1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2017 Joyent, Inc.
14 * Copyright 2025 Oxide Computer Company
15 * Copyright 2022 Tintri by DDN, Inc. All rights reserved.
16 */
17
18 /*
19 * nvmeadm -- NVMe administration utility
20 *
21 * nvmeadm [-v] [-d] [-h] <command> [<ctl>[/<ns>][,...]] [args]
22 * commands: list
23 * identify
24 * list-logpages [logpage name],...
25 * get-logpage <logpage name>
26 * get-features <feature>[,...]
27 * format ...
28 * secure-erase ...
29 * detach ...
30 * attach ...
31 * list-firmware ...
32 * load-firmware ...
33 * commit-firmware ...
34 * activate-firmware ...
35 */
36
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <stddef.h>
40 #include <unistd.h>
41 #include <fcntl.h>
42 #include <strings.h>
43 #include <ctype.h>
44 #include <err.h>
45 #include <sys/sunddi.h>
46 #include <libdevinfo.h>
47 #include <sys/sysmacros.h>
48
49 #include <sys/nvme.h>
50
51 #include "nvmeadm.h"
52
53 /*
54 * Assertions to make sure that we've properly captured various aspects of the
55 * packed structures and haven't broken them during updates.
56 */
57 CTASSERT(sizeof (nvme_identify_ctrl_t) == NVME_IDENTIFY_BUFSIZE);
58 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
59 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
60 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
61 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
62 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
63 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
64 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
65
66 CTASSERT(sizeof (nvme_identify_nsid_t) == NVME_IDENTIFY_BUFSIZE);
67 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
68 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
69 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
70 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
71 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
72
73 CTASSERT(sizeof (nvme_identify_nsid_list_t) == NVME_IDENTIFY_BUFSIZE);
74 CTASSERT(sizeof (nvme_identify_ctrl_list_t) == NVME_IDENTIFY_BUFSIZE);
75
76 CTASSERT(sizeof (nvme_identify_primary_caps_t) == NVME_IDENTIFY_BUFSIZE);
77 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
78 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
79
80 CTASSERT(sizeof (nvme_nschange_list_t) == 4096);
81
82 #define NVMEADM_F_CTRL 1
83 #define NVMEADM_F_NS 2
84 #define NVMEADM_F_BOTH (NVMEADM_F_CTRL | NVMEADM_F_NS)
85
86 static void usage(const nvmeadm_cmd_t *);
87 static bool nvmeadm_ctrl_disc_cb(nvme_t *, const nvme_ctrl_disc_t *, void *);
88
89 static int do_list(const nvme_process_arg_t *);
90 static int do_identify(const nvme_process_arg_t *);
91 static int do_identify_ctrl(const nvme_process_arg_t *);
92 static int do_identify_ns(const nvme_process_arg_t *);
93 static int do_list_logs(const nvme_process_arg_t *);
94 static int do_get_logpage_fwslot(const nvme_process_arg_t *);
95 static int do_get_logpage(const nvme_process_arg_t *);
96 static int do_list_features(const nvme_process_arg_t *);
97 static boolean_t do_get_feat_intr_vect(const nvme_process_arg_t *,
98 const nvme_feat_disc_t *, const nvmeadm_feature_t *);
99 static boolean_t do_get_feat_temp_thresh(const nvme_process_arg_t *,
100 const nvme_feat_disc_t *, const nvmeadm_feature_t *);
101 static int do_get_features(const nvme_process_arg_t *);
102 static int do_format(const nvme_process_arg_t *);
103 static int do_secure_erase(const nvme_process_arg_t *);
104 static int do_attach_bd(const nvme_process_arg_t *);
105 static int do_detach_bd(const nvme_process_arg_t *);
106 static int do_firmware_load(const nvme_process_arg_t *);
107 static int do_firmware_commit(const nvme_process_arg_t *);
108 static int do_firmware_activate(const nvme_process_arg_t *);
109
110 static void optparse_list(nvme_process_arg_t *);
111 static void optparse_identify(nvme_process_arg_t *);
112 static void optparse_identify_ctrl(nvme_process_arg_t *);
113 static void optparse_identify_ns(nvme_process_arg_t *);
114 static void optparse_list_logs(nvme_process_arg_t *);
115 static void optparse_get_logpage(nvme_process_arg_t *);
116 static void optparse_list_features(nvme_process_arg_t *);
117 static void optparse_secure_erase(nvme_process_arg_t *);
118
119 static void usage_list(const char *);
120 static void usage_identify(const char *);
121 static void usage_identify_ctrl(const char *);
122 static void usage_identify_ns(const char *);
123 static void usage_list_logs(const char *);
124 static void usage_get_logpage(const char *);
125 static void usage_list_features(const char *);
126 static void usage_get_features(const char *);
127 static void usage_format(const char *);
128 static void usage_secure_erase(const char *);
129 static void usage_attach_detach_bd(const char *);
130 static void usage_firmware_list(const char *);
131 static void usage_firmware_load(const char *);
132 static void usage_firmware_commit(const char *);
133 static void usage_firmware_activate(const char *);
134
135 int verbose;
136 int debug;
137
138 /*
139 * nvmeadm Secure-erase specific options
140 */
141 #define NVMEADM_O_SE_CRYPTO 0x00000004
142
143 /*
144 * nvmeadm identify specific options
145 */
146 #define NVMEADM_O_ID_NSID_LIST 0x00000008
147 #define NVMEADM_O_ID_COMMON_NS 0x00000010
148 #define NVMEADM_O_ID_CTRL_LIST 0x00000020
149 #define NVMEADM_O_ID_DESC_LIST 0x00000040
150 #define NVMEADM_O_ID_ALLOC_NS 0x00000080
151
152 /*
153 * nvmeadm List specific options
154 */
155 #define NVMEADM_O_LS_CTRL 0x00000100
156
157 static int exitcode;
158
159 /*
160 * Nvmeadm subcommand definitons.
161 *
162 * When adding a new subcommand, please check that the commands still
163 * line up in the usage() message, and adjust the format string in
164 * usage() below if necessary.
165 */
166 static const nvmeadm_cmd_t nvmeadm_cmds[] = {
167 {
168 "list",
169 "list controllers and namespaces",
170 " -c\t\tlist only controllers\n"
171 " -p\t\tprint parsable output\n"
172 " -o field\tselect a field for parsable output\n",
173 " model\t\tthe controller's model name\n"
174 " serial\tthe controller's serial number\n"
175 " fwrev\t\tthe controller's current firmware revision\n"
176 " version\tthe controller's NVMe specification version\n"
177 " capacity\tthe controller or namespace's capacity in bytes\n"
178 " instance\tthe device driver instance (e.g. nvme3)\n"
179 " ctrlpath\tthe controller's /devices path\n"
180 " unallocated\tthe amount of unallocated NVM in bytes\n"
181 " size\t\tthe namespace's logical size in bytes\n"
182 " used\t\tthe namespace's bytes used\n"
183 " disk\t\tthe name of the namespace's disk device\n"
184 " namespace\tthe namespace's numerical value\n"
185 " ns-state\tthe namespace's current state\n",
186 do_list, usage_list, optparse_list,
187 NVMEADM_C_MULTI
188 },
189 {
190 "identify",
191 "identify controllers and/or namespaces",
192 " -C\t\tget Common Namespace Identification\n"
193 " -a\t\tget only allocated namespace information\n"
194 " -c\t\tget controller identifier list\n"
195 " -d\t\tget namespace identification descriptors list\n"
196 " -n\t\tget namespaces identifier list",
197 NULL,
198 do_identify, usage_identify, optparse_identify,
199 NVMEADM_C_MULTI
200 },
201 {
202 "identify-controller",
203 "identify controllers",
204 " -C\t\tget Common Namespace Identification\n"
205 " -a\t\tget only allocated namespace information\n"
206 " -c\t\tget controller identifier list\n"
207 " -n\t\tget namespaces identifier list",
208 NULL,
209 do_identify_ctrl, usage_identify_ctrl, optparse_identify_ctrl,
210 NVMEADM_C_MULTI
211 },
212 {
213 "identify-namespace",
214 "identify namespaces",
215 " -c\t\tget attached controller identifier list\n"
216 " -d\t\tget namespace identification descriptors list",
217 NULL,
218 do_identify_ns, usage_identify_ns, optparse_identify_ns,
219 NVMEADM_C_MULTI
220 },
221 {
222 "list-logpages",
223 "list a device's supported log pages",
224 " -a\t\tprint all log pages, including unimplemented ones\n"
225 " -H\t\tomit column headers\n"
226 " -o field\tselect a field for parsable output\n"
227 " -p\t\tprint parsable output\n"
228 " -s scope\tprint logs that match the specified scopes "
229 "(default is based on\n\t\tdevice)\n",
230 " device\tthe name of the controller or namespace\n"
231 " name\t\tthe name of the log page\n"
232 " desc\t\ta description of the loage page\n"
233 " scope\t\tthe valid device scopes for the log page\n"
234 " fields\tthe list of fields in the get log request that may "
235 "be set or required\n\t\t(e.g. lsi, lsp, rae, etc.)\n"
236 " csi\t\tthe command set interface the log page belongs to\n"
237 " lid\t\tthe log page's numeric ID\n"
238 " impl\t\tindicates whether the device implements the log "
239 "page\n"
240 " size\t\tthe size of the log page for fixed size logs\n"
241 " minsize\tthe minimum size required to determine the full "
242 "log page size\n\t\tfor variable-length pages\n"
243 " sources\twhere information for this log page came from\n"
244 " kind\t\tindicates the kind of log page e.g. standard, "
245 "vendor-specific,\n\t\tetc.",
246 do_list_logs, usage_list_logs, optparse_list_logs,
247 NVMEADM_C_MULTI
248 },
249 {
250 "get-logpage",
251 "get a log page from controllers and/or namespaces",
252 " -O file\toutput log raw binary data to a file\n",
253 NULL,
254 do_get_logpage, usage_get_logpage, optparse_get_logpage,
255 NVMEADM_C_MULTI
256 },
257 {
258 "list-features",
259 "list a device's supported features",
260 " -a\t\tprint all features, including unsupported\n"
261 " -H\t\tomit column headers\n"
262 " -o field\tselect a field for parsable output\n"
263 " -p\t\tprint parsable output",
264 " device\tthe name of the controller or namespace\n"
265 " short\t\tthe short name of the feature\n"
266 " spec\t\tthe longer feature description from the NVMe spec\n"
267 " fid\t\tthe numeric feature ID\n"
268 " scope\t\tthe valid device scopes for the feature\n"
269 " kind\t\tindicates the kind of feature e.g. standard, "
270 "vendor-specific,\n\t\tetc.\n"
271 " csi\t\tindicates the features command set interface\n"
272 " flags\t\tindicates additional properties of the feature\n"
273 " get-in\tindicates the fields that are required to get the "
274 "feature\n"
275 " set-in\tindicates the fields that are required to set the "
276 "feature\n"
277 " get-out\tindicates the fields the feature outputs\n"
278 " set-out\tindicates the fields the feature outputs when "
279 "setting the feature\n"
280 " datalen\tindicates the length of the feature's data "
281 "payload\n"
282 " impl\t\tindicates whether the device implements the "
283 "feature",
284 do_list_features, usage_list_features, optparse_list_features,
285 NVMEADM_C_MULTI
286 },
287 {
288 "get-features",
289 "get features from controllers and/or namespaces",
290 NULL,
291 NULL,
292 do_get_features, usage_get_features, NULL,
293 NVMEADM_C_MULTI
294 },
295 {
296 "format",
297 "format namespace(s) of a controller",
298 NULL,
299 NULL,
300 do_format, usage_format, NULL,
301 NVMEADM_C_EXCL
302 },
303 {
304 "secure-erase",
305 "secure erase namespace(s) of a controller",
306 " -c Do a cryptographic erase.",
307 NULL,
308 do_secure_erase, usage_secure_erase, optparse_secure_erase,
309 NVMEADM_C_EXCL
310 },
311 {
312 "create-namespace",
313 "create a new namespace",
314 " -b block-size\tNamespace format chosen to match the "
315 "requested block-size\n"
316 " -c cap\tSpecifies the namespace capacity in bytes, defaults "
317 "to the\n\t\tnamespace's size. When the size is greater than "
318 "the\n\t\tcapacity, the namespace is thin provisioned.\n"
319 " -f flbas\tformatted LBA block size index\n"
320 " -n nmic\tmulti-path I/O and namespace sharing capabilities, "
321 "valid values:\n"
322 "\t\tnone\tno namespace sharing\n"
323 "\t\tshared\tthe namespace may be attached by two or more "
324 "controllers\n"
325 " -t csi\tspecifies the namespace's command set interface, "
326 "defaults to\n\t\tnvm\n",
327 NULL,
328 do_create_ns, usage_create_ns, optparse_create_ns,
329 NVMEADM_C_EXCL
330 },
331 {
332 "delete-namespace",
333 "delete a namespace",
334 NULL, NULL,
335 do_delete_ns, usage_delete_ns, NULL,
336 NVMEADM_C_EXCL
337 },
338 {
339 "attach-namespace",
340 "attach a namespace to a controller",
341 NULL, NULL,
342 do_attach_ns, usage_attach_ns, NULL,
343 NVMEADM_C_EXCL
344 },
345 {
346 "detach-namespace",
347 "detach a namespace from a controller",
348 NULL, NULL,
349 do_detach_ns, usage_detach_ns, NULL,
350 NVMEADM_C_EXCL
351 },
352
353 {
354 "detach",
355 "detach blkdev(4D) from namespace(s) of a controller",
356 NULL,
357 NULL,
358 do_detach_bd, usage_attach_detach_bd, NULL,
359 NVMEADM_C_EXCL
360 },
361 {
362 "attach",
363 "attach blkdev(4D) to namespace(s) of a controller",
364 NULL,
365 NULL,
366 do_attach_bd, usage_attach_detach_bd, NULL,
367 NVMEADM_C_EXCL
368 },
369 {
370 "list-firmware",
371 "list firmware on a controller",
372 NULL,
373 NULL,
374 do_get_logpage_fwslot, usage_firmware_list, NULL,
375 0
376 },
377 {
378 "load-firmware",
379 "load firmware to a controller",
380 NULL,
381 NULL,
382 do_firmware_load, usage_firmware_load, NULL,
383 NVMEADM_C_EXCL
384 },
385 {
386 "commit-firmware",
387 "commit downloaded firmware to a slot of a controller",
388 NULL,
389 NULL,
390 do_firmware_commit, usage_firmware_commit, NULL,
391 NVMEADM_C_EXCL
392 },
393 {
394 "activate-firmware",
395 "activate a firmware slot of a controller",
396 NULL,
397 NULL,
398 do_firmware_activate, usage_firmware_activate, NULL,
399 NVMEADM_C_EXCL
400 },
401 {
402 "wdc/e6dump",
403 "dump WDC e6 diagnostic log",
404 " -o output\tspecify output file destination\n",
405 NULL,
406 do_wdc_e6dump, usage_wdc_e6dump, optparse_wdc_e6dump,
407 0
408 },
409 {
410 "wdc/resize",
411 "change a WDC device's capacity",
412 " -g\t\tquery the device's current resized capacity\n"
413 " -s size\tset the size of a device to the specified in gb",
414 NULL,
415 do_wdc_resize, usage_wdc_resize, optparse_wdc_resize,
416 /*
417 * We do not set NVMEADM_C_EXCL here as that is handled by the
418 * vendor unique command logic and operates based on the
419 * information we get from vuc discovery.
