1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2011-2014, Intel Corporation.
4 * Copyright (c) 2017-2021 Christoph Hellwig.
5 */
6 #include <linux/blk-integrity.h>
7 #include <linux/ptrace.h> /* for force_successful_syscall_return */
8 #include <linux/nvme_ioctl.h>
9 #include <linux/io_uring/cmd.h>
10 #include "nvme.h"
11
12 enum {
13 NVME_IOCTL_VEC = (1 << 0),
14 NVME_IOCTL_PARTITION = (1 << 1),
15 };
16
nvme_cmd_allowed(struct nvme_ns * ns,struct nvme_command * c,unsigned int flags,bool open_for_write)17 static bool nvme_cmd_allowed(struct nvme_ns *ns, struct nvme_command *c,
18 unsigned int flags, bool open_for_write)
19 {
20 u32 effects;
21
22 /*
23 * Do not allow unprivileged passthrough on partitions, as that allows an
24 * escape from the containment of the partition.
25 */
26 if (flags & NVME_IOCTL_PARTITION)
27 goto admin;
28
29 /*
30 * Do not allow unprivileged processes to send vendor specific or fabrics
31 * commands as we can't be sure about their effects.
32 */
33 if (c->common.opcode >= nvme_cmd_vendor_start ||
34 c->common.opcode == nvme_fabrics_command)
35 goto admin;
36
37 /*
38 * Do not allow unprivileged passthrough of admin commands except
39 * for a subset of identify commands that contain information required
40 * to form proper I/O commands in userspace and do not expose any
41 * potentially sensitive information.
42 */
43 if (!ns) {
44 if (c->common.opcode == nvme_admin_identify) {
45 switch (c->identify.cns) {
46 case NVME_ID_CNS_NS:
47 case NVME_ID_CNS_CS_NS:
48 case NVME_ID_CNS_NS_CS_INDEP:
49 case NVME_ID_CNS_CS_CTRL:
50 case NVME_ID_CNS_CTRL:
51 return true;
52 }
53 }
54 goto admin;
55 }
56
57 /*
58 * Check if the controller provides a Commands Supported and Effects log
59 * and marks this command as supported. If not reject unprivileged
60 * passthrough.
61 */
62 effects = nvme_command_effects(ns->ctrl, ns, c->common.opcode);
63 if (!(effects & NVME_CMD_EFFECTS_CSUPP))
64 goto admin;
65
66 /*
67 * Don't allow passthrough for command that have intrusive (or unknown)
68 * effects.
69 */
70 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
71 NVME_CMD_EFFECTS_UUID_SEL |
72 NVME_CMD_EFFECTS_SCOPE_MASK))
73 goto admin;
74
75 /*
76 * Only allow I/O commands that transfer data to the controller or that
77 * change the logical block contents if the file descriptor is open for
78 * writing.
79 */
80 if ((nvme_is_write(c) || (effects & NVME_CMD_EFFECTS_LBCC)) &&
81 !open_for_write)
82 goto admin;
83
84 return true;
85 admin:
86 return capable(CAP_SYS_ADMIN);
87 }
88
89 /*
90 * Convert integer values from ioctl structures to user pointers, silently
91 * ignoring the upper bits in the compat case to match behaviour of 32-bit
92 * kernels.
