 e->nvi_hashtable_next = new_tab[index];
394 new_tab[index] = e;
395 nentries++;
396
397 e = next;
398 }
399 tab[i] = NULL;
400 }
401 ASSERT3U(nentries, ==, priv->nvp_nentries);
402
403 nvt_tab_free(priv);
404
405 priv->nvp_hashtable = new_tab;
406 priv->nvp_nbuckets = new_size;
407 priv->nvp_nentries = nentries;
408
409 return (0);
410 }
411
412 static boolean_t
nvt_needs_togrow(nvpriv_t * priv)413 nvt_needs_togrow(nvpriv_t *priv)
414 {
415 /*
416 * Grow only when we have more elements than buckets
417 * and the # of buckets doesn't overflow.
418 */
419 return (priv->nvp_nentries > priv->nvp_nbuckets &&
420 (UINT32_MAX >> 1) >= priv->nvp_nbuckets);
421 }
422
423 /*
424 * Allocate a new table that's twice the size of the old one,
425 * and migrate all the entries from the old one to the new
426 * one by re-adjusting their pointers.
427 */
428 static int
nvt_grow(nvpriv_t * priv)429 nvt_grow(nvpriv_t *priv)
430 {
431 uint32_t current_size = priv->nvp_nbuckets;
432 /* ensure we won't overflow */
433 ASSERT3U(UINT32_MAX >> 1, >=, current_size);
434 return (nvt_resize(priv, current_size << 1));
435 }
436
437 static boolean_t
nvt_needs_toshrink(nvpriv_t * priv)438 nvt_needs_toshrink(nvpriv_t *priv)
439 {
440 /*
441 * Shrink only when the # of elements is less than or
442 * equal to 1/4 the # of buckets. Never shrink less than
443 * nvlist_hashtable_init_size.
444 */
445 ASSERT3U(priv->nvp_nbuckets, >=, nvlist_hashtable_init_size);
446 if (priv->nvp_nbuckets == nvlist_hashtable_init_size)
447 return (B_FALSE);
448 return (priv->nvp_nentries <= (priv->nvp_nbuckets >> 2));
449 }
450
451 /*
452 * Allocate a new table that's half the size of the old one,
453 * and migrate all the entries from the old one to the new
454 * one by re-adjusting their pointers.
455 */
456 static int
nvt_shrink(nvpriv_t * priv)457 nvt_shrink(nvpriv_t *priv)
458 {
459 uint32_t current_size = priv->nvp_nbuckets;
460 /* ensure we won't overflow */
461 ASSERT3U(current_size, >=, nvlist_hashtable_init_size);
462 return (nvt_resize(priv, current_size >> 1));
463 }
464
465 static int
nvt_remove_nvpair(nvlist_t * nvl,const nvpair_t * nvp)466 nvt_remove_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
467 {
468 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
469
470 if (nvt_needs_toshrink(priv)) {
471 int err = nvt_shrink(priv);
472 if (err != 0)
473 return (err);
474 }
475 i_nvp_t **tab = priv->nvp_hashtable;
476
477 const char *name = NVP_NAME(nvp);
478 uint64_t hash = nvt_hash(name);
479 uint64_t index = hash & (priv->nvp_nbuckets - 1);
480
481 ASSERT3U(index, <, priv->nvp_nbuckets);
482 i_nvp_t *bucket = tab[index];
483
484 for (i_nvp_t *prev = NULL, *e = bucket;
485 e != NULL; prev = e, e = e->nvi_hashtable_next) {
486 if (nvt_nvpair_match(&e->nvi_nvp, nvp, nvl->nvl_nvflag)) {
487 if (prev != NULL) {
488 prev->nvi_hashtable_next =
489 e->nvi_hashtable_next;
490 } else {
491 ASSERT3P(e, ==, bucket);
492 tab[index] = e->nvi_hashtable_next;
493 }
494 e->nvi_hashtable_next = NULL;
495 priv->nvp_nentries--;
496 break;
497 }
498 }
499
500 return (0);
501 }
502
503 static int
nvt_add_nvpair(nvlist_t * nvl,nvpair_t * nvp)504 nvt_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
505 {
506 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
507
508 /* initialize nvpair table now if it doesn't exist. */
509 if (priv->nvp_hashtable == NULL) {
510 int err = nvt_tab_alloc(priv, nvlist_hashtable_init_size);
511 if (err != 0)
512 return (err);
513 }
514
515 /*
516 * if we don't allow duplicate entries, make sure to
517 * unlink any existing entries from the table.
518 */
519 if (nvl->nvl_nvflag != 0) {
520 int err = nvt_remove_nvpair(nvl, nvp);
521 if (err != 0)
522 return (err);
523 }
524
525 if (nvt_needs_togrow(priv)) {
526 int err = nvt_grow(priv);
527 if (err != 0)
528 return (err);
529 }
530 i_nvp_t **tab = priv->nvp_hashtable;
531
532 const char *name = NVP_NAME(nvp);
533 uint64_t hash = nvt_hash(name);
534 uint64_t index = hash & (priv->nvp_nbuckets - 1);
535
536 ASSERT3U(index, <, priv->nvp_nbuckets);
537 // cppcheck-suppress nullPointerRedundantCheck
538 i_nvp_t *bucket = tab[index];
539
540 /* insert link at the beginning of the bucket */
541 i_nvp_t *new_entry = NVPAIR2I_NVP(nvp);
542 ASSERT3P(new_entry->nvi_hashtable_next, ==, NULL);
543 new_entry->nvi_hashtable_next = bucket;
544 // cppcheck-suppress nullPointerRedundantCheck
545 tab[index] = new_entry;
546
547 priv->nvp_nentries++;
548 return (0);
549 }
550
551 static void
nvlist_init(nvlist_t * nvl,uint32_t nvflag,nvpriv_t * priv)552 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
553 {
554 nvl->nvl_version = NV_VERSION;
555 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
556 nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
557 nvl->nvl_flag = 0;
558 nvl->nvl_pad = 0;
559 }
560
561 uint_t
nvlist_nvflag(nvlist_t * nvl)562 nvlist_nvflag(nvlist_t *nvl)
563 {
564 return (nvl->nvl_nvflag);
565 }
566
567 static nv_alloc_t *
nvlist_nv_alloc(int kmflag)568 nvlist_nv_alloc(int kmflag)
569 {
570 #if defined(_KERNEL)
571 switch (kmflag) {
572 case KM_SLEEP:
573 return (nv_alloc_sleep);
574 case KM_NOSLEEP:
575 return (nv_alloc_nosleep);
576 default:
577 return (nv_alloc_pushpage);
578 }
579 #else
580 (void) kmflag;
581 return (nv_alloc_nosleep);
582 #endif /* _KERNEL */
583 }
584
585 /*
586 * nvlist_alloc - Allocate nvlist.
587 */
588 int
nvlist_alloc(nvlist_t ** nvlp,uint_t nvflag,int kmflag)589 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
590 {
591 return (nvlist_xalloc(nvlp, nvflag, nvlist_nv_alloc(kmflag)));
592 }
593
594 int
nvlist_xalloc(nvlist_t ** nvlp,uint_t nvflag,nv_alloc_t * nva)595 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
596 {
597 nvpriv_t *priv;
598
599 if (nvlp == NULL || nva == NULL)
600 return (EINVAL);
601
602 if ((priv = nv_priv_alloc(nva)) == NULL)
603 return (ENOMEM);
604
605 if ((*nvlp = nv_mem_zalloc(priv,
606 NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
607 nv_mem_free(priv, priv, sizeof (nvpriv_t));
608 return (ENOMEM);
609 }
610
611 nvlist_init(*nvlp, nvflag, priv);
612
613 return (0);
614 }
615
616 /*
617 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
618 */
619 static nvpair_t *
nvp_buf_alloc(nvlist_t * nvl,size_t len)620 nvp_buf_alloc(nvlist_t *nvl, size_t len)
621 {
622 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
623 i_nvp_t *buf;
624 nvpair_t *nvp;
625 size_t nvsize;
626
627 /*
628 * Allocate the buffer
629 */
630 nvsize = len + offsetof(i_nvp_t, nvi_nvp);
631
632 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
633 return (NULL);
634
635 nvp = &buf->nvi_nvp;
636 nvp->nvp_size = len;
637
638 return (nvp);
639 }
640
641 /*
642 * nvp_buf_free - de-Allocate an i_nvp_t.
643 */
644 static void
nvp_buf_free(nvlist_t * nvl,nvpair_t * nvp)645 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
646 {
647 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
648 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
649
650 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
651 }
652
653 /*
654 * nvp_buf_link - link a new nv pair into the nvlist.
655 */
656 static void
nvp_buf_link(nvlist_t * nvl,nvpair_t * nvp)657 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
658 {
659 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
660 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
661
662 /* Put element at end of nvlist */
663 if (priv->nvp_list == NULL) {
664 priv->nvp_list = priv->nvp_last = curr;
665 } else {
666 curr->nvi_prev = priv->nvp_last;
667 priv->nvp_last->nvi_next = curr;
668 priv->nvp_last = curr;
669 }
670 }
671
672 /*
673 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
674 */
675 static void
nvp_buf_unlink(nvlist_t * nvl,nvpair_t * nvp)676 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
677 {
678 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
679 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
680
681 /*
682 * protect nvlist_next_nvpair() against walking on freed memory.
683 */
684 if (priv->nvp_curr == curr)
685 priv->nvp_curr = curr->nvi_next;
686
687 if (curr == priv->nvp_list)
688 priv->nvp_list = curr->nvi_next;
689 else
690 curr->nvi_prev->nvi_next = curr->nvi_next;
691
692 if (curr == priv->nvp_last)
693 priv->nvp_last = curr->nvi_prev;
694 else
695 curr->nvi_next->nvi_prev = curr->nvi_prev;
696 }
697
698 /*
699 * take a nvpair type and number of elements and make sure the are valid
700 */
701 static int
i_validate_type_nelem(data_type_t type,uint_t nelem)702 i_validate_type_nelem(data_type_t type, uint_t nelem)
703 {
704 switch (type) {
705 case DATA_TYPE_BOOLEAN:
706 if (nelem != 0)
707 return (EINVAL);
708 break;
709 case DATA_TYPE_BOOLEAN_VALUE:
710 case DATA_TYPE_BYTE:
711 case DATA_TYPE_INT8:
712 case DATA_TYPE_UINT8:
713 case DATA_TYPE_INT16:
714 case DATA_TYPE_UINT16:
715 case DATA_TYPE_INT32:
716 case DATA_TYPE_UINT32:
717 case DATA_TYPE_INT64:
718 case DATA_TYPE_UINT64:
719 case DATA_TYPE_STRING:
720 case DATA_TYPE_HRTIME:
721 case DATA_TYPE_NVLIST:
722 #if !defined(_KERNEL)
723 case DATA_TYPE_DOUBLE:
724 #endif
725 if (nelem != 1)
726 return (EINVAL);
727 break;
728 case DATA_TYPE_BOOLEAN_ARRAY:
729 case DATA_TYPE_BYTE_ARRAY:
730 case DATA_TYPE_INT8_ARRAY:
731 case DATA_TYPE_UINT8_ARRAY:
732 case DATA_TYPE_INT16_ARRAY:
733 case DATA_TYPE_UINT16_ARRAY:
734 case DATA_TYPE_INT32_ARRAY:
735 case DATA_TYPE_UINT32_ARRAY:
736 case DATA_TYPE_INT64_ARRAY:
737 case DATA_TYPE_UINT64_ARRAY:
738 case DATA_TYPE_STRING_ARRAY:
739 case DATA_TYPE_NVLIST_ARRAY:
740 /* we allow arrays with 0 elements */
741 break;
742 default:
743 return (EINVAL);
744 }
745 return (0);
746 }
747
748 /*
749 * Verify nvp_name_sz and check the name string length.
750 */
751 static int
i_validate_nvpair_name(nvpair_t * nvp)752 i_validate_nvpair_name(nvpair_t *nvp)
753 {
754 if ((nvp->nvp_name_sz <= 0) ||
755 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
756 return (EFAULT);
757
758 /* verify the name string, make sure its terminated */
759 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
760 return (EFAULT);
761
762 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
763 }
764
765 static int
i_validate_nvpair_value(data_type_t type,uint_t nelem,const void * data)766 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
767 {
768 switch (type) {
769 case DATA_TYPE_BOOLEAN_VALUE:
770 if (*(boolean_t *)data != B_TRUE &&
771 *(boolean_t *)data != B_FALSE)
772 return (EINVAL);
773 break;
774 case DATA_TYPE_BOOLEAN_ARRAY: {
775 int i;
776
777 for (i = 0; i < nelem; i++)
778 if (((boolean_t *)data)[i] != B_TRUE &&
779 ((boolean_t *)data)[i] != B_FALSE)
780 return (EINVAL);
781 break;
782 }
783 default:
784 break;
785 }
786
787 return (0);
788 }
789
790 /*
791 * This function takes a pointer to what should be a nvpair and it's size
792 * and then verifies that all the nvpair fields make sense and can be
793 * trusted. This function is used when decoding packed nvpairs.
794 */
795 static int
i_validate_nvpair(nvpair_t * nvp)796 i_validate_nvpair(nvpair_t *nvp)
797 {
798 data_type_t type = NVP_TYPE(nvp);
799 int size1, size2;
800
801 /* verify nvp_name_sz, check the name string length */
802 if (i_validate_nvpair_name(nvp) != 0)
803 return (EFAULT);
804
805 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
806 return (EFAULT);
807
808 /*
809 * verify nvp_type, nvp_value_elem, and also possibly
810 * verify string values and get the value size.
