xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 641a58239520de9fc5a9077e9a709481cfc75dc0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * John Heidemann of the UCLA Ficus project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Ancestors:
35  *	...and...
36  */
37 
38 /*
39  * Null Layer
40  *
41  * (See mount_nullfs(8) for more information.)
42  *
43  * The null layer duplicates a portion of the filesystem
44  * name space under a new name.  In this respect, it is
45  * similar to the loopback filesystem.  It differs from
46  * the loopback fs in two respects:  it is implemented using
47  * a stackable layers techniques, and its "null-node"s stack above
48  * all lower-layer vnodes, not just over directory vnodes.
49  *
50  * The null layer has two purposes.  First, it serves as a demonstration
51  * of layering by proving a layer which does nothing.  (It actually
52  * does everything the loopback filesystem does, which is slightly
53  * more than nothing.)  Second, the null layer can serve as a prototype
54  * layer.  Since it provides all necessary layer framework,
55  * new filesystem layers can be created very easily be starting
56  * with a null layer.
57  *
58  * The remainder of this man page examines the null layer as a basis
59  * for constructing new layers.
60  *
61  *
62  * INSTANTIATING NEW NULL LAYERS
63  *
64  * New null layers are created with mount_nullfs(8).
65  * Mount_nullfs(8) takes two arguments, the pathname
66  * of the lower vfs (target-pn) and the pathname where the null
67  * layer will appear in the namespace (alias-pn).  After
68  * the null layer is put into place, the contents
69  * of target-pn subtree will be aliased under alias-pn.
70  *
71  *
72  * OPERATION OF A NULL LAYER
73  *
74  * The null layer is the minimum filesystem layer,
75  * simply bypassing all possible operations to the lower layer
76  * for processing there.  The majority of its activity centers
77  * on the bypass routine, through which nearly all vnode operations
78  * pass.
79  *
80  * The bypass routine accepts arbitrary vnode operations for
81  * handling by the lower layer.  It begins by examining vnode
82  * operation arguments and replacing any null-nodes by their
83  * lower-layer equivlants.  It then invokes the operation
84  * on the lower layer.  Finally, it replaces the null-nodes
85  * in the arguments and, if a vnode is return by the operation,
86  * stacks a null-node on top of the returned vnode.
87  *
88  * Although bypass handles most operations, vop_getattr, vop_lock,
89  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
90  * bypassed. Vop_getattr must change the fsid being returned.
91  * Vop_lock and vop_unlock must handle any locking for the
92  * current vnode as well as pass the lock request down.
93  * Vop_inactive and vop_reclaim are not bypassed so that
94  * they can handle freeing null-layer specific data. Vop_print
95  * is not bypassed to avoid excessive debugging information.
96  * Also, certain vnode operations change the locking state within
97  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
98  * and symlink). Ideally these operations should not change the
99  * lock state, but should be changed to let the caller of the
100  * function unlock them. Otherwise all intermediate vnode layers
101  * (such as union, umapfs, etc) must catch these functions to do
102  * the necessary locking at their layer.
103  *
104  *
105  * INSTANTIATING VNODE STACKS
106  *
107  * Mounting associates the null layer with a lower layer,
108  * effect stacking two VFSes.  Vnode stacks are instead
109  * created on demand as files are accessed.
110  *
111  * The initial mount creates a single vnode stack for the
112  * root of the new null layer.  All other vnode stacks
113  * are created as a result of vnode operations on
114  * this or other null vnode stacks.
115  *
116  * New vnode stacks come into existence as a result of
117  * an operation which returns a vnode.
118  * The bypass routine stacks a null-node above the new
119  * vnode before returning it to the caller.
120  *
121  * For example, imagine mounting a null layer with
122  * "mount_nullfs /usr/include /dev/layer/null".
123  * Changing directory to /dev/layer/null will assign
124  * the root null-node (which was created when the null layer was mounted).
125  * Now consider opening "sys".  A vop_lookup would be
126  * done on the root null-node.  This operation would bypass through
127  * to the lower layer which would return a vnode representing
128  * the UFS "sys".  Null_bypass then builds a null-node
129  * aliasing the UFS "sys" and returns this to the caller.
130  * Later operations on the null-node "sys" will repeat this
131  * process when constructing other vnode stacks.
132  *
133  *
134  * CREATING OTHER FILE SYSTEM LAYERS
135  *
136  * One of the easiest ways to construct new filesystem layers is to make
137  * a copy of the null layer, rename all files and variables, and
138  * then begin modifing the copy.  Sed can be used to easily rename
139  * all variables.
140  *
141  * The umap layer is an example of a layer descended from the
142  * null layer.
143  *
144  *
145  * INVOKING OPERATIONS ON LOWER LAYERS
146  *
147  * There are two techniques to invoke operations on a lower layer
148  * when the operation cannot be completely bypassed.  Each method
149  * is appropriate in different situations.  In both cases,
150  * it is the responsibility of the aliasing layer to make
151  * the operation arguments "correct" for the lower layer
152  * by mapping a vnode arguments to the lower layer.
153  *
154  * The first approach is to call the aliasing layer's bypass routine.
155  * This method is most suitable when you wish to invoke the operation
156  * currently being handled on the lower layer.  It has the advantage
157  * that the bypass routine already must do argument mapping.
158  * An example of this is null_getattrs in the null layer.
159  *
160  * A second approach is to directly invoke vnode operations on
161  * the lower layer with the VOP_OPERATIONNAME interface.
162  * The advantage of this method is that it is easy to invoke
163  * arbitrary operations on the lower layer.  The disadvantage
164  * is that vnode arguments must be manualy mapped.
