xref: /linux/drivers/nvme/host/multipath.c (revision f7c2ca25848b1da1843b7e0fa848ea721af6b132)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 	[NVME_IOPOLICY_QD]      = "queue-depth",
21 };
22 
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24 
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 	if (!val)
28 		return -EINVAL;
29 	if (!strncmp(val, "numa", 4))
30 		iopolicy = NVME_IOPOLICY_NUMA;
31 	else if (!strncmp(val, "round-robin", 11))
32 		iopolicy = NVME_IOPOLICY_RR;
33 	else if (!strncmp(val, "queue-depth", 11))
34 		iopolicy = NVME_IOPOLICY_QD;
35 	else
36 		return -EINVAL;
37 
38 	return 0;
39 }
40 
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45 
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 	&iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 	"Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50 
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 	subsys->iopolicy = iopolicy;
54 }
55 
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 	struct nvme_ns_head *h;
59 
60 	lockdep_assert_held(&subsys->lock);
61 	list_for_each_entry(h, &subsys->nsheads, entry)
62 		if (h->disk)
63 			blk_mq_unfreeze_queue_nomemrestore(h->disk->queue);
64 }
65 
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 	struct nvme_ns_head *h;
69 
70 	lockdep_assert_held(&subsys->lock);
71 	list_for_each_entry(h, &subsys->nsheads, entry)
72 		if (h->disk)
73 			blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75 
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 	struct nvme_ns_head *h;
79 
80 	lockdep_assert_held(&subsys->lock);
81 	list_for_each_entry(h, &subsys->nsheads, entry)
82 		if (h->disk)
83 			blk_freeze_queue_start(h->disk->queue);
84 }
85 
nvme_failover_req(struct request * req)86 void nvme_failover_req(struct request *req)
87 {
88 	struct nvme_ns *ns = req->q->queuedata;
89 	u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK;
90 	unsigned long flags;
91 	struct bio *bio;
92 
93 	nvme_mpath_clear_current_path(ns);
94 
95 	/*
96 	 * If we got back an ANA error, we know the controller is alive but not
97 	 * ready to serve this namespace.  Kick of a re-read of the ANA
98 	 * information page, and just try any other available path for now.
99 	 */
100 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 		queue_work(nvme_wq, &ns->ctrl->ana_work);
103 	}
104 
105 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 	for (bio = req->bio; bio; bio = bio->bi_next) {
107 		bio_set_dev(bio, ns->head->disk->part0);
108 		if (bio->bi_opf & REQ_POLLED) {
109 			bio->bi_opf &= ~REQ_POLLED;
110 			bio->bi_cookie = BLK_QC_T_NONE;
111 		}
112 		/*
113 		 * The alternate request queue that we may end up submitting
114 		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 		 * will fail the I/O immediately with EAGAIN to the issuer.
116 		 * We are not in the issuer context which cannot block. Clear
117 		 * the flag to avoid spurious EAGAIN I/O failures.
118 		 */
119 		bio->bi_opf &= ~REQ_NOWAIT;
120 	}
121 	blk_steal_bios(&ns->head->requeue_list, req);
122 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123 
124 	nvme_req(req)->status = 0;
125 	nvme_end_req(req);
126 	kblockd_schedule_work(&ns->head->requeue_work);
127 }
128 
nvme_mpath_start_request(struct request * rq)129 void nvme_mpath_start_request(struct request *rq)
130 {
131 	struct nvme_ns *ns = rq->q->queuedata;
132 	struct gendisk *disk = ns->head->disk;
133 
134 	if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 		atomic_inc(&ns->ctrl->nr_active);
136 		nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 	}
138 
139 	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 		return;
141 
142 	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 						      jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147 
nvme_mpath_end_request(struct request * rq)148 void nvme_mpath_end_request(struct request *rq)
149 {
150 	struct nvme_ns *ns = rq->q->queuedata;
151 
152 	if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 		atomic_dec_if_positive(&ns->ctrl->nr_active);
154 
155 	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 		return;
157 	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 			 nvme_req(rq)->start_time);
160 }
161 
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 	struct nvme_ns *ns;
165 	int srcu_idx;
166 
167 	srcu_idx = srcu_read_lock(&ctrl->srcu);
168 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
169 				 srcu_read_lock_held(&ctrl->srcu)) {
170 		if (!ns->head->disk)
171 			continue;
172 		kblockd_schedule_work(&ns->head->requeue_work);
173 		if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
174 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
175 	}
176 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
177 }
178 
179 static const char *nvme_ana_state_names[] = {
180 	[0]				= "invalid state",
181 	[NVME_ANA_OPTIMIZED]		= "optimized",
182 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
183 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
