1 /* dfa - DFA construction routines */
2
3 /* Copyright (c) 1990 The Regents of the University of California. */
4 /* All rights reserved. */
5
6 /* This code is derived from software contributed to Berkeley by */
7 /* Vern Paxson. */
8
9 /* The United States Government has rights in this work pursuant */
10 /* to contract no. DE-AC03-76SF00098 between the United States */
11 /* Department of Energy and the University of California. */
12
13 /* Redistribution and use in source and binary forms, with or without */
14 /* modification, are permitted provided that the following conditions */
15 /* are met: */
16
17 /* 1. Redistributions of source code must retain the above copyright */
18 /* notice, this list of conditions and the following disclaimer. */
19 /* 2. Redistributions in binary form must reproduce the above copyright */
20 /* notice, this list of conditions and the following disclaimer in the */
21 /* documentation and/or other materials provided with the distribution. */
22
23 /* Neither the name of the University nor the names of its contributors */
24 /* may be used to endorse or promote products derived from this software */
25 /* without specific prior written permission. */
26
27 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
28 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
29 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
30 /* PURPOSE. */
31
32 #include "flexdef.h"
33 #include "tables.h"
34
35 /* declare functions that have forward references */
36
37 void dump_associated_rules(FILE *, int);
38 void dump_transitions(FILE *, int[]);
39 void sympartition(int[], int, int[], int[]);
40 int symfollowset(int[], int, int, int[]);
41
42
43 /* check_for_backing_up - check a DFA state for backing up
44 *
45 * synopsis
46 * void check_for_backing_up( int ds, int state[numecs] );
47 *
48 * ds is the number of the state to check and state[] is its out-transitions,
49 * indexed by equivalence class.
50 */
51
check_for_backing_up(int ds,int state[])52 void check_for_backing_up (int ds, int state[])
53 {
54 if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */
55 ++num_backing_up;
56
57 if (backing_up_report) {
58 fprintf (backing_up_file,
59 _("State #%d is non-accepting -\n"), ds);
60
61 /* identify the state */
62 dump_associated_rules (backing_up_file, ds);
63
64 /* Now identify it further using the out- and
65 * jam-transitions.
66 */
67 dump_transitions (backing_up_file, state);
68
69 putc ('\n', backing_up_file);
70 }
71 }
72 }
73
74
75 /* check_trailing_context - check to see if NFA state set constitutes
76 * "dangerous" trailing context
77 *
78 * synopsis
79 * void check_trailing_context( int nfa_states[num_states+1], int num_states,
80 * int accset[nacc+1], int nacc );
81 *
82 * NOTES
83 * Trailing context is "dangerous" if both the head and the trailing
84 * part are of variable size \and/ there's a DFA state which contains
85 * both an accepting state for the head part of the rule and NFA states
86 * which occur after the beginning of the trailing context.
87 *
88 * When such a rule is matched, it's impossible to tell if having been
89 * in the DFA state indicates the beginning of the trailing context or
90 * further-along scanning of the pattern. In these cases, a warning
91 * message is issued.
92 *
93 * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
94 * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
95 */
96
check_trailing_context(int * nfa_states,int num_states,int * accset,int nacc)97 void check_trailing_context (int *nfa_states, int num_states, int *accset, int nacc)
98 {
99 int i, j;
100
101 for (i = 1; i <= num_states; ++i) {
102 int ns = nfa_states[i];
103 int type = state_type[ns];
104 int ar = assoc_rule[ns];
105
106 if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */
107 }
108
109 else if (type == STATE_TRAILING_CONTEXT) {
110 /* Potential trouble. Scan set of accepting numbers
111 * for the one marking the end of the "head". We
112 * assume that this looping will be fairly cheap
113 * since it's rare that an accepting number set
114 * is large.
115 */
116 for (j = 1; j <= nacc; ++j)
117 if (accset[j] & YY_TRAILING_HEAD_MASK) {
118 line_warning (_
119 ("dangerous trailing context"),
120 rule_linenum[ar]);
121 return;
122 }
123 }
124 }
125 }
126
127
128 /* dump_associated_rules - list the rules associated with a DFA state
129 *
130 * Goes through the set of NFA states associated with the DFA and
131 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
132 * and writes a report to the given file.
