1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
20
21 /* *************************** Data Structures/Defines ****************** */
22
23
24 enum nvme_fc_queue_flags {
25 NVME_FC_Q_CONNECTED = 0,
26 NVME_FC_Q_LIVE,
27 };
28
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
31 * when connected and a
32 * connection failure.
33 */
34
35 struct nvme_fc_queue {
36 struct nvme_fc_ctrl *ctrl;
37 struct device *dev;
38 struct blk_mq_hw_ctx *hctx;
39 void *lldd_handle;
40 size_t cmnd_capsule_len;
41 u32 qnum;
42 u32 rqcnt;
43 u32 seqno;
44
45 u64 connection_id;
46 atomic_t csn;
47
48 unsigned long flags;
49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
50
51 enum nvme_fcop_flags {
52 FCOP_FLAGS_TERMIO = (1 << 0),
53 FCOP_FLAGS_AEN = (1 << 1),
54 };
55
56 struct nvmefc_ls_req_op {
57 struct nvmefc_ls_req ls_req;
58
59 struct nvme_fc_rport *rport;
60 struct nvme_fc_queue *queue;
61 struct request *rq;
62 u32 flags;
63
64 int ls_error;
65 struct completion ls_done;
66 struct list_head lsreq_list; /* rport->ls_req_list */
67 bool req_queued;
68 };
69
70 struct nvmefc_ls_rcv_op {
71 struct nvme_fc_rport *rport;
72 struct nvmefc_ls_rsp *lsrsp;
73 union nvmefc_ls_requests *rqstbuf;
74 union nvmefc_ls_responses *rspbuf;
75 u16 rqstdatalen;
76 bool handled;
77 dma_addr_t rspdma;
78 struct list_head lsrcv_list; /* rport->ls_rcv_list */
79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
80
81 enum nvme_fcpop_state {
82 FCPOP_STATE_UNINIT = 0,
83 FCPOP_STATE_IDLE = 1,
84 FCPOP_STATE_ACTIVE = 2,
85 FCPOP_STATE_ABORTED = 3,
86 FCPOP_STATE_COMPLETE = 4,
87 };
88
89 struct nvme_fc_fcp_op {
90 struct nvme_request nreq; /*
91 * nvme/host/core.c
92 * requires this to be
93 * the 1st element in the
94 * private structure
95 * associated with the
96 * request.
97 */
98 struct nvmefc_fcp_req fcp_req;
99
100 struct nvme_fc_ctrl *ctrl;
101 struct nvme_fc_queue *queue;
102 struct request *rq;
103
104 atomic_t state;
105 u32 flags;
106 u32 rqno;
107 u32 nents;
108
109 struct nvme_fc_cmd_iu cmd_iu;
110 struct nvme_fc_ersp_iu rsp_iu;
111 };
112
113 struct nvme_fcp_op_w_sgl {
114 struct nvme_fc_fcp_op op;
115 struct scatterlist sgl[NVME_INLINE_SG_CNT];
116 uint8_t priv[];
117 };
118
119 struct nvme_fc_lport {
120 struct nvme_fc_local_port localport;
121
122 struct ida endp_cnt;
123 struct list_head port_list; /* nvme_fc_port_list */
124 struct list_head endp_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_port_template *ops;
127 struct kref ref;
128 atomic_t act_rport_cnt;
129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132 struct nvme_fc_remote_port remoteport;
133
134 struct list_head endp_list; /* for lport->endp_list */
135 struct list_head ctrl_list;
136 struct list_head ls_req_list;
137 struct list_head ls_rcv_list;
138 struct list_head disc_list;
139 struct device *dev; /* physical device for dma */
140 struct nvme_fc_lport *lport;
141 spinlock_t lock;
142 struct kref ref;
143 atomic_t act_ctrl_cnt;
144 unsigned long dev_loss_end;
145 struct work_struct lsrcv_work;
146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
147
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE 0
150 #define ASSOC_FAILED 1
151 #define FCCTRL_TERMIO 2
152
153 struct nvme_fc_ctrl {
154 spinlock_t lock;
155 struct nvme_fc_queue *queues;
156 struct device *dev;
157 struct nvme_fc_lport *lport;
158 struct nvme_fc_rport *rport;
159 u32 cnum;
160
161 bool ioq_live;
162 u64 association_id;
163 struct nvmefc_ls_rcv_op *rcv_disconn;
164
165 struct list_head ctrl_list; /* rport->ctrl_list */
166
167 struct blk_mq_tag_set admin_tag_set;
168 struct blk_mq_tag_set tag_set;
169
170 struct work_struct ioerr_work;
171 struct delayed_work connect_work;
172
173 struct kref ref;
174 unsigned long flags;
175 u32 iocnt;
176 wait_queue_head_t ioabort_wait;
177
178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
179
180 struct nvme_ctrl ctrl;
181 };
182
183 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)184 to_fc_ctrl(struct nvme_ctrl *ctrl)
185 {
186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187 }
188
189 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)190 localport_to_lport(struct nvme_fc_local_port *portptr)
191 {
192 return container_of(portptr, struct nvme_fc_lport, localport);
193 }
194
195 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197 {
198 return container_of(portptr, struct nvme_fc_rport, remoteport);
199 }
200
201 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203 {
204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205 }
206
207 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209 {
210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211 }
212
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvme_fc_lock);
219
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224 /*
225 * These items are short-term. They will eventually be moved into
226 * a generic FC class. See comments in module init.
227 */
228 static struct device *fc_udev_device;
229
230 static void nvme_fc_complete_rq(struct request *rq);
231
232 /* *********************** FC-NVME Port Management ************************ */
233
234 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
235 struct nvme_fc_queue *, unsigned int);
236
237 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
238
239
240 static void
nvme_fc_free_lport(struct kref * ref)241 nvme_fc_free_lport(struct kref *ref)
242 {
243 struct nvme_fc_lport *lport =
244 container_of(ref, struct nvme_fc_lport, ref);
245 unsigned long flags;
246
247 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
248 WARN_ON(!list_empty(&lport->endp_list));
249
250 /* remove from transport list */
251 spin_lock_irqsave(&nvme_fc_lock, flags);
252 list_del(&lport->port_list);
253 spin_unlock_irqrestore(&nvme_fc_lock, flags);
254
255 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
256 ida_destroy(&lport->endp_cnt);
257
258 put_device(lport->dev);
259
260 kfree(lport);
261 }
262
263 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)264 nvme_fc_lport_put(struct nvme_fc_lport *lport)
265 {
266 kref_put(&lport->ref, nvme_fc_free_lport);
267 }
268
269 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)270 nvme_fc_lport_get(struct nvme_fc_lport *lport)
271 {
272 return kref_get_unless_zero(&lport->ref);
273 }
274
275
276 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)277 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
278 struct nvme_fc_port_template *ops,
279 struct device *dev)
280 {
281 struct nvme_fc_lport *lport;
282 unsigned long flags;
283
284 spin_lock_irqsave(&nvme_fc_lock, flags);
285
286 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
287 if (lport->localport.node_name != pinfo->node_name ||
288 lport->localport.port_name != pinfo->port_name)
289 continue;
290
291 if (lport->dev != dev) {
292 lport = ERR_PTR(-EXDEV);
293 goto out_done;
294 }
295
296 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
297 lport = ERR_PTR(-EEXIST);
298 goto out_done;
299 }
300
301 if (!nvme_fc_lport_get(lport)) {
302 /*
303 * fails if ref cnt already 0. If so,
304 * act as if lport already deleted
305 */
306 lport = NULL;
307 goto out_done;
308 }
309
310 /* resume the lport */
311
312 lport->ops = ops;
313 lport->localport.port_role = pinfo->port_role;
314 lport->localport.port_id = pinfo->port_id;
315 lport->localport.port_state = FC_OBJSTATE_ONLINE;
316
317 spin_unlock_irqrestore(&nvme_fc_lock, flags);
318
319 return lport;
320 }
321
322 lport = NULL;
323
324 out_done:
325 spin_unlock_irqrestore(&nvme_fc_lock, flags);
326
327 return lport;
328 }
329
330 /**
331 * nvme_fc_register_localport - transport entry point called by an
332 * LLDD to register the existence of a NVME
333 * host FC port.
334 * @pinfo: pointer to information about the port to be registered
335 * @template: LLDD entrypoints and operational parameters for the port
336 * @dev: physical hardware device node port corresponds to. Will be
337 * used for DMA mappings
338 * @portptr: pointer to a local port pointer. Upon success, the routine
339 * will allocate a nvme_fc_local_port structure and place its
340 * address in the local port pointer. Upon failure, local port
341 * pointer will be set to 0.
342 *
343 * Returns:
344 * a completion status. Must be 0 upon success; a negative errno
345 * (ex: -ENXIO) upon failure.
346 */
347 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)348 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
349 struct nvme_fc_port_template *template,
350 struct device *dev,
351 struct nvme_fc_local_port **portptr)
352 {
353 struct nvme_fc_lport *newrec;
354 unsigned long flags;
355 int ret, idx;
356
357 if (!template->localport_delete || !template->remoteport_delete ||
358 !template->ls_req || !template->fcp_io ||
359 !template->ls_abort || !template->fcp_abort ||
360 !template->max_hw_queues || !template->max_sgl_segments ||
361 !template->max_dif_sgl_segments || !template->dma_boundary) {
362 ret = -EINVAL;
363 goto out_reghost_failed;
364 }
365
366 /*
367 * look to see if there is already a localport that had been
368 * deregistered and in the process of waiting for all the
369 * references to fully be removed. If the references haven't
370 * expired, we can simply re-enable the localport. Remoteports
371 * and controller reconnections should resume naturally.
372 */
373 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
374
375 /* found an lport, but something about its state is bad */
376 if (IS_ERR(newrec)) {
377 ret = PTR_ERR(newrec);
378 goto out_reghost_failed;
379
380 /* found existing lport, which was resumed */
381 } else if (newrec) {
382 *portptr = &newrec->localport;
383 return 0;
384 }
385
386 /* nothing found - allocate a new localport struct */
387
388 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
389 GFP_KERNEL);
390 if (!newrec) {
391 ret = -ENOMEM;
392 goto out_reghost_failed;
393 }
394
395 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
396 if (idx < 0) {
397 ret = -ENOSPC;
398 goto out_fail_kfree;
399 }
400
401 if (!get_device(dev) && dev) {
402 ret = -ENODEV;
403 goto out_ida_put;
404 }
405
406 INIT_LIST_HEAD(&newrec->port_list);
407 INIT_LIST_HEAD(&newrec->endp_list);
408 kref_init(&newrec->ref);
409 atomic_set(&newrec->act_rport_cnt, 0);
410 newrec->ops = template;
411 newrec->dev = dev;
412 ida_init(&newrec->endp_cnt);
413 if (template->local_priv_sz)
414 newrec->localport.private = &newrec[1];
415 else
416 newrec->localport.private = NULL;
417 newrec->localport.node_name = pinfo->node_name;
418 newrec->localport.port_name = pinfo->port_name;
419 newrec->localport.port_role = pinfo->port_role;
420 newrec->localport.port_id = pinfo->port_id;
421 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
422 newrec->localport.port_num = idx;
423
424 spin_lock_irqsave(&nvme_fc_lock, flags);
425 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
426 spin_unlock_irqrestore(&nvme_fc_lock, flags);
427
428 if (dev)
429 dma_set_seg_boundary(dev, template->dma_boundary);
430
431 *portptr = &newrec->localport;
432 return 0;
433
434 out_ida_put:
435 ida_free(&nvme_fc_local_port_cnt, idx);
436 out_fail_kfree:
437 kfree(newrec);
438 out_reghost_failed:
439 *portptr = NULL;
440
441 return ret;
442 }
443 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
444
445 /**
446 * nvme_fc_unregister_localport - transport entry point called by an
447 * LLDD to deregister/remove a previously
448 * registered a NVME host FC port.
449 * @portptr: pointer to the (registered) local port that is to be deregistered.
450 *
451 * Returns:
452 * a completion status. Must be 0 upon success; a negative errno
453 * (ex: -ENXIO) upon failure.
454 */
455 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)456 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
457 {
458 struct nvme_fc_lport *lport = localport_to_lport(portptr);
459 unsigned long flags;
460
461 if (!portptr)
462 return -EINVAL;
463
464 spin_lock_irqsave(&nvme_fc_lock, flags);
465
466 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
467 spin_unlock_irqrestore(&nvme_fc_lock, flags);
468 return -EINVAL;
469 }
470 portptr->port_state = FC_OBJSTATE_DELETED;
471
472 spin_unlock_irqrestore(&nvme_fc_lock, flags);
473
474 if (atomic_read(&lport->act_rport_cnt) == 0)
475 lport->ops->localport_delete(&lport->localport);
476
477 nvme_fc_lport_put(lport);
478
479 return 0;
480 }
481 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
482
483 /*
484 * TRADDR strings, per FC-NVME are fixed format:
485 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
486 * udev event will only differ by prefix of what field is
487 * being specified:
488 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
489 * 19 + 43 + null_fudge = 64 characters
490 */
491 #define FCNVME_TRADDR_LENGTH 64
492
493 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)494 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
495 struct nvme_fc_rport *rport)
496 {
497 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
498 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
499 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
500
501 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
502 return;
503
504 snprintf(hostaddr, sizeof(hostaddr),
505 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
506 lport->localport.node_name, lport->localport.port_name);
507 snprintf(tgtaddr, sizeof(tgtaddr),
508 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
509 rport->remoteport.node_name, rport->remoteport.port_name);
510 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
511 }
512
513 static void
nvme_fc_free_rport(struct kref * ref)514 nvme_fc_free_rport(struct kref *ref)
515 {
516 struct nvme_fc_rport *rport =
517 container_of(ref, struct nvme_fc_rport, ref);
518 struct nvme_fc_lport *lport =
519 localport_to_lport(rport->remoteport.localport);
520 unsigned long flags;
521
522 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
523 WARN_ON(!list_empty(&rport->ctrl_list));
524
525 /* remove from lport list */
526 spin_lock_irqsave(&nvme_fc_lock, flags);
527 list_del(&rport->endp_list);
528 spin_unlock_irqrestore(&nvme_fc_lock, flags);
529
530 WARN_ON(!list_empty(&rport->disc_list));
531 ida_free(&lport->endp_cnt, rport->remoteport.port_num);
532
533 kfree(rport);
534
535 nvme_fc_lport_put(lport);
536 }
537
538 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)539 nvme_fc_rport_put(struct nvme_fc_rport *rport)
540 {
541 kref_put(&rport->ref, nvme_fc_free_rport);
542 }
543
544 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)545 nvme_fc_rport_get(struct nvme_fc_rport *rport)
546 {
547 return kref_get_unless_zero(&rport->ref);
548 }
549
550 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)551 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
552 {
553 switch (nvme_ctrl_state(&ctrl->ctrl)) {
554 case NVME_CTRL_NEW:
555 case NVME_CTRL_CONNECTING:
556 /*
557 * As all reconnects were suppressed, schedule a
558 * connect.