93 */
nvme_to_user_ptr(uintptr_t ptrval)94 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
95 {
96 if (in_compat_syscall())
97 ptrval = (compat_uptr_t)ptrval;
98 return (void __user *)ptrval;
99 }
100
nvme_alloc_user_request(struct request_queue * q,struct nvme_command * cmd,blk_opf_t rq_flags,blk_mq_req_flags_t blk_flags)101 static struct request *nvme_alloc_user_request(struct request_queue *q,
102 struct nvme_command *cmd, blk_opf_t rq_flags,
103 blk_mq_req_flags_t blk_flags)
104 {
105 struct request *req;
106
107 req = blk_mq_alloc_request(q, nvme_req_op(cmd) | rq_flags, blk_flags);
108 if (IS_ERR(req))
109 return req;
110 nvme_init_request(req, cmd);
111 nvme_req(req)->flags |= NVME_REQ_USERCMD;
112 return req;
113 }
114
nvme_map_user_request(struct request * req,u64 ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,struct iov_iter * iter,unsigned int flags)115 static int nvme_map_user_request(struct request *req, u64 ubuffer,
116 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
117 struct iov_iter *iter, unsigned int flags)
118 {
119 struct request_queue *q = req->q;
120 struct nvme_ns *ns = q->queuedata;
121 struct block_device *bdev = ns ? ns->disk->part0 : NULL;
122 bool supports_metadata = bdev && blk_get_integrity(bdev->bd_disk);
123 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
124 bool has_metadata = meta_buffer && meta_len;
125 struct bio *bio = NULL;
126 int ret;
127
128 if (!nvme_ctrl_sgl_supported(ctrl))
129 dev_warn_once(ctrl->device, "using unchecked data buffer\n");
130 if (has_metadata) {
131 if (!supports_metadata)
132 return -EINVAL;
133
134 if (!nvme_ctrl_meta_sgl_supported(ctrl))
135 dev_warn_once(ctrl->device,
136 "using unchecked metadata buffer\n");
137 }
138
139 if (iter)
140 ret = blk_rq_map_user_iov(q, req, NULL, iter, GFP_KERNEL);
141 else
142 ret = blk_rq_map_user_io(req, NULL, nvme_to_user_ptr(ubuffer),
143 bufflen, GFP_KERNEL, flags & NVME_IOCTL_VEC, 0,
144 0, rq_data_dir(req));
145
146 if (ret)
147 return ret;
148
149 bio = req->bio;
150 if (bdev)
151 bio_set_dev(bio, bdev);
152
153 if (has_metadata) {
154 ret = blk_rq_integrity_map_user(req, meta_buffer, meta_len);
155 if (ret)
156 goto out_unmap;
157 }
158
159 return ret;
160
161 out_unmap:
162 if (bio)
163 blk_rq_unmap_user(bio);
164 return ret;
165 }
166
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,u64 ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u64 * result,unsigned timeout,unsigned int flags)167 static int nvme_submit_user_cmd(struct request_queue *q,
168 struct nvme_command *cmd, u64 ubuffer, unsigned bufflen,
169 void __user *meta_buffer, unsigned meta_len,
170 u64 *result, unsigned timeout, unsigned int flags)
171 {
172 struct nvme_ns *ns = q->queuedata;
173 struct nvme_ctrl *ctrl;
174 struct request *req;
175 struct bio *bio;
176 u32 effects;
177 int ret;
178
179 req = nvme_alloc_user_request(q, cmd, 0, 0);
180 if (IS_ERR(req))
181 return PTR_ERR(req);
182
183 req->timeout = timeout;
184 if (ubuffer && bufflen) {
185 ret = nvme_map_user_request(req, ubuffer, bufflen, meta_buffer,
186 meta_len, NULL, flags);
187 if (ret)
188 goto out_free_req;
189 }
190
191 bio = req->bio;
192 ctrl = nvme_req(req)->ctrl;
193
194 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
195 ret = nvme_execute_rq(req, false);
196 if (result)
197 *result = le64_to_cpu(nvme_req(req)->result.u64);
198 if (bio)
199 blk_rq_unmap_user(bio);
200 blk_mq_free_request(req);
201
202 if (effects)
203 nvme_passthru_end(ctrl, ns, effects, cmd, ret);
204 return ret;
205
206 out_free_req:
207 blk_mq_free_request(req);
208 return ret;
209 }
210
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)211 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
212 {
213 struct nvme_user_io io;
214 struct nvme_command c;
215 unsigned length, meta_len;
216 void __user *metadata;
217
218 if (copy_from_user(&io, uio, sizeof(io)))
219 return -EFAULT;
220 if (io.flags)
221 return -EINVAL;
222
223 switch (io.opcode) {
224 case nvme_cmd_write:
225 case nvme_cmd_read:
226 case nvme_cmd_compare:
227 break;
228 default:
229 return -EINVAL;
230 }
231
232 length = (io.nblocks + 1) << ns->head->lba_shift;
233
234 if ((io.control & NVME_RW_PRINFO_PRACT) &&
235 (ns->head->ms == ns->head->pi_size)) {
236 /*
237 * Protection information is stripped/inserted by the
238 * controller.
