xref: /freebsd/sys/dev/nvmf/host/nvmf.c (revision 8bba2c0f8958443790b1f3abc0675719da987e87)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2023-2024 Chelsio Communications, Inc.
5  * Written by: John Baldwin <jhb@FreeBSD.org>
6  */
7 
8 #include <sys/param.h>
9 #include <sys/bus.h>
10 #include <sys/conf.h>
11 #include <sys/dnv.h>
12 #include <sys/eventhandler.h>
13 #include <sys/lock.h>
14 #include <sys/kernel.h>
15 #include <sys/malloc.h>
16 #include <sys/memdesc.h>
17 #include <sys/module.h>
18 #include <sys/mutex.h>
19 #include <sys/nv.h>
20 #include <sys/reboot.h>
21 #include <sys/sx.h>
22 #include <sys/sysctl.h>
23 #include <sys/taskqueue.h>
24 #include <dev/nvme/nvme.h>
25 #include <dev/nvmf/nvmf.h>
26 #include <dev/nvmf/nvmf_transport.h>
27 #include <dev/nvmf/host/nvmf_var.h>
28 
29 static struct cdevsw nvmf_cdevsw;
30 
31 bool nvmf_fail_disconnect = false;
32 SYSCTL_BOOL(_kern_nvmf, OID_AUTO, fail_on_disconnection, CTLFLAG_RWTUN,
33     &nvmf_fail_disconnect, 0, "Fail I/O requests on connection failure");
34 
35 MALLOC_DEFINE(M_NVMF, "nvmf", "NVMe over Fabrics host");
36 
37 static void	nvmf_disconnect_task(void *arg, int pending);
38 static void	nvmf_shutdown_pre_sync(void *arg, int howto);
39 static void	nvmf_shutdown_post_sync(void *arg, int howto);
40 
41 void
nvmf_complete(void * arg,const struct nvme_completion * cqe)42 nvmf_complete(void *arg, const struct nvme_completion *cqe)
43 {
44 	struct nvmf_completion_status *status = arg;
45 	struct mtx *mtx;
46 
47 	status->cqe = *cqe;
48 	mtx = mtx_pool_find(mtxpool_sleep, status);
49 	mtx_lock(mtx);
50 	status->done = true;
51 	mtx_unlock(mtx);
52 	wakeup(status);
53 }
54 
55 void
nvmf_io_complete(void * arg,size_t xfered,int error)56 nvmf_io_complete(void *arg, size_t xfered, int error)
57 {
58 	struct nvmf_completion_status *status = arg;
59 	struct mtx *mtx;
60 
61 	status->io_error = error;
62 	mtx = mtx_pool_find(mtxpool_sleep, status);
63 	mtx_lock(mtx);
64 	status->io_done = true;
65 	mtx_unlock(mtx);
66 	wakeup(status);
67 }
68 
69 void
nvmf_wait_for_reply(struct nvmf_completion_status * status)70 nvmf_wait_for_reply(struct nvmf_completion_status *status)
71 {
72 	struct mtx *mtx;
73 
74 	mtx = mtx_pool_find(mtxpool_sleep, status);
75 	mtx_lock(mtx);
76 	while (!status->done || !status->io_done)
77 		mtx_sleep(status, mtx, 0, "nvmfcmd", 0);
78 	mtx_unlock(mtx);
79 }
80 
81 static int
nvmf_read_property(struct nvmf_softc * sc,uint32_t offset,uint8_t size,uint64_t * value)82 nvmf_read_property(struct nvmf_softc *sc, uint32_t offset, uint8_t size,
83     uint64_t *value)
84 {
85 	const struct nvmf_fabric_prop_get_rsp *rsp;
86 	struct nvmf_completion_status status;
87 
88 	nvmf_status_init(&status);
89 	if (!nvmf_cmd_get_property(sc, offset, size, nvmf_complete, &status,
90 	    M_WAITOK))
91 		return (ECONNABORTED);
92 	nvmf_wait_for_reply(&status);
93 
94 	if (status.cqe.status != 0) {
95 		device_printf(sc->dev, "PROPERTY_GET failed, status %#x\n",
96 		    le16toh(status.cqe.status));
97 		return (EIO);
98 	}
99 
100 	rsp = (const struct nvmf_fabric_prop_get_rsp *)&status.cqe;
101 	if (size == 8)
102 		*value = le64toh(rsp->value.u64);
103 	else
104 		*value = le32toh(rsp->value.u32.low);
105 	return (0);
106 }
107 
108 static int
nvmf_write_property(struct nvmf_softc * sc,uint32_t offset,uint8_t size,uint64_t value)109 nvmf_write_property(struct nvmf_softc *sc, uint32_t offset, uint8_t size,
110     uint64_t value)
111 {
112 	struct nvmf_completion_status status;
113 
114 	nvmf_status_init(&status);
115 	if (!nvmf_cmd_set_property(sc, offset, size, value, nvmf_complete, &status,
116 	    M_WAITOK))
117 		return (ECONNABORTED);
118 	nvmf_wait_for_reply(&status);
119 
120 	if (status.cqe.status != 0) {
121 		device_printf(sc->dev, "PROPERTY_SET failed, status %#x\n",
122 		    le16toh(status.cqe.status));
123 		return (EIO);
124 	}
125 	return (0);
126 }
127 
128 static void
nvmf_shutdown_controller(struct nvmf_softc * sc)129 nvmf_shutdown_controller(struct nvmf_softc *sc)
130 {
131 	uint64_t cc;
132 	int error;
133 
134 	error = nvmf_read_property(sc, NVMF_PROP_CC, 4, &cc);
135 	if (error != 0) {
136 		device_printf(sc->dev, "Failed to fetch CC for shutdown\n");
137 		return;
138 	}
139 
140 	cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL);
141 
142 	error = nvmf_write_property(sc, NVMF_PROP_CC, 4, cc);
143 	if (error != 0)
144 		device_printf(sc->dev,
145 		    "Failed to set CC to trigger shutdown\n");
146 }
147 
148 static void
nvmf_check_keep_alive(void * arg)149 nvmf_check_keep_alive(void *arg)
150 {
151 	struct nvmf_softc *sc = arg;
152 	int traffic;
153 
154 	traffic = atomic_readandclear_int(&sc->ka_active_rx_traffic);
155 	if (traffic == 0) {
156 		device_printf(sc->dev,
157 		    "disconnecting due to KeepAlive timeout\n");
158 		nvmf_disconnect(sc);
159 		return;
160 	}
161 
162 	callout_schedule_sbt(&sc->ka_rx_timer, sc->ka_rx_sbt, 0, C_HARDCLOCK);
163 }
164 
165 static void
nvmf_keep_alive_complete(void * arg,const struct nvme_completion * cqe)166 nvmf_keep_alive_complete(void *arg, const struct nvme_completion *cqe)
167 {
168 	struct nvmf_softc *sc = arg;
169 
170 	atomic_store_int(&sc->ka_active_rx_traffic, 1);
171 	if (cqe->status != 0) {
172 		device_printf(sc->dev,
173 		    "KeepAlive response reported status %#x\n",
174 		    le16toh(cqe->status));
175 	}
176 }
177 
178 static void
nvmf_send_keep_alive(void * arg)179 nvmf_send_keep_alive(void *arg)
180 {
181 	struct nvmf_softc *sc = arg;
182 	int traffic;
183 
184 	/*
185 	 * Don't bother sending a KeepAlive command if TKAS is active
186 	 * and another command has been sent during the interval.