559 */
560 dev_info(ctrl->ctrl.device,
561 "NVME-FC{%d}: connectivity re-established. "
562 "Attempting reconnect\n", ctrl->cnum);
563
564 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
565 break;
566
567 case NVME_CTRL_RESETTING:
568 /*
569 * Controller is already in the process of terminating the
570 * association. No need to do anything further. The reconnect
571 * step will naturally occur after the reset completes.
572 */
573 break;
574
575 default:
576 /* no action to take - let it delete */
577 break;
578 }
579 }
580
581 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)582 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
583 struct nvme_fc_port_info *pinfo)
584 {
585 struct nvme_fc_rport *rport;
586 struct nvme_fc_ctrl *ctrl;
587 unsigned long flags;
588
589 spin_lock_irqsave(&nvme_fc_lock, flags);
590
591 list_for_each_entry(rport, &lport->endp_list, endp_list) {
592 if (rport->remoteport.node_name != pinfo->node_name ||
593 rport->remoteport.port_name != pinfo->port_name)
594 continue;
595
596 if (!nvme_fc_rport_get(rport)) {
597 rport = ERR_PTR(-ENOLCK);
598 goto out_done;
599 }
600
601 spin_unlock_irqrestore(&nvme_fc_lock, flags);
602
603 spin_lock_irqsave(&rport->lock, flags);
604
605 /* has it been unregistered */
606 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
607 /* means lldd called us twice */
608 spin_unlock_irqrestore(&rport->lock, flags);
609 nvme_fc_rport_put(rport);
610 return ERR_PTR(-ESTALE);
611 }
612
613 rport->remoteport.port_role = pinfo->port_role;
614 rport->remoteport.port_id = pinfo->port_id;
615 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
616 rport->dev_loss_end = 0;
617
618 /*
619 * kick off a reconnect attempt on all associations to the
620 * remote port. A successful reconnects will resume i/o.
621 */
622 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
623 nvme_fc_resume_controller(ctrl);
624
625 spin_unlock_irqrestore(&rport->lock, flags);
626
627 return rport;
628 }
629
630 rport = NULL;
631
632 out_done:
633 spin_unlock_irqrestore(&nvme_fc_lock, flags);
634
635 return rport;
636 }
637
638 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)639 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
640 struct nvme_fc_port_info *pinfo)
641 {
642 if (pinfo->dev_loss_tmo)
643 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
644 else
645 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
646 }
647
648 /**
649 * nvme_fc_register_remoteport - transport entry point called by an
650 * LLDD to register the existence of a NVME
651 * subsystem FC port on its fabric.
652 * @localport: pointer to the (registered) local port that the remote
653 * subsystem port is connected to.
654 * @pinfo: pointer to information about the port to be registered
655 * @portptr: pointer to a remote port pointer. Upon success, the routine
656 * will allocate a nvme_fc_remote_port structure and place its
657 * address in the remote port pointer. Upon failure, remote port
658 * pointer will be set to 0.
659 *
660 * Returns:
661 * a completion status. Must be 0 upon success; a negative errno
662 * (ex: -ENXIO) upon failure.
663 */
664 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)665 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
666 struct nvme_fc_port_info *pinfo,
667 struct nvme_fc_remote_port **portptr)
668 {
669 struct nvme_fc_lport *lport = localport_to_lport(localport);
670 struct nvme_fc_rport *newrec;
671 unsigned long flags;
672 int ret, idx;
673
674 if (!nvme_fc_lport_get(lport)) {
675 ret = -ESHUTDOWN;
676 goto out_reghost_failed;
677 }
678
679 /*
680 * look to see if there is already a remoteport that is waiting
681 * for a reconnect (within dev_loss_tmo) with the same WWN's.
682 * If so, transition to it and reconnect.
683 */
684 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
685
686 /* found an rport, but something about its state is bad */
687 if (IS_ERR(newrec)) {
688 ret = PTR_ERR(newrec);
689 goto out_lport_put;
690
691 /* found existing rport, which was resumed */
692 } else if (newrec) {
693 nvme_fc_lport_put(lport);
694 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
695 nvme_fc_signal_discovery_scan(lport, newrec);
696 *portptr = &newrec->remoteport;
697 return 0;
698 }
699
700 /* nothing found - allocate a new remoteport struct */
701
702 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
703 GFP_KERNEL);
704 if (!newrec) {
705 ret = -ENOMEM;
706 goto out_lport_put;
707 }
708
709 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
710 if (idx < 0) {
711 ret = -ENOSPC;
712 goto out_kfree_rport;
713 }
714
715 INIT_LIST_HEAD(&newrec->endp_list);
716 INIT_LIST_HEAD(&newrec->ctrl_list);
717 INIT_LIST_HEAD(&newrec->ls_req_list);
718 INIT_LIST_HEAD(&newrec->disc_list);
719 kref_init(&newrec->ref);
720 atomic_set(&newrec->act_ctrl_cnt, 0);
721 spin_lock_init(&newrec->lock);
722 newrec->remoteport.localport = &lport->localport;
723 INIT_LIST_HEAD(&newrec->ls_rcv_list);
724 newrec->dev = lport->dev;
725 newrec->lport = lport;
726 if (lport->ops->remote_priv_sz)
727 newrec->remoteport.private = &newrec[1];
728 else
729 newrec->remoteport.private = NULL;
730 newrec->remoteport.port_role = pinfo->port_role;
731 newrec->remoteport.node_name = pinfo->node_name;
732 newrec->remoteport.port_name = pinfo->port_name;
733 newrec->remoteport.port_id = pinfo->port_id;
734 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
735 newrec->remoteport.port_num = idx;
736 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
737 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
738
739 spin_lock_irqsave(&nvme_fc_lock, flags);
740 list_add_tail(&newrec->endp_list, &lport->endp_list);
741 spin_unlock_irqrestore(&nvme_fc_lock, flags);
742
743 nvme_fc_signal_discovery_scan(lport, newrec);
744
745 *portptr = &newrec->remoteport;
746 return 0;
747
748 out_kfree_rport:
749 kfree(newrec);
750 out_lport_put:
751 nvme_fc_lport_put(lport);
752 out_reghost_failed:
753 *portptr = NULL;
754 return ret;
755 }
756 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
757
758 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)759 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
760 {
761 struct nvmefc_ls_req_op *lsop;
762 unsigned long flags;
763
764 restart:
765 spin_lock_irqsave(&rport->lock, flags);
766
767 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
768 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
769 lsop->flags |= FCOP_FLAGS_TERMIO;
770 spin_unlock_irqrestore(&rport->lock, flags);
771 rport->lport->ops->ls_abort(&rport->lport->localport,
772 &rport->remoteport,
773 &lsop->ls_req);
774 goto restart;
775 }
776 }
777 spin_unlock_irqrestore(&rport->lock, flags);
778
779 return 0;
780 }
781
782 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)783 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
784 {
785 dev_info(ctrl->ctrl.device,
786 "NVME-FC{%d}: controller connectivity lost. Awaiting "
787 "Reconnect", ctrl->cnum);
788
789 switch (nvme_ctrl_state(&ctrl->ctrl)) {
790 case NVME_CTRL_NEW:
791 case NVME_CTRL_LIVE:
792 /*
793 * Schedule a controller reset. The reset will terminate the
794 * association and schedule the reconnect timer. Reconnects
795 * will be attempted until either the ctlr_loss_tmo
796 * (max_retries * connect_delay) expires or the remoteport's
797 * dev_loss_tmo expires.
798 */
799 if (nvme_reset_ctrl(&ctrl->ctrl)) {
800 dev_warn(ctrl->ctrl.device,
801 "NVME-FC{%d}: Couldn't schedule reset.\n",
802 ctrl->cnum);
803 nvme_delete_ctrl(&ctrl->ctrl);
804 }
805 break;
806
807 case NVME_CTRL_CONNECTING:
808 /*
809 * The association has already been terminated and the
810 * controller is attempting reconnects. No need to do anything
811 * futher. Reconnects will be attempted until either the
812 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
813 * remoteport's dev_loss_tmo expires.
814 */
815 break;
816
817 case NVME_CTRL_RESETTING:
818 /*
819 * Controller is already in the process of terminating the
820 * association. No need to do anything further. The reconnect
821 * step will kick in naturally after the association is
822 * terminated.
823 */
824 break;
825
826 case NVME_CTRL_DELETING:
827 case NVME_CTRL_DELETING_NOIO:
828 default:
829 /* no action to take - let it delete */
830 break;
831 }
832 }
833
834 /**
835 * nvme_fc_unregister_remoteport - transport entry point called by an
836 * LLDD to deregister/remove a previously
837 * registered a NVME subsystem FC port.
838 * @portptr: pointer to the (registered) remote port that is to be
839 * deregistered.
840 *
841 * Returns:
842 * a completion status. Must be 0 upon success; a negative errno
843 * (ex: -ENXIO) upon failure.
844 */
845 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)846 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
847 {
848 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
849 struct nvme_fc_ctrl *ctrl;
850 unsigned long flags;
851
852 if (!portptr)
853 return -EINVAL;
854
855 spin_lock_irqsave(&rport->lock, flags);
856
857 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
858 spin_unlock_irqrestore(&rport->lock, flags);
859 return -EINVAL;
860 }
861 portptr->port_state = FC_OBJSTATE_DELETED;
862
863 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
864
865 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
866 /* if dev_loss_tmo==0, dev loss is immediate */
867 if (!portptr->dev_loss_tmo) {
868 dev_warn(ctrl->ctrl.device,
869 "NVME-FC{%d}: controller connectivity lost.\n",
870 ctrl->cnum);
871 nvme_delete_ctrl(&ctrl->ctrl);
872 } else
873 nvme_fc_ctrl_connectivity_loss(ctrl);
874 }
875
876 spin_unlock_irqrestore(&rport->lock, flags);
877
878 nvme_fc_abort_lsops(rport);
879
880 if (atomic_read(&rport->act_ctrl_cnt) == 0)
881 rport->lport->ops->remoteport_delete(portptr);
882
883 /*
884 * release the reference, which will allow, if all controllers
885 * go away, which should only occur after dev_loss_tmo occurs,
886 * for the rport to be torn down.
887 */
888 nvme_fc_rport_put(rport);
889
890 return 0;
891 }
892 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
893
894 /**
895 * nvme_fc_rescan_remoteport - transport entry point called by an
896 * LLDD to request a nvme device rescan.
897 * @remoteport: pointer to the (registered) remote port that is to be
898 * rescanned.
899 *
900 * Returns: N/A
901 */
902 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)903 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
904 {
905 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
906
907 nvme_fc_signal_discovery_scan(rport->lport, rport);
908 }
909 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
910
911 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)912 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
913 u32 dev_loss_tmo)
914 {
915 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
916 unsigned long flags;
917
918 spin_lock_irqsave(&rport->lock, flags);
919
920 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
921 spin_unlock_irqrestore(&rport->lock, flags);
922 return -EINVAL;
923 }
924
925 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
926 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
927
928 spin_unlock_irqrestore(&rport->lock, flags);
929
930 return 0;
931 }
932 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
933
934
935 /* *********************** FC-NVME DMA Handling **************************** */
936
937 /*
938 * The fcloop device passes in a NULL device pointer. Real LLD's will
939 * pass in a valid device pointer. If NULL is passed to the dma mapping
940 * routines, depending on the platform, it may or may not succeed, and
941 * may crash.
942 *
943 * As such:
944 * Wrapper all the dma routines and check the dev pointer.
945 *
946 * If simple mappings (return just a dma address, we'll noop them,
947 * returning a dma address of 0.
948 *
949 * On more complex mappings (dma_map_sg), a pseudo routine fills
950 * in the scatter list, setting all dma addresses to 0.