239 */
240 if (nvme_to_user_ptr(io.metadata))
241 return -EINVAL;
242 meta_len = 0;
243 metadata = NULL;
244 } else {
245 meta_len = (io.nblocks + 1) * ns->head->ms;
246 metadata = nvme_to_user_ptr(io.metadata);
247 }
248
249 if (ns->head->features & NVME_NS_EXT_LBAS) {
250 length += meta_len;
251 meta_len = 0;
252 } else if (meta_len) {
253 if ((io.metadata & 3) || !io.metadata)
254 return -EINVAL;
255 }
256
257 memset(&c, 0, sizeof(c));
258 c.rw.opcode = io.opcode;
259 c.rw.flags = io.flags;
260 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
261 c.rw.slba = cpu_to_le64(io.slba);
262 c.rw.length = cpu_to_le16(io.nblocks);
263 c.rw.control = cpu_to_le16(io.control);
264 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
265 c.rw.reftag = cpu_to_le32(io.reftag);
266 c.rw.lbat = cpu_to_le16(io.apptag);
267 c.rw.lbatm = cpu_to_le16(io.appmask);
268
269 return nvme_submit_user_cmd(ns->queue, &c, io.addr, length, metadata,
270 meta_len, NULL, 0, 0);
271 }
272
nvme_validate_passthru_nsid(struct nvme_ctrl * ctrl,struct nvme_ns * ns,__u32 nsid)273 static bool nvme_validate_passthru_nsid(struct nvme_ctrl *ctrl,
274 struct nvme_ns *ns, __u32 nsid)
275 {
276 if (ns && nsid != ns->head->ns_id) {
277 dev_err(ctrl->device,
278 "%s: nsid (%u) in cmd does not match nsid (%u) of namespace\n",
279 current->comm, nsid, ns->head->ns_id);
280 return false;
281 }
282
283 return true;
284 }
285
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd,unsigned int flags,bool open_for_write)286 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
287 struct nvme_passthru_cmd __user *ucmd, unsigned int flags,
288 bool open_for_write)
289 {
290 struct nvme_passthru_cmd cmd;
291 struct nvme_command c;
292 unsigned timeout = 0;
293 u64 result;
294 int status;
295
296 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
297 return -EFAULT;
298 if (cmd.flags)
299 return -EINVAL;
300 if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
301 return -EINVAL;
302
303 memset(&c, 0, sizeof(c));
304 c.common.opcode = cmd.opcode;
305 c.common.flags = cmd.flags;
306 c.common.nsid = cpu_to_le32(cmd.nsid);
307 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
308 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
309 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
310 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
311 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
312 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
313 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
314 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
315
316 if (!nvme_cmd_allowed(ns, &c, 0, open_for_write))
317 return -EACCES;
318
319 if (cmd.timeout_ms)
320 timeout = msecs_to_jiffies(cmd.timeout_ms);
321
322 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
323 cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
324 cmd.metadata_len, &result, timeout, 0);
325
326 if (status >= 0) {
327 if (put_user(result, &ucmd->result))
328 return -EFAULT;
329 }
330
331 return status;
332 }
333
nvme_user_cmd64(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd64 __user * ucmd,unsigned int flags,bool open_for_write)334 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
335 struct nvme_passthru_cmd64 __user *ucmd, unsigned int flags,
336 bool open_for_write)
337 {
338 struct nvme_passthru_cmd64 cmd;
339 struct nvme_command c;
340 unsigned timeout = 0;
341 int status;
342
343 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
344 return -EFAULT;
345 if (cmd.flags)
346 return -EINVAL;
347 if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
348 return -EINVAL;
349
350 memset(&c, 0, sizeof(c));
351 c.common.opcode = cmd.opcode;
352 c.common.flags = cmd.flags;
353 c.common.nsid = cpu_to_le32(cmd.nsid);
354 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
355 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
356 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
357 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
358 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
359 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
360 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
361 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
362
363 if (!nvme_cmd_allowed(ns, &c, flags, open_for_write))
364 return -EACCES;
365
366 if (cmd.timeout_ms)
367 timeout = msecs_to_jiffies(cmd.timeout_ms);
368
369 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
370 cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
371 cmd.metadata_len, &cmd.result, timeout, flags);
372
373 if (status >= 0) {
374 if (put_user(cmd.result, &ucmd->result))
375 return -EFAULT;
376 }
377
378 return status;
379 }
380
381 struct nvme_uring_data {
382 __u64 metadata;
383 __u64 addr;
384 __u32 data_len;
385 __u32 metadata_len;
386 __u32 timeout_ms;
387 };
388
389 /*
390 * This overlays struct io_uring_cmd pdu.