184 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
185 	[NVME_ANA_CHANGE]		= "change",
186 };
187 
nvme_mpath_clear_current_path(struct nvme_ns * ns)188 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
189 {
190 	struct nvme_ns_head *head = ns->head;
191 	bool changed = false;
192 	int node;
193 
194 	if (!head)
195 		goto out;
196 
197 	for_each_node(node) {
198 		if (ns == rcu_access_pointer(head->current_path[node])) {
199 			rcu_assign_pointer(head->current_path[node], NULL);
200 			changed = true;
201 		}
202 	}
203 out:
204 	return changed;
205 }
206 
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)207 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
208 {
209 	struct nvme_ns *ns;
210 	int srcu_idx;
211 
212 	srcu_idx = srcu_read_lock(&ctrl->srcu);
213 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
214 				 srcu_read_lock_held(&ctrl->srcu)) {
215 		nvme_mpath_clear_current_path(ns);
216 		kblockd_schedule_work(&ns->head->requeue_work);
217 	}
218 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
219 }
220 
nvme_mpath_revalidate_paths(struct nvme_ns * ns)221 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
222 {
223 	struct nvme_ns_head *head = ns->head;
224 	sector_t capacity = get_capacity(head->disk);
225 	int node;
226 	int srcu_idx;
227 
228 	srcu_idx = srcu_read_lock(&head->srcu);
229 	list_for_each_entry_srcu(ns, &head->list, siblings,
230 				 srcu_read_lock_held(&head->srcu)) {
231 		if (capacity != get_capacity(ns->disk))
232 			clear_bit(NVME_NS_READY, &ns->flags);
233 	}
234 	srcu_read_unlock(&head->srcu, srcu_idx);
235 
236 	for_each_node(node)
237 		rcu_assign_pointer(head->current_path[node], NULL);
238 	kblockd_schedule_work(&head->requeue_work);
239 }
240 
nvme_path_is_disabled(struct nvme_ns * ns)241 static bool nvme_path_is_disabled(struct nvme_ns *ns)
242 {
243 	enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
244 
245 	/*
246 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
247 	 * still be able to complete assuming that the controller is connected.
248 	 * Otherwise it will fail immediately and return to the requeue list.
249 	 */
250 	if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
251 		return true;
252 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
253 	    !test_bit(NVME_NS_READY, &ns->flags))
254 		return true;
255 	return false;
256 }
257 
__nvme_find_path(struct nvme_ns_head * head,int node)258 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
259 {
260 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
261 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
262 
263 	list_for_each_entry_srcu(ns, &head->list, siblings,
264 				 srcu_read_lock_held(&head->srcu)) {
265 		if (nvme_path_is_disabled(ns))
266 			continue;
267 
268 		if (ns->ctrl->numa_node != NUMA_NO_NODE &&
269 		    READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
270 			distance = node_distance(node, ns->ctrl->numa_node);
271 		else
272 			distance = LOCAL_DISTANCE;
273 
274 		switch (ns->ana_state) {
275 		case NVME_ANA_OPTIMIZED:
276 			if (distance < found_distance) {
277 				found_distance = distance;
278 				found = ns;
279 			}
280 			break;
281 		case NVME_ANA_NONOPTIMIZED:
282 			if (distance < fallback_distance) {
283 				fallback_distance = distance;
284 				fallback = ns;
285 			}
286 			break;
287 		default:
288 			break;
289 		}
290 	}
291 
292 	if (!found)
293 		found = fallback;
294 	if (found)
295 		rcu_assign_pointer(head->current_path[node], found);
296 	return found;
297 }
298 
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)299 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
300 		struct nvme_ns *ns)
301 {
302 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
303 			siblings);
304 	if (ns)
305 		return ns;
306 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
307 }
308 
nvme_round_robin_path(struct nvme_ns_head * head)309 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
310 {
311 	struct nvme_ns *ns, *found = NULL;
312 	int node = numa_node_id();
313 	struct nvme_ns *old = srcu_dereference(head->current_path[node],
314 					       &head->srcu);
315 
316 	if (unlikely(!old))
317 		return __nvme_find_path(head, node);
318 
319 	if (list_is_singular(&head->list)) {
320 		if (nvme_path_is_disabled(old))
321 			return NULL;
322 		return old;
323 	}
324 
325 	for (ns = nvme_next_ns(head, old);
326 	     ns && ns != old;
327 	     ns = nvme_next_ns(head, ns)) {
328 		if (nvme_path_is_disabled(ns))
329 			continue;
330 
331 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
332 			found = ns;
333 			goto out;
334 		}
335 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
336 			found = ns;
337 	}
338 
339 	/*
340 	 * The loop above skips the current path for round-robin semantics.
341 	 * Fall back to the current path if either:
342 	 *  - no other optimized path found and current is optimized,
343 	 *  - no other usable path found and current is usable.