951 */
952
953 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)954 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
955 enum dma_data_direction dir)
956 {
957 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
958 }
959
960 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)961 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
962 {
963 return dev ? dma_mapping_error(dev, dma_addr) : 0;
964 }
965
966 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)967 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
968 enum dma_data_direction dir)
969 {
970 if (dev)
971 dma_unmap_single(dev, addr, size, dir);
972 }
973
974 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)975 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
976 enum dma_data_direction dir)
977 {
978 if (dev)
979 dma_sync_single_for_cpu(dev, addr, size, dir);
980 }
981
982 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)983 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
984 enum dma_data_direction dir)
985 {
986 if (dev)
987 dma_sync_single_for_device(dev, addr, size, dir);
988 }
989
990 /* pseudo dma_map_sg call */
991 static int
fc_map_sg(struct scatterlist * sg,int nents)992 fc_map_sg(struct scatterlist *sg, int nents)
993 {
994 struct scatterlist *s;
995 int i;
996
997 WARN_ON(nents == 0 || sg[0].length == 0);
998
999 for_each_sg(sg, s, nents, i) {
1000 s->dma_address = 0L;
1001 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1002 s->dma_length = s->length;
1003 #endif
1004 }
1005 return nents;
1006 }
1007
1008 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1009 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1010 enum dma_data_direction dir)
1011 {
1012 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1013 }
1014
1015 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1016 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 enum dma_data_direction dir)
1018 {
1019 if (dev)
1020 dma_unmap_sg(dev, sg, nents, dir);
1021 }
1022
1023 /* *********************** FC-NVME LS Handling **************************** */
1024
1025 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1026 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1027
1028 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1029
1030 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)1031 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1032 {
1033 struct nvme_fc_rport *rport = lsop->rport;
1034 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1035 unsigned long flags;
1036
1037 spin_lock_irqsave(&rport->lock, flags);
1038
1039 if (!lsop->req_queued) {
1040 spin_unlock_irqrestore(&rport->lock, flags);
1041 return;
1042 }
1043
1044 list_del(&lsop->lsreq_list);
1045
1046 lsop->req_queued = false;
1047
1048 spin_unlock_irqrestore(&rport->lock, flags);
1049
1050 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1051 (lsreq->rqstlen + lsreq->rsplen),
1052 DMA_BIDIRECTIONAL);
1053
1054 nvme_fc_rport_put(rport);
1055 }
1056
1057 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1058 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1059 struct nvmefc_ls_req_op *lsop,
1060 void (*done)(struct nvmefc_ls_req *req, int status))
1061 {
1062 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1063 unsigned long flags;
1064 int ret = 0;
1065
1066 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1067 return -ECONNREFUSED;
1068
1069 if (!nvme_fc_rport_get(rport))
1070 return -ESHUTDOWN;
1071
1072 lsreq->done = done;
1073 lsop->rport = rport;
1074 lsop->req_queued = false;
1075 INIT_LIST_HEAD(&lsop->lsreq_list);
1076 init_completion(&lsop->ls_done);
1077
1078 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1079 lsreq->rqstlen + lsreq->rsplen,
1080 DMA_BIDIRECTIONAL);
1081 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1082 ret = -EFAULT;
1083 goto out_putrport;
1084 }
1085 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1086
1087 spin_lock_irqsave(&rport->lock, flags);
1088
1089 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1090
1091 lsop->req_queued = true;
1092
1093 spin_unlock_irqrestore(&rport->lock, flags);
1094
1095 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1096 &rport->remoteport, lsreq);
1097 if (ret)
1098 goto out_unlink;
1099
1100 return 0;
1101
1102 out_unlink:
1103 lsop->ls_error = ret;
1104 spin_lock_irqsave(&rport->lock, flags);
1105 lsop->req_queued = false;
1106 list_del(&lsop->lsreq_list);
1107 spin_unlock_irqrestore(&rport->lock, flags);
1108 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1109 (lsreq->rqstlen + lsreq->rsplen),
1110 DMA_BIDIRECTIONAL);
1111 out_putrport:
1112 nvme_fc_rport_put(rport);
1113
1114 return ret;
1115 }
1116
1117 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1118 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1119 {
1120 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1121
1122 lsop->ls_error = status;
1123 complete(&lsop->ls_done);
1124 }
1125
1126 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1127 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1128 {
1129 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1130 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1131 int ret;
1132
1133 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1134
1135 if (!ret) {
1136 /*
1137 * No timeout/not interruptible as we need the struct
1138 * to exist until the lldd calls us back. Thus mandate
1139 * wait until driver calls back. lldd responsible for
1140 * the timeout action
1141 */
1142 wait_for_completion(&lsop->ls_done);
1143
1144 __nvme_fc_finish_ls_req(lsop);
1145
1146 ret = lsop->ls_error;
1147 }
1148
1149 if (ret)
1150 return ret;
1151
1152 /* ACC or RJT payload ? */
1153 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1154 return -ENXIO;
1155
1156 return 0;
1157 }
1158
1159 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1160 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1161 struct nvmefc_ls_req_op *lsop,
1162 void (*done)(struct nvmefc_ls_req *req, int status))
1163 {
1164 /* don't wait for completion */
1165
1166 return __nvme_fc_send_ls_req(rport, lsop, done);
1167 }
1168
1169 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1170 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1171 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1172 {
1173 struct nvmefc_ls_req_op *lsop;
1174 struct nvmefc_ls_req *lsreq;
1175 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1176 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1177 unsigned long flags;
1178 int ret, fcret = 0;
1179
1180 lsop = kzalloc((sizeof(*lsop) +
1181 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1182 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1183 if (!lsop) {
1184 dev_info(ctrl->ctrl.device,
1185 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1186 ctrl->cnum);
1187 ret = -ENOMEM;
1188 goto out_no_memory;
1189 }
1190
1191 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1192 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1193 lsreq = &lsop->ls_req;
1194 if (ctrl->lport->ops->lsrqst_priv_sz)
1195 lsreq->private = &assoc_acc[1];
1196 else
1197 lsreq->private = NULL;
1198
1199 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1200 assoc_rqst->desc_list_len =
1201 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1202
1203 assoc_rqst->assoc_cmd.desc_tag =
1204 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1205 assoc_rqst->assoc_cmd.desc_len =
1206 fcnvme_lsdesc_len(
1207 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1208
1209 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1210 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1211 /* Linux supports only Dynamic controllers */
1212 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1213 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1214 strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1215 sizeof(assoc_rqst->assoc_cmd.hostnqn));
1216 strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1217 sizeof(assoc_rqst->assoc_cmd.subnqn));
1218
1219 lsop->queue = queue;
1220 lsreq->rqstaddr = assoc_rqst;
1221 lsreq->rqstlen = sizeof(*assoc_rqst);
1222 lsreq->rspaddr = assoc_acc;
1223 lsreq->rsplen = sizeof(*assoc_acc);
1224 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1225
1226 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1227 if (ret)
1228 goto out_free_buffer;
1229
1230 /* process connect LS completion */
1231
1232 /* validate the ACC response */
1233 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1234 fcret = VERR_LSACC;
1235 else if (assoc_acc->hdr.desc_list_len !=
1236 fcnvme_lsdesc_len(
1237 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1238 fcret = VERR_CR_ASSOC_ACC_LEN;
1239 else if (assoc_acc->hdr.rqst.desc_tag !=
1240 cpu_to_be32(FCNVME_LSDESC_RQST))
1241 fcret = VERR_LSDESC_RQST;
1242 else if (assoc_acc->hdr.rqst.desc_len !=
1243 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1244 fcret = VERR_LSDESC_RQST_LEN;
1245 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1246 fcret = VERR_CR_ASSOC;
1247 else if (assoc_acc->associd.desc_tag !=
1248 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1249 fcret = VERR_ASSOC_ID;
1250 else if (assoc_acc->associd.desc_len !=
1251 fcnvme_lsdesc_len(
1252 sizeof(struct fcnvme_lsdesc_assoc_id)))
1253 fcret = VERR_ASSOC_ID_LEN;
1254 else if (assoc_acc->connectid.desc_tag !=
1255 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1256 fcret = VERR_CONN_ID;
1257 else if (assoc_acc->connectid.desc_len !=
1258 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1259 fcret = VERR_CONN_ID_LEN;
1260
1261 if (fcret) {
1262 ret = -EBADF;
1263 dev_err(ctrl->dev,
1264 "q %d Create Association LS failed: %s\n",
1265 queue->qnum, validation_errors[fcret]);
1266 } else {
1267 spin_lock_irqsave(&ctrl->lock, flags);
1268 ctrl->association_id =
1269 be64_to_cpu(assoc_acc->associd.association_id);
1270 queue->connection_id =
1271 be64_to_cpu(assoc_acc->connectid.connection_id);
1272 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1273 spin_unlock_irqrestore(&ctrl->lock, flags);
1274 }
1275
1276 out_free_buffer:
1277 kfree(lsop);
1278 out_no_memory:
1279 if (ret)
1280 dev_err(ctrl->dev,
1281 "queue %d connect admin queue failed (%d).\n",
1282 queue->qnum, ret);
1283 return ret;
1284 }
1285
1286 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1287 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1288 u16 qsize, u16 ersp_ratio)
1289 {
1290 struct nvmefc_ls_req_op *lsop;
1291 struct nvmefc_ls_req *lsreq;
1292 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1293 struct fcnvme_ls_cr_conn_acc *conn_acc;
1294 int ret, fcret = 0;
1295
1296 lsop = kzalloc((sizeof(*lsop) +
1297 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1298 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1299 if (!lsop) {
1300 dev_info(ctrl->ctrl.device,
1301 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1302 ctrl->cnum);
1303 ret = -ENOMEM;
1304 goto out_no_memory;
1305 }
1306
1307 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1308 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1309 lsreq = &lsop->ls_req;
1310 if (ctrl->lport->ops->lsrqst_priv_sz)
1311 lsreq->private = (void *)&conn_acc[1];
1312 else
1313 lsreq->private = NULL;
1314
1315 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1316 conn_rqst->desc_list_len = cpu_to_be32(
1317 sizeof(struct fcnvme_lsdesc_assoc_id) +
1318 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1319
1320 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1321 conn_rqst->associd.desc_len =
1322 fcnvme_lsdesc_len(
1323 sizeof(struct fcnvme_lsdesc_assoc_id));
1324 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1325 conn_rqst->connect_cmd.desc_tag =
1326 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1327 conn_rqst->connect_cmd.desc_len =
1328 fcnvme_lsdesc_len(
1329 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1330 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1331 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1332 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1333
1334 lsop->queue = queue;
1335 lsreq->rqstaddr = conn_rqst;
1336 lsreq->rqstlen = sizeof(*conn_rqst);
1337 lsreq->rspaddr = conn_acc;
1338 lsreq->rsplen = sizeof(*conn_acc);
1339 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1340
1341 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1342 if (ret)
1343 goto out_free_buffer;
1344
1345 /* process connect LS completion */
1346
1347 /* validate the ACC response */
1348 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1349 fcret = VERR_LSACC;
1350 else if (conn_acc->hdr.desc_list_len !=
1351 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1352 fcret = VERR_CR_CONN_ACC_LEN;
1353 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1354 fcret = VERR_LSDESC_RQST;
1355 else if (conn_acc->hdr.rqst.desc_len !=
1356 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1357 fcret = VERR_LSDESC_RQST_LEN;
1358 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1359 fcret = VERR_CR_CONN;
1360 else if (conn_acc->connectid.desc_tag !=
1361 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1362 fcret = VERR_CONN_ID;
1363 else if (conn_acc->connectid.desc_len !=
1364 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1365 fcret = VERR_CONN_ID_LEN;
1366
1367 if (fcret) {
1368 ret = -EBADF;
1369 dev_err(ctrl->dev,
1370 "q %d Create I/O Connection LS failed: %s\n",
1371 queue->qnum, validation_errors[fcret]);
1372 } else {
1373 queue->connection_id =
1374 be64_to_cpu(conn_acc->connectid.connection_id);
1375 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1376 }
1377
1378 out_free_buffer:
1379 kfree(lsop);
1380 out_no_memory:
1381 if (ret)
1382 dev_err(ctrl->dev,
1383 "queue %d connect I/O queue failed (%d).\n",
1384 queue->qnum, ret);
1385 return ret;
1386 }
1387
1388 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1389 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1390 {
1391 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1392
1393 __nvme_fc_finish_ls_req(lsop);
1394
1395 /* fc-nvme initiator doesn't care about success or failure of cmd */
1396
1397 kfree(lsop);
1398 }
1399
1400 /*
1401 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1402 * the FC-NVME Association. Terminating the association also
1403 * terminates the FC-NVME connections (per queue, both admin and io
1404 * queues) that are part of the association. E.g. things are torn
1405 * down, and the related FC-NVME Association ID and Connection IDs
1406 * become invalid.
1407 *
1408 * The behavior of the fc-nvme initiator is such that it's
1409 * understanding of the association and connections will implicitly
1410 * be torn down. The action is implicit as it may be due to a loss of
1411 * connectivity with the fc-nvme target, so you may never get a
1412 * response even if you tried. As such, the action of this routine
1413 * is to asynchronously send the LS, ignore any results of the LS, and
1414 * continue on with terminating the association. If the fc-nvme target
1415 * is present and receives the LS, it too can tear down.
1416 */
1417 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1418 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1419 {
1420 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1421 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1422 struct nvmefc_ls_req_op *lsop;
1423 struct nvmefc_ls_req *lsreq;
1424 int ret;
1425
1426 lsop = kzalloc((sizeof(*lsop) +
1427 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1428 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1429 if (!lsop) {
1430 dev_info(ctrl->ctrl.device,
1431 "NVME-FC{%d}: send Disconnect Association "
1432 "failed: ENOMEM\n",
1433 ctrl->cnum);
1434 return;
1435 }
1436
1437 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1438 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1439 lsreq = &lsop->ls_req;
1440 if (ctrl->lport->ops->lsrqst_priv_sz)
1441 lsreq->private = (void *)&discon_acc[1];
1442 else
1443 lsreq->private = NULL;
1444
1445 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1446 ctrl->association_id);
1447
1448 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1449 nvme_fc_disconnect_assoc_done);
1450 if (ret)
1451 kfree(lsop);
1452 }
1453
1454 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1455 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1456 {
1457 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1458 struct nvme_fc_rport *rport = lsop->rport;
1459 struct nvme_fc_lport *lport = rport->lport;
1460 unsigned long flags;
1461
1462 spin_lock_irqsave(&rport->lock, flags);
1463 list_del(&lsop->lsrcv_list);
1464 spin_unlock_irqrestore(&rport->lock, flags);
1465
1466 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1467 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1468 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1469 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1470
1471 kfree(lsop->rspbuf);
1472 kfree(lsop->rqstbuf);
1473 kfree(lsop);
1474
1475 nvme_fc_rport_put(rport);
1476 }
1477
1478 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1479 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1480 {
1481 struct nvme_fc_rport *rport = lsop->rport;
1482 struct nvme_fc_lport *lport = rport->lport;
1483 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1484 int ret;
1485
1486 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1487 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1488
1489 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1490 lsop->lsrsp);
1491 if (ret) {
1492 dev_warn(lport->dev,
1493 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1494 w0->ls_cmd, ret);
1495 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1496 return;
1497 }
1498 }
1499
1500 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1501 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1502 struct nvmefc_ls_rcv_op *lsop)
1503 {
1504 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1505 &lsop->rqstbuf->rq_dis_assoc;
1506 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1507 struct nvmefc_ls_rcv_op *oldls = NULL;
1508 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1509 unsigned long flags;
1510
1511 spin_lock_irqsave(&rport->lock, flags);
1512
1513 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1514 if (!nvme_fc_ctrl_get(ctrl))
1515 continue;
1516 spin_lock(&ctrl->lock);
1517 if (association_id == ctrl->association_id) {
1518 oldls = ctrl->rcv_disconn;
1519 ctrl->rcv_disconn = lsop;
1520 ret = ctrl;
1521 }
1522 spin_unlock(&ctrl->lock);
1523 if (ret)
1524 /* leave the ctrl get reference */
1525 break;
1526 nvme_fc_ctrl_put(ctrl);
1527 }
1528
1529 spin_unlock_irqrestore(&rport->lock, flags);
1530
1531 /* transmit a response for anything that was pending */
1532 if (oldls) {
1533 dev_info(rport->lport->dev,
1534 "NVME-FC{%d}: Multiple Disconnect Association "
1535 "LS's received\n", ctrl->cnum);
1536 /* overwrite good response with bogus failure */
1537 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1538 sizeof(*oldls->rspbuf),
1539 rqst->w0.ls_cmd,
1540 FCNVME_RJT_RC_UNAB,
1541 FCNVME_RJT_EXP_NONE, 0);
1542 nvme_fc_xmt_ls_rsp(oldls);
1543 }
1544
1545 return ret;
1546 }
1547
1548 /*
1549 * returns true to mean LS handled and ls_rsp can be sent
1550 * returns false to defer ls_rsp xmt (will be done as part of
1551 * association termination)
1552 */
1553 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1554 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1555 {
1556 struct nvme_fc_rport *rport = lsop->rport;
1557 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1558 &lsop->rqstbuf->rq_dis_assoc;
1559 struct fcnvme_ls_disconnect_assoc_acc *acc =
1560 &lsop->rspbuf->rsp_dis_assoc;
1561 struct nvme_fc_ctrl *ctrl = NULL;
1562 int ret = 0;
1563
1564 memset(acc, 0, sizeof(*acc));
1565
1566 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1567 if (!ret) {
1568 /* match an active association */
1569 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1570 if (!ctrl)
1571 ret = VERR_NO_ASSOC;
1572 }
1573
1574 if (ret) {
1575 dev_info(rport->lport->dev,
1576 "Disconnect LS failed: %s\n",
1577 validation_errors[ret]);
1578 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1579 sizeof(*acc), rqst->w0.ls_cmd,
1580 (ret == VERR_NO_ASSOC) ?