391 * Expect build errors if this grows larger than that.
392 */
393 struct nvme_uring_cmd_pdu {
394 struct request *req;
395 struct bio *bio;
396 u64 result;
397 int status;
398 };
399
nvme_uring_cmd_pdu(struct io_uring_cmd * ioucmd)400 static inline struct nvme_uring_cmd_pdu *nvme_uring_cmd_pdu(
401 struct io_uring_cmd *ioucmd)
402 {
403 return io_uring_cmd_to_pdu(ioucmd, struct nvme_uring_cmd_pdu);
404 }
405
nvme_uring_task_cb(struct io_uring_cmd * ioucmd,unsigned issue_flags)406 static void nvme_uring_task_cb(struct io_uring_cmd *ioucmd,
407 unsigned issue_flags)
408 {
409 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
410
411 if (pdu->bio)
412 blk_rq_unmap_user(pdu->bio);
413 io_uring_cmd_done(ioucmd, pdu->status, pdu->result, issue_flags);
414 }
415
nvme_uring_cmd_end_io(struct request * req,blk_status_t err)416 static enum rq_end_io_ret nvme_uring_cmd_end_io(struct request *req,
417 blk_status_t err)
418 {
419 struct io_uring_cmd *ioucmd = req->end_io_data;
420 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
421
422 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) {
423 pdu->status = -EINTR;
424 } else {
425 pdu->status = nvme_req(req)->status;
426 if (!pdu->status)
427 pdu->status = blk_status_to_errno(err);
428 }
429 pdu->result = le64_to_cpu(nvme_req(req)->result.u64);
430
431 /*
432 * IOPOLL could potentially complete this request directly, but
433 * if multiple rings are polling on the same queue, then it's possible
434 * for one ring to find completions for another ring. Punting the
435 * completion via task_work will always direct it to the right
436 * location, rather than potentially complete requests for ringA
437 * under iopoll invocations from ringB.
