1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/note.h>
26 #include <sys/t_lock.h>
27 #include <sys/cmn_err.h>
28 #include <sys/instance.h>
29 #include <sys/conf.h>
30 #include <sys/stat.h>
31 #include <sys/ddi.h>
32 #include <sys/hwconf.h>
33 #include <sys/sunddi.h>
34 #include <sys/sunndi.h>
35 #include <sys/sunmdi.h>
36 #include <sys/ddi_impldefs.h>
37 #include <sys/ndi_impldefs.h>
38 #include <sys/kobj.h>
39 #include <sys/devcache.h>
40 #include <sys/devid_cache.h>
41 #include <sys/sysmacros.h>
42
43 /*
44 * Discovery refers to the heroic effort made to discover a device which
45 * cannot be accessed at the physical path where it once resided. Discovery
46 * involves walking the entire device tree attaching all possible disk
47 * instances, to search for the device referenced by a devid. Obviously,
48 * full device discovery is something to be avoided where possible.
49 * Note that simply invoking devfsadm(1M) is equivalent to running full
50 * discovery at the devid cache level.
51 *
52 * Reasons why a disk may not be accessible:
53 * disk powered off
54 * disk removed or cable disconnected
55 * disk or adapter broken
56 *
57 * Note that discovery is not needed and cannot succeed in any of these
58 * cases.
59 *
60 * When discovery may succeed:
61 * Discovery will result in success when a device has been moved
62 * to a different address. Note that it's recommended that
63 * devfsadm(1M) be invoked (no arguments required) whenever a system's
64 * h/w configuration has been updated. Alternatively, a
65 * reconfiguration boot can be used to accomplish the same result.
66 *
67 * Note that discovery is not necessary to be able to correct an access
68 * failure for a device which was powered off. Assuming the cache has an
69 * entry for such a device, simply powering it on should permit the system
70 * to access it. If problems persist after powering it on, invoke
71 * devfsadm(1M).
72 *
73 * Discovery prior to mounting root is only of interest when booting
74 * from a filesystem which accesses devices by device id, which of
75 * not all do.
76 *
77 * Tunables
78 *
79 * devid_discovery_boot (default 1)
80 * Number of times discovery will be attempted prior to mounting root.
81 * Must be done at least once to recover from corrupted or missing
82 * devid cache backing store. Probably there's no reason to ever
83 * set this to greater than one as a missing device will remain
84 * unavailable no matter how often the system searches for it.
85 *
86 * devid_discovery_postboot (default 1)
87 * Number of times discovery will be attempted after mounting root.
88 * This must be performed at least once to discover any devices
89 * needed after root is mounted which may have been powered
90 * off and moved before booting.
91 * Setting this to a larger positive number will introduce
92 * some inconsistency in system operation. Searching for a device
93 * will take an indeterminate amount of time, sometimes slower,
94 * sometimes faster. In addition, the system will sometimes
95 * discover a newly powered on device, sometimes it won't.
96 * Use of this option is not therefore recommended.
97 *
98 * devid_discovery_postboot_always (default 0)
99 * Set to 1, the system will always attempt full discovery.
100 *
101 * devid_discovery_secs (default 0)
102 * Set to a positive value, the system will attempt full discovery
103 * but with a minimum delay between attempts. A device search
104 * within the period of time specified will result in failure.
105 *
106 * devid_cache_read_disable (default 0)
107 * Set to 1 to disable reading /etc/devices/devid_cache.
108 * Devid cache will continue to operate normally but
109 * at least one discovery attempt will be required.
110 *
111 * devid_cache_write_disable (default 0)
112 * Set to 1 to disable updates to /etc/devices/devid_cache.
113 * Any updates to the devid cache will not be preserved across a reboot.
114 *
115 * devid_report_error (default 0)
116 * Set to 1 to enable some error messages related to devid
117 * cache failures.
118 *
119 * The devid is packed in the cache file as a byte array. For
120 * portability, this could be done in the encoded string format.
