xref: /linux/drivers/nvme/target/core.c (revision 6e11664f148454a127dd89e8698c3e3e80e5f62f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include <generated/utsrelease.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17 
18 #include "nvmet.h"
19 #include "debugfs.h"
20 
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26 
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29 
30 /*
31  * This read/write semaphore is used to synchronize access to configuration
32  * information on a target system that will result in discovery log page
33  * information change for at least one host.
34  * The full list of resources to protected by this semaphore is:
35  *
36  *  - subsystems list
37  *  - per-subsystem allowed hosts list
38  *  - allow_any_host subsystem attribute
39  *  - nvmet_genctr
40  *  - the nvmet_transports array
41  *
42  * When updating any of those lists/structures write lock should be obtained,
43  * while when reading (popolating discovery log page or checking host-subsystem
44  * link) read lock is obtained to allow concurrent reads.
45  */
46 DECLARE_RWSEM(nvmet_config_sem);
47 
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51 
errno_to_nvme_status(struct nvmet_req * req,int errno)52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 	switch (errno) {
55 	case 0:
56 		return NVME_SC_SUCCESS;
57 	case -ENOSPC:
58 		req->error_loc = offsetof(struct nvme_rw_command, length);
59 		return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 	case -EREMOTEIO:
61 		req->error_loc = offsetof(struct nvme_rw_command, slba);
62 		return  NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 	case -EOPNOTSUPP:
64 		req->error_loc = offsetof(struct nvme_common_command, opcode);
65 		return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
66 	case -ENODATA:
67 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
68 		return NVME_SC_ACCESS_DENIED;
69 	case -EIO:
70 		fallthrough;
71 	default:
72 		req->error_loc = offsetof(struct nvme_common_command, opcode);
73 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
74 	}
75 }
76 
nvmet_report_invalid_opcode(struct nvmet_req * req)77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
78 {
79 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
80 		 req->sq->qid);
81 
82 	req->error_loc = offsetof(struct nvme_common_command, opcode);
83 	return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
84 }
85 
86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
87 		const char *subsysnqn);
88 
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
90 		size_t len)
91 {
92 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
93 		req->error_loc = offsetof(struct nvme_common_command, dptr);
94 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
95 	}
96 	return 0;
97 }
98 
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 {
101 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
102 		req->error_loc = offsetof(struct nvme_common_command, dptr);
103 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
104 	}
105 	return 0;
106 }
107 
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 {
110 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
111 		req->error_loc = offsetof(struct nvme_common_command, dptr);
112 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
113 	}
114 	return 0;
115 }
116 
nvmet_max_nsid(struct nvmet_subsys * subsys)117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
118 {
119 	struct nvmet_ns *cur;
120 	unsigned long idx;
121 	u32 nsid = 0;
122 
123 	nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
124 		nsid = cur->nsid;
125 
126 	return nsid;
127 }
128 
nvmet_async_event_result(struct nvmet_async_event * aen)129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
130 {
131 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
132 }
133 
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
135 {
136 	struct nvmet_req *req;
137 
138 	mutex_lock(&ctrl->lock);
139 	while (ctrl->nr_async_event_cmds) {
140 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 		mutex_unlock(&ctrl->lock);
142 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
143 		mutex_lock(&ctrl->lock);
144 	}
145 	mutex_unlock(&ctrl->lock);
146 }
147 
nvmet_async_events_process(struct nvmet_ctrl * ctrl)148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 	struct nvmet_async_event *aen;
151 	struct nvmet_req *req;
152 
153 	mutex_lock(&ctrl->lock);
154 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 		aen = list_first_entry(&ctrl->async_events,
156 				       struct nvmet_async_event, entry);
157 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 		nvmet_set_result(req, nvmet_async_event_result(aen));
159 
160 		list_del(&aen->entry);
161 		kfree(aen);
162 
163 		mutex_unlock(&ctrl->lock);
164 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 		nvmet_req_complete(req, 0);
166 		mutex_lock(&ctrl->lock);
167 	}
168 	mutex_unlock(&ctrl->lock);
169 }
170 
nvmet_async_events_free(struct nvmet_ctrl * ctrl)171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 	struct nvmet_async_event *aen, *tmp;
174 
175 	mutex_lock(&ctrl->lock);
176 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 		list_del(&aen->entry);
178 		kfree(aen);
179 	}
180 	mutex_unlock(&ctrl->lock);
181 }
182 
nvmet_async_event_work(struct work_struct * work)183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 	struct nvmet_ctrl *ctrl =
186 		container_of(work, struct nvmet_ctrl, async_event_work);
187 
188 	nvmet_async_events_process(ctrl);
189 }
190 
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 		u8 event_info, u8 log_page)
193 {
194 	struct nvmet_async_event *aen;
195 
196 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 	if (!aen)
198 		return;
199 
200 	aen->event_type = event_type;
201 	aen->event_info = event_info;
202 	aen->log_page = log_page;
203 
204 	mutex_lock(&ctrl->lock);
205 	list_add_tail(&aen->entry, &ctrl->async_events);
206 	mutex_unlock(&ctrl->lock);
207 
208 	queue_work(nvmet_wq, &ctrl->async_event_work);
209 }
210 
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 	u32 i;
214 
215 	mutex_lock(&ctrl->lock);
216 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 		goto out_unlock;
218 
219 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 		if (ctrl->changed_ns_list[i] == nsid)
221 			goto out_unlock;
222 	}
223 
224 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 		ctrl->nr_changed_ns = U32_MAX;
227 		goto out_unlock;
228 	}
229 
230 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 	mutex_unlock(&ctrl->lock);
233 }
234 
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 	struct nvmet_ctrl *ctrl;
238 
239 	lockdep_assert_held(&subsys->lock);
240 
241 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 			continue;
245 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
246 				NVME_AER_NOTICE_NS_CHANGED,
247 				NVME_LOG_CHANGED_NS);
248 	}
249 }
250 
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 		struct nvmet_port *port)
253 {
254 	struct nvmet_ctrl *ctrl;
255 
256 	mutex_lock(&subsys->lock);
257 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 		if (port && ctrl->port != port)
259 			continue;
260 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 			continue;
262 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
263 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 	}
265 	mutex_unlock(&subsys->lock);
266 }
267 
nvmet_port_send_ana_event(struct nvmet_port * port)268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 	struct nvmet_subsys_link *p;
271 
272 	down_read(&nvmet_config_sem);
273 	list_for_each_entry(p, &port->subsystems, entry)
274 		nvmet_send_ana_event(p->subsys, port);
275 	up_read(&nvmet_config_sem);
276 }
277 
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 	int ret = 0;
281 
282 	down_write(&nvmet_config_sem);
283 	if (nvmet_transports[ops->type])
284 		ret = -EINVAL;
285 	else
286 		nvmet_transports[ops->type] = ops;
287 	up_write(&nvmet_config_sem);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292 
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 	down_write(&nvmet_config_sem);
296 	nvmet_transports[ops->type] = NULL;
297 	up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300 
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 	struct nvmet_ctrl *ctrl;
304 
305 	mutex_lock(&subsys->lock);
306 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 		if (ctrl->port == port)
308 			ctrl->ops->delete_ctrl(ctrl);
309 	}
310 	mutex_unlock(&subsys->lock);
311 }
312 
nvmet_enable_port(struct nvmet_port * port)313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 	const struct nvmet_fabrics_ops *ops;
316 	int ret;
317 
318 	lockdep_assert_held(&nvmet_config_sem);
319 
320 	if (port->disc_addr.trtype == NVMF_TRTYPE_MAX)
321 		return -EINVAL;
322 
323 	ops = nvmet_transports[port->disc_addr.trtype];
324 	if (!ops) {
325 		up_write(&nvmet_config_sem);
326 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
327 		down_write(&nvmet_config_sem);
328 		ops = nvmet_transports[port->disc_addr.trtype];
329 		if (!ops) {
330 			pr_err("transport type %d not supported\n",
331 				port->disc_addr.trtype);
332 			return -EINVAL;
333 		}
334 	}
335 
336 	if (!try_module_get(ops->owner))
337 		return -EINVAL;
338 
339 	/*
340 	 * If the user requested PI support and the transport isn't pi capable,
341 	 * don't enable the port.