1581 FCNVME_RJT_RC_INV_ASSOC :
1582 FCNVME_RJT_RC_LOGIC,
1583 FCNVME_RJT_EXP_NONE, 0);
1584 return true;
1585 }
1586
1587 /* format an ACCept response */
1588
1589 lsop->lsrsp->rsplen = sizeof(*acc);
1590
1591 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1592 fcnvme_lsdesc_len(
1593 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1594 FCNVME_LS_DISCONNECT_ASSOC);
1595
1596 /*
1597 * the transmit of the response will occur after the exchanges
1598 * for the association have been ABTS'd by
1599 * nvme_fc_delete_association().
1600 */
1601
1602 /* fail the association */
1603 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1604
1605 /* release the reference taken by nvme_fc_match_disconn_ls() */
1606 nvme_fc_ctrl_put(ctrl);
1607
1608 return false;
1609 }
1610
1611 /*
1612 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1613 * returns true if a response should be sent afterward, false if rsp will
1614 * be sent asynchronously.
1615 */
1616 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1617 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1618 {
1619 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1620 bool ret = true;
1621
1622 lsop->lsrsp->nvme_fc_private = lsop;
1623 lsop->lsrsp->rspbuf = lsop->rspbuf;
1624 lsop->lsrsp->rspdma = lsop->rspdma;
1625 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1626 /* Be preventative. handlers will later set to valid length */
1627 lsop->lsrsp->rsplen = 0;
1628
1629 /*
1630 * handlers:
1631 * parse request input, execute the request, and format the
1632 * LS response
1633 */
1634 switch (w0->ls_cmd) {
1635 case FCNVME_LS_DISCONNECT_ASSOC:
1636 ret = nvme_fc_ls_disconnect_assoc(lsop);
1637 break;
1638 case FCNVME_LS_DISCONNECT_CONN:
1639 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1640 sizeof(*lsop->rspbuf), w0->ls_cmd,
1641 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1642 break;
1643 case FCNVME_LS_CREATE_ASSOCIATION:
1644 case FCNVME_LS_CREATE_CONNECTION:
1645 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1646 sizeof(*lsop->rspbuf), w0->ls_cmd,
1647 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1648 break;
1649 default:
1650 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1651 sizeof(*lsop->rspbuf), w0->ls_cmd,
1652 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1653 break;
1654 }
1655
1656 return(ret);
1657 }
1658
1659 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1660 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1661 {
1662 struct nvme_fc_rport *rport =
1663 container_of(work, struct nvme_fc_rport, lsrcv_work);
1664 struct fcnvme_ls_rqst_w0 *w0;
1665 struct nvmefc_ls_rcv_op *lsop;
1666 unsigned long flags;
1667 bool sendrsp;
1668
1669 restart:
1670 sendrsp = true;
1671 spin_lock_irqsave(&rport->lock, flags);
1672 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1673 if (lsop->handled)
1674 continue;
1675
1676 lsop->handled = true;
1677 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1678 spin_unlock_irqrestore(&rport->lock, flags);
1679 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1680 } else {
1681 spin_unlock_irqrestore(&rport->lock, flags);
1682 w0 = &lsop->rqstbuf->w0;
1683 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1684 lsop->rspbuf,
1685 sizeof(*lsop->rspbuf),
1686 w0->ls_cmd,
1687 FCNVME_RJT_RC_UNAB,
1688 FCNVME_RJT_EXP_NONE, 0);
1689 }
1690 if (sendrsp)
1691 nvme_fc_xmt_ls_rsp(lsop);
1692 goto restart;
1693 }
1694 spin_unlock_irqrestore(&rport->lock, flags);
1695 }
1696
1697 static
nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport * lport,struct fcnvme_ls_rqst_w0 * w0)1698 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
1699 struct fcnvme_ls_rqst_w0 *w0)
1700 {
1701 dev_info(lport->dev, "RCV %s LS failed: No memory\n",
1702 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1703 nvmefc_ls_names[w0->ls_cmd] : "");
1704 }
1705
1706 /**
1707 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1708 * upon the reception of a NVME LS request.
1709 *
1710 * The nvme-fc layer will copy payload to an internal structure for
1711 * processing. As such, upon completion of the routine, the LLDD may
1712 * immediately free/reuse the LS request buffer passed in the call.
1713 *
1714 * If this routine returns error, the LLDD should abort the exchange.
1715 *
1716 * @portptr: pointer to the (registered) remote port that the LS
1717 * was received from. The remoteport is associated with
1718 * a specific localport.
1719 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1720 * used to reference the exchange corresponding to the LS
1721 * when issuing an ls response.
1722 * @lsreqbuf: pointer to the buffer containing the LS Request
1723 * @lsreqbuf_len: length, in bytes, of the received LS request
1724 */
1725 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1726 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1727 struct nvmefc_ls_rsp *lsrsp,
1728 void *lsreqbuf, u32 lsreqbuf_len)
1729 {
1730 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1731 struct nvme_fc_lport *lport = rport->lport;
1732 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1733 struct nvmefc_ls_rcv_op *lsop;
1734 unsigned long flags;
1735 int ret;
1736
1737 nvme_fc_rport_get(rport);
1738
1739 /* validate there's a routine to transmit a response */
1740 if (!lport->ops->xmt_ls_rsp) {
1741 dev_info(lport->dev,
1742 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1743 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1744 nvmefc_ls_names[w0->ls_cmd] : "");
1745 ret = -EINVAL;
1746 goto out_put;
1747 }
1748
1749 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1750 dev_info(lport->dev,
1751 "RCV %s LS failed: payload too large\n",
1752 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1753 nvmefc_ls_names[w0->ls_cmd] : "");
1754 ret = -E2BIG;
1755 goto out_put;
1756 }
1757
1758 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
1759 if (!lsop) {
1760 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1761 ret = -ENOMEM;
1762 goto out_put;
1763 }
1764
1765 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
1766 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
1767 if (!lsop->rqstbuf || !lsop->rspbuf) {
1768 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1769 ret = -ENOMEM;
1770 goto out_free;
1771 }
1772
1773 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1774 sizeof(*lsop->rspbuf),
1775 DMA_TO_DEVICE);
1776 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1777 dev_info(lport->dev,
1778 "RCV %s LS failed: DMA mapping failure\n",
1779 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1780 nvmefc_ls_names[w0->ls_cmd] : "");
1781 ret = -EFAULT;
1782 goto out_free;
1783 }
1784
1785 lsop->rport = rport;
1786 lsop->lsrsp = lsrsp;
1787
1788 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1789 lsop->rqstdatalen = lsreqbuf_len;
1790
1791 spin_lock_irqsave(&rport->lock, flags);
1792 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1793 spin_unlock_irqrestore(&rport->lock, flags);
1794 ret = -ENOTCONN;
1795 goto out_unmap;
1796 }
1797 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1798 spin_unlock_irqrestore(&rport->lock, flags);
1799
1800 schedule_work(&rport->lsrcv_work);
1801
1802 return 0;
1803
1804 out_unmap:
1805 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1806 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1807 out_free:
1808 kfree(lsop->rspbuf);
1809 kfree(lsop->rqstbuf);
1810 kfree(lsop);
1811 out_put:
1812 nvme_fc_rport_put(rport);
1813 return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1816
1817
1818 /* *********************** NVME Ctrl Routines **************************** */
1819
1820 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1821 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1822 struct nvme_fc_fcp_op *op)
1823 {
1824 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1825 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1826 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1827 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1828
1829 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1830 }
1831
1832 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1833 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1834 unsigned int hctx_idx)
1835 {
1836 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1837
1838 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1839 }
1840
1841 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1842 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1843 {
1844 unsigned long flags;
1845 int opstate;
1846
1847 spin_lock_irqsave(&ctrl->lock, flags);
1848 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1849 if (opstate != FCPOP_STATE_ACTIVE)
1850 atomic_set(&op->state, opstate);
1851 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1852 op->flags |= FCOP_FLAGS_TERMIO;
1853 ctrl->iocnt++;
1854 }
1855 spin_unlock_irqrestore(&ctrl->lock, flags);
1856
1857 if (opstate != FCPOP_STATE_ACTIVE)
1858 return -ECANCELED;
1859
1860 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1861 &ctrl->rport->remoteport,
1862 op->queue->lldd_handle,
1863 &op->fcp_req);
1864
1865 return 0;
1866 }
1867
1868 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1869 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1870 {
1871 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1872 int i;
1873
1874 /* ensure we've initialized the ops once */
1875 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1876 return;
1877
1878 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1879 __nvme_fc_abort_op(ctrl, aen_op);
1880 }
1881
1882 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1883 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1884 struct nvme_fc_fcp_op *op, int opstate)
1885 {
1886 unsigned long flags;
1887
1888 if (opstate == FCPOP_STATE_ABORTED) {
1889 spin_lock_irqsave(&ctrl->lock, flags);
1890 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1891 op->flags & FCOP_FLAGS_TERMIO) {
1892 if (!--ctrl->iocnt)
1893 wake_up(&ctrl->ioabort_wait);
1894 }
1895 spin_unlock_irqrestore(&ctrl->lock, flags);
1896 }
1897 }
1898
1899 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1900 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1901 {
1902 struct nvme_fc_ctrl *ctrl =
1903 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1904
1905 nvme_fc_error_recovery(ctrl, "transport detected io error");
1906 }
1907
1908 /*
1909 * nvme_fc_io_getuuid - Routine called to get the appid field
1910 * associated with request by the lldd
1911 * @req:IO request from nvme fc to driver
1912 * Returns: UUID if there is an appid associated with VM or
1913 * NULL if the user/libvirt has not set the appid to VM
1914 */
nvme_fc_io_getuuid(struct nvmefc_fcp_req * req)1915 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1916 {
1917 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1918 struct request *rq = op->rq;
1919
1920 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
1921 return NULL;
1922 return blkcg_get_fc_appid(rq->bio);
1923 }
1924 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1925
1926 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1927 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1928 {
1929 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1930 struct request *rq = op->rq;
1931 struct nvmefc_fcp_req *freq = &op->fcp_req;
1932 struct nvme_fc_ctrl *ctrl = op->ctrl;
1933 struct nvme_fc_queue *queue = op->queue;
1934 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1935 struct nvme_command *sqe = &op->cmd_iu.sqe;
1936 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1937 union nvme_result result;
1938 bool terminate_assoc = true;
1939 int opstate;
1940
1941 /*
1942 * WARNING:
1943 * The current linux implementation of a nvme controller
1944 * allocates a single tag set for all io queues and sizes
1945 * the io queues to fully hold all possible tags. Thus, the
1946 * implementation does not reference or care about the sqhd
1947 * value as it never needs to use the sqhd/sqtail pointers
1948 * for submission pacing.
1949 *
1950 * This affects the FC-NVME implementation in two ways:
1951 * 1) As the value doesn't matter, we don't need to waste
1952 * cycles extracting it from ERSPs and stamping it in the
1953 * cases where the transport fabricates CQEs on successful
1954 * completions.
1955 * 2) The FC-NVME implementation requires that delivery of
1956 * ERSP completions are to go back to the nvme layer in order
1957 * relative to the rsn, such that the sqhd value will always
1958 * be "in order" for the nvme layer. As the nvme layer in
1959 * linux doesn't care about sqhd, there's no need to return
1960 * them in order.
1961 *
1962 * Additionally:
1963 * As the core nvme layer in linux currently does not look at
1964 * every field in the cqe - in cases where the FC transport must
1965 * fabricate a CQE, the following fields will not be set as they
1966 * are not referenced:
1967 * cqe.sqid, cqe.sqhd, cqe.command_id
1968 *
1969 * Failure or error of an individual i/o, in a transport
1970 * detected fashion unrelated to the nvme completion status,
1971 * potentially cause the initiator and target sides to get out
1972 * of sync on SQ head/tail (aka outstanding io count allowed).
1973 * Per FC-NVME spec, failure of an individual command requires
1974 * the connection to be terminated, which in turn requires the
1975 * association to be terminated.
1976 */
1977
1978 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1979
1980 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1981 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1982
1983 if (opstate == FCPOP_STATE_ABORTED)
1984 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1985 else if (freq->status) {
1986 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1987 dev_info(ctrl->ctrl.device,
1988 "NVME-FC{%d}: io failed due to lldd error %d\n",
1989 ctrl->cnum, freq->status);
1990 }
1991
1992 /*
1993 * For the linux implementation, if we have an unsuccesful
1994 * status, they blk-mq layer can typically be called with the
1995 * non-zero status and the content of the cqe isn't important.
1996 */
1997 if (status)
1998 goto done;
1999
2000 /*
2001 * command completed successfully relative to the wire
2002 * protocol. However, validate anything received and
2003 * extract the status and result from the cqe (create it
2004 * where necessary).
2005 */
2006
2007 switch (freq->rcv_rsplen) {
2008
2009 case 0:
2010 case NVME_FC_SIZEOF_ZEROS_RSP:
2011 /*
2012 * No response payload or 12 bytes of payload (which
2013 * should all be zeros) are considered successful and
2014 * no payload in the CQE by the transport.
2015 */
2016 if (freq->transferred_length !=
2017 be32_to_cpu(op->cmd_iu.data_len)) {
2018 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2019 dev_info(ctrl->ctrl.device,
2020 "NVME-FC{%d}: io failed due to bad transfer "
2021 "length: %d vs expected %d\n",
2022 ctrl->cnum, freq->transferred_length,
2023 be32_to_cpu(op->cmd_iu.data_len));
2024 goto done;
2025 }
2026 result.u64 = 0;
2027 break;
2028
2029 case sizeof(struct nvme_fc_ersp_iu):
2030 /*
2031 * The ERSP IU contains a full completion with CQE.