133 */
134
dump_associated_rules(FILE * file,int ds)135 void dump_associated_rules (FILE *file, int ds)
136 {
137 int i, j;
138 int num_associated_rules = 0;
139 int rule_set[MAX_ASSOC_RULES + 1];
140 int *dset = dss[ds];
141 int size = dfasiz[ds];
142
143 for (i = 1; i <= size; ++i) {
144 int rule_num = rule_linenum[assoc_rule[dset[i]]];
145
146 for (j = 1; j <= num_associated_rules; ++j)
147 if (rule_num == rule_set[j])
148 break;
149
150 if (j > num_associated_rules) { /* new rule */
151 if (num_associated_rules < MAX_ASSOC_RULES)
152 rule_set[++num_associated_rules] =
153 rule_num;
154 }
155 }
156
157 qsort (&rule_set [1], (size_t) num_associated_rules, sizeof (rule_set [1]), intcmp);
158
159 fprintf (file, _(" associated rule line numbers:"));
160
161 for (i = 1; i <= num_associated_rules; ++i) {
162 if (i % 8 == 1)
163 putc ('\n', file);
164
165 fprintf (file, "\t%d", rule_set[i]);
166 }
167
168 putc ('\n', file);
169 }
170
171
172 /* dump_transitions - list the transitions associated with a DFA state
173 *
174 * synopsis
175 * dump_transitions( FILE *file, int state[numecs] );
176 *
177 * Goes through the set of out-transitions and lists them in human-readable
178 * form (i.e., not as equivalence classes); also lists jam transitions
179 * (i.e., all those which are not out-transitions, plus EOF). The dump
180 * is done to the given file.
181 */
182
dump_transitions(FILE * file,int state[])183 void dump_transitions (FILE *file, int state[])
184 {
185 int i, ec;
186 int out_char_set[CSIZE];
187
188 for (i = 0; i < csize; ++i) {
189 ec = ABS (ecgroup[i]);
190 out_char_set[i] = state[ec];
191 }
192
193 fprintf (file, _(" out-transitions: "));
194
195 list_character_set (file, out_char_set);
196
197 /* now invert the members of the set to get the jam transitions */
198 for (i = 0; i < csize; ++i)
199 out_char_set[i] = !out_char_set[i];
200
201 fprintf (file, _("\n jam-transitions: EOF "));
202
203 list_character_set (file, out_char_set);
204
205 putc ('\n', file);
206 }
207
208
209 /* epsclosure - construct the epsilon closure of a set of ndfa states
210 *
211 * synopsis
212 * int *epsclosure( int t[num_states], int *numstates_addr,
213 * int accset[num_rules+1], int *nacc_addr,
214 * int *hashval_addr );
215 *
216 * NOTES
217 * The epsilon closure is the set of all states reachable by an arbitrary
218 * number of epsilon transitions, which themselves do not have epsilon
219 * transitions going out, unioned with the set of states which have non-null
220 * accepting numbers. t is an array of size numstates of nfa state numbers.
221 * Upon return, t holds the epsilon closure and *numstates_addr is updated.
222 * accset holds a list of the accepting numbers, and the size of accset is
223 * given by *nacc_addr. t may be subjected to reallocation if it is not
224 * large enough to hold the epsilon closure.
225 *
226 * hashval is the hash value for the dfa corresponding to the state set.