165  *
166  */
167 
168 #include <sys/param.h>
169 #include <sys/systm.h>
170 #include <sys/conf.h>
171 #include <sys/kernel.h>
172 #include <sys/lock.h>
173 #include <sys/malloc.h>
174 #include <sys/mount.h>
175 #include <sys/mutex.h>
176 #include <sys/namei.h>
177 #include <sys/proc.h>
178 #include <sys/smr.h>
179 #include <sys/sysctl.h>
180 #include <sys/vnode.h>
181 #include <sys/stat.h>
182 
183 #include <fs/nullfs/null.h>
184 
185 #include <vm/vm.h>
186 #include <vm/vm_extern.h>
187 #include <vm/vm_object.h>
188 #include <vm/vnode_pager.h>
189 
190 VFS_SMR_DECLARE;
191 
192 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
193 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
194 	&null_bug_bypass, 0, "");
195 
196 /*
197  * Synchronize inotify flags with the lower vnode:
198  * - If the upper vnode has the flag set and the lower does not, then the lower
199  *   vnode is unwatched and the upper vnode does not need to go through
200  *   VOP_INOTIFY.
201  * - If the lower vnode is watched, then the upper vnode should go through
202  *   VOP_INOTIFY, so copy the flag up.
203  */
204 static void
null_copy_inotify(struct vnode * vp,struct vnode * lvp,short flag)205 null_copy_inotify(struct vnode *vp, struct vnode *lvp, short flag)
206 {
207 	if ((vn_irflag_read(vp) & flag) != 0) {
208 		if (__predict_false((vn_irflag_read(lvp) & flag) == 0))
209 			vn_irflag_unset(vp, flag);
210 	} else if ((vn_irflag_read(lvp) & flag) != 0) {
211 		if (__predict_false((vn_irflag_read(vp) & flag) == 0))
212 			vn_irflag_set(vp, flag);
213 	}
214 }
215 
216 /*
217  * This is the 10-Apr-92 bypass routine.
218  *    This version has been optimized for speed, throwing away some
219  * safety checks.  It should still always work, but it's not as
220  * robust to programmer errors.
221  *
222  * In general, we map all vnodes going down and unmap them on the way back.
223  * As an exception to this, vnodes can be marked "unmapped" by setting
224  * the Nth bit in operation's vdesc_flags.
225  *
226  * Also, some BSD vnode operations have the side effect of vrele'ing
227  * their arguments.  With stacking, the reference counts are held
228  * by the upper node, not the lower one, so we must handle these
229  * side-effects here.  This is not of concern in Sun-derived systems
230  * since there are no such side-effects.
231  *
232  * This makes the following assumptions:
233  * - only one returned vpp
234  * - no INOUT vpp's (Sun's vop_open has one of these)
235  * - the vnode operation vector of the first vnode should be used
236  *   to determine what implementation of the op should be invoked
237  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
238  *   problems on rmdir'ing mount points and renaming?)
239  */
240 int
null_bypass(struct vop_generic_args * ap)241 null_bypass(struct vop_generic_args *ap)
242 {
243 	struct vnode **this_vp_p;
244 	struct vnode *old_vps[VDESC_MAX_VPS];
245 	struct vnode **vps_p[VDESC_MAX_VPS];
246 	struct vnode ***vppp;
247 	struct vnode *lvp;
248 	struct vnodeop_desc *descp = ap->a_desc;
249 	int error, i, reles;
250 
251 	if (null_bug_bypass)
252 		printf ("null_bypass: %s\n", descp->vdesc_name);
253 
254 #ifdef DIAGNOSTIC
255 	/*
256 	 * We require at least one vp.
257 	 */
258 	if (descp->vdesc_vp_offsets == NULL ||
259 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
260 		panic ("null_bypass: no vp's in map");
261 #endif
262 
263 	/*
264 	 * Map the vnodes going in.
265 	 * Later, we'll invoke the operation based on
266 	 * the first mapped vnode's operation vector.
267 	 */
268 	reles = descp->vdesc_flags;
269 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
270 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
271 			break;   /* bail out at end of list */
272 		vps_p[i] = this_vp_p = VOPARG_OFFSETTO(struct vnode **,
273 		    descp->vdesc_vp_offsets[i], ap);
274 
275 		/*
276 		 * We're not guaranteed that any but the first vnode
277 		 * are of our type.  Check for and don't map any
278 		 * that aren't.  (We must always map first vp or vclean fails.)
279 		 */
280 		if (i != 0 && (*this_vp_p == NULL ||
281 			       (*this_vp_p)->v_op != &null_vnodeops)) {
282 			old_vps[i] = NULL;
283 		} else {
284 			old_vps[i] = *this_vp_p;
285 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
286 
287 			/*
288 			 * The upper vnode reference to the lower
289 			 * vnode is the only reference that keeps our
290 			 * pointer to the lower vnode alive.  If lower
291 			 * vnode is relocked during the VOP call,
292 			 * upper vnode might become unlocked and
293 			 * reclaimed, which invalidates our reference.
294 			 * Add a transient hold around VOP call.
295 			 */
296 			vhold(*this_vp_p);
297 
298 			/*
299 			 * XXX - Several operations have the side effect
300 			 * of vrele'ing their vp's.  We must account for
301 			 * that.  (This should go away in the future.)
302 			 */
303 			if (reles & VDESC_VP0_WILLRELE)
304 				vref(*this_vp_p);
305 		}
306 	}
307 
308 	/*
309 	 * Call the operation on the lower layer
310 	 * with the modified argument structure.