811 */
812 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
813 size1 = nvp->nvp_size - NVP_VALOFF(nvp);
814 if (size2 < 0 || size1 != NV_ALIGN(size2))
815 return (EFAULT);
816
817 return (0);
818 }
819
820 static int
nvlist_copy_pairs(const nvlist_t * snvl,nvlist_t * dnvl)821 nvlist_copy_pairs(const nvlist_t *snvl, nvlist_t *dnvl)
822 {
823 const nvpriv_t *priv;
824 const i_nvp_t *curr;
825
826 if ((priv = (const nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
827 return (EINVAL);
828
829 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
830 const nvpair_t *nvp = &curr->nvi_nvp;
831 int err;
832
833 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
834 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
835 return (err);
836 }
837
838 return (0);
839 }
840
841 /*
842 * Frees all memory allocated for an nvpair (like embedded lists) with
843 * the exception of the nvpair buffer itself.
844 */
845 static void
nvpair_free(nvpair_t * nvp)846 nvpair_free(nvpair_t *nvp)
847 {
848 switch (NVP_TYPE(nvp)) {
849 case DATA_TYPE_NVLIST:
850 nvlist_free(EMBEDDED_NVL(nvp));
851 break;
852 case DATA_TYPE_NVLIST_ARRAY: {
853 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
854 int i;
855
856 for (i = 0; i < NVP_NELEM(nvp); i++)
857 if (nvlp[i] != NULL)
858 nvlist_free(nvlp[i]);
859 break;
860 }
861 default:
862 break;
863 }
864 }
865
866 /*
867 * nvlist_free - free an unpacked nvlist
868 */
869 void
nvlist_free(nvlist_t * nvl)870 nvlist_free(nvlist_t *nvl)
871 {
872 nvpriv_t *priv;
873 i_nvp_t *curr;
874
875 if (nvl == NULL ||
876 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
877 return;
878
879 /*
880 * Unpacked nvlist are linked through i_nvp_t
881 */
882 curr = priv->nvp_list;
883 while (curr != NULL) {
884 nvpair_t *nvp = &curr->nvi_nvp;
885 curr = curr->nvi_next;
886
887 nvpair_free(nvp);
888 nvp_buf_free(nvl, nvp);
889 }
890
891 if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
892 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
893 else
894 nvl->nvl_priv = 0;
895
896 nvt_tab_free(priv);
897 nv_mem_free(priv, priv, sizeof (nvpriv_t));
898 }
899
900 static int
nvlist_contains_nvp(const nvlist_t * nvl,const nvpair_t * nvp)901 nvlist_contains_nvp(const nvlist_t *nvl, const nvpair_t *nvp)
902 {
903 const nvpriv_t *priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv;
904 const i_nvp_t *curr;
905
906 if (nvp == NULL)
907 return (0);
908
909 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
910 if (&curr->nvi_nvp == nvp)
911 return (1);
912
913 return (0);
914 }
915
916 /*
917 * Make a copy of nvlist
918 */
919 int
nvlist_dup(const nvlist_t * nvl,nvlist_t ** nvlp,int kmflag)920 nvlist_dup(const nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
921 {
922 return (nvlist_xdup(nvl, nvlp, nvlist_nv_alloc(kmflag)));
923 }
924
925 int
nvlist_xdup(const nvlist_t * nvl,nvlist_t ** nvlp,nv_alloc_t * nva)926 nvlist_xdup(const nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
927 {
928 int err;
929 nvlist_t *ret;
930
931 if (nvl == NULL || nvlp == NULL)
932 return (EINVAL);
933
934 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
935 return (err);
936
937 if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
938 nvlist_free(ret);
939 else
940 *nvlp = ret;
941
942 return (err);
943 }
944
945 /*
946 * Remove all with matching name
947 */
948 int
nvlist_remove_all(nvlist_t * nvl,const char * name)949 nvlist_remove_all(nvlist_t *nvl, const char *name)
950 {
951 int error = ENOENT;
952
953 if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
954 return (EINVAL);
955
956 nvpair_t *nvp;
957 while ((nvp = nvt_lookup_name(nvl, name)) != NULL) {
958 VERIFY0(nvlist_remove_nvpair(nvl, nvp));
959 error = 0;
960 }
961
962 return (error);
963 }
964
965 /*
966 * Remove first one with matching name and type
967 */
968 int
nvlist_remove(nvlist_t * nvl,const char * name,data_type_t type)969 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
970 {
971 if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
972 return (EINVAL);
973
974 nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
975 if (nvp == NULL)
976 return (ENOENT);
977
978 return (nvlist_remove_nvpair(nvl, nvp));
979 }
980
981 int
nvlist_remove_nvpair(nvlist_t * nvl,nvpair_t * nvp)982 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
983 {
984 if (nvl == NULL || nvp == NULL)
985 return (EINVAL);
986
987 int err = nvt_remove_nvpair(nvl, nvp);
988 if (err != 0)
989 return (err);
990
991 nvp_buf_unlink(nvl, nvp);
992 nvpair_free(nvp);
993 nvp_buf_free(nvl, nvp);
994 return (0);
995 }
996
997 /*
998 * This function calculates the size of an nvpair value.
999 *
1000 * The data argument controls the behavior in case of the data types
1001 * DATA_TYPE_STRING and
1002 * DATA_TYPE_STRING_ARRAY
1003 * Is data == NULL then the size of the string(s) is excluded.
1004 */
1005 static int
i_get_value_size(data_type_t type,const void * data,uint_t nelem)1006 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
1007 {
1008 uint64_t value_sz;
1009
1010 if (i_validate_type_nelem(type, nelem) != 0)
1011 return (-1);
1012
1013 /* Calculate required size for holding value */
1014 switch (type) {
1015 case DATA_TYPE_BOOLEAN:
1016 value_sz = 0;
1017 break;
1018 case DATA_TYPE_BOOLEAN_VALUE:
1019 value_sz = sizeof (boolean_t);
1020 break;
1021 case DATA_TYPE_BYTE:
1022 value_sz = sizeof (uchar_t);
1023 break;
1024 case DATA_TYPE_INT8:
1025 value_sz = sizeof (int8_t);
1026 break;
1027 case DATA_TYPE_UINT8:
1028 value_sz = sizeof (uint8_t);
1029 break;
1030 case DATA_TYPE_INT16:
1031 value_sz = sizeof (int16_t);
1032 break;
1033 case DATA_TYPE_UINT16:
1034 value_sz = sizeof (uint16_t);
1035 break;
1036 case DATA_TYPE_INT32:
1037 value_sz = sizeof (int32_t);
1038 break;
1039 case DATA_TYPE_UINT32:
1040 value_sz = sizeof (uint32_t);
1041 break;
1042 case DATA_TYPE_INT64:
1043 value_sz = sizeof (int64_t);
1044 break;
1045 case DATA_TYPE_UINT64:
1046 value_sz = sizeof (uint64_t);
1047 break;
1048 #if !defined(_KERNEL)
1049 case DATA_TYPE_DOUBLE:
1050 value_sz = sizeof (double);
1051 break;
1052 #endif
1053 case DATA_TYPE_STRING:
1054 if (data == NULL)
1055 value_sz = 0;
1056 else
1057 value_sz = strlen(data) + 1;
1058 break;
1059 case DATA_TYPE_BOOLEAN_ARRAY:
1060 value_sz = (uint64_t)nelem * sizeof (boolean_t);
1061 break;
1062 case DATA_TYPE_BYTE_ARRAY:
1063 value_sz = (uint64_t)nelem * sizeof (uchar_t);
1064 break;
1065 case DATA_TYPE_INT8_ARRAY:
1066 value_sz = (uint64_t)nelem * sizeof (int8_t);
1067 break;
1068 case DATA_TYPE_UINT8_ARRAY:
1069 value_sz = (uint64_t)nelem * sizeof (uint8_t);
1070 break;
1071 case DATA_TYPE_INT16_ARRAY:
1072 value_sz = (uint64_t)nelem * sizeof (int16_t);
1073 break;
1074 case DATA_TYPE_UINT16_ARRAY:
1075 value_sz = (uint64_t)nelem * sizeof (uint16_t);
1076 break;
1077 case DATA_TYPE_INT32_ARRAY:
1078 value_sz = (uint64_t)nelem * sizeof (int32_t);
1079 break;
1080 case DATA_TYPE_UINT32_ARRAY:
1081 value_sz = (uint64_t)nelem * sizeof (uint32_t);
1082 break;
1083 case DATA_TYPE_INT64_ARRAY:
1084 value_sz = (uint64_t)nelem * sizeof (int64_t);
1085 break;
1086 case DATA_TYPE_UINT64_ARRAY:
1087 value_sz = (uint64_t)nelem * sizeof (uint64_t);
1088 break;
1089 case DATA_TYPE_STRING_ARRAY:
1090 value_sz = (uint64_t)nelem * sizeof (uint64_t);
1091
1092 if (data != NULL) {
1093 char *const *strs = data;
1094 uint_t i;
1095
1096 /* no alignment requirement for strings */
1097 for (i = 0; i < nelem; i++) {
1098 if (strs[i] == NULL)
1099 return (-1);
1100 value_sz += strlen(strs[i]) + 1;
1101 }
1102 }
1103 break;
1104 case DATA_TYPE_HRTIME:
1105 value_sz = sizeof (hrtime_t);
1106 break;
1107 case DATA_TYPE_NVLIST:
1108 value_sz = NV_ALIGN(sizeof (nvlist_t));
1109 break;
1110 case DATA_TYPE_NVLIST_ARRAY:
1111 value_sz = (uint64_t)nelem * sizeof (uint64_t) +
1112 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
1113 break;
1114 default:
1115 return (-1);
1116 }
1117
1118 return (value_sz > INT32_MAX ? -1 : (int)value_sz);
1119 }
1120
1121 static int
nvlist_copy_embedded(nvlist_t * nvl,nvlist_t * onvl,nvlist_t * emb_nvl)1122 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
1123 {
1124 nvpriv_t *priv;
1125 int err;
1126
1127 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
1128 nvl->nvl_priv)) == NULL)
1129 return (ENOMEM);
1130
1131 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
1132
1133 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
1134 nvlist_free(emb_nvl);
1135 emb_nvl->nvl_priv = 0;
1136 }
1137
1138 return (err);
1139 }
1140
1141 /*
1142 * nvlist_add_common - Add new <name,value> pair to nvlist
1143 */
1144 static int
nvlist_add_common(nvlist_t * nvl,const char * name,data_type_t type,uint_t nelem,const void * data)1145 nvlist_add_common(nvlist_t *nvl, const char *name,
1146 data_type_t type, uint_t nelem, const void *data)
1147 {
1148 nvpair_t *nvp;
1149 uint_t i;
1150
1151 int nvp_sz, name_sz, value_sz;
1152 int err = 0;
1153
1154 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
1155 return (EINVAL);
1156
1157 if (nelem != 0 && data == NULL)
1158 return (EINVAL);
1159
1160 /*
1161 * Verify type and nelem and get the value size.
1162 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
1163 * is the size of the string(s) included.
1164 */
1165 if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
1166 return (EINVAL);
1167
1168 if (i_validate_nvpair_value(type, nelem, data) != 0)
1169 return (EINVAL);
1170
1171 /*
1172 * If we're adding an nvlist or nvlist array, ensure that we are not
1173 * adding the input nvlist to itself, which would cause recursion,
1174 * and ensure that no NULL nvlist pointers are present.