342 	 */
343 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
344 		pr_err("T10-PI is not supported by transport type %d\n",
345 		       port->disc_addr.trtype);
346 		ret = -EINVAL;
347 		goto out_put;
348 	}
349 
350 	ret = ops->add_port(port);
351 	if (ret)
352 		goto out_put;
353 
354 	/* If the transport didn't set inline_data_size, then disable it. */
355 	if (port->inline_data_size < 0)
356 		port->inline_data_size = 0;
357 
358 	/*
359 	 * If the transport didn't set the max_queue_size properly, then clamp
360 	 * it to the target limits. Also set default values in case the
361 	 * transport didn't set it at all.
362 	 */
363 	if (port->max_queue_size < 0)
364 		port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
365 	else
366 		port->max_queue_size = clamp_t(int, port->max_queue_size,
367 					       NVMET_MIN_QUEUE_SIZE,
368 					       NVMET_MAX_QUEUE_SIZE);
369 
370 	port->enabled = true;
371 	port->tr_ops = ops;
372 	return 0;
373 
374 out_put:
375 	module_put(ops->owner);
376 	return ret;
377 }
378 
nvmet_disable_port(struct nvmet_port * port)379 void nvmet_disable_port(struct nvmet_port *port)
380 {
381 	const struct nvmet_fabrics_ops *ops;
382 
383 	lockdep_assert_held(&nvmet_config_sem);
384 
385 	port->enabled = false;
386 	port->tr_ops = NULL;
387 
388 	ops = nvmet_transports[port->disc_addr.trtype];
389 	ops->remove_port(port);
390 	module_put(ops->owner);
391 }
392 
nvmet_keep_alive_timer(struct work_struct * work)393 static void nvmet_keep_alive_timer(struct work_struct *work)
394 {
395 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
396 			struct nvmet_ctrl, ka_work);
397 	bool reset_tbkas = ctrl->reset_tbkas;
398 
399 	ctrl->reset_tbkas = false;
400 	if (reset_tbkas) {
401 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
402 			ctrl->cntlid);
403 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
404 		return;
405 	}
406 
407 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
408 		ctrl->cntlid, ctrl->kato);
409 
410 	nvmet_ctrl_fatal_error(ctrl);
411 }
412 
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)413 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
414 {
415 	if (unlikely(ctrl->kato == 0))
416 		return;
417 
418 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
419 		ctrl->cntlid, ctrl->kato);
420 
421 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
422 }
423 
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)424 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
425 {
426 	if (unlikely(ctrl->kato == 0))
427 		return;
428 
429 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
430 
431 	cancel_delayed_work_sync(&ctrl->ka_work);
432 }
433 
nvmet_req_find_ns(struct nvmet_req * req)434 u16 nvmet_req_find_ns(struct nvmet_req *req)
435 {
436 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
437 	struct nvmet_subsys *subsys = nvmet_req_subsys(req);
438 
439 	req->ns = xa_load(&subsys->namespaces, nsid);
440 	if (unlikely(!req->ns || !req->ns->enabled)) {
441 		req->error_loc = offsetof(struct nvme_common_command, nsid);
442 		if (!req->ns) /* ns doesn't exist! */
443 			return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
444 
445 		/* ns exists but it's disabled */
446 		req->ns = NULL;
447 		return NVME_SC_INTERNAL_PATH_ERROR;
448 	}
449 
450 	percpu_ref_get(&req->ns->ref);
451 	return NVME_SC_SUCCESS;
452 }
453 
nvmet_destroy_namespace(struct percpu_ref * ref)454 static void nvmet_destroy_namespace(struct percpu_ref *ref)
455 {
456 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
457 
458 	complete(&ns->disable_done);
459 }
460 
nvmet_put_namespace(struct nvmet_ns * ns)461 void nvmet_put_namespace(struct nvmet_ns *ns)
462 {
463 	percpu_ref_put(&ns->ref);
464 }
465 
nvmet_ns_dev_disable(struct nvmet_ns * ns)466 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
467 {
468 	nvmet_bdev_ns_disable(ns);
469 	nvmet_file_ns_disable(ns);
470 }
471 
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)472 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
473 {
474 	int ret;
475 	struct pci_dev *p2p_dev;
476 
477 	if (!ns->use_p2pmem)
478 		return 0;
479 
480 	if (!ns->bdev) {
481 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
482 		return -EINVAL;
483 	}
484 
485 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
486 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
487 		       ns->device_path);
488 		return -EINVAL;
489 	}
490 
491 	if (ns->p2p_dev) {
492 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
493 		if (ret < 0)
494 			return -EINVAL;
495 	} else {
496 		/*
497 		 * Right now we just check that there is p2pmem available so
498 		 * we can report an error to the user right away if there
499 		 * is not. We'll find the actual device to use once we
500 		 * setup the controller when the port's device is available.
501 		 */
502 
503 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
504 		if (!p2p_dev) {
505 			pr_err("no peer-to-peer memory is available for %s\n",
506 			       ns->device_path);
507 			return -EINVAL;
508 		}
509 
510 		pci_dev_put(p2p_dev);
511 	}
512 
513 	return 0;
514 }
515 
516 /*
517  * Note: ctrl->subsys->lock should be held when calling this function
518  */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)519 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
520 				    struct nvmet_ns *ns)
521 {
522 	struct device *clients[2];
523 	struct pci_dev *p2p_dev;
524 	int ret;
525 
526 	if (!ctrl->p2p_client || !ns->use_p2pmem)
527 		return;
528 
529 	if (ns->p2p_dev) {
530 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
531 		if (ret < 0)
532 			return;
533 
534 		p2p_dev = pci_dev_get(ns->p2p_dev);
535 	} else {
536 		clients[0] = ctrl->p2p_client;
537 		clients[1] = nvmet_ns_dev(ns);
538 
539 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
540 		if (!p2p_dev) {
541 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
542 			       dev_name(ctrl->p2p_client), ns->device_path);
543 			return;
544 		}
545 	}
546 
547 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
548 	if (ret < 0)
549 		pci_dev_put(p2p_dev);
550 
551 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
552 		ns->nsid);
553 }
554 
nvmet_ns_revalidate(struct nvmet_ns * ns)555 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
556 {
557 	loff_t oldsize = ns->size;
558 
559 	if (ns->bdev)
560 		nvmet_bdev_ns_revalidate(ns);
561 	else
562 		nvmet_file_ns_revalidate(ns);
563 
564 	return oldsize != ns->size;
565 }
566 
nvmet_ns_enable(struct nvmet_ns * ns)567 int nvmet_ns_enable(struct nvmet_ns *ns)
568 {
569 	struct nvmet_subsys *subsys = ns->subsys;
570 	struct nvmet_ctrl *ctrl;
571 	int ret;
572 
573 	mutex_lock(&subsys->lock);
574 	ret = 0;
575 
576 	if (nvmet_is_passthru_subsys(subsys)) {
577 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
578 		goto out_unlock;
579 	}
580 
581 	if (ns->enabled)
582 		goto out_unlock;
583 
584 	ret = nvmet_bdev_ns_enable(ns);
585 	if (ret == -ENOTBLK)
586 		ret = nvmet_file_ns_enable(ns);
587 	if (ret)
588 		goto out_unlock;
589 
590 	ret = nvmet_p2pmem_ns_enable(ns);
591 	if (ret)
592 		goto out_dev_disable;
593 
594 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
595 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
596 
597 	if (ns->pr.enable) {
598 		ret = nvmet_pr_init_ns(ns);
599 		if (ret)
600 			goto out_dev_put;
601 	}
602 
603 	if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
604 		goto out_pr_exit;
605 
606 	nvmet_ns_changed(subsys, ns->nsid);
607 	ns->enabled = true;
608 	xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
609 	ret = 0;
610 out_unlock:
611 	mutex_unlock(&subsys->lock);
612 	return ret;
613 out_pr_exit:
614 	if (ns->pr.enable)
615 		nvmet_pr_exit_ns(ns);
616 out_dev_put:
617 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
618 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
619 out_dev_disable:
620 	nvmet_ns_dev_disable(ns);
621 	goto out_unlock;
622 }
623 
nvmet_ns_disable(struct nvmet_ns * ns)624 void nvmet_ns_disable(struct nvmet_ns *ns)
625 {
626 	struct nvmet_subsys *subsys = ns->subsys;
627 	struct nvmet_ctrl *ctrl;
628 
629 	mutex_lock(&subsys->lock);
630 	if (!ns->enabled)
631 		goto out_unlock;
632 
633 	ns->enabled = false;
634 	xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
635 
636 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
637 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
638 
639 	mutex_unlock(&subsys->lock);
640 
641 	/*
642 	 * Now that we removed the namespaces from the lookup list, we
643 	 * can kill the per_cpu ref and wait for any remaining references
644 	 * to be dropped, as well as a RCU grace period for anyone only
645 	 * using the namespace under rcu_read_lock().  Note that we can't
646 	 * use call_rcu here as we need to ensure the namespaces have
647 	 * been fully destroyed before unloading the module.
