1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/stropts.h>
27 #include <sys/debug.h>
28 #include <sys/isa_defs.h>
29 #include <sys/int_limits.h>
30 #include <sys/nvpair.h>
31 #include <sys/nvpair_impl.h>
32 #include <rpc/types.h>
33 #include <rpc/xdr.h>
34
35 #if defined(_KERNEL) && !defined(_BOOT)
36 #include <sys/varargs.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #else
40 #include <stdarg.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <strings.h>
44 #endif
45
46 #ifndef offsetof
47 #define offsetof(s, m) ((size_t)(&(((s *)0)->m)))
48 #endif
49 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++
50
51 /*
52 * nvpair.c - Provides kernel & userland interfaces for manipulating
53 * name-value pairs.
54 *
55 * Overview Diagram
56 *
57 * +--------------+
58 * | nvlist_t |
59 * |--------------|
60 * | nvl_version |
61 * | nvl_nvflag |
62 * | nvl_priv -+-+
63 * | nvl_flag | |
64 * | nvl_pad | |
65 * +--------------+ |
66 * V
67 * +--------------+ last i_nvp in list
68 * | nvpriv_t | +--------------------->
69 * |--------------| |
70 * +--+- nvp_list | | +------------+
71 * | | nvp_last -+--+ + nv_alloc_t |
72 * | | nvp_curr | |------------|
73 * | | nvp_nva -+----> | nva_ops |
74 * | | nvp_stat | | nva_arg |
75 * | +--------------+ +------------+
76 * |
77 * +-------+
78 * V
79 * +---------------------+ +-------------------+
80 * | i_nvp_t | +-->| i_nvp_t | +-->
81 * |---------------------| | |-------------------| |
82 * | nvi_next -+--+ | nvi_next -+--+
83 * | nvi_prev (NULL) | <----+ nvi_prev |
84 * | . . . . . . . . . . | | . . . . . . . . . |
85 * | nvp (nvpair_t) | | nvp (nvpair_t) |
86 * | - nvp_size | | - nvp_size |
87 * | - nvp_name_sz | | - nvp_name_sz |
88 * | - nvp_value_elem | | - nvp_value_elem |
89 * | - nvp_type | | - nvp_type |
90 * | - data ... | | - data ... |
91 * +---------------------+ +-------------------+
92 *
93 *
94 *
95 * +---------------------+ +---------------------+
96 * | i_nvp_t | +--> +-->| i_nvp_t (last) |
97 * |---------------------| | | |---------------------|
98 * | nvi_next -+--+ ... --+ | nvi_next (NULL) |
99 * <-+- nvi_prev |<-- ... <----+ nvi_prev |
100 * | . . . . . . . . . | | . . . . . . . . . |
101 * | nvp (nvpair_t) | | nvp (nvpair_t) |
102 * | - nvp_size | | - nvp_size |
103 * | - nvp_name_sz | | - nvp_name_sz |
104 * | - nvp_value_elem | | - nvp_value_elem |
105 * | - DATA_TYPE_NVLIST | | - nvp_type |
106 * | - data (embedded) | | - data ... |
107 * | nvlist name | +---------------------+
108 * | +--------------+ |
109 * | | nvlist_t | |
110 * | |--------------| |
111 * | | nvl_version | |
112 * | | nvl_nvflag | |
113 * | | nvl_priv --+---+---->
114 * | | nvl_flag | |
115 * | | nvl_pad | |
116 * | +--------------+ |
117 * +---------------------+
118 *
119 *
120 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
121 * allow value to be aligned on 8 byte boundary
122 *
123 * name_len is the length of the name string including the null terminator
124 * so it must be >= 1
125 */
126 #define NVP_SIZE_CALC(name_len, data_len) \
127 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
128
129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
131 uint_t nelem, const void *data);
132
133 #define NV_STAT_EMBEDDED 0x1
134 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp))
135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
136
137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
138 #define NVPAIR2I_NVP(nvp) \
139 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
140
141
142 int
nv_alloc_init(nv_alloc_t * nva,const nv_alloc_ops_t * nvo,...)143 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
144 {
145 va_list valist;
146 int err = 0;
147
148 nva->nva_ops = nvo;
149 nva->nva_arg = NULL;
150
151 va_start(valist, nvo);
152 if (nva->nva_ops->nv_ao_init != NULL)
153 err = nva->nva_ops->nv_ao_init(nva, valist);
154 va_end(valist);
155
156 return (err);
157 }
158
159 void
nv_alloc_reset(nv_alloc_t * nva)160 nv_alloc_reset(nv_alloc_t *nva)
161 {
162 if (nva->nva_ops->nv_ao_reset != NULL)
163 nva->nva_ops->nv_ao_reset(nva);
164 }
165
166 void
nv_alloc_fini(nv_alloc_t * nva)167 nv_alloc_fini(nv_alloc_t *nva)
168 {
169 if (nva->nva_ops->nv_ao_fini != NULL)
170 nva->nva_ops->nv_ao_fini(nva);
171 }
172
173 nv_alloc_t *
nvlist_lookup_nv_alloc(nvlist_t * nvl)174 nvlist_lookup_nv_alloc(nvlist_t *nvl)
175 {
176 nvpriv_t *priv;
177
178 if (nvl == NULL ||
179 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
180 return (NULL);
181
182 return (priv->nvp_nva);
183 }
184
185 static void *
nv_mem_zalloc(nvpriv_t * nvp,size_t size)186 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
187 {
188 nv_alloc_t *nva = nvp->nvp_nva;
189 void *buf;
190
191 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
192 bzero(buf, size);
193
194 return (buf);
195 }
196
197 static void
nv_mem_free(nvpriv_t * nvp,void * buf,size_t size)198 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
199 {
200 nv_alloc_t *nva = nvp->nvp_nva;
201
202 nva->nva_ops->nv_ao_free(nva, buf, size);
203 }
204
205 static void
nv_priv_init(nvpriv_t * priv,nv_alloc_t * nva,uint32_t stat)206 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
207 {
208 bzero(priv, sizeof (nvpriv_t));
209
210 priv->nvp_nva = nva;
211 priv->nvp_stat = stat;
212 }
213
214 static nvpriv_t *
nv_priv_alloc(nv_alloc_t * nva)215 nv_priv_alloc(nv_alloc_t *nva)
216 {
217 nvpriv_t *priv;
218
219 /*
220 * nv_mem_alloc() cannot called here because it needs the priv
221 * argument.
222 */
223 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
224 return (NULL);
225
226 nv_priv_init(priv, nva, 0);
227
228 return (priv);
229 }
230
231 /*
232 * Embedded lists need their own nvpriv_t's. We create a new
233 * nvpriv_t using the parameters and allocator from the parent
234 * list's nvpriv_t.
235 */
236 static nvpriv_t *
nv_priv_alloc_embedded(nvpriv_t * priv)237 nv_priv_alloc_embedded(nvpriv_t *priv)
238 {
239 nvpriv_t *emb_priv;
240
241 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
242 return (NULL);
243
244 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
245
246 return (emb_priv);
247 }
248
249 static void
nvlist_init(nvlist_t * nvl,uint32_t nvflag,nvpriv_t * priv)250 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
251 {
252 nvl->nvl_version = NV_VERSION;
253 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
254 nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
255 nvl->nvl_flag = 0;
256 nvl->nvl_pad = 0;
257 }
258
259 uint_t
nvlist_nvflag(nvlist_t * nvl)260 nvlist_nvflag(nvlist_t *nvl)
261 {
262 return (nvl->nvl_nvflag);
263 }
264
265 /*
266 * nvlist_alloc - Allocate nvlist.
267 */
268 /*ARGSUSED1*/
269 int
nvlist_alloc(nvlist_t ** nvlp,uint_t nvflag,int kmflag)270 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
271 {
272 #if defined(_KERNEL) && !defined(_BOOT)
273 return (nvlist_xalloc(nvlp, nvflag,
274 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
275 #else
276 return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep));
277 #endif
278 }
279
280 int
nvlist_xalloc(nvlist_t ** nvlp,uint_t nvflag,nv_alloc_t * nva)281 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
282 {
283 nvpriv_t *priv;
284
285 if (nvlp == NULL || nva == NULL)
286 return (EINVAL);
287
288 if ((priv = nv_priv_alloc(nva)) == NULL)
289 return (ENOMEM);
290
291 if ((*nvlp = nv_mem_zalloc(priv,
292 NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
293 nv_mem_free(priv, priv, sizeof (nvpriv_t));
294 return (ENOMEM);
295 }
296
297 nvlist_init(*nvlp, nvflag, priv);
298
299 return (0);
300 }
301
302 /*
303 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
304 */
305 static nvpair_t *
nvp_buf_alloc(nvlist_t * nvl,size_t len)306 nvp_buf_alloc(nvlist_t *nvl, size_t len)
307 {
308 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
309 i_nvp_t *buf;
310 nvpair_t *nvp;
311 size_t nvsize;
312
313 /*
314 * Allocate the buffer
315 */
316 nvsize = len + offsetof(i_nvp_t, nvi_nvp);
317
318 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
319 return (NULL);
320
321 nvp = &buf->nvi_nvp;
322 nvp->nvp_size = len;
323
324 return (nvp);
325 }
326
327 /*
328 * nvp_buf_free - de-Allocate an i_nvp_t.
329 */
330 static void
nvp_buf_free(nvlist_t * nvl,nvpair_t * nvp)331 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
332 {
333 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
334 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
335
336 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
337 }
338
339 /*
340 * nvp_buf_link - link a new nv pair into the nvlist.
341 */
342 static void
nvp_buf_link(nvlist_t * nvl,nvpair_t * nvp)343 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
344 {
345 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
346 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
347
348 /* Put element at end of nvlist */
349 if (priv->nvp_list == NULL) {
350 priv->nvp_list = priv->nvp_last = curr;
351 } else {
352 curr->nvi_prev = priv->nvp_last;
353 priv->nvp_last->nvi_next = curr;
354 priv->nvp_last = curr;
355 }
356 }
357
358 /*
359 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
360 */
361 static void
nvp_buf_unlink(nvlist_t * nvl,nvpair_t * nvp)362 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
363 {
364 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
365 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
366
367 /*
368 * protect nvlist_next_nvpair() against walking on freed memory.
369 */
370 if (priv->nvp_curr == curr)
371 priv->nvp_curr = curr->nvi_next;
372
373 if (curr == priv->nvp_list)
374 priv->nvp_list = curr->nvi_next;
375 else
376 curr->nvi_prev->nvi_next = curr->nvi_next;
377
378 if (curr == priv->nvp_last)
379 priv->nvp_last = curr->nvi_prev;
380 else
381 curr->nvi_next->nvi_prev = curr->nvi_prev;
382 }
383
384 /*
385 * take a nvpair type and number of elements and make sure the are valid
386 */
387 static int
i_validate_type_nelem(data_type_t type,uint_t nelem)388 i_validate_type_nelem(data_type_t type, uint_t nelem)
389 {
390 switch (type) {
391 case DATA_TYPE_BOOLEAN:
392 if (nelem != 0)
393 return (EINVAL);
394 break;
395 case DATA_TYPE_BOOLEAN_VALUE:
396 case DATA_TYPE_BYTE:
397 case DATA_TYPE_INT8:
398 case DATA_TYPE_UINT8:
399 case DATA_TYPE_INT16:
400 case DATA_TYPE_UINT16:
401 case DATA_TYPE_INT32:
402 case DATA_TYPE_UINT32:
403 case DATA_TYPE_INT64:
404 case DATA_TYPE_UINT64:
405 case DATA_TYPE_STRING:
406 case DATA_TYPE_HRTIME:
407 case DATA_TYPE_NVLIST:
408 #if !defined(_KERNEL)
409 case DATA_TYPE_DOUBLE:
410 #endif
411 if (nelem != 1)
412 return (EINVAL);
413 break;
414 case DATA_TYPE_BOOLEAN_ARRAY:
415 case DATA_TYPE_BYTE_ARRAY:
416 case DATA_TYPE_INT8_ARRAY:
417 case DATA_TYPE_UINT8_ARRAY:
418 case DATA_TYPE_INT16_ARRAY:
419 case DATA_TYPE_UINT16_ARRAY:
420 case DATA_TYPE_INT32_ARRAY:
421 case DATA_TYPE_UINT32_ARRAY:
422 case DATA_TYPE_INT64_ARRAY:
423 case DATA_TYPE_UINT64_ARRAY:
424 case DATA_TYPE_STRING_ARRAY:
425 case DATA_TYPE_NVLIST_ARRAY:
426 /* we allow arrays with 0 elements */
427 break;
428 default:
429 return (EINVAL);
430 }
431 return (0);
432 }
433
434 /*
435 * Verify nvp_name_sz and check the name string length.
