1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics loopback device.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/scatterlist.h>
8 #include <linux/blk-mq.h>
9 #include <linux/nvme.h>
10 #include <linux/module.h>
11 #include <linux/parser.h>
12 #include "nvmet.h"
13 #include "../host/nvme.h"
14 #include "../host/fabrics.h"
15
16 #define NVME_LOOP_MAX_SEGMENTS 256
17
18 struct nvme_loop_iod {
19 struct nvme_request nvme_req;
20 struct nvme_command cmd;
21 struct nvme_completion cqe;
22 struct nvmet_req req;
23 struct nvme_loop_queue *queue;
24 struct work_struct work;
25 struct sg_table sg_table;
26 struct scatterlist first_sgl[];
27 };
28
29 struct nvme_loop_ctrl {
30 struct nvme_loop_queue *queues;
31
32 struct blk_mq_tag_set admin_tag_set;
33
34 struct list_head list;
35 struct blk_mq_tag_set tag_set;
36 struct nvme_loop_iod async_event_iod;
37 struct nvme_ctrl ctrl;
38
39 struct nvmet_port *port;
40 };
41
to_loop_ctrl(struct nvme_ctrl * ctrl)42 static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl)
43 {
44 return container_of(ctrl, struct nvme_loop_ctrl, ctrl);
45 }
46
47 enum nvme_loop_queue_flags {
48 NVME_LOOP_Q_LIVE = 0,
49 };
50
51 struct nvme_loop_queue {
52 struct nvmet_cq nvme_cq;
53 struct nvmet_sq nvme_sq;
54 struct nvme_loop_ctrl *ctrl;
55 unsigned long flags;
56 };
57
58 static LIST_HEAD(nvme_loop_ports);
59 static DEFINE_MUTEX(nvme_loop_ports_mutex);
60
61 static LIST_HEAD(nvme_loop_ctrl_list);
62 static DEFINE_MUTEX(nvme_loop_ctrl_mutex);
63
64 static void nvme_loop_queue_response(struct nvmet_req *nvme_req);
65 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *ctrl);
66
67 static const struct nvmet_fabrics_ops nvme_loop_ops;
68
nvme_loop_queue_idx(struct nvme_loop_queue * queue)69 static inline int nvme_loop_queue_idx(struct nvme_loop_queue *queue)
70 {
71 return queue - queue->ctrl->queues;
72 }
73
nvme_loop_complete_rq(struct request * req)74 static void nvme_loop_complete_rq(struct request *req)
75 {
76 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
77
78 sg_free_table_chained(&iod->sg_table, NVME_INLINE_SG_CNT);
79 nvme_complete_rq(req);
80 }
81
nvme_loop_tagset(struct nvme_loop_queue * queue)82 static struct blk_mq_tags *nvme_loop_tagset(struct nvme_loop_queue *queue)
83 {
84 u32 queue_idx = nvme_loop_queue_idx(queue);
85
86 if (queue_idx == 0)
87 return queue->ctrl->admin_tag_set.tags[queue_idx];
88 return queue->ctrl->tag_set.tags[queue_idx - 1];
89 }
90
nvme_loop_queue_response(struct nvmet_req * req)91 static void nvme_loop_queue_response(struct nvmet_req *req)
92 {
93 struct nvme_loop_queue *queue =
94 container_of(req->sq, struct nvme_loop_queue, nvme_sq);
95 struct nvme_completion *cqe = req->cqe;
96
97 /*
98 * AEN requests are special as they don't time out and can
99 * survive any kind of queue freeze and often don't respond to
100 * aborts. We don't even bother to allocate a struct request
101 * for them but rather special case them here.