344 	 */
345 	if (!nvme_path_is_disabled(old) &&
346 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
347 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
348 		return old;
349 
350 	if (!found)
351 		return NULL;
352 out:
353 	rcu_assign_pointer(head->current_path[node], found);
354 	return found;
355 }
356 
nvme_queue_depth_path(struct nvme_ns_head * head)357 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
358 {
359 	struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
360 	unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
361 	unsigned int depth;
362 
363 	list_for_each_entry_srcu(ns, &head->list, siblings,
364 				 srcu_read_lock_held(&head->srcu)) {
365 		if (nvme_path_is_disabled(ns))
366 			continue;
367 
368 		depth = atomic_read(&ns->ctrl->nr_active);
369 
370 		switch (ns->ana_state) {
371 		case NVME_ANA_OPTIMIZED:
372 			if (depth < min_depth_opt) {
373 				min_depth_opt = depth;
374 				best_opt = ns;
375 			}
376 			break;
377 		case NVME_ANA_NONOPTIMIZED:
378 			if (depth < min_depth_nonopt) {
379 				min_depth_nonopt = depth;
380 				best_nonopt = ns;
381 			}
382 			break;
383 		default:
384 			break;
385 		}
386 
387 		if (min_depth_opt == 0)
388 			return best_opt;
389 	}
390 
391 	return best_opt ? best_opt : best_nonopt;
392 }
393 
nvme_path_is_optimized(struct nvme_ns * ns)394 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
395 {
396 	return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
397 		ns->ana_state == NVME_ANA_OPTIMIZED;
398 }
399 
nvme_numa_path(struct nvme_ns_head * head)400 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
401 {
402 	int node = numa_node_id();
403 	struct nvme_ns *ns;
404 
405 	ns = srcu_dereference(head->current_path[node], &head->srcu);
406 	if (unlikely(!ns))
407 		return __nvme_find_path(head, node);
408 	if (unlikely(!nvme_path_is_optimized(ns)))
409 		return __nvme_find_path(head, node);
410 	return ns;
411 }
412 
nvme_find_path(struct nvme_ns_head * head)413 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
414 {
415 	switch (READ_ONCE(head->subsys->iopolicy)) {
416 	case NVME_IOPOLICY_QD:
417 		return nvme_queue_depth_path(head);
418 	case NVME_IOPOLICY_RR:
419 		return nvme_round_robin_path(head);
420 	default:
421 		return nvme_numa_path(head);
422 	}
423 }
424 
nvme_available_path(struct nvme_ns_head * head)425 static bool nvme_available_path(struct nvme_ns_head *head)
426 {
427 	struct nvme_ns *ns;
428 
429 	if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
430 		return false;
431 
432 	list_for_each_entry_srcu(ns, &head->list, siblings,
433 				 srcu_read_lock_held(&head->srcu)) {
434 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
435 			continue;
436 		switch (nvme_ctrl_state(ns->ctrl)) {
437 		case NVME_CTRL_LIVE:
438 		case NVME_CTRL_RESETTING:
439 		case NVME_CTRL_CONNECTING:
440 			return true;
441 		default:
442 			break;
443 		}
444 	}
445 	return false;
446 }
447 
nvme_ns_head_submit_bio(struct bio * bio)448 static void nvme_ns_head_submit_bio(struct bio *bio)
449 {
450 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
451 	struct device *dev = disk_to_dev(head->disk);
452 	struct nvme_ns *ns;
453 	int srcu_idx;
454 
455 	/*
456 	 * The namespace might be going away and the bio might be moved to a
457 	 * different queue via blk_steal_bios(), so we need to use the bio_split
458 	 * pool from the original queue to allocate the bvecs from.
459 	 */
460 	bio = bio_split_to_limits(bio);
461 	if (!bio)
462 		return;
463 
464 	srcu_idx = srcu_read_lock(&head->srcu);
465 	ns = nvme_find_path(head);
466 	if (likely(ns)) {
467 		bio_set_dev(bio, ns->disk->part0);
468 		bio->bi_opf |= REQ_NVME_MPATH;
469 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
470 				      bio->bi_iter.bi_sector);
471 		submit_bio_noacct(bio);
472 	} else if (nvme_available_path(head)) {
473 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
474 
475 		spin_lock_irq(&head->requeue_lock);
476 		bio_list_add(&head->requeue_list, bio);
477 		spin_unlock_irq(&head->requeue_lock);
478 	} else {
479 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
480 
481 		bio_io_error(bio);
482 	}
483 
484 	srcu_read_unlock(&head->srcu, srcu_idx);
485 }
486 
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)487 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
488 {
489 	if (!nvme_tryget_ns_head(disk->private_data))
490 		return -ENXIO;
491 	return 0;
492 }
493 
nvme_ns_head_release(struct gendisk * disk)494 static void nvme_ns_head_release(struct gendisk *disk)
495 {
496 	nvme_put_ns_head(disk->private_data);
497 }
498 
nvme_ns_head_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)499 static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16],
500 		enum blk_unique_id type)
501 {
502 	struct nvme_ns_head *head = disk->private_data;
503 	struct nvme_ns *ns;
504 	int srcu_idx, ret = -EWOULDBLOCK;
505 
506 	srcu_idx = srcu_read_lock(&head->srcu);
507 	ns = nvme_find_path(head);
508 	if (ns)
509 		ret = nvme_ns_get_unique_id(ns, id, type);
510 	srcu_read_unlock(&head->srcu, srcu_idx);
