1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 [NVME_IOPOLICY_QD] = "queue-depth",
21 };
22
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 if (!val)
28 return -EINVAL;
29 if (!strncmp(val, "numa", 4))
30 iopolicy = NVME_IOPOLICY_NUMA;
31 else if (!strncmp(val, "round-robin", 11))
32 iopolicy = NVME_IOPOLICY_RR;
33 else if (!strncmp(val, "queue-depth", 11))
34 iopolicy = NVME_IOPOLICY_QD;
35 else
36 return -EINVAL;
37
38 return 0;
39 }
40
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 &iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 "Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 subsys->iopolicy = iopolicy;
54 }
55
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 struct nvme_ns_head *h;
59
60 lockdep_assert_held(&subsys->lock);
61 list_for_each_entry(h, &subsys->nsheads, entry)
62 if (h->disk)
63 blk_mq_unfreeze_queue_nomemrestore(h->disk->queue);
64 }
65
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 struct nvme_ns_head *h;
69
70 lockdep_assert_held(&subsys->lock);
71 list_for_each_entry(h, &subsys->nsheads, entry)
72 if (h->disk)
73 blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 struct nvme_ns_head *h;
79
80 lockdep_assert_held(&subsys->lock);
81 list_for_each_entry(h, &subsys->nsheads, entry)
82 if (h->disk)
83 blk_freeze_queue_start(h->disk->queue);
84 }
85
nvme_failover_req(struct request * req)86 void nvme_failover_req(struct request *req)
87 {
88 struct nvme_ns *ns = req->q->queuedata;
89 u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK;
90 unsigned long flags;
91 struct bio *bio;
92
93 nvme_mpath_clear_current_path(ns);
94
95 /*
96 * If we got back an ANA error, we know the controller is alive but not
97 * ready to serve this namespace. Kick of a re-read of the ANA
98 * information page, and just try any other available path for now.
99 */
100 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 queue_work(nvme_wq, &ns->ctrl->ana_work);
103 }
104
105 spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 for (bio = req->bio; bio; bio = bio->bi_next) {
107 bio_set_dev(bio, ns->head->disk->part0);
108 if (bio->bi_opf & REQ_POLLED) {
109 bio->bi_opf &= ~REQ_POLLED;
110 bio->bi_cookie = BLK_QC_T_NONE;
111 }
112 /*
113 * The alternate request queue that we may end up submitting
114 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 * will fail the I/O immediately with EAGAIN to the issuer.
116 * We are not in the issuer context which cannot block. Clear
117 * the flag to avoid spurious EAGAIN I/O failures.
118 */
119 bio->bi_opf &= ~REQ_NOWAIT;
120 }
121 blk_steal_bios(&ns->head->requeue_list, req);
122 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123
124 nvme_req(req)->status = 0;
125 nvme_end_req(req);
126 kblockd_schedule_work(&ns->head->requeue_work);
127 }
128
nvme_mpath_start_request(struct request * rq)129 void nvme_mpath_start_request(struct request *rq)
130 {
131 struct nvme_ns *ns = rq->q->queuedata;
132 struct gendisk *disk = ns->head->disk;
133
134 if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 atomic_inc(&ns->ctrl->nr_active);
136 nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 }
138
139 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 return;
141
142 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147
nvme_mpath_end_request(struct request * rq)148 void nvme_mpath_end_request(struct request *rq)
149 {
150 struct nvme_ns *ns = rq->q->queuedata;
151
152 if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 atomic_dec_if_positive(&ns->ctrl->nr_active);
154
155 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 return;
157 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 nvme_req(rq)->start_time);
160 }
161
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 struct nvme_ns *ns;
165 int srcu_idx;
166
167 srcu_idx = srcu_read_lock(&ctrl->srcu);
168 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
169 srcu_read_lock_held(&ctrl->srcu)) {
170 if (!ns->head->disk)
171 continue;
172 kblockd_schedule_work(&ns->head->requeue_work);
173 if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
174 disk_uevent(ns->head->disk, KOBJ_CHANGE);
175 }
176 srcu_read_unlock(&ctrl->srcu, srcu_idx);
177 }
178
179 static const char *nvme_ana_state_names[] = {
180 [0] = "invalid state",
181 [NVME_ANA_OPTIMIZED] = "optimized",
182 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
183 [NVME_ANA_INACCESSIBLE] = "inaccessible",
184 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
185 [NVME_ANA_CHANGE] = "change",
186 };
187