227 */
228
epsclosure(int * t,int * ns_addr,int accset[],int * nacc_addr,int * hv_addr)229 int *epsclosure (int *t, int *ns_addr, int accset[], int *nacc_addr, int *hv_addr)
230 {
231 int stkpos, ns, tsp;
232 int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
233 int stkend, nstate;
234 static int did_stk_init = false, *stk;
235
236 #define MARK_STATE(state) \
237 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
238
239 #define IS_MARKED(state) (trans1[state] < 0)
240
241 #define UNMARK_STATE(state) \
242 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
243
244 #define CHECK_ACCEPT(state) \
245 do{ \
246 nfaccnum = accptnum[state]; \
247 if ( nfaccnum != NIL ) \
248 accset[++nacc] = nfaccnum; \
249 }while(0)
250
251 #define DO_REALLOCATION() \
252 do { \
253 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
254 ++num_reallocs; \
255 t = reallocate_integer_array( t, current_max_dfa_size ); \
256 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
257 }while(0) \
258
259 #define PUT_ON_STACK(state) \
260 do { \
261 if ( ++stkend >= current_max_dfa_size ) \
262 DO_REALLOCATION(); \
263 stk[stkend] = state; \
264 MARK_STATE(state); \
265 }while(0)
266
267 #define ADD_STATE(state) \
268 do { \
269 if ( ++numstates >= current_max_dfa_size ) \
270 DO_REALLOCATION(); \
271 t[numstates] = state; \
272 hashval += state; \
273 }while(0)
274
275 #define STACK_STATE(state) \
276 do { \
277 PUT_ON_STACK(state); \
278 CHECK_ACCEPT(state); \
279 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
280 ADD_STATE(state); \
281 }while(0)
282
283
284 if (!did_stk_init) {
285 stk = allocate_integer_array (current_max_dfa_size);
286 did_stk_init = true;
287 }
288
289 nacc = stkend = hashval = 0;
290
291 for (nstate = 1; nstate <= numstates; ++nstate) {
292 ns = t[nstate];
293
294 /* The state could be marked if we've already pushed it onto
295 * the stack.
296 */
297 if (!IS_MARKED (ns)) {
298 PUT_ON_STACK (ns);
299 CHECK_ACCEPT (ns);
300 hashval += ns;
301 }
302 }
303
304 for (stkpos = 1; stkpos <= stkend; ++stkpos) {
305 ns = stk[stkpos];
306 transsym = transchar[ns];
307
308 if (transsym == SYM_EPSILON) {
309 tsp = trans1[ns] + MARKER_DIFFERENCE;
310
311 if (tsp != NO_TRANSITION) {
312 if (!IS_MARKED (tsp))
313 STACK_STATE (tsp);
314
315 tsp = trans2[ns];
316
317 if (tsp != NO_TRANSITION
318 && !IS_MARKED (tsp))
319 STACK_STATE (tsp);
320 }
321 }
322 }
323
324 /* Clear out "visit" markers. */
325
326 for (stkpos = 1; stkpos <= stkend; ++stkpos) {
327 if (IS_MARKED (stk[stkpos]))
328 UNMARK_STATE (stk[stkpos]);
329 else
330 flexfatal (_
331 ("consistency check failed in epsclosure()"));
332 }
333
334 *ns_addr = numstates;
335 *hv_addr = hashval;
336 *nacc_addr = nacc;
337
338 return t;
339 }
340
341
342 /* increase_max_dfas - increase the maximum number of DFAs */
343
increase_max_dfas(void)344 void increase_max_dfas (void)
345 {
346 current_max_dfas += MAX_DFAS_INCREMENT;
347
348 ++num_reallocs;
349
350 base = reallocate_integer_array (base, current_max_dfas);
351 def = reallocate_integer_array (def, current_max_dfas);
352 dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
353 accsiz = reallocate_integer_array (accsiz, current_max_dfas);
354 dhash = reallocate_integer_array (dhash, current_max_dfas);
355 dss = reallocate_int_ptr_array (dss, current_max_dfas);
356 dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
357
358 if (nultrans)
359 nultrans =
360 reallocate_integer_array (nultrans,
361 current_max_dfas);
362 }
363
364
365 /* ntod - convert an ndfa to a dfa
366 *
367 * Creates the dfa corresponding to the ndfa we've constructed. The
368 * dfa starts out in state #1.