420 */
421 0
422 },
423 {
424 "wdc/clear-assert",
425 "clear internal device assertion",
426 NULL,
427 NULL,
428 do_wdc_clear_assert, usage_wdc_clear_assert, NULL
429 },
430 {
431 "wdc/inject-assert",
432 "inject internal device assertion",
433 NULL,
434 NULL,
435 do_wdc_inject_assert, usage_wdc_inject_assert, NULL
436 },
437 {
438 NULL, NULL, NULL,
439 NULL, NULL, NULL, 0
440 }
441 };
442
443 static const nvmeadm_feature_t features[] = {
444 {
445 .f_feature = NVME_FEAT_ARBITRATION,
446 .f_print = nvme_print_feat_arbitration
447 }, {
448 .f_feature = NVME_FEAT_POWER_MGMT,
449 .f_print = nvme_print_feat_power_mgmt
450 }, {
451 .f_feature = NVME_FEAT_LBA_RANGE,
452 .f_print = nvme_print_feat_lba_range
453 }, {
454 .f_feature = NVME_FEAT_TEMPERATURE,
455 .f_get = do_get_feat_temp_thresh,
456 .f_print = nvme_print_feat_temperature
457 }, {
458 .f_feature = NVME_FEAT_ERROR,
459 .f_print = nvme_print_feat_error
460 }, {
461 .f_feature = NVME_FEAT_WRITE_CACHE,
462 .f_print = nvme_print_feat_write_cache
463 }, {
464 .f_feature = NVME_FEAT_NQUEUES,
465 .f_print = nvme_print_feat_nqueues
466 }, {
467 .f_feature = NVME_FEAT_INTR_COAL,
468 .f_print = nvme_print_feat_intr_coal
469 }, {
470 .f_feature = NVME_FEAT_INTR_VECT,
471 .f_get = do_get_feat_intr_vect,
472 .f_print = nvme_print_feat_intr_vect
473 }, {
474 .f_feature = NVME_FEAT_WRITE_ATOM,
475 .f_print = nvme_print_feat_write_atom
476 }, {
477 .f_feature = NVME_FEAT_ASYNC_EVENT,
478 .f_print = nvme_print_feat_async_event
479 }, {
480 .f_feature = NVME_FEAT_AUTO_PST,
481 .f_print = nvme_print_feat_auto_pst
482 }, {
483 .f_feature = NVME_FEAT_PROGRESS,
484 .f_print = nvme_print_feat_progress
485 }
486 };
487
488 static void
nvmeadm_ctrl_vwarn(const nvme_process_arg_t * npa,const char * fmt,va_list ap)489 nvmeadm_ctrl_vwarn(const nvme_process_arg_t *npa, const char *fmt, va_list ap)
490 {
491 nvme_ctrl_t *ctrl = npa->npa_ctrl;
492
493 (void) fprintf(stderr, "nvmeadm: ");
494 (void) vfprintf(stderr, fmt, ap);
495 (void) fprintf(stderr, ": %s: %s (libnvme: 0x%x, sys: %d)\n",
496 nvme_ctrl_errmsg(ctrl), nvme_ctrl_errtostr(npa->npa_ctrl,
497 nvme_ctrl_err(ctrl)), nvme_ctrl_err(ctrl), nvme_ctrl_syserr(ctrl));
498 }
499
500 static void
nvmeadm_hdl_vwarn(const nvme_process_arg_t * npa,const char * fmt,va_list ap)501 nvmeadm_hdl_vwarn(const nvme_process_arg_t *npa, const char *fmt, va_list ap)
502 {
503 nvme_t *nvme = npa->npa_nvme;
504
505 (void) fprintf(stderr, "nvmeadm: ");
506 (void) vfprintf(stderr, fmt, ap);
507 (void) fprintf(stderr, ": %s: %s (libnvme: 0x%x, sys: %d)\n",
508 nvme_errmsg(nvme), nvme_errtostr(nvme, nvme_err(nvme)),
509 nvme_err(nvme), nvme_syserr(nvme));
510 }
511
512 static void
nvmeadm_ctrl_info_vwarn(const nvme_process_arg_t * npa,const char * fmt,va_list ap)513 nvmeadm_ctrl_info_vwarn(const nvme_process_arg_t *npa, const char *fmt,
514 va_list ap)
515 {
516 nvme_ctrl_info_t *info = npa->npa_ctrl_info;
517
518 (void) fprintf(stderr, "nvmeadm: ");
519 (void) vfprintf(stderr, fmt, ap);
520 (void) fprintf(stderr, ": %s: %s (libnvme info: 0x%x, sys: %d)\n",
521 nvme_ctrl_info_errmsg(info), nvme_ctrl_info_errtostr(info,
522 nvme_ctrl_info_err(info)), nvme_ctrl_info_err(info),
523 nvme_ctrl_info_syserr(info));
524 }
525
526 void
nvmeadm_warn(const nvme_process_arg_t * npa,const char * fmt,...)527 nvmeadm_warn(const nvme_process_arg_t *npa, const char *fmt, ...)
528 {
529 va_list ap;
530
531 va_start(ap, fmt);
532 nvmeadm_ctrl_vwarn(npa, fmt, ap);
533 va_end(ap);
534 }
535
536 void __NORETURN
nvmeadm_fatal(const nvme_process_arg_t * npa,const char * fmt,...)537 nvmeadm_fatal(const nvme_process_arg_t *npa, const char *fmt, ...)
538 {
539 va_list ap;
540
541 va_start(ap, fmt);
542 nvmeadm_ctrl_vwarn(npa, fmt, ap);
543 va_end(ap);
544
545 exit(-1);
546 }
547
548 void
nvmeadm_hdl_warn(const nvme_process_arg_t * npa,const char * fmt,...)549 nvmeadm_hdl_warn(const nvme_process_arg_t *npa, const char *fmt, ...)
550 {
551 va_list ap;
552
553 va_start(ap, fmt);
554 nvmeadm_hdl_vwarn(npa, fmt, ap);
555 va_end(ap);
556 }
557
558 void __NORETURN
nvmeadm_hdl_fatal(const nvme_process_arg_t * npa,const char * fmt,...)559 nvmeadm_hdl_fatal(const nvme_process_arg_t *npa, const char *fmt, ...)
560 {
561 va_list ap;
562
563 va_start(ap, fmt);
564 nvmeadm_hdl_vwarn(npa, fmt, ap);
565 va_end(ap);
566
567 exit(-1);
568 }
569
570 static void
nvmeadm_ctrl_info_warn(const nvme_process_arg_t * npa,const char * fmt,...)571 nvmeadm_ctrl_info_warn(const nvme_process_arg_t *npa, const char *fmt, ...)
572 {
573 va_list ap;
574
575 va_start(ap, fmt);
576 nvmeadm_ctrl_info_vwarn(npa, fmt, ap);
577 va_end(ap);
578 }
579
580 static void
nvmeadm_ctrl_info_fatal(const nvme_process_arg_t * npa,const char * fmt,...)581 nvmeadm_ctrl_info_fatal(const nvme_process_arg_t *npa, const char *fmt, ...)
582 {
583 va_list ap;
584
585 va_start(ap, fmt);
586 nvmeadm_ctrl_info_vwarn(npa, fmt, ap);
587 va_end(ap);
588
589 exit(-1);
590 }
591
592 boolean_t
nvme_version_check(const nvme_process_arg_t * npa,const nvme_version_t * vers)593 nvme_version_check(const nvme_process_arg_t *npa, const nvme_version_t *vers)
594 {
595 return (nvme_vers_atleast(npa->npa_version, vers) ? B_TRUE : B_FALSE);
596 }
597
598 /*
599 * Because nvmeadm operates on a series of NVMe devices for several commands,
600 * here we need to clean up everything that we allocated for this device so we
601 * can prepare for the next.
602 */
603 static void
nvmeadm_cleanup_npa(nvme_process_arg_t * npa)604 nvmeadm_cleanup_npa(nvme_process_arg_t *npa)
605 {
606 npa->npa_idctl = NULL;
607 npa->npa_version = NULL;
608
609 if (npa->npa_excl) {
610 if (npa->npa_ns != NULL) {
611 nvme_ns_unlock(npa->npa_ns);
612 } else if (npa->npa_ctrl != NULL) {
613 nvme_ctrl_unlock(npa->npa_ctrl);
614 }
615 }
616
617 if (npa->npa_ns_info != NULL) {
618 nvme_ns_info_free(npa->npa_ns_info);
619 npa->npa_ns_info = NULL;
620 }
621
622 if (npa->npa_ctrl_info != NULL) {
623 nvme_ctrl_info_free(npa->npa_ctrl_info);
624 npa->npa_ctrl_info = NULL;
625 }
626
627 if (npa->npa_ns != NULL) {
628 nvme_ns_fini(npa->npa_ns);
629 npa->npa_ns = NULL;
630 }
631
632 if (npa->npa_ctrl != NULL) {
633 nvme_ctrl_fini(npa->npa_ctrl);
634 npa->npa_ctrl = NULL;
635 }
636 }
637
638 /*
639 * Determine if a command requires a controller or namespace write lock. If so
640 * we first attempt to grab it non-blocking and then if that fails, we'll warn
641 * that we may be blocking for the lock so that way the user has a chance to do
642 * something and can cancel it.
643 */
644 static void
nvmeadm_excl(const nvme_process_arg_t * npa,nvme_lock_level_t level)645 nvmeadm_excl(const nvme_process_arg_t *npa, nvme_lock_level_t level)
646 {
647 bool ret;
648 nvme_lock_flags_t flags = NVME_LOCK_F_DONT_BLOCK;
649
650 if (npa->npa_ns != NULL) {
651 ret = nvme_ns_lock(npa->npa_ns, level, flags);
652 } else {
653 ret = nvme_ctrl_lock(npa->npa_ctrl, level, flags);
654 }
655
656 if (ret) {
657 return;
658 }
659
660 if (nvme_ctrl_err(npa->npa_ctrl) != NVME_ERR_LOCK_WOULD_BLOCK) {
661 nvmeadm_fatal(npa, "failed to acquire lock on %s",
662 npa->npa_name);
663 }
664
665 (void) fprintf(stderr, "Waiting on contended %s lock on %s...",
666 npa->npa_ns != NULL ? "namespace": "controller", npa->npa_name);
667 (void) fflush(stderr);
668
669 flags &= ~NVME_LOCK_F_DONT_BLOCK;
670 if (npa->npa_ns != NULL) {
671 ret = nvme_ns_lock(npa->npa_ns, level, flags);
672 } else {
673 ret = nvme_ctrl_lock(npa->npa_ctrl, level, flags);
674 }
675
676 if (!ret) {
677 nvmeadm_fatal(npa, "failed to acquire lock on %s",
678 npa->npa_name);
679 }
680
681 (void) fprintf(stderr, " acquired\n");
682 }
683
684 /*
685 * Most of nvmeadm was written before the existence of libnvme and always had
686 * things like the identify controller or namespace information sitting around.
687 * As such we try to grab all this in one place for it. Note, regardless if this
688 * succeeds or fails, our callers will still call nvmeadm_cleanup_npa() so we
689 * don't need to clean up the various libnvme objects.
690 */
691 static boolean_t
nvmeadm_open_dev(nvme_process_arg_t * npa)692 nvmeadm_open_dev(nvme_process_arg_t *npa)
693 {
694 if (!nvme_ctrl_ns_init(npa->npa_nvme, npa->npa_name, &npa->npa_ctrl,
695 &npa->npa_ns)) {
696 nvmeadm_hdl_warn(npa, "failed to open '%s'", npa->npa_name);
697 exitcode = -1;
698 return (B_FALSE);
699 }
700
701 /*
702 * Several commands expect to be able to access the controller's
703 * information snapshot. Grab that now for it and the namespace if it
704 * exists.
705 */
706 if (!nvme_ctrl_info_snap(npa->npa_ctrl, &npa->npa_ctrl_info)) {
707 nvmeadm_warn(npa, "failed to get controller info for %s",
708 npa->npa_ctrl_name);
709 exitcode = -1;
710 return (B_FALSE);
711 }
712
713 if (npa->npa_ns != NULL && !nvme_ns_info_snap(npa->npa_ns,
714 &npa->npa_ns_info)) {
715 nvmeadm_warn(npa, "failed to get namespace info for %s",
716 npa->npa_name);
717 exitcode = -1;
718 return (B_FALSE);
719 }
720
721 /*
722 * Snapshot data the rest of the command has fairly ingrained.
723 */
724 npa->npa_version = nvme_ctrl_info_version(npa->npa_ctrl_info);
725 npa->npa_idctl = nvme_ctrl_info_identify(npa->npa_ctrl_info);
726
727 /*
728 * If this command has requested exclusive access, proceed to grab that
729 * before we continue.
730 */
731 if (npa->npa_excl) {
732 nvmeadm_excl(npa, NVME_LOCK_L_WRITE);
733 }
734
735 return (B_TRUE);
736 }
737
738 static bool
nvmeadm_ctrl_disc_cb(nvme_t * nvme,const nvme_ctrl_disc_t * disc,void * arg)739 nvmeadm_ctrl_disc_cb(nvme_t *nvme, const nvme_ctrl_disc_t *disc, void *arg)
740 {
741 nvme_process_arg_t *npa = arg;
742 di_node_t di = nvme_ctrl_disc_devi(disc);
743 char name[128];
744
745 (void) snprintf(name, sizeof (name), "%s%d", di_driver_name(di),
746 di_instance(di));
747 npa->npa_name = name;
748 npa->npa_ctrl_name = name;
749
750 if (nvmeadm_open_dev(npa)) {
751 if (npa->npa_cmd->c_func(npa) != 0) {
752 exitcode = -1;
753 }
754 }
755
756 nvmeadm_cleanup_npa(npa);
757 return (true);
758 }
759
760 int
main(int argc,char ** argv)761 main(int argc, char **argv)
762 {
763 int c;
764 const nvmeadm_cmd_t *cmd;
765 nvme_process_arg_t npa = { 0 };
766 int help = 0;
767 char *ctrl = NULL;
768
769 while ((c = getopt(argc, argv, "dhv")) != -1) {
770 switch (c) {
771 case 'd':
772 debug++;
773 break;
774
775 case 'v':
776 verbose++;
777 break;
778
779 case 'h':
780 help++;
781 break;
782
783 case '?':
784 usage(NULL);
785 exit(-1);
786 }
787 }
788
789 if (optind == argc) {
790 usage(NULL);
791 if (help)
792 exit(0);
793 else
794 exit(-1);
795 }
796
797 /* Look up the specified command in the command table. */
798 for (cmd = &nvmeadm_cmds[0]; cmd->c_name != NULL; cmd++)
799 if (strcmp(cmd->c_name, argv[optind]) == 0)
800 break;
801
802 if (cmd->c_name == NULL) {
803 usage(NULL);
804 exit(-1);
805 }
806
807 if (help) {
808 usage(cmd);
809 exit(0);
810 }
811
812 npa.npa_nvme = nvme_init();
813 if (npa.npa_nvme == NULL) {
814 err(-1, "failed to initialize libnvme");
815 }
816 npa.npa_cmd = cmd;
817 npa.npa_excl = ((cmd->c_flags & NVMEADM_C_EXCL) != 0);
818
819 optind++;
820
821 /*
822 * Store the remaining arguments for use by the command. Give the
823 * command a chance to process the options across the board before going
824 * into each controller.
825 */
826 npa.npa_argc = argc - optind;
827 npa.npa_argv = &argv[optind];
828
829 if (cmd->c_optparse != NULL) {
830 optind = 0;
831 cmd->c_optparse(&npa);
832 npa.npa_argc -= optind;
833 npa.npa_argv += optind;
834 }
835
836 /*
837 * All commands but "list" require a ctl/ns argument. However, this
838 * should not be passed through to the command in its subsequent
839 * arguments.
840 */
841 if (npa.npa_argc == 0 && cmd->c_func != do_list) {
842 warnx("missing controller/namespace name");
843 usage(cmd);
844 exit(-1);
845 }
846
847 if (npa.npa_argc > 0) {
848 ctrl = npa.npa_argv[0];
849 npa.npa_argv++;
850 npa.npa_argc--;
851 } else {
852 if (!nvme_ctrl_discover(npa.npa_nvme, nvmeadm_ctrl_disc_cb,
853 &npa)) {
854 nvmeadm_hdl_fatal(&npa, "failed to walk controllers");
855 }
856 exit(exitcode);
857 }
858
859 /*
860 * Make sure we're not running commands on multiple controllers that
861 * aren't allowed to do that.
862 */
863 if (ctrl != NULL && strchr(ctrl, ',') != NULL &&
864 (cmd->c_flags & NVMEADM_C_MULTI) == 0) {
865 warnx("%s not allowed on multiple controllers",
866 cmd->c_name);
867 usage(cmd);
868 exit(-1);
869 }
870
871 /*
872 * Get controller/namespace arguments and run command.
873 */
874 while ((npa.npa_name = strsep(&ctrl, ",")) != NULL) {
875 char *ctrl_name, *slash;
876
877 /*
878 * We may be given just a controller as an argument or a
879 * controller and a namespace as an argument. Parts of the
880 * commands want to know what controller they're referring to
881 * even if the overall argument was for a namespace. So we
882 * always dup the argument and try to make the controller out of
883 * it.
884 */
885 ctrl_name = strdup(npa.npa_name);
886 if (ctrl_name == NULL) {
887 err(-1, "failed to duplicate NVMe controller/namespace "
888 "name");
889 }
890 if ((slash = strchr(ctrl_name, '/')) != NULL)
891 *slash = '\0';
892 npa.npa_ctrl_name = ctrl_name;
893
894 if (nvmeadm_open_dev(&npa)) {
895 if (npa.npa_cmd->c_func(&npa) != 0) {
896 exitcode = -1;
897 }
898 }
899
900 nvmeadm_cleanup_npa(&npa);
901 free(ctrl_name);
902 }
903
904 exit(exitcode);
905 }
906
907 static void
nvme_oferr(const char * fmt,...)908 nvme_oferr(const char *fmt, ...)