438 */
439 io_uring_cmd_do_in_task_lazy(ioucmd, nvme_uring_task_cb);
440 return RQ_END_IO_FREE;
441 }
442
nvme_uring_cmd_io(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct io_uring_cmd * ioucmd,unsigned int issue_flags,bool vec)443 static int nvme_uring_cmd_io(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
444 struct io_uring_cmd *ioucmd, unsigned int issue_flags, bool vec)
445 {
446 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
447 const struct nvme_uring_cmd *cmd = io_uring_sqe_cmd(ioucmd->sqe);
448 struct request_queue *q = ns ? ns->queue : ctrl->admin_q;
449 struct nvme_uring_data d;
450 struct nvme_command c;
451 struct iov_iter iter;
452 struct iov_iter *map_iter = NULL;
453 struct request *req;
454 blk_opf_t rq_flags = REQ_ALLOC_CACHE;
455 blk_mq_req_flags_t blk_flags = 0;
456 int ret;
457
458 c.common.opcode = READ_ONCE(cmd->opcode);
459 c.common.flags = READ_ONCE(cmd->flags);
460 if (c.common.flags)
461 return -EINVAL;
462
463 c.common.command_id = 0;
464 c.common.nsid = cpu_to_le32(cmd->nsid);
465 if (!nvme_validate_passthru_nsid(ctrl, ns, le32_to_cpu(c.common.nsid)))
466 return -EINVAL;
467
468 c.common.cdw2[0] = cpu_to_le32(READ_ONCE(cmd->cdw2));
469 c.common.cdw2[1] = cpu_to_le32(READ_ONCE(cmd->cdw3));
470 c.common.metadata = 0;
471 c.common.dptr.prp1 = c.common.dptr.prp2 = 0;
472 c.common.cdw10 = cpu_to_le32(READ_ONCE(cmd->cdw10));
473 c.common.cdw11 = cpu_to_le32(READ_ONCE(cmd->cdw11));
474 c.common.cdw12 = cpu_to_le32(READ_ONCE(cmd->cdw12));
475 c.common.cdw13 = cpu_to_le32(READ_ONCE(cmd->cdw13));
476 c.common.cdw14 = cpu_to_le32(READ_ONCE(cmd->cdw14));
477 c.common.cdw15 = cpu_to_le32(READ_ONCE(cmd->cdw15));
478
479 if (!nvme_cmd_allowed(ns, &c, 0, ioucmd->file->f_mode & FMODE_WRITE))
480 return -EACCES;
481
482 d.metadata = READ_ONCE(cmd->metadata);
483 d.addr = READ_ONCE(cmd->addr);
484 d.data_len = READ_ONCE(cmd->data_len);
485 d.metadata_len = READ_ONCE(cmd->metadata_len);
486 d.timeout_ms = READ_ONCE(cmd->timeout_ms);
487
488 if (d.data_len && (ioucmd->flags & IORING_URING_CMD_FIXED)) {
489 int ddir = nvme_is_write(&c) ? WRITE : READ;
490
491 if (vec)
492 ret = io_uring_cmd_import_fixed_vec(ioucmd,
493 u64_to_user_ptr(d.addr), d.data_len,
494 ddir, &iter, issue_flags);
495 else
496 ret = io_uring_cmd_import_fixed(d.addr, d.data_len,
497 ddir, &iter, ioucmd, issue_flags);
498 if (ret < 0)
499 return ret;
500
501 map_iter = &iter;
502 }
503
504 if (issue_flags & IO_URING_F_NONBLOCK) {
505 rq_flags |= REQ_NOWAIT;
506 blk_flags = BLK_MQ_REQ_NOWAIT;
507 }
508 if (issue_flags & IO_URING_F_IOPOLL)
509 rq_flags |= REQ_POLLED;
510
511 req = nvme_alloc_user_request(q, &c, rq_flags, blk_flags);
512 if (IS_ERR(req))
513 return PTR_ERR(req);
514 req->timeout = d.timeout_ms ? msecs_to_jiffies(d.timeout_ms) : 0;
515
516 if (d.data_len) {
517 ret = nvme_map_user_request(req, d.addr, d.data_len,
518 nvme_to_user_ptr(d.metadata), d.metadata_len,
519 map_iter, vec ? NVME_IOCTL_VEC : 0);
520 if (ret)
521 goto out_free_req;
522 }
523
524 /* to free bio on completion, as req->bio will be null at that time */
525 pdu->bio = req->bio;
526 pdu->req = req;
527 req->end_io_data = ioucmd;
528 req->end_io = nvme_uring_cmd_end_io;
529 blk_execute_rq_nowait(req, false);
530 return -EIOCBQUEUED;
531