436 */
437 static int
i_validate_nvpair_name(nvpair_t * nvp)438 i_validate_nvpair_name(nvpair_t *nvp)
439 {
440 if ((nvp->nvp_name_sz <= 0) ||
441 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
442 return (EFAULT);
443
444 /* verify the name string, make sure its terminated */
445 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
446 return (EFAULT);
447
448 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
449 }
450
451 static int
i_validate_nvpair_value(data_type_t type,uint_t nelem,const void * data)452 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
453 {
454 switch (type) {
455 case DATA_TYPE_BOOLEAN_VALUE:
456 if (*(boolean_t *)data != B_TRUE &&
457 *(boolean_t *)data != B_FALSE)
458 return (EINVAL);
459 break;
460 case DATA_TYPE_BOOLEAN_ARRAY: {
461 int i;
462
463 for (i = 0; i < nelem; i++)
464 if (((boolean_t *)data)[i] != B_TRUE &&
465 ((boolean_t *)data)[i] != B_FALSE)
466 return (EINVAL);
467 break;
468 }
469 default:
470 break;
471 }
472
473 return (0);
474 }
475
476 /*
477 * This function takes a pointer to what should be a nvpair and it's size
478 * and then verifies that all the nvpair fields make sense and can be
479 * trusted. This function is used when decoding packed nvpairs.
480 */
481 static int
i_validate_nvpair(nvpair_t * nvp)482 i_validate_nvpair(nvpair_t *nvp)
483 {
484 data_type_t type = NVP_TYPE(nvp);
485 int size1, size2;
486
487 /* verify nvp_name_sz, check the name string length */
488 if (i_validate_nvpair_name(nvp) != 0)
489 return (EFAULT);
490
491 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
492 return (EFAULT);
493
494 /*
495 * verify nvp_type, nvp_value_elem, and also possibly
496 * verify string values and get the value size.
497 */
498 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
499 size1 = nvp->nvp_size - NVP_VALOFF(nvp);
500 if (size2 < 0 || size1 != NV_ALIGN(size2))
501 return (EFAULT);
502
503 return (0);
504 }
505
506 static int
nvlist_copy_pairs(nvlist_t * snvl,nvlist_t * dnvl)507 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
508 {
509 nvpriv_t *priv;
510 i_nvp_t *curr;
511
512 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
513 return (EINVAL);
514
515 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
516 nvpair_t *nvp = &curr->nvi_nvp;
517 int err;
518
519 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
520 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
521 return (err);
522 }
523
524 return (0);
525 }
526
527 /*
528 * Frees all memory allocated for an nvpair (like embedded lists) with
529 * the exception of the nvpair buffer itself.
530 */
531 static void
nvpair_free(nvpair_t * nvp)532 nvpair_free(nvpair_t *nvp)
533 {
534 switch (NVP_TYPE(nvp)) {
535 case DATA_TYPE_NVLIST:
536 nvlist_free(EMBEDDED_NVL(nvp));
537 break;
538 case DATA_TYPE_NVLIST_ARRAY: {
539 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
540 int i;
541
542 for (i = 0; i < NVP_NELEM(nvp); i++)
543 if (nvlp[i] != NULL)
544 nvlist_free(nvlp[i]);
545 break;
546 }
547 default:
548 break;
549 }
550 }
551
552 /*
553 * nvlist_free - free an unpacked nvlist
554 */
555 void
nvlist_free(nvlist_t * nvl)556 nvlist_free(nvlist_t *nvl)
557 {
558 nvpriv_t *priv;
559 i_nvp_t *curr;
560
561 if (nvl == NULL ||
562 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
563 return;
564
565 /*
566 * Unpacked nvlist are linked through i_nvp_t
567 */
568 curr = priv->nvp_list;
569 while (curr != NULL) {
570 nvpair_t *nvp = &curr->nvi_nvp;
571 curr = curr->nvi_next;
572
573 nvpair_free(nvp);
574 nvp_buf_free(nvl, nvp);
575 }
576
577 if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
578 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
579 else
580 nvl->nvl_priv = 0;
581
582 nv_mem_free(priv, priv, sizeof (nvpriv_t));
583 }
584
585 static int
nvlist_contains_nvp(nvlist_t * nvl,nvpair_t * nvp)586 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
587 {
588 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
589 i_nvp_t *curr;
590
591 if (nvp == NULL)
592 return (0);
593
594 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
595 if (&curr->nvi_nvp == nvp)
596 return (1);
597
598 return (0);
599 }
600
601 /*
602 * Make a copy of nvlist
603 */
604 /*ARGSUSED1*/
605 int
nvlist_dup(nvlist_t * nvl,nvlist_t ** nvlp,int kmflag)606 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
607 {
608 #if defined(_KERNEL) && !defined(_BOOT)
609 return (nvlist_xdup(nvl, nvlp,
610 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
611 #else
612 return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep));
613 #endif
614 }
615
616 int
nvlist_xdup(nvlist_t * nvl,nvlist_t ** nvlp,nv_alloc_t * nva)617 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
618 {
619 int err;
620 nvlist_t *ret;
621
622 if (nvl == NULL || nvlp == NULL)
623 return (EINVAL);
624
625 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
626 return (err);
627
628 if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
629 nvlist_free(ret);
630 else
631 *nvlp = ret;
632
633 return (err);
634 }
635
636 /*
637 * Remove all with matching name
638 */
639 int
nvlist_remove_all(nvlist_t * nvl,const char * name)640 nvlist_remove_all(nvlist_t *nvl, const char *name)
641 {
642 nvpriv_t *priv;
643 i_nvp_t *curr;
644 int error = ENOENT;
645
646 if (nvl == NULL || name == NULL ||
647 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
648 return (EINVAL);
649
650 curr = priv->nvp_list;
651 while (curr != NULL) {
652 nvpair_t *nvp = &curr->nvi_nvp;
653
654 curr = curr->nvi_next;
655 if (strcmp(name, NVP_NAME(nvp)) != 0)
656 continue;
657
658 nvp_buf_unlink(nvl, nvp);
659 nvpair_free(nvp);
660 nvp_buf_free(nvl, nvp);
661
662 error = 0;
663 }
664
665 return (error);
666 }
667
668 /*
669 * Remove first one with matching name and type
670 */
671 int
nvlist_remove(nvlist_t * nvl,const char * name,data_type_t type)672 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
673 {
674 nvpriv_t *priv;
675 i_nvp_t *curr;
676
677 if (nvl == NULL || name == NULL ||
678 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
679 return (EINVAL);
680
681 curr = priv->nvp_list;
682 while (curr != NULL) {
683 nvpair_t *nvp = &curr->nvi_nvp;
684
685 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
686 nvp_buf_unlink(nvl, nvp);
687 nvpair_free(nvp);
688 nvp_buf_free(nvl, nvp);
689
690 return (0);
691 }
692 curr = curr->nvi_next;
693 }
694
695 return (ENOENT);
696 }
697
698 int
nvlist_remove_nvpair(nvlist_t * nvl,nvpair_t * nvp)699 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
700 {
701 if (nvl == NULL || nvp == NULL)
702 return (EINVAL);
703
704 nvp_buf_unlink(nvl, nvp);
705 nvpair_free(nvp);
706 nvp_buf_free(nvl, nvp);
707 return (0);
708 }
709
710 /*
711 * This function calculates the size of an nvpair value.
712 *
713 * The data argument controls the behavior in case of the data types
714 * DATA_TYPE_STRING and
715 * DATA_TYPE_STRING_ARRAY
716 * Is data == NULL then the size of the string(s) is excluded.
717 */
718 static int
i_get_value_size(data_type_t type,const void * data,uint_t nelem)719 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
720 {
721 uint64_t value_sz;
722
723 if (i_validate_type_nelem(type, nelem) != 0)
724 return (-1);
725
726 /* Calculate required size for holding value */
727 switch (type) {
728 case DATA_TYPE_BOOLEAN:
729 value_sz = 0;
730 break;
731 case DATA_TYPE_BOOLEAN_VALUE:
732 value_sz = sizeof (boolean_t);
733 break;
734 case DATA_TYPE_BYTE:
735 value_sz = sizeof (uchar_t);
736 break;
737 case DATA_TYPE_INT8:
738 value_sz = sizeof (int8_t);
739 break;
740 case DATA_TYPE_UINT8:
741 value_sz = sizeof (uint8_t);
742 break;
743 case DATA_TYPE_INT16:
744 value_sz = sizeof (int16_t);
745 break;
746 case DATA_TYPE_UINT16:
747 value_sz = sizeof (uint16_t);
748 break;
749 case DATA_TYPE_INT32:
750 value_sz = sizeof (int32_t);
751 break;
752 case DATA_TYPE_UINT32:
753 value_sz = sizeof (uint32_t);
754 break;
755 case DATA_TYPE_INT64:
756 value_sz = sizeof (int64_t);
757 break;
758 case DATA_TYPE_UINT64:
759 value_sz = sizeof (uint64_t);
760 break;
761 #if !defined(_KERNEL)
762 case DATA_TYPE_DOUBLE:
763 value_sz = sizeof (double);
764 break;
765 #endif
766 case DATA_TYPE_STRING:
767 if (data == NULL)
768 value_sz = 0;
769 else
770 value_sz = strlen(data) + 1;
771 break;
772 case DATA_TYPE_BOOLEAN_ARRAY:
773 value_sz = (uint64_t)nelem * sizeof (boolean_t);
774 break;
775 case DATA_TYPE_BYTE_ARRAY:
776 value_sz = (uint64_t)nelem * sizeof (uchar_t);
777 break;
778 case DATA_TYPE_INT8_ARRAY:
779 value_sz = (uint64_t)nelem * sizeof (int8_t);
780 break;
781 case DATA_TYPE_UINT8_ARRAY:
782 value_sz = (uint64_t)nelem * sizeof (uint8_t);
783 break;
784 case DATA_TYPE_INT16_ARRAY:
785 value_sz = (uint64_t)nelem * sizeof (int16_t);
786 break;
787 case DATA_TYPE_UINT16_ARRAY:
788 value_sz = (uint64_t)nelem * sizeof (uint16_t);
789 break;
790 case DATA_TYPE_INT32_ARRAY:
791 value_sz = (uint64_t)nelem * sizeof (int32_t);
792 break;
793 case DATA_TYPE_UINT32_ARRAY:
794 value_sz = (uint64_t)nelem * sizeof (uint32_t);
795 break;
796 case DATA_TYPE_INT64_ARRAY:
797 value_sz = (uint64_t)nelem * sizeof (int64_t);
798 break;
799 case DATA_TYPE_UINT64_ARRAY:
800 value_sz = (uint64_t)nelem * sizeof (uint64_t);
801 break;
802 case DATA_TYPE_STRING_ARRAY:
803 value_sz = (uint64_t)nelem * sizeof (uint64_t);
804
805 if (data != NULL) {
806 char *const *strs = data;
807 uint_t i;
808
809 /* no alignment requirement for strings */
810 for (i = 0; i < nelem; i++) {
811 if (strs[i] == NULL)
812 return (-1);
813 value_sz += strlen(strs[i]) + 1;
814 }
815 }
816 break;
817 case DATA_TYPE_HRTIME:
818 value_sz = sizeof (hrtime_t);
819 break;
820 case DATA_TYPE_NVLIST:
821 value_sz = NV_ALIGN(sizeof (nvlist_t));
822 break;
823 case DATA_TYPE_NVLIST_ARRAY:
824 value_sz = (uint64_t)nelem * sizeof (uint64_t) +
825 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
826 break;
827 default:
828 return (-1);
829 }
830
831 return (value_sz > INT32_MAX ? -1 : (int)value_sz);
832 }
833
834 static int
nvlist_copy_embedded(nvlist_t * nvl,nvlist_t * onvl,nvlist_t * emb_nvl)835 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
836 {
837 nvpriv_t *priv;
838 int err;
839
840 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
841 nvl->nvl_priv)) == NULL)
842 return (ENOMEM);
843
844 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
845
846 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
847 nvlist_free(emb_nvl);
848 emb_nvl->nvl_priv = 0;
849 }
850
851 return (err);
852 }
853
854 /*
855 * nvlist_add_common - Add new <name,value> pair to nvlist
856 */
857 static int
nvlist_add_common(nvlist_t * nvl,const char * name,data_type_t type,uint_t nelem,const void * data)858 nvlist_add_common(nvlist_t *nvl, const char *name,
859 data_type_t type, uint_t nelem, const void *data)
860 {
861 nvpair_t *nvp;
862 uint_t i;
863
864 int nvp_sz, name_sz, value_sz;
865 int err = 0;
866
867 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
868 return (EINVAL);
869
870 if (nelem != 0 && data == NULL)
871 return (EINVAL);
872
873 /*
874 * Verify type and nelem and get the value size.