187 	 */
188 	traffic = atomic_load_int(&sc->ka_active_tx_traffic);
189 	if (traffic == 0 && !nvmf_cmd_keep_alive(sc, nvmf_keep_alive_complete,
190 	    sc, M_NOWAIT))
191 		device_printf(sc->dev,
192 		    "Failed to allocate KeepAlive command\n");
193 
194 	/* Clear ka_active_tx_traffic after sending the keep alive command. */
195 	atomic_store_int(&sc->ka_active_tx_traffic, 0);
196 
197 	callout_schedule_sbt(&sc->ka_tx_timer, sc->ka_tx_sbt, 0, C_HARDCLOCK);
198 }
199 
200 int
nvmf_copyin_handoff(const struct nvmf_ioc_nv * nv,nvlist_t ** nvlp)201 nvmf_copyin_handoff(const struct nvmf_ioc_nv *nv, nvlist_t **nvlp)
202 {
203 	const struct nvme_discovery_log_entry *dle;
204 	const struct nvme_controller_data *cdata;
205 	const nvlist_t *const *io;
206 	const nvlist_t *admin, *rparams;
207 	nvlist_t *nvl;
208 	size_t i, num_io_queues;
209 	uint32_t qsize;
210 	int error;
211 
212 	error = nvmf_unpack_ioc_nvlist(nv, &nvl);
213 	if (error != 0)
214 		return (error);
215 
216 	if (!nvlist_exists_number(nvl, "trtype") ||
217 	    !nvlist_exists_nvlist(nvl, "admin") ||
218 	    !nvlist_exists_nvlist_array(nvl, "io") ||
219 	    !nvlist_exists_binary(nvl, "cdata") ||
220 	    !nvlist_exists_nvlist(nvl, "rparams"))
221 		goto invalid;
222 
223 	rparams = nvlist_get_nvlist(nvl, "rparams");
224 	if (!nvlist_exists_binary(rparams, "dle") ||
225 	    !nvlist_exists_string(rparams, "hostnqn") ||
226 	    !nvlist_exists_number(rparams, "num_io_queues") ||
227 	    !nvlist_exists_number(rparams, "io_qsize"))
228 		goto invalid;
229 
230 	admin = nvlist_get_nvlist(nvl, "admin");
231 	if (!nvmf_validate_qpair_nvlist(admin, false))
232 		goto invalid;
233 	if (!nvlist_get_bool(admin, "admin"))
234 		goto invalid;
235 
236 	io = nvlist_get_nvlist_array(nvl, "io", &num_io_queues);
237 	if (num_io_queues < 1 ||
238 	    num_io_queues != nvlist_get_number(rparams, "num_io_queues"))
239 		goto invalid;
240 	for (i = 0; i < num_io_queues; i++) {
241 		if (!nvmf_validate_qpair_nvlist(io[i], false))
242 			goto invalid;
243 	}
244 
245 	/* Require all I/O queues to be the same size. */
246 	qsize = nvlist_get_number(rparams, "io_qsize");
247 	for (i = 0; i < num_io_queues; i++) {
248 		if (nvlist_get_number(io[i], "qsize") != qsize)
249 			goto invalid;
250 	}
251 
252 	cdata = nvlist_get_binary(nvl, "cdata", &i);
253 	if (i != sizeof(*cdata))
254 		goto invalid;
255 	dle = nvlist_get_binary(rparams, "dle", &i);
256 	if (i != sizeof(*dle))
257 		goto invalid;
258 
259 	if (memcmp(dle->subnqn, cdata->subnqn, sizeof(cdata->subnqn)) != 0)
260 		goto invalid;
261 
262 	*nvlp = nvl;
263 	return (0);
264 invalid:
265 	nvlist_destroy(nvl);
266 	return (EINVAL);
267 }
268 
269 static int
nvmf_probe(device_t dev)270 nvmf_probe(device_t dev)
271 {
272 	const nvlist_t *nvl = device_get_ivars(dev);
273 	const struct nvme_controller_data *cdata;
274 
275 	if (nvl == NULL)
276 		return (ENXIO);
277 
278 	cdata = nvlist_get_binary(nvl, "cdata", NULL);
279 	device_set_descf(dev, "Fabrics: %.256s", cdata->subnqn);
280 	return (BUS_PROBE_DEFAULT);
281 }
282 
283 static int
nvmf_establish_connection(struct nvmf_softc * sc,nvlist_t * nvl)284 nvmf_establish_connection(struct nvmf_softc *sc, nvlist_t *nvl)
285 {
286 	const nvlist_t *const *io;
287 	const nvlist_t *admin;
288 	uint64_t kato;
289 	size_t num_io_queues;
290 	enum nvmf_trtype trtype;
291 	char name[16];
292 
293 	trtype = nvlist_get_number(nvl, "trtype");
294 	admin = nvlist_get_nvlist(nvl, "admin");
295 	io = nvlist_get_nvlist_array(nvl, "io", &num_io_queues);
296 	kato = dnvlist_get_number(nvl, "kato", 0);
297 
298 	/* Setup the admin queue. */
299 	sc->admin = nvmf_init_qp(sc, trtype, admin, "admin queue", 0);
300 	if (sc->admin == NULL) {
301 		device_printf(sc->dev, "Failed to setup admin queue\n");
302 		return (ENXIO);
303 	}
304 
305 	/* Setup I/O queues. */
306 	sc->io = malloc(num_io_queues * sizeof(*sc->io), M_NVMF,
307 	    M_WAITOK | M_ZERO);
308 	sc->num_io_queues = num_io_queues;
309 	for (u_int i = 0; i < sc->num_io_queues; i++) {