648 	 */
649 	percpu_ref_kill(&ns->ref);
650 	synchronize_rcu();
651 	wait_for_completion(&ns->disable_done);
652 	percpu_ref_exit(&ns->ref);
653 
654 	if (ns->pr.enable)
655 		nvmet_pr_exit_ns(ns);
656 
657 	mutex_lock(&subsys->lock);
658 	nvmet_ns_changed(subsys, ns->nsid);
659 	nvmet_ns_dev_disable(ns);
660 out_unlock:
661 	mutex_unlock(&subsys->lock);
662 }
663 
nvmet_ns_free(struct nvmet_ns * ns)664 void nvmet_ns_free(struct nvmet_ns *ns)
665 {
666 	struct nvmet_subsys *subsys = ns->subsys;
667 
668 	nvmet_ns_disable(ns);
669 
670 	mutex_lock(&subsys->lock);
671 
672 	xa_erase(&subsys->namespaces, ns->nsid);
673 	if (ns->nsid == subsys->max_nsid)
674 		subsys->max_nsid = nvmet_max_nsid(subsys);
675 
676 	subsys->nr_namespaces--;
677 	mutex_unlock(&subsys->lock);
678 
679 	down_write(&nvmet_ana_sem);
680 	nvmet_ana_group_enabled[ns->anagrpid]--;
681 	up_write(&nvmet_ana_sem);
682 
683 	kfree(ns->device_path);
684 	kfree(ns);
685 }
686 
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)687 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
688 {
689 	struct nvmet_ns *ns;
690 
691 	mutex_lock(&subsys->lock);
692 
693 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
694 		goto out_unlock;
695 
696 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
697 	if (!ns)
698 		goto out_unlock;
699 
700 	init_completion(&ns->disable_done);
701 
702 	ns->nsid = nsid;
703 	ns->subsys = subsys;
704 
705 	if (ns->nsid > subsys->max_nsid)
706 		subsys->max_nsid = nsid;
707 
708 	if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
709 		goto out_exit;
710 
711 	subsys->nr_namespaces++;
712 
713 	mutex_unlock(&subsys->lock);
714 
715 	down_write(&nvmet_ana_sem);
716 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
717 	nvmet_ana_group_enabled[ns->anagrpid]++;
718 	up_write(&nvmet_ana_sem);
719 
720 	uuid_gen(&ns->uuid);
721 	ns->buffered_io = false;
722 	ns->csi = NVME_CSI_NVM;
723 
724 	return ns;
725 out_exit:
726 	subsys->max_nsid = nvmet_max_nsid(subsys);
727 	kfree(ns);
728 out_unlock:
729 	mutex_unlock(&subsys->lock);
730 	return NULL;
731 }
732 
nvmet_update_sq_head(struct nvmet_req * req)733 static void nvmet_update_sq_head(struct nvmet_req *req)
734 {
735 	if (req->sq->size) {
736 		u32 old_sqhd, new_sqhd;
737 
738 		old_sqhd = READ_ONCE(req->sq->sqhd);
739 		do {
740 			new_sqhd = (old_sqhd + 1) % req->sq->size;
741 		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
742 	}
743 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
744 }
745 
nvmet_set_error(struct nvmet_req * req,u16 status)746 static void nvmet_set_error(struct nvmet_req *req, u16 status)
747 {
748 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
749 	struct nvme_error_slot *new_error_slot;
750 	unsigned long flags;
751 
752 	req->cqe->status = cpu_to_le16(status << 1);
753 
754 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
755 		return;
756 
757 	spin_lock_irqsave(&ctrl->error_lock, flags);
758 	ctrl->err_counter++;
759 	new_error_slot =
760 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
761 
762 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
763 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
764 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
765 	new_error_slot->status_field = cpu_to_le16(status << 1);
766 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
767 	new_error_slot->lba = cpu_to_le64(req->error_slba);
768 	new_error_slot->nsid = req->cmd->common.nsid;
769 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
770 
771 	/* set the more bit for this request */
772 	req->cqe->status |= cpu_to_le16(1 << 14);
773 }
774 
__nvmet_req_complete(struct nvmet_req * req,u16 status)775 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
776 {
777 	struct nvmet_ns *ns = req->ns;
778 	struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
779 
780 	if (!req->sq->sqhd_disabled)
781 		nvmet_update_sq_head(req);
782 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
783 	req->cqe->command_id = req->cmd->common.command_id;
784 
785 	if (unlikely(status))
786 		nvmet_set_error(req, status);
787 
788 	trace_nvmet_req_complete(req);
789 
790 	req->ops->queue_response(req);
791 
792 	if (pc_ref)
793 		nvmet_pr_put_ns_pc_ref(pc_ref);
794 	if (ns)
795 		nvmet_put_namespace(ns);
796 }
797 
nvmet_req_complete(struct nvmet_req * req,u16 status)798 void nvmet_req_complete(struct nvmet_req *req, u16 status)
799 {
800 	struct nvmet_sq *sq = req->sq;
801 
802 	__nvmet_req_complete(req, status);
803 	percpu_ref_put(&sq->ref);
804 }
805 EXPORT_SYMBOL_GPL(nvmet_req_complete);
806 
nvmet_cq_init(struct nvmet_cq * cq)807 void nvmet_cq_init(struct nvmet_cq *cq)
808 {
809 	refcount_set(&cq->ref, 1);
810 }
811 EXPORT_SYMBOL_GPL(nvmet_cq_init);
812 
nvmet_cq_get(struct nvmet_cq * cq)813 bool nvmet_cq_get(struct nvmet_cq *cq)
814 {
815 	return refcount_inc_not_zero(&cq->ref);
816 }
817 EXPORT_SYMBOL_GPL(nvmet_cq_get);
818 
nvmet_cq_put(struct nvmet_cq * cq)819 void nvmet_cq_put(struct nvmet_cq *cq)
820 {
821 	if (refcount_dec_and_test(&cq->ref))
822 		nvmet_cq_destroy(cq);
823 }
824 EXPORT_SYMBOL_GPL(nvmet_cq_put);
825 
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)826 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
827 		u16 qid, u16 size)
828 {
829 	cq->qid = qid;
830 	cq->size = size;
831 
832 	ctrl->cqs[qid] = cq;
833 }
834 
nvmet_cq_destroy(struct nvmet_cq * cq)835 void nvmet_cq_destroy(struct nvmet_cq *cq)
836 {
837 	struct nvmet_ctrl *ctrl = cq->ctrl;
838 
839 	if (ctrl) {
840 		ctrl->cqs[cq->qid] = NULL;
841 		nvmet_ctrl_put(cq->ctrl);
842 		cq->ctrl = NULL;
843 	}
844 }
845 
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)846 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
847 		u16 qid, u16 size)
848 {
849 	sq->sqhd = 0;
850 	sq->qid = qid;
851 	sq->size = size;
852 
853 	ctrl->sqs[qid] = sq;
854 }
855 
nvmet_confirm_sq(struct percpu_ref * ref)856 static void nvmet_confirm_sq(struct percpu_ref *ref)
857 {
858 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
859 
860 	complete(&sq->confirm_done);
861 }
862 
nvmet_check_cqid(struct nvmet_ctrl * ctrl,u16 cqid,bool create)863 u16 nvmet_check_cqid(struct nvmet_ctrl *ctrl, u16 cqid, bool create)
864 {
865 	if (!ctrl->cqs)
866 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
867 
868 	if (cqid > ctrl->subsys->max_qid)
869 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
870 
871 	if ((create && ctrl->cqs[cqid]) || (!create && !ctrl->cqs[cqid]))
872 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
873 
874 	return NVME_SC_SUCCESS;
875 }
876 
nvmet_check_io_cqid(struct nvmet_ctrl * ctrl,u16 cqid,bool create)877 u16 nvmet_check_io_cqid(struct nvmet_ctrl *ctrl, u16 cqid, bool create)
878 {
879 	if (!cqid)
880 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
881 	return nvmet_check_cqid(ctrl, cqid, create);
882 }
883 
nvmet_cq_in_use(struct nvmet_cq * cq)884 bool nvmet_cq_in_use(struct nvmet_cq *cq)
885 {
886 	return refcount_read(&cq->ref) > 1;
887 }
888 EXPORT_SYMBOL_GPL(nvmet_cq_in_use);
889 