532 out_free_req:
533 blk_mq_free_request(req);
534 return ret;
535 }
536
is_ctrl_ioctl(unsigned int cmd)537 static bool is_ctrl_ioctl(unsigned int cmd)
538 {
539 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
540 return true;
541 if (is_sed_ioctl(cmd))
542 return true;
543 return false;
544 }
545
nvme_ctrl_ioctl(struct nvme_ctrl * ctrl,unsigned int cmd,void __user * argp,bool open_for_write)546 static int nvme_ctrl_ioctl(struct nvme_ctrl *ctrl, unsigned int cmd,
547 void __user *argp, bool open_for_write)
548 {
549 switch (cmd) {
550 case NVME_IOCTL_ADMIN_CMD:
551 return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
552 case NVME_IOCTL_ADMIN64_CMD:
553 return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
554 default:
555 return sed_ioctl(ctrl->opal_dev, cmd, argp);
556 }
557 }
558
559 #ifdef COMPAT_FOR_U64_ALIGNMENT
560 struct nvme_user_io32 {
561 __u8 opcode;
562 __u8 flags;
563 __u16 control;
564 __u16 nblocks;
565 __u16 rsvd;
566 __u64 metadata;
567 __u64 addr;
568 __u64 slba;
569 __u32 dsmgmt;
570 __u32 reftag;
571 __u16 apptag;
572 __u16 appmask;
573 } __attribute__((__packed__));
574 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
575 #endif /* COMPAT_FOR_U64_ALIGNMENT */
576
nvme_ns_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,unsigned int flags,bool open_for_write)577 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned int cmd,
578 void __user *argp, unsigned int flags, bool open_for_write)
579 {
580 switch (cmd) {
581 case NVME_IOCTL_ID:
582 force_successful_syscall_return();
583 return ns->head->ns_id;
584 case NVME_IOCTL_IO_CMD:
585 return nvme_user_cmd(ns->ctrl, ns, argp, flags, open_for_write);
586 /*
587 * struct nvme_user_io can have different padding on some 32-bit ABIs.
588 * Just accept the compat version as all fields that are used are the
589 * same size and at the same offset.
590 */
591 #ifdef COMPAT_FOR_U64_ALIGNMENT
592 case NVME_IOCTL_SUBMIT_IO32:
593 #endif
594 case NVME_IOCTL_SUBMIT_IO:
595 return nvme_submit_io(ns, argp);
596 case NVME_IOCTL_IO64_CMD_VEC:
597 flags |= NVME_IOCTL_VEC;
598 fallthrough;
599 case NVME_IOCTL_IO64_CMD:
600 return nvme_user_cmd64(ns->ctrl, ns, argp, flags,
601 open_for_write);
602 default:
603 return -ENOTTY;
604 }
605 }
606
nvme_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)607 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
608 unsigned int cmd, unsigned long arg)
609 {
610 struct nvme_ns *ns = bdev->bd_disk->private_data;
611 bool open_for_write = mode & BLK_OPEN_WRITE;
612 void __user *argp = (void __user *)arg;
613 unsigned int flags = 0;
614
615 if (bdev_is_partition(bdev))
616 flags |= NVME_IOCTL_PARTITION;
617
618 if (is_ctrl_ioctl(cmd))
619 return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
620 return nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
621 }
622
nvme_ns_chr_ioctl(struct file * file,unsigned int cmd,unsigned long arg)623 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
624 {
625 struct nvme_ns *ns =
626 container_of(file_inode(file)->i_cdev, struct nvme_ns, cdev);
627 bool open_for_write = file->f_mode & FMODE_WRITE;
628 void __user *argp = (void __user *)arg;
629
630 if (is_ctrl_ioctl(cmd))
631 return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