511 	return ret;
512 }
513 
514 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)515 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
516 		unsigned int nr_zones, report_zones_cb cb, void *data)
517 {
518 	struct nvme_ns_head *head = disk->private_data;
519 	struct nvme_ns *ns;
520 	int srcu_idx, ret = -EWOULDBLOCK;
521 
522 	srcu_idx = srcu_read_lock(&head->srcu);
523 	ns = nvme_find_path(head);
524 	if (ns)
525 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
526 	srcu_read_unlock(&head->srcu, srcu_idx);
527 	return ret;
528 }
529 #else
530 #define nvme_ns_head_report_zones	NULL
531 #endif /* CONFIG_BLK_DEV_ZONED */
532 
533 const struct block_device_operations nvme_ns_head_ops = {
534 	.owner		= THIS_MODULE,
535 	.submit_bio	= nvme_ns_head_submit_bio,
536 	.open		= nvme_ns_head_open,
537 	.release	= nvme_ns_head_release,
538 	.ioctl		= nvme_ns_head_ioctl,
539 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
540 	.getgeo		= nvme_getgeo,
541 	.get_unique_id	= nvme_ns_head_get_unique_id,
542 	.report_zones	= nvme_ns_head_report_zones,
543 	.pr_ops		= &nvme_pr_ops,
544 };
545 
cdev_to_ns_head(struct cdev * cdev)546 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
547 {
548 	return container_of(cdev, struct nvme_ns_head, cdev);
549 }
550 
nvme_ns_head_chr_open(struct inode * inode,struct file * file)551 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
552 {
553 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
554 		return -ENXIO;
555 	return 0;
556 }
557 
nvme_ns_head_chr_release(struct inode * inode,struct file * file)558 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
559 {
560 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
561 	return 0;
562 }
563 
564 static const struct file_operations nvme_ns_head_chr_fops = {
565 	.owner		= THIS_MODULE,
566 	.open		= nvme_ns_head_chr_open,
567 	.release	= nvme_ns_head_chr_release,
568 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
569 	.compat_ioctl	= compat_ptr_ioctl,
570 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
571 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
572 };
573 
nvme_add_ns_head_cdev(struct nvme_ns_head * head)574 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
575 {
576 	int ret;
577 
578 	head->cdev_device.parent = &head->subsys->dev;
579 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
580 			   head->subsys->instance, head->instance);
581 	if (ret)
582 		return ret;
583 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
584 			    &nvme_ns_head_chr_fops, THIS_MODULE);
585 	return ret;
586 }
587 
nvme_partition_scan_work(struct work_struct * work)588 static void nvme_partition_scan_work(struct work_struct *work)
589 {
590 	struct nvme_ns_head *head =
591 		container_of(work, struct nvme_ns_head, partition_scan_work);
592 
593 	if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
594 					     &head->disk->state)))
595 		return;
596 
597 	mutex_lock(&head->disk->open_mutex);
598 	bdev_disk_changed(head->disk, false);
599 	mutex_unlock(&head->disk->open_mutex);
600 }
601 
nvme_requeue_work(struct work_struct * work)602 static void nvme_requeue_work(struct work_struct *work)
603 {
604 	struct nvme_ns_head *head =
605 		container_of(work, struct nvme_ns_head, requeue_work);
606 	struct bio *bio, *next;
607 
608 	spin_lock_irq(&head->requeue_lock);
609 	next = bio_list_get(&head->requeue_list);
610 	spin_unlock_irq(&head->requeue_lock);
611 
612 	while ((bio = next) != NULL) {
613 		next = bio->bi_next;
614 		bio->bi_next = NULL;
615 
616 		submit_bio_noacct(bio);
617 	}
618 }
619 
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)620 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
621 {
622 	struct queue_limits lim;
623 
624 	mutex_init(&head->lock);
625 	bio_list_init(&head->requeue_list);
626 	spin_lock_init(&head->requeue_lock);
627 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
628 	INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
629 
630 	/*
631 	 * Add a multipath node if the subsystems supports multiple controllers.
632 	 * We also do this for private namespaces as the namespace sharing flag
633 	 * could change after a rescan.
634 	 */
635 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
636 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
637 		return 0;
638 
639 	blk_set_stacking_limits(&lim);
640 	lim.dma_alignment = 3;
641 	lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
642 	if (head->ids.csi == NVME_CSI_ZNS)
643 		lim.features |= BLK_FEAT_ZONED;
644 
645 	head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
646 	if (IS_ERR(head->disk))
647 		return PTR_ERR(head->disk);
648 	head->disk->fops = &nvme_ns_head_ops;
649 	head->disk->private_data = head;
650 
651 	/*
652 	 * We need to suppress the partition scan from occuring within the
653 	 * controller's scan_work context. If a path error occurs here, the IO
654 	 * will wait until a path becomes available or all paths are torn down,
655 	 * but that action also occurs within scan_work, so it would deadlock.