nvmet_cq_create(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)890 u16 nvmet_cq_create(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
891 		    u16 qid, u16 size)
892 {
893 	u16 status;
894 
895 	status = nvmet_check_cqid(ctrl, qid, true);
896 	if (status != NVME_SC_SUCCESS)
897 		return status;
898 
899 	if (!kref_get_unless_zero(&ctrl->ref))
900 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
901 	cq->ctrl = ctrl;
902 
903 	nvmet_cq_init(cq);
904 	nvmet_cq_setup(ctrl, cq, qid, size);
905 
906 	return NVME_SC_SUCCESS;
907 }
908 EXPORT_SYMBOL_GPL(nvmet_cq_create);
909 
nvmet_check_sqid(struct nvmet_ctrl * ctrl,u16 sqid,bool create)910 u16 nvmet_check_sqid(struct nvmet_ctrl *ctrl, u16 sqid,
911 		     bool create)
912 {
913 	if (!ctrl->sqs)
914 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
915 
916 	if (sqid > ctrl->subsys->max_qid)
917 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
918 
919 	if ((create && ctrl->sqs[sqid]) ||
920 	    (!create && !ctrl->sqs[sqid]))
921 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
922 
923 	return NVME_SC_SUCCESS;
924 }
925 
nvmet_sq_create(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,struct nvmet_cq * cq,u16 sqid,u16 size)926 u16 nvmet_sq_create(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
927 		    struct nvmet_cq *cq, u16 sqid, u16 size)
928 {
929 	u16 status;
930 	int ret;
931 
932 	if (!kref_get_unless_zero(&ctrl->ref))
933 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
934 
935 	status = nvmet_check_sqid(ctrl, sqid, true);
936 	if (status != NVME_SC_SUCCESS)
937 		return status;
938 
939 	ret = nvmet_sq_init(sq, cq);
940 	if (ret) {
941 		status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
942 		goto ctrl_put;
943 	}
944 
945 	nvmet_sq_setup(ctrl, sq, sqid, size);
946 	sq->ctrl = ctrl;
947 
948 	return NVME_SC_SUCCESS;
949 
950 ctrl_put:
951 	nvmet_ctrl_put(ctrl);
952 	return status;
953 }
954 EXPORT_SYMBOL_GPL(nvmet_sq_create);
955 
nvmet_sq_destroy(struct nvmet_sq * sq)956 void nvmet_sq_destroy(struct nvmet_sq *sq)
957 {
958 	struct nvmet_ctrl *ctrl = sq->ctrl;
959 
960 	/*
961 	 * If this is the admin queue, complete all AERs so that our
962 	 * queue doesn't have outstanding requests on it.
963 	 */
964 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
965 		nvmet_async_events_failall(ctrl);
966 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
967 	wait_for_completion(&sq->confirm_done);
968 	wait_for_completion(&sq->free_done);
969 	percpu_ref_exit(&sq->ref);
970 	nvmet_auth_sq_free(sq);
971 	nvmet_cq_put(sq->cq);
972 
973 	/*
974 	 * we must reference the ctrl again after waiting for inflight IO
975 	 * to complete. Because admin connect may have sneaked in after we
976 	 * store sq->ctrl locally, but before we killed the percpu_ref. the
977 	 * admin connect allocates and assigns sq->ctrl, which now needs a
978 	 * final ref put, as this ctrl is going away.
979 	 */
980 	ctrl = sq->ctrl;
981 
982 	if (ctrl) {
983 		/*
984 		 * The teardown flow may take some time, and the host may not
985 		 * send us keep-alive during this period, hence reset the
986 		 * traffic based keep-alive timer so we don't trigger a
987 		 * controller teardown as a result of a keep-alive expiration.
988 		 */
989 		ctrl->reset_tbkas = true;
990 		sq->ctrl->sqs[sq->qid] = NULL;
991 		nvmet_ctrl_put(ctrl);
992 		sq->ctrl = NULL; /* allows reusing the queue later */
993 	}
994 }
995 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
996 
nvmet_sq_free(struct percpu_ref * ref)997 static void nvmet_sq_free(struct percpu_ref *ref)
998 {
999 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
1000 
1001 	complete(&sq->free_done);
1002 }
1003 
nvmet_sq_init(struct nvmet_sq * sq,struct nvmet_cq * cq)1004 int nvmet_sq_init(struct nvmet_sq *sq, struct nvmet_cq *cq)
1005 {
1006 	int ret;
1007 
1008 	if (!nvmet_cq_get(cq))
1009 		return -EINVAL;
1010 
1011 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
1012 	if (ret) {
1013 		pr_err("percpu_ref init failed!\n");
1014 		nvmet_cq_put(cq);
1015 		return ret;
1016 	}
1017 	init_completion(&sq->free_done);
1018 	init_completion(&sq->confirm_done);
1019 	nvmet_auth_sq_init(sq);
1020 	sq->cq = cq;
1021 
1022 	return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(nvmet_sq_init);
1025 
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)1026 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
1027 		struct nvmet_ns *ns)
1028 {
1029 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
1030 
1031 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
1032 		return NVME_SC_ANA_INACCESSIBLE;
1033 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
1034 		return NVME_SC_ANA_PERSISTENT_LOSS;
1035 	if (unlikely(state == NVME_ANA_CHANGE))
1036 		return NVME_SC_ANA_TRANSITION;
1037 	return 0;
1038 }
1039 
nvmet_io_cmd_check_access(struct nvmet_req * req)1040 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
1041 {
1042 	if (unlikely(req->ns->readonly)) {
1043 		switch (req->cmd->common.opcode) {
1044 		case nvme_cmd_read:
1045 		case nvme_cmd_flush:
1046 			break;
1047 		default:
1048 			return NVME_SC_NS_WRITE_PROTECTED;
1049 		}
1050 	}
1051 
1052 	return 0;
1053 }
1054 
nvmet_io_cmd_transfer_len(struct nvmet_req * req)1055 static u32 nvmet_io_cmd_transfer_len(struct nvmet_req *req)
1056 {
1057 	struct nvme_command *cmd = req->cmd;
1058 	u32 metadata_len = 0;
1059 
1060 	if (nvme_is_fabrics(cmd))
1061 		return nvmet_fabrics_io_cmd_data_len(req);
1062 
1063 	if (!req->ns)
1064 		return 0;
1065 
1066 	switch (req->cmd->common.opcode) {
1067 	case nvme_cmd_read:
1068 	case nvme_cmd_write:
1069 	case nvme_cmd_zone_append:
1070 		if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
1071 			metadata_len = nvmet_rw_metadata_len(req);
1072 		return nvmet_rw_data_len(req) + metadata_len;
1073 	case nvme_cmd_dsm:
1074 		return nvmet_dsm_len(req);
1075 	case nvme_cmd_zone_mgmt_recv:
1076 		return (le32_to_cpu(req->cmd->zmr.numd) + 1) << 2;
1077 	default:
1078 		return 0;
1079 	}
1080 }
1081 
nvmet_parse_io_cmd(struct nvmet_req * req)1082 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
1083 {
1084 	struct nvme_command *cmd = req->cmd;
1085 	u16 ret;
1086 
1087 	if (nvme_is_fabrics(cmd))
1088 		return nvmet_parse_fabrics_io_cmd(req);
1089 
1090 	if (unlikely(!nvmet_check_auth_status(req)))
1091 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1092 
1093 	ret = nvmet_check_ctrl_status(req);
1094 	if (unlikely(ret))
1095 		return ret;
1096 
1097 	if (nvmet_is_passthru_req(req))
1098 		return nvmet_parse_passthru_io_cmd(req);
1099 
1100 	ret = nvmet_req_find_ns(req);
1101 	if (unlikely(ret))
1102 		return ret;
1103 
1104 	ret = nvmet_check_ana_state(req->port, req->ns);
1105 	if (unlikely(ret)) {
1106 		req->error_loc = offsetof(struct nvme_common_command, nsid);
1107 		return ret;
1108 	}
1109 	ret = nvmet_io_cmd_check_access(req);
1110 	if (unlikely(ret)) {
1111 		req->error_loc = offsetof(struct nvme_common_command, nsid);
1112 		return ret;
1113 	}
1114 