909 {
910 va_list ap;
911
912 va_start(ap, fmt);
913 verrx(-1, fmt, ap);
914 }
915
916 static void
usage(const nvmeadm_cmd_t * cmd)917 usage(const nvmeadm_cmd_t *cmd)
918 {
919 const char *progname = getprogname();
920
921 (void) fprintf(stderr, "usage:\n");
922 (void) fprintf(stderr, " %s -h %s\n", progname,
923 cmd != NULL ? cmd->c_name : "[<command>]");
924 (void) fprintf(stderr, " %s [-dv] ", progname);
925
926 if (cmd != NULL) {
927 cmd->c_usage(cmd->c_name);
928 } else {
929 (void) fprintf(stderr,
930 "<command> <ctl>[/<ns>][,...] [<args>]\n");
931 (void) fprintf(stderr,
932 "\n Manage NVMe controllers and namespaces.\n");
933 (void) fprintf(stderr, "\ncommands:\n");
934
935 for (cmd = &nvmeadm_cmds[0]; cmd->c_name != NULL; cmd++) {
936 /*
937 * The longest nvmeadm subcommand is 19 characters long.
938 * The format string needs to be updated every time a
939 * longer subcommand is added.
940 */
941 (void) fprintf(stderr, " %-19s - %s\n",
942 cmd->c_name, cmd->c_desc);
943 }
944 }
945 (void) fprintf(stderr, "\n%s flags:\n"
946 " -h\t\tprint usage information\n"
947 " -d\t\tprint information useful for debugging %s\n"
948 " -v\t\tprint verbose information\n",
949 progname, progname);
950
951 if (cmd != NULL && cmd->c_flagdesc != NULL) {
952 (void) fprintf(stderr, "\n%s %s flags:\n",
953 progname, cmd->c_name);
954 (void) fprintf(stderr, "%s\n", cmd->c_flagdesc);
955 }
956
957 if (cmd != NULL && cmd->c_fielddesc != NULL) {
958 (void) fprintf(stderr, "\n%s %s valid fields:\n",
959 progname, cmd->c_name);
960 (void) fprintf(stderr, "%s\n", cmd->c_fielddesc);
961 }
962 }
963
964 char *
nvme_dskname(di_node_t ctrl,const char * bd_addr)965 nvme_dskname(di_node_t ctrl, const char *bd_addr)
966 {
967 di_dim_t dim;
968 char *diskname = NULL;
969
970 dim = di_dim_init();
971 if (dim == NULL) {
972 err(-1, "failed to initialize devinfo minor translation");
973 }
974
975 for (di_node_t child = di_child_node(ctrl); child != DI_NODE_NIL;
976 child = di_sibling_node(child)) {
977 char *disk_ctd, *path = NULL;
978 const char *addr = di_bus_addr(child);
979 if (addr == NULL)
980 continue;
981
982 if (strcmp(addr, bd_addr) != 0)
983 continue;
984
985 path = di_dim_path_dev(dim, di_driver_name(child),
986 di_instance(child), "c");
987
988 /*
989 * Error out if we didn't get a path, or if it's too short for
990 * the following operations to be safe.
991 */
992 if (path == NULL || strlen(path) < 2) {
993 errx(-1, "failed to get a valid minor path");
994 }
995
996 /* Chop off 's0' and get everything past the last '/' */
997 path[strlen(path) - 2] = '\0';
998 disk_ctd = strrchr(path, '/');
999 if (disk_ctd == NULL) {
1000 errx(-1, "encountered malformed minor path: %s", path);
1001 }
1002
1003 diskname = strdup(++disk_ctd);
1004 if (diskname == NULL) {
1005 err(-1, "failed to duplicate disk path");
1006 }
1007
1008 free(path);
1009 break;
1010 }
1011
1012 di_dim_fini(dim);
1013 return (diskname);
1014 }
1015
1016 static void
usage_list(const char * c_name)1017 usage_list(const char *c_name)
1018 {
1019 (void) fprintf(stderr, "%s "
1020 "[-c] [-p -o field[,...]] [<ctl>[/<ns>][,...]\n\n"
1021 " List NVMe controllers and their namespaces. If no "
1022 "controllers and/or name-\n spaces are specified, all "
1023 "controllers and namespaces in the system will be\n "
1024 "listed.\n", c_name);
1025 }
1026
1027 static void
optparse_list(nvme_process_arg_t * npa)1028 optparse_list(nvme_process_arg_t *npa)
1029 {
1030 int c;
1031 uint_t oflags = 0;
1032 boolean_t parse = B_FALSE;
1033 const char *fields = NULL;
1034 const ofmt_field_t *ofmt = nvmeadm_list_nsid_ofmt;
1035
1036 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":co:p")) != -1) {
1037 switch (c) {
1038 case 'c':
1039 npa->npa_cmdflags |= NVMEADM_O_LS_CTRL;
1040 ofmt = nvmeadm_list_ctrl_ofmt;
1041 break;
1042 case 'o':
1043 fields = optarg;
1044 break;
1045
1046 case 'p':
1047 parse = B_TRUE;
1048 oflags |= OFMT_PARSABLE;
1049 break;
1050
1051 case '?':
1052 errx(-1, "unknown option: -%c", optopt);
1053
1054 case ':':
1055 errx(-1, "option -%c requires an argument", optopt);
1056 }
1057 }
1058
1059 if (fields != NULL && !parse) {
1060 errx(-1, "-o can only be used when in parsable mode (-p)");
1061 }
1062
1063 if (parse && fields == NULL) {
1064 errx(-1, "parsable mode (-p) requires one to specify output "
1065 "fields with -o");
1066 }
1067
1068 if (parse) {
1069 ofmt_status_t oferr;
1070
1071 oferr = ofmt_open(fields, ofmt, oflags, 0,
1072 &npa->npa_ofmt);
1073 ofmt_check(oferr, B_TRUE, npa->npa_ofmt, nvme_oferr, warnx);
1074 }
1075 }
1076
1077 static void
do_list_nsid(const nvme_process_arg_t * npa,nvme_ctrl_info_t * ctrl,nvme_ns_info_t * ns)1078 do_list_nsid(const nvme_process_arg_t *npa, nvme_ctrl_info_t *ctrl,
1079 nvme_ns_info_t *ns)
1080 {
1081 const char *bd_addr, *disk = NULL, *state = NULL;
1082 char *disk_path = NULL;
1083 di_node_t ctrl_devi;
1084
1085 switch (nvme_ns_info_level(ns)) {
1086 case NVME_NS_DISC_F_ALL:
1087 disk = "unallocated";
1088 state = "unallocated";
1089 break;
1090 case NVME_NS_DISC_F_ALLOCATED:
1091 disk = "inactive";
1092 state = "allocated";
1093 break;
1094 case NVME_NS_DISC_F_ACTIVE:
1095 disk = "ignored";
1096 state = "active";
1097 break;
1098 case NVME_NS_DISC_F_NOT_IGNORED:
1099 disk = "unattached";
1100 state = "active-usable";
1101 break;
1102 case NVME_NS_DISC_F_BLKDEV:
1103 disk = "unknown";
1104 state = "blkdev";
1105 if (nvme_ns_info_bd_addr(ns, &bd_addr) &&
1106 nvme_ctrl_devi(npa->npa_ctrl, &ctrl_devi)) {
1107 disk_path = nvme_dskname(ctrl_devi, bd_addr);
1108 disk = disk_path;
1109 }
1110 break;
1111 }
1112
1113 if (npa->npa_ofmt != NULL) {
1114 nvmeadm_list_ofmt_arg_t oarg = { 0 };
1115
1116 oarg.nloa_name = npa->npa_ctrl_name;
1117 oarg.nloa_ctrl = ctrl;
1118 oarg.nloa_ns = ns;
1119 oarg.nloa_disk = disk_path;
1120 oarg.nloa_state = state;
1121 if (!nvme_ctrl_devi(npa->npa_ctrl, &oarg.nloa_dip))
1122 oarg.nloa_dip = DI_NODE_NIL;
1123
1124 ofmt_print(npa->npa_ofmt, &oarg);
1125 } else {
1126 (void) printf(" %s/%u (%s)", npa->npa_ctrl_name,
1127 nvme_ns_info_nsid(ns), disk);
1128 if (nvme_ns_info_level(ns) >= NVME_NS_DISC_F_ACTIVE) {
1129 (void) printf(": ");
1130 nvme_print_nsid_summary(ns);
1131 } else {
1132 (void) printf("\n");
1133 }
1134 }
1135
1136 free(disk_path);
1137 }
1138
1139 static int
do_list(const nvme_process_arg_t * npa)1140 do_list(const nvme_process_arg_t *npa)
1141 {
1142 nvme_ctrl_info_t *info = NULL;
1143 nvme_ns_iter_t *iter = NULL;
1144 nvme_iter_t ret;
1145 const nvme_ns_disc_t *disc;
1146 nvme_ns_disc_level_t level;
1147 int rv = -1;
1148
1149 if (npa->npa_argc > 0) {
1150 errx(-1, "%s passed extraneous arguments starting with %s",
1151 npa->npa_cmd->c_name, npa->npa_argv[0]);
1152 }
1153
1154 if (!nvme_ctrl_info_snap(npa->npa_ctrl, &info)) {
1155 nvmeadm_warn(npa, "failed to get controller information for %s",
1156 npa->npa_ctrl_name);
1157 return (-1);
1158 }
1159
1160 if (npa->npa_ofmt == NULL) {
1161 (void) printf("%s: ", npa->npa_ctrl_name);
1162 nvme_print_ctrl_summary(info);
1163 } else if ((npa->npa_cmdflags & NVMEADM_O_LS_CTRL) != 0) {
1164 nvmeadm_list_ofmt_arg_t oarg = { 0 };
1165 oarg.nloa_name = npa->npa_ctrl_name;
1166 oarg.nloa_ctrl = info;
1167 if (!nvme_ctrl_devi(npa->npa_ctrl, &oarg.nloa_dip))
1168 oarg.nloa_dip = DI_NODE_NIL;
1169
1170 ofmt_print(npa->npa_ofmt, &oarg);
1171 }
1172
1173 if ((npa->npa_cmdflags & NVMEADM_O_LS_CTRL) != 0) {
1174 rv = 0;
1175 goto out;
1176 }
1177
1178 /*
1179 * Check if we were given an explicit namespace as an argument. If so,
1180 * we always list it and don't need to do discovery.
1181 */
1182 if (npa->npa_ns != NULL) {
1183 nvme_ns_info_t *ns_info;
1184
1185 if (!nvme_ns_info_snap(npa->npa_ns, &ns_info)) {
1186 nvmeadm_warn(npa, "failed to get namespace "
1187 "information for %s", npa->npa_name);
1188 goto out;
1189 }
1190
1191 do_list_nsid(npa, info, ns_info);
1192 nvme_ns_info_free(ns_info);
1193 rv = 0;
1194 goto out;
1195 }
1196
1197 if (verbose) {
1198 level = NVME_NS_DISC_F_ALL;
1199 } else {
1200 level = NVME_NS_DISC_F_NOT_IGNORED;
1201 }
1202
1203 if (!nvme_ns_discover_init(npa->npa_ctrl, level, &iter)) {
1204 nvmeadm_warn(npa, "failed to iterate namespaces on %s",
1205 npa->npa_ctrl_name);
1206 goto out;
1207 }
1208
1209 while ((ret = nvme_ns_discover_step(iter, &disc)) == NVME_ITER_VALID) {
1210 nvme_ns_info_t *ns_info;
1211 uint32_t nsid = nvme_ns_disc_nsid(disc);
1212
1213 if (!nvme_ctrl_ns_info_snap(npa->npa_ctrl, nsid, &ns_info)) {
1214 nvmeadm_warn(npa, "failed to get namespace "
1215 "information for %s/%u", npa->npa_ctrl_name, nsid);
1216 exitcode = -1;
1217 continue;
1218 }
1219
1220 do_list_nsid(npa, info, ns_info);
1221 nvme_ns_info_free(ns_info);
1222 }
1223
1224 nvme_ns_discover_fini(iter);
1225 if (ret == NVME_ITER_ERROR) {
1226 nvmeadm_warn(npa, "failed to iterate all namespaces on %s",
1227 npa->npa_ctrl_name);
1228 } else {
1229 rv = 0;
1230 }
1231
1232 out:
1233 nvme_ctrl_info_free(info);
1234 return (rv);
1235 }
1236
1237 static void
optparse_identify_ctrl(nvme_process_arg_t * npa)1238 optparse_identify_ctrl(nvme_process_arg_t *npa)
1239 {
1240 int c;
1241
1242 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":Cacn")) != -1) {
1243 switch (c) {
1244 case 'C':
1245 npa->npa_cmdflags |= NVMEADM_O_ID_COMMON_NS;
1246 break;
1247
1248 case 'a':
1249 npa->npa_cmdflags |= NVMEADM_O_ID_ALLOC_NS;
1250 break;
1251
1252 case 'c':
1253 npa->npa_cmdflags |= NVMEADM_O_ID_CTRL_LIST;
1254 break;
1255
1256 case 'n':
1257 npa->npa_cmdflags |= NVMEADM_O_ID_NSID_LIST;
1258 break;
1259
1260 case '?':
1261 errx(-1, "unknown option: -%c", optopt);
1262
1263 case ':':
1264 errx(-1, "option -%c requires an argument", optopt);
1265 }
1266 }
1267 }
1268
1269 static void
usage_identify_ctrl(const char * c_name)1270 usage_identify_ctrl(const char *c_name)
1271 {
1272 (void) fprintf(stderr, "%s [-C | -c | [-a] -n] <ctl>[,...]\n\n"
1273 " Print detailed information about the specified NVMe "
1274 "controllers.\n", c_name);
1275 }
1276
1277 static int
do_identify_ctrl(const nvme_process_arg_t * npa)1278 do_identify_ctrl(const nvme_process_arg_t *npa)
1279 {
1280 boolean_t alloc = B_FALSE;
1281
1282 if (npa->npa_ns != NULL)
1283 errx(-1, "identify-controller cannot be used on namespaces");
1284
1285 if (npa->npa_argc > 0) {
1286 errx(-1, "%s passed extraneous arguments starting with %s",
1287 npa->npa_cmd->c_name, npa->npa_argv[0]);
1288 }
1289
1290 if ((npa->npa_cmdflags & NVMEADM_O_ID_COMMON_NS) != 0 &&
1291 npa->npa_cmdflags != NVMEADM_O_ID_COMMON_NS) {
1292 errx(-1, "-C cannot be combined with other flags");
1293 }
1294
1295 if ((npa->npa_cmdflags & NVMEADM_O_ID_CTRL_LIST) != 0 &&
1296 npa->npa_cmdflags != NVMEADM_O_ID_CTRL_LIST) {
1297 errx(-1, "-c cannot be combined with other flags");
1298 }
1299
1300 if ((npa->npa_cmdflags & NVMEADM_O_ID_ALLOC_NS) != 0 &&
1301 npa->npa_cmdflags !=
1302 (NVMEADM_O_ID_ALLOC_NS | NVMEADM_O_ID_NSID_LIST)) {
1303 errx(-1, "-a can only be used together with -n");
1304 }
1305
1306 if ((npa->npa_cmdflags & NVMEADM_O_ID_ALLOC_NS) != 0) {
1307 alloc = B_TRUE;
1308 }
1309
1310 if ((npa->npa_cmdflags & NVMEADM_O_ID_COMMON_NS) != 0) {
1311 const nvme_identify_nsid_t *idns;
1312
1313 if (!nvme_ctrl_info_common_ns(npa->npa_ctrl_info, &idns)) {
1314 nvmeadm_ctrl_info_warn(npa, "failed to get common "
1315 "namespace information for %s", npa->npa_name);
1316 return (-1);
1317 }
1318
1319 (void) printf("%s: ", npa->npa_name);
1320 nvme_print_identify_nsid(idns, npa->npa_version);
1321 } else if ((npa->npa_cmdflags & NVMEADM_O_ID_NSID_LIST) != 0) {
1322 const char *caption;
1323 uint32_t cns;
1324 nvme_identify_nsid_list_t *idnslist;
1325 nvme_id_req_t *req;
1326
1327 if (alloc) {
1328 caption = "Identify Allocated Namespace List";
1329 cns = NVME_IDENTIFY_NSID_ALLOC_LIST;
1330 } else {
1331 caption = "Identify Active Namespace List";
1332 cns = NVME_IDENTIFY_NSID_LIST;
1333 }
1334
1335 if ((idnslist = malloc(NVME_IDENTIFY_BUFSIZE)) == NULL) {
1336 err(-1, "failed to allocate identify buffer size");
1337 }
1338
1339 if (!nvme_id_req_init_by_cns(npa->npa_ctrl, NVME_CSI_NVM, cns,
1340 &req)) {
1341 nvmeadm_fatal(npa, "failed to initialize %s request",
1342 caption);
1343 }
1344
1345 /*
1346 * Always set the NSID for these requests to NSID 0 so that way
1347 * we can start the list at the beginning. When we encounter
1348 * devices with more than 1024 NSIDs then we'll need to issue
1349 * additional requests.