875 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
876 * is the size of the string(s) included.
877 */
878 if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
879 return (EINVAL);
880
881 if (i_validate_nvpair_value(type, nelem, data) != 0)
882 return (EINVAL);
883
884 /*
885 * If we're adding an nvlist or nvlist array, ensure that we are not
886 * adding the input nvlist to itself, which would cause recursion,
887 * and ensure that no NULL nvlist pointers are present.
888 */
889 switch (type) {
890 case DATA_TYPE_NVLIST:
891 if (data == nvl || data == NULL)
892 return (EINVAL);
893 break;
894 case DATA_TYPE_NVLIST_ARRAY: {
895 nvlist_t **onvlp = (nvlist_t **)data;
896 for (i = 0; i < nelem; i++) {
897 if (onvlp[i] == nvl || onvlp[i] == NULL)
898 return (EINVAL);
899 }
900 break;
901 }
902 default:
903 break;
904 }
905
906 /* calculate sizes of the nvpair elements and the nvpair itself */
907 name_sz = strlen(name) + 1;
908
909 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
910
911 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
912 return (ENOMEM);
913
914 ASSERT(nvp->nvp_size == nvp_sz);
915 nvp->nvp_name_sz = name_sz;
916 nvp->nvp_value_elem = nelem;
917 nvp->nvp_type = type;
918 bcopy(name, NVP_NAME(nvp), name_sz);
919
920 switch (type) {
921 case DATA_TYPE_BOOLEAN:
922 break;
923 case DATA_TYPE_STRING_ARRAY: {
924 char *const *strs = data;
925 char *buf = NVP_VALUE(nvp);
926 char **cstrs = (void *)buf;
927
928 /* skip pre-allocated space for pointer array */
929 buf += nelem * sizeof (uint64_t);
930 for (i = 0; i < nelem; i++) {
931 int slen = strlen(strs[i]) + 1;
932 bcopy(strs[i], buf, slen);
933 cstrs[i] = buf;
934 buf += slen;
935 }
936 break;
937 }
938 case DATA_TYPE_NVLIST: {
939 nvlist_t *nnvl = EMBEDDED_NVL(nvp);
940 nvlist_t *onvl = (nvlist_t *)data;
941
942 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
943 nvp_buf_free(nvl, nvp);
944 return (err);
945 }
946 break;
947 }
948 case DATA_TYPE_NVLIST_ARRAY: {
949 nvlist_t **onvlp = (nvlist_t **)data;
950 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
951 nvlist_t *embedded = (nvlist_t *)
952 ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
953
954 for (i = 0; i < nelem; i++) {
955 if ((err = nvlist_copy_embedded(nvl,
956 onvlp[i], embedded)) != 0) {
957 /*
958 * Free any successfully created lists
959 */
960 nvpair_free(nvp);
961 nvp_buf_free(nvl, nvp);
962 return (err);
963 }
964
965 nvlp[i] = embedded++;
966 }
967 break;
968 }
969 default:
970 bcopy(data, NVP_VALUE(nvp), value_sz);
971 }
972
973 /* if unique name, remove before add */
974 if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
975 (void) nvlist_remove_all(nvl, name);
976 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
977 (void) nvlist_remove(nvl, name, type);
978
979 nvp_buf_link(nvl, nvp);
980
981 return (0);
982 }
983
984 int
nvlist_add_boolean(nvlist_t * nvl,const char * name)985 nvlist_add_boolean(nvlist_t *nvl, const char *name)
986 {
987 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
988 }
989
990 int
nvlist_add_boolean_value(nvlist_t * nvl,const char * name,boolean_t val)991 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
992 {
993 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
994 }
995
996 int
nvlist_add_byte(nvlist_t * nvl,const char * name,uchar_t val)997 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
998 {
999 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1000 }
1001
1002 int
nvlist_add_int8(nvlist_t * nvl,const char * name,int8_t val)1003 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1004 {
1005 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1006 }
1007
1008 int
nvlist_add_uint8(nvlist_t * nvl,const char * name,uint8_t val)1009 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1010 {
1011 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1012 }
1013
1014 int
nvlist_add_int16(nvlist_t * nvl,const char * name,int16_t val)1015 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1016 {
1017 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1018 }
1019
1020 int
nvlist_add_uint16(nvlist_t * nvl,const char * name,uint16_t val)1021 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1022 {
1023 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1024 }
1025
1026 int
nvlist_add_int32(nvlist_t * nvl,const char * name,int32_t val)1027 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1028 {
1029 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1030 }
1031
1032 int
nvlist_add_uint32(nvlist_t * nvl,const char * name,uint32_t val)1033 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1034 {
1035 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1036 }
1037
1038 int
nvlist_add_int64(nvlist_t * nvl,const char * name,int64_t val)1039 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1040 {
1041 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1042 }
1043
1044 int
nvlist_add_uint64(nvlist_t * nvl,const char * name,uint64_t val)1045 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1046 {
1047 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1048 }
1049
1050 #if !defined(_KERNEL)
1051 int
nvlist_add_double(nvlist_t * nvl,const char * name,double val)1052 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1053 {
1054 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1055 }
1056 #endif
1057
1058 int
nvlist_add_string(nvlist_t * nvl,const char * name,const char * val)1059 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1060 {
1061 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1062 }
1063
1064 int
nvlist_add_boolean_array(nvlist_t * nvl,const char * name,boolean_t * a,uint_t n)1065 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1066 boolean_t *a, uint_t n)
1067 {
1068 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1069 }
1070
1071 int
nvlist_add_byte_array(nvlist_t * nvl,const char * name,uchar_t * a,uint_t n)1072 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1073 {
1074 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1075 }
1076
1077 int
nvlist_add_int8_array(nvlist_t * nvl,const char * name,int8_t * a,uint_t n)1078 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1079 {
1080 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1081 }
1082
1083 int
nvlist_add_uint8_array(nvlist_t * nvl,const char * name,uint8_t * a,uint_t n)1084 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1085 {
1086 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1087 }
1088
1089 int
nvlist_add_int16_array(nvlist_t * nvl,const char * name,int16_t * a,uint_t n)1090 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1091 {
1092 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1093 }
1094
1095 int
nvlist_add_uint16_array(nvlist_t * nvl,const char * name,uint16_t * a,uint_t n)1096 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1097 {
1098 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1099 }
1100
1101 int
nvlist_add_int32_array(nvlist_t * nvl,const char * name,int32_t * a,uint_t n)1102 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1103 {
1104 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1105 }
1106
1107 int
nvlist_add_uint32_array(nvlist_t * nvl,const char * name,uint32_t * a,uint_t n)1108 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1109 {
1110 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1111 }
1112
1113 int
nvlist_add_int64_array(nvlist_t * nvl,const char * name,int64_t * a,uint_t n)1114 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1115 {
1116 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1117 }
1118
1119 int
nvlist_add_uint64_array(nvlist_t * nvl,const char * name,uint64_t * a,uint_t n)1120 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1121 {
1122 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1123 }
1124
1125 int
nvlist_add_string_array(nvlist_t * nvl,const char * name,char * const * a,uint_t n)1126 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1127 char *const *a, uint_t n)
1128 {
1129 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1130 }
1131
1132 int
nvlist_add_hrtime(nvlist_t * nvl,const char * name,hrtime_t val)1133 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1134 {
1135 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1136 }
1137
1138 int
nvlist_add_nvlist(nvlist_t * nvl,const char * name,nvlist_t * val)1139 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1140 {
1141 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1142 }
1143
1144 int
nvlist_add_nvlist_array(nvlist_t * nvl,const char * name,nvlist_t ** a,uint_t n)1145 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1146 {
1147 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1148 }
1149
1150 /* reading name-value pairs */
1151 nvpair_t *
nvlist_next_nvpair(nvlist_t * nvl,nvpair_t * nvp)1152 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1153 {
1154 nvpriv_t *priv;
1155 i_nvp_t *curr;
1156
1157 if (nvl == NULL ||
1158 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1159 return (NULL);
1160
1161 curr = NVPAIR2I_NVP(nvp);
1162
1163 /*
1164 * Ensure that nvp is a valid nvpair on this nvlist.
1165 * NB: nvp_curr is used only as a hint so that we don't always
1166 * have to walk the list to determine if nvp is still on the list.
1167 */
1168 if (nvp == NULL)
1169 curr = priv->nvp_list;
1170 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1171 curr = curr->nvi_next;
1172 else
1173 curr = NULL;
1174
1175 priv->nvp_curr = curr;
1176
1177 return (curr != NULL ? &curr->nvi_nvp : NULL);
1178 }
1179
1180 nvpair_t *
nvlist_prev_nvpair(nvlist_t * nvl,nvpair_t * nvp)1181 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1182 {
1183 nvpriv_t *priv;
1184 i_nvp_t *curr;
1185
1186 if (nvl == NULL ||
1187 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1188 return (NULL);
1189
1190 curr = NVPAIR2I_NVP(nvp);
1191
1192 if (nvp == NULL)
1193 curr = priv->nvp_last;
1194 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1195 curr = curr->nvi_prev;
1196 else
1197 curr = NULL;
1198
1199 priv->nvp_curr = curr;
1200
1201 return (curr != NULL ? &curr->nvi_nvp : NULL);
1202 }
1203
1204 boolean_t
nvlist_empty(nvlist_t * nvl)1205 nvlist_empty(nvlist_t *nvl)
1206 {
1207 nvpriv_t *priv;
1208
1209 if (nvl == NULL ||
1210 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1211 return (B_TRUE);
1212
1213 return (priv->nvp_list == NULL);
1214 }
1215
1216 char *
nvpair_name(nvpair_t * nvp)1217 nvpair_name(nvpair_t *nvp)
1218 {
1219 return (NVP_NAME(nvp));
1220 }
1221
1222 data_type_t
nvpair_type(nvpair_t * nvp)1223 nvpair_type(nvpair_t *nvp)
1224 {
1225 return (NVP_TYPE(nvp));
1226 }
1227
1228 int
nvpair_type_is_array(nvpair_t * nvp)1229 nvpair_type_is_array(nvpair_t *nvp)
1230 {
1231 data_type_t type = NVP_TYPE(nvp);
1232
1233 if ((type == DATA_TYPE_BYTE_ARRAY) ||
1234 (type == DATA_TYPE_UINT8_ARRAY) ||
1235 (type == DATA_TYPE_INT16_ARRAY) ||
1236 (type == DATA_TYPE_UINT16_ARRAY) ||
1237 (type == DATA_TYPE_INT32_ARRAY) ||
1238 (type == DATA_TYPE_UINT32_ARRAY) ||
1239 (type == DATA_TYPE_INT64_ARRAY) ||
1240 (type == DATA_TYPE_UINT64_ARRAY) ||
1241 (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1242 (type == DATA_TYPE_STRING_ARRAY) ||
1243 (type == DATA_TYPE_NVLIST_ARRAY))
1244 return (1);
1245 return (0);
1246
1247 }
1248
1249 static int
nvpair_value_common(nvpair_t * nvp,data_type_t type,uint_t * nelem,void * data)1250 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1251 {
1252 if (nvp == NULL || nvpair_type(nvp) != type)
1253 return (EINVAL);
1254
1255 /*
1256 * For non-array types, we copy the data.