310 		snprintf(name, sizeof(name), "I/O queue %u", i);
311 		sc->io[i] = nvmf_init_qp(sc, trtype, io[i], name, i);
312 		if (sc->io[i] == NULL) {
313 			device_printf(sc->dev, "Failed to setup I/O queue %u\n",
314 			    i);
315 			return (ENXIO);
316 		}
317 	}
318 
319 	/* Start KeepAlive timers. */
320 	if (kato != 0) {
321 		sc->ka_traffic = NVMEV(NVME_CTRLR_DATA_CTRATT_TBKAS,
322 		    sc->cdata->ctratt) != 0;
323 		sc->ka_rx_sbt = mstosbt(kato);
324 		sc->ka_tx_sbt = sc->ka_rx_sbt / 2;
325 		callout_reset_sbt(&sc->ka_rx_timer, sc->ka_rx_sbt, 0,
326 		    nvmf_check_keep_alive, sc, C_HARDCLOCK);
327 		callout_reset_sbt(&sc->ka_tx_timer, sc->ka_tx_sbt, 0,
328 		    nvmf_send_keep_alive, sc, C_HARDCLOCK);
329 	}
330 
331 	memcpy(sc->cdata, nvlist_get_binary(nvl, "cdata", NULL),
332 	    sizeof(*sc->cdata));
333 
334 	/* Save reconnect parameters. */
335 	nvlist_destroy(sc->rparams);
336 	sc->rparams = nvlist_take_nvlist(nvl, "rparams");
337 
338 	return (0);
339 }
340 
341 typedef bool nvmf_scan_active_ns_cb(struct nvmf_softc *, uint32_t,
342     const struct nvme_namespace_data *, void *);
343 
344 static bool
nvmf_scan_active_nslist(struct nvmf_softc * sc,struct nvme_ns_list * nslist,struct nvme_namespace_data * data,uint32_t * nsidp,nvmf_scan_active_ns_cb * cb,void * cb_arg)345 nvmf_scan_active_nslist(struct nvmf_softc *sc, struct nvme_ns_list *nslist,
346     struct nvme_namespace_data *data, uint32_t *nsidp,
347     nvmf_scan_active_ns_cb *cb, void *cb_arg)
348 {
349 	struct nvmf_completion_status status;
350 	uint32_t nsid;
351 
352 	nvmf_status_init(&status);
353 	nvmf_status_wait_io(&status);
354 	if (!nvmf_cmd_identify_active_namespaces(sc, *nsidp, nslist,
355 	    nvmf_complete, &status, nvmf_io_complete, &status, M_WAITOK)) {
356 		device_printf(sc->dev,
357 		    "failed to send IDENTIFY active namespaces command\n");
358 		return (false);
359 	}
360 	nvmf_wait_for_reply(&status);
361 
362 	if (status.cqe.status != 0) {
363 		device_printf(sc->dev,
364 		    "IDENTIFY active namespaces failed, status %#x\n",
365 		    le16toh(status.cqe.status));
366 		return (false);
367 	}
368 
369 	if (status.io_error != 0) {
370 		device_printf(sc->dev,
371 		    "IDENTIFY active namespaces failed with I/O error %d\n",
372 		    status.io_error);
373 		return (false);
374 	}
375 
376 	for (u_int i = 0; i < nitems(nslist->ns); i++) {
377 		nsid = nslist->ns[i];
378 		if (nsid == 0) {
379 			*nsidp = 0;
380 			return (true);
381 		}
382 
383 		nvmf_status_init(&status);
384 		nvmf_status_wait_io(&status);
385 		if (!nvmf_cmd_identify_namespace(sc, nsid, data, nvmf_complete,
386 		    &status, nvmf_io_complete, &status, M_WAITOK)) {
387 			device_printf(sc->dev,
388 			    "failed to send IDENTIFY namespace %u command\n",
389 			    nsid);
390 			return (false);
391 		}
392 		nvmf_wait_for_reply(&status);
393 
394 		if (status.cqe.status != 0) {
395 			device_printf(sc->dev,
396 			    "IDENTIFY namespace %u failed, status %#x\n", nsid,
397 			    le16toh(status.cqe.status));
398 			return (false);
399 		}
400 
401 		if (status.io_error != 0) {
402 			device_printf(sc->dev,
403 			    "IDENTIFY namespace %u failed with I/O error %d\n",
404 			    nsid, status.io_error);
405 			return (false);
406 		}
407 
408 		nvme_namespace_data_swapbytes(data);
409 		if (!cb(sc, nsid, data, cb_arg))
410 			return (false);
411 	}
412 
413 	MPASS(nsid == nslist->ns[nitems(nslist->ns) - 1] && nsid != 0);
414 
415 	if (nsid >= NVME_GLOBAL_NAMESPACE_TAG - 1)
416 		*nsidp = 0;
417 	else
418 		*nsidp = nsid;
419 	return (true);
420 }
421 
422 static bool
nvmf_scan_active_namespaces(struct nvmf_softc * sc,nvmf_scan_active_ns_cb * cb,void * cb_arg)423 nvmf_scan_active_namespaces(struct nvmf_softc *sc, nvmf_scan_active_ns_cb *cb,
424     void *cb_arg)
425 {
426 	struct nvme_namespace_data *data;
427 	struct nvme_ns_list *nslist;
428 	uint32_t nsid;
429 	bool retval;
430 
431 	nslist = malloc(sizeof(*nslist), M_NVMF, M_WAITOK);
432 	data = malloc(sizeof(*data), M_NVMF, M_WAITOK);
433 
434 	nsid = 0;
435 	retval = true;