nvme_mpath_clear_current_path(struct nvme_ns * ns)188 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
189 {
190 struct nvme_ns_head *head = ns->head;
191 bool changed = false;
192 int node;
193
194 if (!head)
195 goto out;
196
197 for_each_node(node) {
198 if (ns == rcu_access_pointer(head->current_path[node])) {
199 rcu_assign_pointer(head->current_path[node], NULL);
200 changed = true;
201 }
202 }
203 out:
204 return changed;
205 }
206
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)207 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
208 {
209 struct nvme_ns *ns;
210 int srcu_idx;
211
212 srcu_idx = srcu_read_lock(&ctrl->srcu);
213 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
214 srcu_read_lock_held(&ctrl->srcu)) {
215 nvme_mpath_clear_current_path(ns);
216 kblockd_schedule_work(&ns->head->requeue_work);
217 }
218 srcu_read_unlock(&ctrl->srcu, srcu_idx);
219 }
220
nvme_mpath_revalidate_paths(struct nvme_ns * ns)221 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
222 {
223 struct nvme_ns_head *head = ns->head;
224 sector_t capacity = get_capacity(head->disk);
225 int node;
226 int srcu_idx;
227
228 srcu_idx = srcu_read_lock(&head->srcu);
229 list_for_each_entry_srcu(ns, &head->list, siblings,
230 srcu_read_lock_held(&head->srcu)) {
231 if (capacity != get_capacity(ns->disk))
232 clear_bit(NVME_NS_READY, &ns->flags);
233 }
234 srcu_read_unlock(&head->srcu, srcu_idx);
235
236 for_each_node(node)
237 rcu_assign_pointer(head->current_path[node], NULL);
238 kblockd_schedule_work(&head->requeue_work);
239 }
240
nvme_path_is_disabled(struct nvme_ns * ns)241 static bool nvme_path_is_disabled(struct nvme_ns *ns)
242 {
243 enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
244
245 /*
246 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
247 * still be able to complete assuming that the controller is connected.
248 * Otherwise it will fail immediately and return to the requeue list.
249 */
250 if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
251 return true;
252 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
253 !test_bit(NVME_NS_READY, &ns->flags))
254 return true;
255 return false;
256 }
257
__nvme_find_path(struct nvme_ns_head * head,int node)258 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
259 {
260 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
261 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
262
263 list_for_each_entry_srcu(ns, &head->list, siblings,
264 srcu_read_lock_held(&head->srcu)) {
265 if (nvme_path_is_disabled(ns))
266 continue;
267
268 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
269 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
270 distance = node_distance(node, ns->ctrl->numa_node);
271 else
272 distance = LOCAL_DISTANCE;
273
274 switch (ns->ana_state) {
275 case NVME_ANA_OPTIMIZED:
276 if (distance < found_distance) {
277 found_distance = distance;
278 found = ns;
279 }
280 break;
281 case NVME_ANA_NONOPTIMIZED:
282 if (distance < fallback_distance) {
283 fallback_distance = distance;
284 fallback = ns;
285 }
286 break;
287 default:
288 break;
289 }
290 }
291
292 if (!found)
293 found = fallback;
294 if (found)
295 rcu_assign_pointer(head->current_path[node], found);
296 return found;
297 }
298
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)299 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
300 struct nvme_ns *ns)
301 {
302 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
303 siblings);
304 if (ns)
305 return ns;
306 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
307 }
308
nvme_round_robin_path(struct nvme_ns_head * head)309 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
310 {
311 struct nvme_ns *ns, *found = NULL;
312 int node = numa_node_id();
313 struct nvme_ns *old = srcu_dereference(head->current_path[node],
314 &head->srcu);
315
316 if (unlikely(!old))
317 return __nvme_find_path(head, node);
318
319 if (list_is_singular(&head->list)) {
320 if (nvme_path_is_disabled(old))
321 return NULL;
322 return old;
323 }
324
325 for (ns = nvme_next_ns(head, old);
326 ns && ns != old;
327 ns = nvme_next_ns(head, ns)) {
328 if (nvme_path_is_disabled(ns))
329 continue;
330
331 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
332 found = ns;
333 goto out;
334 }
335 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
336 found = ns;
337 }
338
339 /*
340 * The loop above skips the current path for round-robin semantics.
341 * Fall back to the current path if either:
342 * - no other optimized path found and current is optimized,
343 * - no other usable path found and current is usable.