2032 * Validate ERSP IU and look at cqe.
2033 */
2034 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2035 (freq->rcv_rsplen / 4) ||
2036 be32_to_cpu(op->rsp_iu.xfrd_len) !=
2037 freq->transferred_length ||
2038 op->rsp_iu.ersp_result ||
2039 sqe->common.command_id != cqe->command_id)) {
2040 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2041 dev_info(ctrl->ctrl.device,
2042 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2043 "iu len %d, xfr len %d vs %d, status code "
2044 "%d, cmdid %d vs %d\n",
2045 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2046 be32_to_cpu(op->rsp_iu.xfrd_len),
2047 freq->transferred_length,
2048 op->rsp_iu.ersp_result,
2049 sqe->common.command_id,
2050 cqe->command_id);
2051 goto done;
2052 }
2053 result = cqe->result;
2054 status = cqe->status;
2055 break;
2056
2057 default:
2058 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2059 dev_info(ctrl->ctrl.device,
2060 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2061 "len %d\n",
2062 ctrl->cnum, freq->rcv_rsplen);
2063 goto done;
2064 }
2065
2066 terminate_assoc = false;
2067
2068 done:
2069 if (op->flags & FCOP_FLAGS_AEN) {
2070 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2071 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2072 atomic_set(&op->state, FCPOP_STATE_IDLE);
2073 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2074 nvme_fc_ctrl_put(ctrl);
2075 goto check_error;
2076 }
2077
2078 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2079 if (!nvme_try_complete_req(rq, status, result))
2080 nvme_fc_complete_rq(rq);
2081
2082 check_error:
2083 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2084 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2085 }
2086
2087 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2088 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2089 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2090 struct request *rq, u32 rqno)
2091 {
2092 struct nvme_fcp_op_w_sgl *op_w_sgl =
2093 container_of(op, typeof(*op_w_sgl), op);
2094 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2095 int ret = 0;
2096
2097 memset(op, 0, sizeof(*op));
2098 op->fcp_req.cmdaddr = &op->cmd_iu;
2099 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2100 op->fcp_req.rspaddr = &op->rsp_iu;
2101 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2102 op->fcp_req.done = nvme_fc_fcpio_done;
2103 op->ctrl = ctrl;
2104 op->queue = queue;
2105 op->rq = rq;
2106 op->rqno = rqno;
2107
2108 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2109 cmdiu->fc_id = NVME_CMD_FC_ID;
2110 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2111 if (queue->qnum)
2112 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2113 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2114 else
2115 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2116
2117 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2118 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2119 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2120 dev_err(ctrl->dev,
2121 "FCP Op failed - cmdiu dma mapping failed.\n");
2122 ret = -EFAULT;
2123 goto out_on_error;
2124 }
2125
2126 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2127 &op->rsp_iu, sizeof(op->rsp_iu),
2128 DMA_FROM_DEVICE);
2129 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2130 dev_err(ctrl->dev,
2131 "FCP Op failed - rspiu dma mapping failed.\n");
2132 ret = -EFAULT;
2133 }
2134
2135 atomic_set(&op->state, FCPOP_STATE_IDLE);
2136 out_on_error:
2137 return ret;
2138 }
2139
2140 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2141 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2142 unsigned int hctx_idx, unsigned int numa_node)
2143 {
2144 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2145 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2146 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2147 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2148 int res;
2149
2150 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2151 if (res)
2152 return res;
2153 op->op.fcp_req.first_sgl = op->sgl;
2154 op->op.fcp_req.private = &op->priv[0];
2155 nvme_req(rq)->ctrl = &ctrl->ctrl;
2156 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2157 return res;
2158 }
2159
2160 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2161 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2162 {
2163 struct nvme_fc_fcp_op *aen_op;
2164 struct nvme_fc_cmd_iu *cmdiu;
2165 struct nvme_command *sqe;
2166 void *private = NULL;
2167 int i, ret;
2168
2169 aen_op = ctrl->aen_ops;
2170 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2171 if (ctrl->lport->ops->fcprqst_priv_sz) {
2172 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2173 GFP_KERNEL);
2174 if (!private)
2175 return -ENOMEM;
2176 }
2177
2178 cmdiu = &aen_op->cmd_iu;
2179 sqe = &cmdiu->sqe;
2180 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2181 aen_op, (struct request *)NULL,
2182 (NVME_AQ_BLK_MQ_DEPTH + i));
2183 if (ret) {
2184 kfree(private);
2185 return ret;
2186 }
2187
2188 aen_op->flags = FCOP_FLAGS_AEN;
2189 aen_op->fcp_req.private = private;
2190
2191 memset(sqe, 0, sizeof(*sqe));
2192 sqe->common.opcode = nvme_admin_async_event;
2193 /* Note: core layer may overwrite the sqe.command_id value */
2194 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2195 }
2196 return 0;
2197 }
2198
2199 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2200 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2201 {
2202 struct nvme_fc_fcp_op *aen_op;
2203 int i;
2204
2205 cancel_work_sync(&ctrl->ctrl.async_event_work);
2206 aen_op = ctrl->aen_ops;
2207 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2208 __nvme_fc_exit_request(ctrl, aen_op);
2209
2210 kfree(aen_op->fcp_req.private);
2211 aen_op->fcp_req.private = NULL;
2212 }
2213 }
2214
2215 static inline int
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int qidx)2216 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2217 {
2218 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2219 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2220
2221 hctx->driver_data = queue;
2222 queue->hctx = hctx;
2223 return 0;
2224 }
2225
2226 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2227 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2228 {
2229 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2230 }
2231
2232 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2233 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2234 unsigned int hctx_idx)
2235 {
2236 return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2237 }
2238
2239 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2240 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2241 {
2242 struct nvme_fc_queue *queue;
2243
2244 queue = &ctrl->queues[idx];
2245 memset(queue, 0, sizeof(*queue));
2246 queue->ctrl = ctrl;
2247 queue->qnum = idx;
2248 atomic_set(&queue->csn, 0);
2249 queue->dev = ctrl->dev;
2250
2251 if (idx > 0)
2252 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2253 else
2254 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2255
2256 /*
2257 * Considered whether we should allocate buffers for all SQEs
2258 * and CQEs and dma map them - mapping their respective entries
2259 * into the request structures (kernel vm addr and dma address)
2260 * thus the driver could use the buffers/mappings directly.
2261 * It only makes sense if the LLDD would use them for its
2262 * messaging api. It's very unlikely most adapter api's would use
2263 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2264 * structures were used instead.
2265 */
2266 }
2267
2268 /*
2269 * This routine terminates a queue at the transport level.
2270 * The transport has already ensured that all outstanding ios on
2271 * the queue have been terminated.
2272 * The transport will send a Disconnect LS request to terminate
2273 * the queue's connection. Termination of the admin queue will also
2274 * terminate the association at the target.
2275 */
2276 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2277 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2278 {
2279 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2280 return;
2281
2282 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2283 /*
2284 * Current implementation never disconnects a single queue.
2285 * It always terminates a whole association. So there is never
2286 * a disconnect(queue) LS sent to the target.
2287 */
2288
2289 queue->connection_id = 0;
2290 atomic_set(&queue->csn, 0);
2291 }
2292
2293 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2294 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2295 struct nvme_fc_queue *queue, unsigned int qidx)
2296 {
2297 if (ctrl->lport->ops->delete_queue)
2298 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2299 queue->lldd_handle);
2300 queue->lldd_handle = NULL;
2301 }
2302
2303 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2304 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2305 {
2306 int i;
2307
2308 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2309 nvme_fc_free_queue(&ctrl->queues[i]);
2310 }
2311
2312 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2313 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2314 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2315 {
2316 int ret = 0;
2317
2318 queue->lldd_handle = NULL;
2319 if (ctrl->lport->ops->create_queue)
2320 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2321 qidx, qsize, &queue->lldd_handle);
2322
2323 return ret;
2324 }
2325
2326 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2327 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2328 {
2329 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2330 int i;
2331
2332 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2333 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2334 }
2335
2336 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2337 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2338 {
2339 struct nvme_fc_queue *queue = &ctrl->queues[1];
2340 int i, ret;
2341
2342 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2343 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2344 if (ret)
2345 goto delete_queues;
2346 }
2347
2348 return 0;
2349
2350 delete_queues:
2351 for (; i > 0; i--)
2352 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2353 return ret;
2354 }
2355
2356 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2357 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2358 {
2359 int i, ret = 0;
2360
2361 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2362 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2363 (qsize / 5));
2364 if (ret)
2365 break;
2366 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2367 if (ret)
2368 break;
2369
2370 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2371 }
2372
2373 return ret;
2374 }
2375
2376 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2377 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2378 {
2379 int i;
2380
2381 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2382 nvme_fc_init_queue(ctrl, i);
2383 }
2384
2385 static void
nvme_fc_ctrl_free(struct kref * ref)2386 nvme_fc_ctrl_free(struct kref *ref)
2387 {
2388 struct nvme_fc_ctrl *ctrl =
2389 container_of(ref, struct nvme_fc_ctrl, ref);
2390 unsigned long flags;
2391
2392 if (ctrl->ctrl.tagset)
2393 nvme_remove_io_tag_set(&ctrl->ctrl);
2394
2395 /* remove from rport list */
2396 spin_lock_irqsave(&ctrl->rport->lock, flags);
2397 list_del(&ctrl->ctrl_list);
2398 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2399
2400 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2401 nvme_remove_admin_tag_set(&ctrl->ctrl);
2402
2403 kfree(ctrl->queues);
2404
2405 put_device(ctrl->dev);
2406 nvme_fc_rport_put(ctrl->rport);
2407
2408 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2409 if (ctrl->ctrl.opts)
2410 nvmf_free_options(ctrl->ctrl.opts);
2411 kfree(ctrl);
2412 }
2413
2414 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2415 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2416 {
2417 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2418 }
2419
2420 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2421 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2422 {
2423 return kref_get_unless_zero(&ctrl->ref);
2424 }
2425
2426 /*
2427 * All accesses from nvme core layer done - can now free the
2428 * controller. Called after last nvme_put_ctrl() call
2429 */
2430 static void
nvme_fc_free_ctrl(struct nvme_ctrl * nctrl)2431 nvme_fc_free_ctrl(struct nvme_ctrl *nctrl)
2432 {
2433 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2434
2435 WARN_ON(nctrl != &ctrl->ctrl);
2436
2437 nvme_fc_ctrl_put(ctrl);
2438 }
2439
2440 /*
2441 * This routine is used by the transport when it needs to find active
2442 * io on a queue that is to be terminated. The transport uses
2443 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2444 * this routine to kill them on a 1 by 1 basis.
2445 *
2446 * As FC allocates FC exchange for each io, the transport must contact
2447 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2448 * After terminating the exchange the LLDD will call the transport's
2449 * normal io done path for the request, but it will have an aborted
2450 * status. The done path will return the io request back to the block
2451 * layer with an error status.
2452 */
nvme_fc_terminate_exchange(struct request * req,void * data)2453 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2454 {
2455 struct nvme_ctrl *nctrl = data;
2456 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2457 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2458
2459 op->nreq.flags |= NVME_REQ_CANCELLED;
2460 __nvme_fc_abort_op(ctrl, op);
2461 return true;
2462 }
2463
2464 /*
2465 * This routine runs through all outstanding commands on the association
2466 * and aborts them. This routine is typically be called by the
2467 * delete_association routine. It is also called due to an error during
2468 * reconnect. In that scenario, it is most likely a command that initializes
2469 * the controller, including fabric Connect commands on io queues, that
2470 * may have timed out or failed thus the io must be killed for the connect
2471 * thread to see the error.
2472 */
2473 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2474 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2475 {
2476 int q;
2477
2478 /*
2479 * if aborting io, the queues are no longer good, mark them
2480 * all as not live.
2481 */
2482 if (ctrl->ctrl.queue_count > 1) {
2483 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2484 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2485 }
2486 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2487
2488 /*
2489 * If io queues are present, stop them and terminate all outstanding
2490 * ios on them. As FC allocates FC exchange for each io, the
2491 * transport must contact the LLDD to terminate the exchange,
2492 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2493 * to tell us what io's are busy and invoke a transport routine
2494 * to kill them with the LLDD. After terminating the exchange
2495 * the LLDD will call the transport's normal io done path, but it
2496 * will have an aborted status. The done path will return the
2497 * io requests back to the block layer as part of normal completions
2498 * (but with error status).
2499 */
2500 if (ctrl->ctrl.queue_count > 1) {
2501 nvme_quiesce_io_queues(&ctrl->ctrl);
2502 nvme_sync_io_queues(&ctrl->ctrl);
2503 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2504 nvme_fc_terminate_exchange, &ctrl->ctrl);
2505 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2506 if (start_queues)
2507 nvme_unquiesce_io_queues(&ctrl->ctrl);
2508 }
2509
2510 /*
2511 * Other transports, which don't have link-level contexts bound
2512 * to sqe's, would try to gracefully shutdown the controller by
2513 * writing the registers for shutdown and polling (call
2514 * nvme_disable_ctrl()). Given a bunch of i/o was potentially
2515 * just aborted and we will wait on those contexts, and given
2516 * there was no indication of how live the controlelr is on the
2517 * link, don't send more io to create more contexts for the
2518 * shutdown. Let the controller fail via keepalive failure if
2519 * its still present.
2520 */
2521
2522 /*
2523 * clean up the admin queue. Same thing as above.
2524 */
2525 nvme_quiesce_admin_queue(&ctrl->ctrl);
2526 blk_sync_queue(ctrl->ctrl.admin_q);
2527 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2528 nvme_fc_terminate_exchange, &ctrl->ctrl);
2529 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2530 if (start_queues)
2531 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2532 }
2533
2534 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2535 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2536 {
2537 /*
2538 * if an error (io timeout, etc) while (re)connecting, the remote
2539 * port requested terminating of the association (disconnect_ls)
2540 * or an error (timeout or abort) occurred on an io while creating
2541 * the controller. Abort any ios on the association and let the
2542 * create_association error path resolve things.