1257 * For array types (including string), we set a pointer.
1258 */
1259 switch (type) {
1260 case DATA_TYPE_BOOLEAN:
1261 if (nelem != NULL)
1262 *nelem = 0;
1263 break;
1264
1265 case DATA_TYPE_BOOLEAN_VALUE:
1266 case DATA_TYPE_BYTE:
1267 case DATA_TYPE_INT8:
1268 case DATA_TYPE_UINT8:
1269 case DATA_TYPE_INT16:
1270 case DATA_TYPE_UINT16:
1271 case DATA_TYPE_INT32:
1272 case DATA_TYPE_UINT32:
1273 case DATA_TYPE_INT64:
1274 case DATA_TYPE_UINT64:
1275 case DATA_TYPE_HRTIME:
1276 #if !defined(_KERNEL)
1277 case DATA_TYPE_DOUBLE:
1278 #endif
1279 if (data == NULL)
1280 return (EINVAL);
1281 bcopy(NVP_VALUE(nvp), data,
1282 (size_t)i_get_value_size(type, NULL, 1));
1283 if (nelem != NULL)
1284 *nelem = 1;
1285 break;
1286
1287 case DATA_TYPE_NVLIST:
1288 case DATA_TYPE_STRING:
1289 if (data == NULL)
1290 return (EINVAL);
1291 *(void **)data = (void *)NVP_VALUE(nvp);
1292 if (nelem != NULL)
1293 *nelem = 1;
1294 break;
1295
1296 case DATA_TYPE_BOOLEAN_ARRAY:
1297 case DATA_TYPE_BYTE_ARRAY:
1298 case DATA_TYPE_INT8_ARRAY:
1299 case DATA_TYPE_UINT8_ARRAY:
1300 case DATA_TYPE_INT16_ARRAY:
1301 case DATA_TYPE_UINT16_ARRAY:
1302 case DATA_TYPE_INT32_ARRAY:
1303 case DATA_TYPE_UINT32_ARRAY:
1304 case DATA_TYPE_INT64_ARRAY:
1305 case DATA_TYPE_UINT64_ARRAY:
1306 case DATA_TYPE_STRING_ARRAY:
1307 case DATA_TYPE_NVLIST_ARRAY:
1308 if (nelem == NULL || data == NULL)
1309 return (EINVAL);
1310 if ((*nelem = NVP_NELEM(nvp)) != 0)
1311 *(void **)data = (void *)NVP_VALUE(nvp);
1312 else
1313 *(void **)data = NULL;
1314 break;
1315
1316 default:
1317 return (ENOTSUP);
1318 }
1319
1320 return (0);
1321 }
1322
1323 static int
nvlist_lookup_common(nvlist_t * nvl,const char * name,data_type_t type,uint_t * nelem,void * data)1324 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1325 uint_t *nelem, void *data)
1326 {
1327 nvpriv_t *priv;
1328 nvpair_t *nvp;
1329 i_nvp_t *curr;
1330
1331 if (name == NULL || nvl == NULL ||
1332 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1333 return (EINVAL);
1334
1335 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1336 return (ENOTSUP);
1337
1338 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1339 nvp = &curr->nvi_nvp;
1340
1341 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1342 return (nvpair_value_common(nvp, type, nelem, data));
1343 }
1344
1345 return (ENOENT);
1346 }
1347
1348 int
nvlist_lookup_boolean(nvlist_t * nvl,const char * name)1349 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1350 {
1351 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1352 }
1353
1354 int
nvlist_lookup_boolean_value(nvlist_t * nvl,const char * name,boolean_t * val)1355 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1356 {
1357 return (nvlist_lookup_common(nvl, name,
1358 DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1359 }
1360
1361 int
nvlist_lookup_byte(nvlist_t * nvl,const char * name,uchar_t * val)1362 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1363 {
1364 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1365 }
1366
1367 int
nvlist_lookup_int8(nvlist_t * nvl,const char * name,int8_t * val)1368 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1369 {
1370 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1371 }
1372
1373 int
nvlist_lookup_uint8(nvlist_t * nvl,const char * name,uint8_t * val)1374 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1375 {
1376 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1377 }
1378
1379 int
nvlist_lookup_int16(nvlist_t * nvl,const char * name,int16_t * val)1380 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1381 {
1382 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1383 }
1384
1385 int
nvlist_lookup_uint16(nvlist_t * nvl,const char * name,uint16_t * val)1386 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1387 {
1388 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1389 }
1390
1391 int
nvlist_lookup_int32(nvlist_t * nvl,const char * name,int32_t * val)1392 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1393 {
1394 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1395 }
1396
1397 int
nvlist_lookup_uint32(nvlist_t * nvl,const char * name,uint32_t * val)1398 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1399 {
1400 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1401 }
1402
1403 int
nvlist_lookup_int64(nvlist_t * nvl,const char * name,int64_t * val)1404 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1405 {
1406 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1407 }
1408
1409 int
nvlist_lookup_uint64(nvlist_t * nvl,const char * name,uint64_t * val)1410 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1411 {
1412 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1413 }
1414
1415 #if !defined(_KERNEL)
1416 int
nvlist_lookup_double(nvlist_t * nvl,const char * name,double * val)1417 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1418 {
1419 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1420 }
1421 #endif
1422
1423 int
nvlist_lookup_string(nvlist_t * nvl,const char * name,char ** val)1424 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1425 {
1426 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1427 }
1428
1429 int
nvlist_lookup_nvlist(nvlist_t * nvl,const char * name,nvlist_t ** val)1430 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1431 {
1432 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1433 }
1434
1435 int
nvlist_lookup_boolean_array(nvlist_t * nvl,const char * name,boolean_t ** a,uint_t * n)1436 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1437 boolean_t **a, uint_t *n)
1438 {
1439 return (nvlist_lookup_common(nvl, name,
1440 DATA_TYPE_BOOLEAN_ARRAY, n, a));
1441 }
1442
1443 int
nvlist_lookup_byte_array(nvlist_t * nvl,const char * name,uchar_t ** a,uint_t * n)1444 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1445 uchar_t **a, uint_t *n)
1446 {
1447 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1448 }
1449
1450 int
nvlist_lookup_int8_array(nvlist_t * nvl,const char * name,int8_t ** a,uint_t * n)1451 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1452 {
1453 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1454 }
1455
1456 int
nvlist_lookup_uint8_array(nvlist_t * nvl,const char * name,uint8_t ** a,uint_t * n)1457 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1458 uint8_t **a, uint_t *n)
1459 {
1460 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1461 }
1462
1463 int
nvlist_lookup_int16_array(nvlist_t * nvl,const char * name,int16_t ** a,uint_t * n)1464 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1465 int16_t **a, uint_t *n)
1466 {
1467 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1468 }
1469
1470 int
nvlist_lookup_uint16_array(nvlist_t * nvl,const char * name,uint16_t ** a,uint_t * n)1471 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1472 uint16_t **a, uint_t *n)
1473 {
1474 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1475 }
1476
1477 int
nvlist_lookup_int32_array(nvlist_t * nvl,const char * name,int32_t ** a,uint_t * n)1478 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1479 int32_t **a, uint_t *n)
1480 {
1481 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1482 }
1483
1484 int
nvlist_lookup_uint32_array(nvlist_t * nvl,const char * name,uint32_t ** a,uint_t * n)1485 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1486 uint32_t **a, uint_t *n)
1487 {
1488 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1489 }
1490
1491 int
nvlist_lookup_int64_array(nvlist_t * nvl,const char * name,int64_t ** a,uint_t * n)1492 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1493 int64_t **a, uint_t *n)
1494 {
1495 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1496 }
1497
1498 int
nvlist_lookup_uint64_array(nvlist_t * nvl,const char * name,uint64_t ** a,uint_t * n)1499 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1500 uint64_t **a, uint_t *n)
1501 {
1502 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1503 }
1504
1505 int
nvlist_lookup_string_array(nvlist_t * nvl,const char * name,char *** a,uint_t * n)1506 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1507 char ***a, uint_t *n)
1508 {
1509 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1510 }
1511
1512 int
nvlist_lookup_nvlist_array(nvlist_t * nvl,const char * name,nvlist_t *** a,uint_t * n)1513 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1514 nvlist_t ***a, uint_t *n)
1515 {
1516 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1517 }
1518
1519 int
nvlist_lookup_hrtime(nvlist_t * nvl,const char * name,hrtime_t * val)1520 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1521 {
1522 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1523 }
1524
1525 int
nvlist_lookup_pairs(nvlist_t * nvl,int flag,...)1526 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1527 {
1528 va_list ap;
1529 char *name;
1530 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1531 int ret = 0;
1532
1533 va_start(ap, flag);
1534 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1535 data_type_t type;
1536 void *val;
1537 uint_t *nelem;
1538
1539 switch (type = va_arg(ap, data_type_t)) {
1540 case DATA_TYPE_BOOLEAN:
1541 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1542 break;
1543
1544 case DATA_TYPE_BOOLEAN_VALUE:
1545 case DATA_TYPE_BYTE:
1546 case DATA_TYPE_INT8:
1547 case DATA_TYPE_UINT8:
1548 case DATA_TYPE_INT16:
1549 case DATA_TYPE_UINT16:
1550 case DATA_TYPE_INT32:
1551 case DATA_TYPE_UINT32:
1552 case DATA_TYPE_INT64:
1553 case DATA_TYPE_UINT64:
1554 case DATA_TYPE_HRTIME:
1555 case DATA_TYPE_STRING:
1556 case DATA_TYPE_NVLIST:
1557 #if !defined(_KERNEL)
1558 case DATA_TYPE_DOUBLE:
1559 #endif
1560 val = va_arg(ap, void *);
1561 ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1562 break;
1563
1564 case DATA_TYPE_BYTE_ARRAY:
1565 case DATA_TYPE_BOOLEAN_ARRAY:
1566 case DATA_TYPE_INT8_ARRAY:
1567 case DATA_TYPE_UINT8_ARRAY:
1568 case DATA_TYPE_INT16_ARRAY:
1569 case DATA_TYPE_UINT16_ARRAY:
1570 case DATA_TYPE_INT32_ARRAY:
1571 case DATA_TYPE_UINT32_ARRAY:
1572 case DATA_TYPE_INT64_ARRAY:
1573 case DATA_TYPE_UINT64_ARRAY:
1574 case DATA_TYPE_STRING_ARRAY:
1575 case DATA_TYPE_NVLIST_ARRAY:
1576 val = va_arg(ap, void *);
1577 nelem = va_arg(ap, uint_t *);
1578 ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1579 break;
1580
1581 default:
1582 ret = EINVAL;
1583 }
1584
1585 if (ret == ENOENT && noentok)
1586 ret = 0;
1587 }
1588 va_end(ap);
1589
1590 return (ret);
1591 }
1592
1593 /*
1594 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1595 * returns zero and a pointer to the matching nvpair is returned in '*ret'
1596 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1597 * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1598 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1599 * "a.d[3].e[1]". This matches the C syntax for array embed (for convience,
1600 * code also supports "a.d[3]e[1]" syntax).
1601 *
1602 * If 'ip' is non-NULL and the last name component is an array, return the
1603 * value of the "...[index]" array index in *ip. For an array reference that
1604 * is not indexed, *ip will be returned as -1. If there is a syntax error in
1605 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1606 * inside the 'name' string where the syntax error was detected.