656 	 * Defer the partion scan to a different context that does not block
657 	 * scan_work.
658 	 */
659 	set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
660 	sprintf(head->disk->disk_name, "nvme%dn%d",
661 			ctrl->subsys->instance, head->instance);
662 	return 0;
663 }
664 
nvme_mpath_set_live(struct nvme_ns * ns)665 static void nvme_mpath_set_live(struct nvme_ns *ns)
666 {
667 	struct nvme_ns_head *head = ns->head;
668 	int rc;
669 
670 	if (!head->disk)
671 		return;
672 
673 	/*
674 	 * test_and_set_bit() is used because it is protecting against two nvme
675 	 * paths simultaneously calling device_add_disk() on the same namespace
676 	 * head.
677 	 */
678 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
679 		rc = device_add_disk(&head->subsys->dev, head->disk,
680 				     nvme_ns_attr_groups);
681 		if (rc) {
682 			clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
683 			return;
684 		}
685 		nvme_add_ns_head_cdev(head);
686 		kblockd_schedule_work(&head->partition_scan_work);
687 	}
688 
689 	nvme_mpath_add_sysfs_link(ns->head);
690 
691 	mutex_lock(&head->lock);
692 	if (nvme_path_is_optimized(ns)) {
693 		int node, srcu_idx;
694 
695 		srcu_idx = srcu_read_lock(&head->srcu);
696 		for_each_online_node(node)
697 			__nvme_find_path(head, node);
698 		srcu_read_unlock(&head->srcu, srcu_idx);
699 	}
700 	mutex_unlock(&head->lock);
701 
702 	synchronize_srcu(&head->srcu);
703 	kblockd_schedule_work(&head->requeue_work);
704 }
705 
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))706 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
707 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
708 			void *))
709 {
710 	void *base = ctrl->ana_log_buf;
711 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
712 	int error, i;
713 
714 	lockdep_assert_held(&ctrl->ana_lock);
715 
716 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
717 		struct nvme_ana_group_desc *desc = base + offset;
718 		u32 nr_nsids;
719 		size_t nsid_buf_size;
720 
721 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
722 			return -EINVAL;
723 
724 		nr_nsids = le32_to_cpu(desc->nnsids);
725 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
726 
727 		if (WARN_ON_ONCE(desc->grpid == 0))
728 			return -EINVAL;
729 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
730 			return -EINVAL;
731 		if (WARN_ON_ONCE(desc->state == 0))
732 			return -EINVAL;
733 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
734 			return -EINVAL;
735 
736 		offset += sizeof(*desc);
737 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
738 			return -EINVAL;
739 
740 		error = cb(ctrl, desc, data);
741 		if (error)
742 			return error;
743 
744 		offset += nsid_buf_size;
745 	}
746 
747 	return 0;
748 }
749 
nvme_state_is_live(enum nvme_ana_state state)750 static inline bool nvme_state_is_live(enum nvme_ana_state state)
751 {
752 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
753 }
754 
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)755 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
756 		struct nvme_ns *ns)
757 {
758 	ns->ana_grpid = le32_to_cpu(desc->grpid);
759 	ns->ana_state = desc->state;
760 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
761 	/*
762 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
763 	 * and in turn to this path device.  However we cannot accept this I/O
764 	 * if the controller is not live.  This may deadlock if called from
765 	 * nvme_mpath_init_identify() and the ctrl will never complete
766 	 * initialization, preventing I/O from completing.  For this case we
767 	 * will reprocess the ANA log page in nvme_mpath_update() once the
768 	 * controller is ready.
769 	 */
770 	if (nvme_state_is_live(ns->ana_state) &&
771 	    nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
772 		nvme_mpath_set_live(ns);
773 	else {
774 		/*
775 		 * Add sysfs link from multipath head gendisk node to path
776 		 * device gendisk node.
777 		 * If path's ana state is live (i.e. state is either optimized
778 		 * or non-optimized) while we alloc the ns then sysfs link would
779 		 * be created from nvme_mpath_set_live(). In that case we would
780 		 * not fallthrough this code path. However for the path's ana
781 		 * state other than live, we call nvme_mpath_set_live() only
782 		 * after ana state transitioned to the live state. But we still
783 		 * want to create the sysfs link from head node to a path device
784 		 * irrespctive of the path's ana state.
785 		 * If we reach through here then it means that path's ana state
786 		 * is not live but still create the sysfs link to this path from
787 		 * head node if head node of the path has already come alive.