311 	 */
312 	if (vps_p[0] != NULL && *vps_p[0] != NULL) {
313 		error = ap->a_desc->vdesc_call(ap);
314 	} else {
315 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
316 		error = EINVAL;
317 	}
318 
319 	/*
320 	 * Maintain the illusion of call-by-value
321 	 * by restoring vnodes in the argument structure
322 	 * to their original value.
323 	 */
324 	reles = descp->vdesc_flags;
325 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
326 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
327 			break;   /* bail out at end of list */
328 		if (old_vps[i] != NULL) {
329 			lvp = *(vps_p[i]);
330 
331 			/*
332 			 * Get rid of the transient hold on lvp.  Copy inotify
333 			 * flags up in case something is watching the lower
334 			 * layer.
335 			 *
336 			 * If lowervp was unlocked during VOP
337 			 * operation, nullfs upper vnode could have
338 			 * been reclaimed, which changes its v_vnlock
339 			 * back to private v_lock.  In this case we
340 			 * must move lock ownership from lower to
341 			 * upper (reclaimed) vnode.
342 			 */
343 			if (lvp != NULL) {
344 				null_copy_inotify(old_vps[i], lvp,
345 				    VIRF_INOTIFY);
346 				null_copy_inotify(old_vps[i], lvp,
347 				    VIRF_INOTIFY_PARENT);
348 				if (VOP_ISLOCKED(lvp) == LK_EXCLUSIVE &&
349 				    old_vps[i]->v_vnlock != lvp->v_vnlock) {
350 					VOP_UNLOCK(lvp);
351 					VOP_LOCK(old_vps[i], LK_EXCLUSIVE |
352 					    LK_RETRY);
353 				}
354 				vdrop(lvp);
355 			}
356 
357 			*(vps_p[i]) = old_vps[i];
358 #if 0
359 			if (reles & VDESC_VP0_WILLUNLOCK)
360 				VOP_UNLOCK(*(vps_p[i]), 0);
361 #endif
362 			if (reles & VDESC_VP0_WILLRELE)
363 				vrele(*(vps_p[i]));
364 		}
365 	}
366 
367 	/*
368 	 * Map the possible out-going vpp
369 	 * (Assumes that the lower layer always returns
370 	 * a VREF'ed vpp unless it gets an error.)
371 	 */
372 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && error == 0) {
373 		/*
374 		 * XXX - even though some ops have vpp returned vp's,
375 		 * several ops actually vrele this before returning.
376 		 * We must avoid these ops.
377 		 * (This should go away when these ops are regularized.)
378 		 */
379 		vppp = VOPARG_OFFSETTO(struct vnode ***,
380 		    descp->vdesc_vpp_offset, ap);
381 		if (*vppp != NULL)
382 			error = null_nodeget(old_vps[0]->v_mount, **vppp,
383 			    *vppp);
384 	}
385 
386 	return (error);
387 }
388 
389 static int
null_add_writecount(struct vop_add_writecount_args * ap)390 null_add_writecount(struct vop_add_writecount_args *ap)
391 {
392 	struct vnode *lvp, *vp;
393 	int error;
394 
395 	vp = ap->a_vp;
396 	lvp = NULLVPTOLOWERVP(vp);
397 	VI_LOCK(vp);
398 	/* text refs are bypassed to lowervp */
399 	VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
400 	VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
401 	    ("wrong writecount inc %d", ap->a_inc));
402 	error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
403 	if (error == 0)
404 		vp->v_writecount += ap->a_inc;
405 	VI_UNLOCK(vp);
406 	return (error);
407 }
408 
409 /*
410  * We have to carry on the locking protocol on the null layer vnodes
411  * as we progress through the tree. We also have to enforce read-only
412  * if this layer is mounted read-only.
413  */
414 static int
null_lookup(struct vop_lookup_args * ap)415 null_lookup(struct vop_lookup_args *ap)
416 {
417 	struct componentname *cnp = ap->a_cnp;
418 	struct vnode *dvp = ap->a_dvp;
419 	uint64_t flags = cnp->cn_flags;
420 	struct vnode *vp, *ldvp, *lvp;
421 	struct mount *mp;
422 	int error;
423 
424 	mp = dvp->v_mount;
425 	if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
426 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
427 		return (EROFS);
428 	/*
429 	 * Although it is possible to call null_bypass(), we'll do
430 	 * a direct call to reduce overhead
431 	 */
432 	ldvp = NULLVPTOLOWERVP(dvp);
433 	vp = lvp = NULL;
434 
435 	/*
436 	 * Renames in the lower mounts might create an inconsistent
437 	 * configuration where lower vnode is moved out of the directory tree
438 	 * remounted by our null mount.
439 	 *
440 	 * Do not try to handle it fancy, just avoid VOP_LOOKUP() with DOTDOT
441 	 * name which cannot be handled by the VOP.
442 	 */
443 	if ((flags & ISDOTDOT) != 0) {
444 		struct nameidata *ndp;
445 
446 		if ((ldvp->v_vflag & VV_ROOT) != 0) {
447 			KASSERT((dvp->v_vflag & VV_ROOT) == 0,
448 			    ("ldvp %p fl %#x dvp %p fl %#x flags %#jx",
449 			    ldvp, ldvp->v_vflag, dvp, dvp->v_vflag,
450 			    (uintmax_t)flags));
451 			return (ENOENT);
452 		}
453 		ndp = vfs_lookup_nameidata(cnp);
454 		if (ndp != NULL && vfs_lookup_isroot(ndp, ldvp))
455 			return (ENOENT);
456 	}
457 
458 	/*
459 	 * Hold ldvp.  The reference on it, owned by dvp, is lost in
460 	 * case of dvp reclamation, and we need ldvp to move our lock
461 	 * from ldvp to dvp.