102 */
103 if (unlikely(nvme_is_aen_req(nvme_loop_queue_idx(queue),
104 cqe->command_id))) {
105 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
106 &cqe->result);
107 } else {
108 struct request *rq;
109
110 rq = nvme_find_rq(nvme_loop_tagset(queue), cqe->command_id);
111 if (!rq) {
112 dev_err(queue->ctrl->ctrl.device,
113 "got bad command_id %#x on queue %d\n",
114 cqe->command_id, nvme_loop_queue_idx(queue));
115 return;
116 }
117
118 if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
119 nvme_loop_complete_rq(rq);
120 }
121 }
122
nvme_loop_execute_work(struct work_struct * work)123 static void nvme_loop_execute_work(struct work_struct *work)
124 {
125 struct nvme_loop_iod *iod =
126 container_of(work, struct nvme_loop_iod, work);
127
128 iod->req.execute(&iod->req);
129 }
130
nvme_loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)131 static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx,
132 const struct blk_mq_queue_data *bd)
133 {
134 struct nvme_ns *ns = hctx->queue->queuedata;
135 struct nvme_loop_queue *queue = hctx->driver_data;
136 struct request *req = bd->rq;
137 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
138 bool queue_ready = test_bit(NVME_LOOP_Q_LIVE, &queue->flags);
139 blk_status_t ret;
140
141 if (!nvme_check_ready(&queue->ctrl->ctrl, req, queue_ready))
142 return nvme_fail_nonready_command(&queue->ctrl->ctrl, req);
143
144 ret = nvme_setup_cmd(ns, req);
145 if (ret)
146 return ret;
147
148 nvme_start_request(req);
149 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF;
150 iod->req.port = queue->ctrl->port;
151 if (!nvmet_req_init(&iod->req, &queue->nvme_cq,
152 &queue->nvme_sq, &nvme_loop_ops))
153 return BLK_STS_OK;
154
155 if (blk_rq_nr_phys_segments(req)) {
156 iod->sg_table.sgl = iod->first_sgl;
157 if (sg_alloc_table_chained(&iod->sg_table,
158 blk_rq_nr_phys_segments(req),
159 iod->sg_table.sgl, NVME_INLINE_SG_CNT)) {
160 nvme_cleanup_cmd(req);
161 return BLK_STS_RESOURCE;
162 }
163
164 iod->req.sg = iod->sg_table.sgl;
165 iod->req.sg_cnt = blk_rq_map_sg(req->q, req, iod->sg_table.sgl);
166 iod->req.transfer_len = blk_rq_payload_bytes(req);
167 }
168
169 queue_work(nvmet_wq, &iod->work);
170 return BLK_STS_OK;
171 }
172
nvme_loop_submit_async_event(struct nvme_ctrl * arg)173 static void nvme_loop_submit_async_event(struct nvme_ctrl *arg)
174 {
175 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(arg);
176 struct nvme_loop_queue *queue = &ctrl->queues[0];
177 struct nvme_loop_iod *iod = &ctrl->async_event_iod;
178
179 memset(&iod->cmd, 0, sizeof(iod->cmd));
180 iod->cmd.common.opcode = nvme_admin_async_event;
181 iod->cmd.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
182 iod->cmd.common.flags |= NVME_CMD_SGL_METABUF;
183
184 if (!nvmet_req_init(&iod->req, &queue->nvme_cq, &queue->nvme_sq,
185 &nvme_loop_ops)) {
186 dev_err(ctrl->ctrl.device, "failed async event work\n");
187 return;
188 }
189
190 queue_work(nvmet_wq, &iod->work);
191 }
192
nvme_loop_init_iod(struct nvme_loop_ctrl * ctrl,struct nvme_loop_iod * iod,unsigned int queue_idx)193 static int nvme_loop_init_iod(struct nvme_loop_ctrl *ctrl,
194 struct nvme_loop_iod *iod, unsigned int queue_idx)
195 {
196 iod->req.cmd = &iod->cmd;
197 iod->req.cqe = &iod->cqe;
198 iod->queue = &ctrl->queues[queue_idx];
199 INIT_WORK(&iod->work, nvme_loop_execute_work);
200 return 0;
201 }
202
nvme_loop_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)203 static int nvme_loop_init_request(struct blk_mq_tag_set *set,
204 struct request *req, unsigned int hctx_idx,
205 unsigned int numa_node)
206 {
207 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(set->driver_data);
208 struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
209
210 nvme_req(req)->ctrl = &ctrl->ctrl;
211 nvme_req(req)->cmd = &iod->cmd;
212 return nvme_loop_init_iod(ctrl, blk_mq_rq_to_pdu(req),
213 (set == &ctrl->tag_set) ? hctx_idx + 1 : 0);
214 }
215
216 static struct lock_class_key loop_hctx_fq_lock_key;
217
nvme_loop_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)218 static int nvme_loop_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
219 unsigned int hctx_idx)
220 {
221 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(data);
222 struct nvme_loop_queue *queue = &ctrl->queues[hctx_idx + 1];
223
224 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
225
226 /*
227 * flush_end_io() can be called recursively for us, so use our own
228 * lock class key for avoiding lockdep possible recursive locking,
229 * then we can remove the dynamically allocated lock class for each
230 * flush queue, that way may cause horrible boot delay.