1175 */
1176 switch (type) {
1177 case DATA_TYPE_NVLIST:
1178 if (data == nvl || data == NULL)
1179 return (EINVAL);
1180 break;
1181 case DATA_TYPE_NVLIST_ARRAY: {
1182 nvlist_t **onvlp = (nvlist_t **)data;
1183 for (i = 0; i < nelem; i++) {
1184 if (onvlp[i] == nvl || onvlp[i] == NULL)
1185 return (EINVAL);
1186 }
1187 break;
1188 }
1189 default:
1190 break;
1191 }
1192
1193 /* calculate sizes of the nvpair elements and the nvpair itself */
1194 name_sz = strlen(name) + 1;
1195 if (name_sz >= 1ULL << (sizeof (nvp->nvp_name_sz) * NBBY - 1))
1196 return (EINVAL);
1197
1198 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
1199
1200 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
1201 return (ENOMEM);
1202
1203 ASSERT(nvp->nvp_size == nvp_sz);
1204 nvp->nvp_name_sz = name_sz;
1205 nvp->nvp_value_elem = nelem;
1206 nvp->nvp_type = type;
1207 memcpy(NVP_NAME(nvp), name, name_sz);
1208
1209 switch (type) {
1210 case DATA_TYPE_BOOLEAN:
1211 break;
1212 case DATA_TYPE_STRING_ARRAY: {
1213 char *const *strs = data;
1214 char *buf = NVP_VALUE(nvp);
1215 char **cstrs = (void *)buf;
1216
1217 /* skip pre-allocated space for pointer array */
1218 buf += nelem * sizeof (uint64_t);
1219 for (i = 0; i < nelem; i++) {
1220 int slen = strlen(strs[i]) + 1;
1221 memcpy(buf, strs[i], slen);
1222 cstrs[i] = buf;
1223 buf += slen;
1224 }
1225 break;
1226 }
1227 case DATA_TYPE_NVLIST: {
1228 nvlist_t *nnvl = EMBEDDED_NVL(nvp);
1229 nvlist_t *onvl = (nvlist_t *)data;
1230
1231 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
1232 nvp_buf_free(nvl, nvp);
1233 return (err);
1234 }
1235 break;
1236 }
1237 case DATA_TYPE_NVLIST_ARRAY: {
1238 nvlist_t **onvlp = (nvlist_t **)data;
1239 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
1240 nvlist_t *embedded = (nvlist_t *)
1241 ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
1242
1243 for (i = 0; i < nelem; i++) {
1244 if ((err = nvlist_copy_embedded(nvl,
1245 onvlp[i], embedded)) != 0) {
1246 /*
1247 * Free any successfully created lists
1248 */
1249 nvpair_free(nvp);
1250 nvp_buf_free(nvl, nvp);
1251 return (err);
1252 }
1253
1254 nvlp[i] = embedded++;
1255 }
1256 break;
1257 }
1258 default:
1259 memcpy(NVP_VALUE(nvp), data, value_sz);
1260 }
1261
1262 /* if unique name, remove before add */
1263 if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
1264 (void) nvlist_remove_all(nvl, name);
1265 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
1266 (void) nvlist_remove(nvl, name, type);
1267
1268 err = nvt_add_nvpair(nvl, nvp);
1269 if (err != 0) {
1270 nvpair_free(nvp);
1271 nvp_buf_free(nvl, nvp);
1272 return (err);
1273 }
1274 nvp_buf_link(nvl, nvp);
1275
1276 return (0);
1277 }
1278
1279 int
nvlist_add_boolean(nvlist_t * nvl,const char * name)1280 nvlist_add_boolean(nvlist_t *nvl, const char *name)
1281 {
1282 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
1283 }
1284
1285 int
nvlist_add_boolean_value(nvlist_t * nvl,const char * name,boolean_t val)1286 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
1287 {
1288 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
1289 }
1290
1291 int
nvlist_add_byte(nvlist_t * nvl,const char * name,uchar_t val)1292 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
1293 {
1294 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1295 }
1296
1297 int
nvlist_add_int8(nvlist_t * nvl,const char * name,int8_t val)1298 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1299 {
1300 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1301 }
1302
1303 int
nvlist_add_uint8(nvlist_t * nvl,const char * name,uint8_t val)1304 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1305 {
1306 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1307 }
1308
1309 int
nvlist_add_int16(nvlist_t * nvl,const char * name,int16_t val)1310 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1311 {
1312 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1313 }
1314
1315 int
nvlist_add_uint16(nvlist_t * nvl,const char * name,uint16_t val)1316 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1317 {
1318 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1319 }
1320
1321 int
nvlist_add_int32(nvlist_t * nvl,const char * name,int32_t val)1322 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1323 {
1324 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1325 }
1326
1327 int
nvlist_add_uint32(nvlist_t * nvl,const char * name,uint32_t val)1328 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1329 {
1330 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1331 }
1332
1333 int
nvlist_add_int64(nvlist_t * nvl,const char * name,int64_t val)1334 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1335 {
1336 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1337 }
1338
1339 int
nvlist_add_uint64(nvlist_t * nvl,const char * name,uint64_t val)1340 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1341 {
1342 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1343 }
1344
1345 #if !defined(_KERNEL)
1346 int
nvlist_add_double(nvlist_t * nvl,const char * name,double val)1347 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1348 {
1349 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1350 }
1351 #endif
1352
1353 int
nvlist_add_string(nvlist_t * nvl,const char * name,const char * val)1354 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1355 {
1356 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1357 }
1358
1359 int
nvlist_add_boolean_array(nvlist_t * nvl,const char * name,const boolean_t * a,uint_t n)1360 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1361 const boolean_t *a, uint_t n)
1362 {
1363 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1364 }
1365
1366 int
nvlist_add_byte_array(nvlist_t * nvl,const char * name,const uchar_t * a,uint_t n)1367 nvlist_add_byte_array(nvlist_t *nvl, const char *name, const uchar_t *a,
1368 uint_t n)
1369 {
1370 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1371 }
1372
1373 int
nvlist_add_int8_array(nvlist_t * nvl,const char * name,const int8_t * a,uint_t n)1374 nvlist_add_int8_array(nvlist_t *nvl, const char *name, const int8_t *a,
1375 uint_t n)
1376 {
1377 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1378 }
1379
1380 int
nvlist_add_uint8_array(nvlist_t * nvl,const char * name,const uint8_t * a,uint_t n)1381 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, const uint8_t *a,
1382 uint_t n)
1383 {
1384 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1385 }
1386
1387 int
nvlist_add_int16_array(nvlist_t * nvl,const char * name,const int16_t * a,uint_t n)1388 nvlist_add_int16_array(nvlist_t *nvl, const char *name, const int16_t *a,
1389 uint_t n)
1390 {
1391 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1392 }
1393
1394 int
nvlist_add_uint16_array(nvlist_t * nvl,const char * name,const uint16_t * a,uint_t n)1395 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, const uint16_t *a,
1396 uint_t n)
1397 {
1398 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1399 }
1400
1401 int
nvlist_add_int32_array(nvlist_t * nvl,const char * name,const int32_t * a,uint_t n)1402 nvlist_add_int32_array(nvlist_t *nvl, const char *name, const int32_t *a,
1403 uint_t n)
1404 {
1405 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1406 }
1407
1408 int
nvlist_add_uint32_array(nvlist_t * nvl,const char * name,const uint32_t * a,uint_t n)1409 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, const uint32_t *a,
1410 uint_t n)
1411 {
1412 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1413 }
1414
1415 int
nvlist_add_int64_array(nvlist_t * nvl,const char * name,const int64_t * a,uint_t n)1416 nvlist_add_int64_array(nvlist_t *nvl, const char *name, const int64_t *a,
1417 uint_t n)
1418 {
1419 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1420 }
1421
1422 int
nvlist_add_uint64_array(nvlist_t * nvl,const char * name,const uint64_t * a,uint_t n)1423 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, const uint64_t *a,
1424 uint_t n)
1425 {
1426 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1427 }
1428
1429 int
nvlist_add_string_array(nvlist_t * nvl,const char * name,const char * const * a,uint_t n)1430 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1431 const char *const *a, uint_t n)
1432 {
1433 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1434 }
1435
1436 int
nvlist_add_hrtime(nvlist_t * nvl,const char * name,hrtime_t val)1437 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1438 {
1439 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1440 }
1441
1442 int
nvlist_add_nvlist(nvlist_t * nvl,const char * name,const nvlist_t * val)1443 nvlist_add_nvlist(nvlist_t *nvl, const char *name, const nvlist_t *val)
1444 {
1445 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1446 }
1447
1448 int
nvlist_add_nvlist_array(nvlist_t * nvl,const char * name,const nvlist_t * const * a,uint_t n)1449 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name,
1450 const nvlist_t * const *a, uint_t n)
1451 {
1452 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1453 }
1454
1455 /* reading name-value pairs */
1456 nvpair_t *
nvlist_next_nvpair(nvlist_t * nvl,const nvpair_t * nvp)1457 nvlist_next_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
1458 {
1459 nvpriv_t *priv;
1460 i_nvp_t *curr;
1461
1462 if (nvl == NULL ||
1463 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1464 return (NULL);
1465
1466 curr = NVPAIR2I_NVP(nvp);
1467
1468 /*
1469 * Ensure that nvp is a valid nvpair on this nvlist.
1470 * NB: nvp_curr is used only as a hint so that we don't always
1471 * have to walk the list to determine if nvp is still on the list.
1472 */
1473 if (nvp == NULL)
1474 curr = priv->nvp_list;
1475 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1476 curr = curr->nvi_next;
1477 else
1478 curr = NULL;
1479
1480 priv->nvp_curr = curr;
1481
1482 return (curr != NULL ? &curr->nvi_nvp : NULL);
1483 }
1484
1485 nvpair_t *
nvlist_prev_nvpair(nvlist_t * nvl,const nvpair_t * nvp)1486 nvlist_prev_nvpair(nvlist_t *nvl, const nvpair_t *nvp)
1487 {
1488 nvpriv_t *priv;
1489 i_nvp_t *curr;
1490
1491 if (nvl == NULL ||
1492 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1493 return (NULL);
1494
1495 curr = NVPAIR2I_NVP(nvp);
1496
1497 if (nvp == NULL)
1498 curr = priv->nvp_last;
1499 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1500 curr = curr->nvi_prev;
1501 else
1502 curr = NULL;
1503
1504 priv->nvp_curr = curr;
1505
1506 return (curr != NULL ? &curr->nvi_nvp : NULL);
1507 }
1508
1509 boolean_t
nvlist_empty(const nvlist_t * nvl)1510 nvlist_empty(const nvlist_t *nvl)
1511 {
1512 const nvpriv_t *priv;
1513
1514 if (nvl == NULL ||
1515 (priv = (const nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1516 return (B_TRUE);
1517
1518 return (priv->nvp_list == NULL);
1519 }
1520
1521 const char *
nvpair_name(const nvpair_t * nvp)1522 nvpair_name(const nvpair_t *nvp)
1523 {
1524 return (NVP_NAME(nvp));
1525 }
1526
1527 data_type_t
nvpair_type(const nvpair_t * nvp)1528 nvpair_type(const nvpair_t *nvp)
1529 {
1530 return (NVP_TYPE(nvp));
1531 }
1532
1533 int
nvpair_type_is_array(const nvpair_t * nvp)1534 nvpair_type_is_array(const nvpair_t *nvp)
1535 {
1536 data_type_t type = NVP_TYPE(nvp);
1537
1538 if ((type == DATA_TYPE_BYTE_ARRAY) ||
1539 (type == DATA_TYPE_INT8_ARRAY) ||
1540 (type == DATA_TYPE_UINT8_ARRAY) ||
1541 (type == DATA_TYPE_INT16_ARRAY) ||
1542 (type == DATA_TYPE_UINT16_ARRAY) ||
1543 (type == DATA_TYPE_INT32_ARRAY) ||
1544 (type == DATA_TYPE_UINT32_ARRAY) ||
1545 (type == DATA_TYPE_INT64_ARRAY) ||
1546 (type == DATA_TYPE_UINT64_ARRAY) ||
1547 (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1548 (type == DATA_TYPE_STRING_ARRAY) ||
1549 (type == DATA_TYPE_NVLIST_ARRAY))
1550 return (1);
1551 return (0);
1552
1553 }
1554
1555 static int
nvpair_value_common(const nvpair_t * nvp,data_type_t type,uint_t * nelem,void * data)1556 nvpair_value_common(const nvpair_t *nvp, data_type_t type, uint_t *nelem,
1557 void *data)
1558 {
1559 int value_sz;
1560
1561 if (nvp == NULL || nvpair_type(nvp) != type)
1562 return (EINVAL);
1563
1564 /*
1565 * For non-array types, we copy the data.
1566 * For array types (including string), we set a pointer.
1567 */
1568 switch (type) {
1569 case DATA_TYPE_BOOLEAN:
1570 if (nelem != NULL)
1571 *nelem = 0;
1572 break;
1573
1574 case DATA_TYPE_BOOLEAN_VALUE:
1575 case DATA_TYPE_BYTE:
1576 case DATA_TYPE_INT8:
1577 case DATA_TYPE_UINT8:
1578 case DATA_TYPE_INT16:
1579 case DATA_TYPE_UINT16:
1580 case DATA_TYPE_INT32:
1581 case DATA_TYPE_UINT32:
1582 case DATA_TYPE_INT64:
1583 case DATA_TYPE_UINT64:
1584 case DATA_TYPE_HRTIME:
1585 #if !defined(_KERNEL)
1586 case DATA_TYPE_DOUBLE:
1587 #endif
1588 if (data == NULL)
1589 return (EINVAL);
1590 if ((value_sz = i_get_value_size(type, NULL, 1)) < 0)
1591 return (EINVAL);
1592 memcpy(data, NVP_VALUE(nvp), (size_t)value_sz);
1593 if (nelem != NULL)
1594 *nelem = 1;
1595 break;
1596
1597 case DATA_TYPE_NVLIST:
1598 case DATA_TYPE_STRING:
1599 if (data == NULL)
1600 return (EINVAL);
1601 /*
1602 * This discards the const from nvp, so all callers for these
1603 * types must not accept const nvpairs.
1604 */
1605 *(void **)data = (void *)NVP_VALUE(nvp);
1606 if (nelem != NULL)
1607 *nelem = 1;
1608 break;
1609
1610 case DATA_TYPE_BOOLEAN_ARRAY:
1611 case DATA_TYPE_BYTE_ARRAY:
1612 case DATA_TYPE_INT8_ARRAY:
1613 case DATA_TYPE_UINT8_ARRAY:
1614 case DATA_TYPE_INT16_ARRAY:
1615 case DATA_TYPE_UINT16_ARRAY:
1616 case DATA_TYPE_INT32_ARRAY:
1617 case DATA_TYPE_UINT32_ARRAY:
1618 case DATA_TYPE_INT64_ARRAY:
1619 case DATA_TYPE_UINT64_ARRAY:
1620 case DATA_TYPE_STRING_ARRAY:
1621 case DATA_TYPE_NVLIST_ARRAY:
1622 if (nelem == NULL || data == NULL)
1623 return (EINVAL);
1624 /*
1625 * This discards the const from nvp, so all callers for these
1626 * types must not accept const nvpairs.