1607 */
1608 static int
nvlist_lookup_nvpair_ei_sep(nvlist_t * nvl,const char * name,const char sep,nvpair_t ** ret,int * ip,char ** ep)1609 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1610 nvpair_t **ret, int *ip, char **ep)
1611 {
1612 nvpair_t *nvp;
1613 const char *np;
1614 char *sepp;
1615 char *idxp, *idxep;
1616 nvlist_t **nva;
1617 long idx;
1618 int n;
1619
1620 if (ip)
1621 *ip = -1; /* not indexed */
1622 if (ep)
1623 *ep = NULL;
1624
1625 if ((nvl == NULL) || (name == NULL))
1626 return (EINVAL);
1627
1628 /* step through components of name */
1629 for (np = name; np && *np; np = sepp) {
1630 /* ensure unique names */
1631 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1632 return (ENOTSUP);
1633
1634 /* skip white space */
1635 skip_whitespace(np);
1636 if (*np == 0)
1637 break;
1638
1639 /* set 'sepp' to end of current component 'np' */
1640 if (sep)
1641 sepp = strchr(np, sep);
1642 else
1643 sepp = NULL;
1644
1645 /* find start of next "[ index ]..." */
1646 idxp = strchr(np, '[');
1647
1648 /* if sepp comes first, set idxp to NULL */
1649 if (sepp && idxp && (sepp < idxp))
1650 idxp = NULL;
1651
1652 /*
1653 * At this point 'idxp' is set if there is an index
1654 * expected for the current component.
1655 */
1656 if (idxp) {
1657 /* set 'n' to length of current 'np' name component */
1658 n = idxp++ - np;
1659
1660 /* keep sepp up to date for *ep use as we advance */
1661 skip_whitespace(idxp);
1662 sepp = idxp;
1663
1664 /* determine the index value */
1665 #if defined(_KERNEL) && !defined(_BOOT)
1666 if (ddi_strtol(idxp, &idxep, 0, &idx))
1667 goto fail;
1668 #else
1669 idx = strtol(idxp, &idxep, 0);
1670 #endif
1671 if (idxep == idxp)
1672 goto fail;
1673
1674 /* keep sepp up to date for *ep use as we advance */
1675 sepp = idxep;
1676
1677 /* skip white space index value and check for ']' */
1678 skip_whitespace(sepp);
1679 if (*sepp++ != ']')
1680 goto fail;
1681
1682 /* for embedded arrays, support C syntax: "a[1].b" */
1683 skip_whitespace(sepp);
1684 if (sep && (*sepp == sep))
1685 sepp++;
1686 } else if (sepp) {
1687 n = sepp++ - np;
1688 } else {
1689 n = strlen(np);
1690 }
1691
1692 /* trim trailing whitespace by reducing length of 'np' */
1693 if (n == 0)
1694 goto fail;
1695 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1696 ;
1697 n++;
1698
1699 /* skip whitespace, and set sepp to NULL if complete */
1700 if (sepp) {
1701 skip_whitespace(sepp);
1702 if (*sepp == 0)
1703 sepp = NULL;
1704 }
1705
1706 /*
1707 * At this point:
1708 * o 'n' is the length of current 'np' component.
1709 * o 'idxp' is set if there was an index, and value 'idx'.
1710 * o 'sepp' is set to the beginning of the next component,
1711 * and set to NULL if we have no more components.
1712 *
1713 * Search for nvpair with matching component name.
1714 */
1715 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1716 nvp = nvlist_next_nvpair(nvl, nvp)) {
1717
1718 /* continue if no match on name */
1719 if (strncmp(np, nvpair_name(nvp), n) ||
1720 (strlen(nvpair_name(nvp)) != n))
1721 continue;
1722
1723 /* if indexed, verify type is array oriented */
1724 if (idxp && !nvpair_type_is_array(nvp))
1725 goto fail;
1726
1727 /*
1728 * Full match found, return nvp and idx if this
1729 * was the last component.
1730 */
1731 if (sepp == NULL) {
1732 if (ret)
1733 *ret = nvp;
1734 if (ip && idxp)
1735 *ip = (int)idx; /* return index */
1736 return (0); /* found */
1737 }
1738
1739 /*
1740 * More components: current match must be
1741 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
1742 * to support going deeper.
1743 */
1744 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
1745 nvl = EMBEDDED_NVL(nvp);
1746 break;
1747 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
1748 (void) nvpair_value_nvlist_array(nvp,
1749 &nva, (uint_t *)&n);
1750 if ((n < 0) || (idx >= n))
1751 goto fail;
1752 nvl = nva[idx];
1753 break;
1754 }
1755
1756 /* type does not support more levels */
1757 goto fail;
1758 }
1759 if (nvp == NULL)
1760 goto fail; /* 'name' not found */
1761
1762 /* search for match of next component in embedded 'nvl' list */
1763 }
1764
1765 fail: if (ep && sepp)
1766 *ep = sepp;
1767 return (EINVAL);
1768 }
1769
1770 /*
1771 * Return pointer to nvpair with specified 'name'.
1772 */
1773 int
nvlist_lookup_nvpair(nvlist_t * nvl,const char * name,nvpair_t ** ret)1774 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1775 {
1776 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
1777 }
1778
1779 /*
1780 * Determine if named nvpair exists in nvlist (use embedded separator of '.'
1781 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed
1782 * description.
1783 */
nvlist_lookup_nvpair_embedded_index(nvlist_t * nvl,const char * name,nvpair_t ** ret,int * ip,char ** ep)1784 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
1785 const char *name, nvpair_t **ret, int *ip, char **ep)
1786 {
1787 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
1788 }
1789
1790 boolean_t
nvlist_exists(nvlist_t * nvl,const char * name)1791 nvlist_exists(nvlist_t *nvl, const char *name)
1792 {
1793 nvpriv_t *priv;
1794 nvpair_t *nvp;
1795 i_nvp_t *curr;
1796
1797 if (name == NULL || nvl == NULL ||
1798 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1799 return (B_FALSE);
1800
1801 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1802 nvp = &curr->nvi_nvp;
1803
1804 if (strcmp(name, NVP_NAME(nvp)) == 0)
1805 return (B_TRUE);
1806 }
1807
1808 return (B_FALSE);
1809 }
1810
1811 int
nvpair_value_boolean_value(nvpair_t * nvp,boolean_t * val)1812 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1813 {
1814 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1815 }
1816
1817 int
nvpair_value_byte(nvpair_t * nvp,uchar_t * val)1818 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1819 {
1820 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1821 }
1822
1823 int
nvpair_value_int8(nvpair_t * nvp,int8_t * val)1824 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1825 {
1826 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1827 }
1828
1829 int
nvpair_value_uint8(nvpair_t * nvp,uint8_t * val)1830 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1831 {
1832 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1833 }
1834
1835 int
nvpair_value_int16(nvpair_t * nvp,int16_t * val)1836 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1837 {
1838 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1839 }
1840
1841 int
nvpair_value_uint16(nvpair_t * nvp,uint16_t * val)1842 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1843 {
1844 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1845 }
1846
1847 int
nvpair_value_int32(nvpair_t * nvp,int32_t * val)1848 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1849 {
1850 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1851 }
1852
1853 int
nvpair_value_uint32(nvpair_t * nvp,uint32_t * val)1854 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1855 {
1856 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1857 }
1858
1859 int
nvpair_value_int64(nvpair_t * nvp,int64_t * val)1860 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1861 {
1862 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1863 }
1864
1865 int
nvpair_value_uint64(nvpair_t * nvp,uint64_t * val)1866 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1867 {
1868 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1869 }
1870
1871 #if !defined(_KERNEL)
1872 int
nvpair_value_double(nvpair_t * nvp,double * val)1873 nvpair_value_double(nvpair_t *nvp, double *val)
1874 {
1875 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
1876 }
1877 #endif
1878
1879 int
nvpair_value_string(nvpair_t * nvp,char ** val)1880 nvpair_value_string(nvpair_t *nvp, char **val)
1881 {
1882 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1883 }
1884
1885 int
nvpair_value_nvlist(nvpair_t * nvp,nvlist_t ** val)1886 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1887 {
1888 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1889 }
1890
1891 int
nvpair_value_boolean_array(nvpair_t * nvp,boolean_t ** val,uint_t * nelem)1892 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1893 {
1894 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1895 }
1896
1897 int
nvpair_value_byte_array(nvpair_t * nvp,uchar_t ** val,uint_t * nelem)1898 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1899 {
1900 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1901 }
1902
1903 int
nvpair_value_int8_array(nvpair_t * nvp,int8_t ** val,uint_t * nelem)1904 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1905 {
1906 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1907 }
1908
1909 int
nvpair_value_uint8_array(nvpair_t * nvp,uint8_t ** val,uint_t * nelem)1910 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1911 {
1912 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1913 }
1914
1915 int
nvpair_value_int16_array(nvpair_t * nvp,int16_t ** val,uint_t * nelem)1916 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1917 {
1918 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1919 }
1920
1921 int
nvpair_value_uint16_array(nvpair_t * nvp,uint16_t ** val,uint_t * nelem)1922 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1923 {
1924 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1925 }
1926
1927 int
nvpair_value_int32_array(nvpair_t * nvp,int32_t ** val,uint_t * nelem)1928 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1929 {
1930 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1931 }
1932
1933 int
nvpair_value_uint32_array(nvpair_t * nvp,uint32_t ** val,uint_t * nelem)1934 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1935 {
1936 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1937 }
1938
1939 int
nvpair_value_int64_array(nvpair_t * nvp,int64_t ** val,uint_t * nelem)1940 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1941 {
1942 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1943 }
1944
1945 int
nvpair_value_uint64_array(nvpair_t * nvp,uint64_t ** val,uint_t * nelem)1946 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1947 {
1948 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1949 }
1950
1951 int
nvpair_value_string_array(nvpair_t * nvp,char *** val,uint_t * nelem)1952 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1953 {
1954 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1955 }
1956
1957 int
nvpair_value_nvlist_array(nvpair_t * nvp,nvlist_t *** val,uint_t * nelem)1958 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1959 {
1960 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1961 }
1962
1963 int
nvpair_value_hrtime(nvpair_t * nvp,hrtime_t * val)1964 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1965 {
1966 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1967 }
1968
1969 /*
1970 * Add specified pair to the list.
1971 */
1972 int
nvlist_add_nvpair(nvlist_t * nvl,nvpair_t * nvp)1973 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1974 {
1975 if (nvl == NULL || nvp == NULL)
1976 return (EINVAL);
1977
1978 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1979 NVP_NELEM(nvp), NVP_VALUE(nvp)));
1980 }
1981
1982 /*
1983 * Merge the supplied nvlists and put the result in dst.
1984 * The merged list will contain all names specified in both lists,
1985 * the values are taken from nvl in the case of duplicates.
1986 * Return 0 on success.
1987 */
1988 /*ARGSUSED*/
1989 int
nvlist_merge(nvlist_t * dst,nvlist_t * nvl,int flag)1990 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
1991 {
1992 if (nvl == NULL || dst == NULL)
1993 return (EINVAL);
1994
1995 if (dst != nvl)
1996 return (nvlist_copy_pairs(nvl, dst));
1997
1998 return (0);
1999 }
2000
2001 /*
2002 * Encoding related routines
2003 */
2004 #define NVS_OP_ENCODE 0
2005 #define NVS_OP_DECODE 1
2006 #define NVS_OP_GETSIZE 2
2007
2008 typedef struct nvs_ops nvs_ops_t;
2009
2010 typedef struct {
2011 int nvs_op;
2012 const nvs_ops_t *nvs_ops;
2013 void *nvs_private;
2014 nvpriv_t *nvs_priv;
2015 } nvstream_t;
2016
2017 /*
2018 * nvs operations are:
2019 * - nvs_nvlist
2020 * encoding / decoding of a nvlist header (nvlist_t)
2021 * calculates the size used for header and end detection
2022 *
2023 * - nvs_nvpair
2024 * responsible for the first part of encoding / decoding of an nvpair
2025 * calculates the decoded size of an nvpair
2026 *
2027 * - nvs_nvp_op
2028 * second part of encoding / decoding of an nvpair
2029 *
2030 * - nvs_nvp_size
2031 * calculates the encoding size of an nvpair
2032 *
2033 * - nvs_nvl_fini
2034 * encodes the end detection mark (zeros).