436 	for (;;) {
437 		if (!nvmf_scan_active_nslist(sc, nslist, data, &nsid, cb,
438 		    cb_arg)) {
439 			retval = false;
440 			break;
441 		}
442 		if (nsid == 0)
443 			break;
444 	}
445 
446 	free(data, M_NVMF);
447 	free(nslist, M_NVMF);
448 	return (retval);
449 }
450 
451 static bool
nvmf_add_ns(struct nvmf_softc * sc,uint32_t nsid,const struct nvme_namespace_data * data,void * arg __unused)452 nvmf_add_ns(struct nvmf_softc *sc, uint32_t nsid,
453     const struct nvme_namespace_data *data, void *arg __unused)
454 {
455 	if (sc->ns[nsid - 1] != NULL) {
456 		device_printf(sc->dev,
457 		    "duplicate namespace %u in active namespace list\n",
458 		    nsid);
459 		return (false);
460 	}
461 
462 	/*
463 	 * As in nvme_ns_construct, a size of zero indicates an
464 	 * invalid namespace.
465 	 */
466 	if (data->nsze == 0) {
467 		device_printf(sc->dev,
468 		    "ignoring active namespace %u with zero size\n", nsid);
469 		return (true);
470 	}
471 
472 	sc->ns[nsid - 1] = nvmf_init_ns(sc, nsid, data);
473 
474 	nvmf_sim_rescan_ns(sc, nsid);
475 	return (true);
476 }
477 
478 static bool
nvmf_add_namespaces(struct nvmf_softc * sc)479 nvmf_add_namespaces(struct nvmf_softc *sc)
480 {
481 	sc->ns = mallocarray(sc->cdata->nn, sizeof(*sc->ns), M_NVMF,
482 	    M_WAITOK | M_ZERO);
483 	return (nvmf_scan_active_namespaces(sc, nvmf_add_ns, NULL));
484 }
485 
486 static int
nvmf_attach(device_t dev)487 nvmf_attach(device_t dev)
488 {
489 	struct make_dev_args mda;
490 	struct nvmf_softc *sc = device_get_softc(dev);
491 	nvlist_t *nvl = device_get_ivars(dev);
492 	const nvlist_t * const *io;
493 	struct sysctl_oid *oid;
494 	uint64_t val;
495 	u_int i;
496 	int error;
497 
498 	if (nvl == NULL)
499 		return (ENXIO);
500 
501 	sc->dev = dev;
502 	sc->trtype = nvlist_get_number(nvl, "trtype");
503 	callout_init(&sc->ka_rx_timer, 1);
504 	callout_init(&sc->ka_tx_timer, 1);
505 	sx_init(&sc->connection_lock, "nvmf connection");
506 	TASK_INIT(&sc->disconnect_task, 0, nvmf_disconnect_task, sc);
507 
508 	oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
509 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "ioq",
510 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "I/O Queues");
511 	sc->ioq_oid_list = SYSCTL_CHILDREN(oid);
512 
513 	sc->cdata = malloc(sizeof(*sc->cdata), M_NVMF, M_WAITOK);
514 
515 	nvmf_init_aer(sc);
516 
517 	error = nvmf_establish_connection(sc, nvl);
518 	if (error != 0)
519 		goto out;
520 
521 	error = nvmf_read_property(sc, NVMF_PROP_CAP, 8, &sc->cap);
522 	if (error != 0) {
523 		device_printf(sc->dev, "Failed to fetch CAP\n");
524 		error = ENXIO;
525 		goto out;
526 	}
527 
528 	error = nvmf_read_property(sc, NVMF_PROP_VS, 4, &val);
529 	if (error != 0) {
530 		device_printf(sc->dev, "Failed to fetch VS\n");
531 		error = ENXIO;
532 		goto out;
533 	}
534 	sc->vs = val;
535 
536 	/* Honor MDTS if it is set. */
537 	sc->max_xfer_size = maxphys;
538 	if (sc->cdata->mdts != 0) {
539 		sc->max_xfer_size = ulmin(sc->max_xfer_size,
540 		    1 << (sc->cdata->mdts + NVME_MPS_SHIFT +
541 		    NVME_CAP_HI_MPSMIN(sc->cap >> 32)));
542 	}
543 
544 	io = nvlist_get_nvlist_array(nvl, "io", NULL);
545 	sc->max_pending_io = nvlist_get_number(io[0], "qsize") *
546 	    sc->num_io_queues;
547 
548 	error = nvmf_init_sim(sc);
549 	if (error != 0)
550 		goto out;
551 
552 	error = nvmf_start_aer(sc);
553 	if (error != 0) {
554 		nvmf_destroy_sim(sc);
555 		goto out;
556 	}
557 
558 	if (!nvmf_add_namespaces(sc)) {
559 		nvmf_destroy_sim(sc);
560 		goto out;
561 	}
562 
563 	make_dev_args_init(&mda);
564 	mda.mda_devsw = &nvmf_cdevsw;
565 	mda.mda_uid = UID_ROOT;
566 	mda.mda_gid = GID_WHEEL;
567 	mda.mda_mode = 0600;
568 	mda.mda_si_drv1 = sc;
569 	error = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
570 	if (error != 0) {
571 		nvmf_destroy_sim(sc);
572 		goto out;
573 	}
574 
575 	sc->shutdown_pre_sync_eh = EVENTHANDLER_REGISTER(shutdown_pre_sync,
576 	    nvmf_shutdown_pre_sync, sc, SHUTDOWN_PRI_FIRST);
577 	sc->shutdown_post_sync_eh = EVENTHANDLER_REGISTER(shutdown_post_sync,