231 */
232 blk_mq_hctx_set_fq_lock_class(hctx, &loop_hctx_fq_lock_key);
233
234 hctx->driver_data = queue;
235 return 0;
236 }
237
nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)238 static int nvme_loop_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
239 unsigned int hctx_idx)
240 {
241 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(data);
242 struct nvme_loop_queue *queue = &ctrl->queues[0];
243
244 BUG_ON(hctx_idx != 0);
245
246 hctx->driver_data = queue;
247 return 0;
248 }
249
250 static const struct blk_mq_ops nvme_loop_mq_ops = {
251 .queue_rq = nvme_loop_queue_rq,
252 .complete = nvme_loop_complete_rq,
253 .init_request = nvme_loop_init_request,
254 .init_hctx = nvme_loop_init_hctx,
255 };
256
257 static const struct blk_mq_ops nvme_loop_admin_mq_ops = {
258 .queue_rq = nvme_loop_queue_rq,
259 .complete = nvme_loop_complete_rq,
260 .init_request = nvme_loop_init_request,
261 .init_hctx = nvme_loop_init_admin_hctx,
262 };
263
nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl * ctrl)264 static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl)
265 {
266 if (!test_and_clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags))
267 return;
268 /*
269 * It's possible that some requests might have been added
270 * after admin queue is stopped/quiesced. So now start the
271 * queue to flush these requests to the completion.
272 */
273 nvme_unquiesce_admin_queue(&ctrl->ctrl);
274
275 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq);
276 nvme_remove_admin_tag_set(&ctrl->ctrl);
277 }
278
nvme_loop_free_ctrl(struct nvme_ctrl * nctrl)279 static void nvme_loop_free_ctrl(struct nvme_ctrl *nctrl)
280 {
281 struct nvme_loop_ctrl *ctrl = to_loop_ctrl(nctrl);
282
283 if (list_empty(&ctrl->list))
284 goto free_ctrl;
285
286 mutex_lock(&nvme_loop_ctrl_mutex);
287 list_del(&ctrl->list);
288 mutex_unlock(&nvme_loop_ctrl_mutex);
289
290 if (nctrl->tagset)
291 nvme_remove_io_tag_set(nctrl);
292 kfree(ctrl->queues);
293 nvmf_free_options(nctrl->opts);
294 free_ctrl:
295 kfree(ctrl);
296 }
297
nvme_loop_destroy_io_queues(struct nvme_loop_ctrl * ctrl)298 static void nvme_loop_destroy_io_queues(struct nvme_loop_ctrl *ctrl)
299 {
300 int i;
301
302 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
303 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags);
304 nvmet_sq_destroy(&ctrl->queues[i].nvme_sq);
305 }
306 ctrl->ctrl.queue_count = 1;
307 /*
308 * It's possible that some requests might have been added
309 * after io queue is stopped/quiesced. So now start the
310 * queue to flush these requests to the completion.
311 */
312 nvme_unquiesce_io_queues(&ctrl->ctrl);
313 }
314
nvme_loop_init_io_queues(struct nvme_loop_ctrl * ctrl)315 static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl)
316 {
317 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
318 unsigned int nr_io_queues;
319 int ret, i;
320
321 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
322 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
323 if (ret || !nr_io_queues)
324 return ret;
325
326 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", nr_io_queues);
327
328 for (i = 1; i <= nr_io_queues; i++) {
329 ctrl->queues[i].ctrl = ctrl;
330 ret = nvmet_sq_init(&ctrl->queues[i].nvme_sq);
331 if (ret)
332 goto out_destroy_queues;
333
334 ctrl->ctrl.queue_count++;
335 }
336
337 return 0;
338
339 out_destroy_queues:
340 nvme_loop_destroy_io_queues(ctrl);
341 return ret;
342 }
343
nvme_loop_connect_io_queues(struct nvme_loop_ctrl * ctrl)344 static int nvme_loop_connect_io_queues(struct nvme_loop_ctrl *ctrl)