344 */
345 if (!nvme_path_is_disabled(old) &&
346 (old->ana_state == NVME_ANA_OPTIMIZED ||
347 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
348 return old;
349
350 if (!found)
351 return NULL;
352 out:
353 rcu_assign_pointer(head->current_path[node], found);
354 return found;
355 }
356
nvme_queue_depth_path(struct nvme_ns_head * head)357 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
358 {
359 struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
360 unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
361 unsigned int depth;
362
363 list_for_each_entry_srcu(ns, &head->list, siblings,
364 srcu_read_lock_held(&head->srcu)) {
365 if (nvme_path_is_disabled(ns))
366 continue;
367
368 depth = atomic_read(&ns->ctrl->nr_active);
369
370 switch (ns->ana_state) {
371 case NVME_ANA_OPTIMIZED:
372 if (depth < min_depth_opt) {
373 min_depth_opt = depth;
374 best_opt = ns;
375 }
376 break;
377 case NVME_ANA_NONOPTIMIZED:
378 if (depth < min_depth_nonopt) {
379 min_depth_nonopt = depth;
380 best_nonopt = ns;
381 }
382 break;
383 default:
384 break;
385 }
386
387 if (min_depth_opt == 0)
388 return best_opt;
389 }
390
391 return best_opt ? best_opt : best_nonopt;
392 }
393
nvme_path_is_optimized(struct nvme_ns * ns)394 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
395 {
396 return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
397 ns->ana_state == NVME_ANA_OPTIMIZED;
398 }
399
nvme_numa_path(struct nvme_ns_head * head)400 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
401 {
402 int node = numa_node_id();
403 struct nvme_ns *ns;
404
405 ns = srcu_dereference(head->current_path[node], &head->srcu);
406 if (unlikely(!ns))
407 return __nvme_find_path(head, node);
408 if (unlikely(!nvme_path_is_optimized(ns)))
409 return __nvme_find_path(head, node);
410 return ns;
411 }
412
nvme_find_path(struct nvme_ns_head * head)413 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
414 {
415 switch (READ_ONCE(head->subsys->iopolicy)) {
416 case NVME_IOPOLICY_QD:
417 return nvme_queue_depth_path(head);
418 case NVME_IOPOLICY_RR:
419 return nvme_round_robin_path(head);
420 default:
421 return nvme_numa_path(head);
422 }
423 }
424
nvme_available_path(struct nvme_ns_head * head)425 static bool nvme_available_path(struct nvme_ns_head *head)
426 {
427 struct nvme_ns *ns;
428
429 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
430 return false;
431
432 list_for_each_entry_srcu(ns, &head->list, siblings,
433 srcu_read_lock_held(&head->srcu)) {
434 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
435 continue;
436 switch (nvme_ctrl_state(ns->ctrl)) {
437 case NVME_CTRL_LIVE:
438 case NVME_CTRL_RESETTING:
439 case NVME_CTRL_CONNECTING:
440 return true;
441 default:
442 break;
443 }
444 }
445 return false;
446 }
447
nvme_ns_head_submit_bio(struct bio * bio)448 static void nvme_ns_head_submit_bio(struct bio *bio)
449 {
450 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
451 struct device *dev = disk_to_dev(head->disk);
452 struct nvme_ns *ns;
453 int srcu_idx;
454
455 /*
456 * The namespace might be going away and the bio might be moved to a
457 * different queue via blk_steal_bios(), so we need to use the bio_split
458 * pool from the original queue to allocate the bvecs from.
459 */
460 bio = bio_split_to_limits(bio);
461 if (!bio)
462 return;
463
464 srcu_idx = srcu_read_lock(&head->srcu);
465 ns = nvme_find_path(head);
466 if (likely(ns)) {
467 bio_set_dev(bio, ns->disk->part0);
468 bio->bi_opf |= REQ_NVME_MPATH;
469 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
470 bio->bi_iter.bi_sector);
471 submit_bio_noacct(bio);
472 } else if (nvme_available_path(head)) {
473 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
474
475 spin_lock_irq(&head->requeue_lock);
476 bio_list_add(&head->requeue_list, bio);
477 spin_unlock_irq(&head->requeue_lock);
478 } else {
479 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
480
481 bio_io_error(bio);
482 }
483
484 srcu_read_unlock(&head->srcu, srcu_idx);
485 }
486
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)487 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
488 {
489 if (!nvme_tryget_ns_head(disk->private_data))
490 return -ENXIO;
491 return 0;
492 }
493
nvme_ns_head_release(struct gendisk * disk)494 static void nvme_ns_head_release(struct gendisk *disk)
495 {
496 nvme_put_ns_head(disk->private_data);
497 }
498
nvme_ns_head_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)499 static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16],
500 enum blk_unique_id type)
501 {
502 struct nvme_ns_head *head = disk->private_data;
503 struct nvme_ns *ns;
504 int srcu_idx, ret = -EWOULDBLOCK;
505
506 srcu_idx = srcu_read_lock(&head->srcu);
507 ns = nvme_find_path(head);
508 if (ns)
509 ret = nvme_ns_get_unique_id(ns, id, type);
510 srcu_read_unlock(&head->srcu, srcu_idx);
511 return ret;