121 */
122
123
124 int devid_discovery_boot = 1;
125 int devid_discovery_postboot = 1;
126 int devid_discovery_postboot_always = 0;
127 int devid_discovery_secs = 0;
128
129 int devid_cache_read_disable = 0;
130 int devid_cache_write_disable = 0;
131
132 int devid_report_error = 0;
133
134
135 /*
136 * State to manage discovery of devices providing a devid
137 */
138 static int devid_discovery_busy = 0;
139 static kmutex_t devid_discovery_mutex;
140 static kcondvar_t devid_discovery_cv;
141 static clock_t devid_last_discovery = 0;
142
143
144 #ifdef DEBUG
145 int nvp_devid_debug = 0;
146 int devid_debug = 0;
147 int devid_log_registers = 0;
148 int devid_log_finds = 0;
149 int devid_log_lookups = 0;
150 int devid_log_discovery = 0;
151 int devid_log_matches = 0;
152 int devid_log_paths = 0;
153 int devid_log_failures = 0;
154 int devid_log_hold = 0;
155 int devid_log_unregisters = 0;
156 int devid_log_removes = 0;
157 int devid_register_debug = 0;
158 int devid_log_stale = 0;
159 int devid_log_detaches = 0;
160 #endif /* DEBUG */
161
162 /*
163 * devid cache file registration for cache reads and updates
164 */
165 static nvf_ops_t devid_cache_ops = {
166 "/etc/devices/devid_cache", /* path to cache */
167 devid_cache_unpack_nvlist, /* read: nvlist to nvp */
168 devid_cache_pack_list, /* write: nvp to nvlist */
169 devid_list_free, /* free data list */
170 NULL /* write complete callback */
171 };
172
173 /*
174 * handle to registered devid cache handlers
175 */
176 nvf_handle_t dcfd_handle;
177
178
179 /*
180 * Initialize devid cache file management
181 */
182 void
devid_cache_init(void)183 devid_cache_init(void)
184 {
185 dcfd_handle = nvf_register_file(&devid_cache_ops);
186 ASSERT(dcfd_handle);
187
188 list_create(nvf_list(dcfd_handle), sizeof (nvp_devid_t),
189 offsetof(nvp_devid_t, nvp_link));
190
191 mutex_init(&devid_discovery_mutex, NULL, MUTEX_DEFAULT, NULL);
192 cv_init(&devid_discovery_cv, NULL, CV_DRIVER, NULL);
193 }
194
195 /*
196 * Read and initialize the devid cache from the persistent store
197 */
198 void
devid_cache_read(void)199 devid_cache_read(void)
200 {
201 if (!devid_cache_read_disable) {
202 rw_enter(nvf_lock(dcfd_handle), RW_WRITER);
203 ASSERT(list_head(nvf_list(dcfd_handle)) == NULL);
204 (void) nvf_read_file(dcfd_handle);
205 rw_exit(nvf_lock(dcfd_handle));
206 }
207 }
208
209 static void
devid_nvp_free(nvp_devid_t * dp)210 devid_nvp_free(nvp_devid_t *dp)
211 {
212 if (dp->nvp_devpath)
213 kmem_free(dp->nvp_devpath, strlen(dp->nvp_devpath)+1);
214 if (dp->nvp_devid)
215 kmem_free(dp->nvp_devid, ddi_devid_sizeof(dp->nvp_devid));
216
217 kmem_free(dp, sizeof (nvp_devid_t));
218 }
219
220 static void
devid_list_free(nvf_handle_t fd)221 devid_list_free(nvf_handle_t fd)
222 {
223 list_t *listp;
224 nvp_devid_t *np;
225
226 ASSERT(RW_WRITE_HELD(nvf_lock(dcfd_handle)));
227
228 listp = nvf_list(fd);
229 while (np = list_head(listp)) {
230 list_remove(listp, np);
231 devid_nvp_free(np);
232 }
233 }
234
235 /*
236 * Free an nvp element in a list
237 */
238 static void
devid_nvp_unlink_and_free(nvf_handle_t fd,nvp_devid_t * np)239 devid_nvp_unlink_and_free(nvf_handle_t fd, nvp_devid_t *np)
240 {
241 list_remove(nvf_list(fd), np);
242 devid_nvp_free(np);
243 }
244
245 /*
246 * Unpack a device path/nvlist pair to the list of devid cache elements.
247 * Used to parse the nvlist format when reading
248 * /etc/devices/devid_cache
249 */
250 static int
devid_cache_unpack_nvlist(nvf_handle_t fd,nvlist_t * nvl,char * name)251 devid_cache_unpack_nvlist(nvf_handle_t fd, nvlist_t *nvl, char *name)
252 {
253 nvp_devid_t *np;
254 ddi_devid_t devidp;
255 int rval;
256 uint_t n;
257
258 NVP_DEVID_DEBUG_PATH((name));
259 ASSERT(RW_WRITE_HELD(nvf_lock(dcfd_handle)));
260
261 /*
262 * check path for a devid
263 */
264 rval = nvlist_lookup_byte_array(nvl,
265 DP_DEVID_ID, (uchar_t **)&devidp, &n);
266 if (rval == 0) {
267 if (ddi_devid_valid(devidp) == DDI_SUCCESS) {
268 ASSERT(n == ddi_devid_sizeof(devidp));
269 np = kmem_zalloc(sizeof (nvp_devid_t), KM_SLEEP);
270 np->nvp_devpath = i_ddi_strdup(name, KM_SLEEP);
271 np->nvp_devid = kmem_alloc(n, KM_SLEEP);
272 (void) bcopy(devidp, np->nvp_devid, n);
273 list_insert_tail(nvf_list(fd), np);
274 NVP_DEVID_DEBUG_DEVID((np->nvp_devid));
275 } else {
276 DEVIDERR((CE_CONT,
277 "%s: invalid devid\n", name));
278 }
279 } else {
280 DEVIDERR((CE_CONT,
281 "%s: devid not available\n", name));
282 }
283
284 return (0);
285 }
286
287 /*
288 * Pack the list of devid cache elements into a single nvlist
289 * Used when writing the nvlist file.