2035 */
2036 struct nvs_ops {
2037 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2038 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2039 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2040 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2041 int (*nvs_nvl_fini)(nvstream_t *);
2042 };
2043
2044 typedef struct {
2045 char nvh_encoding; /* nvs encoding method */
2046 char nvh_endian; /* nvs endian */
2047 char nvh_reserved1; /* reserved for future use */
2048 char nvh_reserved2; /* reserved for future use */
2049 } nvs_header_t;
2050
2051 static int
nvs_encode_pairs(nvstream_t * nvs,nvlist_t * nvl)2052 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2053 {
2054 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2055 i_nvp_t *curr;
2056
2057 /*
2058 * Walk nvpair in list and encode each nvpair
2059 */
2060 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2061 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2062 return (EFAULT);
2063
2064 return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2065 }
2066
2067 static int
nvs_decode_pairs(nvstream_t * nvs,nvlist_t * nvl)2068 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2069 {
2070 nvpair_t *nvp;
2071 size_t nvsize;
2072 int err;
2073
2074 /*
2075 * Get decoded size of next pair in stream, alloc
2076 * memory for nvpair_t, then decode the nvpair
2077 */
2078 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2079 if (nvsize == 0) /* end of list */
2080 break;
2081
2082 /* make sure len makes sense */
2083 if (nvsize < NVP_SIZE_CALC(1, 0))
2084 return (EFAULT);
2085
2086 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2087 return (ENOMEM);
2088
2089 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2090 nvp_buf_free(nvl, nvp);
2091 return (err);
2092 }
2093
2094 if (i_validate_nvpair(nvp) != 0) {
2095 nvpair_free(nvp);
2096 nvp_buf_free(nvl, nvp);
2097 return (EFAULT);
2098 }
2099
2100 nvp_buf_link(nvl, nvp);
2101 }
2102 return (err);
2103 }
2104
2105 static int
nvs_getsize_pairs(nvstream_t * nvs,nvlist_t * nvl,size_t * buflen)2106 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2107 {
2108 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2109 i_nvp_t *curr;
2110 uint64_t nvsize = *buflen;
2111 size_t size;
2112
2113 /*
2114 * Get encoded size of nvpairs in nvlist
2115 */
2116 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2117 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2118 return (EINVAL);
2119
2120 if ((nvsize += size) > INT32_MAX)
2121 return (EINVAL);
2122 }
2123
2124 *buflen = nvsize;
2125 return (0);
2126 }
2127
2128 static int
nvs_operation(nvstream_t * nvs,nvlist_t * nvl,size_t * buflen)2129 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2130 {
2131 int err;
2132
2133 if (nvl->nvl_priv == 0)
2134 return (EFAULT);
2135
2136 /*
2137 * Perform the operation, starting with header, then each nvpair
2138 */
2139 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2140 return (err);
2141
2142 switch (nvs->nvs_op) {
2143 case NVS_OP_ENCODE:
2144 err = nvs_encode_pairs(nvs, nvl);
2145 break;
2146
2147 case NVS_OP_DECODE:
2148 err = nvs_decode_pairs(nvs, nvl);
2149 break;
2150
2151 case NVS_OP_GETSIZE:
2152 err = nvs_getsize_pairs(nvs, nvl, buflen);
2153 break;
2154
2155 default:
2156 err = EINVAL;
2157 }
2158
2159 return (err);
2160 }
2161
2162 static int
nvs_embedded(nvstream_t * nvs,nvlist_t * embedded)2163 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2164 {
2165 switch (nvs->nvs_op) {
2166 case NVS_OP_ENCODE:
2167 return (nvs_operation(nvs, embedded, NULL));
2168
2169 case NVS_OP_DECODE: {
2170 nvpriv_t *priv;
2171 int err;
2172
2173 if (embedded->nvl_version != NV_VERSION)
2174 return (ENOTSUP);
2175
2176 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2177 return (ENOMEM);
2178
2179 nvlist_init(embedded, embedded->nvl_nvflag, priv);
2180
2181 if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2182 nvlist_free(embedded);
2183 return (err);
2184 }
2185 default:
2186 break;
2187 }
2188
2189 return (EINVAL);
2190 }
2191
2192 static int
nvs_embedded_nvl_array(nvstream_t * nvs,nvpair_t * nvp,size_t * size)2193 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2194 {
2195 size_t nelem = NVP_NELEM(nvp);
2196 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2197 int i;
2198
2199 switch (nvs->nvs_op) {
2200 case NVS_OP_ENCODE:
2201 for (i = 0; i < nelem; i++)
2202 if (nvs_embedded(nvs, nvlp[i]) != 0)
2203 return (EFAULT);
2204 break;
2205
2206 case NVS_OP_DECODE: {
2207 size_t len = nelem * sizeof (uint64_t);
2208 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2209
2210 bzero(nvlp, len); /* don't trust packed data */
2211 for (i = 0; i < nelem; i++) {
2212 if (nvs_embedded(nvs, embedded) != 0) {
2213 nvpair_free(nvp);
2214 return (EFAULT);
2215 }
2216
2217 nvlp[i] = embedded++;
2218 }
2219 break;
2220 }
2221 case NVS_OP_GETSIZE: {
2222 uint64_t nvsize = 0;
2223
2224 for (i = 0; i < nelem; i++) {
2225 size_t nvp_sz = 0;
2226
2227 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2228 return (EINVAL);
2229
2230 if ((nvsize += nvp_sz) > INT32_MAX)
2231 return (EINVAL);
2232 }
2233
2234 *size = nvsize;
2235 break;
2236 }
2237 default:
2238 return (EINVAL);
2239 }
2240
2241 return (0);
2242 }
2243
2244 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2245 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2246
2247 /*
2248 * Common routine for nvlist operations:
2249 * encode, decode, getsize (encoded size).
2250 */
2251 static int
nvlist_common(nvlist_t * nvl,char * buf,size_t * buflen,int encoding,int nvs_op)2252 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2253 int nvs_op)
2254 {
2255 int err = 0;
2256 nvstream_t nvs;
2257 int nvl_endian;
2258 #ifdef _LITTLE_ENDIAN
2259 int host_endian = 1;
2260 #else
2261 int host_endian = 0;
2262 #endif /* _LITTLE_ENDIAN */
2263 nvs_header_t *nvh = (void *)buf;
2264
2265 if (buflen == NULL || nvl == NULL ||
2266 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2267 return (EINVAL);
2268
2269 nvs.nvs_op = nvs_op;
2270
2271 /*
2272 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2273 * a buffer is allocated. The first 4 bytes in the buffer are
2274 * used for encoding method and host endian.
2275 */
2276 switch (nvs_op) {
2277 case NVS_OP_ENCODE:
2278 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2279 return (EINVAL);
2280
2281 nvh->nvh_encoding = encoding;
2282 nvh->nvh_endian = nvl_endian = host_endian;
2283 nvh->nvh_reserved1 = 0;
2284 nvh->nvh_reserved2 = 0;
2285 break;
2286
2287 case NVS_OP_DECODE:
2288 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2289 return (EINVAL);
2290
2291 /* get method of encoding from first byte */
2292 encoding = nvh->nvh_encoding;
2293 nvl_endian = nvh->nvh_endian;
2294 break;
2295
2296 case NVS_OP_GETSIZE:
2297 nvl_endian = host_endian;
2298
2299 /*
2300 * add the size for encoding
2301 */
2302 *buflen = sizeof (nvs_header_t);
2303 break;
2304
2305 default:
2306 return (ENOTSUP);
2307 }
2308
2309 /*
2310 * Create an nvstream with proper encoding method
2311 */
2312 switch (encoding) {
2313 case NV_ENCODE_NATIVE:
2314 /*
2315 * check endianness, in case we are unpacking
2316 * from a file
2317 */
2318 if (nvl_endian != host_endian)
2319 return (ENOTSUP);
2320 err = nvs_native(&nvs, nvl, buf, buflen);
2321 break;
2322 case NV_ENCODE_XDR:
2323 err = nvs_xdr(&nvs, nvl, buf, buflen);
2324 break;
2325 default:
2326 err = ENOTSUP;
2327 break;
2328 }
2329
2330 return (err);
2331 }
2332
2333 int
nvlist_size(nvlist_t * nvl,size_t * size,int encoding)2334 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2335 {
2336 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2337 }
2338
2339 /*
2340 * Pack nvlist into contiguous memory
2341 */
2342 /*ARGSUSED1*/
2343 int
nvlist_pack(nvlist_t * nvl,char ** bufp,size_t * buflen,int encoding,int kmflag)2344 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2345 int kmflag)
2346 {
2347 #if defined(_KERNEL) && !defined(_BOOT)
2348 return (nvlist_xpack(nvl, bufp, buflen, encoding,
2349 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2350 #else
2351 return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep));
2352 #endif
2353 }
2354
2355 int
nvlist_xpack(nvlist_t * nvl,char ** bufp,size_t * buflen,int encoding,nv_alloc_t * nva)2356 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2357 nv_alloc_t *nva)
2358 {
2359 nvpriv_t nvpriv;
2360 size_t alloc_size;
2361 char *buf;
2362 int err;
2363
2364 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2365 return (EINVAL);
2366
2367 if (*bufp != NULL)
2368 return (nvlist_common(nvl, *bufp, buflen, encoding,
2369 NVS_OP_ENCODE));
2370
2371 /*
2372 * Here is a difficult situation:
2373 * 1. The nvlist has fixed allocator properties.
2374 * All other nvlist routines (like nvlist_add_*, ...) use
2375 * these properties.
2376 * 2. When using nvlist_pack() the user can specify his own
2377 * allocator properties (e.g. by using KM_NOSLEEP).
2378 *
2379 * We use the user specified properties (2). A clearer solution
2380 * will be to remove the kmflag from nvlist_pack(), but we will
2381 * not change the interface.
2382 */
2383 nv_priv_init(&nvpriv, nva, 0);
2384
2385 if (err = nvlist_size(nvl, &alloc_size, encoding))
2386 return (err);
2387
2388 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2389 return (ENOMEM);
2390
2391 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2392 NVS_OP_ENCODE)) != 0) {
2393 nv_mem_free(&nvpriv, buf, alloc_size);
2394 } else {
2395 *buflen = alloc_size;
2396 *bufp = buf;
2397 }
2398
2399 return (err);
2400 }
2401
2402 /*
2403 * Unpack buf into an nvlist_t
2404 */
2405 /*ARGSUSED1*/
2406 int
nvlist_unpack(char * buf,size_t buflen,nvlist_t ** nvlp,int kmflag)2407 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2408 {
2409 #if defined(_KERNEL) && !defined(_BOOT)
2410 return (nvlist_xunpack(buf, buflen, nvlp,
2411 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2412 #else
2413 return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep));
2414 #endif
2415 }
2416
2417 int
nvlist_xunpack(char * buf,size_t buflen,nvlist_t ** nvlp,nv_alloc_t * nva)2418 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2419 {
2420 nvlist_t *nvl;
2421 int err;
2422
2423 if (nvlp == NULL)
2424 return (EINVAL);
2425
2426 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2427 return (err);
2428
2429 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2430 nvlist_free(nvl);
2431 else
2432 *nvlp = nvl;
2433
2434 return (err);
2435 }
2436
2437 /*
2438 * Native encoding functions
2439 */
2440 typedef struct {
2441 /*
2442 * This structure is used when decoding a packed nvpair in
2443 * the native format. n_base points to a buffer containing the
2444 * packed nvpair. n_end is a pointer to the end of the buffer.
2445 * (n_end actually points to the first byte past the end of the
2446 * buffer.) n_curr is a pointer that lies between n_base and n_end.
2447 * It points to the current data that we are decoding.
2448 * The amount of data left in the buffer is equal to n_end - n_curr.
2449 * n_flag is used to recognize a packed embedded list.
2450 */
2451 caddr_t n_base;
2452 caddr_t n_end;
2453 caddr_t n_curr;
2454 uint_t n_flag;
2455 } nvs_native_t;
2456
2457 static int
nvs_native_create(nvstream_t * nvs,nvs_native_t * native,char * buf,size_t buflen)2458 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2459 size_t buflen)
2460 {
2461 switch (nvs->nvs_op) {
2462 case NVS_OP_ENCODE:
2463 case NVS_OP_DECODE:
2464 nvs->nvs_private = native;
2465 native->n_curr = native->n_base = buf;
2466 native->n_end = buf + buflen;
2467 native->n_flag = 0;
2468 return (0);
2469
2470 case NVS_OP_GETSIZE:
2471 nvs->nvs_private = native;
2472 native->n_curr = native->n_base = native->n_end = NULL;
2473 native->n_flag = 0;
2474 return (0);
2475 default:
2476 return (EINVAL);
2477 }
2478 }
2479
2480 /*ARGSUSED*/
2481 static void
nvs_native_destroy(nvstream_t * nvs)2482 nvs_native_destroy(nvstream_t *nvs)
2483 {
2484 }
2485
2486 static int
native_cp(nvstream_t * nvs,void * buf,size_t size)2487 native_cp(nvstream_t *nvs, void *buf, size_t size)
2488 {
2489 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2490
2491 if (native->n_curr + size > native->n_end)
2492 return (EFAULT);
2493
2494 /*
2495 * The bcopy() below eliminates alignment requirement
2496 * on the buffer (stream) and is preferred over direct access.