512 }
513
514 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)515 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
516 unsigned int nr_zones, report_zones_cb cb, void *data)
517 {
518 struct nvme_ns_head *head = disk->private_data;
519 struct nvme_ns *ns;
520 int srcu_idx, ret = -EWOULDBLOCK;
521
522 srcu_idx = srcu_read_lock(&head->srcu);
523 ns = nvme_find_path(head);
524 if (ns)
525 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
526 srcu_read_unlock(&head->srcu, srcu_idx);
527 return ret;
528 }
529 #else
530 #define nvme_ns_head_report_zones NULL
531 #endif /* CONFIG_BLK_DEV_ZONED */
532
533 const struct block_device_operations nvme_ns_head_ops = {
534 .owner = THIS_MODULE,
535 .submit_bio = nvme_ns_head_submit_bio,
536 .open = nvme_ns_head_open,
537 .release = nvme_ns_head_release,
538 .ioctl = nvme_ns_head_ioctl,
539 .compat_ioctl = blkdev_compat_ptr_ioctl,
540 .getgeo = nvme_getgeo,
541 .get_unique_id = nvme_ns_head_get_unique_id,
542 .report_zones = nvme_ns_head_report_zones,
543 .pr_ops = &nvme_pr_ops,
544 };
545
cdev_to_ns_head(struct cdev * cdev)546 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
547 {
548 return container_of(cdev, struct nvme_ns_head, cdev);
549 }
550
nvme_ns_head_chr_open(struct inode * inode,struct file * file)551 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
552 {
553 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
554 return -ENXIO;
555 return 0;
556 }
557
nvme_ns_head_chr_release(struct inode * inode,struct file * file)558 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
559 {
560 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
561 return 0;
562 }
563
564 static const struct file_operations nvme_ns_head_chr_fops = {
565 .owner = THIS_MODULE,
566 .open = nvme_ns_head_chr_open,
567 .release = nvme_ns_head_chr_release,
568 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
569 .compat_ioctl = compat_ptr_ioctl,
570 .uring_cmd = nvme_ns_head_chr_uring_cmd,
571 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
572 };
573
nvme_add_ns_head_cdev(struct nvme_ns_head * head)574 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
575 {
576 int ret;
577
578 head->cdev_device.parent = &head->subsys->dev;
579 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
580 head->subsys->instance, head->instance);
581 if (ret)
582 return ret;
583 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
584 &nvme_ns_head_chr_fops, THIS_MODULE);
585 return ret;
586 }
587
nvme_partition_scan_work(struct work_struct * work)588 static void nvme_partition_scan_work(struct work_struct *work)
589 {
590 struct nvme_ns_head *head =
591 container_of(work, struct nvme_ns_head, partition_scan_work);
592
593 if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
594 &head->disk->state)))
595 return;
596
597 mutex_lock(&head->disk->open_mutex);
598 bdev_disk_changed(head->disk, false);
599 mutex_unlock(&head->disk->open_mutex);
600 }
601
nvme_requeue_work(struct work_struct * work)602 static void nvme_requeue_work(struct work_struct *work)
603 {
604 struct nvme_ns_head *head =
605 container_of(work, struct nvme_ns_head, requeue_work);
606 struct bio *bio, *next;
607
608 spin_lock_irq(&head->requeue_lock);
609 next = bio_list_get(&head->requeue_list);
610 spin_unlock_irq(&head->requeue_lock);
611
612 while ((bio = next) != NULL) {
613 next = bio->bi_next;
614 bio->bi_next = NULL;
615
616 submit_bio_noacct(bio);
617 }
618 }
619
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)620 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
621 {
622 struct queue_limits lim;
623
624 mutex_init(&head->lock);
625 bio_list_init(&head->requeue_list);
626 spin_lock_init(&head->requeue_lock);
627 INIT_WORK(&head->requeue_work, nvme_requeue_work);
628 INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
629
630 /*
631 * Add a multipath node if the subsystems supports multiple controllers.
632 * We also do this for private namespaces as the namespace sharing flag
633 * could change after a rescan.
634 */
635 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
636 !nvme_is_unique_nsid(ctrl, head) || !multipath)
637 return 0;
638
639 blk_set_stacking_limits(&lim);
640 lim.dma_alignment = 3;
641 lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
642 if (head->ids.csi == NVME_CSI_ZNS)
643 lim.features |= BLK_FEAT_ZONED;
644
645 head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
646 if (IS_ERR(head->disk))
647 return PTR_ERR(head->disk);
648 head->disk->fops = &nvme_ns_head_ops;
649 head->disk->private_data = head;
650
651 /*
652 * We need to suppress the partition scan from occuring within the
653 * controller's scan_work context. If a path error occurs here, the IO
654 * will wait until a path becomes available or all paths are torn down,
655 * but that action also occurs within scan_work, so it would deadlock.