1350 */
1351 if (!nvme_id_req_set_nsid(req, 0) ||
1352 !nvme_id_req_set_output(req, idnslist,
1353 NVME_IDENTIFY_BUFSIZE)) {
1354 nvmeadm_fatal(npa, "failed to set required fields for "
1355 "identify request");
1356 }
1357
1358 if (!nvme_id_req_exec(req)) {
1359 nvmeadm_fatal(npa, "failed to execute identify "
1360 "request");
1361 }
1362 nvme_id_req_fini(req);
1363
1364 (void) printf("%s: ", npa->npa_name);
1365
1366 nvme_print_identify_nsid_list(caption, idnslist);
1367 free(idnslist);
1368 } else if ((npa->npa_cmdflags & NVMEADM_O_ID_CTRL_LIST) != 0) {
1369 nvme_identify_ctrl_list_t *ctlist;
1370 nvme_id_req_t *req;
1371
1372 if ((ctlist = malloc(NVME_IDENTIFY_BUFSIZE)) == NULL) {
1373 err(-1, "failed to allocate identify buffer size");
1374 }
1375
1376 if (!nvme_id_req_init_by_cns(npa->npa_ctrl, NVME_CSI_NVM,
1377 NVME_IDENTIFY_CTRL_LIST, &req)) {
1378 nvmeadm_fatal(npa, "failed to initialize identify "
1379 "request");
1380 }
1381
1382 if (!nvme_id_req_set_ctrlid(req, 0) ||
1383 !nvme_id_req_set_output(req, ctlist,
1384 NVME_IDENTIFY_BUFSIZE)) {
1385 nvmeadm_fatal(npa, "failed to set required fields for "
1386 "identify request");
1387 }
1388 if (!nvme_id_req_exec(req)) {
1389 nvmeadm_fatal(npa, "failed to execute identify "
1390 "request");
1391 }
1392 nvme_id_req_fini(req);
1393
1394 (void) printf("%s: ", npa->npa_name);
1395 nvme_print_identify_ctrl_list("Identify Controller List",
1396 ctlist);
1397 free(ctlist);
1398 } else {
1399 uint32_t mpsmin;
1400
1401 if (!nvme_ctrl_info_pci_mps_min(npa->npa_ctrl_info,
1402 &mpsmin)) {
1403 nvmeadm_ctrl_info_fatal(npa, "failed to get minimum "
1404 "memory page size");
1405 }
1406
1407 (void) printf("%s: ", npa->npa_name);
1408 nvme_print_identify_ctrl(npa->npa_idctl, mpsmin,
1409 npa->npa_version);
1410 }
1411
1412 return (0);
1413 }
1414
1415 static void
optparse_identify_ns(nvme_process_arg_t * npa)1416 optparse_identify_ns(nvme_process_arg_t *npa)
1417 {
1418 int c;
1419
1420 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":cd")) != -1) {
1421 switch (c) {
1422 case 'c':
1423 npa->npa_cmdflags |= NVMEADM_O_ID_CTRL_LIST;
1424 break;
1425
1426 case 'd':
1427 npa->npa_cmdflags |= NVMEADM_O_ID_DESC_LIST;
1428 break;
1429
1430 case '?':
1431 errx(-1, "unknown option: -%c", optopt);
1432
1433 case ':':
1434 errx(-1, "option -%c requires an argument", optopt);
1435 }
1436 }
1437 }
1438
1439 static void
usage_identify_ns(const char * c_name)1440 usage_identify_ns(const char *c_name)
1441 {
1442 (void) fprintf(stderr, "%s [-c | -d ] <ctl>/<ns>[,...]\n\n"
1443 " Print detailed information about the specified NVMe "
1444 "namespaces.\n", c_name);
1445 }
1446
1447 static int
do_identify_ns(const nvme_process_arg_t * npa)1448 do_identify_ns(const nvme_process_arg_t *npa)
1449 {
1450 uint32_t nsid;
1451
1452 if (npa->npa_ns == NULL)
1453 errx(-1, "identify-namespace cannot be used on controllers");
1454
1455 if (npa->npa_argc > 0) {
1456 errx(-1, "%s passed extraneous arguments starting with %s",
1457 npa->npa_cmd->c_name, npa->npa_argv[0]);
1458 }
1459
1460 if ((npa->npa_cmdflags & NVMEADM_O_ID_CTRL_LIST) != 0 &&
1461 npa->npa_cmdflags != NVMEADM_O_ID_CTRL_LIST) {
1462 errx(-1, "-c cannot be combined with other flags");
1463 }
1464
1465 if ((npa->npa_cmdflags & NVMEADM_O_ID_DESC_LIST) != 0 &&
1466 npa->npa_cmdflags != NVMEADM_O_ID_DESC_LIST) {
1467 errx(-1, "-d cannot be combined with other flags");
1468 }
1469
1470 if ((npa->npa_cmdflags & NVMEADM_O_ID_ALLOC_NS) != 0) {
1471 errx(-1, "-a cannot be used on namespaces");
1472 }
1473
1474 nsid = nvme_ns_info_nsid(npa->npa_ns_info);
1475
1476 if ((npa->npa_cmdflags & NVMEADM_O_ID_CTRL_LIST) != 0) {
1477 nvme_identify_ctrl_list_t *ctlist;
1478 nvme_id_req_t *req;
1479
1480 if ((ctlist = malloc(NVME_IDENTIFY_BUFSIZE)) == NULL) {
1481 err(-1, "failed to allocate identify buffer size");
1482 }
1483
1484 if (!nvme_id_req_init_by_cns(npa->npa_ctrl, NVME_CSI_NVM,
1485 NVME_IDENTIFY_NSID_CTRL_LIST, &req)) {
1486 nvmeadm_fatal(npa, "failed to initialize identify "
1487 "request");
1488 }
1489
1490 if (!nvme_id_req_set_nsid(req, nsid) ||
1491 !nvme_id_req_set_ctrlid(req, 0) ||
1492 !nvme_id_req_set_output(req, ctlist,
1493 NVME_IDENTIFY_BUFSIZE)) {
1494 nvmeadm_fatal(npa, "failed to set required fields for "
1495 "identify request");
1496 }
1497
1498 if (!nvme_id_req_exec(req)) {
1499 nvmeadm_fatal(npa, "failed to execute identify "
1500 "request");
1501 }
1502 nvme_id_req_fini(req);
1503
1504 (void) printf("%s: ", npa->npa_name);
1505 nvme_print_identify_ctrl_list(
1506 "Identify Attached Controller List", ctlist);
1507 free(ctlist);
1508 } else if ((npa->npa_cmdflags & NVMEADM_O_ID_DESC_LIST) != 0) {
1509 nvme_identify_nsid_desc_t *nsdesc;
1510 nvme_id_req_t *req;
1511
1512 if ((nsdesc = malloc(NVME_IDENTIFY_BUFSIZE)) == NULL) {
1513 err(-1, "failed to allocate identify buffer size");
1514 }
1515
1516 if (!nvme_id_req_init_by_cns(npa->npa_ctrl, NVME_CSI_NVM,
1517 NVME_IDENTIFY_NSID_DESC, &req)) {
1518 nvmeadm_fatal(npa, "failed to initialize identify "
1519 "request");
1520 }
1521
1522 if (!nvme_id_req_set_nsid(req, nsid) ||
1523 !nvme_id_req_set_output(req, nsdesc,
1524 NVME_IDENTIFY_BUFSIZE)) {
1525 nvmeadm_fatal(npa, "failed to set required fields for "
1526 "identify request");
1527 }
1528
1529 if (!nvme_id_req_exec(req)) {
1530 nvmeadm_fatal(npa, "failed to execute identify "
1531 "request");
1532 }
1533 nvme_id_req_fini(req);
1534
1535 (void) printf("%s: ", npa->npa_name);
1536 nvme_print_identify_nsid_desc(nsdesc);
1537 free(nsdesc);
1538 } else {
1539 const nvme_identify_nsid_t *idns;
1540
1541 (void) printf("%s: ", npa->npa_name);
1542 idns = nvme_ns_info_identify(npa->npa_ns_info);
1543 nvme_print_identify_nsid(idns, npa->npa_version);
1544 }
1545
1546 return (0);
1547 }
1548
1549 static void
optparse_identify(nvme_process_arg_t * npa)1550 optparse_identify(nvme_process_arg_t *npa)
1551 {
1552 int c;
1553
1554 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":Cacdn")) != -1) {
1555 switch (c) {
1556 case 'C':
1557 npa->npa_cmdflags |= NVMEADM_O_ID_COMMON_NS;
1558 break;
1559
1560 case 'a':
1561 npa->npa_cmdflags |= NVMEADM_O_ID_ALLOC_NS;
1562 break;
1563
1564 case 'c':
1565 npa->npa_cmdflags |= NVMEADM_O_ID_CTRL_LIST;
1566 break;
1567
1568 case 'd':
1569 npa->npa_cmdflags |= NVMEADM_O_ID_DESC_LIST;
1570 break;
1571
1572 case 'n':
1573 npa->npa_cmdflags |= NVMEADM_O_ID_NSID_LIST;
1574 break;
1575
1576 case '?':
1577 errx(-1, "unknown option: -%c", optopt);
1578
1579 case ':':
1580 errx(-1, "option -%c requires an argument", optopt);
1581
1582 }
1583 }
1584
1585 if ((npa->npa_cmdflags & NVMEADM_O_ID_ALLOC_NS) != 0 &&
1586 (npa->npa_cmdflags &
1587 ~(NVMEADM_O_ID_ALLOC_NS | NVMEADM_O_ID_NSID_LIST)) != 0) {
1588 errx(-1, "-a can only be used alone or together with -n");
1589 }
1590
1591 if ((npa->npa_cmdflags & NVMEADM_O_ID_COMMON_NS) != 0 &&
1592 npa->npa_cmdflags != NVMEADM_O_ID_COMMON_NS) {
1593 errx(-1, "-C cannot be combined with other flags");
1594
1595 }
1596
1597 if ((npa->npa_cmdflags & NVMEADM_O_ID_CTRL_LIST) != 0 &&
1598 npa->npa_cmdflags != NVMEADM_O_ID_CTRL_LIST) {
1599 errx(-1, "-c cannot be combined with other flags");
1600 }
1601
1602 if ((npa->npa_cmdflags & NVMEADM_O_ID_DESC_LIST) != 0 &&
1603 npa->npa_cmdflags != NVMEADM_O_ID_DESC_LIST) {
1604 errx(-1, "-d cannot be combined with other flags");
1605 }
1606 }
1607
1608 static void
usage_identify(const char * c_name)1609 usage_identify(const char *c_name)
1610 {
1611 (void) fprintf(stderr,
1612 "%s [ -C | -c | -d | [-a] -n ] <ctl>[/<ns>][,...]\n\n"
1613 " Print detailed information about the specified NVMe "
1614 "controllers and/or name-\n spaces.\n", c_name);
1615 }
1616
1617 static int
do_identify(const nvme_process_arg_t * npa)1618 do_identify(const nvme_process_arg_t *npa)
1619 {
1620 if (npa->npa_argc > 0) {
1621 errx(-1, "%s passed extraneous arguments starting with %s",
1622 npa->npa_cmd->c_name, npa->npa_argv[0]);
1623 }
1624
1625 if (npa->npa_ns != NULL) {
1626 if ((npa->npa_cmdflags & NVMEADM_O_ID_COMMON_NS) != 0)
1627 errx(-1, "-C cannot be used on namespaces");
1628
1629 if ((npa->npa_cmdflags & NVMEADM_O_ID_ALLOC_NS) != 0)
1630 errx(-1, "-a cannot be used on namespaces");
1631
1632 if ((npa->npa_cmdflags & NVMEADM_O_ID_NSID_LIST) != 0)
1633 errx(-1, "-n cannot be used on namespaces");
1634
1635 return (do_identify_ns(npa));
1636 } else {
1637 if ((npa->npa_cmdflags & NVMEADM_O_ID_DESC_LIST) != 0)
1638 errx(-1, "-d cannot be used on controllers");
1639
1640 return (do_identify_ctrl(npa));
1641 }
1642 }
1643
1644 static void
optparse_list_logs(nvme_process_arg_t * npa)1645 optparse_list_logs(nvme_process_arg_t *npa)
1646 {
1647 int c;
1648 uint_t oflags = 0;
1649 boolean_t parse = B_FALSE;
1650 const char *fields = NULL;
1651 char *scope = NULL;
1652 ofmt_status_t oferr;
1653 nvmeadm_list_logs_t *nll;
1654
1655 if ((nll = calloc(1, sizeof (nvmeadm_list_logs_t))) == NULL) {
1656 err(-1, "failed to allocate memory to track log information");
1657 }
1658
1659 npa->npa_cmd_arg = nll;
1660
1661 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":aHo:ps:")) != -1) {
1662 switch (c) {
1663 case 'a':
1664 nll->nll_unimpl = B_TRUE;
1665 break;
1666 case 'H':
1667 oflags |= OFMT_NOHEADER;
1668 break;
1669 case 'o':
1670 fields = optarg;
1671 break;
1672 case 'p':
1673 parse = B_TRUE;
1674 oflags |= OFMT_PARSABLE;
1675 break;
1676 case 's':
1677 scope = optarg;
1678 break;
1679 case '?':
1680 errx(-1, "unknown option: -%c", optopt);
1681 case ':':
1682 errx(-1, "option -%c requires an argument", optopt);
1683 }
1684 }
1685
1686 if (!parse) {
1687 oflags |= OFMT_WRAP;
1688 }
1689
1690 if (parse && fields == NULL) {
1691 errx(-1, "parsable mode (-p) requires fields specified with "
1692 "-o");
1693 }
1694
1695 if (fields == NULL) {
1696 if (nll->nll_unimpl) {
1697 fields = nvmeadm_list_logs_fields_impl;
1698 } else {
1699 fields = nvmeadm_list_logs_fields;
1700 }
1701 }
1702
1703 if (scope != NULL) {
1704 const char *str;
1705
1706 while ((str = strsep(&scope, ",")) != NULL) {
1707 if (strcasecmp(str, "nvm") == 0) {
1708 nll->nll_scope |= NVME_LOG_SCOPE_NVM;
1709 } else if (strcasecmp(str, "ns") == 0 ||
1710 strcasecmp(str, "namespace") == 0) {
1711 nll->nll_scope |= NVME_LOG_SCOPE_NS;
1712 } else if (strcasecmp(str, "ctrl") == 0 ||
1713 strcasecmp(str, "controller") == 0) {
1714 nll->nll_scope |= NVME_LOG_SCOPE_CTRL;
1715 } else {
1716 errx(-1, "unknown scope string: '%s'; valid "
1717 "values are 'nvm', 'namespace', and "
1718 "'controller'", str);
1719 }
1720 }
1721 }
1722
1723 oferr = ofmt_open(fields, nvmeadm_list_logs_ofmt, oflags, 0,
1724 &npa->npa_ofmt);
1725 ofmt_check(oferr, B_TRUE, npa->npa_ofmt, nvme_oferr, warnx);
1726
1727 if (npa->npa_argc - optind > 1) {
1728 nll->nll_nfilts = npa->npa_argc - optind - 1;
1729 nll->nll_filts = npa->npa_argv + optind + 1;
1730 nll->nll_used = calloc(nll->nll_nfilts, sizeof (boolean_t));
1731 if (nll->nll_used == NULL) {
1732 err(-1, "failed to allocate memory for tracking log "
1733 "page filters");
1734 }
1735 }
1736 }
1737
1738 static void
usage_list_logs(const char * c_name)1739 usage_list_logs(const char *c_name)
1740 {
1741 (void) fprintf(stderr, "%s [-H] [-o field,[...] [-p]] [-s scope,[...]] "
1742 "[-a]\n\t [<ctl>[/<ns>][,...] [logpage...]\n\n"
1743 " List log pages supported by controllers or namespaces.\n",
1744 c_name);
1745 }
1746
1747 static boolean_t
do_list_logs_match(const nvme_log_disc_t * disc,nvmeadm_list_logs_t * nll)1748 do_list_logs_match(const nvme_log_disc_t *disc, nvmeadm_list_logs_t *nll)
1749 {
1750 if (!nll->nll_unimpl && !nvme_log_disc_impl(disc)) {
1751 return (B_FALSE);
1752 }
1753
1754 if (nll->nll_nfilts <= 0) {
1755 return (B_TRUE);
1756 }
1757
1758 for (int i = 0; i < nll->nll_nfilts; i++) {
1759 if (strcmp(nvme_log_disc_name(disc), nll->nll_filts[i]) == 0) {
1760 nll->nll_used[i] = B_TRUE;
1761 return (B_TRUE);
1762 }
1763 }
1764
1765 return (B_FALSE);
1766 }
1767
1768 static int
do_list_logs(const nvme_process_arg_t * npa)1769 do_list_logs(const nvme_process_arg_t *npa)
1770 {
1771 nvme_log_disc_scope_t scope;
1772 nvme_log_iter_t *iter;
1773 nvme_iter_t ret;
1774 const nvme_log_disc_t *disc;
1775 nvmeadm_list_logs_t *nll = npa->npa_cmd_arg;
1776
1777 if (nll->nll_scope != 0) {
1778 scope = nll->nll_scope;
1779 } else if (npa->npa_ns != NULL) {
1780 scope = NVME_LOG_SCOPE_NS;
1781 } else {
1782 scope = NVME_LOG_SCOPE_CTRL | NVME_LOG_SCOPE_NVM;
1783 }
1784
1785 if (!nvme_log_discover_init(npa->npa_ctrl, scope, 0, &iter)) {
1786 nvmeadm_warn(npa, "failed to iterate logs on %s",
1787 npa->npa_ctrl_name);
1788 return (-1);
1789 }
1790
1791 while ((ret = nvme_log_discover_step(iter, &disc)) == NVME_ITER_VALID) {
1792 if (do_list_logs_match(disc, nll)) {
1793 nvmeadm_list_logs_ofmt_arg_t print;
1794
1795 print.nlloa_name = npa->npa_name;
1796 print.nlloa_disc = disc;
1797 ofmt_print(npa->npa_ofmt, &print);
1798 nll->nll_nprint++;
1799 }
1800 }
1801
1802 nvme_log_discover_fini(iter);
1803 if (ret == NVME_ITER_ERROR) {
1804 nvmeadm_warn(npa, "failed to iterate logs on %s",
1805 npa->npa_ctrl_name);
1806 return (-1);
1807 }
1808
1809 for (int i = 0; i < nll->nll_nfilts; i++) {
1810 if (!nll->nll_used[i]) {
1811 warnx("log page filter '%s' did match any log pages",
1812 nll->nll_filts[i]);
1813 exitcode = -1;
1814 }
1815 }
1816
1817 if (nll->nll_nprint == 0) {
1818 if (nll->nll_nfilts == 0) {
1819 warnx("no log pages found for %s", npa->npa_name);
1820 }
1821 exitcode = -1;
1822 }
1823
1824 return (exitcode);
1825 }
1826
1827 static void
usage_get_logpage(const char * c_name)1828 usage_get_logpage(const char *c_name)
1829 {
1830 (void) fprintf(stderr, "%s [-O file] <ctl>[/<ns>][,...] <logpage>\n\n"
1831 " Print the specified log page of the specified NVMe "
1832 "controllers and/or name-\n spaces. Run nvmeadm list-logpages "
1833 "for supported log pages. All devices\n support error, health, "
1834 "and firmware.\n", c_name);
1835 }
1836
1837 static void
usage_firmware_list(const char * c_name)1838 usage_firmware_list(const char *c_name)
1839 {
1840 (void) fprintf(stderr, "%s <ctl>\n\n"
1841 " Print the log page that contains the list of firmware "
1842 "images installed on the specified NVMe controller.\n", c_name);
1843 }
1844
1845 static uint64_t
do_get_logpage_size(const nvme_process_arg_t * npa,nvme_log_disc_t * disc,nvme_log_req_t * req)1846 do_get_logpage_size(const nvme_process_arg_t *npa, nvme_log_disc_t *disc,
1847 nvme_log_req_t *req)
1848 {
1849 uint64_t len, ret;
1850 void *buf;
1851 nvme_log_size_kind_t kind;
1852
1853 kind = nvme_log_disc_size(disc, &len);
1854 if (kind != NVME_LOG_SIZE_K_VAR) {
1855 return (len);
1856 }
1857
1858 /*
1859 * We have a log with a variable length size. To determine the actual
1860 * size we must actually determine the full length of this.