2543 */
2544 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2545 __nvme_fc_abort_outstanding_ios(ctrl, true);
2546 set_bit(ASSOC_FAILED, &ctrl->flags);
2547 dev_warn(ctrl->ctrl.device,
2548 "NVME-FC{%d}: transport error during (re)connect\n",
2549 ctrl->cnum);
2550 return;
2551 }
2552
2553 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2554 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2555 return;
2556
2557 dev_warn(ctrl->ctrl.device,
2558 "NVME-FC{%d}: transport association event: %s\n",
2559 ctrl->cnum, errmsg);
2560 dev_warn(ctrl->ctrl.device,
2561 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2562
2563 nvme_reset_ctrl(&ctrl->ctrl);
2564 }
2565
nvme_fc_timeout(struct request * rq)2566 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2567 {
2568 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2569 struct nvme_fc_ctrl *ctrl = op->ctrl;
2570 u16 qnum = op->queue->qnum;
2571 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2572 struct nvme_command *sqe = &cmdiu->sqe;
2573
2574 /*
2575 * Attempt to abort the offending command. Command completion
2576 * will detect the aborted io and will fail the connection.
2577 */
2578 dev_info(ctrl->ctrl.device,
2579 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: "
2580 "x%08x/x%08x\n",
2581 ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype,
2582 nvme_fabrics_opcode_str(qnum, sqe),
2583 sqe->common.cdw10, sqe->common.cdw11);
2584 if (__nvme_fc_abort_op(ctrl, op))
2585 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2586
2587 /*
2588 * the io abort has been initiated. Have the reset timer
2589 * restarted and the abort completion will complete the io
2590 * shortly. Avoids a synchronous wait while the abort finishes.
2591 */
2592 return BLK_EH_RESET_TIMER;
2593 }
2594
2595 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2596 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2597 struct nvme_fc_fcp_op *op)
2598 {
2599 struct nvmefc_fcp_req *freq = &op->fcp_req;
2600 int ret;
2601
2602 freq->sg_cnt = 0;
2603
2604 if (!blk_rq_nr_phys_segments(rq))
2605 return 0;
2606
2607 freq->sg_table.sgl = freq->first_sgl;
2608 ret = sg_alloc_table_chained(&freq->sg_table,
2609 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2610 NVME_INLINE_SG_CNT);
2611 if (ret)
2612 return -ENOMEM;
2613
2614 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2615 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2616 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2617 op->nents, rq_dma_dir(rq));
2618 if (unlikely(freq->sg_cnt <= 0)) {
2619 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2620 freq->sg_cnt = 0;
2621 return -EFAULT;
2622 }
2623
2624 /*
2625 * TODO: blk_integrity_rq(rq) for DIF
2626 */
2627 return 0;
2628 }
2629
2630 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2631 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2632 struct nvme_fc_fcp_op *op)
2633 {
2634 struct nvmefc_fcp_req *freq = &op->fcp_req;
2635
2636 if (!freq->sg_cnt)
2637 return;
2638
2639 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2640 rq_dma_dir(rq));
2641
2642 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2643
2644 freq->sg_cnt = 0;
2645 }
2646
2647 /*
2648 * In FC, the queue is a logical thing. At transport connect, the target
2649 * creates its "queue" and returns a handle that is to be given to the
2650 * target whenever it posts something to the corresponding SQ. When an
2651 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2652 * command contained within the SQE, an io, and assigns a FC exchange
2653 * to it. The SQE and the associated SQ handle are sent in the initial
2654 * CMD IU sents on the exchange. All transfers relative to the io occur
2655 * as part of the exchange. The CQE is the last thing for the io,
2656 * which is transferred (explicitly or implicitly) with the RSP IU
2657 * sent on the exchange. After the CQE is received, the FC exchange is
2658 * terminaed and the Exchange may be used on a different io.
2659 *
2660 * The transport to LLDD api has the transport making a request for a
2661 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2662 * resource and transfers the command. The LLDD will then process all
2663 * steps to complete the io. Upon completion, the transport done routine
2664 * is called.
2665 *
2666 * So - while the operation is outstanding to the LLDD, there is a link
2667 * level FC exchange resource that is also outstanding. This must be
2668 * considered in all cleanup operations.
2669 */
2670 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2671 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2672 struct nvme_fc_fcp_op *op, u32 data_len,
2673 enum nvmefc_fcp_datadir io_dir)
2674 {
2675 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2676 struct nvme_command *sqe = &cmdiu->sqe;
2677 int ret, opstate;
2678
2679 /*
2680 * before attempting to send the io, check to see if we believe
2681 * the target device is present
2682 */
2683 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2684 return BLK_STS_RESOURCE;
2685
2686 if (!nvme_fc_ctrl_get(ctrl))
2687 return BLK_STS_IOERR;
2688
2689 /* format the FC-NVME CMD IU and fcp_req */
2690 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2691 cmdiu->data_len = cpu_to_be32(data_len);
2692 switch (io_dir) {
2693 case NVMEFC_FCP_WRITE:
2694 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2695 break;
2696 case NVMEFC_FCP_READ:
2697 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2698 break;
2699 case NVMEFC_FCP_NODATA:
2700 cmdiu->flags = 0;
2701 break;
2702 }
2703 op->fcp_req.payload_length = data_len;
2704 op->fcp_req.io_dir = io_dir;
2705 op->fcp_req.transferred_length = 0;
2706 op->fcp_req.rcv_rsplen = 0;
2707 op->fcp_req.status = NVME_SC_SUCCESS;
2708 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2709
2710 /*
2711 * validate per fabric rules, set fields mandated by fabric spec
2712 * as well as those by FC-NVME spec.
2713 */
2714 WARN_ON_ONCE(sqe->common.metadata);
2715 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2716
2717 /*
2718 * format SQE DPTR field per FC-NVME rules:
2719 * type=0x5 Transport SGL Data Block Descriptor
2720 * subtype=0xA Transport-specific value
2721 * address=0
2722 * length=length of the data series
2723 */
2724 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2725 NVME_SGL_FMT_TRANSPORT_A;
2726 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2727 sqe->rw.dptr.sgl.addr = 0;
2728
2729 if (!(op->flags & FCOP_FLAGS_AEN)) {
2730 ret = nvme_fc_map_data(ctrl, op->rq, op);
2731 if (ret < 0) {
2732 nvme_cleanup_cmd(op->rq);
2733 nvme_fc_ctrl_put(ctrl);
2734 if (ret == -ENOMEM || ret == -EAGAIN)
2735 return BLK_STS_RESOURCE;
2736 return BLK_STS_IOERR;
2737 }
2738 }
2739
2740 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2741 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2742
2743 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2744
2745 if (!(op->flags & FCOP_FLAGS_AEN))
2746 nvme_start_request(op->rq);
2747
2748 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2749 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2750 &ctrl->rport->remoteport,
2751 queue->lldd_handle, &op->fcp_req);
2752
2753 if (ret) {
2754 /*
2755 * If the lld fails to send the command is there an issue with
2756 * the csn value? If the command that fails is the Connect,
2757 * no - as the connection won't be live. If it is a command
2758 * post-connect, it's possible a gap in csn may be created.
2759 * Does this matter? As Linux initiators don't send fused
2760 * commands, no. The gap would exist, but as there's nothing
2761 * that depends on csn order to be delivered on the target
2762 * side, it shouldn't hurt. It would be difficult for a
2763 * target to even detect the csn gap as it has no idea when the
2764 * cmd with the csn was supposed to arrive.
2765 */
2766 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2767 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2768
2769 if (!(op->flags & FCOP_FLAGS_AEN)) {
2770 nvme_fc_unmap_data(ctrl, op->rq, op);
2771 nvme_cleanup_cmd(op->rq);
2772 }
2773
2774 nvme_fc_ctrl_put(ctrl);
2775
2776 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2777 ret != -EBUSY)
2778 return BLK_STS_IOERR;
2779
2780 return BLK_STS_RESOURCE;
2781 }
2782
2783 return BLK_STS_OK;
2784 }
2785
2786 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2787 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2788 const struct blk_mq_queue_data *bd)
2789 {
2790 struct nvme_ns *ns = hctx->queue->queuedata;
2791 struct nvme_fc_queue *queue = hctx->driver_data;
2792 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2793 struct request *rq = bd->rq;
2794 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2795 enum nvmefc_fcp_datadir io_dir;
2796 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2797 u32 data_len;
2798 blk_status_t ret;
2799
2800 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2801 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2802 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2803
2804 ret = nvme_setup_cmd(ns, rq);
2805 if (ret)
2806 return ret;
2807
2808 /*
2809 * nvme core doesn't quite treat the rq opaquely. Commands such
2810 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2811 * there is no actual payload to be transferred.
2812 * To get it right, key data transmission on there being 1 or
2813 * more physical segments in the sg list. If there is no
2814 * physical segments, there is no payload.
2815 */
2816 if (blk_rq_nr_phys_segments(rq)) {
2817 data_len = blk_rq_payload_bytes(rq);
2818 io_dir = ((rq_data_dir(rq) == WRITE) ?
2819 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2820 } else {
2821 data_len = 0;
2822 io_dir = NVMEFC_FCP_NODATA;
2823 }
2824
2825
2826 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2827 }
2828
2829 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2830 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2831 {
2832 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2833 struct nvme_fc_fcp_op *aen_op;
2834 blk_status_t ret;
2835
2836 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2837 return;
2838
2839 aen_op = &ctrl->aen_ops[0];
2840
2841 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2842 NVMEFC_FCP_NODATA);
2843 if (ret)
2844 dev_err(ctrl->ctrl.device,
2845 "failed async event work\n");
2846 }
2847
2848 static void
nvme_fc_complete_rq(struct request * rq)2849 nvme_fc_complete_rq(struct request *rq)
2850 {
2851 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2852 struct nvme_fc_ctrl *ctrl = op->ctrl;
2853
2854 atomic_set(&op->state, FCPOP_STATE_IDLE);
2855 op->flags &= ~FCOP_FLAGS_TERMIO;
2856
2857 nvme_fc_unmap_data(ctrl, rq, op);
2858 nvme_complete_rq(rq);
2859 nvme_fc_ctrl_put(ctrl);
2860 }
2861
nvme_fc_map_queues(struct blk_mq_tag_set * set)2862 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2863 {
2864 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2865 int i;
2866
2867 for (i = 0; i < set->nr_maps; i++) {
2868 struct blk_mq_queue_map *map = &set->map[i];
2869
2870 if (!map->nr_queues) {
2871 WARN_ON(i == HCTX_TYPE_DEFAULT);
2872 continue;
2873 }
2874
2875 /* Call LLDD map queue functionality if defined */
2876 if (ctrl->lport->ops->map_queues)
2877 ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2878 map);
2879 else
2880 blk_mq_map_queues(map);
2881 }
2882 }
2883
2884 static const struct blk_mq_ops nvme_fc_mq_ops = {
2885 .queue_rq = nvme_fc_queue_rq,
2886 .complete = nvme_fc_complete_rq,
2887 .init_request = nvme_fc_init_request,
2888 .exit_request = nvme_fc_exit_request,
2889 .init_hctx = nvme_fc_init_hctx,
2890 .timeout = nvme_fc_timeout,
2891 .map_queues = nvme_fc_map_queues,
2892 };
2893
2894 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2895 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2896 {
2897 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2898 unsigned int nr_io_queues;
2899 int ret;
2900
2901 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2902 ctrl->lport->ops->max_hw_queues);
2903 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2904 if (ret) {
2905 dev_info(ctrl->ctrl.device,
2906 "set_queue_count failed: %d\n", ret);
2907 return ret;
2908 }
2909
2910 ctrl->ctrl.queue_count = nr_io_queues + 1;
2911 if (!nr_io_queues)
2912 return 0;
2913
2914 nvme_fc_init_io_queues(ctrl);
2915
2916 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2917 &nvme_fc_mq_ops, 1,
2918 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
2919 ctrl->lport->ops->fcprqst_priv_sz));
2920 if (ret)
2921 return ret;
2922
2923 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2924 if (ret)
2925 goto out_cleanup_tagset;
2926
2927 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2928 if (ret)
2929 goto out_delete_hw_queues;
2930
2931 ctrl->ioq_live = true;
2932
2933 return 0;
2934
2935 out_delete_hw_queues:
2936 nvme_fc_delete_hw_io_queues(ctrl);
2937 out_cleanup_tagset:
2938 nvme_remove_io_tag_set(&ctrl->ctrl);
2939 nvme_fc_free_io_queues(ctrl);
2940
2941 /* force put free routine to ignore io queues */
2942 ctrl->ctrl.tagset = NULL;
2943
2944 return ret;
2945 }
2946
2947 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2948 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2949 {
2950 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2951 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2952 unsigned int nr_io_queues;
2953 int ret;
2954
2955 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2956 ctrl->lport->ops->max_hw_queues);
2957 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2958 if (ret) {
2959 dev_info(ctrl->ctrl.device,
2960 "set_queue_count failed: %d\n", ret);
2961 return ret;
2962 }
2963
2964 if (!nr_io_queues && prior_ioq_cnt) {
2965 dev_info(ctrl->ctrl.device,
2966 "Fail Reconnect: At least 1 io queue "
2967 "required (was %d)\n", prior_ioq_cnt);
2968 return -ENOSPC;
2969 }
2970
2971 ctrl->ctrl.queue_count = nr_io_queues + 1;
2972 /* check for io queues existing */
2973 if (ctrl->ctrl.queue_count == 1)
2974 return 0;
2975
2976 if (prior_ioq_cnt != nr_io_queues) {
2977 dev_info(ctrl->ctrl.device,
2978 "reconnect: revising io queue count from %d to %d\n",
2979 prior_ioq_cnt, nr_io_queues);
2980 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2981 }
2982
2983 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2984 if (ret)
2985 goto out_free_io_queues;
2986
2987 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2988 if (ret)
2989 goto out_delete_hw_queues;
2990
2991 return 0;
2992
2993 out_delete_hw_queues:
2994 nvme_fc_delete_hw_io_queues(ctrl);
2995 out_free_io_queues:
2996 nvme_fc_free_io_queues(ctrl);
2997 return ret;
2998 }
2999
3000 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)3001 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3002 {
3003 struct nvme_fc_lport *lport = rport->lport;
3004
3005 atomic_inc(&lport->act_rport_cnt);
3006 }
3007
3008 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)3009 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3010 {
3011 struct nvme_fc_lport *lport = rport->lport;
3012 u32 cnt;
3013
3014 cnt = atomic_dec_return(&lport->act_rport_cnt);
3015 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3016 lport->ops->localport_delete(&lport->localport);
3017 }
3018
3019 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)3020 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3021 {
3022 struct nvme_fc_rport *rport = ctrl->rport;
3023 u32 cnt;
3024
3025 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3026 return 1;
3027
3028 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3029 if (cnt == 1)
3030 nvme_fc_rport_active_on_lport(rport);
3031
3032 return 0;
3033 }
3034
3035 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)3036 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3037 {
3038 struct nvme_fc_rport *rport = ctrl->rport;
3039 struct nvme_fc_lport *lport = rport->lport;
3040 u32 cnt;
3041
3042 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3043
3044 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3045 if (cnt == 0) {
3046 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3047 lport->ops->remoteport_delete(&rport->remoteport);
3048 nvme_fc_rport_inactive_on_lport(rport);
3049 }
3050
3051 return 0;
3052 }
3053
3054 /*
3055 * This routine restarts the controller on the host side, and
3056 * on the link side, recreates the controller association.