462 	 */
463 	vhold(ldvp);
464 
465 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
466 
467 	/*
468 	 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
469 	 * dvp to be reclaimed due to shared v_vnlock.  Check for the
470 	 * doomed state and return error.
471 	 */
472 	if (VN_IS_DOOMED(dvp)) {
473 		if (error == 0 || error == EJUSTRETURN) {
474 			if (lvp != NULL)
475 				vput(lvp);
476 			error = ENOENT;
477 		}
478 
479 		/*
480 		 * If vgone() did reclaimed dvp before curthread
481 		 * relocked ldvp, the locks of dvp and ldpv are no
482 		 * longer shared.  In this case, relock of ldvp in
483 		 * lower fs VOP_LOOKUP() does not restore the locking
484 		 * state of dvp.  Compensate for this by unlocking
485 		 * ldvp and locking dvp, which is also correct if the
486 		 * locks are still shared.
487 		 */
488 		VOP_UNLOCK(ldvp);
489 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
490 	}
491 	vdrop(ldvp);
492 
493 	if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
494 	    (mp->mnt_flag & MNT_RDONLY) != 0 &&
495 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
496 		error = EROFS;
497 
498 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
499 		if (ldvp == lvp) {
500 			*ap->a_vpp = dvp;
501 			vref(dvp);
502 			vrele(lvp);
503 		} else {
504 			error = null_nodeget(mp, lvp, &vp);
505 			if (error == 0)
506 				*ap->a_vpp = vp;
507 		}
508 	}
509 	return (error);
510 }
511 
512 static int
null_open(struct vop_open_args * ap)513 null_open(struct vop_open_args *ap)
514 {
515 	int retval;
516 	struct vnode *vp, *ldvp;
517 
518 	vp = ap->a_vp;
519 	ldvp = NULLVPTOLOWERVP(vp);
520 	retval = null_bypass(&ap->a_gen);
521 	if (retval == 0) {
522 		vp->v_object = ldvp->v_object;
523 		if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) {
524 			MPASS(vp->v_object != NULL);
525 			if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) {
526 				vn_irflag_set_cond(vp, VIRF_PGREAD);
527 			}
528 		}
529 	}
530 	return (retval);
531 }
532 
533 /*
534  * Setattr call. Disallow write attempts if the layer is mounted read-only.
535  */
536 static int
null_setattr(struct vop_setattr_args * ap)537 null_setattr(struct vop_setattr_args *ap)
538 {
539 	struct vnode *vp = ap->a_vp;
540 	struct vattr *vap = ap->a_vap;
541 
542   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
543 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
544 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
545 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
546 		return (EROFS);
547 	if (vap->va_size != VNOVAL) {
548  		switch (vp->v_type) {
549  		case VDIR:
550  			return (EISDIR);
551  		case VCHR:
552  		case VBLK:
553  		case VSOCK:
554  		case VFIFO:
555 			if (vap->va_flags != VNOVAL)
556 				return (EOPNOTSUPP);
557 			return (0);
558 		case VREG:
559 		case VLNK:
560  		default:
561 			/*
562 			 * Disallow write attempts if the filesystem is
563 			 * mounted read-only.
564 			 */
565 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
566 				return (EROFS);
567 		}
568 	}
569 
570 	return (null_bypass(&ap->a_gen));
571 }
572 
573 /*
574  *  We handle stat and getattr only to change the fsid.
575  */
576 static int
null_stat(struct vop_stat_args * ap)577 null_stat(struct vop_stat_args *ap)
578 {
579 	int error;
580 
581 	if ((error = null_bypass(&ap->a_gen)) != 0)
582 		return (error);
583 
584 	ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
585 	return (0);
586 }
587 
588 static int
null_getattr(struct vop_getattr_args * ap)589 null_getattr(struct vop_getattr_args *ap)
590 {
591 	int error;
592 
593 	if ((error = null_bypass(&ap->a_gen)) != 0)
594 		return (error);
595 
596 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
597 	return (0);
598 }
599 
600 /*
601  * Handle to disallow write access if mounted read-only.
602  */
603 static int
null_access(struct vop_access_args * ap)604 null_access(struct vop_access_args *ap)
605 {
606 	struct vnode *vp = ap->a_vp;
607 	accmode_t accmode = ap->a_accmode;
608 
609 	/*
610 	 * Disallow write attempts on read-only layers;
611 	 * unless the file is a socket, fifo, or a block or
612 	 * character device resident on the filesystem.
613 	 */
614 	if (accmode & VWRITE) {
615 		switch (vp->v_type) {
616 		case VDIR:
617 		case VLNK:
618 		case VREG:
619 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
620 				return (EROFS);
621 			break;
622 		default:
623 			break;
624 		}
625 	}
626 	return (null_bypass(&ap->a_gen));
627 }
628 
629 static int
null_accessx(struct vop_accessx_args * ap)630 null_accessx(struct vop_accessx_args *ap)
631 {
632 	struct vnode *vp = ap->a_vp;
633 	accmode_t accmode = ap->a_accmode;
634 
635 	/*
636 	 * Disallow write attempts on read-only layers;
637 	 * unless the file is a socket, fifo, or a block or
638 	 * character device resident on the filesystem.