788 		 */
789 		if (test_bit(NVME_NSHEAD_DISK_LIVE, &ns->head->flags))
790 			nvme_mpath_add_sysfs_link(ns->head);
791 	}
792 }
793 
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)794 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
795 		struct nvme_ana_group_desc *desc, void *data)
796 {
797 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
798 	unsigned *nr_change_groups = data;
799 	struct nvme_ns *ns;
800 	int srcu_idx;
801 
802 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
803 			le32_to_cpu(desc->grpid),
804 			nvme_ana_state_names[desc->state]);
805 
806 	if (desc->state == NVME_ANA_CHANGE)
807 		(*nr_change_groups)++;
808 
809 	if (!nr_nsids)
810 		return 0;
811 
812 	srcu_idx = srcu_read_lock(&ctrl->srcu);
813 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
814 				 srcu_read_lock_held(&ctrl->srcu)) {
815 		unsigned nsid;
816 again:
817 		nsid = le32_to_cpu(desc->nsids[n]);
818 		if (ns->head->ns_id < nsid)
819 			continue;
820 		if (ns->head->ns_id == nsid)
821 			nvme_update_ns_ana_state(desc, ns);
822 		if (++n == nr_nsids)
823 			break;
824 		if (ns->head->ns_id > nsid)
825 			goto again;
826 	}
827 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
828 	return 0;
829 }
830 
nvme_read_ana_log(struct nvme_ctrl * ctrl)831 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
832 {
833 	u32 nr_change_groups = 0;
834 	int error;
835 
836 	mutex_lock(&ctrl->ana_lock);
837 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
838 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
839 	if (error) {
840 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
841 		goto out_unlock;
842 	}
843 
844 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
845 			nvme_update_ana_state);
846 	if (error)
847 		goto out_unlock;
848 
849 	/*
850 	 * In theory we should have an ANATT timer per group as they might enter
851 	 * the change state at different times.  But that is a lot of overhead
852 	 * just to protect against a target that keeps entering new changes
853 	 * states while never finishing previous ones.  But we'll still
854 	 * eventually time out once all groups are in change state, so this
855 	 * isn't a big deal.
856 	 *
857 	 * We also double the ANATT value to provide some slack for transports
858 	 * or AEN processing overhead.
859 	 */
860 	if (nr_change_groups)
861 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
862 	else
863 		timer_delete_sync(&ctrl->anatt_timer);
864 out_unlock:
865 	mutex_unlock(&ctrl->ana_lock);
866 	return error;
867 }
868 
nvme_ana_work(struct work_struct * work)869 static void nvme_ana_work(struct work_struct *work)
870 {
871 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
872 
873 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
874 		return;
875 
876 	nvme_read_ana_log(ctrl);
877 }
878 
nvme_mpath_update(struct nvme_ctrl * ctrl)879 void nvme_mpath_update(struct nvme_ctrl *ctrl)
880 {
881 	u32 nr_change_groups = 0;
882 
883 	if (!ctrl->ana_log_buf)
884 		return;
885 
886 	mutex_lock(&ctrl->ana_lock);
887 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
888 	mutex_unlock(&ctrl->ana_lock);
889 }
890 
nvme_anatt_timeout(struct timer_list * t)891 static void nvme_anatt_timeout(struct timer_list *t)
892 {
893 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
894 
895 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
896 	nvme_reset_ctrl(ctrl);
897 }
898 
nvme_mpath_stop(struct nvme_ctrl * ctrl)899 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
900 {
901 	if (!nvme_ctrl_use_ana(ctrl))
902 		return;
903 	timer_delete_sync(&ctrl->anatt_timer);
904 	cancel_work_sync(&ctrl->ana_work);
905 }
906 
907 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
908 	struct device_attribute subsys_attr_##_name =	\
909 		__ATTR(_name, _mode, _show, _store)
910 
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)911 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
912 		struct device_attribute *attr, char *buf)
913 {
914 	struct nvme_subsystem *subsys =
915 		container_of(dev, struct nvme_subsystem, dev);
916 
917 	return sysfs_emit(buf, "%s\n",
918 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
919 }
920 
nvme_subsys_iopolicy_update(struct nvme_subsystem * subsys,int iopolicy)921 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
922 		int iopolicy)
923 {
924 	struct nvme_ctrl *ctrl;
925 	int old_iopolicy = READ_ONCE(subsys->iopolicy);
926 
927 	if (old_iopolicy == iopolicy)
928 		return;
929 
930 	WRITE_ONCE(subsys->iopolicy, iopolicy);
931 
932 	/* iopolicy changes clear the mpath by design */
933 	mutex_lock(&nvme_subsystems_lock);
934 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
935 		nvme_mpath_clear_ctrl_paths(ctrl);
936 	mutex_unlock(&nvme_subsystems_lock);
937 
938 	pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
939 			subsys->subnqn,
940 			nvme_iopolicy_names[old_iopolicy],