290 */
291 static int
devid_cache_pack_list(nvf_handle_t fd,nvlist_t ** ret_nvl)292 devid_cache_pack_list(nvf_handle_t fd, nvlist_t **ret_nvl)
293 {
294 nvlist_t *nvl, *sub_nvl;
295 nvp_devid_t *np;
296 int rval;
297 list_t *listp;
298
299 ASSERT(RW_WRITE_HELD(nvf_lock(dcfd_handle)));
300
301 rval = nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
302 if (rval != 0) {
303 nvf_error("%s: nvlist alloc error %d\n",
304 nvf_cache_name(fd), rval);
305 return (DDI_FAILURE);
306 }
307
308 listp = nvf_list(fd);
309 for (np = list_head(listp); np; np = list_next(listp, np)) {
310 if (np->nvp_devid == NULL)
311 continue;
312 NVP_DEVID_DEBUG_PATH(np->nvp_devpath);
313 rval = nvlist_alloc(&sub_nvl, NV_UNIQUE_NAME, KM_SLEEP);
314 if (rval != 0) {
315 nvf_error("%s: nvlist alloc error %d\n",
316 nvf_cache_name(fd), rval);
317 sub_nvl = NULL;
318 goto err;
319 }
320
321 rval = nvlist_add_byte_array(sub_nvl, DP_DEVID_ID,
322 (uchar_t *)np->nvp_devid,
323 ddi_devid_sizeof(np->nvp_devid));
324 if (rval == 0) {
325 NVP_DEVID_DEBUG_DEVID(np->nvp_devid);
326 } else {
327 nvf_error(
328 "%s: nvlist add error %d (devid)\n",
329 nvf_cache_name(fd), rval);
330 goto err;
331 }
332
333 rval = nvlist_add_nvlist(nvl, np->nvp_devpath, sub_nvl);
334 if (rval != 0) {
335 nvf_error("%s: nvlist add error %d (sublist)\n",
336 nvf_cache_name(fd), rval);
337 goto err;
338 }
339 nvlist_free(sub_nvl);
340 }
341
342 *ret_nvl = nvl;
343 return (DDI_SUCCESS);
344
345 err:
346 nvlist_free(sub_nvl);
347 nvlist_free(nvl);
348 *ret_nvl = NULL;
349 return (DDI_FAILURE);
350 }
351
352 static int
e_devid_do_discovery(void)353 e_devid_do_discovery(void)
354 {
355 ASSERT(mutex_owned(&devid_discovery_mutex));
356
357 if (i_ddi_io_initialized() == 0) {
358 if (devid_discovery_boot > 0) {
359 devid_discovery_boot--;
360 return (1);
361 }
362 } else {
363 if (devid_discovery_postboot_always > 0)
364 return (1);
365 if (devid_discovery_postboot > 0) {
366 devid_discovery_postboot--;
367 return (1);
368 }
369 if (devid_discovery_secs > 0) {
370 if ((ddi_get_lbolt() - devid_last_discovery) >
371 drv_usectohz(devid_discovery_secs * MICROSEC)) {
372 return (1);
373 }
374 }
375 }
376
377 DEVID_LOG_DISC((CE_CONT, "devid_discovery: no discovery\n"));
378 return (0);
379 }
380
381 static void
e_ddi_devid_hold_by_major(major_t major)382 e_ddi_devid_hold_by_major(major_t major)
383 {
384 DEVID_LOG_DISC((CE_CONT,
385 "devid_discovery: ddi_hold_installed_driver %d\n", major));
386
387 if (ddi_hold_installed_driver(major) == NULL)
388 return;
389
390 ddi_rele_driver(major);
391 }
392
393 /* legacy support - see below */
394 static char *e_ddi_devid_hold_driver_list[] = { "sd", "ssd" };
395
396 #define N_DRIVERS_TO_HOLD \
397 (sizeof (e_ddi_devid_hold_driver_list) / sizeof (char *))
398
399 static void
e_ddi_devid_hold_installed_driver(ddi_devid_t devid)400 e_ddi_devid_hold_installed_driver(ddi_devid_t devid)
401 {
402 impl_devid_t *id = (impl_devid_t *)devid;
403 major_t major, hint_major;
404 char hint[DEVID_HINT_SIZE + 1];
405 struct devnames *dnp;
406 char **drvp;
407 int i;
408
409 /* Count non-null bytes */
410 for (i = 0; i < DEVID_HINT_SIZE; i++)
411 if (id->did_driver[i] == '\0')
412 break;
413
414 /* Make a copy of the driver hint */
415 bcopy(id->did_driver, hint, i);
416 hint[i] = '\0';
417
418 /* search for the devid using the hint driver */
419 hint_major = ddi_name_to_major(hint);
420 if (hint_major != DDI_MAJOR_T_NONE) {
421 e_ddi_devid_hold_by_major(hint_major);
422 }
423
424 /*
425 * search for the devid with each driver declaring
426 * itself as a devid registrant.
427 */
428 for (major = 0; major < devcnt; major++) {
429 if (major == hint_major)
430 continue;
431 dnp = &devnamesp[major];
432 if (dnp->dn_flags & DN_DEVID_REGISTRANT) {
433 e_ddi_devid_hold_by_major(major);
434 }
435 }
436
437 /*
438 * Legacy support: may be removed once an upgrade mechanism
439 * for driver conf files is available.
440 */
441 drvp = e_ddi_devid_hold_driver_list;
442 for (i = 0; i < N_DRIVERS_TO_HOLD; i++, drvp++) {
443 major = ddi_name_to_major(*drvp);
444 if (major != DDI_MAJOR_T_NONE && major != hint_major) {
445 e_ddi_devid_hold_by_major(major);
446 }
447 }
448 }
449
450 /*
451 * Return success if discovery was attempted, to indicate
452 * that the desired device may now be available.