578 	    nvmf_shutdown_post_sync, sc, SHUTDOWN_PRI_LAST);
579 
580 	return (0);
581 out:
582 	if (sc->ns != NULL) {
583 		for (i = 0; i < sc->cdata->nn; i++) {
584 			if (sc->ns[i] != NULL)
585 				nvmf_destroy_ns(sc->ns[i]);
586 		}
587 		free(sc->ns, M_NVMF);
588 	}
589 
590 	callout_drain(&sc->ka_tx_timer);
591 	callout_drain(&sc->ka_rx_timer);
592 
593 	if (sc->admin != NULL)
594 		nvmf_shutdown_controller(sc);
595 
596 	for (i = 0; i < sc->num_io_queues; i++) {
597 		if (sc->io[i] != NULL)
598 			nvmf_destroy_qp(sc->io[i]);
599 	}
600 	free(sc->io, M_NVMF);
601 	if (sc->admin != NULL)
602 		nvmf_destroy_qp(sc->admin);
603 
604 	nvmf_destroy_aer(sc);
605 
606 	taskqueue_drain(taskqueue_thread, &sc->disconnect_task);
607 	sx_destroy(&sc->connection_lock);
608 	nvlist_destroy(sc->rparams);
609 	free(sc->cdata, M_NVMF);
610 	return (error);
611 }
612 
613 void
nvmf_disconnect(struct nvmf_softc * sc)614 nvmf_disconnect(struct nvmf_softc *sc)
615 {
616 	taskqueue_enqueue(taskqueue_thread, &sc->disconnect_task);
617 }
618 
619 static void
nvmf_disconnect_task(void * arg,int pending __unused)620 nvmf_disconnect_task(void *arg, int pending __unused)
621 {
622 	struct nvmf_softc *sc = arg;
623 	u_int i;
624 
625 	sx_xlock(&sc->connection_lock);
626 	if (sc->admin == NULL) {
627 		/*
628 		 * Ignore transport errors if there is no active
629 		 * association.
630 		 */
631 		sx_xunlock(&sc->connection_lock);
632 		return;
633 	}
634 
635 	if (sc->detaching) {
636 		if (sc->admin != NULL) {
637 			/*
638 			 * This unsticks the detach process if a
639 			 * transport error occurs during detach.
640 			 */
641 			nvmf_shutdown_qp(sc->admin);
642 		}
643 		sx_xunlock(&sc->connection_lock);
644 		return;
645 	}
646 
647 	if (sc->cdev == NULL) {
648 		/*
649 		 * Transport error occurred during attach (nvmf_add_namespaces).
650 		 * Shutdown the admin queue.
651 		 */
652 		nvmf_shutdown_qp(sc->admin);
653 		sx_xunlock(&sc->connection_lock);
654 		return;
655 	}
656 
657 	callout_drain(&sc->ka_tx_timer);
658 	callout_drain(&sc->ka_rx_timer);
659 	sc->ka_traffic = false;
660 
661 	/* Quiesce namespace consumers. */
662 	nvmf_disconnect_sim(sc);
663 	for (i = 0; i < sc->cdata->nn; i++) {
664 		if (sc->ns[i] != NULL)
665 			nvmf_disconnect_ns(sc->ns[i]);
666 	}
667 
668 	/* Shutdown the existing qpairs. */
669 	for (i = 0; i < sc->num_io_queues; i++) {
670 		nvmf_destroy_qp(sc->io[i]);
671 	}
672 	free(sc->io, M_NVMF);
673 	sc->io = NULL;
674 	sc->num_io_queues = 0;
675 	nvmf_destroy_qp(sc->admin);
676 	sc->admin = NULL;
677 
678 	sx_xunlock(&sc->connection_lock);
679 }
680 
681 static int
nvmf_reconnect_host(struct nvmf_softc * sc,struct nvmf_ioc_nv * nv)682 nvmf_reconnect_host(struct nvmf_softc *sc, struct nvmf_ioc_nv *nv)
683 {
684 	const struct nvme_controller_data *cdata;
685 	nvlist_t *nvl;
686 	u_int i;
687 	int error;
688 
689 	error = nvmf_copyin_handoff(nv, &nvl);
690 	if (error != 0)
691 		return (error);
692 
693 	/* XXX: Should we permit changing the transport type? */
694 	if (sc->trtype != nvlist_get_number(nvl, "trtype")) {
695 		device_printf(sc->dev,
696 		    "transport type mismatch on reconnect\n");
697 		return (EINVAL);
698 	}
699 
700 	sx_xlock(&sc->connection_lock);
701 	if (sc->admin != NULL || sc->detaching) {
702 		error = EBUSY;
703 		goto out;
704 	}
705 
706 	/*
707 	 * Ensure this is for the same controller.  Note that the
708 	 * controller ID can vary across associations if the remote
709 	 * system is using the dynamic controller model.  This merely
710 	 * ensures the new association is connected to the same NVMe
711 	 * subsystem.
712 	 */
713 	cdata = nvlist_get_binary(nvl, "cdata", NULL);
714 	if (memcmp(sc->cdata->subnqn, cdata->subnqn,
715 	    sizeof(cdata->subnqn)) != 0) {
716 		device_printf(sc->dev,
717 		    "controller subsystem NQN mismatch on reconnect\n");
718 		error = EINVAL;
719 		goto out;
720 	}
721 
722 	/*
723 	 * XXX: Require same number and size of I/O queues so that
724 	 * max_pending_io is still correct?