941 			nvme_iopolicy_names[iopolicy]);
942 }
943 
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)944 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
945 		struct device_attribute *attr, const char *buf, size_t count)
946 {
947 	struct nvme_subsystem *subsys =
948 		container_of(dev, struct nvme_subsystem, dev);
949 	int i;
950 
951 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
952 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
953 			nvme_subsys_iopolicy_update(subsys, i);
954 			return count;
955 		}
956 	}
957 
958 	return -EINVAL;
959 }
960 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
961 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
962 
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)963 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
964 		char *buf)
965 {
966 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
967 }
968 DEVICE_ATTR_RO(ana_grpid);
969 
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)970 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
971 		char *buf)
972 {
973 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
974 
975 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
976 }
977 DEVICE_ATTR_RO(ana_state);
978 
queue_depth_show(struct device * dev,struct device_attribute * attr,char * buf)979 static ssize_t queue_depth_show(struct device *dev,
980 		struct device_attribute *attr, char *buf)
981 {
982 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
983 
984 	if (ns->head->subsys->iopolicy != NVME_IOPOLICY_QD)
985 		return 0;
986 
987 	return sysfs_emit(buf, "%d\n", atomic_read(&ns->ctrl->nr_active));
988 }
989 DEVICE_ATTR_RO(queue_depth);
990 
numa_nodes_show(struct device * dev,struct device_attribute * attr,char * buf)991 static ssize_t numa_nodes_show(struct device *dev, struct device_attribute *attr,
992 		char *buf)
993 {
994 	int node, srcu_idx;
995 	nodemask_t numa_nodes;
996 	struct nvme_ns *current_ns;
997 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
998 	struct nvme_ns_head *head = ns->head;
999 
1000 	if (head->subsys->iopolicy != NVME_IOPOLICY_NUMA)
1001 		return 0;
1002 
1003 	nodes_clear(numa_nodes);
1004 
1005 	srcu_idx = srcu_read_lock(&head->srcu);
1006 	for_each_node(node) {
1007 		current_ns = srcu_dereference(head->current_path[node],
1008 				&head->srcu);
1009 		if (ns == current_ns)
1010 			node_set(node, numa_nodes);
1011 	}
1012 	srcu_read_unlock(&head->srcu, srcu_idx);
1013 
1014 	return sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&numa_nodes));
1015 }
1016 DEVICE_ATTR_RO(numa_nodes);
1017 
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)1018 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
1019 		struct nvme_ana_group_desc *desc, void *data)
1020 {
1021 	struct nvme_ana_group_desc *dst = data;
1022 
1023 	if (desc->grpid != dst->grpid)
1024 		return 0;
1025 
1026 	*dst = *desc;
1027 	return -ENXIO; /* just break out of the loop */
1028 }
1029 
nvme_mpath_add_sysfs_link(struct nvme_ns_head * head)1030 void nvme_mpath_add_sysfs_link(struct nvme_ns_head *head)
1031 {
1032 	struct device *target;
1033 	int rc, srcu_idx;
1034 	struct nvme_ns *ns;
1035 	struct kobject *kobj;
1036 
1037 	/*
1038 	 * Ensure head disk node is already added otherwise we may get invalid
1039 	 * kobj for head disk node
1040 	 */
1041 	if (!test_bit(GD_ADDED, &head->disk->state))
1042 		return;
1043 
1044 	kobj = &disk_to_dev(head->disk)->kobj;
1045 
1046 	/*
1047 	 * loop through each ns chained through the head->list and create the
1048 	 * sysfs link from head node to the ns path node
1049 	 */
1050 	srcu_idx = srcu_read_lock(&head->srcu);
1051 
1052 	list_for_each_entry_rcu(ns, &head->list, siblings) {
1053 		/*
1054 		 * Ensure that ns path disk node is already added otherwise we
1055 		 * may get invalid kobj name for target
1056 		 */
1057 		if (!test_bit(GD_ADDED, &ns->disk->state))
1058 			continue;
1059 
1060 		/*
1061 		 * Avoid creating link if it already exists for the given path.
1062 		 * When path ana state transitions from optimized to non-
1063 		 * optimized or vice-versa, the nvme_mpath_set_live() is
1064 		 * invoked which in truns call this function. Now if the sysfs
1065 		 * link already exists for the given path and we attempt to re-
1066 		 * create the link then sysfs code would warn about it loudly.
1067 		 * So we evaluate NVME_NS_SYSFS_ATTR_LINK flag here to ensure
1068 		 * that we're not creating duplicate link.
1069 		 * The test_and_set_bit() is used because it is protecting
1070 		 * against multiple nvme paths being simultaneously added.
1071 		 */
1072 		if (test_and_set_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags))
1073 			continue;
1074 
1075 		target = disk_to_dev(ns->disk);
1076 		/*
1077 		 * Create sysfs link from head gendisk kobject @kobj to the
1078 		 * ns path gendisk kobject @target->kobj.