1627 */
1628 if ((*nelem = NVP_NELEM(nvp)) != 0)
1629 *(void **)data = (void *)NVP_VALUE(nvp);
1630 else
1631 *(void **)data = NULL;
1632 break;
1633
1634 default:
1635 return (ENOTSUP);
1636 }
1637
1638 return (0);
1639 }
1640
1641 static int
nvlist_lookup_common(const nvlist_t * nvl,const char * name,data_type_t type,uint_t * nelem,void * data)1642 nvlist_lookup_common(const nvlist_t *nvl, const char *name, data_type_t type,
1643 uint_t *nelem, void *data)
1644 {
1645 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
1646 return (EINVAL);
1647
1648 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1649 return (ENOTSUP);
1650
1651 nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
1652 if (nvp == NULL)
1653 return (ENOENT);
1654
1655 return (nvpair_value_common(nvp, type, nelem, data));
1656 }
1657
1658 int
nvlist_lookup_boolean(const nvlist_t * nvl,const char * name)1659 nvlist_lookup_boolean(const nvlist_t *nvl, const char *name)
1660 {
1661 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1662 }
1663
1664 int
nvlist_lookup_boolean_value(const nvlist_t * nvl,const char * name,boolean_t * val)1665 nvlist_lookup_boolean_value(const nvlist_t *nvl, const char *name,
1666 boolean_t *val)
1667 {
1668 return (nvlist_lookup_common(nvl, name,
1669 DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1670 }
1671
1672 int
nvlist_lookup_byte(const nvlist_t * nvl,const char * name,uchar_t * val)1673 nvlist_lookup_byte(const nvlist_t *nvl, const char *name, uchar_t *val)
1674 {
1675 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1676 }
1677
1678 int
nvlist_lookup_int8(const nvlist_t * nvl,const char * name,int8_t * val)1679 nvlist_lookup_int8(const nvlist_t *nvl, const char *name, int8_t *val)
1680 {
1681 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1682 }
1683
1684 int
nvlist_lookup_uint8(const nvlist_t * nvl,const char * name,uint8_t * val)1685 nvlist_lookup_uint8(const nvlist_t *nvl, const char *name, uint8_t *val)
1686 {
1687 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1688 }
1689
1690 int
nvlist_lookup_int16(const nvlist_t * nvl,const char * name,int16_t * val)1691 nvlist_lookup_int16(const nvlist_t *nvl, const char *name, int16_t *val)
1692 {
1693 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1694 }
1695
1696 int
nvlist_lookup_uint16(const nvlist_t * nvl,const char * name,uint16_t * val)1697 nvlist_lookup_uint16(const nvlist_t *nvl, const char *name, uint16_t *val)
1698 {
1699 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1700 }
1701
1702 int
nvlist_lookup_int32(const nvlist_t * nvl,const char * name,int32_t * val)1703 nvlist_lookup_int32(const nvlist_t *nvl, const char *name, int32_t *val)
1704 {
1705 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1706 }
1707
1708 int
nvlist_lookup_uint32(const nvlist_t * nvl,const char * name,uint32_t * val)1709 nvlist_lookup_uint32(const nvlist_t *nvl, const char *name, uint32_t *val)
1710 {
1711 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1712 }
1713
1714 int
nvlist_lookup_int64(const nvlist_t * nvl,const char * name,int64_t * val)1715 nvlist_lookup_int64(const nvlist_t *nvl, const char *name, int64_t *val)
1716 {
1717 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1718 }
1719
1720 int
nvlist_lookup_uint64(const nvlist_t * nvl,const char * name,uint64_t * val)1721 nvlist_lookup_uint64(const nvlist_t *nvl, const char *name, uint64_t *val)
1722 {
1723 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1724 }
1725
1726 #if !defined(_KERNEL)
1727 int
nvlist_lookup_double(const nvlist_t * nvl,const char * name,double * val)1728 nvlist_lookup_double(const nvlist_t *nvl, const char *name, double *val)
1729 {
1730 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1731 }
1732 #endif
1733
1734 int
nvlist_lookup_string(const nvlist_t * nvl,const char * name,const char ** val)1735 nvlist_lookup_string(const nvlist_t *nvl, const char *name, const char **val)
1736 {
1737 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1738 }
1739
1740 int
nvlist_lookup_nvlist(nvlist_t * nvl,const char * name,nvlist_t ** val)1741 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1742 {
1743 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1744 }
1745
1746 int
nvlist_lookup_boolean_array(nvlist_t * nvl,const char * name,boolean_t ** a,uint_t * n)1747 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1748 boolean_t **a, uint_t *n)
1749 {
1750 return (nvlist_lookup_common(nvl, name,
1751 DATA_TYPE_BOOLEAN_ARRAY, n, a));
1752 }
1753
1754 int
nvlist_lookup_byte_array(nvlist_t * nvl,const char * name,uchar_t ** a,uint_t * n)1755 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1756 uchar_t **a, uint_t *n)
1757 {
1758 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1759 }
1760
1761 int
nvlist_lookup_int8_array(nvlist_t * nvl,const char * name,int8_t ** a,uint_t * n)1762 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1763 {
1764 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1765 }
1766
1767 int
nvlist_lookup_uint8_array(nvlist_t * nvl,const char * name,uint8_t ** a,uint_t * n)1768 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1769 uint8_t **a, uint_t *n)
1770 {
1771 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1772 }
1773
1774 int
nvlist_lookup_int16_array(nvlist_t * nvl,const char * name,int16_t ** a,uint_t * n)1775 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1776 int16_t **a, uint_t *n)
1777 {
1778 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1779 }
1780
1781 int
nvlist_lookup_uint16_array(nvlist_t * nvl,const char * name,uint16_t ** a,uint_t * n)1782 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1783 uint16_t **a, uint_t *n)
1784 {
1785 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1786 }
1787
1788 int
nvlist_lookup_int32_array(nvlist_t * nvl,const char * name,int32_t ** a,uint_t * n)1789 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1790 int32_t **a, uint_t *n)
1791 {
1792 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1793 }
1794
1795 int
nvlist_lookup_uint32_array(nvlist_t * nvl,const char * name,uint32_t ** a,uint_t * n)1796 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1797 uint32_t **a, uint_t *n)
1798 {
1799 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1800 }
1801
1802 int
nvlist_lookup_int64_array(nvlist_t * nvl,const char * name,int64_t ** a,uint_t * n)1803 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1804 int64_t **a, uint_t *n)
1805 {
1806 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1807 }
1808
1809 int
nvlist_lookup_uint64_array(nvlist_t * nvl,const char * name,uint64_t ** a,uint_t * n)1810 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1811 uint64_t **a, uint_t *n)
1812 {
1813 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1814 }
1815
1816 int
nvlist_lookup_string_array(nvlist_t * nvl,const char * name,char *** a,uint_t * n)1817 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1818 char ***a, uint_t *n)
1819 {
1820 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1821 }
1822
1823 int
nvlist_lookup_nvlist_array(nvlist_t * nvl,const char * name,nvlist_t *** a,uint_t * n)1824 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1825 nvlist_t ***a, uint_t *n)
1826 {
1827 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1828 }
1829
1830 int
nvlist_lookup_hrtime(nvlist_t * nvl,const char * name,hrtime_t * val)1831 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1832 {
1833 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1834 }
1835
1836 int
nvlist_lookup_pairs(nvlist_t * nvl,int flag,...)1837 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1838 {
1839 va_list ap;
1840 char *name;
1841 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1842 int ret = 0;
1843
1844 va_start(ap, flag);
1845 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1846 data_type_t type;
1847 void *val;
1848 uint_t *nelem;
1849
1850 switch (type = va_arg(ap, data_type_t)) {
1851 case DATA_TYPE_BOOLEAN:
1852 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1853 break;
1854
1855 case DATA_TYPE_BOOLEAN_VALUE:
1856 case DATA_TYPE_BYTE:
1857 case DATA_TYPE_INT8:
1858 case DATA_TYPE_UINT8:
1859 case DATA_TYPE_INT16:
1860 case DATA_TYPE_UINT16:
1861 case DATA_TYPE_INT32:
1862 case DATA_TYPE_UINT32:
1863 case DATA_TYPE_INT64:
1864 case DATA_TYPE_UINT64:
1865 case DATA_TYPE_HRTIME:
1866 case DATA_TYPE_STRING:
1867 case DATA_TYPE_NVLIST:
1868 #if !defined(_KERNEL)
1869 case DATA_TYPE_DOUBLE:
1870 #endif
1871 val = va_arg(ap, void *);
1872 ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1873 break;
1874
1875 case DATA_TYPE_BYTE_ARRAY:
1876 case DATA_TYPE_BOOLEAN_ARRAY:
1877 case DATA_TYPE_INT8_ARRAY:
1878 case DATA_TYPE_UINT8_ARRAY:
1879 case DATA_TYPE_INT16_ARRAY:
1880 case DATA_TYPE_UINT16_ARRAY:
1881 case DATA_TYPE_INT32_ARRAY:
1882 case DATA_TYPE_UINT32_ARRAY:
1883 case DATA_TYPE_INT64_ARRAY:
1884 case DATA_TYPE_UINT64_ARRAY:
1885 case DATA_TYPE_STRING_ARRAY:
1886 case DATA_TYPE_NVLIST_ARRAY:
1887 val = va_arg(ap, void *);
1888 nelem = va_arg(ap, uint_t *);
1889 ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1890 break;
1891
1892 default:
1893 ret = EINVAL;
1894 }
1895
1896 if (ret == ENOENT && noentok)
1897 ret = 0;
1898 }
1899 va_end(ap);
1900
1901 return (ret);
1902 }
1903
1904 /*
1905 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1906 * returns zero and a pointer to the matching nvpair is returned in '*ret'
1907 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1908 * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1909 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1910 * "a.d[3].e[1]". This matches the C syntax for array embed (for convenience,
1911 * code also supports "a.d[3]e[1]" syntax).
1912 *
1913 * If 'ip' is non-NULL and the last name component is an array, return the
1914 * value of the "...[index]" array index in *ip. For an array reference that
1915 * is not indexed, *ip will be returned as -1. If there is a syntax error in
1916 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1917 * inside the 'name' string where the syntax error was detected.
1918 */
1919 static int
nvlist_lookup_nvpair_ei_sep(nvlist_t * nvl,const char * name,const char sep,nvpair_t ** ret,int * ip,const char ** ep)1920 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1921 nvpair_t **ret, int *ip, const char **ep)
1922 {
1923 nvpair_t *nvp;
1924 const char *np;
1925 char *sepp = NULL;
1926 char *idxp, *idxep;
1927 nvlist_t **nva;
1928 long idx = 0;
1929 int n;
1930
1931 if (ip)
1932 *ip = -1; /* not indexed */
1933 if (ep)
1934 *ep = NULL;
1935
1936 if ((nvl == NULL) || (name == NULL))
1937 return (EINVAL);
1938
1939 sepp = NULL;
1940 idx = 0;
1941 /* step through components of name */
1942 for (np = name; np && *np; np = sepp) {
1943 /* ensure unique names */
1944 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1945 return (ENOTSUP);
1946
1947 /* skip white space */
1948 skip_whitespace(np);
1949 if (*np == 0)
1950 break;
1951
1952 /* set 'sepp' to end of current component 'np' */
1953 if (sep)
1954 sepp = strchr(np, sep);
1955 else
1956 sepp = NULL;
1957
1958 /* find start of next "[ index ]..." */
1959 idxp = strchr(np, '[');
1960
1961 /* if sepp comes first, set idxp to NULL */
1962 if (sepp && idxp && (sepp < idxp))
1963 idxp = NULL;
1964
1965 /*
1966 * At this point 'idxp' is set if there is an index
1967 * expected for the current component.
1968 */
1969 if (idxp) {
1970 /* set 'n' to length of current 'np' name component */
1971 n = idxp++ - np;
1972
1973 /* keep sepp up to date for *ep use as we advance */
1974 skip_whitespace(idxp);
1975 sepp = idxp;
1976
1977 /* determine the index value */
1978 #if defined(_KERNEL)
1979 if (ddi_strtol(idxp, &idxep, 0, &idx))
1980 goto fail;
1981 #else
1982 idx = strtol(idxp, &idxep, 0);
1983 #endif
1984 if (idxep == idxp)
1985 goto fail;
1986
1987 /* keep sepp up to date for *ep use as we advance */
1988 sepp = idxep;
1989
1990 /* skip white space index value and check for ']' */
1991 skip_whitespace(sepp);
1992 if (*sepp++ != ']')
1993 goto fail;
1994
1995 /* for embedded arrays, support C syntax: "a[1].b" */
1996 skip_whitespace(sepp);
1997 if (sep && (*sepp == sep))
1998 sepp++;
1999 } else if (sepp) {
2000 n = sepp++ - np;
2001 } else {
2002 n = strlen(np);
2003 }
2004
2005 /* trim trailing whitespace by reducing length of 'np' */
2006 if (n == 0)
2007 goto fail;
2008 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
2009 ;
2010 n++;
2011
2012 /* skip whitespace, and set sepp to NULL if complete */
2013 if (sepp) {
2014 skip_whitespace(sepp);
2015 if (*sepp == 0)
2016 sepp = NULL;
2017 }
2018
2019 /*
2020 * At this point:
2021 * o 'n' is the length of current 'np' component.
2022 * o 'idxp' is set if there was an index, and value 'idx'.
2023 * o 'sepp' is set to the beginning of the next component,
2024 * and set to NULL if we have no more components.
2025 *
2026 * Search for nvpair with matching component name.
2027 */
2028 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
2029 nvp = nvlist_next_nvpair(nvl, nvp)) {
2030
2031 /* continue if no match on name */
2032 if (strncmp(np, nvpair_name(nvp), n) ||
2033 (strlen(nvpair_name(nvp)) != n))
2034 continue;
2035
2036 /* if indexed, verify type is array oriented */
2037 if (idxp && !nvpair_type_is_array(nvp))
2038 goto fail;
2039
2040 /*
2041 * Full match found, return nvp and idx if this
2042 * was the last component.
2043 */
2044 if (sepp == NULL) {
2045 if (ret)
2046 *ret = nvp;
2047 if (ip && idxp)
2048 *ip = (int)idx; /* return index */
2049 return (0); /* found */
2050 }
2051
2052 /*
2053 * More components: current match must be
2054 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
2055 * to support going deeper.
2056 */
2057 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
2058 nvl = EMBEDDED_NVL(nvp);
2059 break;
2060 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
2061 if (nvpair_value_nvlist_array(nvp,
2062 &nva, (uint_t *)&n) != 0)
2063 goto fail;
2064 if (nva == NULL)
2065 goto fail;
2066 if ((n < 0) || (idx >= n))
2067 goto fail;
2068 nvl = nva[idx];
2069 break;
2070 }
2071
2072 /* type does not support more levels */
2073 goto fail;
2074 }
2075 if (nvp == NULL)
2076 goto fail; /* 'name' not found */
2077
2078 /* search for match of next component in embedded 'nvl' list */
2079 }
2080
2081 fail: if (ep && sepp)
2082 *ep = sepp;
2083 return (EINVAL);
2084 }
2085
2086 /*
2087 * Return pointer to nvpair with specified 'name'.
2088 */
2089 int
nvlist_lookup_nvpair(nvlist_t * nvl,const char * name,nvpair_t ** ret)2090 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
2091 {
2092 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
2093 }
2094
2095 /*
2096 * Determine if named nvpair exists in nvlist (use embedded separator of '.'
2097 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed
2098 * description.