725 	 */
726 
727 	error = nvmf_establish_connection(sc, nvl);
728 	if (error != 0)
729 		goto out;
730 
731 	error = nvmf_start_aer(sc);
732 	if (error != 0)
733 		goto out;
734 
735 	device_printf(sc->dev,
736 	    "established new association with %u I/O queues\n",
737 	    sc->num_io_queues);
738 
739 	/* Restart namespace consumers. */
740 	for (i = 0; i < sc->cdata->nn; i++) {
741 		if (sc->ns[i] != NULL)
742 			nvmf_reconnect_ns(sc->ns[i]);
743 	}
744 	nvmf_reconnect_sim(sc);
745 
746 	nvmf_rescan_all_ns(sc);
747 out:
748 	sx_xunlock(&sc->connection_lock);
749 	nvlist_destroy(nvl);
750 	return (error);
751 }
752 
753 static void
nvmf_shutdown_pre_sync(void * arg,int howto)754 nvmf_shutdown_pre_sync(void *arg, int howto)
755 {
756 	struct nvmf_softc *sc = arg;
757 
758 	if ((howto & RB_NOSYNC) != 0 || SCHEDULER_STOPPED())
759 		return;
760 
761 	/*
762 	 * If this association is disconnected, abort any pending
763 	 * requests with an error to permit filesystems to unmount
764 	 * without hanging.
765 	 */
766 	sx_xlock(&sc->connection_lock);
767 	if (sc->admin != NULL || sc->detaching) {
768 		sx_xunlock(&sc->connection_lock);
769 		return;
770 	}
771 
772 	for (u_int i = 0; i < sc->cdata->nn; i++) {
773 		if (sc->ns[i] != NULL)
774 			nvmf_shutdown_ns(sc->ns[i]);
775 	}
776 	nvmf_shutdown_sim(sc);
777 	sx_xunlock(&sc->connection_lock);
778 }
779 
780 static void
nvmf_shutdown_post_sync(void * arg,int howto)781 nvmf_shutdown_post_sync(void *arg, int howto)
782 {
783 	struct nvmf_softc *sc = arg;
784 
785 	if ((howto & RB_NOSYNC) != 0 || SCHEDULER_STOPPED())
786 		return;
787 
788 	/*
789 	 * If this association is connected, disconnect gracefully.
790 	 */
791 	sx_xlock(&sc->connection_lock);
792 	if (sc->admin == NULL || sc->detaching) {
793 		sx_xunlock(&sc->connection_lock);
794 		return;
795 	}
796 
797 	callout_drain(&sc->ka_tx_timer);
798 	callout_drain(&sc->ka_rx_timer);
799 
800 	nvmf_shutdown_controller(sc);
801 
802 	/*
803 	 * Quiesce consumers so that any commands submitted after this
804 	 * fail with an error.  Notably, nda(4) calls nda_flush() from
805 	 * a post_sync handler that might be ordered after this one.
806 	 */
807 	for (u_int i = 0; i < sc->cdata->nn; i++) {
808 		if (sc->ns[i] != NULL)
809 			nvmf_shutdown_ns(sc->ns[i]);
810 	}
811 	nvmf_shutdown_sim(sc);
812 
813 	for (u_int i = 0; i < sc->num_io_queues; i++) {
814 		nvmf_destroy_qp(sc->io[i]);
815 	}
816 	nvmf_destroy_qp(sc->admin);
817 	sc->admin = NULL;
818 	sx_xunlock(&sc->connection_lock);
819 }
820 
821 static int
nvmf_detach(device_t dev)822 nvmf_detach(device_t dev)
823 {
824 	struct nvmf_softc *sc = device_get_softc(dev);
825 	u_int i;
826 
827 	destroy_dev(sc->cdev);
828 
829 	sx_xlock(&sc->connection_lock);
830 	sc->detaching = true;
831 	sx_xunlock(&sc->connection_lock);
832 
833 	EVENTHANDLER_DEREGISTER(shutdown_pre_sync, sc->shutdown_pre_sync_eh);
834 	EVENTHANDLER_DEREGISTER(shutdown_post_sync, sc->shutdown_post_sync_eh);
835 
836 	nvmf_destroy_sim(sc);
837 	for (i = 0; i < sc->cdata->nn; i++) {
838 		if (sc->ns[i] != NULL)
839 			nvmf_destroy_ns(sc->ns[i]);
840 	}
841 	free(sc->ns, M_NVMF);
842 
843 	callout_drain(&sc->ka_tx_timer);
844 	callout_drain(&sc->ka_rx_timer);
845 
846 	if (sc->admin != NULL)
847 		nvmf_shutdown_controller(sc);
848 
849 	for (i = 0; i < sc->num_io_queues; i++) {
850 		nvmf_destroy_qp(sc->io[i]);
851 	}
852 	free(sc->io, M_NVMF);
853 
854 	taskqueue_drain(taskqueue_thread, &sc->disconnect_task);
855 
856 	if (sc->admin != NULL)
857 		nvmf_destroy_qp(sc->admin);
858 
859 	nvmf_destroy_aer(sc);
860 
861 	sx_destroy(&sc->connection_lock);
862 	nvlist_destroy(sc->rparams);
863 	free(sc->cdata, M_NVMF);
864 	return (0);
865 }
866 
867 static void
nvmf_rescan_ns_1(struct nvmf_softc * sc,uint32_t nsid,const struct nvme_namespace_data * data)868 nvmf_rescan_ns_1(struct nvmf_softc *sc, uint32_t nsid,
869     const struct nvme_namespace_data *data)