1861 */
1862 if ((buf = malloc(len)) == NULL) {
1863 errx(-1, "failed to allocate %zu byte buffer to get log "
1864 "page size", len);
1865 }
1866
1867 if (!nvme_log_req_set_output(req, buf, len)) {
1868 nvmeadm_fatal(npa, "failed to set output parameters to "
1869 "determine log length");
1870 }
1871
1872 if (!nvme_log_req_exec(req)) {
1873 nvmeadm_fatal(npa, "failed to execute log request %s to "
1874 "determine log length", npa->npa_argv[0]);
1875 }
1876
1877 if (!nvme_log_disc_calc_size(disc, &ret, buf, len)) {
1878 errx(-1, "failed to determine full %s log length",
1879 npa->npa_argv[0]);
1880 }
1881
1882 free(buf);
1883 return (ret);
1884 }
1885
1886 static void
do_get_logpage_dump(const void * buf,size_t len,const char * file)1887 do_get_logpage_dump(const void *buf, size_t len, const char *file)
1888 {
1889 size_t off = 0;
1890 int fd = open(file, O_WRONLY | O_TRUNC | O_CREAT, 0644);
1891
1892 if (fd < 0) {
1893 err(-1, "failed to create output file %s", file);
1894 }
1895
1896 while (len > 0) {
1897 ssize_t ret = write(fd, buf + off, len - off);
1898 if (ret < 0) {
1899 err(EXIT_FAILURE, "failed to write log data to file %s "
1900 "at offset %zu", file, off);
1901 }
1902
1903 off += (size_t)ret;
1904 len -= (size_t)ret;
1905 }
1906
1907 (void) close(fd);
1908 }
1909
1910 /*
1911 * Here we need to explicitly attempt to release any context that has previously
1912 * existed for the persistent event log. It is fine if none exists as the
1913 * controller is required not to error. However, if we don't do this and attempt
1914 * to establish a new context, then it will generate an error.
1915 *
1916 * We'll use our existing request, which doesn't ask for data yet and issue the
1917 * get log page request with the LSP in question. After it is completed, we'll
1918 * reset the LSP to establish a context.
1919 */
1920 static void
do_get_logpage_pev_relctx(const nvme_process_arg_t * npa,nvme_log_req_t * req)1921 do_get_logpage_pev_relctx(const nvme_process_arg_t *npa, nvme_log_req_t *req)
1922 {
1923 uint32_t buf;
1924
1925 if (!nvme_log_req_set_lsp(req, NVME_PEV_LSP_REL_CTX)) {
1926 nvmeadm_fatal(npa, "failed to set lsp to release the "
1927 "persistent event log context");
1928 }
1929
1930 /*
1931 * In NVMe 2.0 the spec made it explicit that the controller was
1932 * supposed to ignore the length and offset for a request to release the
1933 * context; however, that wasn't present in NVMe 1.4. The number of
1934 * dwords part of the get log page command is a zeros based value,
1935 * meaning there is no explicit way to request zero bytes. Rather than
1936 * trust that all controllers get this right (especially when it wasn't
1937 * exactly specified in NVMe 1.4), we just toss a throwaway buffer here.
1938 */
1939 if (!nvme_log_req_set_output(req, &buf, sizeof (buf))) {
1940 nvmeadm_fatal(npa, "failed to set zero log length for "
1941 "persistent event log release context");
1942 }
1943
1944 if (!nvme_log_req_exec(req)) {
1945 nvmeadm_fatal(npa, "failed to execute log request %s to "
1946 "release the event log context", npa->npa_argv[0]);
1947 }
1948
1949 if (!nvme_log_req_set_lsp(req, NVME_PEV_LSP_EST_CTX_READ)) {
1950 nvmeadm_fatal(npa, "failed to set lsp to establish the "
1951 "persistent event log context");
1952 }
1953
1954 /*
1955 * Make sure that our stack buffer is no longer part of the log request.
1956 */
1957 if (!nvme_log_req_clear_output(req)) {
1958 nvmeadm_fatal(npa, "failed to clear output from persistent "
1959 "event log release context");
1960 }
1961 }
1962
1963 static int
do_get_logpage_common(const nvme_process_arg_t * npa,const char * page)1964 do_get_logpage_common(const nvme_process_arg_t *npa, const char *page)
1965 {
1966 int ret = 0;
1967 nvme_log_disc_t *disc;
1968 nvme_log_req_t *req;
1969 nvme_log_disc_scope_t scope;
1970 void *buf;
1971 size_t toalloc;
1972 nvmeadm_get_logpage_t *log = npa->npa_cmd_arg;
1973
1974 /*
1975 * If we have enough information to identify a log-page via libnvme (or
1976 * in the future take enough options to allow us to actually do this
1977 * manually), then we will fetch it. If we don't know how to print it,
1978 * then we'll just hex dump it for now.
1979 */
1980 if (!nvme_log_req_init_by_name(npa->npa_ctrl, page, 0, &disc, &req)) {
1981 nvmeadm_fatal(npa, "could not initialize log request for %s",
1982 page);
1983 }
1984
1985 if (npa->npa_ns != NULL) {
1986 scope = NVME_LOG_SCOPE_NS;
1987 } else {
1988 scope = NVME_LOG_SCOPE_CTRL | NVME_LOG_SCOPE_NVM;
1989 }
1990
1991 if ((scope & nvme_log_disc_scopes(disc)) == 0) {
1992 errx(-1, "log page %s does not support operating on %s", page,
1993 npa->npa_ns != NULL ? "namespaces" : "controllers");
1994 }
1995
1996 /*
1997 * In the future we should add options to allow one to specify and set
1998 * the fields for the lsp, lsi, etc. and set them here. Some log pages
1999 * need a specific lsp set and special handling related to contexts. Do
2000 * that now.
2001 */
2002 switch (nvme_log_disc_lid(disc)) {
2003 case NVME_LOGPAGE_PEV:
2004 do_get_logpage_pev_relctx(npa, req);
2005 break;
2006 default:
2007 break;
2008 }
2009
2010 if (npa->npa_ns != NULL) {
2011 uint32_t nsid = nvme_ns_info_nsid(npa->npa_ns_info);
2012
2013 if (!nvme_log_req_set_nsid(req, nsid)) {
2014 nvmeadm_fatal(npa, "failed to set log request "
2015 "namespace ID to 0x%x", nsid);
2016 }
2017 }
2018
2019 /*
2020 * The output size should be the last thing that we determine as we may
2021 * need to issue a log request to figure out how much data we should
2022 * actually be reading.
2023 */
2024 toalloc = do_get_logpage_size(npa, disc, req);
2025 buf = malloc(toalloc);
2026 if (buf == NULL) {
2027 err(-1, "failed to allocate %zu bytes for log "
2028 "request %s", toalloc, page);
2029 }
2030
2031 if (!nvme_log_req_set_output(req, buf, toalloc)) {
2032 nvmeadm_fatal(npa, "failed to set output parameters");
2033 }
2034
2035
2036 /*
2037 * Again, we need to potentially adjust specific LSP values here for the
2038 * various contexts that exist.
2039 */
2040 switch (nvme_log_disc_lid(disc)) {
2041 case NVME_LOGPAGE_PEV:
2042 if (!nvme_log_req_set_lsp(req, NVME_PEV_LSP_READ)) {
2043 nvmeadm_fatal(npa, "failed to set lsp to read the "
2044 "persistent event log");
2045 }
2046 break;
2047 default:
2048 break;
2049 }
2050
2051 if (!nvme_log_req_exec(req)) {
2052 nvmeadm_fatal(npa, "failed to execute log request %s",
2053 npa->npa_argv[0]);
2054 }
2055
2056 if (log != NULL && log->ngl_output != NULL) {
2057 do_get_logpage_dump(buf, toalloc, log->ngl_output);
2058 goto done;
2059 }
2060
2061 (void) printf("%s: ", npa->npa_name);
2062 if (strcmp(page, "error") == 0) {
2063 size_t nlog = toalloc / sizeof (nvme_error_log_entry_t);
2064 nvme_print_error_log(nlog, buf, npa->npa_version);
2065 } else if (strcmp(page, "health") == 0) {
2066 nvme_print_health_log(buf, npa->npa_idctl, npa->npa_version);
2067 } else if (strcmp(page, "firmware") == 0) {
2068 nvme_print_fwslot_log(buf, npa->npa_idctl);
2069 } else {
2070 (void) printf("%s (%s)\n", nvme_log_disc_desc(disc), page);
2071 nvmeadm_dump_hex(buf, toalloc);
2072 }
2073
2074 done:
2075 free(buf);
2076 nvme_log_disc_free(disc);
2077 nvme_log_req_fini(req);
2078
2079 return (ret);
2080 }
2081
2082 static int
do_get_logpage_fwslot(const nvme_process_arg_t * npa)2083 do_get_logpage_fwslot(const nvme_process_arg_t *npa)
2084 {
2085 if (npa->npa_argc >= 1) {
2086 warnx("no additional arguments may be specified to %s",
2087 npa->npa_cmd->c_name);
2088 usage(npa->npa_cmd);
2089 exit(-1);
2090 }
2091
2092 return (do_get_logpage_common(npa, "firmware"));
2093 }
2094
2095 static void
optparse_get_logpage(nvme_process_arg_t * npa)2096 optparse_get_logpage(nvme_process_arg_t *npa)
2097 {
2098 int c;
2099 const char *output = NULL;
2100 nvmeadm_get_logpage_t *log;
2101
2102 if ((log = calloc(1, sizeof (nvmeadm_get_logpage_t))) == NULL) {
2103 err(-1, "failed to allocate memory to track log page "
2104 "information");
2105 }
2106
2107 npa->npa_cmd_arg = log;
2108
2109 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":O:")) != -1) {
2110 switch (c) {
2111 case 'O':
2112 output = optarg;
2113 break;
2114 case '?':
2115 errx(-1, "unknown option: -%c", optopt);
2116 case ':':
2117 errx(-1, "option -%c requires an argument", optopt);
2118 }
2119 }
2120
2121 log->ngl_output = output;
2122 }
2123
2124 static int
do_get_logpage(const nvme_process_arg_t * npa)2125 do_get_logpage(const nvme_process_arg_t *npa)
2126 {
2127
2128 if (npa->npa_argc < 1) {
2129 warnx("missing log page name");
2130 usage(npa->npa_cmd);
2131 exit(-1);
2132 }
2133
2134 if (npa->npa_argc > 1) {
2135 warnx("only a single log page may be specified at a time");
2136 usage(npa->npa_cmd);
2137 exit(-1);
2138 }
2139
2140 return (do_get_logpage_common(npa, npa->npa_argv[0]));
2141 }
2142
2143 static void
optparse_list_features(nvme_process_arg_t * npa)2144 optparse_list_features(nvme_process_arg_t *npa)
2145 {
2146 int c;
2147 uint_t oflags = 0;
2148 boolean_t parse = B_FALSE;
2149 const char *fields = NULL;
2150 nvmeadm_features_t *feat;
2151 ofmt_status_t oferr;
2152
2153 if ((feat = calloc(1, sizeof (nvmeadm_features_t))) == NULL) {
2154 err(-1, "failed to allocate memory to track feature "
2155 "information");
2156 }
2157
2158 npa->npa_cmd_arg = feat;
2159
2160 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":aHo:p")) != -1) {
2161 switch (c) {
2162 case 'a':
2163 feat->nf_unimpl = B_TRUE;
2164 break;
2165 case 'H':
2166 oflags |= OFMT_NOHEADER;
2167 break;
2168 case 'o':
2169 fields = optarg;
2170 break;
2171 case 'p':
2172 parse = B_TRUE;
2173 oflags |= OFMT_PARSABLE;
2174 break;
2175 case '?':
2176 errx(-1, "unknown option: -%c", optopt);
2177 case ':':
2178 errx(-1, "option -%c requires an argument", optopt);
2179 }
2180 }
2181
2182 if (!parse) {
2183 oflags |= OFMT_WRAP;
2184 }
2185
2186 if (parse && fields == NULL) {
2187 errx(-1, "parsable mode (-p) requires fields specified with "
2188 "-o");
2189 }
2190
2191 if (fields == NULL) {
2192 fields = nvmeadm_list_features_fields;
2193 }
2194
2195 oferr = ofmt_open(fields, nvmeadm_list_features_ofmt, oflags, 0,
2196 &npa->npa_ofmt);
2197 ofmt_check(oferr, B_TRUE, npa->npa_ofmt, nvme_oferr, warnx);
2198
2199 if (npa->npa_argc - optind > 1) {
2200 feat->nf_nfilts = (uint32_t)(npa->npa_argc - optind - 1);
2201 feat->nf_filts = npa->npa_argv + optind + 1;
2202 feat->nf_used = calloc(feat->nf_nfilts, sizeof (boolean_t));
2203 if (feat->nf_used == NULL) {
2204 err(-1, "failed to allocate memory for tracking "
2205 "feature filters");
2206 }
2207 }
2208 }
2209
2210 static void
usage_list_features(const char * c_name)2211 usage_list_features(const char *c_name)
2212 {
2213 (void) fprintf(stderr, "%s [-a] [-H] [-o field,[...] [-p]] "
2214 "<ctl>[/<ns>][,...]\n\t [feature...]\n\n"
2215 " List features supported by controllers or namespaces.\n",
2216 c_name);
2217 }
2218
2219 static boolean_t
do_features_match(const nvme_feat_disc_t * disc,nvmeadm_features_t * nf)2220 do_features_match(const nvme_feat_disc_t *disc, nvmeadm_features_t *nf)
2221 {
2222 if (nf->nf_nfilts == 0) {
2223 return (B_TRUE);
2224 }
2225
2226 for (uint32_t i = 0; i < nf->nf_nfilts; i++) {
2227 const char *match = nf->nf_filts[i];
2228 long long fid;
2229 const char *err;
2230
2231 if (strcmp(nvme_feat_disc_short(disc), match) == 0 ||
2232 strcasecmp(nvme_feat_disc_spec(disc), match) == 0) {
2233 nf->nf_used[i] = B_TRUE;
2234 return (B_TRUE);
2235 }
2236
2237 fid = strtonumx(match, 0, UINT32_MAX, &err, 0);
2238 if (err == NULL && fid == nvme_feat_disc_fid(disc)) {
2239 nf->nf_used[i] = B_TRUE;
2240 return (B_TRUE);
2241 }
2242 }
2243
2244 return (B_FALSE);
2245 }
2246
2247
2248 /*
2249 * This is a common entry point for both list-features and get-features, which
2250 * iterate over all features and take action for each one.