656 * Defer the partion scan to a different context that does not block
657 * scan_work.
658 */
659 set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
660 sprintf(head->disk->disk_name, "nvme%dn%d",
661 ctrl->subsys->instance, head->instance);
662 return 0;
663 }
664
nvme_mpath_set_live(struct nvme_ns * ns)665 static void nvme_mpath_set_live(struct nvme_ns *ns)
666 {
667 struct nvme_ns_head *head = ns->head;
668 int rc;
669
670 if (!head->disk)
671 return;
672
673 /*
674 * test_and_set_bit() is used because it is protecting against two nvme
675 * paths simultaneously calling device_add_disk() on the same namespace
676 * head.
677 */
678 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
679 rc = device_add_disk(&head->subsys->dev, head->disk,
680 nvme_ns_attr_groups);
681 if (rc) {
682 clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
683 return;
684 }
685 nvme_add_ns_head_cdev(head);
686 kblockd_schedule_work(&head->partition_scan_work);
687 }
688
689 nvme_mpath_add_sysfs_link(ns->head);
690
691 mutex_lock(&head->lock);
692 if (nvme_path_is_optimized(ns)) {
693 int node, srcu_idx;
694
695 srcu_idx = srcu_read_lock(&head->srcu);
696 for_each_online_node(node)
697 __nvme_find_path(head, node);
698 srcu_read_unlock(&head->srcu, srcu_idx);
699 }
700 mutex_unlock(&head->lock);
701
702 synchronize_srcu(&head->srcu);
703 kblockd_schedule_work(&head->requeue_work);
704 }
705
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))706 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
707 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
708 void *))
709 {
710 void *base = ctrl->ana_log_buf;
711 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
712 int error, i;
713
714 lockdep_assert_held(&ctrl->ana_lock);
715
716 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
717 struct nvme_ana_group_desc *desc = base + offset;
718 u32 nr_nsids;
719 size_t nsid_buf_size;
720
721 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
722 return -EINVAL;
723
724 nr_nsids = le32_to_cpu(desc->nnsids);
725 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
726
727 if (WARN_ON_ONCE(desc->grpid == 0))
728 return -EINVAL;
729 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
730 return -EINVAL;
731 if (WARN_ON_ONCE(desc->state == 0))
732 return -EINVAL;
733 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
734 return -EINVAL;
735
736 offset += sizeof(*desc);
737 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
738 return -EINVAL;
739
740 error = cb(ctrl, desc, data);
741 if (error)
742 return error;
743
744 offset += nsid_buf_size;
745 }
746
747 return 0;
748 }
749
nvme_state_is_live(enum nvme_ana_state state)750 static inline bool nvme_state_is_live(enum nvme_ana_state state)
751 {
752 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
753 }
754
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)755 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
756 struct nvme_ns *ns)
757 {
758 ns->ana_grpid = le32_to_cpu(desc->grpid);
759 ns->ana_state = desc->state;
760 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
761 /*
762 * nvme_mpath_set_live() will trigger I/O to the multipath path device
763 * and in turn to this path device. However we cannot accept this I/O
764 * if the controller is not live. This may deadlock if called from
765 * nvme_mpath_init_identify() and the ctrl will never complete
766 * initialization, preventing I/O from completing. For this case we
767 * will reprocess the ANA log page in nvme_mpath_update() once the
768 * controller is ready.
769 */
770 if (nvme_state_is_live(ns->ana_state) &&
771 nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
772 nvme_mpath_set_live(ns);
773 else {
774 /*
775 * Add sysfs link from multipath head gendisk node to path
776 * device gendisk node.
777 * If path's ana state is live (i.e. state is either optimized
778 * or non-optimized) while we alloc the ns then sysfs link would
779 * be created from nvme_mpath_set_live(). In that case we would
780 * not fallthrough this code path. However for the path's ana
781 * state other than live, we call nvme_mpath_set_live() only
782 * after ana state transitioned to the live state. But we still
783 * want to create the sysfs link from head node to a path device
784 * irrespctive of the path's ana state.
785 * If we reach through here then it means that path's ana state
786 * is not live but still create the sysfs link to this path from
787 * head node if head node of the path has already come alive.