870 {
871 	struct nvmf_namespace *ns;
872 
873 	/* XXX: Needs locking around sc->ns[]. */
874 	ns = sc->ns[nsid - 1];
875 	if (data->nsze == 0) {
876 		/* XXX: Needs locking */
877 		if (ns != NULL) {
878 			nvmf_destroy_ns(ns);
879 			sc->ns[nsid - 1] = NULL;
880 		}
881 	} else {
882 		/* XXX: Needs locking */
883 		if (ns == NULL) {
884 			sc->ns[nsid - 1] = nvmf_init_ns(sc, nsid, data);
885 		} else {
886 			if (!nvmf_update_ns(ns, data)) {
887 				nvmf_destroy_ns(ns);
888 				sc->ns[nsid - 1] = NULL;
889 			}
890 		}
891 	}
892 
893 	nvmf_sim_rescan_ns(sc, nsid);
894 }
895 
896 void
nvmf_rescan_ns(struct nvmf_softc * sc,uint32_t nsid)897 nvmf_rescan_ns(struct nvmf_softc *sc, uint32_t nsid)
898 {
899 	struct nvmf_completion_status status;
900 	struct nvme_namespace_data *data;
901 
902 	data = malloc(sizeof(*data), M_NVMF, M_WAITOK);
903 
904 	nvmf_status_init(&status);
905 	nvmf_status_wait_io(&status);
906 	if (!nvmf_cmd_identify_namespace(sc, nsid, data, nvmf_complete,
907 	    &status, nvmf_io_complete, &status, M_WAITOK)) {
908 		device_printf(sc->dev,
909 		    "failed to send IDENTIFY namespace %u command\n", nsid);
910 		free(data, M_NVMF);
911 		return;
912 	}
913 	nvmf_wait_for_reply(&status);
914 
915 	if (status.cqe.status != 0) {
916 		device_printf(sc->dev,
917 		    "IDENTIFY namespace %u failed, status %#x\n", nsid,
918 		    le16toh(status.cqe.status));
919 		free(data, M_NVMF);
920 		return;
921 	}
922 
923 	if (status.io_error != 0) {
924 		device_printf(sc->dev,
925 		    "IDENTIFY namespace %u failed with I/O error %d\n",
926 		    nsid, status.io_error);
927 		free(data, M_NVMF);
928 		return;
929 	}
930 
931 	nvme_namespace_data_swapbytes(data);
932 
933 	nvmf_rescan_ns_1(sc, nsid, data);
934 
935 	free(data, M_NVMF);
936 }
937 
938 static void
nvmf_purge_namespaces(struct nvmf_softc * sc,uint32_t first_nsid,uint32_t next_valid_nsid)939 nvmf_purge_namespaces(struct nvmf_softc *sc, uint32_t first_nsid,
940     uint32_t next_valid_nsid)
941 {
942 	struct nvmf_namespace *ns;
943 
944 	for (uint32_t nsid = first_nsid; nsid < next_valid_nsid; nsid++)
945 	{
946 		/* XXX: Needs locking around sc->ns[]. */
947 		ns = sc->ns[nsid - 1];
948 		if (ns != NULL) {
949 			nvmf_destroy_ns(ns);
950 			sc->ns[nsid - 1] = NULL;
951 
952 			nvmf_sim_rescan_ns(sc, nsid);
953 		}
954 	}
955 }
956 
957 static bool
nvmf_rescan_ns_cb(struct nvmf_softc * sc,uint32_t nsid,const struct nvme_namespace_data * data,void * arg)958 nvmf_rescan_ns_cb(struct nvmf_softc *sc, uint32_t nsid,
959     const struct nvme_namespace_data *data, void *arg)
960 {
961 	uint32_t *last_nsid = arg;
962 
963 	/* Check for any gaps prior to this namespace. */
964 	nvmf_purge_namespaces(sc, *last_nsid + 1, nsid);
965 	*last_nsid = nsid;
966 
967 	nvmf_rescan_ns_1(sc, nsid, data);
968 	return (true);
969 }
970 
971 void
nvmf_rescan_all_ns(struct nvmf_softc * sc)972 nvmf_rescan_all_ns(struct nvmf_softc *sc)
973 {
974 	uint32_t last_nsid;
975 
976 	last_nsid = 0;
977 	if (!nvmf_scan_active_namespaces(sc, nvmf_rescan_ns_cb, &last_nsid))
978 		return;
979 
980 	/*
981 	 * Check for any namespace devices after the last active
982 	 * namespace.
983 	 */
984 	nvmf_purge_namespaces(sc, last_nsid + 1, sc->cdata->nn + 1);
985 }
986 
987 int
nvmf_passthrough_cmd(struct nvmf_softc * sc,struct nvme_pt_command * pt,bool admin)988 nvmf_passthrough_cmd(struct nvmf_softc *sc, struct nvme_pt_command *pt,
989     bool admin)
990 {
991 	struct nvmf_completion_status status;
992 	struct nvme_command cmd;
993 	struct memdesc mem;
994 	struct nvmf_host_qpair *qp;
995 	struct nvmf_request *req;
996 	void *buf;
997 	int error;
998 
999 	if (pt->len > sc->max_xfer_size)
1000 		return (EINVAL);
1001 
1002 	buf = NULL;
1003 	if (pt->len != 0) {
1004 		/*
1005 		 * XXX: Depending on the size we may want to pin the
1006 		 * user pages and use a memdesc with vm_page_t's
1007 		 * instead.