3057 */
3058 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3059 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3060 {
3061 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3062 struct nvmefc_ls_rcv_op *disls = NULL;
3063 unsigned long flags;
3064 int ret;
3065 bool changed;
3066
3067 ++ctrl->ctrl.nr_reconnects;
3068
3069 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3070 return -ENODEV;
3071
3072 if (nvme_fc_ctlr_active_on_rport(ctrl))
3073 return -ENOTUNIQ;
3074
3075 dev_info(ctrl->ctrl.device,
3076 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3077 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3078 ctrl->cnum, ctrl->lport->localport.port_name,
3079 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3080
3081 clear_bit(ASSOC_FAILED, &ctrl->flags);
3082
3083 /*
3084 * Create the admin queue
3085 */
3086
3087 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3088 NVME_AQ_DEPTH);
3089 if (ret)
3090 goto out_free_queue;
3091
3092 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3093 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3094 if (ret)
3095 goto out_delete_hw_queue;
3096
3097 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3098 if (ret)
3099 goto out_disconnect_admin_queue;
3100
3101 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3102
3103 /*
3104 * Check controller capabilities
3105 *
3106 * todo:- add code to check if ctrl attributes changed from
3107 * prior connection values
3108 */
3109
3110 ret = nvme_enable_ctrl(&ctrl->ctrl);
3111 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3112 ret = -EIO;
3113 if (ret)
3114 goto out_disconnect_admin_queue;
3115
3116 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3117 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3118 (ilog2(SZ_4K) - 9);
3119
3120 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3121
3122 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
3123 if (ret)
3124 goto out_disconnect_admin_queue;
3125 if (test_bit(ASSOC_FAILED, &ctrl->flags)) {
3126 ret = -EIO;
3127 goto out_stop_keep_alive;
3128 }
3129 /* sanity checks */
3130
3131 /* FC-NVME does not have other data in the capsule */
3132 if (ctrl->ctrl.icdoff) {
3133 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3134 ctrl->ctrl.icdoff);
3135 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
3136 goto out_stop_keep_alive;
3137 }
3138
3139 /* FC-NVME supports normal SGL Data Block Descriptors */
3140 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3141 dev_err(ctrl->ctrl.device,
3142 "Mandatory sgls are not supported!\n");
3143 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
3144 goto out_stop_keep_alive;
3145 }
3146
3147 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3148 /* warn if maxcmd is lower than queue_size */
3149 dev_warn(ctrl->ctrl.device,
3150 "queue_size %zu > ctrl maxcmd %u, reducing "
3151 "to maxcmd\n",
3152 opts->queue_size, ctrl->ctrl.maxcmd);
3153 opts->queue_size = ctrl->ctrl.maxcmd;
3154 ctrl->ctrl.sqsize = opts->queue_size - 1;
3155 }
3156
3157 ret = nvme_fc_init_aen_ops(ctrl);
3158 if (ret)
3159 goto out_term_aen_ops;
3160
3161 /*
3162 * Create the io queues
3163 */
3164
3165 if (ctrl->ctrl.queue_count > 1) {
3166 if (!ctrl->ioq_live)
3167 ret = nvme_fc_create_io_queues(ctrl);
3168 else
3169 ret = nvme_fc_recreate_io_queues(ctrl);
3170 }
3171 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3172 ret = -EIO;
3173 if (ret)
3174 goto out_term_aen_ops;
3175
3176 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3177
3178 ctrl->ctrl.nr_reconnects = 0;
3179
3180 if (changed)
3181 nvme_start_ctrl(&ctrl->ctrl);
3182
3183 return 0; /* Success */
3184
3185 out_term_aen_ops:
3186 nvme_fc_term_aen_ops(ctrl);
3187 out_stop_keep_alive:
3188 nvme_stop_keep_alive(&ctrl->ctrl);
3189 out_disconnect_admin_queue:
3190 dev_warn(ctrl->ctrl.device,
3191 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
3192 ctrl->cnum, ctrl->association_id, ret);
3193 /* send a Disconnect(association) LS to fc-nvme target */
3194 nvme_fc_xmt_disconnect_assoc(ctrl);
3195 spin_lock_irqsave(&ctrl->lock, flags);
3196 ctrl->association_id = 0;
3197 disls = ctrl->rcv_disconn;
3198 ctrl->rcv_disconn = NULL;
3199 spin_unlock_irqrestore(&ctrl->lock, flags);
3200 if (disls)
3201 nvme_fc_xmt_ls_rsp(disls);
3202 out_delete_hw_queue:
3203 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3204 out_free_queue:
3205 nvme_fc_free_queue(&ctrl->queues[0]);
3206 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3207 nvme_fc_ctlr_inactive_on_rport(ctrl);
3208
3209 return ret;
3210 }
3211
3212
3213 /*
3214 * This routine stops operation of the controller on the host side.
3215 * On the host os stack side: Admin and IO queues are stopped,
3216 * outstanding ios on them terminated via FC ABTS.
3217 * On the link side: the association is terminated.
3218 */
3219 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3220 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3221 {
3222 struct nvmefc_ls_rcv_op *disls = NULL;
3223 unsigned long flags;
3224
3225 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3226 return;
3227
3228 spin_lock_irqsave(&ctrl->lock, flags);
3229 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3230 ctrl->iocnt = 0;
3231 spin_unlock_irqrestore(&ctrl->lock, flags);
3232
3233 __nvme_fc_abort_outstanding_ios(ctrl, false);
3234
3235 /* kill the aens as they are a separate path */
3236 nvme_fc_abort_aen_ops(ctrl);
3237
3238 /* wait for all io that had to be aborted */
3239 spin_lock_irq(&ctrl->lock);
3240 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3241 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3242 spin_unlock_irq(&ctrl->lock);
3243
3244 nvme_fc_term_aen_ops(ctrl);
3245
3246 /*
3247 * send a Disconnect(association) LS to fc-nvme target
3248 * Note: could have been sent at top of process, but
3249 * cleaner on link traffic if after the aborts complete.
3250 * Note: if association doesn't exist, association_id will be 0
3251 */
3252 if (ctrl->association_id)
3253 nvme_fc_xmt_disconnect_assoc(ctrl);
3254
3255 spin_lock_irqsave(&ctrl->lock, flags);
3256 ctrl->association_id = 0;
3257 disls = ctrl->rcv_disconn;
3258 ctrl->rcv_disconn = NULL;
3259 spin_unlock_irqrestore(&ctrl->lock, flags);
3260 if (disls)
3261 /*
3262 * if a Disconnect Request was waiting for a response, send
3263 * now that all ABTS's have been issued (and are complete).
3264 */
3265 nvme_fc_xmt_ls_rsp(disls);
3266
3267 if (ctrl->ctrl.tagset) {
3268 nvme_fc_delete_hw_io_queues(ctrl);
3269 nvme_fc_free_io_queues(ctrl);
3270 }
3271
3272 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3273 nvme_fc_free_queue(&ctrl->queues[0]);
3274
3275 /* re-enable the admin_q so anything new can fast fail */
3276 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3277
3278 /* resume the io queues so that things will fast fail */
3279 nvme_unquiesce_io_queues(&ctrl->ctrl);
3280
3281 nvme_fc_ctlr_inactive_on_rport(ctrl);
3282 }
3283
3284 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3285 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3286 {
3287 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3288
3289 cancel_work_sync(&ctrl->ioerr_work);
3290 cancel_delayed_work_sync(&ctrl->connect_work);
3291 /*
3292 * kill the association on the link side. this will block
3293 * waiting for io to terminate
3294 */
3295 nvme_fc_delete_association(ctrl);
3296 }
3297
3298 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3299 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3300 {
3301 struct nvme_fc_rport *rport = ctrl->rport;
3302 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3303 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3304 bool recon = true;
3305
3306 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING)
3307 return;
3308
3309 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3310 dev_info(ctrl->ctrl.device,
3311 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3312 ctrl->cnum, status);
3313 } else if (time_after_eq(jiffies, rport->dev_loss_end))
3314 recon = false;
3315
3316 if (recon && nvmf_should_reconnect(&ctrl->ctrl, status)) {
3317 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3318 dev_info(ctrl->ctrl.device,
3319 "NVME-FC{%d}: Reconnect attempt in %ld "
3320 "seconds\n",
3321 ctrl->cnum, recon_delay / HZ);
3322 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3323 recon_delay = rport->dev_loss_end - jiffies;
3324
3325 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3326 } else {
3327 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3328 if (status > 0 && (status & NVME_STATUS_DNR))
3329 dev_warn(ctrl->ctrl.device,
3330 "NVME-FC{%d}: reconnect failure\n",
3331 ctrl->cnum);
3332 else
3333 dev_warn(ctrl->ctrl.device,
3334 "NVME-FC{%d}: Max reconnect attempts "
3335 "(%d) reached.\n",
3336 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3337 } else
3338 dev_warn(ctrl->ctrl.device,
3339 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3340 "while waiting for remoteport connectivity.\n",
3341 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3342 (ctrl->ctrl.opts->max_reconnects *
3343 ctrl->ctrl.opts->reconnect_delay)));
3344 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3345 }
3346 }
3347
3348 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3349 nvme_fc_reset_ctrl_work(struct work_struct *work)
3350 {
3351 struct nvme_fc_ctrl *ctrl =
3352 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3353
3354 nvme_stop_ctrl(&ctrl->ctrl);
3355
3356 /* will block will waiting for io to terminate */
3357 nvme_fc_delete_association(ctrl);
3358
3359 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3360 dev_err(ctrl->ctrl.device,
3361 "NVME-FC{%d}: error_recovery: Couldn't change state "
3362 "to CONNECTING\n", ctrl->cnum);
3363
3364 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3365 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3366 dev_err(ctrl->ctrl.device,
3367 "NVME-FC{%d}: failed to schedule connect "
3368 "after reset\n", ctrl->cnum);
3369 } else {
3370 flush_delayed_work(&ctrl->connect_work);
3371 }
3372 } else {
3373 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3374 }
3375 }
3376
3377
3378 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3379 .name = "fc",
3380 .module = THIS_MODULE,
3381 .flags = NVME_F_FABRICS,
3382 .reg_read32 = nvmf_reg_read32,
3383 .reg_read64 = nvmf_reg_read64,
3384 .reg_write32 = nvmf_reg_write32,
3385 .subsystem_reset = nvmf_subsystem_reset,
3386 .free_ctrl = nvme_fc_free_ctrl,
3387 .submit_async_event = nvme_fc_submit_async_event,
3388 .delete_ctrl = nvme_fc_delete_ctrl,
3389 .get_address = nvmf_get_address,
3390 };
3391
3392 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3393 nvme_fc_connect_ctrl_work(struct work_struct *work)
3394 {
3395 int ret;
3396
3397 struct nvme_fc_ctrl *ctrl =
3398 container_of(to_delayed_work(work),
3399 struct nvme_fc_ctrl, connect_work);
3400
3401 ret = nvme_fc_create_association(ctrl);
3402 if (ret)
3403 nvme_fc_reconnect_or_delete(ctrl, ret);
3404 else
3405 dev_info(ctrl->ctrl.device,
3406 "NVME-FC{%d}: controller connect complete\n",
3407 ctrl->cnum);
3408 }
3409
3410
3411 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3412 .queue_rq = nvme_fc_queue_rq,
3413 .complete = nvme_fc_complete_rq,
3414 .init_request = nvme_fc_init_request,
3415 .exit_request = nvme_fc_exit_request,
3416 .init_hctx = nvme_fc_init_admin_hctx,
3417 .timeout = nvme_fc_timeout,
3418 };
3419
3420
3421 /*
3422 * Fails a controller request if it matches an existing controller
3423 * (association) with the same tuple:
3424 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3425 *
3426 * The ports don't need to be compared as they are intrinsically
3427 * already matched by the port pointers supplied.
3428 */
3429 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3430 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3431 struct nvmf_ctrl_options *opts)
3432 {
3433 struct nvme_fc_ctrl *ctrl;
3434 unsigned long flags;
3435 bool found = false;
3436
3437 spin_lock_irqsave(&rport->lock, flags);
3438 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3439 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3440 if (found)
3441 break;
3442 }
3443 spin_unlock_irqrestore(&rport->lock, flags);
3444
3445 return found;
3446 }
3447
3448 static struct nvme_fc_ctrl *
nvme_fc_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3449 nvme_fc_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3450 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3451 {
3452 struct nvme_fc_ctrl *ctrl;
3453 int ret, idx, ctrl_loss_tmo;
3454
3455 if (!(rport->remoteport.port_role &
3456 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3457 ret = -EBADR;
3458 goto out_fail;
3459 }
3460
3461 if (!opts->duplicate_connect &&
3462 nvme_fc_existing_controller(rport, opts)) {
3463 ret = -EALREADY;
3464 goto out_fail;
3465 }
3466
3467 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3468 if (!ctrl) {
3469 ret = -ENOMEM;
3470 goto out_fail;
3471 }
3472
3473 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3474 if (idx < 0) {
3475 ret = -ENOSPC;
3476 goto out_free_ctrl;
3477 }
3478
3479 /*
3480 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3481 * is being used, change to a shorter reconnect delay for FC.