453 */
454 int
e_ddi_devid_discovery(ddi_devid_t devid)455 e_ddi_devid_discovery(ddi_devid_t devid)
456 {
457 int flags;
458 int rval = DDI_SUCCESS;
459
460 mutex_enter(&devid_discovery_mutex);
461
462 if (devid_discovery_busy) {
463 DEVID_LOG_DISC((CE_CONT, "devid_discovery: busy\n"));
464 while (devid_discovery_busy) {
465 cv_wait(&devid_discovery_cv, &devid_discovery_mutex);
466 }
467 } else if (e_devid_do_discovery()) {
468 devid_discovery_busy = 1;
469 mutex_exit(&devid_discovery_mutex);
470
471 if (i_ddi_io_initialized() == 0) {
472 e_ddi_devid_hold_installed_driver(devid);
473 } else {
474 DEVID_LOG_DISC((CE_CONT,
475 "devid_discovery: ndi_devi_config\n"));
476 flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
477 if (i_ddi_io_initialized())
478 flags |= NDI_DRV_CONF_REPROBE;
479 (void) ndi_devi_config(ddi_root_node(), flags);
480 }
481
482 mutex_enter(&devid_discovery_mutex);
483 devid_discovery_busy = 0;
484 cv_broadcast(&devid_discovery_cv);
485 if (devid_discovery_secs > 0)
486 devid_last_discovery = ddi_get_lbolt();
487 DEVID_LOG_DISC((CE_CONT, "devid_discovery: done\n"));
488 } else {
489 rval = DDI_FAILURE;
490 DEVID_LOG_DISC((CE_CONT, "no devid discovery\n"));
491 }
492
493 mutex_exit(&devid_discovery_mutex);
494
495 return (rval);
496 }
497
498 /*
499 * As part of registering a devid for a device,
500 * update the devid cache with this device/devid pair
501 * or note that this combination has registered.
502 *
503 * If a devpath is provided it will be used as the path to register the
504 * devid against, otherwise we use ddi_pathname(dip). In both cases
505 * we duplicate the path string so that it can be cached/freed indepdently
506 * of the original owner.
507 */
508 static int
e_devid_cache_register_cmn(dev_info_t * dip,ddi_devid_t devid,char * devpath)509 e_devid_cache_register_cmn(dev_info_t *dip, ddi_devid_t devid, char *devpath)
510 {
511 nvp_devid_t *np;
512 nvp_devid_t *new_nvp;
513 ddi_devid_t new_devid;
514 int new_devid_size;
515 char *path, *fullpath;
516 ddi_devid_t free_devid = NULL;
517 int pathlen;
518 list_t *listp;
519 int is_dirty = 0;
520
521
522 ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS);
523
524 if (devpath) {
525 pathlen = strlen(devpath) + 1;
526 path = kmem_alloc(pathlen, KM_SLEEP);
527 bcopy(devpath, path, pathlen);
528 } else {
529 /*
530 * We are willing to accept DS_BOUND nodes if we can form a full
531 * ddi_pathname (i.e. the node is part way to becomming
532 * DS_INITIALIZED and devi_addr/ddi_get_name_addr are non-NULL).
533 */
534 if (ddi_get_name_addr(dip) == NULL)
535 return (DDI_FAILURE);
536
537 fullpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
538 (void) ddi_pathname(dip, fullpath);
539 pathlen = strlen(fullpath) + 1;
540 path = kmem_alloc(pathlen, KM_SLEEP);
541 bcopy(fullpath, path, pathlen);
542 kmem_free(fullpath, MAXPATHLEN);
543 }
544
545 DEVID_LOG_REG(("register", devid, path));
546
547 new_nvp = kmem_zalloc(sizeof (nvp_devid_t), KM_SLEEP);
548 new_devid_size = ddi_devid_sizeof(devid);
549 new_devid = kmem_alloc(new_devid_size, KM_SLEEP);
550 (void) bcopy(devid, new_devid, new_devid_size);
551
552 rw_enter(nvf_lock(dcfd_handle), RW_WRITER);
553
554 listp = nvf_list(dcfd_handle);
555 for (np = list_head(listp); np; np = list_next(listp, np)) {
556 if (strcmp(path, np->nvp_devpath) == 0) {
557 DEVID_DEBUG2((CE_CONT,
558 "register: %s path match\n", path));
559 if (np->nvp_devid == NULL) {
560 replace: np->nvp_devid = new_devid;
561 np->nvp_flags |=
562 NVP_DEVID_DIP | NVP_DEVID_REGISTERED;
563 np->nvp_dip = dip;
564 if (!devid_cache_write_disable) {
565 nvf_mark_dirty(dcfd_handle);
566 is_dirty = 1;
567 }
568 rw_exit(nvf_lock(dcfd_handle));
569 kmem_free(new_nvp, sizeof (nvp_devid_t));
570 kmem_free(path, pathlen);
571 goto exit;
572 }
573 if (ddi_devid_valid(np->nvp_devid) != DDI_SUCCESS) {
574 /* replace invalid devid */
575 free_devid = np->nvp_devid;
576 goto replace;
577 }
578 /*
579 * We're registering an already-cached path
580 * Does the device's devid match the cache?
581 */
582 if (ddi_devid_compare(devid, np->nvp_devid) != 0) {
583 DEVID_DEBUG((CE_CONT, "devid register: "
584 "devid %s does not match\n", path));
585 /*
586 * Replace cached devid for this path
587 * with newly registered devid. A devid
588 * may map to multiple paths but one path
589 * should only map to one devid.