369 */
370
ntod(void)371 void ntod (void)
372 {
373 int *accset, ds, nacc, newds;
374 int sym, hashval, numstates, dsize;
375 int num_full_table_rows=0; /* used only for -f */
376 int *nset, *dset;
377 int targptr, totaltrans, i, comstate, comfreq, targ;
378 int symlist[CSIZE + 1];
379 int num_start_states;
380 int todo_head, todo_next;
381
382 struct yytbl_data *yynxt_tbl = 0;
383 flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
384
385 /* Note that the following are indexed by *equivalence classes*
386 * and not by characters. Since equivalence classes are indexed
387 * beginning with 1, even if the scanner accepts NUL's, this
388 * means that (since every character is potentially in its own
389 * equivalence class) these arrays must have room for indices
390 * from 1 to CSIZE, so their size must be CSIZE + 1.
391 */
392 int duplist[CSIZE + 1], state[CSIZE + 1];
393 int targfreq[CSIZE + 1] = {0}, targstate[CSIZE + 1];
394
395 /* accset needs to be large enough to hold all of the rules present
396 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
397 */
398 accset = allocate_integer_array ((num_rules + 1) * 2);
399 nset = allocate_integer_array (current_max_dfa_size);
400
401 /* The "todo" queue is represented by the head, which is the DFA
402 * state currently being processed, and the "next", which is the
403 * next DFA state number available (not in use). We depend on the
404 * fact that snstods() returns DFA's \in increasing order/, and thus
405 * need only know the bounds of the dfas to be processed.
406 */
407 todo_head = todo_next = 0;
408
409 for (i = 0; i <= csize; ++i) {
410 duplist[i] = NIL;
411 symlist[i] = false;
412 }
413
414 for (i = 0; i <= num_rules; ++i)
415 accset[i] = NIL;
416
417 if (trace) {
418 dumpnfa (scset[1]);
419 fputs (_("\n\nDFA Dump:\n\n"), stderr);
420 }
421
422 inittbl ();
423
424 /* Check to see whether we should build a separate table for
425 * transitions on NUL characters. We don't do this for full-speed
426 * (-F) scanners, since for them we don't have a simple state
427 * number lying around with which to index the table. We also
428 * don't bother doing it for scanners unless (1) NUL is in its own
429 * equivalence class (indicated by a positive value of
430 * ecgroup[NUL]), (2) NUL's equivalence class is the last
431 * equivalence class, and (3) the number of equivalence classes is
432 * the same as the number of characters. This latter case comes
433 * about when useecs is false or when it's true but every character
434 * still manages to land in its own class (unlikely, but it's
435 * cheap to check for). If all these things are true then the
436 * character code needed to represent NUL's equivalence class for
437 * indexing the tables is going to take one more bit than the
438 * number of characters, and therefore we won't be assured of
439 * being able to fit it into a YY_CHAR variable. This rules out
440 * storing the transitions in a compressed table, since the code
441 * for interpreting them uses a YY_CHAR variable (perhaps it
442 * should just use an integer, though; this is worth pondering ...
443 * ###).
444 *
445 * Finally, for full tables, we want the number of entries in the
446 * table to be a power of two so the array references go fast (it
447 * will just take a shift to compute the major index). If
448 * encoding NUL's transitions in the table will spoil this, we
449 * give it its own table (note that this will be the case if we're
450 * not using equivalence classes).
451 */
452
453 /* Note that the test for ecgroup[0] == numecs below accomplishes
454 * both (1) and (2) above
455 */
456 if (!fullspd && ecgroup[0] == numecs) {
457 /* NUL is alone in its equivalence class, which is the
458 * last one.
459 */
460 int use_NUL_table = (numecs == csize);
461
462 if (fulltbl && !use_NUL_table) {
463 /* We still may want to use the table if numecs
464 * is a power of 2.
465 */
466 if (numecs <= csize && is_power_of_2(numecs)) {
467 use_NUL_table = true;
468 }
469 }
470
471 if (use_NUL_table)
472 nultrans =
473 allocate_integer_array (current_max_dfas);
474
475 /* From now on, nultrans != nil indicates that we're
476 * saving null transitions for later, separate encoding.