2099 */
nvlist_lookup_nvpair_embedded_index(nvlist_t * nvl,const char * name,nvpair_t ** ret,int * ip,const char ** ep)2100 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
2101 const char *name, nvpair_t **ret, int *ip, const char **ep)
2102 {
2103 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
2104 }
2105
2106 boolean_t
nvlist_exists(const nvlist_t * nvl,const char * name)2107 nvlist_exists(const nvlist_t *nvl, const char *name)
2108 {
2109 nvpriv_t *priv;
2110 nvpair_t *nvp;
2111 i_nvp_t *curr;
2112
2113 if (name == NULL || nvl == NULL ||
2114 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2115 return (B_FALSE);
2116
2117 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2118 nvp = &curr->nvi_nvp;
2119
2120 if (strcmp(name, NVP_NAME(nvp)) == 0)
2121 return (B_TRUE);
2122 }
2123
2124 return (B_FALSE);
2125 }
2126
2127 int
nvpair_value_boolean_value(const nvpair_t * nvp,boolean_t * val)2128 nvpair_value_boolean_value(const nvpair_t *nvp, boolean_t *val)
2129 {
2130 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
2131 }
2132
2133 int
nvpair_value_byte(const nvpair_t * nvp,uchar_t * val)2134 nvpair_value_byte(const nvpair_t *nvp, uchar_t *val)
2135 {
2136 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
2137 }
2138
2139 int
nvpair_value_int8(const nvpair_t * nvp,int8_t * val)2140 nvpair_value_int8(const nvpair_t *nvp, int8_t *val)
2141 {
2142 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
2143 }
2144
2145 int
nvpair_value_uint8(const nvpair_t * nvp,uint8_t * val)2146 nvpair_value_uint8(const nvpair_t *nvp, uint8_t *val)
2147 {
2148 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
2149 }
2150
2151 int
nvpair_value_int16(const nvpair_t * nvp,int16_t * val)2152 nvpair_value_int16(const nvpair_t *nvp, int16_t *val)
2153 {
2154 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
2155 }
2156
2157 int
nvpair_value_uint16(const nvpair_t * nvp,uint16_t * val)2158 nvpair_value_uint16(const nvpair_t *nvp, uint16_t *val)
2159 {
2160 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
2161 }
2162
2163 int
nvpair_value_int32(const nvpair_t * nvp,int32_t * val)2164 nvpair_value_int32(const nvpair_t *nvp, int32_t *val)
2165 {
2166 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
2167 }
2168
2169 int
nvpair_value_uint32(const nvpair_t * nvp,uint32_t * val)2170 nvpair_value_uint32(const nvpair_t *nvp, uint32_t *val)
2171 {
2172 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
2173 }
2174
2175 int
nvpair_value_int64(const nvpair_t * nvp,int64_t * val)2176 nvpair_value_int64(const nvpair_t *nvp, int64_t *val)
2177 {
2178 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
2179 }
2180
2181 int
nvpair_value_uint64(const nvpair_t * nvp,uint64_t * val)2182 nvpair_value_uint64(const nvpair_t *nvp, uint64_t *val)
2183 {
2184 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
2185 }
2186
2187 #if !defined(_KERNEL)
2188 int
nvpair_value_double(const nvpair_t * nvp,double * val)2189 nvpair_value_double(const nvpair_t *nvp, double *val)
2190 {
2191 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
2192 }
2193 #endif
2194
2195 int
nvpair_value_string(const nvpair_t * nvp,const char ** val)2196 nvpair_value_string(const nvpair_t *nvp, const char **val)
2197 {
2198 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
2199 }
2200
2201 int
nvpair_value_nvlist(nvpair_t * nvp,nvlist_t ** val)2202 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
2203 {
2204 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
2205 }
2206
2207 int
nvpair_value_boolean_array(nvpair_t * nvp,boolean_t ** val,uint_t * nelem)2208 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
2209 {
2210 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
2211 }
2212
2213 int
nvpair_value_byte_array(nvpair_t * nvp,uchar_t ** val,uint_t * nelem)2214 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
2215 {
2216 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
2217 }
2218
2219 int
nvpair_value_int8_array(nvpair_t * nvp,int8_t ** val,uint_t * nelem)2220 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
2221 {
2222 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
2223 }
2224
2225 int
nvpair_value_uint8_array(nvpair_t * nvp,uint8_t ** val,uint_t * nelem)2226 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
2227 {
2228 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
2229 }
2230
2231 int
nvpair_value_int16_array(nvpair_t * nvp,int16_t ** val,uint_t * nelem)2232 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
2233 {
2234 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
2235 }
2236
2237 int
nvpair_value_uint16_array(nvpair_t * nvp,uint16_t ** val,uint_t * nelem)2238 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
2239 {
2240 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
2241 }
2242
2243 int
nvpair_value_int32_array(nvpair_t * nvp,int32_t ** val,uint_t * nelem)2244 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
2245 {
2246 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
2247 }
2248
2249 int
nvpair_value_uint32_array(nvpair_t * nvp,uint32_t ** val,uint_t * nelem)2250 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
2251 {
2252 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
2253 }
2254
2255 int
nvpair_value_int64_array(nvpair_t * nvp,int64_t ** val,uint_t * nelem)2256 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
2257 {
2258 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
2259 }
2260
2261 int
nvpair_value_uint64_array(nvpair_t * nvp,uint64_t ** val,uint_t * nelem)2262 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
2263 {
2264 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
2265 }
2266
2267 int
nvpair_value_string_array(nvpair_t * nvp,const char *** val,uint_t * nelem)2268 nvpair_value_string_array(nvpair_t *nvp, const char ***val, uint_t *nelem)
2269 {
2270 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
2271 }
2272
2273 int
nvpair_value_nvlist_array(nvpair_t * nvp,nvlist_t *** val,uint_t * nelem)2274 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
2275 {
2276 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
2277 }
2278
2279 int
nvpair_value_hrtime(nvpair_t * nvp,hrtime_t * val)2280 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
2281 {
2282 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
2283 }
2284
2285 /*
2286 * Add specified pair to the list.
2287 */
2288 int
nvlist_add_nvpair(nvlist_t * nvl,nvpair_t * nvp)2289 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
2290 {
2291 if (nvl == NULL || nvp == NULL)
2292 return (EINVAL);
2293
2294 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
2295 NVP_NELEM(nvp), NVP_VALUE(nvp)));
2296 }
2297
2298 /*
2299 * Merge the supplied nvlists and put the result in dst.
2300 * The merged list will contain all names specified in both lists,
2301 * the values are taken from nvl in the case of duplicates.
2302 * Return 0 on success.
2303 */
2304 int
nvlist_merge(nvlist_t * dst,nvlist_t * nvl,int flag)2305 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
2306 {
2307 (void) flag;
2308
2309 if (nvl == NULL || dst == NULL)
2310 return (EINVAL);
2311
2312 if (dst != nvl)
2313 return (nvlist_copy_pairs(nvl, dst));
2314
2315 return (0);
2316 }
2317
2318 /*
2319 * Encoding related routines
2320 */
2321 #define NVS_OP_ENCODE 0
2322 #define NVS_OP_DECODE 1
2323 #define NVS_OP_GETSIZE 2
2324
2325 typedef struct nvs_ops nvs_ops_t;
2326
2327 typedef struct {
2328 int nvs_op;
2329 const nvs_ops_t *nvs_ops;
2330 void *nvs_private;
2331 nvpriv_t *nvs_priv;
2332 int nvs_recursion;
2333 } nvstream_t;
2334
2335 /*
2336 * nvs operations are:
2337 * - nvs_nvlist
2338 * encoding / decoding of an nvlist header (nvlist_t)
2339 * calculates the size used for header and end detection
2340 *
2341 * - nvs_nvpair
2342 * responsible for the first part of encoding / decoding of an nvpair
2343 * calculates the decoded size of an nvpair
2344 *
2345 * - nvs_nvp_op
2346 * second part of encoding / decoding of an nvpair
2347 *
2348 * - nvs_nvp_size
2349 * calculates the encoding size of an nvpair
2350 *
2351 * - nvs_nvl_fini
2352 * encodes the end detection mark (zeros).
2353 */
2354 struct nvs_ops {
2355 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2356 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2357 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2358 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2359 int (*nvs_nvl_fini)(nvstream_t *);
2360 };
2361
2362 typedef struct {
2363 char nvh_encoding; /* nvs encoding method */
2364 char nvh_endian; /* nvs endian */
2365 char nvh_reserved1; /* reserved for future use */
2366 char nvh_reserved2; /* reserved for future use */
2367 } nvs_header_t;
2368
2369 static int
nvs_encode_pairs(nvstream_t * nvs,nvlist_t * nvl)2370 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2371 {
2372 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2373 i_nvp_t *curr;
2374
2375 /*
2376 * Walk nvpair in list and encode each nvpair
2377 */
2378 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2379 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2380 return (EFAULT);
2381
2382 return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2383 }
2384
2385 static int
nvs_decode_pairs(nvstream_t * nvs,nvlist_t * nvl)2386 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2387 {
2388 nvpair_t *nvp;
2389 size_t nvsize;
2390 int err;
2391
2392 /*
2393 * Get decoded size of next pair in stream, alloc
2394 * memory for nvpair_t, then decode the nvpair
2395 */
2396 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2397 if (nvsize == 0) /* end of list */
2398 break;
2399
2400 /* make sure len makes sense */
2401 if (nvsize < NVP_SIZE_CALC(1, 0))
2402 return (EFAULT);
2403
2404 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2405 return (ENOMEM);
2406
2407 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2408 nvp_buf_free(nvl, nvp);
2409 return (err);
2410 }
2411
2412 if (i_validate_nvpair(nvp) != 0) {
2413 nvpair_free(nvp);
2414 nvp_buf_free(nvl, nvp);
2415 return (EFAULT);
2416 }
2417
2418 err = nvt_add_nvpair(nvl, nvp);
2419 if (err != 0) {
2420 nvpair_free(nvp);
2421 nvp_buf_free(nvl, nvp);
2422 return (err);
2423 }
2424 nvp_buf_link(nvl, nvp);
2425 }
2426 return (err);
2427 }
2428
2429 static int
nvs_getsize_pairs(nvstream_t * nvs,nvlist_t * nvl,size_t * buflen)2430 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2431 {
2432 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2433 i_nvp_t *curr;
2434 uint64_t nvsize = *buflen;
2435 size_t size;
2436
2437 /*
2438 * Get encoded size of nvpairs in nvlist
2439 */
2440 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2441 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2442 return (EINVAL);
2443
2444 if ((nvsize += size) > INT32_MAX)
2445 return (EINVAL);
2446 }
2447
2448 *buflen = nvsize;
2449 return (0);
2450 }
2451
2452 static int
nvs_operation(nvstream_t * nvs,nvlist_t * nvl,size_t * buflen)2453 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2454 {
2455 int err;
2456
2457 if (nvl->nvl_priv == 0)
2458 return (EFAULT);
2459
2460 /*
2461 * Perform the operation, starting with header, then each nvpair
2462 */
2463 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2464 return (err);
2465
2466 switch (nvs->nvs_op) {
2467 case NVS_OP_ENCODE:
2468 err = nvs_encode_pairs(nvs, nvl);
2469 break;
2470
2471 case NVS_OP_DECODE:
2472 err = nvs_decode_pairs(nvs, nvl);
2473 break;
2474
2475 case NVS_OP_GETSIZE:
2476 err = nvs_getsize_pairs(nvs, nvl, buflen);
2477 break;
2478
2479 default:
2480 err = EINVAL;
2481 }
2482
2483 return (err);
2484 }
2485
2486 static int
nvs_embedded(nvstream_t * nvs,nvlist_t * embedded)2487 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2488 {
2489 switch (nvs->nvs_op) {
2490 case NVS_OP_ENCODE: {
2491 int err;
2492
2493 if (nvs->nvs_recursion >= nvpair_max_recursion)
2494 return (EINVAL);
2495 nvs->nvs_recursion++;
2496 err = nvs_operation(nvs, embedded, NULL);
2497 nvs->nvs_recursion--;
2498 return (err);
2499 }
2500 case NVS_OP_DECODE: {
2501 nvpriv_t *priv;
2502 int err;
2503
2504 if (embedded->nvl_version != NV_VERSION)
2505 return (ENOTSUP);
2506
2507 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2508 return (ENOMEM);
2509
2510 nvlist_init(embedded, embedded->nvl_nvflag, priv);
2511
2512 if (nvs->nvs_recursion >= nvpair_max_recursion) {
2513 nvlist_free(embedded);
2514 return (EINVAL);
2515 }
2516 nvs->nvs_recursion++;
2517 if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2518 nvlist_free(embedded);
2519 nvs->nvs_recursion--;
2520 return (err);
2521 }
2522 default:
2523 break;
2524 }
2525
2526 return (EINVAL);
2527 }
2528
2529 static int
nvs_embedded_nvl_array(nvstream_t * nvs,nvpair_t * nvp,size_t * size)2530 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2531 {
2532 size_t nelem = NVP_NELEM(nvp);
2533 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2534 int i;
2535
2536 switch (nvs->nvs_op) {
2537 case NVS_OP_ENCODE:
2538 for (i = 0; i < nelem; i++)
2539 if (nvs_embedded(nvs, nvlp[i]) != 0)
2540 return (EFAULT);
2541 break;
2542
2543 case NVS_OP_DECODE: {
2544 size_t len = nelem * sizeof (uint64_t);
2545 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2546
2547 memset(nvlp, 0, len); /* don't trust packed data */
2548 for (i = 0; i < nelem; i++) {
2549 if (nvs_embedded(nvs, embedded) != 0) {
2550 nvpair_free(nvp);
2551 return (EFAULT);
2552 }
2553
2554 nvlp[i] = embedded++;
2555 }
2556 break;
2557 }
2558 case NVS_OP_GETSIZE: {
2559 uint64_t nvsize = 0;
2560
2561 for (i = 0; i < nelem; i++) {
2562 size_t nvp_sz = 0;
2563
2564 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2565 return (EINVAL);
2566
2567 if ((nvsize += nvp_sz) > INT32_MAX)
2568 return (EINVAL);
2569 }
2570
2571 *size = nvsize;
2572 break;
2573 }
2574 default:
2575 return (EINVAL);
2576 }
2577
2578 return (0);
2579 }
2580
2581 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2582 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2583
2584 /*
2585 * Common routine for nvlist operations:
2586 * encode, decode, getsize (encoded size).