788 */
789 if (test_bit(NVME_NSHEAD_DISK_LIVE, &ns->head->flags))
790 nvme_mpath_add_sysfs_link(ns->head);
791 }
792 }
793
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)794 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
795 struct nvme_ana_group_desc *desc, void *data)
796 {
797 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
798 unsigned *nr_change_groups = data;
799 struct nvme_ns *ns;
800 int srcu_idx;
801
802 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
803 le32_to_cpu(desc->grpid),
804 nvme_ana_state_names[desc->state]);
805
806 if (desc->state == NVME_ANA_CHANGE)
807 (*nr_change_groups)++;
808
809 if (!nr_nsids)
810 return 0;
811
812 srcu_idx = srcu_read_lock(&ctrl->srcu);
813 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
814 srcu_read_lock_held(&ctrl->srcu)) {
815 unsigned nsid;
816 again:
817 nsid = le32_to_cpu(desc->nsids[n]);
818 if (ns->head->ns_id < nsid)
819 continue;
820 if (ns->head->ns_id == nsid)
821 nvme_update_ns_ana_state(desc, ns);
822 if (++n == nr_nsids)
823 break;
824 if (ns->head->ns_id > nsid)
825 goto again;
826 }
827 srcu_read_unlock(&ctrl->srcu, srcu_idx);
828 return 0;
829 }
830
nvme_read_ana_log(struct nvme_ctrl * ctrl)831 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
832 {
833 u32 nr_change_groups = 0;
834 int error;
835
836 mutex_lock(&ctrl->ana_lock);
837 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
838 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
839 if (error) {
840 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
841 goto out_unlock;
842 }
843
844 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
845 nvme_update_ana_state);
846 if (error)
847 goto out_unlock;
848
849 /*
850 * In theory we should have an ANATT timer per group as they might enter
851 * the change state at different times. But that is a lot of overhead
852 * just to protect against a target that keeps entering new changes
853 * states while never finishing previous ones. But we'll still
854 * eventually time out once all groups are in change state, so this
855 * isn't a big deal.
856 *
857 * We also double the ANATT value to provide some slack for transports
858 * or AEN processing overhead.
859 */
860 if (nr_change_groups)
861 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
862 else
863 timer_delete_sync(&ctrl->anatt_timer);
864 out_unlock:
865 mutex_unlock(&ctrl->ana_lock);
866 return error;
867 }
868
nvme_ana_work(struct work_struct * work)869 static void nvme_ana_work(struct work_struct *work)
870 {
871 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
872
873 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
874 return;
875
876 nvme_read_ana_log(ctrl);
877 }
878
nvme_mpath_update(struct nvme_ctrl * ctrl)879 void nvme_mpath_update(struct nvme_ctrl *ctrl)
880 {
881 u32 nr_change_groups = 0;
882
883 if (!ctrl->ana_log_buf)
884 return;
885
886 mutex_lock(&ctrl->ana_lock);
887 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
888 mutex_unlock(&ctrl->ana_lock);
889 }
890
nvme_anatt_timeout(struct timer_list * t)891 static void nvme_anatt_timeout(struct timer_list *t)
892 {
893 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
894
895 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
896 nvme_reset_ctrl(ctrl);
897 }
898
nvme_mpath_stop(struct nvme_ctrl * ctrl)899 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
900 {
901 if (!nvme_ctrl_use_ana(ctrl))
902 return;
903 timer_delete_sync(&ctrl->anatt_timer);
904 cancel_work_sync(&ctrl->ana_work);
905 }
906
907 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
908 struct device_attribute subsys_attr_##_name = \
909 __ATTR(_name, _mode, _show, _store)
910
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)911 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
913 {
914 struct nvme_subsystem *subsys =
915 container_of(dev, struct nvme_subsystem, dev);
916
917 return sysfs_emit(buf, "%s\n",
918 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
919 }
920
nvme_subsys_iopolicy_update(struct nvme_subsystem * subsys,int iopolicy)921 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
922 int iopolicy)
923 {
924 struct nvme_ctrl *ctrl;
925 int old_iopolicy = READ_ONCE(subsys->iopolicy);
926
927 if (old_iopolicy == iopolicy)
928 return;
929
930 WRITE_ONCE(subsys->iopolicy, iopolicy);
931
932 /* iopolicy changes clear the mpath by design */
933 mutex_lock(&nvme_subsystems_lock);
934 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
935 nvme_mpath_clear_ctrl_paths(ctrl);
936 mutex_unlock(&nvme_subsystems_lock);
937
938 pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
939 subsys->subnqn,
940 nvme_iopolicy_names[old_iopolicy],