632 return nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
633 }
634
nvme_uring_cmd_checks(unsigned int issue_flags)635 static int nvme_uring_cmd_checks(unsigned int issue_flags)
636 {
637
638 /* NVMe passthrough requires big SQE/CQE support */
639 if ((issue_flags & (IO_URING_F_SQE128|IO_URING_F_CQE32)) !=
640 (IO_URING_F_SQE128|IO_URING_F_CQE32))
641 return -EOPNOTSUPP;
642 return 0;
643 }
644
nvme_ns_uring_cmd(struct nvme_ns * ns,struct io_uring_cmd * ioucmd,unsigned int issue_flags)645 static int nvme_ns_uring_cmd(struct nvme_ns *ns, struct io_uring_cmd *ioucmd,
646 unsigned int issue_flags)
647 {
648 struct nvme_ctrl *ctrl = ns->ctrl;
649 int ret;
650
651 ret = nvme_uring_cmd_checks(issue_flags);
652 if (ret)
653 return ret;
654
655 switch (ioucmd->cmd_op) {
656 case NVME_URING_CMD_IO:
657 ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, false);
658 break;
659 case NVME_URING_CMD_IO_VEC:
660 ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, true);
661 break;
662 default:
663 ret = -ENOTTY;
664 }
665
666 return ret;
667 }
668
nvme_ns_chr_uring_cmd(struct io_uring_cmd * ioucmd,unsigned int issue_flags)669 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
670 {
671 struct nvme_ns *ns = container_of(file_inode(ioucmd->file)->i_cdev,
672 struct nvme_ns, cdev);
673
674 return nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
675 }
676
nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd * ioucmd,struct io_comp_batch * iob,unsigned int poll_flags)677 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
678 struct io_comp_batch *iob,
679 unsigned int poll_flags)
680 {
681 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
682 struct request *req = pdu->req;
683
684 if (req && blk_rq_is_poll(req))
685 return blk_rq_poll(req, iob, poll_flags);
686 return 0;
687 }
688 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_ctrl_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,struct nvme_ns_head * head,int srcu_idx,bool open_for_write)689 static int nvme_ns_head_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
690 void __user *argp, struct nvme_ns_head *head, int srcu_idx,
691 bool open_for_write)
692 __releases(&head->srcu)
693 {
694 struct nvme_ctrl *ctrl = ns->ctrl;
695 int ret;
696
697 nvme_get_ctrl(ns->ctrl);
698 srcu_read_unlock(&head->srcu, srcu_idx);
699 ret = nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
700
701 nvme_put_ctrl(ctrl);
702 return ret;
703 }
704
nvme_ns_head_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)705 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
706 unsigned int cmd, unsigned long arg)
707 {
708 struct nvme_ns_head *head = bdev->bd_disk->private_data;
709 bool open_for_write = mode & BLK_OPEN_WRITE;
710 void __user *argp = (void __user *)arg;
711 struct nvme_ns *ns;
712 int srcu_idx, ret = -EWOULDBLOCK;
713 unsigned int flags = 0;
714
715 if (bdev_is_partition(bdev))
716 flags |= NVME_IOCTL_PARTITION;
717
718 srcu_idx = srcu_read_lock(&head->srcu);
719 ns = nvme_find_path(head);
720 if (!ns)
721 goto out_unlock;
722
723 /*
724 * Handle ioctls that apply to the controller instead of the namespace
725 * separately and drop the ns SRCU reference early. This avoids a
726 * deadlock when deleting namespaces using the passthrough interface.