590 */
591 devid_nvp_unlink_and_free(dcfd_handle, np);
592 np = NULL;
593 break;
594 } else {
595 DEVID_DEBUG2((CE_CONT,
596 "devid register: %s devid match\n", path));
597 np->nvp_flags |=
598 NVP_DEVID_DIP | NVP_DEVID_REGISTERED;
599 np->nvp_dip = dip;
600 rw_exit(nvf_lock(dcfd_handle));
601 kmem_free(new_nvp, sizeof (nvp_devid_t));
602 kmem_free(path, pathlen);
603 kmem_free(new_devid, new_devid_size);
604 return (DDI_SUCCESS);
605 }
606 }
607 }
608
609 /*
610 * Add newly registered devid to the cache
611 */
612 ASSERT(np == NULL);
613
614 new_nvp->nvp_devpath = path;
615 new_nvp->nvp_flags = NVP_DEVID_DIP | NVP_DEVID_REGISTERED;
616 new_nvp->nvp_dip = dip;
617 new_nvp->nvp_devid = new_devid;
618
619 if (!devid_cache_write_disable) {
620 is_dirty = 1;
621 nvf_mark_dirty(dcfd_handle);
622 }
623 list_insert_tail(nvf_list(dcfd_handle), new_nvp);
624
625 rw_exit(nvf_lock(dcfd_handle));
626
627 exit:
628 if (free_devid)
629 kmem_free(free_devid, ddi_devid_sizeof(free_devid));
630
631 if (is_dirty)
632 nvf_wake_daemon();
633
634 return (DDI_SUCCESS);
635 }
636
637 int
e_devid_cache_register(dev_info_t * dip,ddi_devid_t devid)638 e_devid_cache_register(dev_info_t *dip, ddi_devid_t devid)
639 {
640 return (e_devid_cache_register_cmn(dip, devid, NULL));
641 }
642
643 /*
644 * Unregister a device's devid; the devinfo may hit on multiple entries
645 * arising from both pHCI and vHCI paths.
646 * Called as an instance detachs.
647 * Invalidate the devid's devinfo reference.
648 * Devid-path remains in the cache.
649 */
650
651 void
e_devid_cache_unregister(dev_info_t * dip)652 e_devid_cache_unregister(dev_info_t *dip)
653 {
654 nvp_devid_t *np;
655 list_t *listp;
656
657 rw_enter(nvf_lock(dcfd_handle), RW_WRITER);
658
659 listp = nvf_list(dcfd_handle);
660 for (np = list_head(listp); np; np = list_next(listp, np)) {
661 if (np->nvp_devid == NULL)
662 continue;
663 if ((np->nvp_flags & NVP_DEVID_DIP) && np->nvp_dip == dip) {
664 DEVID_LOG_UNREG((CE_CONT,
665 "unregister: %s\n", np->nvp_devpath));
666 np->nvp_flags &= ~NVP_DEVID_DIP;
667 np->nvp_dip = NULL;
668 }
669 }
670
671 rw_exit(nvf_lock(dcfd_handle));
672 }
673
674 int
e_devid_cache_pathinfo(mdi_pathinfo_t * pip,ddi_devid_t devid)675 e_devid_cache_pathinfo(mdi_pathinfo_t *pip, ddi_devid_t devid)
676 {
677 char *path = mdi_pi_pathname(pip);
678
679 return (e_devid_cache_register_cmn(mdi_pi_get_client(pip), devid,
680 path));
681 }
682
683 /*
684 * Purge devid cache of stale devids
685 */
686 void
devid_cache_cleanup(void)687 devid_cache_cleanup(void)
688 {
689 nvp_devid_t *np, *next;
690 list_t *listp;
691 int is_dirty = 0;
692
693 rw_enter(nvf_lock(dcfd_handle), RW_WRITER);
694
695 listp = nvf_list(dcfd_handle);
696 for (np = list_head(listp); np; np = next) {
697 next = list_next(listp, np);
698 if (np->nvp_devid == NULL)
699 continue;
700 if ((np->nvp_flags & NVP_DEVID_REGISTERED) == 0) {
701 DEVID_LOG_REMOVE((CE_CONT,
702 "cleanup: %s\n", np->nvp_devpath));
703 if (!devid_cache_write_disable) {
704 nvf_mark_dirty(dcfd_handle);
705 is_dirty = 0;
706 }
707 devid_nvp_unlink_and_free(dcfd_handle, np);
708 }
709 }
710
711 rw_exit(nvf_lock(dcfd_handle));
712
713 if (is_dirty)
714 nvf_wake_daemon();
715 }
716
717
718 /*
719 * Build a list of dev_t's for a device/devid
720 *
721 * The effect of this function is cumulative, adding dev_t's
722 * for the device to the list of all dev_t's for a given
723 * devid.