2251 */
2252 typedef void (*do_features_cb_f)(const nvme_process_arg_t *,
2253 const nvme_feat_disc_t *);
2254 static int
do_features(const nvme_process_arg_t * npa,nvmeadm_features_t * nf,do_features_cb_f func)2255 do_features(const nvme_process_arg_t *npa, nvmeadm_features_t *nf,
2256 do_features_cb_f func)
2257 {
2258 nvme_feat_scope_t scope;
2259 nvme_feat_iter_t *iter;
2260 nvme_iter_t ret;
2261 const nvme_feat_disc_t *disc;
2262
2263 if (npa->npa_ns != NULL) {
2264 scope = NVME_FEAT_SCOPE_NS;
2265 } else {
2266 scope = NVME_FEAT_SCOPE_CTRL;
2267 }
2268
2269 if (!nvme_feat_discover_init(npa->npa_ctrl, scope, 0, &iter)) {
2270 nvmeadm_warn(npa, "failed to iterate features on %s",
2271 npa->npa_ctrl_name);
2272 return (-1);
2273 }
2274
2275 while ((ret = nvme_feat_discover_step(iter, &disc)) ==
2276 NVME_ITER_VALID) {
2277 if (do_features_match(disc, nf)) {
2278 if (!nf->nf_unimpl && nvme_feat_disc_impl(disc) ==
2279 NVME_FEAT_IMPL_UNSUPPORTED) {
2280 continue;
2281 }
2282
2283 func(npa, disc);
2284 nf->nf_nprint++;
2285 }
2286 }
2287
2288 nvme_feat_discover_fini(iter);
2289 if (ret == NVME_ITER_ERROR) {
2290 nvmeadm_warn(npa, "failed to iterate features on %s",
2291 npa->npa_ctrl_name);
2292 return (-1);
2293 }
2294
2295 for (uint32_t i = 0; i < nf->nf_nfilts; i++) {
2296 if (!nf->nf_used[i]) {
2297 warnx("feature filter '%s' did match any features",
2298 nf->nf_filts[i]);
2299 exitcode = -1;
2300 }
2301 }
2302
2303 if (nf->nf_nprint == 0) {
2304 if (nf->nf_nfilts == 0) {
2305 warnx("no features found for %s", npa->npa_name);
2306 }
2307 exitcode = -1;
2308 }
2309
2310 return (exitcode);
2311 }
2312
2313 static void
do_list_features_cb(const nvme_process_arg_t * npa,const nvme_feat_disc_t * disc)2314 do_list_features_cb(const nvme_process_arg_t *npa, const nvme_feat_disc_t *disc)
2315 {
2316 nvmeadm_list_features_ofmt_arg_t print;
2317
2318 print.nlfoa_name = npa->npa_name;
2319 print.nlfoa_feat = disc;
2320 ofmt_print(npa->npa_ofmt, &print);
2321 }
2322
2323 static int
do_list_features(const nvme_process_arg_t * npa)2324 do_list_features(const nvme_process_arg_t *npa)
2325 {
2326 nvmeadm_features_t *nf = npa->npa_cmd_arg;
2327
2328 return (do_features(npa, nf, do_list_features_cb));
2329 }
2330
2331 static void
usage_get_features(const char * c_name)2332 usage_get_features(const char *c_name)
2333 {
2334 (void) fprintf(stderr, "%s <ctl>[/<ns>][,...] [<feature>[,...]]\n\n"
2335 " Print the specified features of the specified NVMe controllers "
2336 "and/or\n namespaces. Feature support varies on the controller.\n"
2337 "Run 'nvmeadm list-features <ctl>' to see supported features.\n",
2338 c_name);
2339 }
2340
2341 /*
2342 * The nvmeadm(8) get-features output has traditionally swallowed certain errors
2343 * for features that it considers unimplemented in tandem with the kernel. With
2344 * the introduction of libnvme and ioctl interface changes, the kernel no longer
2345 * caches information about features that are unimplemented.
2346 *
2347 * There are two cases that we currently swallow errors on and the following
2348 * must all be true:
2349 *
2350 * 1) We have a controller error.
2351 * 2) The system doesn't know whether the feature is implemented or not.
2352 * 3) The controller error indicates that we have an invalid field.
2353 *
2354 * There is one additional wrinkle that we are currently papering over due to
2355 * the history of nvmeadm swallowing errors. The error recovery feature was made
2356 * explicitly namespace-specific in NVMe 1.4. However, various NVMe 1.3 devices
2357 * will error if we ask for it without specifying a namespace. Conversely, older
2358 * devices will be upset if you do ask for a namespace. This case can be removed
2359 * once we better survey devices and come up with a heuristic for how to handle
2360 * this across older generations.
2361 *
2362 * If we add a single feature endpoint that gives flexibility over how the
2363 * feature are listed, then we should not swallow errors.
2364 */
2365 static boolean_t
swallow_get_feat_err(const nvme_process_arg_t * npa,const nvme_feat_disc_t * disc)2366 swallow_get_feat_err(const nvme_process_arg_t *npa,
2367 const nvme_feat_disc_t *disc)
2368 {
2369 uint32_t sct, sc;
2370
2371 if (nvme_ctrl_err(npa->npa_ctrl) != NVME_ERR_CONTROLLER) {
2372 return (B_FALSE);
2373 }
2374
2375 nvme_ctrl_deverr(npa->npa_ctrl, &sct, &sc);
2376 if (nvme_feat_disc_impl(disc) == NVME_FEAT_IMPL_UNKNOWN &&
2377 sct == NVME_CQE_SCT_GENERIC && sc == NVME_CQE_SC_GEN_INV_FLD) {
2378 return (B_TRUE);
2379 }
2380
2381 if (nvme_feat_disc_fid(disc) == NVME_FEAT_ERROR &&
2382 sct == NVME_CQE_SCT_GENERIC && (sc == NVME_CQE_SC_GEN_INV_FLD ||
2383 sc == NVME_CQE_SC_GEN_INV_NS)) {
2384 return (B_TRUE);
2385 }
2386
2387 return (B_FALSE);
2388 }
2389
2390 static boolean_t
do_get_feat_common(const nvme_process_arg_t * npa,const nvme_feat_disc_t * disc,uint32_t cdw11,uint32_t * cdw0,void ** datap,size_t * lenp)2391 do_get_feat_common(const nvme_process_arg_t *npa, const nvme_feat_disc_t *disc,
2392 uint32_t cdw11, uint32_t *cdw0, void **datap, size_t *lenp)
2393 {
2394 nvme_get_feat_req_t *req = NULL;
2395 void *data = NULL;
2396 uint64_t datalen = 0;
2397 nvme_get_feat_fields_t fields = nvme_feat_disc_fields_get(disc);
2398
2399 if (!nvme_get_feat_req_init_by_disc(npa->npa_ctrl, disc, &req)) {
2400 nvmeadm_warn(npa, "failed to initialize get feature request "
2401 "for feature %s", nvme_feat_disc_short(disc));
2402 exitcode = -1;
2403 goto err;
2404 }
2405
2406 if ((fields & NVME_GET_FEAT_F_CDW11) != 0 &&
2407 !nvme_get_feat_req_set_cdw11(req, cdw11)) {
2408 nvmeadm_warn(npa, "failed to set cdw11 to 0x%x for feature %s",
2409 cdw11, nvme_feat_disc_short(disc));
2410 exitcode = -1;
2411 goto err;
2412 }
2413
2414 if ((fields & NVME_GET_FEAT_F_DATA) != 0) {
2415 datalen = nvme_feat_disc_data_size(disc);
2416 VERIFY3U(datalen, !=, 0);
2417 data = malloc(datalen);
2418 if (data == NULL) {
2419 err(-1, "failed to allocate %zu bytes for feature %s "
2420 "data buffer", datalen, nvme_feat_disc_short(disc));
2421 }
2422
2423 if (!nvme_get_feat_req_set_output(req, data, datalen)) {
2424 nvmeadm_warn(npa, "failed to set output data for "
2425 "feature %s", nvme_feat_disc_short(disc));
2426 exitcode = -1;
2427 goto err;
2428 }
2429 }
2430
2431 if ((fields & NVME_GET_FEAT_F_NSID) != 0) {
2432 uint32_t nsid = nvme_ns_info_nsid(npa->npa_ns_info);
2433
2434 if (!nvme_get_feat_req_set_nsid(req, nsid)) {
2435 nvmeadm_warn(npa, "failed to set nsid to 0x%x for "
2436 "feature %s", nsid, nvme_feat_disc_spec(disc));
2437 exitcode = -1;
2438 goto err;
2439 }
2440 }
2441
2442 if (!nvme_get_feat_req_exec(req)) {
2443 if (!swallow_get_feat_err(npa, disc)) {
2444 nvmeadm_warn(npa, "failed to get feature %s",
2445 nvme_feat_disc_spec(disc));
2446 exitcode = -1;
2447 }
2448
2449 goto err;
2450 }
2451
2452 if (!nvme_get_feat_req_get_cdw0(req, cdw0)) {
2453 nvmeadm_warn(npa, "failed to get cdw0 result data for %s",
2454 nvme_feat_disc_spec(disc));
2455 goto err;
2456 }
2457
2458 *datap = data;
2459 *lenp = datalen;
2460 nvme_get_feat_req_fini(req);
2461 return (B_TRUE);
2462
2463 err:
2464 free(data);
2465 nvme_get_feat_req_fini(req);
2466 return (B_FALSE);
2467 }
2468
2469 static void
do_get_feat_temp_thresh_one(const nvme_process_arg_t * npa,const nvme_feat_disc_t * disc,const nvmeadm_feature_t * feat,const char * label,uint16_t tmpsel,uint16_t thsel)2470 do_get_feat_temp_thresh_one(const nvme_process_arg_t *npa,
2471 const nvme_feat_disc_t *disc, const nvmeadm_feature_t *feat,
2472 const char *label, uint16_t tmpsel, uint16_t thsel)
2473 {
2474 uint32_t cdw0;
2475 void *buf = NULL;
2476 size_t buflen;
2477 nvme_temp_threshold_t tt;
2478
2479 tt.r = 0;
2480 tt.b.tt_tmpsel = tmpsel;
2481 tt.b.tt_thsel = thsel;
2482
2483 /*
2484 * The printing function treats the buffer argument as the label to
2485 * print for this threshold.
2486 */
2487 if (!do_get_feat_common(npa, disc, tt.r, &cdw0, &buf, &buflen)) {
2488 return;
2489 }
2490
2491 feat->f_print(cdw0, (void *)label, 0, npa->npa_idctl,
2492 npa->npa_version);
2493 free(buf);
2494 }
2495
2496 /*
2497 * In NVMe 1.2, the specification allowed for up to 8 sensors to be on the
2498 * device and changed the main device to have a composite temperature sensor. As
2499 * a result, there is a set of thresholds for each sensor. In addition, they
2500 * added both an over-temperature and under-temperature threshold. Since most
2501 * devices don't actually implement all the sensors, we get the health page and
2502 * see which sensors have a non-zero value to determine how to proceed.
2503 */
2504 static boolean_t
do_get_feat_temp_thresh(const nvme_process_arg_t * npa,const nvme_feat_disc_t * disc,const nvmeadm_feature_t * feat)2505 do_get_feat_temp_thresh(const nvme_process_arg_t *npa,
2506 const nvme_feat_disc_t *disc, const nvmeadm_feature_t *feat)
2507 {
2508 nvme_log_req_t *req = NULL;
2509 nvme_log_disc_t *log_disc = NULL;
2510 size_t toalloc;
2511 void *buf = NULL;
2512 boolean_t ret = B_FALSE;
2513 const nvme_health_log_t *hlog;
2514
2515 nvme_print(2, nvme_feat_disc_spec(disc), -1, NULL);
2516 do_get_feat_temp_thresh_one(npa, disc, feat,
2517 "Composite Over Temp. Threshold", 0, NVME_TEMP_THRESH_OVER);
2518
2519 if (!nvme_version_check(npa, &nvme_vers_1v2)) {
2520 return (B_TRUE);
2521 }
2522
2523 if (!nvme_log_req_init_by_name(npa->npa_ctrl, "health", 0, &log_disc,
2524 &req)) {
2525 nvmeadm_warn(npa, "failed to initialize health log page "
2526 "request");
2527 return (B_FALSE);
2528 }
2529
2530 toalloc = do_get_logpage_size(npa, log_disc, req);
2531 buf = malloc(toalloc);
2532 if (buf == NULL) {
2533 err(-1, "failed to allocate %zu bytes for health log page",
2534 toalloc);
2535 }
2536
2537 if (!nvme_log_req_set_output(req, buf, toalloc)) {
2538 nvmeadm_warn(npa, "failed to set output parameters for health "
2539 "log page");
2540 goto out;
2541 }
2542
2543 if (!nvme_log_req_exec(req)) {
2544 nvmeadm_warn(npa, "failed to retrieve the health log page");
2545 goto out;
2546 }
2547
2548 /* cast required to prove our intentionality to smatch */
2549 hlog = (const nvme_health_log_t *)buf;
2550
2551 do_get_feat_temp_thresh_one(npa, disc, feat,
2552 "Composite Under Temp. Threshold", 0, NVME_TEMP_THRESH_UNDER);
2553 if (hlog->hl_temp_sensor_1 != 0) {
2554 do_get_feat_temp_thresh_one(npa, disc, feat,
2555 "Temp. Sensor 1 Over Temp. Threshold", 1,
2556 NVME_TEMP_THRESH_OVER);
2557 do_get_feat_temp_thresh_one(npa, disc, feat,
2558 "Temp. Sensor 1 Under Temp. Threshold", 1,
2559 NVME_TEMP_THRESH_UNDER);
2560 }
2561
2562 if (hlog->hl_temp_sensor_2 != 0) {
2563 do_get_feat_temp_thresh_one(npa, disc, feat,
2564 "Temp. Sensor 2 Over Temp. Threshold", 2,
2565 NVME_TEMP_THRESH_OVER);
2566 do_get_feat_temp_thresh_one(npa, disc, feat,
2567 "Temp. Sensor 2 Under Temp. Threshold", 2,
2568 NVME_TEMP_THRESH_UNDER);
2569 }
2570
2571 if (hlog->hl_temp_sensor_3 != 0) {
2572 do_get_feat_temp_thresh_one(npa, disc, feat,
2573 "Temp. Sensor 3 Over Temp. Threshold", 3,
2574 NVME_TEMP_THRESH_OVER);
2575 do_get_feat_temp_thresh_one(npa, disc, feat,
2576 "Temp. Sensor 3 Under Temp. Threshold", 3,
2577 NVME_TEMP_THRESH_UNDER);
2578 }
2579
2580 if (hlog->hl_temp_sensor_4 != 0) {
2581 do_get_feat_temp_thresh_one(npa, disc, feat,
2582 "Temp. Sensor 4 Over Temp. Threshold", 4,
2583 NVME_TEMP_THRESH_OVER);
2584 do_get_feat_temp_thresh_one(npa, disc, feat,
2585 "Temp. Sensor 4 Under Temp. Threshold", 4,
2586 NVME_TEMP_THRESH_UNDER);
2587 }
2588
2589 if (hlog->hl_temp_sensor_5 != 0) {
2590 do_get_feat_temp_thresh_one(npa, disc, feat,
2591 "Temp. Sensor 5 Over Temp. Threshold", 5,
2592 NVME_TEMP_THRESH_OVER);
2593 do_get_feat_temp_thresh_one(npa, disc, feat,
2594 "Temp. Sensor 5 Under Temp. Threshold", 5,
2595 NVME_TEMP_THRESH_UNDER);
2596 }
2597
2598 if (hlog->hl_temp_sensor_6 != 0) {
2599 do_get_feat_temp_thresh_one(npa, disc, feat,
2600 "Temp. Sensor 6 Over Temp. Threshold", 6,
2601 NVME_TEMP_THRESH_OVER);
2602 do_get_feat_temp_thresh_one(npa, disc, feat,
2603 "Temp. Sensor 6 Under Temp. Threshold", 6,
2604 NVME_TEMP_THRESH_UNDER);
2605 }
2606
2607 if (hlog->hl_temp_sensor_7 != 0) {
2608 do_get_feat_temp_thresh_one(npa, disc, feat,
2609 "Temp. Sensor 7 Over Temp. Threshold", 7,
2610 NVME_TEMP_THRESH_OVER);
2611 do_get_feat_temp_thresh_one(npa, disc, feat,
2612 "Temp. Sensor 7 Under Temp. Threshold", 7,
2613 NVME_TEMP_THRESH_UNDER);
2614 }
2615
2616 if (hlog->hl_temp_sensor_8 != 0) {
2617 do_get_feat_temp_thresh_one(npa, disc, feat,
2618 "Temp. Sensor 8 Over Temp. Threshold", 8,
2619 NVME_TEMP_THRESH_OVER);
2620 do_get_feat_temp_thresh_one(npa, disc, feat,
2621 "Temp. Sensor 8 Under Temp. Threshold", 8,
2622 NVME_TEMP_THRESH_UNDER);
2623 }
2624
2625 ret = B_TRUE;
2626 out:
2627 nvme_log_req_fini(req);
2628 free(buf);
2629 return (ret);
2630 }
2631
2632 static boolean_t
do_get_feat_intr_vect(const nvme_process_arg_t * npa,const nvme_feat_disc_t * disc,const nvmeadm_feature_t * feat)2633 do_get_feat_intr_vect(const nvme_process_arg_t *npa,
2634 const nvme_feat_disc_t *disc, const nvmeadm_feature_t *feat)
2635 {
2636 uint32_t nintrs;
2637 boolean_t ret = B_TRUE;
2638
2639 if (!nvme_ctrl_info_pci_nintrs(npa->npa_ctrl_info, &nintrs)) {
2640 nvmeadm_ctrl_info_warn(npa, "failed to get interrupt count "
2641 "from controller %s information snapshot", npa->npa_name);
2642 return (B_FALSE);
2643 }
2644
2645 nvme_print(2, nvme_feat_disc_spec(disc), -1, NULL);
2646 for (uint32_t i = 0; i < nintrs; i++) {
2647 uint32_t cdw0;
2648 void *buf;
2649 size_t buflen;
2650 nvme_intr_vect_t vect;
2651
2652 vect.r = 0;
2653 vect.b.iv_iv = i;
2654
2655 if (!do_get_feat_common(npa, disc, vect.r, &cdw0, &buf,
2656 &buflen)) {
2657 ret = B_FALSE;
2658 continue;
2659 }
2660
2661 feat->f_print(cdw0, buf, buflen, npa->npa_idctl,
2662 npa->npa_version);
2663 free(buf);
2664 }
2665
2666 return (ret);
2667 }
2668
2669 /*
2670 * We've been asked to print the following feature that the controller probably
2671 * supports. Find our internal feature information for this to see if we know
2672 * how to deal with it.