1079 		 */
1080 		rc = sysfs_add_link_to_group(kobj, nvme_ns_mpath_attr_group.name,
1081 				&target->kobj, dev_name(target));
1082 		if (unlikely(rc)) {
1083 			dev_err(disk_to_dev(ns->head->disk),
1084 					"failed to create link to %s\n",
1085 					dev_name(target));
1086 			clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags);
1087 		}
1088 	}
1089 
1090 	srcu_read_unlock(&head->srcu, srcu_idx);
1091 }
1092 
nvme_mpath_remove_sysfs_link(struct nvme_ns * ns)1093 void nvme_mpath_remove_sysfs_link(struct nvme_ns *ns)
1094 {
1095 	struct device *target;
1096 	struct kobject *kobj;
1097 
1098 	if (!test_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags))
1099 		return;
1100 
1101 	target = disk_to_dev(ns->disk);
1102 	kobj = &disk_to_dev(ns->head->disk)->kobj;
1103 	sysfs_remove_link_from_group(kobj, nvme_ns_mpath_attr_group.name,
1104 			dev_name(target));
1105 	clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags);
1106 }
1107 
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)1108 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
1109 {
1110 	if (nvme_ctrl_use_ana(ns->ctrl)) {
1111 		struct nvme_ana_group_desc desc = {
1112 			.grpid = anagrpid,
1113 			.state = 0,
1114 		};
1115 
1116 		mutex_lock(&ns->ctrl->ana_lock);
1117 		ns->ana_grpid = le32_to_cpu(anagrpid);
1118 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
1119 		mutex_unlock(&ns->ctrl->ana_lock);
1120 		if (desc.state) {
1121 			/* found the group desc: update */
1122 			nvme_update_ns_ana_state(&desc, ns);
1123 		} else {
1124 			/* group desc not found: trigger a re-read */
1125 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
1126 			queue_work(nvme_wq, &ns->ctrl->ana_work);
1127 		}
1128 	} else {
1129 		ns->ana_state = NVME_ANA_OPTIMIZED;
1130 		nvme_mpath_set_live(ns);
1131 	}
1132 
1133 #ifdef CONFIG_BLK_DEV_ZONED
1134 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
1135 		ns->head->disk->nr_zones = ns->disk->nr_zones;
1136 #endif
1137 }
1138 
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)1139 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
1140 {
1141 	if (!head->disk)
1142 		return;
1143 	if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
1144 		nvme_cdev_del(&head->cdev, &head->cdev_device);
1145 		/*
1146 		 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1147 		 * to allow multipath to fail all I/O.
1148 		 */
1149 		synchronize_srcu(&head->srcu);
1150 		kblockd_schedule_work(&head->requeue_work);
1151 		del_gendisk(head->disk);
1152 	}
1153 }
1154 
nvme_mpath_remove_disk(struct nvme_ns_head * head)1155 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1156 {
1157 	if (!head->disk)
1158 		return;
1159 	/* make sure all pending bios are cleaned up */
1160 	kblockd_schedule_work(&head->requeue_work);
1161 	flush_work(&head->requeue_work);
1162 	flush_work(&head->partition_scan_work);
1163 	put_disk(head->disk);
1164 }
1165 
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)1166 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1167 {
1168 	mutex_init(&ctrl->ana_lock);
1169 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1170 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1171 }
1172 
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)1173 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1174 {
1175 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1176 	size_t ana_log_size;
1177 	int error = 0;
1178 
1179 	/* check if multipath is enabled and we have the capability */
1180 	if (!multipath || !ctrl->subsys ||
1181 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1182 		return 0;
1183 
1184 	/* initialize this in the identify path to cover controller resets */
1185 	atomic_set(&ctrl->nr_active, 0);
1186 
1187 	if (!ctrl->max_namespaces ||
1188 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1189 		dev_err(ctrl->device,
1190 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
1191 		return -EINVAL;
1192 	}
1193 
1194 	ctrl->anacap = id->anacap;
1195 	ctrl->anatt = id->anatt;
1196 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1197 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1198 
1199 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1200 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1201 		ctrl->max_namespaces * sizeof(__le32);
1202 	if (ana_log_size > max_transfer_size) {
1203 		dev_err(ctrl->device,
1204 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
1205 			ana_log_size, max_transfer_size);
1206 		dev_err(ctrl->device, "disabling ANA support.\n");
1207 		goto out_uninit;
1208 	}
1209 	if (ana_log_size > ctrl->ana_log_size) {
1210 		nvme_mpath_stop(ctrl);
1211 		nvme_mpath_uninit(ctrl);
1212 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1213 		if (!ctrl->ana_log_buf)
1214 			return -ENOMEM;
1215 	}
1216 	ctrl->ana_log_size = ana_log_size;
1217 	error = nvme_read_ana_log(ctrl);
1218 	if (error)
1219 		goto out_uninit;
1220 	return 0;
1221 
1222 out_uninit:
1223 	nvme_mpath_uninit(ctrl);
1224 	return error;
1225 }
1226 
nvme_mpath_uninit(struct nvme_ctrl * ctrl)1227 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1228 {
1229 	kvfree(ctrl->ana_log_buf);
1230 	ctrl->ana_log_buf = NULL;
1231 	ctrl->ana_log_size = 0;
1232 }
1233