639 	 */
640 	if (accmode & VWRITE) {
641 		switch (vp->v_type) {
642 		case VDIR:
643 		case VLNK:
644 		case VREG:
645 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
646 				return (EROFS);
647 			break;
648 		default:
649 			break;
650 		}
651 	}
652 	return (null_bypass(&ap->a_gen));
653 }
654 
655 /*
656  * Increasing refcount of lower vnode is needed at least for the case
657  * when lower FS is NFS to do sillyrename if the file is in use.
658  * Unfortunately v_usecount is incremented in many places in
659  * the kernel and, as such, there may be races that result in
660  * the NFS client doing an extraneous silly rename, but that seems
661  * preferable to not doing a silly rename when it is needed.
662  */
663 static int
null_remove(struct vop_remove_args * ap)664 null_remove(struct vop_remove_args *ap)
665 {
666 	int retval, vreleit;
667 	struct vnode *lvp, *vp;
668 
669 	vp = ap->a_vp;
670 	if (vrefcnt(vp) > 1) {
671 		lvp = NULLVPTOLOWERVP(vp);
672 		vref(lvp);
673 		vreleit = 1;
674 	} else
675 		vreleit = 0;
676 	VTONULL(vp)->null_flags |= NULLV_DROP;
677 	retval = null_bypass(&ap->a_gen);
678 	if (vreleit != 0)
679 		vrele(lvp);
680 	return (retval);
681 }
682 
683 /*
684  * We handle this to eliminate null FS to lower FS
685  * file moving. Don't know why we don't allow this,
686  * possibly we should.
687  */
688 static int
null_rename(struct vop_rename_args * ap)689 null_rename(struct vop_rename_args *ap)
690 {
691 	struct vnode *fdvp, *fvp, *tdvp, *tvp;
692 	struct vnode *lfdvp, *lfvp, *ltdvp, *ltvp;
693 	struct null_node *fdnn, *fnn, *tdnn, *tnn;
694 	int error;
695 
696 	tdvp = ap->a_tdvp;
697 	fvp = ap->a_fvp;
698 	fdvp = ap->a_fdvp;
699 	tvp = ap->a_tvp;
700 	lfdvp = NULL;
701 
702 	/* Check for cross-device rename. */
703 	if ((fvp->v_mount != tdvp->v_mount) ||
704 	    (tvp != NULL && fvp->v_mount != tvp->v_mount)) {
705 		error = EXDEV;
706 		goto upper_err;
707 	}
708 
709 	VI_LOCK(fdvp);
710 	fdnn = VTONULL(fdvp);
711 	if (fdnn == NULL) {	/* fdvp is not locked, can be doomed */
712 		VI_UNLOCK(fdvp);
713 		error = ENOENT;
714 		goto upper_err;
715 	}
716 	lfdvp = fdnn->null_lowervp;
717 	vref(lfdvp);
718 	VI_UNLOCK(fdvp);
719 
720 	VI_LOCK(fvp);
721 	fnn = VTONULL(fvp);
722 	if (fnn == NULL) {
723 		VI_UNLOCK(fvp);
724 		error = ENOENT;
725 		goto upper_err;
726 	}
727 	lfvp = fnn->null_lowervp;
728 	vref(lfvp);
729 	VI_UNLOCK(fvp);
730 
731 	tdnn = VTONULL(tdvp);
732 	ltdvp = tdnn->null_lowervp;
733 	vref(ltdvp);
734 
735 	if (tvp != NULL) {
736 		tnn = VTONULL(tvp);
737 		ltvp = tnn->null_lowervp;
738 		vref(ltvp);
739 		tnn->null_flags |= NULLV_DROP;
740 	} else {
741 		ltvp = NULL;
742 	}
743 
744 	error = VOP_RENAME(lfdvp, lfvp, ap->a_fcnp, ltdvp, ltvp, ap->a_tcnp);
745 	vrele(fdvp);
746 	vrele(fvp);
747 	vrele(tdvp);
748 	if (tvp != NULL)
749 		vrele(tvp);
750 	return (error);
751 
752 upper_err:
753 	if (tdvp == tvp)
754 		vrele(tdvp);
755 	else
756 		vput(tdvp);
757 	if (tvp)
758 		vput(tvp);
759 	if (lfdvp != NULL)
760 		vrele(lfdvp);
761 	vrele(fdvp);
762 	vrele(fvp);
763 	return (error);
764 }
765 
766 static int
null_rmdir(struct vop_rmdir_args * ap)767 null_rmdir(struct vop_rmdir_args *ap)
768 {
769 
770 	VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
771 	return (null_bypass(&ap->a_gen));
772 }
773 
774 /*
775  * We need to process our own vnode lock and then clear the interlock flag as
776  * it applies only to our vnode, not the vnodes below us on the stack.
777  *
778  * We have to hold the vnode here to solve a potential reclaim race.  If we're
779  * forcibly vgone'd while we still have refs, a thread could be sleeping inside
780  * the lowervp's vop_lock routine.  When we vgone we will drop our last ref to
781  * the lowervp, which would allow it to be reclaimed.  The lowervp could then
782  * be recycled, in which case it is not legal to be sleeping in its VOP.  We
783  * prevent it from being recycled by holding the vnode here.