2587 */
2588 static int
nvlist_common(nvlist_t * nvl,char * buf,size_t * buflen,int encoding,int nvs_op)2589 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2590 int nvs_op)
2591 {
2592 int err = 0;
2593 nvstream_t nvs;
2594 int nvl_endian;
2595 #if defined(_ZFS_LITTLE_ENDIAN)
2596 int host_endian = 1;
2597 #elif defined(_ZFS_BIG_ENDIAN)
2598 int host_endian = 0;
2599 #else
2600 #error "No endian defined!"
2601 #endif /* _ZFS_LITTLE_ENDIAN */
2602 nvs_header_t *nvh;
2603
2604 if (buflen == NULL || nvl == NULL ||
2605 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2606 return (EINVAL);
2607
2608 nvs.nvs_op = nvs_op;
2609 nvs.nvs_recursion = 0;
2610
2611 /*
2612 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2613 * a buffer is allocated. The first 4 bytes in the buffer are
2614 * used for encoding method and host endian.
2615 */
2616 switch (nvs_op) {
2617 case NVS_OP_ENCODE:
2618 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2619 return (EINVAL);
2620
2621 nvh = (void *)buf;
2622 nvh->nvh_encoding = encoding;
2623 nvh->nvh_endian = nvl_endian = host_endian;
2624 nvh->nvh_reserved1 = 0;
2625 nvh->nvh_reserved2 = 0;
2626 break;
2627
2628 case NVS_OP_DECODE:
2629 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2630 return (EINVAL);
2631
2632 /* get method of encoding from first byte */
2633 nvh = (void *)buf;
2634 encoding = nvh->nvh_encoding;
2635 nvl_endian = nvh->nvh_endian;
2636 break;
2637
2638 case NVS_OP_GETSIZE:
2639 nvl_endian = host_endian;
2640
2641 /*
2642 * add the size for encoding
2643 */
2644 *buflen = sizeof (nvs_header_t);
2645 break;
2646
2647 default:
2648 return (ENOTSUP);
2649 }
2650
2651 /*
2652 * Create an nvstream with proper encoding method
2653 */
2654 switch (encoding) {
2655 case NV_ENCODE_NATIVE:
2656 /*
2657 * check endianness, in case we are unpacking
2658 * from a file
2659 */
2660 if (nvl_endian != host_endian)
2661 return (ENOTSUP);
2662 err = nvs_native(&nvs, nvl, buf, buflen);
2663 break;
2664 case NV_ENCODE_XDR:
2665 err = nvs_xdr(&nvs, nvl, buf, buflen);
2666 break;
2667 default:
2668 err = ENOTSUP;
2669 break;
2670 }
2671
2672 return (err);
2673 }
2674
2675 int
nvlist_size(nvlist_t * nvl,size_t * size,int encoding)2676 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2677 {
2678 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2679 }
2680
2681 /*
2682 * Pack nvlist into contiguous memory
2683 */
2684 int
nvlist_pack(nvlist_t * nvl,char ** bufp,size_t * buflen,int encoding,int kmflag)2685 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2686 int kmflag)
2687 {
2688 return (nvlist_xpack(nvl, bufp, buflen, encoding,
2689 nvlist_nv_alloc(kmflag)));
2690 }
2691
2692 int
nvlist_xpack(nvlist_t * nvl,char ** bufp,size_t * buflen,int encoding,nv_alloc_t * nva)2693 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2694 nv_alloc_t *nva)
2695 {
2696 nvpriv_t nvpriv;
2697 size_t alloc_size;
2698 char *buf;
2699 int err;
2700
2701 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2702 return (EINVAL);
2703
2704 if (*bufp != NULL)
2705 return (nvlist_common(nvl, *bufp, buflen, encoding,
2706 NVS_OP_ENCODE));
2707
2708 /*
2709 * Here is a difficult situation:
2710 * 1. The nvlist has fixed allocator properties.
2711 * All other nvlist routines (like nvlist_add_*, ...) use
2712 * these properties.
2713 * 2. When using nvlist_pack() the user can specify their own
2714 * allocator properties (e.g. by using KM_NOSLEEP).
2715 *
2716 * We use the user specified properties (2). A clearer solution
2717 * will be to remove the kmflag from nvlist_pack(), but we will
2718 * not change the interface.
2719 */
2720 nv_priv_init(&nvpriv, nva, 0);
2721
2722 if ((err = nvlist_size(nvl, &alloc_size, encoding)))
2723 return (err);
2724
2725 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2726 return (ENOMEM);
2727
2728 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2729 NVS_OP_ENCODE)) != 0) {
2730 nv_mem_free(&nvpriv, buf, alloc_size);
2731 } else {
2732 *buflen = alloc_size;
2733 *bufp = buf;
2734 }
2735
2736 return (err);
2737 }
2738
2739 /*
2740 * Unpack buf into an nvlist_t
2741 */
2742 int
nvlist_unpack(char * buf,size_t buflen,nvlist_t ** nvlp,int kmflag)2743 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2744 {
2745 return (nvlist_xunpack(buf, buflen, nvlp, nvlist_nv_alloc(kmflag)));
2746 }
2747
2748 int
nvlist_xunpack(char * buf,size_t buflen,nvlist_t ** nvlp,nv_alloc_t * nva)2749 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2750 {
2751 nvlist_t *nvl;
2752 int err;
2753
2754 if (nvlp == NULL)
2755 return (EINVAL);
2756
2757 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2758 return (err);
2759
2760 if ((err = nvlist_common(nvl, buf, &buflen, NV_ENCODE_NATIVE,
2761 NVS_OP_DECODE)) != 0)
2762 nvlist_free(nvl);
2763 else
2764 *nvlp = nvl;
2765
2766 return (err);
2767 }
2768
2769 /*
2770 * Native encoding functions
2771 */
2772 typedef struct {
2773 /*
2774 * This structure is used when decoding a packed nvpair in
2775 * the native format. n_base points to a buffer containing the
2776 * packed nvpair. n_end is a pointer to the end of the buffer.
2777 * (n_end actually points to the first byte past the end of the
2778 * buffer.) n_curr is a pointer that lies between n_base and n_end.
2779 * It points to the current data that we are decoding.
2780 * The amount of data left in the buffer is equal to n_end - n_curr.
2781 * n_flag is used to recognize a packed embedded list.
2782 */
2783 caddr_t n_base;
2784 caddr_t n_end;
2785 caddr_t n_curr;
2786 uint_t n_flag;
2787 } nvs_native_t;
2788
2789 static int
nvs_native_create(nvstream_t * nvs,nvs_native_t * native,char * buf,size_t buflen)2790 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2791 size_t buflen)
2792 {
2793 switch (nvs->nvs_op) {
2794 case NVS_OP_ENCODE:
2795 case NVS_OP_DECODE:
2796 nvs->nvs_private = native;
2797 native->n_curr = native->n_base = buf;
2798 native->n_end = buf + buflen;
2799 native->n_flag = 0;
2800 return (0);
2801
2802 case NVS_OP_GETSIZE:
2803 nvs->nvs_private = native;
2804 native->n_curr = native->n_base = native->n_end = NULL;
2805 native->n_flag = 0;
2806 return (0);
2807 default:
2808 return (EINVAL);
2809 }
2810 }
2811
2812 static void
nvs_native_destroy(nvstream_t * nvs)2813 nvs_native_destroy(nvstream_t *nvs)
2814 {
2815 nvs->nvs_private = NULL;
2816 }
2817
2818 static int
native_cp(nvstream_t * nvs,void * buf,size_t size)2819 native_cp(nvstream_t *nvs, void *buf, size_t size)
2820 {
2821 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2822
2823 if (native->n_curr + size > native->n_end)
2824 return (EFAULT);
2825
2826 /*
2827 * The memcpy() below eliminates alignment requirement
2828 * on the buffer (stream) and is preferred over direct access.
2829 */
2830 switch (nvs->nvs_op) {
2831 case NVS_OP_ENCODE:
2832 memcpy(native->n_curr, buf, size);
2833 break;
2834 case NVS_OP_DECODE:
2835 memcpy(buf, native->n_curr, size);
2836 break;
2837 default:
2838 return (EINVAL);
2839 }
2840
2841 native->n_curr += size;
2842 return (0);
2843 }
2844
2845 /*
2846 * operate on nvlist_t header
2847 */
2848 static int
nvs_native_nvlist(nvstream_t * nvs,nvlist_t * nvl,size_t * size)2849 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2850 {
2851 nvs_native_t *native = nvs->nvs_private;
2852
2853 switch (nvs->nvs_op) {
2854 case NVS_OP_ENCODE:
2855 case NVS_OP_DECODE:
2856 if (native->n_flag)
2857 return (0); /* packed embedded list */
2858
2859 native->n_flag = 1;
2860
2861 /* copy version and nvflag of the nvlist_t */
2862 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2863 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2864 return (EFAULT);
2865
2866 return (0);
2867
2868 case NVS_OP_GETSIZE:
2869 /*
2870 * if calculate for packed embedded list
2871 * 4 for end of the embedded list
2872 * else
2873 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2874 * and 4 for end of the entire list
2875 */
2876 if (native->n_flag) {
2877 *size += 4;
2878 } else {
2879 native->n_flag = 1;
2880 *size += 2 * sizeof (int32_t) + 4;
2881 }
2882
2883 return (0);
2884
2885 default:
2886 return (EINVAL);
2887 }
2888 }
2889
2890 static int
nvs_native_nvl_fini(nvstream_t * nvs)2891 nvs_native_nvl_fini(nvstream_t *nvs)
2892 {
2893 if (nvs->nvs_op == NVS_OP_ENCODE) {
2894 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2895 /*
2896 * Add 4 zero bytes at end of nvlist. They are used
2897 * for end detection by the decode routine.
2898 */
2899 if (native->n_curr + sizeof (int) > native->n_end)
2900 return (EFAULT);
2901
2902 memset(native->n_curr, 0, sizeof (int));
2903 native->n_curr += sizeof (int);
2904 }
2905
2906 return (0);
2907 }
2908
2909 static int
nvpair_native_embedded(nvstream_t * nvs,nvpair_t * nvp)2910 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2911 {
2912 if (nvs->nvs_op == NVS_OP_ENCODE) {
2913 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2914 nvlist_t *packed = (void *)
2915 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2916 /*
2917 * Null out the pointer that is meaningless in the packed
2918 * structure. The address may not be aligned, so we have
2919 * to use memset.
2920 */
2921 memset((char *)packed + offsetof(nvlist_t, nvl_priv),
2922 0, sizeof (uint64_t));
2923 }
2924
2925 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2926 }
2927
2928 static int
nvpair_native_embedded_array(nvstream_t * nvs,nvpair_t * nvp)2929 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2930 {
2931 if (nvs->nvs_op == NVS_OP_ENCODE) {
2932 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2933 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2934 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2935 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2936 int i;
2937 /*
2938 * Null out pointers that are meaningless in the packed
2939 * structure. The addresses may not be aligned, so we have
2940 * to use memset.
2941 */
2942 memset(value, 0, len);
2943
2944 for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2945 /*
2946 * Null out the pointer that is meaningless in the
2947 * packed structure. The address may not be aligned,
2948 * so we have to use memset.
2949 */
2950 memset((char *)packed + offsetof(nvlist_t, nvl_priv),
2951 0, sizeof (uint64_t));
2952 }
2953
2954 return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2955 }
2956
2957 static void
nvpair_native_string_array(nvstream_t * nvs,nvpair_t * nvp)2958 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2959 {
2960 switch (nvs->nvs_op) {
2961 case NVS_OP_ENCODE: {
2962 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2963 uint64_t *strp = (void *)
2964 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2965 /*
2966 * Null out pointers that are meaningless in the packed
2967 * structure. The addresses may not be aligned, so we have
2968 * to use memset.
2969 */
2970 memset(strp, 0, NVP_NELEM(nvp) * sizeof (uint64_t));
2971 break;
2972 }
2973 case NVS_OP_DECODE: {
2974 char **strp = (void *)NVP_VALUE(nvp);
2975 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2976 int i;
2977
2978 for (i = 0; i < NVP_NELEM(nvp); i++) {
2979 strp[i] = buf;
2980 buf += strlen(buf) + 1;
2981 }
2982 break;
2983 }
2984 }
2985 }
2986
2987 static int
nvs_native_nvp_op(nvstream_t * nvs,nvpair_t * nvp)2988 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2989 {
2990 data_type_t type;
2991 int value_sz;
2992 int ret = 0;
2993
2994 /*
2995 * We do the initial memcpy of the data before we look at
2996 * the nvpair type, because when we're decoding, we won't
2997 * have the correct values for the pair until we do the memcpy.
2998 */
2999 switch (nvs->nvs_op) {
3000 case NVS_OP_ENCODE:
3001 case NVS_OP_DECODE:
3002 if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
3003 return (EFAULT);
3004 break;
3005 default:
3006 return (EINVAL);
3007 }
3008
3009 /* verify nvp_name_sz, check the name string length */
3010 if (i_validate_nvpair_name(nvp) != 0)
3011 return (EFAULT);
3012
3013 type = NVP_TYPE(nvp);
3014
3015 /*
3016 * Verify type and nelem and get the value size.
3017 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
3018 * is the size of the string(s) excluded.