477 */
478 }
479
480
481 if (fullspd) {
482 for (i = 0; i <= numecs; ++i)
483 state[i] = 0;
484
485 place_state (state, 0, 0);
486 dfaacc[0].dfaacc_state = 0;
487 }
488
489 else if (fulltbl) {
490 if (nultrans)
491 /* We won't be including NUL's transitions in the
492 * table, so build it for entries from 0 .. numecs - 1.
493 */
494 num_full_table_rows = numecs;
495
496 else
497 /* Take into account the fact that we'll be including
498 * the NUL entries in the transition table. Build it
499 * from 0 .. numecs.
500 */
501 num_full_table_rows = numecs + 1;
502
503 /* Begin generating yy_nxt[][]
504 * This spans the entire LONG function.
505 * This table is tricky because we don't know how big it will be.
506 * So we'll have to realloc() on the way...
507 * we'll wait until we can calculate yynxt_tbl->td_hilen.
508 */
509 yynxt_tbl = calloc(1, sizeof (struct yytbl_data));
510
511 yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
512 yynxt_tbl->td_hilen = 1;
513 yynxt_tbl->td_lolen = (flex_uint32_t) num_full_table_rows;
514 yynxt_tbl->td_data = yynxt_data =
515 calloc(yynxt_tbl->td_lolen *
516 yynxt_tbl->td_hilen,
517 sizeof (flex_int32_t));
518 yynxt_curr = 0;
519
520 buf_prints (&yydmap_buf,
521 "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
522 long_align ? "flex_int32_t" : "flex_int16_t");
523
524 /* Unless -Ca, declare it "short" because it's a real
525 * long-shot that that won't be large enough.
526 */
527 if (gentables)
528 out_str_dec
529 ("static const %s yy_nxt[][%d] =\n {\n",
530 long_align ? "flex_int32_t" : "flex_int16_t",
531 num_full_table_rows);
532 else {
533 out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
534 out_str ("static const %s *yy_nxt =0;\n",
535 long_align ? "flex_int32_t" : "flex_int16_t");
536 }
537
538
539 if (gentables)
540 outn (" {");
541
542 /* Generate 0 entries for state #0. */
543 for (i = 0; i < num_full_table_rows; ++i) {
544 mk2data (0);
545 yynxt_data[yynxt_curr++] = 0;
546 }
547
548 dataflush ();
549 if (gentables)
550 outn (" },\n");
551 }
552
553 /* Create the first states. */
554
555 num_start_states = lastsc * 2;
556
557 for (i = 1; i <= num_start_states; ++i) {
558 numstates = 1;
559
560 /* For each start condition, make one state for the case when
561 * we're at the beginning of the line (the '^' operator) and
562 * one for the case when we're not.
563 */
564 if (i % 2 == 1)
565 nset[numstates] = scset[(i / 2) + 1];
566 else
567 nset[numstates] =
568 mkbranch (scbol[i / 2], scset[i / 2]);
569
570 nset = epsclosure (nset, &numstates, accset, &nacc,
571 &hashval);
572
573 if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
574 numas += nacc;
575 totnst += numstates;
576 ++todo_next;
577
578 if (variable_trailing_context_rules && nacc > 0)
579 check_trailing_context (nset, numstates,
580 accset, nacc);
581 }
582 }
583
584 if (!fullspd) {
585 if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
586 flexfatal (_
587 ("could not create unique end-of-buffer state"));
588
589 ++numas;
590 ++num_start_states;
591 ++todo_next;
592 }
593
594
595 while (todo_head < todo_next) {
596 targptr = 0;
597 totaltrans = 0;
598
599 for (i = 1; i <= numecs; ++i)
600 state[i] = 0;
601
602 ds = ++todo_head;
603
604 dset = dss[ds];
605 dsize = dfasiz[ds];
606
607 if (trace)
608 fprintf (stderr, _("state # %d:\n"), ds);
609
610 sympartition (dset, dsize, symlist, duplist);
611
612 for (sym = 1; sym <= numecs; ++sym) {
613 if (symlist[sym]) {
614 symlist[sym] = 0;
615
616 if (duplist[sym] == NIL) {
617 /* Symbol has unique out-transitions. */
618 numstates =
619 symfollowset (dset, dsize,
620 sym, nset);
621 nset = epsclosure (nset,
622 &numstates,
623 accset, &nacc,
624 &hashval);
625
626 if (snstods
627 (nset, numstates, accset, nacc,
628 hashval, &newds)) {
629 totnst = totnst +
630 numstates;
631 ++todo_next;
632 numas += nacc;
633
634 if (variable_trailing_context_rules && nacc > 0)
635 check_trailing_context
636 (nset,
637 numstates,
638 accset,
639 nacc);
640 }
641
642 state[sym] = newds;
643
644 if (trace)
645 fprintf (stderr,
646 "\t%d\t%d\n", sym,
647 newds);
648
649 targfreq[++targptr] = 1;
650 targstate[targptr] = newds;
651 ++numuniq;
652 }
653
654 else {
655 /* sym's equivalence class has the same
656 * transitions as duplist(sym)'s
657 * equivalence class.