345 {
346 int i, ret;
347
348 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
349 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
350 if (ret)
351 return ret;
352 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags);
353 }
354
355 return 0;
356 }
357
nvme_loop_configure_admin_queue(struct nvme_loop_ctrl * ctrl)358 static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl)
359 {
360 int error;
361
362 ctrl->queues[0].ctrl = ctrl;
363 error = nvmet_sq_init(&ctrl->queues[0].nvme_sq);
364 if (error)
365 return error;
366 ctrl->ctrl.queue_count = 1;
367
368 error = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
369 &nvme_loop_admin_mq_ops,
370 sizeof(struct nvme_loop_iod) +
371 NVME_INLINE_SG_CNT * sizeof(struct scatterlist));
372 if (error)
373 goto out_free_sq;
374
375 /* reset stopped state for the fresh admin queue */
376 clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->ctrl.flags);
377
378 error = nvmf_connect_admin_queue(&ctrl->ctrl);
379 if (error)
380 goto out_cleanup_tagset;
381
382 set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags);
383
384 error = nvme_enable_ctrl(&ctrl->ctrl);
385 if (error)
386 goto out_cleanup_tagset;
387
388 ctrl->ctrl.max_hw_sectors =
389 (NVME_LOOP_MAX_SEGMENTS - 1) << PAGE_SECTORS_SHIFT;
390
391 nvme_unquiesce_admin_queue(&ctrl->ctrl);
392
393 error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
394 if (error)
395 goto out_cleanup_tagset;
396
397 return 0;
398
399 out_cleanup_tagset:
400 clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags);
401 nvme_remove_admin_tag_set(&ctrl->ctrl);
402 out_free_sq:
403 nvmet_sq_destroy(&ctrl->queues[0].nvme_sq);
404 return error;
405 }
406
nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl * ctrl)407 static void nvme_loop_shutdown_ctrl(struct nvme_loop_ctrl *ctrl)
408 {
409 if (ctrl->ctrl.queue_count > 1) {
410 nvme_quiesce_io_queues(&ctrl->ctrl);
411 nvme_cancel_tagset(&ctrl->ctrl);
412 nvme_loop_destroy_io_queues(ctrl);
413 }
414
415 nvme_quiesce_admin_queue(&ctrl->ctrl);
416 if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
417 nvme_disable_ctrl(&ctrl->ctrl, true);
418
419 nvme_cancel_admin_tagset(&ctrl->ctrl);
420 nvme_loop_destroy_admin_queue(ctrl);
421 }
422
nvme_loop_delete_ctrl_host(struct nvme_ctrl * ctrl)423 static void nvme_loop_delete_ctrl_host(struct nvme_ctrl *ctrl)
424 {
425 nvme_loop_shutdown_ctrl(to_loop_ctrl(ctrl));
426 }
427
nvme_loop_delete_ctrl(struct nvmet_ctrl * nctrl)428 static void nvme_loop_delete_ctrl(struct nvmet_ctrl *nctrl)
429 {
430 struct nvme_loop_ctrl *ctrl;
431
432 mutex_lock(&nvme_loop_ctrl_mutex);
433 list_for_each_entry(ctrl, &nvme_loop_ctrl_list, list) {
434 if (ctrl->ctrl.cntlid == nctrl->cntlid)
435 nvme_delete_ctrl(&ctrl->ctrl);
436 }
437 mutex_unlock(&nvme_loop_ctrl_mutex);
438 }
439
nvme_loop_reset_ctrl_work(struct work_struct * work)440 static void nvme_loop_reset_ctrl_work(struct work_struct *work)
441 {
442 struct nvme_loop_ctrl *ctrl =
443 container_of(work, struct nvme_loop_ctrl, ctrl.reset_work);
444 int ret;
445
446 nvme_stop_ctrl(&ctrl->ctrl);
447 nvme_loop_shutdown_ctrl(ctrl);
448
449 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
450 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
451
452 if (state != NVME_CTRL_DELETING &&
453 state != NVME_CTRL_DELETING_NOIO)
454 /* state change failure for non-deleted ctrl? */
455 WARN_ON_ONCE(1);
456 return;
457 }
458
459 ret = nvme_loop_configure_admin_queue(ctrl);
460 if (ret)
461 goto out_disable;
462
463 ret = nvme_loop_init_io_queues(ctrl);