724 */
725 static void
e_devid_minor_to_devlist(dev_info_t * dip,char * minor_name,int ndevts_alloced,int * devtcntp,dev_t * devtsp)726 e_devid_minor_to_devlist(
727 dev_info_t *dip,
728 char *minor_name,
729 int ndevts_alloced,
730 int *devtcntp,
731 dev_t *devtsp)
732 {
733 int circ;
734 struct ddi_minor_data *dmdp;
735 int minor_all = 0;
736 int ndevts = *devtcntp;
737
738 ASSERT(i_ddi_devi_attached(dip));
739
740 /* are we looking for a set of minor nodes? */
741 if ((minor_name == DEVID_MINOR_NAME_ALL) ||
742 (minor_name == DEVID_MINOR_NAME_ALL_CHR) ||
743 (minor_name == DEVID_MINOR_NAME_ALL_BLK))
744 minor_all = 1;
745
746 /* Find matching minor names */
747 ndi_devi_enter(dip, &circ);
748 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
749
750 /* Skip non-minors, and non matching minor names */
751 if ((dmdp->type != DDM_MINOR) || ((minor_all == 0) &&
752 strcmp(dmdp->ddm_name, minor_name)))
753 continue;
754
755 /* filter out minor_all mismatches */
756 if (minor_all &&
757 (((minor_name == DEVID_MINOR_NAME_ALL_CHR) &&
758 (dmdp->ddm_spec_type != S_IFCHR)) ||
759 ((minor_name == DEVID_MINOR_NAME_ALL_BLK) &&
760 (dmdp->ddm_spec_type != S_IFBLK))))
761 continue;
762
763 if (ndevts < ndevts_alloced)
764 devtsp[ndevts] = dmdp->ddm_dev;
765 ndevts++;
766 }
767 ndi_devi_exit(dip, circ);
768
769 *devtcntp = ndevts;
770 }
771
772 /*
773 * Search for cached entries matching a devid
774 * Return two lists:
775 * a list of dev_info nodes, for those devices in the attached state
776 * a list of pathnames whose instances registered the given devid
777 * If the lists passed in are not sufficient to return the matching
778 * references, return the size of lists required.
779 * The dev_info nodes are returned with a hold that the caller must release.
780 */
781 static int
e_devid_cache_devi_path_lists(ddi_devid_t devid,int retmax,int * retndevis,dev_info_t ** retdevis,int * retnpaths,char ** retpaths)782 e_devid_cache_devi_path_lists(ddi_devid_t devid, int retmax,
783 int *retndevis, dev_info_t **retdevis, int *retnpaths, char **retpaths)
784 {
785 nvp_devid_t *np;
786 int ndevis, npaths;
787 dev_info_t *dip, *pdip;
788 int circ;
789 int maxdevis = 0;
790 int maxpaths = 0;
791 list_t *listp;
792
793 ndevis = 0;
794 npaths = 0;
795 listp = nvf_list(dcfd_handle);
796 for (np = list_head(listp); np; np = list_next(listp, np)) {
797 if (np->nvp_devid == NULL)
798 continue;
799 if (ddi_devid_valid(np->nvp_devid) != DDI_SUCCESS) {
800 DEVIDERR((CE_CONT,
801 "find: invalid devid %s\n",
802 np->nvp_devpath));
803 continue;
804 }
805 if (ddi_devid_compare(devid, np->nvp_devid) == 0) {
806 DEVID_DEBUG2((CE_CONT,
807 "find: devid match: %s 0x%x\n",
808 np->nvp_devpath, np->nvp_flags));
809 DEVID_LOG_MATCH(("find", devid, np->nvp_devpath));
810 DEVID_LOG_PATHS((CE_CONT, "%s\n", np->nvp_devpath));
811
812 /*
813 * Check if we have a cached devinfo reference for this
814 * devid. Place a hold on it to prevent detach
815 * Otherwise, use the path instead.
816 * Note: returns with a hold on each dev_info
817 * node in the list.
818 */
819 dip = NULL;
820 if (np->nvp_flags & NVP_DEVID_DIP) {
821 pdip = ddi_get_parent(np->nvp_dip);
822 if (ndi_devi_tryenter(pdip, &circ)) {
823 dip = np->nvp_dip;
824 ndi_hold_devi(dip);
825 ndi_devi_exit(pdip, circ);
826 ASSERT(!DEVI_IS_ATTACHING(dip));
827 ASSERT(!DEVI_IS_DETACHING(dip));
828 } else {
829 DEVID_LOG_DETACH((CE_CONT,
830 "may be detaching: %s\n",
831 np->nvp_devpath));
832 }
833 }
834
835 if (dip) {
836 if (ndevis < retmax) {
837 retdevis[ndevis++] = dip;
838 } else {
839 ndi_rele_devi(dip);
840 }
841 maxdevis++;
842 } else {
843 if (npaths < retmax)
844 retpaths[npaths++] = np->nvp_devpath;
845 maxpaths++;
846 }
847 }
848 }
849
850 *retndevis = ndevis;
851 *retnpaths = npaths;
852 return (maxdevis > maxpaths ? maxdevis : maxpaths);
853 }
854
855
856 /*
857 * Search the devid cache, returning dev_t list for all
858 * device paths mapping to the device identified by the
859 * given devid.