2673 */
2674 static void
do_get_features_cb(const nvme_process_arg_t * npa,const nvme_feat_disc_t * disc)2675 do_get_features_cb(const nvme_process_arg_t *npa, const nvme_feat_disc_t *disc)
2676 {
2677 const nvmeadm_feature_t *feat = NULL;
2678 uint32_t fid = nvme_feat_disc_fid(disc);
2679 nvme_get_feat_fields_t fields;
2680 void *data = NULL;
2681 size_t datalen = 0;
2682 uint32_t cdw0;
2683
2684 for (size_t i = 0; i < ARRAY_SIZE(features); i++) {
2685 if (features[i].f_feature == fid) {
2686 feat = &features[i];
2687 break;
2688 }
2689 }
2690
2691 /*
2692 * Determine if we have enough logic in here to get and print the
2693 * feature. The vast majority of NVMe features only output a single
2694 * uint32_t in cdw0 and potentially a data buffer. As long as no input
2695 * arguments are required, then we can go ahead and get this and print
2696 * the data. If there is, then we will refuse unless we have a
2697 * particular function. If we have a specific get function, we expect it
2698 * to do all the printing.
2699 */
2700 if (feat != NULL && feat->f_get != NULL) {
2701 if (!feat->f_get(npa, disc, feat)) {
2702 exitcode = -1;
2703 }
2704 return;
2705 }
2706
2707 fields = nvme_feat_disc_fields_get(disc);
2708 if ((fields & NVME_GET_FEAT_F_CDW11) != 0) {
2709 warnx("unable to get feature %s due to missing nvmeadm(8) "
2710 "implementation logic", nvme_feat_disc_spec(disc));
2711 exitcode = -1;
2712 return;
2713 }
2714
2715 /*
2716 * We do not set exitcode on failure here so that way we can swallow
2717 * errors from unimplemented features.
2718 */
2719 if (!do_get_feat_common(npa, disc, 0, &cdw0, &data, &datalen)) {
2720 return;
2721 }
2722
2723 nvme_print(2, nvme_feat_disc_spec(disc), -1, NULL);
2724 if (feat != NULL && feat->f_print != NULL) {
2725 feat->f_print(cdw0, data, datalen, npa->npa_idctl,
2726 npa->npa_version);
2727 } else {
2728 nvme_feat_output_t output = nvme_feat_disc_output_get(disc);
2729 nvme_print_feat_unknown(output, cdw0, data, datalen);
2730 }
2731
2732 free(data);
2733 }
2734
2735 /*
2736 * This is an entry point which prints every feature that we know about. We
2737 * often go to lengths to discover all the variable inputs that can be used for
2738 * a given feature that requires an argument in cdw11. Due to the semantics of
2739 * filtering being used for features and the need to print each feature, this is
2740 * not the place to add general field filtering or a means to request a specific
2741 * cdw11 argument or similar. Instead, a new get-feature which requires someone
2742 * to specify the short name for a feature and then allows particular fields to
2743 * be grabbed and arguments should be created instead.
2744 *
2745 * This uses the same general feature logic that underpins do_list_features()
2746 * and therefore we transform filter arguments into the same style used there.
2747 */
2748 static int
do_get_features(const nvme_process_arg_t * npa)2749 do_get_features(const nvme_process_arg_t *npa)
2750 {
2751 char *fstr = NULL;
2752 char **filts = NULL;
2753 boolean_t *used = NULL;
2754 nvmeadm_features_t nf;
2755 int ret;
2756
2757 if (npa->npa_argc > 1)
2758 errx(-1, "unexpected arguments");
2759
2760 if (npa->npa_ns != NULL && nvme_ns_info_level(npa->npa_ns_info) <
2761 NVME_NS_DISC_F_ACTIVE) {
2762 errx(-1, "cannot get feature: namespace is inactive");
2763 }
2764
2765 /*
2766 * We always leave nf_unimpl set to false as we don't want to bother
2767 * trying to print a feature that we know the device doesn't support.
2768 */
2769 (void) memset(&nf, 0, sizeof (nvmeadm_features_t));
2770
2771 /*
2772 * If we've been given a series of features to print, treat those as
2773 * filters on the features as we're walking them to determine which to
2774 * print or not.
2775 */
2776 if (npa->npa_argc == 1) {
2777 char *f;
2778 uint32_t i;
2779
2780 nf.nf_nfilts = 1;
2781 fstr = strdup(npa->npa_argv[0]);
2782
2783 if (fstr == NULL) {
2784 err(-1, "failed to allocate memory to duplicate "
2785 "feature string");
2786 }
2787
2788 for (const char *c = strchr(fstr, ','); c != NULL;
2789 c = strchr(c + 1, ',')) {
2790 nf.nf_nfilts++;
2791 }
2792
2793 filts = calloc(nf.nf_nfilts, sizeof (char *));
2794 if (filts == NULL) {
2795 err(-1, "failed to allocate memory for filter list");
2796 }
2797
2798 i = 0;
2799 while ((f = strsep(&fstr, ",")) != NULL) {
2800 filts[i] = f;
2801 i++;
2802 }
2803 VERIFY3U(i, ==, nf.nf_nfilts);
2804 nf.nf_filts = filts;
2805
2806 used = calloc(nf.nf_nfilts, sizeof (boolean_t));
2807 if (used == NULL) {
2808 err(-1, "failed to allocate memory for filter use "
2809 "tracking");
2810 }
2811 nf.nf_used = used;
2812 }
2813
2814 (void) printf("%s: Get Features\n", npa->npa_name);
2815 ret = do_features(npa, &nf, do_get_features_cb);
2816
2817 free(fstr);
2818 free(filts);
2819 free(used);
2820 return (ret);
2821 }
2822
2823 static int
do_format_common(const nvme_process_arg_t * npa,uint32_t lbaf,uint32_t ses)2824 do_format_common(const nvme_process_arg_t *npa, uint32_t lbaf,
2825 uint32_t ses)
2826 {
2827 int ret = 0;
2828 nvme_format_req_t *req;
2829
2830 if (npa->npa_ns != NULL && nvme_ns_info_level(npa->npa_ns_info) <
2831 NVME_NS_DISC_F_ACTIVE) {
2832 errx(-1, "cannot %s: namespace is inactive",
2833 npa->npa_cmd->c_name);
2834 }
2835
2836 if (!nvme_format_req_init(npa->npa_ctrl, &req)) {
2837 nvmeadm_fatal(npa, "failed to initialize format request for "
2838 "%s", npa->npa_name);
2839 }
2840
2841 if (npa->npa_ns != NULL) {
2842 uint32_t nsid = nvme_ns_info_nsid(npa->npa_ns_info);
2843
2844 if (!nvme_format_req_set_nsid(req, nsid)) {
2845 nvmeadm_fatal(npa, "failed to set format request "
2846 "namespace ID to 0x%x", nsid);
2847 }
2848 }
2849
2850 if (!nvme_format_req_set_lbaf(req, lbaf) ||
2851 !nvme_format_req_set_ses(req, ses)) {
2852 nvmeadm_fatal(npa, "failed to set format request fields for %s",
2853 npa->npa_name);
2854 }
2855
2856 if (do_detach_bd(npa) != 0) {
2857 errx(-1, "cannot %s %s due to namespace detach failure",
2858 npa->npa_cmd->c_name, npa->npa_name);
2859 }
2860
2861 if (!nvme_format_req_exec(req)) {
2862 nvmeadm_warn(npa, "failed to %s %s", npa->npa_cmd->c_name,
2863 npa->npa_name);
2864 ret = -1;
2865 }
2866
2867 if (do_attach_bd(npa) != 0)
2868 ret = -1;
2869
2870 return (ret);
2871 }
2872
2873 static void
usage_format(const char * c_name)2874 usage_format(const char *c_name)
2875 {
2876 (void) fprintf(stderr, "%s <ctl>[/<ns>] [<lba-format>]\n\n"
2877 " Format one or all namespaces of the specified NVMe "
2878 "controller. Supported LBA\n formats can be queried with "
2879 "the \"%s identify\" command on the namespace\n to be "
2880 "formatted.\n", c_name, getprogname());
2881 }
2882
2883 static uint32_t
do_format_determine_lbaf(const nvme_process_arg_t * npa)2884 do_format_determine_lbaf(const nvme_process_arg_t *npa)
2885 {
2886 const nvme_nvm_lba_fmt_t *fmt;
2887 nvme_ns_info_t *ns_info = NULL;
2888 uint32_t lbaf;
2889
2890 if (npa->npa_argc > 0) {
2891 unsigned long lba;
2892 uint32_t nlbaf = nvme_ctrl_info_nformats(npa->npa_ctrl_info);
2893
2894 errno = 0;
2895 lba = strtoul(npa->npa_argv[0], NULL, 10);
2896 if (errno != 0 || lba >= nlbaf)
2897 errx(-1, "invalid LBA format %s", npa->npa_argv[0]);
2898
2899 if (!nvme_ctrl_info_format(npa->npa_ctrl_info, (uint32_t)lba,
2900 &fmt)) {
2901 nvmeadm_fatal(npa, "failed to get LBA format %lu "
2902 "information", lba);
2903 }
2904 } else {
2905 /*
2906 * If we have a namespace then we use the current namespace's
2907 * LBA format. If we don't have a namespace, then we promised
2908 * we'd look at namespace 1 in the manual page.
2909 */
2910 if (npa->npa_ns_info == NULL) {
2911 if (!nvme_ctrl_ns_info_snap(npa->npa_ctrl, 1,
2912 &ns_info)) {
2913 nvmeadm_fatal(npa, "failed to get namespace 1 "
2914 "information, please explicitly specify an "
2915 "LBA format");
2916 }
2917
2918 if (!nvme_ns_info_curformat(ns_info, &fmt)) {
2919 nvmeadm_fatal(npa, "failed to retrieve current "
2920 "namespace format from namespace 1");
2921 }
2922 } else {
2923 if (!nvme_ns_info_curformat(npa->npa_ns_info, &fmt)) {
2924 nvmeadm_fatal(npa, "failed to get the current "
2925 "format information from %s",
2926 npa->npa_name);
2927 }
2928 }
2929 }
2930
2931 if (nvme_nvm_lba_fmt_meta_size(fmt) != 0) {
2932 errx(-1, "LBA formats with metadata are not supported");
2933 }
2934
2935 lbaf = nvme_nvm_lba_fmt_id(fmt);
2936 nvme_ns_info_free(ns_info);
2937 return (lbaf);
2938 }
2939
2940 static int
do_format(const nvme_process_arg_t * npa)2941 do_format(const nvme_process_arg_t *npa)
2942 {
2943 uint32_t lbaf;
2944
2945 if (npa->npa_argc > 1) {
2946 errx(-1, "%s passed extraneous arguments starting with %s",
2947 npa->npa_cmd->c_name, npa->npa_argv[1]);
2948 }
2949
2950 lbaf = do_format_determine_lbaf(npa);
2951 return (do_format_common(npa, lbaf, 0));
2952 }
2953
2954 static void
usage_secure_erase(const char * c_name)2955 usage_secure_erase(const char *c_name)
2956 {
2957 (void) fprintf(stderr, "%s [-c] <ctl>[/<ns>]\n\n"
2958 " Secure-Erase one or all namespaces of the specified "
2959 "NVMe controller.\n", c_name);
2960 }
2961
2962 static void
optparse_secure_erase(nvme_process_arg_t * npa)2963 optparse_secure_erase(nvme_process_arg_t *npa)
2964 {
2965 int c;
2966
2967 while ((c = getopt(npa->npa_argc, npa->npa_argv, ":c")) != -1) {
2968 switch (c) {
2969 case 'c':
2970 npa->npa_cmdflags |= NVMEADM_O_SE_CRYPTO;
2971 break;
2972
2973 case '?':
2974 errx(-1, "unknown option: -%c", optopt);
2975
2976 case ':':
2977 errx(-1, "option -%c requires an argument", optopt);
2978
2979 }
2980 }
2981 }
2982
2983 static int
do_secure_erase(const nvme_process_arg_t * npa)2984 do_secure_erase(const nvme_process_arg_t *npa)
2985 {
2986 unsigned long lbaf;
2987 uint8_t ses = NVME_FRMT_SES_USER;
2988
2989 if (npa->npa_argc > 0) {
2990 errx(-1, "%s passed extraneous arguments starting with %s",
2991 npa->npa_cmd->c_name, npa->npa_argv[0]);
2992 }
2993
2994 if ((npa->npa_cmdflags & NVMEADM_O_SE_CRYPTO) != 0)
2995 ses = NVME_FRMT_SES_CRYPTO;
2996
2997 lbaf = do_format_determine_lbaf(npa);
2998 return (do_format_common(npa, lbaf, ses));
2999 }
3000
3001 static void
usage_attach_detach_bd(const char * c_name)3002 usage_attach_detach_bd(const char *c_name)
3003 {
3004 (void) fprintf(stderr, "%s <ctl>[/<ns>]\n\n"
3005 " %c%s blkdev(4D) %s one or all namespaces of the "
3006 "specified NVMe controller.\n",
3007 c_name, toupper(c_name[0]), &c_name[1],
3008 c_name[0] == 'd' ? "from" : "to");
3009 }
3010
3011 /*
3012 * nvmeadm does not generate an error when trying to attach blkdev to something
3013 * that already has it attached. Swallow that here.