658 */
659 targ = state[duplist[sym]];
660 state[sym] = targ;
661
662 if (trace)
663 fprintf (stderr,
664 "\t%d\t%d\n", sym,
665 targ);
666
667 /* Update frequency count for
668 * destination state.
669 */
670
671 i = 0;
672 while (targstate[++i] != targ) ;
673
674 ++targfreq[i];
675 ++numdup;
676 }
677
678 ++totaltrans;
679 duplist[sym] = NIL;
680 }
681 }
682
683
684 numsnpairs += totaltrans;
685
686 if (ds > num_start_states)
687 check_for_backing_up (ds, state);
688
689 if (nultrans) {
690 nultrans[ds] = state[NUL_ec];
691 state[NUL_ec] = 0; /* remove transition */
692 }
693
694 if (fulltbl) {
695
696 /* Each time we hit here, it's another td_hilen, so we realloc. */
697 yynxt_tbl->td_hilen++;
698 yynxt_tbl->td_data = yynxt_data =
699 realloc (yynxt_data,
700 yynxt_tbl->td_hilen *
701 yynxt_tbl->td_lolen *
702 sizeof (flex_int32_t));
703
704
705 if (gentables)
706 outn (" {");
707
708 /* Supply array's 0-element. */
709 if (ds == end_of_buffer_state) {
710 mk2data (-end_of_buffer_state);
711 yynxt_data[yynxt_curr++] =
712 -end_of_buffer_state;
713 }
714 else {
715 mk2data (end_of_buffer_state);
716 yynxt_data[yynxt_curr++] =
717 end_of_buffer_state;
718 }
719
720 for (i = 1; i < num_full_table_rows; ++i) {
721 /* Jams are marked by negative of state
722 * number.
723 */
724 mk2data (state[i] ? state[i] : -ds);
725 yynxt_data[yynxt_curr++] =
726 state[i] ? state[i] : -ds;
727 }
728
729 dataflush ();
730 if (gentables)
731 outn (" },\n");
732 }
733
734 else if (fullspd)
735 place_state (state, ds, totaltrans);
736
737 else if (ds == end_of_buffer_state)
738 /* Special case this state to make sure it does what
739 * it's supposed to, i.e., jam on end-of-buffer.
740 */
741 stack1 (ds, 0, 0, JAMSTATE);
742
743 else { /* normal, compressed state */
744
745 /* Determine which destination state is the most
746 * common, and how many transitions to it there are.
747 */
748
749 comfreq = 0;
750 comstate = 0;
751
752 for (i = 1; i <= targptr; ++i)
753 if (targfreq[i] > comfreq) {
754 comfreq = targfreq[i];
755 comstate = targstate[i];
756 }
757
758 bldtbl (state, ds, totaltrans, comstate, comfreq);
759 }
760 }
761
762 if (fulltbl) {
763 dataend ();
764 if (tablesext) {
765 yytbl_data_compress (yynxt_tbl);
766 if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
767 flexerror (_
768 ("Could not write yynxt_tbl[][]"));
769 }
770 if (yynxt_tbl) {
771 yytbl_data_destroy (yynxt_tbl);
772 yynxt_tbl = 0;
773 }
774 }
775
776 else if (!fullspd) {
777 cmptmps (); /* create compressed template entries */
778
779 /* Create tables for all the states with only one
780 * out-transition.