860 *
861 * Primary interface used by ddi_lyr_devid_to_devlist()
862 */
863 int
e_devid_cache_to_devt_list(ddi_devid_t devid,char * minor_name,int * retndevts,dev_t ** retdevts)864 e_devid_cache_to_devt_list(ddi_devid_t devid, char *minor_name,
865 int *retndevts, dev_t **retdevts)
866 {
867 char *path, **paths;
868 int i, j, n;
869 dev_t *devts, *udevts;
870 dev_t tdevt;
871 int ndevts, undevts, ndevts_alloced;
872 dev_info_t *devi, **devis;
873 int ndevis, npaths, nalloced;
874 ddi_devid_t match_devid;
875
876 DEVID_LOG_FIND(("find", devid, NULL));
877
878 ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS);
879 if (ddi_devid_valid(devid) != DDI_SUCCESS) {
880 DEVID_LOG_ERR(("invalid devid", devid, NULL));
881 return (DDI_FAILURE);
882 }
883
884 nalloced = 128;
885
886 for (;;) {
887 paths = kmem_zalloc(nalloced * sizeof (char *), KM_SLEEP);
888 devis = kmem_zalloc(nalloced * sizeof (dev_info_t *), KM_SLEEP);
889
890 rw_enter(nvf_lock(dcfd_handle), RW_READER);
891 n = e_devid_cache_devi_path_lists(devid, nalloced,
892 &ndevis, devis, &npaths, paths);
893 if (n <= nalloced)
894 break;
895 rw_exit(nvf_lock(dcfd_handle));
896 for (i = 0; i < ndevis; i++)
897 ndi_rele_devi(devis[i]);
898 kmem_free(paths, nalloced * sizeof (char *));
899 kmem_free(devis, nalloced * sizeof (dev_info_t *));
900 nalloced = n + 128;
901 }
902
903 for (i = 0; i < npaths; i++) {
904 path = i_ddi_strdup(paths[i], KM_SLEEP);
905 paths[i] = path;
906 }
907 rw_exit(nvf_lock(dcfd_handle));
908
909 if (ndevis == 0 && npaths == 0) {
910 DEVID_LOG_ERR(("no devid found", devid, NULL));
911 kmem_free(paths, nalloced * sizeof (char *));
912 kmem_free(devis, nalloced * sizeof (dev_info_t *));
913 return (DDI_FAILURE);
914 }
915
916 ndevts_alloced = 128;
917 restart:
918 ndevts = 0;
919 devts = kmem_alloc(ndevts_alloced * sizeof (dev_t), KM_SLEEP);
920 for (i = 0; i < ndevis; i++) {
921 ASSERT(!DEVI_IS_ATTACHING(devis[i]));
922 ASSERT(!DEVI_IS_DETACHING(devis[i]));
923 e_devid_minor_to_devlist(devis[i], minor_name,
924 ndevts_alloced, &ndevts, devts);
925 if (ndevts > ndevts_alloced) {
926 kmem_free(devts, ndevts_alloced * sizeof (dev_t));
927 ndevts_alloced += 128;
928 goto restart;
929 }
930 }
931 for (i = 0; i < npaths; i++) {
932 DEVID_LOG_LOOKUP((CE_CONT, "lookup %s\n", paths[i]));
933 devi = e_ddi_hold_devi_by_path(paths[i], 0);
934 if (devi == NULL) {
935 DEVID_LOG_STALE(("stale device reference",
936 devid, paths[i]));
937 continue;
938 }
939 /*
940 * Verify the newly attached device registered a matching devid
941 */
942 if (i_ddi_devi_get_devid(DDI_DEV_T_ANY, devi,
943 &match_devid) != DDI_SUCCESS) {
944 DEVIDERR((CE_CONT,
945 "%s: no devid registered on attach\n",
946 paths[i]));
947 ddi_release_devi(devi);
948 continue;
949 }
950
951 if (ddi_devid_compare(devid, match_devid) != 0) {
952 DEVID_LOG_STALE(("new devid registered",
953 devid, paths[i]));
954 ddi_release_devi(devi);
955 ddi_devid_free(match_devid);
956 continue;
957 }
958 ddi_devid_free(match_devid);
959
960 e_devid_minor_to_devlist(devi, minor_name,
961 ndevts_alloced, &ndevts, devts);
962 ddi_release_devi(devi);
963 if (ndevts > ndevts_alloced) {
964 kmem_free(devts,
965 ndevts_alloced * sizeof (dev_t));
966 ndevts_alloced += 128;
967 goto restart;
968 }
969 }
970
971 /* drop hold from e_devid_cache_devi_path_lists */
972 for (i = 0; i < ndevis; i++) {
973 ndi_rele_devi(devis[i]);
974 }
975 for (i = 0; i < npaths; i++) {
976 kmem_free(paths[i], strlen(paths[i]) + 1);
977 }
978 kmem_free(paths, nalloced * sizeof (char *));
979 kmem_free(devis, nalloced * sizeof (dev_info_t *));
980
981 if (ndevts == 0) {
982 DEVID_LOG_ERR(("no devid found", devid, NULL));
983 kmem_free(devts, ndevts_alloced * sizeof (dev_t));
984 return (DDI_FAILURE);
985 }
986
987 /*
988 * Build the final list of sorted dev_t's with duplicates collapsed so
989 * returned results are consistent. This prevents implementation
990 * artifacts from causing unnecessary changes in SVM namespace.
991 */
992 /* bubble sort */
993 for (i = 0; i < (ndevts - 1); i++) {
994 for (j = 0; j < ((ndevts - 1) - i); j++) {
995 if (devts[j + 1] < devts[j]) {
996 tdevt = devts[j];
997 devts[j] = devts[j + 1];
998 devts[j + 1] = tdevt;
999 }
1000 }
1001 }
1002
1003 /* determine number of unique values */
1004 for (undevts = ndevts, i = 1; i < ndevts; i++) {
1005 if (devts[i - 1] == devts[i])
1006 undevts--;
1007 }
1008
1009 /* allocate unique */
1010 udevts = kmem_alloc(undevts * sizeof (dev_t), KM_SLEEP);
1011
1012 /* copy unique */
1013 udevts[0] = devts[0];
1014 for (i = 1, j = 1; i < ndevts; i++) {
1015 if (devts[i - 1] != devts[i])
1016 udevts[j++] = devts[i];
1017 }
1018 ASSERT(j == undevts);
1019
1020 kmem_free(devts, ndevts_alloced * sizeof (dev_t));
1021
1022 *retndevts = undevts;
1023 *retdevts = udevts;
1024
1025 return (DDI_SUCCESS);
1026 }
1027
1028 void
e_devid_cache_free_devt_list(int ndevts,dev_t * devt_list)1029 e_devid_cache_free_devt_list(int ndevts, dev_t *devt_list)
1030 {
1031 kmem_free(devt_list, ndevts * sizeof (dev_t *));
1032 }
1033
1034 /*
1035 * If given a full path and NULL ua, search for a cache entry
1036 * whose path matches the full path. On a cache hit duplicate the
1037 * devid of the matched entry into the given devid (caller
1038 * must free); nodenamebuf is not touched for this usage.