464 if (ret)
465 goto out_destroy_admin;
466
467 ret = nvme_loop_connect_io_queues(ctrl);
468 if (ret)
469 goto out_destroy_io;
470
471 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
472 ctrl->ctrl.queue_count - 1);
473
474 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE))
475 WARN_ON_ONCE(1);
476
477 nvme_start_ctrl(&ctrl->ctrl);
478
479 return;
480
481 out_destroy_io:
482 nvme_loop_destroy_io_queues(ctrl);
483 out_destroy_admin:
484 nvme_quiesce_admin_queue(&ctrl->ctrl);
485 nvme_cancel_admin_tagset(&ctrl->ctrl);
486 nvme_loop_destroy_admin_queue(ctrl);
487 out_disable:
488 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
489 nvme_uninit_ctrl(&ctrl->ctrl);
490 }
491
492 static const struct nvme_ctrl_ops nvme_loop_ctrl_ops = {
493 .name = "loop",
494 .module = THIS_MODULE,
495 .flags = NVME_F_FABRICS,
496 .reg_read32 = nvmf_reg_read32,
497 .reg_read64 = nvmf_reg_read64,
498 .reg_write32 = nvmf_reg_write32,
499 .free_ctrl = nvme_loop_free_ctrl,
500 .submit_async_event = nvme_loop_submit_async_event,
501 .delete_ctrl = nvme_loop_delete_ctrl_host,
502 .get_address = nvmf_get_address,
503 };
504
nvme_loop_create_io_queues(struct nvme_loop_ctrl * ctrl)505 static int nvme_loop_create_io_queues(struct nvme_loop_ctrl *ctrl)
506 {
507 int ret;
508
509 ret = nvme_loop_init_io_queues(ctrl);
510 if (ret)
511 return ret;
512
513 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
514 &nvme_loop_mq_ops, 1,
515 sizeof(struct nvme_loop_iod) +
516 NVME_INLINE_SG_CNT * sizeof(struct scatterlist));
517 if (ret)
518 goto out_destroy_queues;
519
520 ret = nvme_loop_connect_io_queues(ctrl);
521 if (ret)
522 goto out_cleanup_tagset;
523
524 return 0;
525
526 out_cleanup_tagset:
527 nvme_remove_io_tag_set(&ctrl->ctrl);
528 out_destroy_queues:
529 nvme_loop_destroy_io_queues(ctrl);
530 return ret;
531 }
532
nvme_loop_find_port(struct nvme_ctrl * ctrl)533 static struct nvmet_port *nvme_loop_find_port(struct nvme_ctrl *ctrl)
534 {
535 struct nvmet_port *p, *found = NULL;
536
537 mutex_lock(&nvme_loop_ports_mutex);
538 list_for_each_entry(p, &nvme_loop_ports, entry) {
539 /* if no transport address is specified use the first port */
540 if ((ctrl->opts->mask & NVMF_OPT_TRADDR) &&
541 strcmp(ctrl->opts->traddr, p->disc_addr.traddr))
542 continue;
543 found = p;
544 break;
545 }
546 mutex_unlock(&nvme_loop_ports_mutex);
547 return found;
548 }
549
nvme_loop_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)550 static struct nvme_ctrl *nvme_loop_create_ctrl(struct device *dev,
551 struct nvmf_ctrl_options *opts)
552 {
553 struct nvme_loop_ctrl *ctrl;
554 int ret;
555
556 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
557 if (!ctrl)
558 return ERR_PTR(-ENOMEM);
559 ctrl->ctrl.opts = opts;
560 INIT_LIST_HEAD(&ctrl->list);
561
562 INIT_WORK(&ctrl->ctrl.reset_work, nvme_loop_reset_ctrl_work);
563
564 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_loop_ctrl_ops,
565 0 /* no quirks, we're perfect! */);
566 if (ret) {
567 kfree(ctrl);
568 goto out;
569 }
570
571 ret = nvme_add_ctrl(&ctrl->ctrl);
572 if (ret)
573 goto out_put_ctrl;
574
575 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
576 WARN_ON_ONCE(1);
577
578 ret = -ENOMEM;
579
580 ctrl->ctrl.kato = opts->kato;
581 ctrl->port = nvme_loop_find_port(&ctrl->ctrl);
582
583 ctrl->queues = kcalloc(opts->nr_io_queues + 1, sizeof(*ctrl->queues),
584 GFP_KERNEL);
585 if (!ctrl->queues)
586 goto out_uninit_ctrl;
587
588 ret = nvme_loop_configure_admin_queue(ctrl);
589 if (ret)
590 goto out_free_queues;
591
592 if (opts->queue_size > ctrl->ctrl.maxcmd) {