781 */
782 while (onesp > 0) {
783 mk1tbl (onestate[onesp], onesym[onesp],
784 onenext[onesp], onedef[onesp]);
785 --onesp;
786 }
787
788 mkdeftbl ();
789 }
790
791 free(accset);
792 free(nset);
793 }
794
795
796 /* snstods - converts a set of ndfa states into a dfa state
797 *
798 * synopsis
799 * is_new_state = snstods( int sns[numstates], int numstates,
800 * int accset[num_rules+1], int nacc,
801 * int hashval, int *newds_addr );
802 *
803 * On return, the dfa state number is in newds.
804 */
805
snstods(int sns[],int numstates,int accset[],int nacc,int hashval,int * newds_addr)806 int snstods (int sns[], int numstates, int accset[], int nacc, int hashval, int *newds_addr)
807 {
808 int didsort = 0;
809 int i, j;
810 int newds, *oldsns;
811
812 for (i = 1; i <= lastdfa; ++i)
813 if (hashval == dhash[i]) {
814 if (numstates == dfasiz[i]) {
815 oldsns = dss[i];
816
817 if (!didsort) {
818 /* We sort the states in sns so we
819 * can compare it to oldsns quickly.
820 */
821 qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
822 didsort = 1;
823 }
824
825 for (j = 1; j <= numstates; ++j)
826 if (sns[j] != oldsns[j])
827 break;
828
829 if (j > numstates) {
830 ++dfaeql;
831 *newds_addr = i;
832 return 0;
833 }
834
835 ++hshcol;
836 }
837
838 else
839 ++hshsave;
840 }
841
842 /* Make a new dfa. */
843
844 if (++lastdfa >= current_max_dfas)
845 increase_max_dfas ();
846
847 newds = lastdfa;
848
849 dss[newds] = allocate_integer_array (numstates + 1);
850
851 /* If we haven't already sorted the states in sns, we do so now,
852 * so that future comparisons with it can be made quickly.
853 */
854
855 if (!didsort)
856 qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
857
858 for (i = 1; i <= numstates; ++i)
859 dss[newds][i] = sns[i];
860
861 dfasiz[newds] = numstates;
862 dhash[newds] = hashval;
863
864 if (nacc == 0) {
865 if (reject)
866 dfaacc[newds].dfaacc_set = NULL;
867 else
868 dfaacc[newds].dfaacc_state = 0;
869
870 accsiz[newds] = 0;
871 }
872
873 else if (reject) {
874 /* We sort the accepting set in increasing order so the
875 * disambiguating rule that the first rule listed is considered
876 * match in the event of ties will work.
877 */
878
879 qsort (&accset [1], (size_t) nacc, sizeof (accset [1]), intcmp);
880
881 dfaacc[newds].dfaacc_set =
882 allocate_integer_array (nacc + 1);
883
884 /* Save the accepting set for later */
885 for (i = 1; i <= nacc; ++i) {
886 dfaacc[newds].dfaacc_set[i] = accset[i];
887
888 if (accset[i] <= num_rules)
889 /* Who knows, perhaps a REJECT can yield
890 * this rule.
891 */
892 rule_useful[accset[i]] = true;
893 }
894
895 accsiz[newds] = nacc;
896 }
897
898 else {
899 /* Find lowest numbered rule so the disambiguating rule
900 * will work.
901 */
902 j = num_rules + 1;
903
904 for (i = 1; i <= nacc; ++i)
905 if (accset[i] < j)
906 j = accset[i];
907
908 dfaacc[newds].dfaacc_state = j;
909
910 if (j <= num_rules)
911 rule_useful[j] = true;
912 }
913
914 *newds_addr = newds;
915
916 return 1;
917 }
918
919
920 /* symfollowset - follow the symbol transitions one step
921 *
922 * synopsis
923 * numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
924 * int transsym, int nset[current_max_dfa_size] );
925 */
926
symfollowset(int ds[],int dsize,int transsym,int nset[])927 int symfollowset (int ds[], int dsize, int transsym, int nset[])
928 {
929 int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
930
931 numstates = 0;
932
933 for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */
934 ns = ds[i];
935 sym = transchar[ns];
936 tsp = trans1[ns];
937
938 if (sym < 0) { /* it's a character class */
939 sym = -sym;
940 ccllist = cclmap[sym];
941 lenccl = ccllen[sym];
942
943 if (cclng[sym]) {
944 for (j = 0; j < lenccl; ++j) {
945 /* Loop through negated character
946 * class.