1115 	if (req->ns->pr.enable) {
1116 		ret = nvmet_parse_pr_cmd(req);
1117 		if (!ret)
1118 			return ret;
1119 	}
1120 
1121 	switch (req->ns->csi) {
1122 	case NVME_CSI_NVM:
1123 		if (req->ns->file)
1124 			ret = nvmet_file_parse_io_cmd(req);
1125 		else
1126 			ret = nvmet_bdev_parse_io_cmd(req);
1127 		break;
1128 	case NVME_CSI_ZNS:
1129 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
1130 			ret = nvmet_bdev_zns_parse_io_cmd(req);
1131 		else
1132 			ret = NVME_SC_INVALID_IO_CMD_SET;
1133 		break;
1134 	default:
1135 		ret = NVME_SC_INVALID_IO_CMD_SET;
1136 	}
1137 	if (ret)
1138 		return ret;
1139 
1140 	if (req->ns->pr.enable) {
1141 		ret = nvmet_pr_check_cmd_access(req);
1142 		if (ret)
1143 			return ret;
1144 
1145 		ret = nvmet_pr_get_ns_pc_ref(req);
1146 	}
1147 	return ret;
1148 }
1149 
nvmet_req_init(struct nvmet_req * req,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)1150 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_sq *sq,
1151 		const struct nvmet_fabrics_ops *ops)
1152 {
1153 	u8 flags = req->cmd->common.flags;
1154 	u16 status;
1155 
1156 	req->cq = sq->cq;
1157 	req->sq = sq;
1158 	req->ops = ops;
1159 	req->sg = NULL;
1160 	req->metadata_sg = NULL;
1161 	req->sg_cnt = 0;
1162 	req->metadata_sg_cnt = 0;
1163 	req->transfer_len = 0;
1164 	req->metadata_len = 0;
1165 	req->cqe->result.u64 = 0;
1166 	req->cqe->status = 0;
1167 	req->cqe->sq_head = 0;
1168 	req->ns = NULL;
1169 	req->error_loc = NVMET_NO_ERROR_LOC;
1170 	req->error_slba = 0;
1171 	req->pc_ref = NULL;
1172 
1173 	/* no support for fused commands yet */
1174 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1175 		req->error_loc = offsetof(struct nvme_common_command, flags);
1176 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1177 		goto fail;
1178 	}
1179 
1180 	/*
1181 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1182 	 * contains an address of a single contiguous physical buffer that is
1183 	 * byte aligned. For PCI controllers, this is optional so not enforced.
1184 	 */
1185 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1186 		if (!req->sq->ctrl || !nvmet_is_pci_ctrl(req->sq->ctrl)) {
1187 			req->error_loc =
1188 				offsetof(struct nvme_common_command, flags);
1189 			status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1190 			goto fail;
1191 		}
1192 	}
1193 
1194 	if (unlikely(!req->sq->ctrl))
1195 		/* will return an error for any non-connect command: */
1196 		status = nvmet_parse_connect_cmd(req);
1197 	else if (likely(req->sq->qid != 0))
1198 		status = nvmet_parse_io_cmd(req);
1199 	else
1200 		status = nvmet_parse_admin_cmd(req);
1201 
1202 	if (status)
1203 		goto fail;
1204 
1205 	trace_nvmet_req_init(req, req->cmd);
1206 
1207 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1208 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1209 		goto fail;
1210 	}
1211 
1212 	if (sq->ctrl)
1213 		sq->ctrl->reset_tbkas = true;
1214 
1215 	return true;
1216 
1217 fail:
1218 	__nvmet_req_complete(req, status);
1219 	return false;
1220 }
1221 EXPORT_SYMBOL_GPL(nvmet_req_init);
1222 
nvmet_req_uninit(struct nvmet_req * req)1223 void nvmet_req_uninit(struct nvmet_req *req)
1224 {
1225 	percpu_ref_put(&req->sq->ref);
1226 	if (req->pc_ref)
1227 		nvmet_pr_put_ns_pc_ref(req->pc_ref);
1228 	if (req->ns)
1229 		nvmet_put_namespace(req->ns);
1230 }
1231 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1232 
nvmet_req_transfer_len(struct nvmet_req * req)1233 size_t nvmet_req_transfer_len(struct nvmet_req *req)
1234 {
1235 	if (likely(req->sq->qid != 0))
1236 		return nvmet_io_cmd_transfer_len(req);
1237 	if (unlikely(!req->sq->ctrl))
1238 		return nvmet_connect_cmd_data_len(req);
1239 	return nvmet_admin_cmd_data_len(req);
1240 }
1241 EXPORT_SYMBOL_GPL(nvmet_req_transfer_len);
1242 
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1243 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1244 {
1245 	if (unlikely(len != req->transfer_len)) {
1246 		u16 status;
1247 
1248 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1249 		if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1250 			status = NVME_SC_SGL_INVALID_DATA;
1251 		else
1252 			status = NVME_SC_INVALID_FIELD;
1253 		nvmet_req_complete(req, status | NVME_STATUS_DNR);
1254 		return false;
1255 	}
1256 
1257 	return true;
1258 }
1259 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1260 
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1261 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1262 {
1263 	if (unlikely(data_len > req->transfer_len)) {
1264 		u16 status;
1265 
1266 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1267 		if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1268 			status = NVME_SC_SGL_INVALID_DATA;
1269 		else
1270 			status = NVME_SC_INVALID_FIELD;
1271 		nvmet_req_complete(req, status | NVME_STATUS_DNR);
1272 		return false;
1273 	}
1274 
1275 	return true;
1276 }
1277 
nvmet_data_transfer_len(struct nvmet_req * req)1278 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1279 {
1280 	return req->transfer_len - req->metadata_len;
1281 }
1282 
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1283 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1284 		struct nvmet_req *req)
1285 {
1286 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1287 			nvmet_data_transfer_len(req));
1288 	if (!req->sg)
1289 		goto out_err;
1290 
1291 	if (req->metadata_len) {
1292 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1293 				&req->metadata_sg_cnt, req->metadata_len);
1294 		if (!req->metadata_sg)
1295 			goto out_free_sg;
1296 	}
1297 
1298 	req->p2p_dev = p2p_dev;
1299 
1300 	return 0;
1301 out_free_sg:
1302 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1303 out_err:
1304 	return -ENOMEM;
1305 }
1306 
nvmet_req_find_p2p_dev(struct nvmet_req * req)1307 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1308 {
1309 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1310 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1311 		return NULL;
1312 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1313 }
1314 
nvmet_req_alloc_sgls(struct nvmet_req * req)1315 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1316 {
1317 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1318 
1319 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1320 		return 0;
1321 
1322 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1323 			    &req->sg_cnt);
1324 	if (unlikely(!req->sg))
1325 		goto out;
1326 
1327 	if (req->metadata_len) {
1328 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1329 					     &req->metadata_sg_cnt);
1330 		if (unlikely(!req->metadata_sg))
1331 			goto out_free;
1332 	}
1333 
1334 	return 0;
1335 out_free:
1336 	sgl_free(req->sg);
1337 out:
1338 	return -ENOMEM;
1339 }
1340 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1341 
nvmet_req_free_sgls(struct nvmet_req * req)1342 void nvmet_req_free_sgls(struct nvmet_req *req)
1343 {
1344 	if (req->p2p_dev) {
1345 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1346 		if (req->metadata_sg)