941 nvme_iopolicy_names[iopolicy]);
942 }
943
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)944 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
945 struct device_attribute *attr, const char *buf, size_t count)
946 {
947 struct nvme_subsystem *subsys =
948 container_of(dev, struct nvme_subsystem, dev);
949 int i;
950
951 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
952 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
953 nvme_subsys_iopolicy_update(subsys, i);
954 return count;
955 }
956 }
957
958 return -EINVAL;
959 }
960 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
961 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
962
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)963 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
964 char *buf)
965 {
966 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
967 }
968 DEVICE_ATTR_RO(ana_grpid);
969
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)970 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
971 char *buf)
972 {
973 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
974
975 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
976 }
977 DEVICE_ATTR_RO(ana_state);
978
queue_depth_show(struct device * dev,struct device_attribute * attr,char * buf)979 static ssize_t queue_depth_show(struct device *dev,
980 struct device_attribute *attr, char *buf)
981 {
982 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
983
984 if (ns->head->subsys->iopolicy != NVME_IOPOLICY_QD)
985 return 0;
986
987 return sysfs_emit(buf, "%d\n", atomic_read(&ns->ctrl->nr_active));
988 }
989 DEVICE_ATTR_RO(queue_depth);
990
numa_nodes_show(struct device * dev,struct device_attribute * attr,char * buf)991 static ssize_t numa_nodes_show(struct device *dev, struct device_attribute *attr,
992 char *buf)
993 {
994 int node, srcu_idx;
995 nodemask_t numa_nodes;
996 struct nvme_ns *current_ns;
997 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
998 struct nvme_ns_head *head = ns->head;
999
1000 if (head->subsys->iopolicy != NVME_IOPOLICY_NUMA)
1001 return 0;
1002
1003 nodes_clear(numa_nodes);
1004
1005 srcu_idx = srcu_read_lock(&head->srcu);
1006 for_each_node(node) {
1007 current_ns = srcu_dereference(head->current_path[node],
1008 &head->srcu);
1009 if (ns == current_ns)
1010 node_set(node, numa_nodes);
1011 }
1012 srcu_read_unlock(&head->srcu, srcu_idx);
1013
1014 return sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&numa_nodes));
1015 }
1016 DEVICE_ATTR_RO(numa_nodes);
1017
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)1018 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
1019 struct nvme_ana_group_desc *desc, void *data)
1020 {
1021 struct nvme_ana_group_desc *dst = data;
1022
1023 if (desc->grpid != dst->grpid)
1024 return 0;
1025
1026 *dst = *desc;
1027 return -ENXIO; /* just break out of the loop */
1028 }
1029
nvme_mpath_add_sysfs_link(struct nvme_ns_head * head)1030 void nvme_mpath_add_sysfs_link(struct nvme_ns_head *head)
1031 {
1032 struct device *target;
1033 int rc, srcu_idx;
1034 struct nvme_ns *ns;
1035 struct kobject *kobj;
1036
1037 /*
1038 * Ensure head disk node is already added otherwise we may get invalid
1039 * kobj for head disk node
1040 */
1041 if (!test_bit(GD_ADDED, &head->disk->state))
1042 return;
1043
1044 kobj = &disk_to_dev(head->disk)->kobj;
1045
1046 /*
1047 * loop through each ns chained through the head->list and create the
1048 * sysfs link from head node to the ns path node
1049 */
1050 srcu_idx = srcu_read_lock(&head->srcu);
1051
1052 list_for_each_entry_rcu(ns, &head->list, siblings) {
1053 /*
1054 * Ensure that ns path disk node is already added otherwise we
1055 * may get invalid kobj name for target
1056 */
1057 if (!test_bit(GD_ADDED, &ns->disk->state))
1058 continue;
1059
1060 /*
1061 * Avoid creating link if it already exists for the given path.
1062 * When path ana state transitions from optimized to non-
1063 * optimized or vice-versa, the nvme_mpath_set_live() is
1064 * invoked which in truns call this function. Now if the sysfs
1065 * link already exists for the given path and we attempt to re-
1066 * create the link then sysfs code would warn about it loudly.
1067 * So we evaluate NVME_NS_SYSFS_ATTR_LINK flag here to ensure
1068 * that we're not creating duplicate link.
1069 * The test_and_set_bit() is used because it is protecting
1070 * against multiple nvme paths being simultaneously added.
1071 */
1072 if (test_and_set_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags))
1073 continue;
1074
1075 target = disk_to_dev(ns->disk);
1076 /*
1077 * Create sysfs link from head gendisk kobject @kobj to the
1078 * ns path gendisk kobject @target->kobj.