947 */
948 ch = ccltbl[ccllist + j];
949
950 if (ch == 0)
951 ch = NUL_ec;
952
953 if (ch > transsym)
954 /* Transsym isn't in negated
955 * ccl.
956 */
957 break;
958
959 else if (ch == transsym)
960 /* next 2 */
961 goto bottom;
962 }
963
964 /* Didn't find transsym in ccl. */
965 nset[++numstates] = tsp;
966 }
967
968 else
969 for (j = 0; j < lenccl; ++j) {
970 ch = ccltbl[ccllist + j];
971
972 if (ch == 0)
973 ch = NUL_ec;
974
975 if (ch > transsym)
976 break;
977 else if (ch == transsym) {
978 nset[++numstates] = tsp;
979 break;
980 }
981 }
982 }
983
984 else if (sym == SYM_EPSILON) { /* do nothing */
985 }
986
987 else if (ABS (ecgroup[sym]) == transsym)
988 nset[++numstates] = tsp;
989
990 bottom:;
991 }
992
993 return numstates;
994 }
995
996
997 /* sympartition - partition characters with same out-transitions
998 *
999 * synopsis
1000 * sympartition( int ds[current_max_dfa_size], int numstates,
1001 * int symlist[numecs], int duplist[numecs] );
1002 */
1003
sympartition(int ds[],int numstates,int symlist[],int duplist[])1004 void sympartition (int ds[], int numstates, int symlist[], int duplist[])
1005 {
1006 int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1007
1008 /* Partitioning is done by creating equivalence classes for those
1009 * characters which have out-transitions from the given state. Thus
1010 * we are really creating equivalence classes of equivalence classes.
1011 */
1012
1013 for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */
1014 duplist[i] = i - 1;
1015 dupfwd[i] = i + 1;
1016 }
1017
1018 duplist[1] = NIL;
1019 dupfwd[numecs] = NIL;
1020
1021 for (i = 1; i <= numstates; ++i) {
1022 ns = ds[i];
1023 tch = transchar[ns];
1024
1025 if (tch != SYM_EPSILON) {
1026 if (tch < -lastccl || tch >= csize) {
1027 flexfatal (_
1028 ("bad transition character detected in sympartition()"));
1029 }
1030
1031 if (tch >= 0) { /* character transition */
1032 int ec = ecgroup[tch];
1033
1034 mkechar (ec, dupfwd, duplist);
1035 symlist[ec] = 1;
1036 }
1037
1038 else { /* character class */
1039 tch = -tch;
1040
1041 lenccl = ccllen[tch];
1042 cclp = cclmap[tch];
1043 mkeccl (ccltbl + cclp, lenccl, dupfwd,
1044 duplist, numecs, NUL_ec);
1045
1046 if (cclng[tch]) {
1047 j = 0;
1048
1049 for (k = 0; k < lenccl; ++k) {
1050 ich = ccltbl[cclp + k];
1051
1052 if (ich == 0)
1053 ich = NUL_ec;
1054
1055 for (++j; j < ich; ++j)
1056 symlist[j] = 1;
1057 }
1058
1059 for (++j; j <= numecs; ++j)
1060 symlist[j] = 1;
1061 }
1062
1063 else
1064 for (k = 0; k < lenccl; ++k) {
1065 ich = ccltbl[cclp + k];
1066
1067 if (ich == 0)
1068 ich = NUL_ec;
1069
1070 symlist[ich] = 1;
1071 }
1072 }
1073 }
1074 }
1075 }
1076