1347 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1348 		req->p2p_dev = NULL;
1349 	} else {
1350 		sgl_free(req->sg);
1351 		if (req->metadata_sg)
1352 			sgl_free(req->metadata_sg);
1353 	}
1354 
1355 	req->sg = NULL;
1356 	req->metadata_sg = NULL;
1357 	req->sg_cnt = 0;
1358 	req->metadata_sg_cnt = 0;
1359 }
1360 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1361 
nvmet_css_supported(u8 cc_css)1362 static inline bool nvmet_css_supported(u8 cc_css)
1363 {
1364 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1365 	case NVME_CC_CSS_NVM:
1366 	case NVME_CC_CSS_CSI:
1367 		return true;
1368 	default:
1369 		return false;
1370 	}
1371 }
1372 
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1373 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1374 {
1375 	lockdep_assert_held(&ctrl->lock);
1376 
1377 	/*
1378 	 * Only I/O controllers should verify iosqes,iocqes.
1379 	 * Strictly speaking, the spec says a discovery controller
1380 	 * should verify iosqes,iocqes are zeroed, however that
1381 	 * would break backwards compatibility, so don't enforce it.
1382 	 */
1383 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1384 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1385 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1386 		ctrl->csts = NVME_CSTS_CFS;
1387 		return;
1388 	}
1389 
1390 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1391 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1392 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1393 		ctrl->csts = NVME_CSTS_CFS;
1394 		return;
1395 	}
1396 
1397 	ctrl->csts = NVME_CSTS_RDY;
1398 
1399 	/*
1400 	 * Controllers that are not yet enabled should not really enforce the
1401 	 * keep alive timeout, but we still want to track a timeout and cleanup
1402 	 * in case a host died before it enabled the controller.  Hence, simply
1403 	 * reset the keep alive timer when the controller is enabled.
1404 	 */
1405 	if (ctrl->kato)
1406 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1407 }
1408 
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1409 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1410 {
1411 	lockdep_assert_held(&ctrl->lock);
1412 
1413 	/* XXX: tear down queues? */
1414 	ctrl->csts &= ~NVME_CSTS_RDY;
1415 	ctrl->cc = 0;
1416 }
1417 
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1418 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1419 {
1420 	u32 old;
1421 
1422 	mutex_lock(&ctrl->lock);
1423 	old = ctrl->cc;
1424 	ctrl->cc = new;
1425 
1426 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1427 		nvmet_start_ctrl(ctrl);
1428 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1429 		nvmet_clear_ctrl(ctrl);
1430 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1431 		nvmet_clear_ctrl(ctrl);
1432 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1433 	}
1434 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1435 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1436 	mutex_unlock(&ctrl->lock);
1437 }
1438 EXPORT_SYMBOL_GPL(nvmet_update_cc);
1439 
nvmet_init_cap(struct nvmet_ctrl * ctrl)1440 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1441 {
1442 	/* command sets supported: NVMe command set: */
1443 	ctrl->cap = (1ULL << 37);
1444 	/* Controller supports one or more I/O Command Sets */
1445 	ctrl->cap |= (1ULL << 43);
1446 	/* CC.EN timeout in 500msec units: */
1447 	ctrl->cap |= (15ULL << 24);
1448 	/* maximum queue entries supported: */
1449 	if (ctrl->ops->get_max_queue_size)
1450 		ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1451 				   ctrl->port->max_queue_size) - 1;
1452 	else
1453 		ctrl->cap |= ctrl->port->max_queue_size - 1;
1454 
1455 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1456 		nvmet_passthrough_override_cap(ctrl);
1457 }
1458 
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1459 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1460 				       const char *hostnqn, u16 cntlid,
1461 				       struct nvmet_req *req)
1462 {
1463 	struct nvmet_ctrl *ctrl = NULL;
1464 	struct nvmet_subsys *subsys;
1465 
1466 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1467 	if (!subsys) {
1468 		pr_warn("connect request for invalid subsystem %s!\n",
1469 			subsysnqn);
1470 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1471 		goto out;
1472 	}
1473 
1474 	mutex_lock(&subsys->lock);
1475 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1476 		if (ctrl->cntlid == cntlid) {
1477 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1478 				pr_warn("hostnqn mismatch.\n");
1479 				continue;
1480 			}
1481 			if (!kref_get_unless_zero(&ctrl->ref))
1482 				continue;
1483 
1484 			/* ctrl found */
1485 			goto found;
1486 		}
1487 	}
1488 
1489 	ctrl = NULL; /* ctrl not found */
1490 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1491 		cntlid, subsysnqn, hostnqn);
1492 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1493 
1494 found:
1495 	mutex_unlock(&subsys->lock);
1496 	nvmet_subsys_put(subsys);
1497 out:
1498 	return ctrl;
1499 }
1500 
nvmet_check_ctrl_status(struct nvmet_req * req)1501 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1502 {
1503 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1504 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1505 		       req->cmd->common.opcode, req->sq->qid);
1506 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1507 	}
1508 
1509 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1510 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1511 		       req->cmd->common.opcode, req->sq->qid);
1512 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1513 	}
1514 
1515 	if (unlikely(!nvmet_check_auth_status(req))) {
1516 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1517 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1518 	}
1519 	return 0;
1520 }
1521 
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1522 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1523 {
1524 	struct nvmet_host_link *p;
1525 
1526 	lockdep_assert_held(&nvmet_config_sem);
1527 
1528 	if (subsys->allow_any_host)
1529 		return true;
1530 
1531 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1532 		return true;
1533 
1534 	list_for_each_entry(p, &subsys->hosts, entry) {
1535 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1536 			return true;
1537 	}
1538 
1539 	return false;
1540 }
1541 
1542 /*
1543  * Note: ctrl->subsys->lock should be held when calling this function
1544  */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct device * p2p_client)1545 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1546 		struct device *p2p_client)
1547 {
1548 	struct nvmet_ns *ns;
1549 	unsigned long idx;
1550 
1551 	if (!p2p_client)
1552 		return;
1553 
1554 	ctrl->p2p_client = get_device(p2p_client);
1555 
1556 	nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1557 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1558 }
1559 
1560 /*
1561  * Note: ctrl->subsys->lock should be held when calling this function