1008 		 */
1009 		buf = malloc(pt->len, M_NVMF, M_WAITOK);
1010 		if (pt->is_read == 0) {
1011 			error = copyin(pt->buf, buf, pt->len);
1012 			if (error != 0) {
1013 				free(buf, M_NVMF);
1014 				return (error);
1015 			}
1016 		} else {
1017 			/* Ensure no kernel data is leaked to userland. */
1018 			memset(buf, 0, pt->len);
1019 		}
1020 	}
1021 
1022 	memset(&cmd, 0, sizeof(cmd));
1023 	cmd.opc = pt->cmd.opc;
1024 	cmd.fuse = pt->cmd.fuse;
1025 	cmd.nsid = pt->cmd.nsid;
1026 	cmd.cdw10 = pt->cmd.cdw10;
1027 	cmd.cdw11 = pt->cmd.cdw11;
1028 	cmd.cdw12 = pt->cmd.cdw12;
1029 	cmd.cdw13 = pt->cmd.cdw13;
1030 	cmd.cdw14 = pt->cmd.cdw14;
1031 	cmd.cdw15 = pt->cmd.cdw15;
1032 
1033 	sx_slock(&sc->connection_lock);
1034 	if (sc->admin == NULL || sc->detaching) {
1035 		device_printf(sc->dev,
1036 		    "failed to send passthrough command\n");
1037 		error = ECONNABORTED;
1038 		sx_sunlock(&sc->connection_lock);
1039 		goto error;
1040 	}
1041 	if (admin)
1042 		qp = sc->admin;
1043 	else
1044 		qp = nvmf_select_io_queue(sc);
1045 	nvmf_status_init(&status);
1046 	req = nvmf_allocate_request(qp, &cmd, nvmf_complete, &status, M_WAITOK);
1047 	sx_sunlock(&sc->connection_lock);
1048 	if (req == NULL) {
1049 		device_printf(sc->dev, "failed to send passthrough command\n");
1050 		error = ECONNABORTED;
1051 		goto error;
1052 	}
1053 
1054 	if (pt->len != 0) {
1055 		mem = memdesc_vaddr(buf, pt->len);
1056 		nvmf_capsule_append_data(req->nc, &mem, pt->len,
1057 		    pt->is_read == 0, nvmf_io_complete, &status);
1058 		nvmf_status_wait_io(&status);
1059 	}
1060 
1061 	nvmf_submit_request(req);
1062 	nvmf_wait_for_reply(&status);
1063 
1064 	memset(&pt->cpl, 0, sizeof(pt->cpl));
1065 	pt->cpl.cdw0 = status.cqe.cdw0;
1066 	pt->cpl.status = status.cqe.status;
1067 
1068 	error = status.io_error;
1069 	if (error == 0 && pt->len != 0 && pt->is_read != 0)
1070 		error = copyout(buf, pt->buf, pt->len);
1071 error:
1072 	free(buf, M_NVMF);
1073 	return (error);
1074 }
1075 
1076 static int
nvmf_reconnect_params(struct nvmf_softc * sc,struct nvmf_ioc_nv * nv)1077 nvmf_reconnect_params(struct nvmf_softc *sc, struct nvmf_ioc_nv *nv)
1078 {
1079 	int error;
1080 
1081 	sx_slock(&sc->connection_lock);
1082 	error = nvmf_pack_ioc_nvlist(sc->rparams, nv);
1083 	sx_sunlock(&sc->connection_lock);
1084 
1085 	return (error);
1086 }
1087 
1088 static int
nvmf_ioctl(struct cdev * cdev,u_long cmd,caddr_t arg,int flag,struct thread * td)1089 nvmf_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1090     struct thread *td)
1091 {
1092 	struct nvmf_softc *sc = cdev->si_drv1;
1093 	struct nvme_get_nsid *gnsid;
1094 	struct nvme_pt_command *pt;
1095 	struct nvmf_ioc_nv *nv;
1096 
1097 	switch (cmd) {
1098 	case NVME_PASSTHROUGH_CMD:
1099 		pt = (struct nvme_pt_command *)arg;
1100 		return (nvmf_passthrough_cmd(sc, pt, true));
1101 	case NVME_GET_NSID:
1102 		gnsid = (struct nvme_get_nsid *)arg;
1103 		strlcpy(gnsid->cdev, device_get_nameunit(sc->dev),
1104 		    sizeof(gnsid->cdev));
1105 		gnsid->nsid = 0;
1106 		return (0);
1107 	case NVME_GET_MAX_XFER_SIZE:
1108 		*(uint64_t *)arg = sc->max_xfer_size;
1109 		return (0);
1110 	case NVMF_RECONNECT_PARAMS:
1111 		nv = (struct nvmf_ioc_nv *)arg;
1112 		return (nvmf_reconnect_params(sc, nv));
1113 	case NVMF_RECONNECT_HOST:
1114 		nv = (struct nvmf_ioc_nv *)arg;
1115 		return (nvmf_reconnect_host(sc, nv));
1116 	default:
1117 		return (ENOTTY);
1118 	}
1119 }
1120 
1121 static struct cdevsw nvmf_cdevsw = {
1122 	.d_version = D_VERSION,
1123 	.d_ioctl = nvmf_ioctl
1124 };
1125 
1126 static int
nvmf_modevent(module_t mod,int what,void * arg)1127 nvmf_modevent(module_t mod, int what, void *arg)
1128 {
1129 	switch (what) {
1130 	case MOD_LOAD:
1131 		return (nvmf_ctl_load());
1132 	case MOD_QUIESCE:
1133 		return (0);
1134 	case MOD_UNLOAD:
1135 		nvmf_ctl_unload();
1136 		destroy_dev_drain(&nvmf_cdevsw);
1137 		return (0);
1138 	default:
1139 		return (EOPNOTSUPP);
1140 	}
1141 }
1142 
1143 static device_method_t nvmf_methods[] = {
1144 	/* Device interface */
1145 	DEVMETHOD(device_probe,     nvmf_probe),
1146 	DEVMETHOD(device_attach,    nvmf_attach),
1147 	DEVMETHOD(device_detach,    nvmf_detach),
1148 	DEVMETHOD_END
1149 };
1150 
1151 driver_t nvme_nvmf_driver = {
1152 	"nvme",
1153 	nvmf_methods,
1154 	sizeof(struct nvmf_softc),
1155 };
1156 
1157 DRIVER_MODULE(nvme, root, nvme_nvmf_driver, nvmf_modevent, NULL);
1158 MODULE_DEPEND(nvmf, nvmf_transport, 1, 1, 1);
1159