593 /* warn if maxcmd is lower than queue_size */
594 dev_warn(ctrl->ctrl.device,
595 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
596 opts->queue_size, ctrl->ctrl.maxcmd);
597 opts->queue_size = ctrl->ctrl.maxcmd;
598 }
599 ctrl->ctrl.sqsize = opts->queue_size - 1;
600
601 if (opts->nr_io_queues) {
602 ret = nvme_loop_create_io_queues(ctrl);
603 if (ret)
604 goto out_remove_admin_queue;
605 }
606
607 nvme_loop_init_iod(ctrl, &ctrl->async_event_iod, 0);
608
609 dev_info(ctrl->ctrl.device,
610 "new ctrl: \"%s\"\n", ctrl->ctrl.opts->subsysnqn);
611
612 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE))
613 WARN_ON_ONCE(1);
614
615 mutex_lock(&nvme_loop_ctrl_mutex);
616 list_add_tail(&ctrl->list, &nvme_loop_ctrl_list);
617 mutex_unlock(&nvme_loop_ctrl_mutex);
618
619 nvme_start_ctrl(&ctrl->ctrl);
620
621 return &ctrl->ctrl;
622
623 out_remove_admin_queue:
624 nvme_quiesce_admin_queue(&ctrl->ctrl);
625 nvme_cancel_admin_tagset(&ctrl->ctrl);
626 nvme_loop_destroy_admin_queue(ctrl);
627 out_free_queues:
628 kfree(ctrl->queues);
629 out_uninit_ctrl:
630 nvme_uninit_ctrl(&ctrl->ctrl);
631 out_put_ctrl:
632 nvme_put_ctrl(&ctrl->ctrl);
633 out:
634 if (ret > 0)
635 ret = -EIO;
636 return ERR_PTR(ret);
637 }
638
nvme_loop_add_port(struct nvmet_port * port)639 static int nvme_loop_add_port(struct nvmet_port *port)
640 {
641 mutex_lock(&nvme_loop_ports_mutex);
642 list_add_tail(&port->entry, &nvme_loop_ports);
643 mutex_unlock(&nvme_loop_ports_mutex);
644 return 0;
645 }
646
nvme_loop_remove_port(struct nvmet_port * port)647 static void nvme_loop_remove_port(struct nvmet_port *port)
648 {
649 mutex_lock(&nvme_loop_ports_mutex);
650 list_del_init(&port->entry);
651 mutex_unlock(&nvme_loop_ports_mutex);
652
653 /*
654 * Ensure any ctrls that are in the process of being
655 * deleted are in fact deleted before we return
656 * and free the port. This is to prevent active
657 * ctrls from using a port after it's freed.
658 */
659 flush_workqueue(nvme_delete_wq);
660 }
661
662 static const struct nvmet_fabrics_ops nvme_loop_ops = {
663 .owner = THIS_MODULE,
664 .type = NVMF_TRTYPE_LOOP,
665 .add_port = nvme_loop_add_port,
666 .remove_port = nvme_loop_remove_port,
667 .queue_response = nvme_loop_queue_response,
668 .delete_ctrl = nvme_loop_delete_ctrl,
669 };
670
671 static struct nvmf_transport_ops nvme_loop_transport = {
672 .name = "loop",
673 .module = THIS_MODULE,
674 .create_ctrl = nvme_loop_create_ctrl,
675 .allowed_opts = NVMF_OPT_TRADDR,
676 };
677
nvme_loop_init_module(void)678 static int __init nvme_loop_init_module(void)
679 {
680 int ret;
681
682 ret = nvmet_register_transport(&nvme_loop_ops);
683 if (ret)
684 return ret;
685
686 ret = nvmf_register_transport(&nvme_loop_transport);
687 if (ret)
688 nvmet_unregister_transport(&nvme_loop_ops);
689
690 return ret;
691 }
692
nvme_loop_cleanup_module(void)693 static void __exit nvme_loop_cleanup_module(void)
694 {
695 struct nvme_loop_ctrl *ctrl, *next;
696
697 nvmf_unregister_transport(&nvme_loop_transport);
698 nvmet_unregister_transport(&nvme_loop_ops);
699
700 mutex_lock(&nvme_loop_ctrl_mutex);
701 list_for_each_entry_safe(ctrl, next, &nvme_loop_ctrl_list, list)
702 nvme_delete_ctrl(&ctrl->ctrl);
703 mutex_unlock(&nvme_loop_ctrl_mutex);
704
705 flush_workqueue(nvme_delete_wq);
706 }
707
708 module_init(nvme_loop_init_module);
709 module_exit(nvme_loop_cleanup_module);
710
711 MODULE_DESCRIPTION("NVMe target loop transport driver");
712 MODULE_LICENSE("GPL v2");
713 MODULE_ALIAS("nvmet-transport-254"); /* 254 == NVMF_TRTYPE_LOOP */
714