1562  */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1563 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1564 {
1565 	struct radix_tree_iter iter;
1566 	void __rcu **slot;
1567 
1568 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1569 		pci_dev_put(radix_tree_deref_slot(slot));
1570 
1571 	put_device(ctrl->p2p_client);
1572 }
1573 
nvmet_fatal_error_handler(struct work_struct * work)1574 static void nvmet_fatal_error_handler(struct work_struct *work)
1575 {
1576 	struct nvmet_ctrl *ctrl =
1577 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1578 
1579 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1580 	ctrl->ops->delete_ctrl(ctrl);
1581 }
1582 
nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args * args)1583 struct nvmet_ctrl *nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args *args)
1584 {
1585 	struct nvmet_subsys *subsys;
1586 	struct nvmet_ctrl *ctrl;
1587 	u32 kato = args->kato;
1588 	u8 dhchap_status;
1589 	int ret;
1590 
1591 	args->status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1592 	subsys = nvmet_find_get_subsys(args->port, args->subsysnqn);
1593 	if (!subsys) {
1594 		pr_warn("connect request for invalid subsystem %s!\n",
1595 			args->subsysnqn);
1596 		args->result = IPO_IATTR_CONNECT_DATA(subsysnqn);
1597 		args->error_loc = offsetof(struct nvme_common_command, dptr);
1598 		return NULL;
1599 	}
1600 
1601 	down_read(&nvmet_config_sem);
1602 	if (!nvmet_host_allowed(subsys, args->hostnqn)) {
1603 		pr_info("connect by host %s for subsystem %s not allowed\n",
1604 			args->hostnqn, args->subsysnqn);
1605 		args->result = IPO_IATTR_CONNECT_DATA(hostnqn);
1606 		up_read(&nvmet_config_sem);
1607 		args->status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1608 		args->error_loc = offsetof(struct nvme_common_command, dptr);
1609 		goto out_put_subsystem;
1610 	}
1611 	up_read(&nvmet_config_sem);
1612 
1613 	args->status = NVME_SC_INTERNAL;
1614 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1615 	if (!ctrl)
1616 		goto out_put_subsystem;
1617 	mutex_init(&ctrl->lock);
1618 
1619 	ctrl->port = args->port;
1620 	ctrl->ops = args->ops;
1621 
1622 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1623 	/* By default, set loop targets to clear IDS by default */
1624 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1625 		subsys->clear_ids = 1;
1626 #endif
1627 
1628 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1629 	INIT_LIST_HEAD(&ctrl->async_events);
1630 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1631 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1632 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1633 
1634 	memcpy(ctrl->subsysnqn, args->subsysnqn, NVMF_NQN_SIZE);
1635 	memcpy(ctrl->hostnqn, args->hostnqn, NVMF_NQN_SIZE);
1636 
1637 	kref_init(&ctrl->ref);
1638 	ctrl->subsys = subsys;
1639 	ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1640 	nvmet_init_cap(ctrl);
1641 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1642 
1643 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1644 			sizeof(__le32), GFP_KERNEL);
1645 	if (!ctrl->changed_ns_list)
1646 		goto out_free_ctrl;
1647 
1648 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1649 			sizeof(struct nvmet_sq *),
1650 			GFP_KERNEL);
1651 	if (!ctrl->sqs)
1652 		goto out_free_changed_ns_list;
1653 
1654 	ctrl->cqs = kcalloc(subsys->max_qid + 1, sizeof(struct nvmet_cq *),
1655 			   GFP_KERNEL);
1656 	if (!ctrl->cqs)
1657 		goto out_free_sqs;
1658 
1659 	ret = ida_alloc_range(&cntlid_ida,
1660 			     subsys->cntlid_min, subsys->cntlid_max,
1661 			     GFP_KERNEL);
1662 	if (ret < 0) {
1663 		args->status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1664 		goto out_free_cqs;
1665 	}
1666 	ctrl->cntlid = ret;
1667 
1668 	/*
1669 	 * Discovery controllers may use some arbitrary high value
1670 	 * in order to cleanup stale discovery sessions
1671 	 */
1672 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1673 		kato = NVMET_DISC_KATO_MS;
1674 
1675 	/* keep-alive timeout in seconds */
1676 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1677 
1678 	ctrl->err_counter = 0;
1679 	spin_lock_init(&ctrl->error_lock);
1680 
1681 	nvmet_start_keep_alive_timer(ctrl);
1682 
1683 	mutex_lock(&subsys->lock);
1684 	ret = nvmet_ctrl_init_pr(ctrl);
1685 	if (ret)
1686 		goto init_pr_fail;
1687 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1688 	nvmet_setup_p2p_ns_map(ctrl, args->p2p_client);
1689 	nvmet_debugfs_ctrl_setup(ctrl);
1690 	mutex_unlock(&subsys->lock);
1691 
1692 	if (args->hostid)
1693 		uuid_copy(&ctrl->hostid, args->hostid);
1694 
1695 	dhchap_status = nvmet_setup_auth(ctrl, args->sq);
1696 	if (dhchap_status) {
1697 		pr_err("Failed to setup authentication, dhchap status %u\n",
1698 		       dhchap_status);
1699 		nvmet_ctrl_put(ctrl);
1700 		if (dhchap_status == NVME_AUTH_DHCHAP_FAILURE_FAILED)
1701 			args->status =
1702 				NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1703 		else
1704 			args->status = NVME_SC_INTERNAL;
1705 		return NULL;
1706 	}
1707 
1708 	args->status = NVME_SC_SUCCESS;
1709 
1710 	pr_info("Created %s controller %d for subsystem %s for NQN %s%s%s%s.\n",
1711 		nvmet_is_disc_subsys(ctrl->subsys) ? "discovery" : "nvm",
1712 		ctrl->cntlid, ctrl->subsys->subsysnqn, ctrl->hostnqn,
1713 		ctrl->pi_support ? " T10-PI is enabled" : "",
1714 		nvmet_has_auth(ctrl, args->sq) ? " with DH-HMAC-CHAP" : "",
1715 		nvmet_queue_tls_keyid(args->sq) ? ", TLS" : "");
1716 
1717 	return ctrl;
1718 
1719 init_pr_fail:
1720 	mutex_unlock(&subsys->lock);
1721 	nvmet_stop_keep_alive_timer(ctrl);
1722 	ida_free(&cntlid_ida, ctrl->cntlid);
1723 out_free_cqs:
1724 	kfree(ctrl->cqs);
1725 out_free_sqs:
1726 	kfree(ctrl->sqs);
1727 out_free_changed_ns_list:
1728 	kfree(ctrl->changed_ns_list);
1729 out_free_ctrl:
1730 	kfree(ctrl);
1731 out_put_subsystem:
1732 	nvmet_subsys_put(subsys);
1733 	return NULL;
1734 }
1735 EXPORT_SYMBOL_GPL(nvmet_alloc_ctrl);
1736 
nvmet_ctrl_free(struct kref * ref)1737 static void nvmet_ctrl_free(struct kref *ref)
1738 {
1739 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1740 	struct nvmet_subsys *subsys = ctrl->subsys;
1741 
1742 	mutex_lock(&subsys->lock);
1743 	nvmet_ctrl_destroy_pr(ctrl);
1744 	nvmet_release_p2p_ns_map(ctrl);
1745 	list_del(&ctrl->subsys_entry);
1746 	mutex_unlock(&subsys->lock);
1747 
1748 	nvmet_stop_keep_alive_timer(ctrl);
1749 
1750 	flush_work(&ctrl->async_event_work);
1751 	cancel_work_sync(&ctrl->fatal_err_work);
1752 
1753 	nvmet_destroy_auth(ctrl);
1754 
1755 	nvmet_debugfs_ctrl_free(ctrl);
1756 
1757 	ida_free(&cntlid_ida, ctrl->cntlid);
1758 
1759 	nvmet_async_events_free(ctrl);
1760 	kfree(ctrl->sqs);
1761 	kfree(ctrl->cqs);
1762 	kfree(ctrl->changed_ns_list);
1763 	kfree(ctrl);
1764 
1765 	nvmet_subsys_put(subsys);
1766 }
1767 
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1768 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1769 {
1770 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1771 }
1772 EXPORT_SYMBOL_GPL(nvmet_ctrl_put);