3019 */
3020 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
3021 return (EFAULT);
3022
3023 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
3024 return (EFAULT);
3025
3026 switch (type) {
3027 case DATA_TYPE_NVLIST:
3028 ret = nvpair_native_embedded(nvs, nvp);
3029 break;
3030 case DATA_TYPE_NVLIST_ARRAY:
3031 ret = nvpair_native_embedded_array(nvs, nvp);
3032 break;
3033 case DATA_TYPE_STRING_ARRAY:
3034 nvpair_native_string_array(nvs, nvp);
3035 break;
3036 default:
3037 break;
3038 }
3039
3040 return (ret);
3041 }
3042
3043 static int
nvs_native_nvp_size(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3044 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3045 {
3046 uint64_t nvp_sz = nvp->nvp_size;
3047
3048 switch (NVP_TYPE(nvp)) {
3049 case DATA_TYPE_NVLIST: {
3050 size_t nvsize = 0;
3051
3052 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
3053 return (EINVAL);
3054
3055 nvp_sz += nvsize;
3056 break;
3057 }
3058 case DATA_TYPE_NVLIST_ARRAY: {
3059 size_t nvsize;
3060
3061 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
3062 return (EINVAL);
3063
3064 nvp_sz += nvsize;
3065 break;
3066 }
3067 default:
3068 break;
3069 }
3070
3071 if (nvp_sz > INT32_MAX)
3072 return (EINVAL);
3073
3074 *size = nvp_sz;
3075
3076 return (0);
3077 }
3078
3079 static int
nvs_native_nvpair(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3080 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3081 {
3082 switch (nvs->nvs_op) {
3083 case NVS_OP_ENCODE:
3084 return (nvs_native_nvp_op(nvs, nvp));
3085
3086 case NVS_OP_DECODE: {
3087 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
3088 int32_t decode_len;
3089
3090 /* try to read the size value from the stream */
3091 if (native->n_curr + sizeof (int32_t) > native->n_end)
3092 return (EFAULT);
3093 memcpy(&decode_len, native->n_curr, sizeof (int32_t));
3094
3095 /* sanity check the size value */
3096 if (decode_len < 0 ||
3097 decode_len > native->n_end - native->n_curr)
3098 return (EFAULT);
3099
3100 *size = decode_len;
3101
3102 /*
3103 * If at the end of the stream then move the cursor
3104 * forward, otherwise nvpair_native_op() will read
3105 * the entire nvpair at the same cursor position.
3106 */
3107 if (*size == 0)
3108 native->n_curr += sizeof (int32_t);
3109 break;
3110 }
3111
3112 default:
3113 return (EINVAL);
3114 }
3115
3116 return (0);
3117 }
3118
3119 static const nvs_ops_t nvs_native_ops = {
3120 .nvs_nvlist = nvs_native_nvlist,
3121 .nvs_nvpair = nvs_native_nvpair,
3122 .nvs_nvp_op = nvs_native_nvp_op,
3123 .nvs_nvp_size = nvs_native_nvp_size,
3124 .nvs_nvl_fini = nvs_native_nvl_fini
3125 };
3126
3127 static int
nvs_native(nvstream_t * nvs,nvlist_t * nvl,char * buf,size_t * buflen)3128 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3129 {
3130 nvs_native_t native;
3131 int err;
3132
3133 nvs->nvs_ops = &nvs_native_ops;
3134
3135 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
3136 *buflen - sizeof (nvs_header_t))) != 0)
3137 return (err);
3138
3139 err = nvs_operation(nvs, nvl, buflen);
3140
3141 nvs_native_destroy(nvs);
3142
3143 return (err);
3144 }
3145
3146 /*
3147 * XDR encoding functions
3148 *
3149 * An xdr packed nvlist is encoded as:
3150 *
3151 * - encoding method and host endian (4 bytes)
3152 * - nvl_version (4 bytes)
3153 * - nvl_nvflag (4 bytes)
3154 *
3155 * - encoded nvpairs, the format of one xdr encoded nvpair is:
3156 * - encoded size of the nvpair (4 bytes)
3157 * - decoded size of the nvpair (4 bytes)
3158 * - name string, (4 + sizeof(NV_ALIGN4(string))
3159 * a string is coded as size (4 bytes) and data
3160 * - data type (4 bytes)
3161 * - number of elements in the nvpair (4 bytes)
3162 * - data
3163 *
3164 * - 2 zero's for end of the entire list (8 bytes)
3165 */
3166 static int
nvs_xdr_create(nvstream_t * nvs,XDR * xdr,char * buf,size_t buflen)3167 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
3168 {
3169 /* xdr data must be 4 byte aligned */
3170 if ((ulong_t)buf % 4 != 0)
3171 return (EFAULT);
3172
3173 switch (nvs->nvs_op) {
3174 case NVS_OP_ENCODE:
3175 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
3176 nvs->nvs_private = xdr;
3177 return (0);
3178 case NVS_OP_DECODE:
3179 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
3180 nvs->nvs_private = xdr;
3181 return (0);
3182 case NVS_OP_GETSIZE:
3183 nvs->nvs_private = NULL;
3184 return (0);
3185 default:
3186 return (EINVAL);
3187 }
3188 }
3189
3190 static void
nvs_xdr_destroy(nvstream_t * nvs)3191 nvs_xdr_destroy(nvstream_t *nvs)
3192 {
3193 switch (nvs->nvs_op) {
3194 case NVS_OP_ENCODE:
3195 case NVS_OP_DECODE:
3196 nvs->nvs_private = NULL;
3197 break;
3198 default:
3199 break;
3200 }
3201 }
3202
3203 static int
nvs_xdr_nvlist(nvstream_t * nvs,nvlist_t * nvl,size_t * size)3204 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
3205 {
3206 switch (nvs->nvs_op) {
3207 case NVS_OP_ENCODE:
3208 case NVS_OP_DECODE: {
3209 XDR *xdr = nvs->nvs_private;
3210
3211 if (!xdr_int(xdr, &nvl->nvl_version) ||
3212 !xdr_u_int(xdr, &nvl->nvl_nvflag))
3213 return (EFAULT);
3214 break;
3215 }
3216 case NVS_OP_GETSIZE: {
3217 /*
3218 * 2 * 4 for nvl_version + nvl_nvflag
3219 * and 8 for end of the entire list
3220 */
3221 *size += 2 * 4 + 8;
3222 break;
3223 }
3224 default:
3225 return (EINVAL);
3226 }
3227 return (0);
3228 }
3229
3230 static int
nvs_xdr_nvl_fini(nvstream_t * nvs)3231 nvs_xdr_nvl_fini(nvstream_t *nvs)
3232 {
3233 if (nvs->nvs_op == NVS_OP_ENCODE) {
3234 XDR *xdr = nvs->nvs_private;
3235 int zero = 0;
3236
3237 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
3238 return (EFAULT);
3239 }
3240
3241 return (0);
3242 }
3243
3244 /*
3245 * xdrproc_t-compatible callbacks for xdr_array()
3246 */
3247
3248 #if defined(_KERNEL) && defined(__linux__) /* Linux kernel */
3249
3250 #define NVS_BUILD_XDRPROC_T(type) \
3251 static bool_t \
3252 nvs_xdr_nvp_##type(XDR *xdrs, void *ptr) \
3253 { \
3254 return (xdr_##type(xdrs, ptr)); \
3255 }
3256
3257 #elif !defined(_KERNEL) && defined(XDR_CONTROL) /* tirpc */
3258
3259 #define NVS_BUILD_XDRPROC_T(type) \
3260 static bool_t \
3261 nvs_xdr_nvp_##type(XDR *xdrs, ...) \
3262 { \
3263 va_list args; \
3264 void *ptr; \
3265 \
3266 va_start(args, xdrs); \
3267 ptr = va_arg(args, void *); \
3268 va_end(args); \
3269 \
3270 return (xdr_##type(xdrs, ptr)); \
3271 }
3272
3273 #else /* FreeBSD, sunrpc */
3274
3275 #define NVS_BUILD_XDRPROC_T(type) \
3276 static bool_t \
3277 nvs_xdr_nvp_##type(XDR *xdrs, void *ptr, ...) \
3278 { \
3279 return (xdr_##type(xdrs, ptr)); \
3280 }
3281
3282 #endif
3283
3284 NVS_BUILD_XDRPROC_T(char);
3285 NVS_BUILD_XDRPROC_T(short);
3286 NVS_BUILD_XDRPROC_T(u_short);
3287 NVS_BUILD_XDRPROC_T(int);
3288 NVS_BUILD_XDRPROC_T(u_int);
3289 NVS_BUILD_XDRPROC_T(longlong_t);
3290 NVS_BUILD_XDRPROC_T(u_longlong_t);
3291
3292 /*
3293 * The format of xdr encoded nvpair is:
3294 * encode_size, decode_size, name string, data type, nelem, data
3295 */
3296 static int
nvs_xdr_nvp_op(nvstream_t * nvs,nvpair_t * nvp)3297 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
3298 {
3299 ASSERT(nvs != NULL && nvp != NULL);
3300
3301 data_type_t type;
3302 char *buf;
3303 char *buf_end = (char *)nvp + nvp->nvp_size;
3304 int value_sz;
3305 uint_t nelem, buflen;
3306 bool_t ret = FALSE;
3307 XDR *xdr = nvs->nvs_private;
3308
3309 ASSERT(xdr != NULL);
3310
3311 /* name string */
3312 if ((buf = NVP_NAME(nvp)) >= buf_end)
3313 return (EFAULT);
3314 buflen = buf_end - buf;
3315
3316 if (!xdr_string(xdr, &buf, buflen - 1))
3317 return (EFAULT);
3318 nvp->nvp_name_sz = strlen(buf) + 1;
3319
3320 /* type and nelem */
3321 if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
3322 !xdr_int(xdr, &nvp->nvp_value_elem))
3323 return (EFAULT);
3324
3325 type = NVP_TYPE(nvp);
3326 nelem = nvp->nvp_value_elem;
3327
3328 /*
3329 * Verify type and nelem and get the value size.
3330 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
3331 * is the size of the string(s) excluded.
3332 */
3333 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
3334 return (EFAULT);
3335
3336 /* if there is no data to extract then return */
3337 if (nelem == 0)
3338 return (0);
3339
3340 /* value */
3341 if ((buf = NVP_VALUE(nvp)) >= buf_end)
3342 return (EFAULT);
3343 buflen = buf_end - buf;
3344
3345 if (buflen < value_sz)
3346 return (EFAULT);
3347
3348 switch (type) {
3349 case DATA_TYPE_NVLIST:
3350 if (nvs_embedded(nvs, (void *)buf) == 0)
3351 return (0);
3352 break;
3353
3354 case DATA_TYPE_NVLIST_ARRAY:
3355 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
3356 return (0);
3357 break;
3358
3359 case DATA_TYPE_BOOLEAN:
3360 ret = TRUE;
3361 break;
3362
3363 case DATA_TYPE_BYTE:
3364 case DATA_TYPE_INT8:
3365 case DATA_TYPE_UINT8:
3366 ret = xdr_char(xdr, buf);
3367 break;
3368
3369 case DATA_TYPE_INT16:
3370 ret = xdr_short(xdr, (void *)buf);
3371 break;
3372
3373 case DATA_TYPE_UINT16:
3374 ret = xdr_u_short(xdr, (void *)buf);
3375 break;
3376
3377 case DATA_TYPE_BOOLEAN_VALUE:
3378 case DATA_TYPE_INT32:
3379 ret = xdr_int(xdr, (void *)buf);
3380 break;
3381
3382 case DATA_TYPE_UINT32:
3383 ret = xdr_u_int(xdr, (void *)buf);
3384 break;
3385
3386 case DATA_TYPE_INT64:
3387 ret = xdr_longlong_t(xdr, (void *)buf);
3388 break;
3389
3390 case DATA_TYPE_UINT64:
3391 ret = xdr_u_longlong_t(xdr, (void *)buf);
3392 break;
3393
3394 case DATA_TYPE_HRTIME:
3395 /*
3396 * NOTE: must expose the definition of hrtime_t here
3397 */
3398 ret = xdr_longlong_t(xdr, (void *)buf);
3399 break;
3400 #if !defined(_KERNEL)
3401 case DATA_TYPE_DOUBLE:
3402 ret = xdr_double(xdr, (void *)buf);
3403 break;
3404 #endif
3405 case DATA_TYPE_STRING:
3406 ret = xdr_string(xdr, &buf, buflen - 1);
3407 break;
3408
3409 case DATA_TYPE_BYTE_ARRAY:
3410 ret = xdr_opaque(xdr, buf, nelem);
3411 break;
3412
3413 case DATA_TYPE_INT8_ARRAY:
3414 case DATA_TYPE_UINT8_ARRAY:
3415 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3416 nvs_xdr_nvp_char);
3417 break;
3418
3419 case DATA_TYPE_INT16_ARRAY:
3420 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3421 sizeof (int16_t), nvs_xdr_nvp_short);
3422 break;
3423
3424 case DATA_TYPE_UINT16_ARRAY:
3425 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3426 sizeof (uint16_t), nvs_xdr_nvp_u_short);
3427 break;
3428
3429 case DATA_TYPE_BOOLEAN_ARRAY:
3430 case DATA_TYPE_INT32_ARRAY:
3431 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3432 sizeof (int32_t), nvs_xdr_nvp_int);
3433 break;
3434
3435 case DATA_TYPE_UINT32_ARRAY:
3436 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3437 sizeof (uint32_t), nvs_xdr_nvp_u_int);
3438 break;
3439
3440 case DATA_TYPE_INT64_ARRAY:
3441 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3442 sizeof (int64_t), nvs_xdr_nvp_longlong_t);
3443 break;
3444
3445 case DATA_TYPE_UINT64_ARRAY:
3446 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3447 sizeof (uint64_t), nvs_xdr_nvp_u_longlong_t);
3448 break;
3449
3450 case DATA_TYPE_STRING_ARRAY: {
3451 size_t len = nelem * sizeof (uint64_t);
3452 char **strp = (void *)buf;
3453 int i;
3454
3455 if (nvs->nvs_op == NVS_OP_DECODE)
3456 memset(buf, 0, len); /* don't trust packed data */
3457
3458 for (i = 0; i < nelem; i++) {
3459 if (buflen <= len)
3460 return (EFAULT);
3461
3462 buf += len;
3463 buflen -= len;
3464
3465 if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3466 return (EFAULT);
3467
3468 if (nvs->nvs_op == NVS_OP_DECODE)
3469 strp[i] = buf;
3470 len = strlen(buf) + 1;
3471 }
3472 ret = TRUE;
3473 break;
3474 }
3475 default:
3476 break;
3477 }
3478
3479 return (ret == TRUE ? 0 : EFAULT);
3480 }
3481
3482 static int
nvs_xdr_nvp_size(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3483 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3484 {
3485 data_type_t type = NVP_TYPE(nvp);
3486 /*
3487 * encode_size + decode_size + name string size + data type + nelem
3488 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3489 */
3490 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3491
3492 switch (type) {
3493 case DATA_TYPE_BOOLEAN:
3494 break;
3495
3496 case DATA_TYPE_BOOLEAN_VALUE:
3497 case DATA_TYPE_BYTE:
3498 case DATA_TYPE_INT8:
3499 case DATA_TYPE_UINT8:
3500 case DATA_TYPE_INT16:
3501 case DATA_TYPE_UINT16:
3502 case DATA_TYPE_INT32:
3503 case DATA_TYPE_UINT32:
3504 nvp_sz += 4; /* 4 is the minimum xdr unit */
3505 break;
3506
3507 case DATA_TYPE_INT64:
3508 case DATA_TYPE_UINT64:
3509 case DATA_TYPE_HRTIME:
3510 #if !defined(_KERNEL)
3511 case DATA_TYPE_DOUBLE:
3512 #endif
3513 nvp_sz += 8;
3514 break;
3515
3516 case DATA_TYPE_STRING:
3517 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3518 break;
3519
3520 case DATA_TYPE_BYTE_ARRAY:
3521 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3522 break;
3523
3524 case DATA_TYPE_BOOLEAN_ARRAY:
3525 case DATA_TYPE_INT8_ARRAY:
3526 case DATA_TYPE_UINT8_ARRAY:
3527 case DATA_TYPE_INT16_ARRAY:
3528 case DATA_TYPE_UINT16_ARRAY:
3529 case DATA_TYPE_INT32_ARRAY:
3530 case DATA_TYPE_UINT32_ARRAY:
3531 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3532 break;
3533
3534 case DATA_TYPE_INT64_ARRAY:
3535 case DATA_TYPE_UINT64_ARRAY:
3536 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3537 break;
3538
3539 case DATA_TYPE_STRING_ARRAY: {
3540 int i;
3541 char **strs = (void *)NVP_VALUE(nvp);
3542
3543 for (i = 0; i < NVP_NELEM(nvp); i++)
3544 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3545
3546 break;
3547 }
3548
3549 case DATA_TYPE_NVLIST:
3550 case DATA_TYPE_NVLIST_ARRAY: {
3551 size_t nvsize = 0;
3552 int old_nvs_op = nvs->nvs_op;
3553 int err;
3554
3555 nvs->nvs_op = NVS_OP_GETSIZE;
3556 if (type == DATA_TYPE_NVLIST)
3557 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3558 else
3559 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3560 nvs->nvs_op = old_nvs_op;
3561
3562 if (err != 0)
3563 return (EINVAL);
3564
3565 nvp_sz += nvsize;
3566 break;
3567 }
3568
3569 default:
3570 return (EINVAL);
3571 }
3572
3573 if (nvp_sz > INT32_MAX)
3574 return (EINVAL);
3575
3576 *size = nvp_sz;
3577
3578 return (0);
3579 }
3580
3581
3582 /*
3583 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3584 * the largest nvpair that could be encoded in the buffer.