1039 *
1040 * Given a path and a non-NULL unit address, search the cache for any entry
1041 * matching "<path>/%@<unit-address>" where '%' is a wildcard meaning
1042 * any node name. The path should not end a '/'. On a cache hit
1043 * duplicate the devid as before (caller must free) and copy into
1044 * the caller-provided nodenamebuf (if not NULL) the nodename of the
1045 * matched entry.
1046 *
1047 * We must not make use of nvp_dip since that may be NULL for cached
1048 * entries that are not present in the current tree.
1049 */
1050 int
e_devid_cache_path_to_devid(char * path,char * ua,char * nodenamebuf,ddi_devid_t * devidp)1051 e_devid_cache_path_to_devid(char *path, char *ua,
1052 char *nodenamebuf, ddi_devid_t *devidp)
1053 {
1054 size_t pathlen, ualen;
1055 int rv = DDI_FAILURE;
1056 nvp_devid_t *np;
1057 list_t *listp;
1058 char *cand;
1059
1060 if (path == NULL || *path == '\0' || (ua && *ua == '\0') ||
1061 devidp == NULL)
1062 return (DDI_FAILURE);
1063
1064 *devidp = NULL;
1065
1066 if (ua) {
1067 pathlen = strlen(path);
1068 ualen = strlen(ua);
1069 }
1070
1071 rw_enter(nvf_lock(dcfd_handle), RW_READER);
1072
1073 listp = nvf_list(dcfd_handle);
1074 for (np = list_head(listp); np; np = list_next(listp, np)) {
1075 size_t nodelen, candlen, n;
1076 ddi_devid_t devid_dup;
1077 char *uasep, *node;
1078
1079 if (np->nvp_devid == NULL)
1080 continue;
1081
1082 if (ddi_devid_valid(np->nvp_devid) != DDI_SUCCESS) {
1083 DEVIDERR((CE_CONT,
1084 "pathsearch: invalid devid %s\n",
1085 np->nvp_devpath));
1086 continue;
1087 }
1088
1089 cand = np->nvp_devpath; /* candidate path */
1090
1091 /* If a full pathname was provided the compare is easy */
1092 if (ua == NULL) {
1093 if (strcmp(cand, path) == 0)
1094 goto match;
1095 else
1096 continue;
1097 }
1098
1099 /*
1100 * The compare for initial path plus ua and unknown nodename
1101 * is trickier.
1102 *
1103 * Does the initial path component match 'path'?
1104 */
1105 if (strncmp(path, cand, pathlen) != 0)
1106 continue;
1107
1108 candlen = strlen(cand);
1109
1110 /*
1111 * The next character must be a '/' and there must be no
1112 * further '/' thereafter. Begin by checking that the
1113 * candidate is long enough to include at mininum a
1114 * "/<nodename>@<ua>" after the initial portion already
1115 * matched assuming a nodename length of 1.
1116 */
1117 if (candlen < pathlen + 1 + 1 + 1 + ualen ||
1118 cand[pathlen] != '/' ||
1119 strchr(cand + pathlen + 1, '/') != NULL)
1120 continue;
1121
1122 node = cand + pathlen + 1; /* <node>@<ua> string */
1123
1124 /*
1125 * Find the '@' before the unit address. Check for
1126 * unit address match.
1127 */
1128 if ((uasep = strchr(node, '@')) == NULL)
1129 continue;
1130
1131 /*
1132 * Check we still have enough length and that ua matches
1133 */
1134 nodelen = (uintptr_t)uasep - (uintptr_t)node;
1135 if (candlen < pathlen + 1 + nodelen + 1 + ualen ||
1136 strncmp(ua, uasep + 1, ualen) != 0)
1137 continue;
1138 match:
1139 n = ddi_devid_sizeof(np->nvp_devid);
1140 devid_dup = kmem_alloc(n, KM_SLEEP); /* caller must free */
1141 (void) bcopy(np->nvp_devid, devid_dup, n);
1142 *devidp = devid_dup;
1143
1144 if (ua && nodenamebuf) {
1145 (void) strncpy(nodenamebuf, node, nodelen);
1146 nodenamebuf[nodelen] = '\0';
1147 }
1148
1149 rv = DDI_SUCCESS;
1150 break;
1151 }
1152
1153 rw_exit(nvf_lock(dcfd_handle));
1154
1155 return (rv);
1156 }
1157
1158 #ifdef DEBUG
1159 static void
devid_log(char * fmt,ddi_devid_t devid,char * path)1160 devid_log(char *fmt, ddi_devid_t devid, char *path)
1161 {
1162 char *devidstr = ddi_devid_str_encode(devid, NULL);
1163 if (path) {
1164 cmn_err(CE_CONT, "%s: %s %s\n", fmt, path, devidstr);
1165 } else {
1166 cmn_err(CE_CONT, "%s: %s\n", fmt, devidstr);
1167 }
1168 ddi_devid_str_free(devidstr);
1169 }
1170 #endif /* DEBUG */
1171