727 */
728 if (is_ctrl_ioctl(cmd))
729 return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
730 open_for_write);
731
732 ret = nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
733 out_unlock:
734 srcu_read_unlock(&head->srcu, srcu_idx);
735 return ret;
736 }
737
nvme_ns_head_chr_ioctl(struct file * file,unsigned int cmd,unsigned long arg)738 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
739 unsigned long arg)
740 {
741 bool open_for_write = file->f_mode & FMODE_WRITE;
742 struct cdev *cdev = file_inode(file)->i_cdev;
743 struct nvme_ns_head *head =
744 container_of(cdev, struct nvme_ns_head, cdev);
745 void __user *argp = (void __user *)arg;
746 struct nvme_ns *ns;
747 int srcu_idx, ret = -EWOULDBLOCK;
748
749 srcu_idx = srcu_read_lock(&head->srcu);
750 ns = nvme_find_path(head);
751 if (!ns)
752 goto out_unlock;
753
754 if (is_ctrl_ioctl(cmd))
755 return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
756 open_for_write);
757
758 ret = nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
759 out_unlock:
760 srcu_read_unlock(&head->srcu, srcu_idx);
761 return ret;
762 }
763
nvme_ns_head_chr_uring_cmd(struct io_uring_cmd * ioucmd,unsigned int issue_flags)764 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
765 unsigned int issue_flags)
766 {
767 struct cdev *cdev = file_inode(ioucmd->file)->i_cdev;
768 struct nvme_ns_head *head = container_of(cdev, struct nvme_ns_head, cdev);
769 int srcu_idx = srcu_read_lock(&head->srcu);
770 struct nvme_ns *ns = nvme_find_path(head);
771 int ret = -EINVAL;
772
773 if (ns)
774 ret = nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
775 srcu_read_unlock(&head->srcu, srcu_idx);
776 return ret;
777 }
778 #endif /* CONFIG_NVME_MULTIPATH */
779
nvme_dev_uring_cmd(struct io_uring_cmd * ioucmd,unsigned int issue_flags)780 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
781 {
782 struct nvme_ctrl *ctrl = ioucmd->file->private_data;
783 int ret;
784
785 /* IOPOLL not supported yet */
786 if (issue_flags & IO_URING_F_IOPOLL)
787 return -EOPNOTSUPP;
788
789 ret = nvme_uring_cmd_checks(issue_flags);
790 if (ret)
791 return ret;
792
793 switch (ioucmd->cmd_op) {
794 case NVME_URING_CMD_ADMIN:
795 ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, false);
796 break;
797 case NVME_URING_CMD_ADMIN_VEC:
798 ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, true);
799 break;
800 default:
801 ret = -ENOTTY;
802 }
803
804 return ret;
805 }
806
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp,bool open_for_write)807 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp,
808 bool open_for_write)
809 {
810 struct nvme_ns *ns;
811 int ret, srcu_idx;
812
813 srcu_idx = srcu_read_lock(&ctrl->srcu);
814 if (list_empty(&ctrl->namespaces)) {
815 ret = -ENOTTY;
816 goto out_unlock;
817 }
818
819 ns = list_first_or_null_rcu(&ctrl->namespaces, struct nvme_ns, list);
820 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
821 dev_warn(ctrl->device,
822 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
823 ret = -EINVAL;
824 goto out_unlock;
825 }
826
827 dev_warn(ctrl->device,
828 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
829 if (!nvme_get_ns(ns)) {
830 ret = -ENXIO;
831 goto out_unlock;
832 }
833 srcu_read_unlock(&ctrl->srcu, srcu_idx);
834
835 ret = nvme_user_cmd(ctrl, ns, argp, 0, open_for_write);
836 nvme_put_ns(ns);
837 return ret;
838
839 out_unlock:
840 srcu_read_unlock(&ctrl->srcu, srcu_idx);
841 return ret;
842 }
843
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)844 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
845 unsigned long arg)
846 {
847 bool open_for_write = file->f_mode & FMODE_WRITE;
848 struct nvme_ctrl *ctrl = file->private_data;
849 void __user *argp = (void __user *)arg;
850
851 switch (cmd) {
852 case NVME_IOCTL_ADMIN_CMD:
853 return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
854 case NVME_IOCTL_ADMIN64_CMD:
855 return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
856 case NVME_IOCTL_IO_CMD:
857 return nvme_dev_user_cmd(ctrl, argp, open_for_write);
858 case NVME_IOCTL_RESET:
859 if (!capable(CAP_SYS_ADMIN))
860 return -EACCES;
861 dev_warn(ctrl->device, "resetting controller\n");
862 return nvme_reset_ctrl_sync(ctrl);
863 case NVME_IOCTL_SUBSYS_RESET:
864 if (!capable(CAP_SYS_ADMIN))
865 return -EACCES;
866 return nvme_reset_subsystem(ctrl);
867 case NVME_IOCTL_RESCAN:
868 if (!capable(CAP_SYS_ADMIN))
869 return -EACCES;
870 nvme_queue_scan(ctrl);
871 return 0;
872 default:
873 return -ENOTTY;
874 }
875 }
876