2497 */
2498 switch (nvs->nvs_op) {
2499 case NVS_OP_ENCODE:
2500 bcopy(buf, native->n_curr, size);
2501 break;
2502 case NVS_OP_DECODE:
2503 bcopy(native->n_curr, buf, size);
2504 break;
2505 default:
2506 return (EINVAL);
2507 }
2508
2509 native->n_curr += size;
2510 return (0);
2511 }
2512
2513 /*
2514 * operate on nvlist_t header
2515 */
2516 static int
nvs_native_nvlist(nvstream_t * nvs,nvlist_t * nvl,size_t * size)2517 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2518 {
2519 nvs_native_t *native = nvs->nvs_private;
2520
2521 switch (nvs->nvs_op) {
2522 case NVS_OP_ENCODE:
2523 case NVS_OP_DECODE:
2524 if (native->n_flag)
2525 return (0); /* packed embedded list */
2526
2527 native->n_flag = 1;
2528
2529 /* copy version and nvflag of the nvlist_t */
2530 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2531 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2532 return (EFAULT);
2533
2534 return (0);
2535
2536 case NVS_OP_GETSIZE:
2537 /*
2538 * if calculate for packed embedded list
2539 * 4 for end of the embedded list
2540 * else
2541 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2542 * and 4 for end of the entire list
2543 */
2544 if (native->n_flag) {
2545 *size += 4;
2546 } else {
2547 native->n_flag = 1;
2548 *size += 2 * sizeof (int32_t) + 4;
2549 }
2550
2551 return (0);
2552
2553 default:
2554 return (EINVAL);
2555 }
2556 }
2557
2558 static int
nvs_native_nvl_fini(nvstream_t * nvs)2559 nvs_native_nvl_fini(nvstream_t *nvs)
2560 {
2561 if (nvs->nvs_op == NVS_OP_ENCODE) {
2562 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2563 /*
2564 * Add 4 zero bytes at end of nvlist. They are used
2565 * for end detection by the decode routine.
2566 */
2567 if (native->n_curr + sizeof (int) > native->n_end)
2568 return (EFAULT);
2569
2570 bzero(native->n_curr, sizeof (int));
2571 native->n_curr += sizeof (int);
2572 }
2573
2574 return (0);
2575 }
2576
2577 static int
nvpair_native_embedded(nvstream_t * nvs,nvpair_t * nvp)2578 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2579 {
2580 if (nvs->nvs_op == NVS_OP_ENCODE) {
2581 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2582 nvlist_t *packed = (void *)
2583 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2584 /*
2585 * Null out the pointer that is meaningless in the packed
2586 * structure. The address may not be aligned, so we have
2587 * to use bzero.
2588 */
2589 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2590 }
2591
2592 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2593 }
2594
2595 static int
nvpair_native_embedded_array(nvstream_t * nvs,nvpair_t * nvp)2596 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2597 {
2598 if (nvs->nvs_op == NVS_OP_ENCODE) {
2599 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2600 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2601 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2602 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2603 int i;
2604 /*
2605 * Null out pointers that are meaningless in the packed
2606 * structure. The addresses may not be aligned, so we have
2607 * to use bzero.
2608 */
2609 bzero(value, len);
2610
2611 for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2612 /*
2613 * Null out the pointer that is meaningless in the
2614 * packed structure. The address may not be aligned,
2615 * so we have to use bzero.
2616 */
2617 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2618 }
2619
2620 return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2621 }
2622
2623 static void
nvpair_native_string_array(nvstream_t * nvs,nvpair_t * nvp)2624 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2625 {
2626 switch (nvs->nvs_op) {
2627 case NVS_OP_ENCODE: {
2628 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2629 uint64_t *strp = (void *)
2630 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2631 /*
2632 * Null out pointers that are meaningless in the packed
2633 * structure. The addresses may not be aligned, so we have
2634 * to use bzero.
2635 */
2636 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2637 break;
2638 }
2639 case NVS_OP_DECODE: {
2640 char **strp = (void *)NVP_VALUE(nvp);
2641 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2642 int i;
2643
2644 for (i = 0; i < NVP_NELEM(nvp); i++) {
2645 strp[i] = buf;
2646 buf += strlen(buf) + 1;
2647 }
2648 break;
2649 }
2650 }
2651 }
2652
2653 static int
nvs_native_nvp_op(nvstream_t * nvs,nvpair_t * nvp)2654 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2655 {
2656 data_type_t type;
2657 int value_sz;
2658 int ret = 0;
2659
2660 /*
2661 * We do the initial bcopy of the data before we look at
2662 * the nvpair type, because when we're decoding, we won't
2663 * have the correct values for the pair until we do the bcopy.
2664 */
2665 switch (nvs->nvs_op) {
2666 case NVS_OP_ENCODE:
2667 case NVS_OP_DECODE:
2668 if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2669 return (EFAULT);
2670 break;
2671 default:
2672 return (EINVAL);
2673 }
2674
2675 /* verify nvp_name_sz, check the name string length */
2676 if (i_validate_nvpair_name(nvp) != 0)
2677 return (EFAULT);
2678
2679 type = NVP_TYPE(nvp);
2680
2681 /*
2682 * Verify type and nelem and get the value size.
2683 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2684 * is the size of the string(s) excluded.
2685 */
2686 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2687 return (EFAULT);
2688
2689 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2690 return (EFAULT);
2691
2692 switch (type) {
2693 case DATA_TYPE_NVLIST:
2694 ret = nvpair_native_embedded(nvs, nvp);
2695 break;
2696 case DATA_TYPE_NVLIST_ARRAY:
2697 ret = nvpair_native_embedded_array(nvs, nvp);
2698 break;
2699 case DATA_TYPE_STRING_ARRAY:
2700 nvpair_native_string_array(nvs, nvp);
2701 break;
2702 default:
2703 break;
2704 }
2705
2706 return (ret);
2707 }
2708
2709 static int
nvs_native_nvp_size(nvstream_t * nvs,nvpair_t * nvp,size_t * size)2710 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2711 {
2712 uint64_t nvp_sz = nvp->nvp_size;
2713
2714 switch (NVP_TYPE(nvp)) {
2715 case DATA_TYPE_NVLIST: {
2716 size_t nvsize = 0;
2717
2718 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2719 return (EINVAL);
2720
2721 nvp_sz += nvsize;
2722 break;
2723 }
2724 case DATA_TYPE_NVLIST_ARRAY: {
2725 size_t nvsize;
2726
2727 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2728 return (EINVAL);
2729
2730 nvp_sz += nvsize;
2731 break;
2732 }
2733 default:
2734 break;
2735 }
2736
2737 if (nvp_sz > INT32_MAX)
2738 return (EINVAL);
2739
2740 *size = nvp_sz;
2741
2742 return (0);
2743 }
2744
2745 static int
nvs_native_nvpair(nvstream_t * nvs,nvpair_t * nvp,size_t * size)2746 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2747 {
2748 switch (nvs->nvs_op) {
2749 case NVS_OP_ENCODE:
2750 return (nvs_native_nvp_op(nvs, nvp));
2751
2752 case NVS_OP_DECODE: {
2753 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2754 int32_t decode_len;
2755
2756 /* try to read the size value from the stream */
2757 if (native->n_curr + sizeof (int32_t) > native->n_end)
2758 return (EFAULT);
2759 bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2760
2761 /* sanity check the size value */
2762 if (decode_len < 0 ||
2763 decode_len > native->n_end - native->n_curr)
2764 return (EFAULT);
2765
2766 *size = decode_len;
2767
2768 /*
2769 * If at the end of the stream then move the cursor
2770 * forward, otherwise nvpair_native_op() will read
2771 * the entire nvpair at the same cursor position.
2772 */
2773 if (*size == 0)
2774 native->n_curr += sizeof (int32_t);
2775 break;
2776 }
2777
2778 default:
2779 return (EINVAL);
2780 }
2781
2782 return (0);
2783 }
2784
2785 static const nvs_ops_t nvs_native_ops = {
2786 nvs_native_nvlist,
2787 nvs_native_nvpair,
2788 nvs_native_nvp_op,
2789 nvs_native_nvp_size,
2790 nvs_native_nvl_fini
2791 };
2792
2793 static int
nvs_native(nvstream_t * nvs,nvlist_t * nvl,char * buf,size_t * buflen)2794 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2795 {
2796 nvs_native_t native;
2797 int err;
2798
2799 nvs->nvs_ops = &nvs_native_ops;
2800
2801 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2802 *buflen - sizeof (nvs_header_t))) != 0)
2803 return (err);
2804
2805 err = nvs_operation(nvs, nvl, buflen);
2806
2807 nvs_native_destroy(nvs);
2808
2809 return (err);
2810 }
2811
2812 /*
2813 * XDR encoding functions
2814 *
2815 * An xdr packed nvlist is encoded as:
2816 *
2817 * - encoding methode and host endian (4 bytes)
2818 * - nvl_version (4 bytes)
2819 * - nvl_nvflag (4 bytes)
2820 *
2821 * - encoded nvpairs, the format of one xdr encoded nvpair is:
2822 * - encoded size of the nvpair (4 bytes)
2823 * - decoded size of the nvpair (4 bytes)
2824 * - name string, (4 + sizeof(NV_ALIGN4(string))
2825 * a string is coded as size (4 bytes) and data
2826 * - data type (4 bytes)
2827 * - number of elements in the nvpair (4 bytes)
2828 * - data
2829 *
2830 * - 2 zero's for end of the entire list (8 bytes)
2831 */
2832 static int
nvs_xdr_create(nvstream_t * nvs,XDR * xdr,char * buf,size_t buflen)2833 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2834 {
2835 /* xdr data must be 4 byte aligned */
2836 if ((ulong_t)buf % 4 != 0)
2837 return (EFAULT);
2838
2839 switch (nvs->nvs_op) {
2840 case NVS_OP_ENCODE:
2841 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2842 nvs->nvs_private = xdr;
2843 return (0);
2844 case NVS_OP_DECODE:
2845 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2846 nvs->nvs_private = xdr;
2847 return (0);
2848 case NVS_OP_GETSIZE:
2849 nvs->nvs_private = NULL;
2850 return (0);
2851 default:
2852 return (EINVAL);
2853 }
2854 }
2855
2856 static void
nvs_xdr_destroy(nvstream_t * nvs)2857 nvs_xdr_destroy(nvstream_t *nvs)
2858 {
2859 switch (nvs->nvs_op) {
2860 case NVS_OP_ENCODE:
2861 case NVS_OP_DECODE:
2862 xdr_destroy((XDR *)nvs->nvs_private);
2863 break;
2864 default:
2865 break;
2866 }
2867 }
2868
2869 static int
nvs_xdr_nvlist(nvstream_t * nvs,nvlist_t * nvl,size_t * size)2870 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2871 {
2872 switch (nvs->nvs_op) {
2873 case NVS_OP_ENCODE:
2874 case NVS_OP_DECODE: {
2875 XDR *xdr = nvs->nvs_private;
2876
2877 if (!xdr_int(xdr, &nvl->nvl_version) ||
2878 !xdr_u_int(xdr, &nvl->nvl_nvflag))
2879 return (EFAULT);
2880 break;
2881 }
2882 case NVS_OP_GETSIZE: {
2883 /*
2884 * 2 * 4 for nvl_version + nvl_nvflag
2885 * and 8 for end of the entire list
2886 */
2887 *size += 2 * 4 + 8;
2888 break;
2889 }
2890 default:
2891 return (EINVAL);
2892 }
2893 return (0);
2894 }
2895
2896 static int
nvs_xdr_nvl_fini(nvstream_t * nvs)2897 nvs_xdr_nvl_fini(nvstream_t *nvs)
2898 {
2899 if (nvs->nvs_op == NVS_OP_ENCODE) {
2900 XDR *xdr = nvs->nvs_private;
2901 int zero = 0;
2902
2903 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2904 return (EFAULT);
2905 }
2906
2907 return (0);
2908 }
2909
2910 /*
2911 * The format of xdr encoded nvpair is:
2912 * encode_size, decode_size, name string, data type, nelem, data
2913 */
2914 static int
nvs_xdr_nvp_op(nvstream_t * nvs,nvpair_t * nvp)2915 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2916 {
2917 data_type_t type;
2918 char *buf;
2919 char *buf_end = (char *)nvp + nvp->nvp_size;
2920 int value_sz;
2921 uint_t nelem, buflen;
2922 bool_t ret = FALSE;
2923 XDR *xdr = nvs->nvs_private;
2924
2925 ASSERT(xdr != NULL && nvp != NULL);
2926
2927 /* name string */
2928 if ((buf = NVP_NAME(nvp)) >= buf_end)
2929 return (EFAULT);
2930 buflen = buf_end - buf;
2931
2932 if (!xdr_string(xdr, &buf, buflen - 1))
2933 return (EFAULT);
2934 nvp->nvp_name_sz = strlen(buf) + 1;
2935
2936 /* type and nelem */
2937 if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2938 !xdr_int(xdr, &nvp->nvp_value_elem))
2939 return (EFAULT);
2940
2941 type = NVP_TYPE(nvp);
2942 nelem = nvp->nvp_value_elem;
2943
2944 /*
2945 * Verify type and nelem and get the value size.