784  */
785 static struct vnode *
null_lock_prep_with_smr(struct vop_lock1_args * ap)786 null_lock_prep_with_smr(struct vop_lock1_args *ap)
787 {
788 	struct null_node *nn;
789 	struct vnode *lvp;
790 
791 	vfs_smr_enter();
792 
793 	lvp = NULL;
794 
795 	nn = VTONULL_SMR(ap->a_vp);
796 	if (__predict_true(nn != NULL)) {
797 		lvp = nn->null_lowervp;
798 		if (lvp != NULL && !vhold_smr(lvp))
799 			lvp = NULL;
800 	}
801 
802 	vfs_smr_exit();
803 	return (lvp);
804 }
805 
806 static struct vnode *
null_lock_prep_with_interlock(struct vop_lock1_args * ap)807 null_lock_prep_with_interlock(struct vop_lock1_args *ap)
808 {
809 	struct null_node *nn;
810 	struct vnode *lvp;
811 
812 	ASSERT_VI_LOCKED(ap->a_vp, __func__);
813 
814 	ap->a_flags &= ~LK_INTERLOCK;
815 
816 	lvp = NULL;
817 
818 	nn = VTONULL(ap->a_vp);
819 	if (__predict_true(nn != NULL)) {
820 		lvp = nn->null_lowervp;
821 		if (lvp != NULL)
822 			vholdnz(lvp);
823 	}
824 	VI_UNLOCK(ap->a_vp);
825 	return (lvp);
826 }
827 
828 static int
null_lock(struct vop_lock1_args * ap)829 null_lock(struct vop_lock1_args *ap)
830 {
831 	struct vnode *lvp;
832 	int error, flags;
833 
834 	if (__predict_true((ap->a_flags & LK_INTERLOCK) == 0)) {
835 		lvp = null_lock_prep_with_smr(ap);
836 		if (__predict_false(lvp == NULL)) {
837 			VI_LOCK(ap->a_vp);
838 			lvp = null_lock_prep_with_interlock(ap);
839 		}
840 	} else {
841 		lvp = null_lock_prep_with_interlock(ap);
842 	}
843 
844 	ASSERT_VI_UNLOCKED(ap->a_vp, __func__);
845 
846 	if (__predict_false(lvp == NULL))
847 		return (vop_stdlock(ap));
848 
849 	VNPASS(lvp->v_holdcnt > 0, lvp);
850 	error = VOP_LOCK(lvp, ap->a_flags);
851 	/*
852 	 * We might have slept to get the lock and someone might have
853 	 * clean our vnode already, switching vnode lock from one in
854 	 * lowervp to v_lock in our own vnode structure.  Handle this
855 	 * case by reacquiring correct lock in requested mode.
856 	 */
857 	if (VTONULL(ap->a_vp) == NULL && error == 0) {
858 		flags = ap->a_flags;
859 		ap->a_flags &= ~LK_TYPE_MASK;
860 		switch (flags & LK_TYPE_MASK) {
861 		case LK_SHARED:
862 			ap->a_flags |= LK_SHARED;
863 			break;
864 		case LK_UPGRADE:
865 		case LK_EXCLUSIVE:
866 			ap->a_flags |= LK_EXCLUSIVE;
867 			break;
868 		default:
869 			panic("Unsupported lock request %d\n",
870 			    flags);
871 		}
872 		VOP_UNLOCK(lvp);
873 		error = vop_stdlock(ap);
874 	}
875 	vdrop(lvp);
876 	return (error);
877 }
878 
879 static int
null_unlock(struct vop_unlock_args * ap)880 null_unlock(struct vop_unlock_args *ap)
881 {
882 	struct vnode *vp = ap->a_vp;
883 	struct null_node *nn;
884 	struct vnode *lvp;
885 	int error;
886 
887 	/*
888 	 * Contrary to null_lock, we don't need to hold the vnode around
889 	 * unlock.
890 	 *
891 	 * We hold the lock, which means we can't be racing against vgone.
892 	 *
893 	 * At the same time VOP_UNLOCK promises to not touch anything after
894 	 * it finishes unlock, just like we don't.
895 	 *
896 	 * vop_stdunlock for a doomed vnode matches doomed locking in null_lock.
897 	 */
898 	nn = VTONULL(vp);
899 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
900 		error = VOP_UNLOCK(lvp);
901 	} else {
902 		error = vop_stdunlock(ap);
903 	}
904 
905 	return (error);
906 }
907 
908 /*
909  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
910  * since the reference count on the lower vnode is not related to
911  * ours.
912  */
913 static int
null_want_recycle(struct vnode * vp)914 null_want_recycle(struct vnode *vp)
915 {
916 	struct vnode *lvp;
917 	struct null_node *xp;
918 	struct mount *mp;
919 	struct null_mount *xmp;
920 
921 	xp = VTONULL(vp);
922 	lvp = NULLVPTOLOWERVP(vp);
923 	mp = vp->v_mount;
924 	xmp = MOUNTTONULLMOUNT(mp);
925 	if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
926 	    (xp->null_flags & NULLV_DROP) != 0 ||
927 	    (lvp->v_vflag & VV_NOSYNC) != 0) {
928 		/*
929 		 * If this is the last reference and caching of the
930 		 * nullfs vnodes is not enabled, or the lower vnode is
931 		 * deleted, then free up the vnode so as not to tie up
932 		 * the lower vnodes.
933 		 */
934 		return (1);
935 	}
936 	return (0);
937 }
938 
939 static int
null_inactive(struct vop_inactive_args * ap)940 null_inactive(struct vop_inactive_args *ap)
941 {
942 	struct vnode *vp;
943 
944 	vp = ap->a_vp;
945 	if (null_want_recycle(vp)) {
946 		vp->v_object = NULL;
947 		vrecycle(vp);
948 	}
949 	return (0);
950 }
951 
952 static int
null_need_inactive(struct vop_need_inactive_args * ap)953 null_need_inactive(struct vop_need_inactive_args *ap)
954 {
955 
956 	return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp));
957 }
958 
959 /*
960  * Now, the nullfs vnode and, due to the sharing lock, the lower
961  * vnode, are exclusively locked, and we shall destroy the null vnode.