1773 
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1774 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1775 {
1776 	mutex_lock(&ctrl->lock);
1777 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1778 		ctrl->csts |= NVME_CSTS_CFS;
1779 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1780 	}
1781 	mutex_unlock(&ctrl->lock);
1782 }
1783 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1784 
nvmet_ctrl_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)1785 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1786 		char *traddr, size_t traddr_len)
1787 {
1788 	if (!ctrl->ops->host_traddr)
1789 		return -EOPNOTSUPP;
1790 	return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1791 }
1792 
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1793 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1794 		const char *subsysnqn)
1795 {
1796 	struct nvmet_subsys_link *p;
1797 
1798 	if (!port)
1799 		return NULL;
1800 
1801 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1802 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1803 			return NULL;
1804 		return nvmet_disc_subsys;
1805 	}
1806 
1807 	down_read(&nvmet_config_sem);
1808 	if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1809 				NVMF_NQN_SIZE)) {
1810 		if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1811 			up_read(&nvmet_config_sem);
1812 			return nvmet_disc_subsys;
1813 		}
1814 	}
1815 	list_for_each_entry(p, &port->subsystems, entry) {
1816 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1817 				NVMF_NQN_SIZE)) {
1818 			if (!kref_get_unless_zero(&p->subsys->ref))
1819 				break;
1820 			up_read(&nvmet_config_sem);
1821 			return p->subsys;
1822 		}
1823 	}
1824 	up_read(&nvmet_config_sem);
1825 	return NULL;
1826 }
1827 
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1828 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1829 		enum nvme_subsys_type type)
1830 {
1831 	struct nvmet_subsys *subsys;
1832 	char serial[NVMET_SN_MAX_SIZE / 2];
1833 	int ret;
1834 
1835 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1836 	if (!subsys)
1837 		return ERR_PTR(-ENOMEM);
1838 
1839 	subsys->ver = NVMET_DEFAULT_VS;
1840 	/* generate a random serial number as our controllers are ephemeral: */
1841 	get_random_bytes(&serial, sizeof(serial));
1842 	bin2hex(subsys->serial, &serial, sizeof(serial));
1843 
1844 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1845 	if (!subsys->model_number) {
1846 		ret = -ENOMEM;
1847 		goto free_subsys;
1848 	}
1849 
1850 	subsys->ieee_oui = 0;
1851 
1852 	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1853 	if (!subsys->firmware_rev) {
1854 		ret = -ENOMEM;
1855 		goto free_mn;
1856 	}
1857 
1858 	switch (type) {
1859 	case NVME_NQN_NVME:
1860 		subsys->max_qid = NVMET_NR_QUEUES;
1861 		break;
1862 	case NVME_NQN_DISC:
1863 	case NVME_NQN_CURR:
1864 		subsys->max_qid = 0;
1865 		break;
1866 	default:
1867 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1868 		ret = -EINVAL;
1869 		goto free_fr;
1870 	}
1871 	subsys->type = type;
1872 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1873 			GFP_KERNEL);
1874 	if (!subsys->subsysnqn) {
1875 		ret = -ENOMEM;
1876 		goto free_fr;
1877 	}
1878 	subsys->cntlid_min = NVME_CNTLID_MIN;
1879 	subsys->cntlid_max = NVME_CNTLID_MAX;
1880 	kref_init(&subsys->ref);
1881 
1882 	mutex_init(&subsys->lock);
1883 	xa_init(&subsys->namespaces);
1884 	INIT_LIST_HEAD(&subsys->ctrls);
1885 	INIT_LIST_HEAD(&subsys->hosts);
1886 
1887 	ret = nvmet_debugfs_subsys_setup(subsys);
1888 	if (ret)
1889 		goto free_subsysnqn;
1890 
1891 	return subsys;
1892 
1893 free_subsysnqn:
1894 	kfree(subsys->subsysnqn);
1895 free_fr:
1896 	kfree(subsys->firmware_rev);
1897 free_mn:
1898 	kfree(subsys->model_number);
1899 free_subsys:
1900 	kfree(subsys);
1901 	return ERR_PTR(ret);
1902 }
1903 
nvmet_subsys_free(struct kref * ref)1904 static void nvmet_subsys_free(struct kref *ref)
1905 {
1906 	struct nvmet_subsys *subsys =
1907 		container_of(ref, struct nvmet_subsys, ref);
1908 
1909 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1910 
1911 	nvmet_debugfs_subsys_free(subsys);
1912 
1913 	xa_destroy(&subsys->namespaces);
1914 	nvmet_passthru_subsys_free(subsys);
1915 
1916 	kfree(subsys->subsysnqn);
1917 	kfree(subsys->model_number);
1918 	kfree(subsys->firmware_rev);
1919 	kfree(subsys);
1920 }
1921 
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1922 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1923 {
1924 	struct nvmet_ctrl *ctrl;
1925 
1926 	mutex_lock(&subsys->lock);
1927 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1928 		ctrl->ops->delete_ctrl(ctrl);
1929 	mutex_unlock(&subsys->lock);
1930 }
1931 
nvmet_subsys_put(struct nvmet_subsys * subsys)1932 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1933 {
1934 	kref_put(&subsys->ref, nvmet_subsys_free);
1935 }
1936 
nvmet_init(void)1937 static int __init nvmet_init(void)
1938 {
1939 	int error = -ENOMEM;
1940 
1941 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1942 
1943 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1944 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1945 			SLAB_HWCACHE_ALIGN, NULL);
1946 	if (!nvmet_bvec_cache)
1947 		return -ENOMEM;
1948 
1949 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1950 	if (!zbd_wq)
1951 		goto out_destroy_bvec_cache;
1952 
1953 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1954 			WQ_MEM_RECLAIM, 0);
1955 	if (!buffered_io_wq)
1956 		goto out_free_zbd_work_queue;
1957 
1958 	nvmet_wq = alloc_workqueue("nvmet-wq",
1959 			WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1960 	if (!nvmet_wq)
1961 		goto out_free_buffered_work_queue;
1962 
1963 	error = nvmet_init_discovery();
1964 	if (error)
1965 		goto out_free_nvmet_work_queue;
1966 
1967 	error = nvmet_init_debugfs();
1968 	if (error)
1969 		goto out_exit_discovery;
1970 
1971 	error = nvmet_init_configfs();
1972 	if (error)
1973 		goto out_exit_debugfs;
1974 
1975 	return 0;
1976 
1977 out_exit_debugfs:
1978 	nvmet_exit_debugfs();
1979 out_exit_discovery:
1980 	nvmet_exit_discovery();
1981 out_free_nvmet_work_queue:
1982 	destroy_workqueue(nvmet_wq);
1983 out_free_buffered_work_queue:
1984 	destroy_workqueue(buffered_io_wq);
1985 out_free_zbd_work_queue:
1986 	destroy_workqueue(zbd_wq);
1987 out_destroy_bvec_cache:
1988 	kmem_cache_destroy(nvmet_bvec_cache);
1989 	return error;
1990 }
1991 
nvmet_exit(void)1992 static void __exit nvmet_exit(void)
1993 {
1994 	nvmet_exit_configfs();
1995 	nvmet_exit_debugfs();
1996 	nvmet_exit_discovery();
1997 	ida_destroy(&cntlid_ida);
1998 	destroy_workqueue(nvmet_wq);
1999 	destroy_workqueue(buffered_io_wq);
2000 	destroy_workqueue(zbd_wq);
2001 	kmem_cache_destroy(nvmet_bvec_cache);
2002 
2003 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
2004 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
2005 }
2006 
2007 module_init(nvmet_init);
2008 module_exit(nvmet_exit);
2009 
2010 MODULE_DESCRIPTION("NVMe target core framework");
2011 MODULE_LICENSE("GPL v2");
2012