2946 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2947 * is the size of the string(s) excluded.
2948 */
2949 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2950 return (EFAULT);
2951
2952 /* if there is no data to extract then return */
2953 if (nelem == 0)
2954 return (0);
2955
2956 /* value */
2957 if ((buf = NVP_VALUE(nvp)) >= buf_end)
2958 return (EFAULT);
2959 buflen = buf_end - buf;
2960
2961 if (buflen < value_sz)
2962 return (EFAULT);
2963
2964 switch (type) {
2965 case DATA_TYPE_NVLIST:
2966 if (nvs_embedded(nvs, (void *)buf) == 0)
2967 return (0);
2968 break;
2969
2970 case DATA_TYPE_NVLIST_ARRAY:
2971 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2972 return (0);
2973 break;
2974
2975 case DATA_TYPE_BOOLEAN:
2976 ret = TRUE;
2977 break;
2978
2979 case DATA_TYPE_BYTE:
2980 case DATA_TYPE_INT8:
2981 case DATA_TYPE_UINT8:
2982 ret = xdr_char(xdr, buf);
2983 break;
2984
2985 case DATA_TYPE_INT16:
2986 ret = xdr_short(xdr, (void *)buf);
2987 break;
2988
2989 case DATA_TYPE_UINT16:
2990 ret = xdr_u_short(xdr, (void *)buf);
2991 break;
2992
2993 case DATA_TYPE_BOOLEAN_VALUE:
2994 case DATA_TYPE_INT32:
2995 ret = xdr_int(xdr, (void *)buf);
2996 break;
2997
2998 case DATA_TYPE_UINT32:
2999 ret = xdr_u_int(xdr, (void *)buf);
3000 break;
3001
3002 case DATA_TYPE_INT64:
3003 ret = xdr_longlong_t(xdr, (void *)buf);
3004 break;
3005
3006 case DATA_TYPE_UINT64:
3007 ret = xdr_u_longlong_t(xdr, (void *)buf);
3008 break;
3009
3010 case DATA_TYPE_HRTIME:
3011 /*
3012 * NOTE: must expose the definition of hrtime_t here
3013 */
3014 ret = xdr_longlong_t(xdr, (void *)buf);
3015 break;
3016 #if !defined(_KERNEL)
3017 case DATA_TYPE_DOUBLE:
3018 ret = xdr_double(xdr, (void *)buf);
3019 break;
3020 #endif
3021 case DATA_TYPE_STRING:
3022 ret = xdr_string(xdr, &buf, buflen - 1);
3023 break;
3024
3025 case DATA_TYPE_BYTE_ARRAY:
3026 ret = xdr_opaque(xdr, buf, nelem);
3027 break;
3028
3029 case DATA_TYPE_INT8_ARRAY:
3030 case DATA_TYPE_UINT8_ARRAY:
3031 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3032 (xdrproc_t)xdr_char);
3033 break;
3034
3035 case DATA_TYPE_INT16_ARRAY:
3036 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3037 sizeof (int16_t), (xdrproc_t)xdr_short);
3038 break;
3039
3040 case DATA_TYPE_UINT16_ARRAY:
3041 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3042 sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3043 break;
3044
3045 case DATA_TYPE_BOOLEAN_ARRAY:
3046 case DATA_TYPE_INT32_ARRAY:
3047 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3048 sizeof (int32_t), (xdrproc_t)xdr_int);
3049 break;
3050
3051 case DATA_TYPE_UINT32_ARRAY:
3052 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3053 sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3054 break;
3055
3056 case DATA_TYPE_INT64_ARRAY:
3057 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3058 sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3059 break;
3060
3061 case DATA_TYPE_UINT64_ARRAY:
3062 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3063 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3064 break;
3065
3066 case DATA_TYPE_STRING_ARRAY: {
3067 size_t len = nelem * sizeof (uint64_t);
3068 char **strp = (void *)buf;
3069 int i;
3070
3071 if (nvs->nvs_op == NVS_OP_DECODE)
3072 bzero(buf, len); /* don't trust packed data */
3073
3074 for (i = 0; i < nelem; i++) {
3075 if (buflen <= len)
3076 return (EFAULT);
3077
3078 buf += len;
3079 buflen -= len;
3080
3081 if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3082 return (EFAULT);
3083
3084 if (nvs->nvs_op == NVS_OP_DECODE)
3085 strp[i] = buf;
3086 len = strlen(buf) + 1;
3087 }
3088 ret = TRUE;
3089 break;
3090 }
3091 default:
3092 break;
3093 }
3094
3095 return (ret == TRUE ? 0 : EFAULT);
3096 }
3097
3098 static int
nvs_xdr_nvp_size(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3099 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3100 {
3101 data_type_t type = NVP_TYPE(nvp);
3102 /*
3103 * encode_size + decode_size + name string size + data type + nelem
3104 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3105 */
3106 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3107
3108 switch (type) {
3109 case DATA_TYPE_BOOLEAN:
3110 break;
3111
3112 case DATA_TYPE_BOOLEAN_VALUE:
3113 case DATA_TYPE_BYTE:
3114 case DATA_TYPE_INT8:
3115 case DATA_TYPE_UINT8:
3116 case DATA_TYPE_INT16:
3117 case DATA_TYPE_UINT16:
3118 case DATA_TYPE_INT32:
3119 case DATA_TYPE_UINT32:
3120 nvp_sz += 4; /* 4 is the minimum xdr unit */
3121 break;
3122
3123 case DATA_TYPE_INT64:
3124 case DATA_TYPE_UINT64:
3125 case DATA_TYPE_HRTIME:
3126 #if !defined(_KERNEL)
3127 case DATA_TYPE_DOUBLE:
3128 #endif
3129 nvp_sz += 8;
3130 break;
3131
3132 case DATA_TYPE_STRING:
3133 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3134 break;
3135
3136 case DATA_TYPE_BYTE_ARRAY:
3137 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3138 break;
3139
3140 case DATA_TYPE_BOOLEAN_ARRAY:
3141 case DATA_TYPE_INT8_ARRAY:
3142 case DATA_TYPE_UINT8_ARRAY:
3143 case DATA_TYPE_INT16_ARRAY:
3144 case DATA_TYPE_UINT16_ARRAY:
3145 case DATA_TYPE_INT32_ARRAY:
3146 case DATA_TYPE_UINT32_ARRAY:
3147 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3148 break;
3149
3150 case DATA_TYPE_INT64_ARRAY:
3151 case DATA_TYPE_UINT64_ARRAY:
3152 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3153 break;
3154
3155 case DATA_TYPE_STRING_ARRAY: {
3156 int i;
3157 char **strs = (void *)NVP_VALUE(nvp);
3158
3159 for (i = 0; i < NVP_NELEM(nvp); i++)
3160 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3161
3162 break;
3163 }
3164
3165 case DATA_TYPE_NVLIST:
3166 case DATA_TYPE_NVLIST_ARRAY: {
3167 size_t nvsize = 0;
3168 int old_nvs_op = nvs->nvs_op;
3169 int err;
3170
3171 nvs->nvs_op = NVS_OP_GETSIZE;
3172 if (type == DATA_TYPE_NVLIST)
3173 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3174 else
3175 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3176 nvs->nvs_op = old_nvs_op;
3177
3178 if (err != 0)
3179 return (EINVAL);
3180
3181 nvp_sz += nvsize;
3182 break;
3183 }
3184
3185 default:
3186 return (EINVAL);
3187 }
3188
3189 if (nvp_sz > INT32_MAX)
3190 return (EINVAL);
3191
3192 *size = nvp_sz;
3193
3194 return (0);
3195 }
3196
3197
3198 /*
3199 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3200 * the largest nvpair that could be encoded in the buffer.
3201 *
3202 * See comments above nvpair_xdr_op() for the format of xdr encoding.
3203 * The size of a xdr packed nvpair without any data is 5 words.
3204 *
3205 * Using the size of the data directly as an estimate would be ok
3206 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY
3207 * then the actual nvpair has space for an array of pointers to index
3208 * the strings. These pointers are not encoded into the packed xdr buffer.
3209 *
3210 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3211 * of length 0, then each string is endcoded in xdr format as a single word.
3212 * Therefore when expanded to an nvpair there will be 2.25 word used for
3213 * each string. (a int64_t allocated for pointer usage, and a single char
3214 * for the null termination.)
3215 *
3216 * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3217 */
3218 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4))
3219 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3220 0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3221 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \
3222 (NVS_XDR_DATA_LEN(x) * 2) + \
3223 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3224
3225 static int
nvs_xdr_nvpair(nvstream_t * nvs,nvpair_t * nvp,size_t * size)3226 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3227 {
3228 XDR *xdr = nvs->nvs_private;
3229 int32_t encode_len, decode_len;
3230
3231 switch (nvs->nvs_op) {
3232 case NVS_OP_ENCODE: {
3233 size_t nvsize;
3234
3235 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3236 return (EFAULT);
3237
3238 decode_len = nvp->nvp_size;
3239 encode_len = nvsize;
3240 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3241 return (EFAULT);
3242
3243 return (nvs_xdr_nvp_op(nvs, nvp));
3244 }
3245 case NVS_OP_DECODE: {
3246 struct xdr_bytesrec bytesrec;
3247
3248 /* get the encode and decode size */
3249 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3250 return (EFAULT);
3251 *size = decode_len;
3252
3253 /* are we at the end of the stream? */
3254 if (*size == 0)
3255 return (0);
3256
3257 /* sanity check the size parameter */
3258 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3259 return (EFAULT);
3260
3261 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3262 return (EFAULT);
3263 break;
3264 }
3265
3266 default:
3267 return (EINVAL);
3268 }
3269 return (0);
3270 }
3271
3272 static const struct nvs_ops nvs_xdr_ops = {
3273 nvs_xdr_nvlist,
3274 nvs_xdr_nvpair,
3275 nvs_xdr_nvp_op,
3276 nvs_xdr_nvp_size,
3277 nvs_xdr_nvl_fini
3278 };
3279
3280 static int
nvs_xdr(nvstream_t * nvs,nvlist_t * nvl,char * buf,size_t * buflen)3281 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3282 {
3283 XDR xdr;
3284 int err;
3285
3286 nvs->nvs_ops = &nvs_xdr_ops;
3287
3288 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3289 *buflen - sizeof (nvs_header_t))) != 0)
3290 return (err);
3291
3292 err = nvs_operation(nvs, nvl, buflen);
3293
3294 nvs_xdr_destroy(nvs);
3295
3296 return (err);
3297 }
3298