962  */
963 static int
null_reclaim(struct vop_reclaim_args * ap)964 null_reclaim(struct vop_reclaim_args *ap)
965 {
966 	struct vnode *vp;
967 	struct null_node *xp;
968 	struct vnode *lowervp;
969 
970 	vp = ap->a_vp;
971 	xp = VTONULL(vp);
972 	lowervp = xp->null_lowervp;
973 
974 	KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
975 	    ("Reclaiming incomplete null vnode %p", vp));
976 
977 	null_hashrem(xp);
978 	/*
979 	 * Use the interlock to protect the clearing of v_data to
980 	 * prevent faults in null_lock().
981 	 */
982 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
983 	VI_LOCK(vp);
984 	vp->v_data = NULL;
985 	vp->v_object = NULL;
986 	vp->v_vnlock = &vp->v_lock;
987 
988 	/*
989 	 * If we were opened for write, we leased the write reference
990 	 * to the lower vnode.  If this is a reclamation due to the
991 	 * forced unmount, undo the reference now.
992 	 */
993 	if (vp->v_writecount > 0)
994 		VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
995 	else if (vp->v_writecount < 0)
996 		vp->v_writecount = 0;
997 
998 	VI_UNLOCK(vp);
999 
1000 	if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
1001 		vunref(lowervp);
1002 	else
1003 		vput(lowervp);
1004 	uma_zfree_smr(null_node_zone, xp);
1005 
1006 	return (0);
1007 }
1008 
1009 static int
null_print(struct vop_print_args * ap)1010 null_print(struct vop_print_args *ap)
1011 {
1012 	struct vnode *vp = ap->a_vp;
1013 
1014 	printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
1015 	return (0);
1016 }
1017 
1018 /* ARGSUSED */
1019 static int
null_getwritemount(struct vop_getwritemount_args * ap)1020 null_getwritemount(struct vop_getwritemount_args *ap)
1021 {
1022 	struct null_node *xp;
1023 	struct vnode *lowervp;
1024 	struct vnode *vp;
1025 
1026 	vp = ap->a_vp;
1027 	VI_LOCK(vp);
1028 	xp = VTONULL(vp);
1029 	if (xp && (lowervp = xp->null_lowervp)) {
1030 		vholdnz(lowervp);
1031 		VI_UNLOCK(vp);
1032 		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
1033 		vdrop(lowervp);
1034 	} else {
1035 		VI_UNLOCK(vp);
1036 		*(ap->a_mpp) = NULL;
1037 	}
1038 	return (0);
1039 }
1040 
1041 static int
null_vptofh(struct vop_vptofh_args * ap)1042 null_vptofh(struct vop_vptofh_args *ap)
1043 {
1044 	struct vnode *lvp;
1045 
1046 	lvp = NULLVPTOLOWERVP(ap->a_vp);
1047 	return VOP_VPTOFH(lvp, ap->a_fhp);
1048 }
1049 
1050 static int
null_vptocnp(struct vop_vptocnp_args * ap)1051 null_vptocnp(struct vop_vptocnp_args *ap)
1052 {
1053 	struct vnode *vp = ap->a_vp;
1054 	struct vnode **dvp = ap->a_vpp;
1055 	struct vnode *lvp, *ldvp;
1056 	struct mount *mp;
1057 	int error, locked;
1058 
1059 	locked = VOP_ISLOCKED(vp);
1060 	lvp = NULLVPTOLOWERVP(vp);
1061 	mp = vp->v_mount;
1062 	error = vfs_busy(mp, MBF_NOWAIT);
1063 	if (error != 0)
1064 		return (error);
1065 	vhold(lvp);
1066 	VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */
1067 	ldvp = lvp;
1068 	vref(lvp);
1069 	error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen);
1070 	vdrop(lvp);
1071 	if (error != 0) {
1072 		vn_lock(vp, locked | LK_RETRY);
1073 		vfs_unbusy(mp);
1074 		return (ENOENT);
1075 	}
1076 
1077 	error = vn_lock(ldvp, LK_SHARED);
1078 	if (error != 0) {
1079 		vrele(ldvp);
1080 		vn_lock(vp, locked | LK_RETRY);
1081 		vfs_unbusy(mp);
1082 		return (ENOENT);
1083 	}
1084 	error = null_nodeget(mp, ldvp, dvp);
1085 	if (error == 0) {
1086 #ifdef DIAGNOSTIC
1087 		NULLVPTOLOWERVP(*dvp);
1088 #endif
1089 		VOP_UNLOCK(*dvp); /* keep reference on *dvp */
1090 	}
1091 	vn_lock(vp, locked | LK_RETRY);
1092 	vfs_unbusy(mp);
1093 	return (error);
1094 }
1095 
1096 static int
null_read_pgcache(struct vop_read_pgcache_args * ap)1097 null_read_pgcache(struct vop_read_pgcache_args *ap)
1098 {
1099 	struct vnode *lvp, *vp;
1100 	struct null_node *xp;
1101 	int error;
1102 
1103 	vp = ap->a_vp;
1104 	VI_LOCK(vp);
1105 	xp = VTONULL(vp);
1106 	if (xp == NULL) {
1107 		VI_UNLOCK(vp);
1108 		return (EJUSTRETURN);
1109 	}
1110 	lvp = xp->null_lowervp;
1111 	vref(lvp);
1112 	VI_UNLOCK(vp);
1113 	error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
1114 	vrele(lvp);
1115 	return (error);
1116 }
1117 
1118 static int
null_advlock(struct vop_advlock_args * ap)1119 null_advlock(struct vop_advlock_args *ap)
1120 {
1121 	struct vnode *lvp, *vp;
1122 	struct null_node *xp;
1123 	int error;
1124 
1125 	vp = ap->a_vp;
1126 	VI_LOCK(vp);
1127 	xp = VTONULL(vp);
1128 	if (xp == NULL) {
1129 		VI_UNLOCK(vp);
1130 		return (EBADF);
1131 	}
1132 	lvp = xp->null_lowervp;
1133 	vref(lvp);
1134 	VI_UNLOCK(vp);
1135 	error = VOP_ADVLOCK(lvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags);
1136 	vrele(lvp);
1137 	return (error);
1138 }
1139 
1140 /*
1141  * Avoid standard bypass, since lower dvp and vp could be no longer
1142  * valid after vput().