1079 */
1080 rc = sysfs_add_link_to_group(kobj, nvme_ns_mpath_attr_group.name,
1081 &target->kobj, dev_name(target));
1082 if (unlikely(rc)) {
1083 dev_err(disk_to_dev(ns->head->disk),
1084 "failed to create link to %s\n",
1085 dev_name(target));
1086 clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags);
1087 }
1088 }
1089
1090 srcu_read_unlock(&head->srcu, srcu_idx);
1091 }
1092
nvme_mpath_remove_sysfs_link(struct nvme_ns * ns)1093 void nvme_mpath_remove_sysfs_link(struct nvme_ns *ns)
1094 {
1095 struct device *target;
1096 struct kobject *kobj;
1097
1098 if (!test_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags))
1099 return;
1100
1101 target = disk_to_dev(ns->disk);
1102 kobj = &disk_to_dev(ns->head->disk)->kobj;
1103 sysfs_remove_link_from_group(kobj, nvme_ns_mpath_attr_group.name,
1104 dev_name(target));
1105 clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags);
1106 }
1107
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)1108 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
1109 {
1110 if (nvme_ctrl_use_ana(ns->ctrl)) {
1111 struct nvme_ana_group_desc desc = {
1112 .grpid = anagrpid,
1113 .state = 0,
1114 };
1115
1116 mutex_lock(&ns->ctrl->ana_lock);
1117 ns->ana_grpid = le32_to_cpu(anagrpid);
1118 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
1119 mutex_unlock(&ns->ctrl->ana_lock);
1120 if (desc.state) {
1121 /* found the group desc: update */
1122 nvme_update_ns_ana_state(&desc, ns);
1123 } else {
1124 /* group desc not found: trigger a re-read */
1125 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
1126 queue_work(nvme_wq, &ns->ctrl->ana_work);
1127 }
1128 } else {
1129 ns->ana_state = NVME_ANA_OPTIMIZED;
1130 nvme_mpath_set_live(ns);
1131 }
1132
1133 #ifdef CONFIG_BLK_DEV_ZONED
1134 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
1135 ns->head->disk->nr_zones = ns->disk->nr_zones;
1136 #endif
1137 }
1138
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)1139 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
1140 {
1141 if (!head->disk)
1142 return;
1143 if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
1144 nvme_cdev_del(&head->cdev, &head->cdev_device);
1145 /*
1146 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1147 * to allow multipath to fail all I/O.
1148 */
1149 synchronize_srcu(&head->srcu);
1150 kblockd_schedule_work(&head->requeue_work);
1151 del_gendisk(head->disk);
1152 }
1153 }
1154
nvme_mpath_remove_disk(struct nvme_ns_head * head)1155 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1156 {
1157 if (!head->disk)
1158 return;
1159 /* make sure all pending bios are cleaned up */
1160 kblockd_schedule_work(&head->requeue_work);
1161 flush_work(&head->requeue_work);
1162 flush_work(&head->partition_scan_work);
1163 put_disk(head->disk);
1164 }
1165
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)1166 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1167 {
1168 mutex_init(&ctrl->ana_lock);
1169 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1170 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1171 }
1172
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)1173 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1174 {
1175 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1176 size_t ana_log_size;
1177 int error = 0;
1178
1179 /* check if multipath is enabled and we have the capability */
1180 if (!multipath || !ctrl->subsys ||
1181 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1182 return 0;
1183
1184 /* initialize this in the identify path to cover controller resets */
1185 atomic_set(&ctrl->nr_active, 0);
1186
1187 if (!ctrl->max_namespaces ||
1188 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1189 dev_err(ctrl->device,
1190 "Invalid MNAN value %u\n", ctrl->max_namespaces);
1191 return -EINVAL;
1192 }
1193
1194 ctrl->anacap = id->anacap;
1195 ctrl->anatt = id->anatt;
1196 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1197 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1198
1199 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1200 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1201 ctrl->max_namespaces * sizeof(__le32);
1202 if (ana_log_size > max_transfer_size) {
1203 dev_err(ctrl->device,
1204 "ANA log page size (%zd) larger than MDTS (%zd).\n",
1205 ana_log_size, max_transfer_size);
1206 dev_err(ctrl->device, "disabling ANA support.\n");
1207 goto out_uninit;
1208 }
1209 if (ana_log_size > ctrl->ana_log_size) {
1210 nvme_mpath_stop(ctrl);
1211 nvme_mpath_uninit(ctrl);
1212 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1213 if (!ctrl->ana_log_buf)
1214 return -ENOMEM;
1215 }
1216 ctrl->ana_log_size = ana_log_size;
1217 error = nvme_read_ana_log(ctrl);
1218 if (error)
1219 goto out_uninit;
1220 return 0;
1221
1222 out_uninit:
1223 nvme_mpath_uninit(ctrl);
1224 return error;
1225 }
1226
nvme_mpath_uninit(struct nvme_ctrl * ctrl)1227 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1228 {
1229 kvfree(ctrl->ana_log_buf);
1230 ctrl->ana_log_buf = NULL;
1231 ctrl->ana_log_size = 0;
1232 }
1233