3014 */
3015 static boolean_t
swallow_attach_bd_err(const nvme_process_arg_t * npa)3016 swallow_attach_bd_err(const nvme_process_arg_t *npa)
3017 {
3018 return (nvme_ctrl_err(npa->npa_ctrl) == NVME_ERR_NS_BLKDEV_ATTACH);
3019 }
3020
3021 static int
do_attach_bd(const nvme_process_arg_t * npa)3022 do_attach_bd(const nvme_process_arg_t *npa)
3023 {
3024 int rv;
3025 nvme_ns_iter_t *iter = NULL;
3026 nvme_iter_t ret;
3027 const nvme_ns_disc_t *disc;
3028
3029 if (npa->npa_ns != NULL) {
3030 if (!nvme_ns_bd_attach(npa->npa_ns) &&
3031 !swallow_attach_bd_err(npa)) {
3032 nvmeadm_warn(npa, "faild to attach %s", npa->npa_name);
3033 return (-1);
3034 }
3035 return (0);
3036 }
3037
3038 if (!nvme_ns_discover_init(npa->npa_ctrl, NVME_NS_DISC_F_NOT_IGNORED,
3039 &iter)) {
3040 nvmeadm_fatal(npa, "failed to initialize namespace discovery "
3041 "on %s", npa->npa_name);
3042 }
3043
3044 rv = 0;
3045 while ((ret = nvme_ns_discover_step(iter, &disc)) == NVME_ITER_VALID) {
3046 nvme_ns_t *ns;
3047 uint32_t nsid;
3048
3049 if (nvme_ns_disc_level(disc) == NVME_NS_DISC_F_BLKDEV)
3050 continue;
3051
3052 nsid = nvme_ns_disc_nsid(disc);
3053 if (!nvme_ns_init(npa->npa_ctrl, nsid, &ns)) {
3054 nvmeadm_warn(npa, "failed to open namespace %s/%u "
3055 "handle", npa->npa_name, nsid);
3056 rv = -1;
3057 continue;
3058 }
3059
3060 /*
3061 * nvmeadm has historically swallowed the case where you ask to
3062 * attach an already attached namespace.
3063 */
3064 if (!nvme_ns_bd_attach(ns) && !swallow_attach_bd_err(npa)) {
3065 nvmeadm_warn(npa, "failed to attach namespace "
3066 "%s/%u", npa->npa_name, nsid);
3067 rv = -1;
3068 }
3069 nvme_ns_fini(ns);
3070 }
3071
3072 nvme_ns_discover_fini(iter);
3073 if (ret == NVME_ITER_ERROR) {
3074 nvmeadm_warn(npa, "failed to iterate namespaces on %s",
3075 npa->npa_name);
3076 rv = -1;
3077 }
3078
3079 return (rv);
3080 }
3081
3082 /*
3083 * nvmeadm does not generate an error when trying to attach blkdev to something
3084 * that already has it attached. Swallow that here.
3085 */
3086 static boolean_t
swallow_detach_bd_err(const nvme_process_arg_t * npa)3087 swallow_detach_bd_err(const nvme_process_arg_t *npa)
3088 {
3089 switch (nvme_ctrl_err(npa->npa_ctrl)) {
3090 case NVME_ERR_NS_UNALLOC:
3091 case NVME_ERR_NS_CTRL_NOT_ATTACHED:
3092 case NVME_ERR_NS_CTRL_ATTACHED:
3093 return (B_TRUE);
3094 default:
3095 return (B_FALSE);
3096 }
3097 }
3098
3099 static int
do_detach_bd(const nvme_process_arg_t * npa)3100 do_detach_bd(const nvme_process_arg_t *npa)
3101 {
3102 int rv;
3103 nvme_ns_iter_t *iter = NULL;
3104 nvme_iter_t ret;
3105 const nvme_ns_disc_t *disc;
3106
3107 if (npa->npa_ns != NULL) {
3108 if (!nvme_ns_bd_detach(npa->npa_ns) &&
3109 !swallow_detach_bd_err(npa)) {
3110 nvmeadm_warn(npa, "failed to detach %s", npa->npa_name);
3111 return (-1);
3112 }
3113 return (0);
3114 }
3115
3116 if (!nvme_ns_discover_init(npa->npa_ctrl, NVME_NS_DISC_F_BLKDEV,
3117 &iter)) {
3118 nvmeadm_fatal(npa, "failed to initialize namespace discovery "
3119 "on %s", npa->npa_name);
3120 }
3121
3122 rv = 0;
3123 while ((ret = nvme_ns_discover_step(iter, &disc)) == NVME_ITER_VALID) {
3124 nvme_ns_t *ns;
3125 uint32_t nsid = nvme_ns_disc_nsid(disc);
3126
3127 if (!nvme_ns_init(npa->npa_ctrl, nsid, &ns)) {
3128 nvmeadm_warn(npa, "failed to open namespace %s/%u "
3129 "handle", npa->npa_name, nsid);
3130 rv = -1;
3131 continue;
3132 }
3133
3134 if (!nvme_ns_bd_detach(ns) && !swallow_detach_bd_err(npa)) {
3135 nvmeadm_warn(npa, "failed to detach namespace %s/%u",
3136 npa->npa_name, nsid);
3137 rv = -1;
3138 }
3139 nvme_ns_fini(ns);
3140 }
3141
3142 nvme_ns_discover_fini(iter);
3143 if (ret == NVME_ITER_ERROR) {
3144 nvmeadm_warn(npa, "failed to iterate namespaces on %s",
3145 npa->npa_name);
3146 rv = -1;
3147 }
3148
3149 return (rv);
3150 }
3151
3152 static void
usage_firmware_load(const char * c_name)3153 usage_firmware_load(const char *c_name)
3154 {
3155 (void) fprintf(stderr, "%s <ctl> <image file> [<offset>]\n\n"
3156 " Load firmware <image file> to offset <offset>.\n"
3157 " The firmware needs to be committed to a slot using "
3158 "\"nvmeadm commit-firmware\"\n command.\n", c_name);
3159 }
3160
3161 /*
3162 * Read exactly len bytes, or until eof.
3163 */
3164 static size_t
read_block(const nvme_process_arg_t * npa,int fd,char * buf,size_t len)3165 read_block(const nvme_process_arg_t *npa, int fd, char *buf, size_t len)
3166 {
3167 size_t remain;
3168
3169 remain = len;
3170 while (remain > 0) {
3171 ssize_t bytes = read(fd, buf, remain);
3172 if (bytes == 0)
3173 break;
3174
3175 if (bytes < 0) {
3176 if (errno == EINTR)
3177 continue;
3178
3179 err(-1, "Error reading \"%s\"", npa->npa_argv[0]);
3180 }
3181
3182 buf += (size_t)bytes;
3183 remain -= (size_t)bytes;
3184 }
3185
3186 return (len - remain);
3187 }
3188
3189 /*
3190 * Convert a string to a valid firmware upload offset (in bytes).
3191 */
3192 static uint64_t
get_fw_offsetb(char * str)3193 get_fw_offsetb(char *str)
3194 {
3195 longlong_t offsetb;
3196 char *valend;
3197
3198 errno = 0;
3199 offsetb = strtoll(str, &valend, 0);
3200 if (errno != 0 || *valend != '\0' || offsetb < 0 ||
3201 offsetb > NVME_FW_OFFSETB_MAX)
3202 errx(-1, "Offset must be numeric and in the range of 0 to %llu",
3203 NVME_FW_OFFSETB_MAX);
3204
3205 if ((offsetb & NVME_DWORD_MASK) != 0)
3206 errx(-1, "Offset must be multiple of %d", NVME_DWORD_SIZE);
3207
3208 return ((uint64_t)offsetb);
3209 }
3210
3211 #define FIRMWARE_READ_BLKSIZE (64 * 1024) /* 64K */
3212
3213 static int
do_firmware_load(const nvme_process_arg_t * npa)3214 do_firmware_load(const nvme_process_arg_t *npa)
3215 {
3216 int fw_fd;
3217 uint64_t offset = 0;
3218 size_t size, len;
3219 char buf[FIRMWARE_READ_BLKSIZE];
3220
3221 if (npa->npa_argc > 2)
3222 errx(-1, "%s passed extraneous arguments starting with %s",
3223 npa->npa_cmd->c_name, npa->npa_argv[2]);
3224
3225 if (npa->npa_argc == 0)
3226 errx(-1, "Requires firmware file name, and an "
3227 "optional offset");
3228
3229 if (npa->npa_ns != NULL)
3230 errx(-1, "Firmware loading not available on a per-namespace "
3231 "basis");
3232
3233 if (npa->npa_argc == 2)
3234 offset = get_fw_offsetb(npa->npa_argv[1]);
3235
3236 fw_fd = open(npa->npa_argv[0], O_RDONLY);
3237 if (fw_fd < 0)
3238 errx(-1, "Failed to open \"%s\": %s", npa->npa_argv[0],
3239 strerror(errno));
3240
3241 size = 0;
3242 do {
3243 len = read_block(npa, fw_fd, buf, sizeof (buf));
3244
3245 if (len == 0)
3246 break;
3247
3248 if (!nvme_fw_load(npa->npa_ctrl, buf, len, offset)) {
3249 nvmeadm_fatal(npa, "failed to load firmware image "
3250 "\"%s\" at offset %" PRIu64, npa->npa_argv[0],
3251 offset);
3252 }
3253
3254 offset += len;
3255 size += len;
3256 } while (len == sizeof (buf));
3257
3258 (void) close(fw_fd);
3259
3260 if (verbose)
3261 (void) printf("%zu bytes downloaded.\n", size);
3262
3263 return (0);
3264 }
3265
3266 /*
3267 * Common firmware commit for nvmeadm commit-firmware and activate-firmware.
3268 */
3269 static void
nvmeadm_firmware_commit(const nvme_process_arg_t * npa,uint32_t slot,uint32_t act)3270 nvmeadm_firmware_commit(const nvme_process_arg_t *npa, uint32_t slot,
3271 uint32_t act)
3272 {
3273 nvme_fw_commit_req_t *req;
3274
3275 if (!nvme_fw_commit_req_init(npa->npa_ctrl, &req)) {
3276 nvmeadm_fatal(npa, "failed to initialize firmware commit "
3277 "request for %s", npa->npa_name);
3278 }
3279
3280 if (!nvme_fw_commit_req_set_slot(req, slot) ||
3281 !nvme_fw_commit_req_set_action(req, act)) {
3282 nvmeadm_fatal(npa, "failed to set firmware commit fields for "
3283 "%s", npa->npa_name);
3284 }
3285
3286 if (!nvme_fw_commit_req_exec(req)) {
3287 /*
3288 * A number of command specific status values are informational
3289 * and indicate that the operation was successful but that
3290 * something else, such as a device reset, is still required
3291 * before the new firmware is active.
3292 * We distinguish those here and report them as a note rather
3293 * than a fatal error.
3294 */
3295 if (nvme_ctrl_err(npa->npa_ctrl) == NVME_ERR_CONTROLLER) {
3296 uint32_t sct, sc;
3297
3298 nvme_ctrl_deverr(npa->npa_ctrl, &sct, &sc);
3299 if (sct == NVME_CQE_SCT_SPECIFIC && (
3300 sc == NVME_CQE_SC_SPC_FW_RESET ||
3301 sc == NVME_CQE_SC_SPC_FW_NSSR ||
3302 sc == NVME_CQE_SC_SPC_FW_NEXT_RESET)) {
3303 fprintf(stderr,
3304 "nvmeadm: commit successful but %s\n",
3305 nvme_sctostr(npa->npa_ctrl, NVME_CSI_NVM,
3306 sct, sc));
3307 } else {
3308 nvmeadm_fatal(npa, "failed to %s on %s",
3309 npa->npa_cmd->c_name, npa->npa_name);
3310 }
3311 } else {
3312 nvmeadm_fatal(npa, "failed to %s on %s",
3313 npa->npa_cmd->c_name, npa->npa_name);
3314 }
3315 }
3316
3317 nvme_fw_commit_req_fini(req);
3318 }
3319
3320 /*
3321 * Convert str to a valid firmware slot number.
3322 */
3323 static uint32_t
get_slot_number(char * str)3324 get_slot_number(char *str)
3325 {
3326 longlong_t slot;
3327 char *valend;
3328
3329 errno = 0;
3330 slot = strtoll(str, &valend, 0);
3331 if (errno != 0 || *valend != '\0' ||
3332 slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
3333 errx(-1, "Slot must be numeric and in the range of %u to %u",
3334 NVME_FW_SLOT_MIN, NVME_FW_SLOT_MAX);
3335
3336 return ((uint32_t)slot);
3337 }
3338
3339 static void
usage_firmware_commit(const char * c_name)3340 usage_firmware_commit(const char *c_name)
3341 {
3342 (void) fprintf(stderr, "%s <ctl> <slot>\n\n"
3343 " Commit previously downloaded firmware to slot <slot>.\n"
3344 " The firmware is only activated after a "
3345 "\"nvmeadm activate-firmware\" command.\n", c_name);
3346 }
3347
3348 static int
do_firmware_commit(const nvme_process_arg_t * npa)3349 do_firmware_commit(const nvme_process_arg_t *npa)
3350 {
3351 uint32_t slot;
3352
3353 if (npa->npa_argc > 1)
3354 errx(-1, "%s passed extraneous arguments starting with %s",
3355 npa->npa_cmd->c_name, npa->npa_argv[1]);
3356
3357 if (npa->npa_argc == 0)
3358 errx(-1, "Firmware slot number is required");
3359
3360 if (npa->npa_ns != NULL)
3361 errx(-1, "Firmware committing not available on a per-namespace "
3362 "basis");
3363
3364 slot = get_slot_number(npa->npa_argv[0]);
3365
3366 if (slot == 1 && npa->npa_idctl->id_frmw.fw_readonly)
3367 errx(-1, "Cannot commit firmware to slot 1: slot is read-only");
3368
3369 nvmeadm_firmware_commit(npa, slot, NVME_FWC_SAVE);
3370
3371 if (verbose)
3372 (void) printf("Firmware committed to slot %u.\n", slot);
3373
3374 return (0);
3375 }
3376
3377 static void
usage_firmware_activate(const char * c_name)3378 usage_firmware_activate(const char *c_name)
3379 {
3380 (void) fprintf(stderr, "%s <ctl> <slot>\n\n"
3381 " Activate firmware in slot <slot>.\n"
3382 " The firmware will be in use after the next system reset.\n",
3383 c_name);
3384 }
3385
3386 static int
do_firmware_activate(const nvme_process_arg_t * npa)3387 do_firmware_activate(const nvme_process_arg_t *npa)
3388 {
3389 uint32_t slot;
3390
3391 if (npa->npa_argc > 1)
3392 errx(-1, "%s passed extraneous arguments starting with %s",
3393 npa->npa_cmd->c_name, npa->npa_argv[1]);
3394
3395 if (npa->npa_argc == 0)
3396 errx(-1, "Firmware slot number is required");
3397
3398 if (npa->npa_ns != NULL)
3399 errx(-1, "Firmware activation not available on a per-namespace "
3400 "basis");
3401
3402 slot = get_slot_number(npa->npa_argv[0]);
3403
3404 nvmeadm_firmware_commit(npa, slot, NVME_FWC_ACTIVATE);
3405
3406 if (verbose)
3407 (void) printf("Slot %u successfully activated.\n", slot);
3408
3409 return (0);
3410 }
3411
3412 nvme_vuc_disc_t *
nvmeadm_vuc_init(const nvme_process_arg_t * npa,const char * name)3413 nvmeadm_vuc_init(const nvme_process_arg_t *npa, const char *name)
3414 {
3415 nvme_vuc_disc_t *vuc;
3416 nvme_vuc_disc_lock_t lock;
3417
3418 if (!nvme_vuc_discover_by_name(npa->npa_ctrl, name, 0, &vuc)) {
3419 nvmeadm_fatal(npa, "%s does not support operation %s: device "
3420 "does not support vendor unique command %s", npa->npa_name,
3421 npa->npa_cmd->c_name, name);
3422 }
3423
3424 lock = nvme_vuc_disc_lock(vuc);
3425 switch (lock) {
3426 case NVME_VUC_DISC_LOCK_NONE:
3427 break;
3428 case NVME_VUC_DISC_LOCK_READ:
3429 nvmeadm_excl(npa, NVME_LOCK_L_READ);
3430 break;
3431 case NVME_VUC_DISC_LOCK_WRITE:
3432 nvmeadm_excl(npa, NVME_LOCK_L_WRITE);
3433 break;
3434 }
3435
3436 return (vuc);
3437 }
3438
3439 void
nvmeadm_vuc_fini(const nvme_process_arg_t * npa,nvme_vuc_disc_t * vuc)3440 nvmeadm_vuc_fini(const nvme_process_arg_t *npa, nvme_vuc_disc_t *vuc)
3441 {
3442 if (nvme_vuc_disc_lock(vuc) != NVME_VUC_DISC_LOCK_NONE) {
3443 if (npa->npa_ns != NULL) {
3444 nvme_ns_unlock(npa->npa_ns);
3445 } else if (npa->npa_ctrl != NULL) {
3446 nvme_ctrl_unlock(npa->npa_ctrl);
3447 }
3448 }
3449
3450 nvme_vuc_disc_free(vuc);
3451 }
3452