1143  */
1144 static int
null_vput_pair(struct vop_vput_pair_args * ap)1145 null_vput_pair(struct vop_vput_pair_args *ap)
1146 {
1147 	struct mount *mp;
1148 	struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp;
1149 	int error, res;
1150 
1151 	dvp = ap->a_dvp;
1152 	ldvp = NULLVPTOLOWERVP(dvp);
1153 	vref(ldvp);
1154 
1155 	vpp = ap->a_vpp;
1156 	vp = NULL;
1157 	lvp = NULL;
1158 	mp = NULL;
1159 	if (vpp != NULL)
1160 		vp = *vpp;
1161 	if (vp != NULL) {
1162 		lvp = NULLVPTOLOWERVP(vp);
1163 		vref(lvp);
1164 		if (!ap->a_unlock_vp) {
1165 			vhold(vp);
1166 			vhold(lvp);
1167 			mp = vp->v_mount;
1168 			vfs_ref(mp);
1169 		}
1170 	}
1171 
1172 	res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true);
1173 	if (vp != NULL && ap->a_unlock_vp)
1174 		vrele(vp);
1175 	vrele(dvp);
1176 
1177 	if (vp == NULL || ap->a_unlock_vp)
1178 		return (res);
1179 
1180 	/* lvp has been unlocked and vp might be reclaimed */
1181 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1182 	if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) {
1183 		vput(vp);
1184 		vget(lvp, LK_EXCLUSIVE | LK_RETRY);
1185 		if (VN_IS_DOOMED(lvp)) {
1186 			vput(lvp);
1187 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
1188 		} else {
1189 			error = null_nodeget(mp, lvp, &vp1);
1190 			if (error == 0) {
1191 				*vpp = vp1;
1192 			} else {
1193 				vget(vp, LK_EXCLUSIVE | LK_RETRY);
1194 			}
1195 		}
1196 		vfs_unbusy(mp);
1197 	}
1198 	vdrop(lvp);
1199 	vdrop(vp);
1200 	vfs_rel(mp);
1201 
1202 	return (res);
1203 }
1204 
1205 static int
null_getlowvnode(struct vop_getlowvnode_args * ap)1206 null_getlowvnode(struct vop_getlowvnode_args *ap)
1207 {
1208 	struct vnode *vp, *vpl;
1209 
1210 	vp = ap->a_vp;
1211 	if (vn_lock(vp, LK_SHARED) != 0)
1212 		return (EBADF);
1213 
1214 	vpl = NULLVPTOLOWERVP(vp);
1215 	vhold(vpl);
1216 	VOP_UNLOCK(vp);
1217 	VOP_GETLOWVNODE(vpl, ap->a_vplp, ap->a_flags);
1218 	vdrop(vpl);
1219 	return (0);
1220 }
1221 
1222 /*
1223  * Global vfs data structures
1224  */
1225 struct vop_vector null_vnodeops = {
1226 	.vop_bypass =		null_bypass,
1227 	.vop_access =		null_access,
1228 	.vop_accessx =		null_accessx,
1229 	.vop_advlock =		null_advlock,
1230 	.vop_advlockpurge =	vop_stdadvlockpurge,
1231 	.vop_bmap =		VOP_EOPNOTSUPP,
1232 	.vop_stat =		null_stat,
1233 	.vop_getattr =		null_getattr,
1234 	.vop_getlowvnode =	null_getlowvnode,
1235 	.vop_getwritemount =	null_getwritemount,
1236 	.vop_inactive =		null_inactive,
1237 	.vop_need_inactive =	null_need_inactive,
1238 	.vop_islocked =		vop_stdislocked,
1239 	.vop_lock1 =		null_lock,
1240 	.vop_lookup =		null_lookup,
1241 	.vop_open =		null_open,
1242 	.vop_print =		null_print,
1243 	.vop_read_pgcache =	null_read_pgcache,
1244 	.vop_reclaim =		null_reclaim,
1245 	.vop_remove =		null_remove,
1246 	.vop_rename =		null_rename,
1247 	.vop_rmdir =		null_rmdir,
1248 	.vop_setattr =		null_setattr,
1249 	.vop_strategy =		VOP_EOPNOTSUPP,
1250 	.vop_unlock =		null_unlock,
1251 	.vop_vptocnp =		null_vptocnp,
1252 	.vop_vptofh =		null_vptofh,
1253 	.vop_add_writecount =	null_add_writecount,
1254 	.vop_vput_pair =	null_vput_pair,
1255 	.vop_copy_file_range =	VOP_PANIC,
1256 };
1257 VFS_VOP_VECTOR_REGISTER(null_vnodeops);
1258