3585 *
3586 * See comments above nvpair_xdr_op() for the format of xdr encoding.
3587 * The size of a xdr packed nvpair without any data is 5 words.
3588 *
3589 * Using the size of the data directly as an estimate would be ok
3590 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY
3591 * then the actual nvpair has space for an array of pointers to index
3592 * the strings. These pointers are not encoded into the packed xdr buffer.
3593 *
3594 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3595 * of length 0, then each string is encoded in xdr format as a single word.
3596 * Therefore when expanded to an nvpair there will be 2.25 word used for
3597 * each string. (a int64_t allocated for pointer usage, and a single char
3598 * for the null termination.)
3599 *
3600 * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3601 */
3602 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4))
3603 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3604 0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3605 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \
3606 (NVS_XDR_DATA_LEN(x) * 2) + \
3607 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3608
3609 static int
nvs_xdr_nvpair(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3610 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3611 {
3612 XDR *xdr = nvs->nvs_private;
3613 int32_t encode_len, decode_len;
3614
3615 switch (nvs->nvs_op) {
3616 case NVS_OP_ENCODE: {
3617 size_t nvsize;
3618
3619 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3620 return (EFAULT);
3621
3622 decode_len = nvp->nvp_size;
3623 encode_len = nvsize;
3624 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3625 return (EFAULT);
3626
3627 return (nvs_xdr_nvp_op(nvs, nvp));
3628 }
3629 case NVS_OP_DECODE: {
3630 struct xdr_bytesrec bytesrec;
3631
3632 /* get the encode and decode size */
3633 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3634 return (EFAULT);
3635 *size = decode_len;
3636
3637 /* are we at the end of the stream? */
3638 if (*size == 0)
3639 return (0);
3640
3641 /* sanity check the size parameter */
3642 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3643 return (EFAULT);
3644
3645 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3646 return (EFAULT);
3647 break;
3648 }
3649
3650 default:
3651 return (EINVAL);
3652 }
3653 return (0);
3654 }
3655
3656 static const struct nvs_ops nvs_xdr_ops = {
3657 .nvs_nvlist = nvs_xdr_nvlist,
3658 .nvs_nvpair = nvs_xdr_nvpair,
3659 .nvs_nvp_op = nvs_xdr_nvp_op,
3660 .nvs_nvp_size = nvs_xdr_nvp_size,
3661 .nvs_nvl_fini = nvs_xdr_nvl_fini
3662 };
3663
3664 static int
nvs_xdr(nvstream_t * nvs,nvlist_t * nvl,char * buf,size_t * buflen)3665 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3666 {
3667 XDR xdr;
3668 int err;
3669
3670 nvs->nvs_ops = &nvs_xdr_ops;
3671
3672 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3673 *buflen - sizeof (nvs_header_t))) != 0)
3674 return (err);
3675
3676 err = nvs_operation(nvs, nvl, buflen);
3677
3678 nvs_xdr_destroy(nvs);
3679
3680 return (err);
3681 }
3682
3683 EXPORT_SYMBOL(nv_alloc_init);
3684 EXPORT_SYMBOL(nv_alloc_reset);
3685 EXPORT_SYMBOL(nv_alloc_fini);
3686
3687 /* list management */
3688 EXPORT_SYMBOL(nvlist_alloc);
3689 EXPORT_SYMBOL(nvlist_free);
3690 EXPORT_SYMBOL(nvlist_size);
3691 EXPORT_SYMBOL(nvlist_pack);
3692 EXPORT_SYMBOL(nvlist_unpack);
3693 EXPORT_SYMBOL(nvlist_dup);
3694 EXPORT_SYMBOL(nvlist_merge);
3695
3696 EXPORT_SYMBOL(nvlist_xalloc);
3697 EXPORT_SYMBOL(nvlist_xpack);
3698 EXPORT_SYMBOL(nvlist_xunpack);
3699 EXPORT_SYMBOL(nvlist_xdup);
3700 EXPORT_SYMBOL(nvlist_lookup_nv_alloc);
3701
3702 EXPORT_SYMBOL(nvlist_add_nvpair);
3703 EXPORT_SYMBOL(nvlist_add_boolean);
3704 EXPORT_SYMBOL(nvlist_add_boolean_value);
3705 EXPORT_SYMBOL(nvlist_add_byte);
3706 EXPORT_SYMBOL(nvlist_add_int8);
3707 EXPORT_SYMBOL(nvlist_add_uint8);
3708 EXPORT_SYMBOL(nvlist_add_int16);
3709 EXPORT_SYMBOL(nvlist_add_uint16);
3710 EXPORT_SYMBOL(nvlist_add_int32);
3711 EXPORT_SYMBOL(nvlist_add_uint32);
3712 EXPORT_SYMBOL(nvlist_add_int64);
3713 EXPORT_SYMBOL(nvlist_add_uint64);
3714 EXPORT_SYMBOL(nvlist_add_string);
3715 EXPORT_SYMBOL(nvlist_add_nvlist);
3716 EXPORT_SYMBOL(nvlist_add_boolean_array);
3717 EXPORT_SYMBOL(nvlist_add_byte_array);
3718 EXPORT_SYMBOL(nvlist_add_int8_array);
3719 EXPORT_SYMBOL(nvlist_add_uint8_array);
3720 EXPORT_SYMBOL(nvlist_add_int16_array);
3721 EXPORT_SYMBOL(nvlist_add_uint16_array);
3722 EXPORT_SYMBOL(nvlist_add_int32_array);
3723 EXPORT_SYMBOL(nvlist_add_uint32_array);
3724 EXPORT_SYMBOL(nvlist_add_int64_array);
3725 EXPORT_SYMBOL(nvlist_add_uint64_array);
3726 EXPORT_SYMBOL(nvlist_add_string_array);
3727 EXPORT_SYMBOL(nvlist_add_nvlist_array);
3728 EXPORT_SYMBOL(nvlist_next_nvpair);
3729 EXPORT_SYMBOL(nvlist_prev_nvpair);
3730 EXPORT_SYMBOL(nvlist_empty);
3731 EXPORT_SYMBOL(nvlist_add_hrtime);
3732
3733 EXPORT_SYMBOL(nvlist_remove);
3734 EXPORT_SYMBOL(nvlist_remove_nvpair);
3735 EXPORT_SYMBOL(nvlist_remove_all);
3736
3737 EXPORT_SYMBOL(nvlist_lookup_boolean);
3738 EXPORT_SYMBOL(nvlist_lookup_boolean_value);
3739 EXPORT_SYMBOL(nvlist_lookup_byte);
3740 EXPORT_SYMBOL(nvlist_lookup_int8);
3741 EXPORT_SYMBOL(nvlist_lookup_uint8);
3742 EXPORT_SYMBOL(nvlist_lookup_int16);
3743 EXPORT_SYMBOL(nvlist_lookup_uint16);
3744 EXPORT_SYMBOL(nvlist_lookup_int32);
3745 EXPORT_SYMBOL(nvlist_lookup_uint32);
3746 EXPORT_SYMBOL(nvlist_lookup_int64);
3747 EXPORT_SYMBOL(nvlist_lookup_uint64);
3748 EXPORT_SYMBOL(nvlist_lookup_string);
3749 EXPORT_SYMBOL(nvlist_lookup_nvlist);
3750 EXPORT_SYMBOL(nvlist_lookup_boolean_array);
3751 EXPORT_SYMBOL(nvlist_lookup_byte_array);
3752 EXPORT_SYMBOL(nvlist_lookup_int8_array);
3753 EXPORT_SYMBOL(nvlist_lookup_uint8_array);
3754 EXPORT_SYMBOL(nvlist_lookup_int16_array);
3755 EXPORT_SYMBOL(nvlist_lookup_uint16_array);
3756 EXPORT_SYMBOL(nvlist_lookup_int32_array);
3757 EXPORT_SYMBOL(nvlist_lookup_uint32_array);
3758 EXPORT_SYMBOL(nvlist_lookup_int64_array);
3759 EXPORT_SYMBOL(nvlist_lookup_uint64_array);
3760 EXPORT_SYMBOL(nvlist_lookup_string_array);
3761 EXPORT_SYMBOL(nvlist_lookup_nvlist_array);
3762 EXPORT_SYMBOL(nvlist_lookup_hrtime);
3763 EXPORT_SYMBOL(nvlist_lookup_pairs);
3764
3765 EXPORT_SYMBOL(nvlist_lookup_nvpair);
3766 EXPORT_SYMBOL(nvlist_exists);
3767
3768 /* processing nvpair */
3769 EXPORT_SYMBOL(nvpair_name);
3770 EXPORT_SYMBOL(nvpair_type);
3771 EXPORT_SYMBOL(nvpair_value_boolean_value);
3772 EXPORT_SYMBOL(nvpair_value_byte);
3773 EXPORT_SYMBOL(nvpair_value_int8);
3774 EXPORT_SYMBOL(nvpair_value_uint8);
3775 EXPORT_SYMBOL(nvpair_value_int16);
3776 EXPORT_SYMBOL(nvpair_value_uint16);
3777 EXPORT_SYMBOL(nvpair_value_int32);
3778 EXPORT_SYMBOL(nvpair_value_uint32);
3779 EXPORT_SYMBOL(nvpair_value_int64);
3780 EXPORT_SYMBOL(nvpair_value_uint64);
3781 EXPORT_SYMBOL(nvpair_value_string);
3782 EXPORT_SYMBOL(nvpair_value_nvlist);
3783 EXPORT_SYMBOL(nvpair_value_boolean_array);
3784 EXPORT_SYMBOL(nvpair_value_byte_array);
3785 EXPORT_SYMBOL(nvpair_value_int8_array);
3786 EXPORT_SYMBOL(nvpair_value_uint8_array);
3787 EXPORT_SYMBOL(nvpair_value_int16_array);
3788 EXPORT_SYMBOL(nvpair_value_uint16_array);
3789 EXPORT_SYMBOL(nvpair_value_int32_array);
3790 EXPORT_SYMBOL(nvpair_value_uint32_array);
3791 EXPORT_SYMBOL(nvpair_value_int64_array);
3792 EXPORT_SYMBOL(nvpair_value_uint64_array);
3793 EXPORT_SYMBOL(nvpair_value_string_array);
3794 EXPORT_SYMBOL(nvpair_value_nvlist_array);
3795 EXPORT_SYMBOL(nvpair_value_hrtime);
3796