3482 */
3483 if (opts->max_reconnects != -1 &&
3484 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3485 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3486 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3487 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3488 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3489 opts->reconnect_delay);
3490 }
3491
3492 ctrl->ctrl.opts = opts;
3493 ctrl->ctrl.nr_reconnects = 0;
3494 INIT_LIST_HEAD(&ctrl->ctrl_list);
3495 ctrl->lport = lport;
3496 ctrl->rport = rport;
3497 ctrl->dev = lport->dev;
3498 ctrl->cnum = idx;
3499 ctrl->ioq_live = false;
3500 init_waitqueue_head(&ctrl->ioabort_wait);
3501
3502 get_device(ctrl->dev);
3503 kref_init(&ctrl->ref);
3504
3505 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3506 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3507 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3508 spin_lock_init(&ctrl->lock);
3509
3510 /* io queue count */
3511 ctrl->ctrl.queue_count = min_t(unsigned int,
3512 opts->nr_io_queues,
3513 lport->ops->max_hw_queues);
3514 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3515
3516 ctrl->ctrl.sqsize = opts->queue_size - 1;
3517 ctrl->ctrl.kato = opts->kato;
3518 ctrl->ctrl.cntlid = 0xffff;
3519
3520 ret = -ENOMEM;
3521 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3522 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3523 if (!ctrl->queues)
3524 goto out_free_ida;
3525
3526 nvme_fc_init_queue(ctrl, 0);
3527
3528 /*
3529 * Would have been nice to init io queues tag set as well.
3530 * However, we require interaction from the controller
3531 * for max io queue count before we can do so.
3532 * Defer this to the connect path.
3533 */
3534
3535 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3536 if (ret)
3537 goto out_free_queues;
3538 if (lport->dev)
3539 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3540
3541 return ctrl;
3542
3543 out_free_queues:
3544 kfree(ctrl->queues);
3545 out_free_ida:
3546 put_device(ctrl->dev);
3547 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3548 out_free_ctrl:
3549 kfree(ctrl);
3550 out_fail:
3551 /* exit via here doesn't follow ctlr ref points */
3552 return ERR_PTR(ret);
3553 }
3554
3555 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3556 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3557 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3558 {
3559 struct nvme_fc_ctrl *ctrl;
3560 unsigned long flags;
3561 int ret;
3562
3563 ctrl = nvme_fc_alloc_ctrl(dev, opts, lport, rport);
3564 if (IS_ERR(ctrl))
3565 return ERR_CAST(ctrl);
3566
3567 ret = nvme_add_ctrl(&ctrl->ctrl);
3568 if (ret)
3569 goto out_put_ctrl;
3570
3571 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3572 &nvme_fc_admin_mq_ops,
3573 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
3574 ctrl->lport->ops->fcprqst_priv_sz));
3575 if (ret)
3576 goto fail_ctrl;
3577
3578 spin_lock_irqsave(&rport->lock, flags);
3579 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3580 spin_unlock_irqrestore(&rport->lock, flags);
3581
3582 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3583 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3584 dev_err(ctrl->ctrl.device,
3585 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3586 goto fail_ctrl;
3587 }
3588
3589 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3590 dev_err(ctrl->ctrl.device,
3591 "NVME-FC{%d}: failed to schedule initial connect\n",
3592 ctrl->cnum);
3593 goto fail_ctrl;
3594 }
3595
3596 flush_delayed_work(&ctrl->connect_work);
3597
3598 dev_info(ctrl->ctrl.device,
3599 "NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n",
3600 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn);
3601
3602 return &ctrl->ctrl;
3603
3604 fail_ctrl:
3605 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3606 cancel_work_sync(&ctrl->ioerr_work);
3607 cancel_work_sync(&ctrl->ctrl.reset_work);
3608 cancel_delayed_work_sync(&ctrl->connect_work);
3609
3610 ctrl->ctrl.opts = NULL;
3611
3612 /* initiate nvme ctrl ref counting teardown */
3613 nvme_uninit_ctrl(&ctrl->ctrl);
3614
3615 out_put_ctrl:
3616 /* Remove core ctrl ref. */
3617 nvme_put_ctrl(&ctrl->ctrl);
3618
3619 /* as we're past the point where we transition to the ref
3620 * counting teardown path, if we return a bad pointer here,
3621 * the calling routine, thinking it's prior to the
3622 * transition, will do an rport put. Since the teardown
3623 * path also does a rport put, we do an extra get here to
3624 * so proper order/teardown happens.
3625 */
3626 nvme_fc_rport_get(rport);
3627
3628 return ERR_PTR(-EIO);
3629 }
3630
3631 struct nvmet_fc_traddr {
3632 u64 nn;
3633 u64 pn;
3634 };
3635
3636 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3637 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3638 {
3639 u64 token64;
3640
3641 if (match_u64(sstr, &token64))
3642 return -EINVAL;
3643 *val = token64;
3644
3645 return 0;
3646 }
3647
3648 /*
3649 * This routine validates and extracts the WWN's from the TRADDR string.
3650 * As kernel parsers need the 0x to determine number base, universally
3651 * build string to parse with 0x prefix before parsing name strings.
3652 */
3653 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3654 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3655 {
3656 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3657 substring_t wwn = { name, &name[sizeof(name)-1] };
3658 int nnoffset, pnoffset;
3659
3660 /* validate if string is one of the 2 allowed formats */
3661 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3662 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3663 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3664 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3665 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3666 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3667 NVME_FC_TRADDR_OXNNLEN;
3668 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3669 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3670 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3671 "pn-", NVME_FC_TRADDR_NNLEN))) {
3672 nnoffset = NVME_FC_TRADDR_NNLEN;
3673 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3674 } else
3675 goto out_einval;
3676
3677 name[0] = '0';
3678 name[1] = 'x';
3679 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3680
3681 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3682 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3683 goto out_einval;
3684
3685 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3686 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3687 goto out_einval;
3688
3689 return 0;
3690
3691 out_einval:
3692 pr_warn("%s: bad traddr string\n", __func__);
3693 return -EINVAL;
3694 }
3695
3696 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3697 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3698 {
3699 struct nvme_fc_lport *lport;
3700 struct nvme_fc_rport *rport;
3701 struct nvme_ctrl *ctrl;
3702 struct nvmet_fc_traddr laddr = { 0L, 0L };
3703 struct nvmet_fc_traddr raddr = { 0L, 0L };
3704 unsigned long flags;
3705 int ret;
3706
3707 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3708 if (ret || !raddr.nn || !raddr.pn)
3709 return ERR_PTR(-EINVAL);
3710
3711 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3712 if (ret || !laddr.nn || !laddr.pn)
3713 return ERR_PTR(-EINVAL);
3714
3715 /* find the host and remote ports to connect together */
3716 spin_lock_irqsave(&nvme_fc_lock, flags);
3717 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3718 if (lport->localport.node_name != laddr.nn ||
3719 lport->localport.port_name != laddr.pn ||
3720 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3721 continue;
3722
3723 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3724 if (rport->remoteport.node_name != raddr.nn ||
3725 rport->remoteport.port_name != raddr.pn ||
3726 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3727 continue;
3728
3729 /* if fail to get reference fall through. Will error */
3730 if (!nvme_fc_rport_get(rport))
3731 break;
3732
3733 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3734
3735 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3736 if (IS_ERR(ctrl))
3737 nvme_fc_rport_put(rport);
3738 return ctrl;
3739 }
3740 }
3741 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3742
3743 pr_warn("%s: %s - %s combination not found\n",
3744 __func__, opts->traddr, opts->host_traddr);
3745 return ERR_PTR(-ENOENT);
3746 }
3747
3748
3749 static struct nvmf_transport_ops nvme_fc_transport = {
3750 .name = "fc",
3751 .module = THIS_MODULE,
3752 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3753 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3754 .create_ctrl = nvme_fc_create_ctrl,
3755 };
3756
3757 /* Arbitrary successive failures max. With lots of subsystems could be high */
3758 #define DISCOVERY_MAX_FAIL 20
3759
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3760 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3761 struct device_attribute *attr, const char *buf, size_t count)
3762 {
3763 unsigned long flags;
3764 LIST_HEAD(local_disc_list);
3765 struct nvme_fc_lport *lport;
3766 struct nvme_fc_rport *rport;
3767 int failcnt = 0;
3768
3769 spin_lock_irqsave(&nvme_fc_lock, flags);
3770 restart:
3771 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3772 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3773 if (!nvme_fc_lport_get(lport))
3774 continue;
3775 if (!nvme_fc_rport_get(rport)) {
3776 /*
3777 * This is a temporary condition. Upon restart
3778 * this rport will be gone from the list.
3779 *
3780 * Revert the lport put and retry. Anything
3781 * added to the list already will be skipped (as
3782 * they are no longer list_empty). Loops should
3783 * resume at rports that were not yet seen.
3784 */
3785 nvme_fc_lport_put(lport);
3786
3787 if (failcnt++ < DISCOVERY_MAX_FAIL)
3788 goto restart;
3789
3790 pr_err("nvme_discovery: too many reference "
3791 "failures\n");
3792 goto process_local_list;
3793 }
3794 if (list_empty(&rport->disc_list))
3795 list_add_tail(&rport->disc_list,
3796 &local_disc_list);
3797 }
3798 }
3799
3800 process_local_list:
3801 while (!list_empty(&local_disc_list)) {
3802 rport = list_first_entry(&local_disc_list,
3803 struct nvme_fc_rport, disc_list);
3804 list_del_init(&rport->disc_list);
3805 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3806
3807 lport = rport->lport;
3808 /* signal discovery. Won't hurt if it repeats */
3809 nvme_fc_signal_discovery_scan(lport, rport);
3810 nvme_fc_rport_put(rport);
3811 nvme_fc_lport_put(lport);
3812
3813 spin_lock_irqsave(&nvme_fc_lock, flags);
3814 }
3815 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3816
3817 return count;
3818 }
3819
3820 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3821
3822 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3823 /* Parse the cgroup id from a buf and return the length of cgrpid */
fc_parse_cgrpid(const char * buf,u64 * id)3824 static int fc_parse_cgrpid(const char *buf, u64 *id)
3825 {
3826 char cgrp_id[16+1];
3827 int cgrpid_len, j;
3828
3829 memset(cgrp_id, 0x0, sizeof(cgrp_id));
3830 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3831 if (buf[cgrpid_len] != ':')
3832 cgrp_id[cgrpid_len] = buf[cgrpid_len];
3833 else {
3834 j = 1;
3835 break;
3836 }
3837 }
3838 if (!j)
3839 return -EINVAL;
3840 if (kstrtou64(cgrp_id, 16, id) < 0)
3841 return -EINVAL;
3842 return cgrpid_len;
3843 }
3844
3845 /*
3846 * Parse and update the appid in the blkcg associated with the cgroupid.
3847 */
fc_appid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3848 static ssize_t fc_appid_store(struct device *dev,
3849 struct device_attribute *attr, const char *buf, size_t count)
3850 {
3851 size_t orig_count = count;
3852 u64 cgrp_id;
3853 int appid_len = 0;
3854 int cgrpid_len = 0;
3855 char app_id[FC_APPID_LEN];
3856 int ret = 0;
3857
3858 if (buf[count-1] == '\n')
3859 count--;
3860
3861 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3862 return -EINVAL;
3863
3864 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3865 if (cgrpid_len < 0)
3866 return -EINVAL;
3867 appid_len = count - cgrpid_len - 1;
3868 if (appid_len > FC_APPID_LEN)
3869 return -EINVAL;
3870
3871 memset(app_id, 0x0, sizeof(app_id));
3872 memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3873 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3874 if (ret < 0)
3875 return ret;
3876 return orig_count;
3877 }
3878 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3879 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3880
3881 static struct attribute *nvme_fc_attrs[] = {
3882 &dev_attr_nvme_discovery.attr,
3883 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3884 &dev_attr_appid_store.attr,
3885 #endif
3886 NULL
3887 };
3888
3889 static const struct attribute_group nvme_fc_attr_group = {
3890 .attrs = nvme_fc_attrs,
3891 };
3892
3893 static const struct attribute_group *nvme_fc_attr_groups[] = {
3894 &nvme_fc_attr_group,
3895 NULL
3896 };
3897
3898 static struct class fc_class = {
3899 .name = "fc",
3900 .dev_groups = nvme_fc_attr_groups,
3901 };
3902
nvme_fc_init_module(void)3903 static int __init nvme_fc_init_module(void)
3904 {
3905 int ret;
3906
3907 /*
3908 * NOTE:
3909 * It is expected that in the future the kernel will combine
3910 * the FC-isms that are currently under scsi and now being
3911 * added to by NVME into a new standalone FC class. The SCSI
3912 * and NVME protocols and their devices would be under this
3913 * new FC class.
3914 *
3915 * As we need something to post FC-specific udev events to,
3916 * specifically for nvme probe events, start by creating the
3917 * new device class. When the new standalone FC class is
3918 * put in place, this code will move to a more generic
3919 * location for the class.
3920 */
3921 ret = class_register(&fc_class);
3922 if (ret) {
3923 pr_err("couldn't register class fc\n");
3924 return ret;
3925 }
3926
3927 /*
3928 * Create a device for the FC-centric udev events
3929 */
3930 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3931 "fc_udev_device");
3932 if (IS_ERR(fc_udev_device)) {
3933 pr_err("couldn't create fc_udev device!\n");
3934 ret = PTR_ERR(fc_udev_device);
3935 goto out_destroy_class;
3936 }
3937
3938 ret = nvmf_register_transport(&nvme_fc_transport);
3939 if (ret)
3940 goto out_destroy_device;
3941
3942 return 0;
3943
3944 out_destroy_device:
3945 device_destroy(&fc_class, MKDEV(0, 0));
3946 out_destroy_class:
3947 class_unregister(&fc_class);
3948
3949 return ret;
3950 }
3951
3952 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3953 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3954 {
3955 struct nvme_fc_ctrl *ctrl;
3956
3957 spin_lock(&rport->lock);
3958 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3959 dev_warn(ctrl->ctrl.device,
3960 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3961 ctrl->cnum);
3962 nvme_delete_ctrl(&ctrl->ctrl);
3963 }
3964 spin_unlock(&rport->lock);
3965 }
3966
nvme_fc_exit_module(void)3967 static void __exit nvme_fc_exit_module(void)
3968 {
3969 struct nvme_fc_lport *lport;
3970 struct nvme_fc_rport *rport;
3971 unsigned long flags;
3972
3973 spin_lock_irqsave(&nvme_fc_lock, flags);
3974 list_for_each_entry(lport, &nvme_fc_lport_list, port_list)
3975 list_for_each_entry(rport, &lport->endp_list, endp_list)
3976 nvme_fc_delete_controllers(rport);
3977 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3978 flush_workqueue(nvme_delete_wq);
3979
3980 nvmf_unregister_transport(&nvme_fc_transport);
3981
3982 device_destroy(&fc_class, MKDEV(0, 0));
3983 class_unregister(&fc_class);
3984 }
3985
3986 module_init(nvme_fc_init_module);
3987 module_exit(nvme_fc_exit_module);
3988
3989 MODULE_DESCRIPTION("NVMe host FC transport driver");
3990 MODULE_LICENSE("GPL v2");
3991