1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997,1998,2003 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 #include "opt_iommu.h"
33
34 #include <sys/param.h>
35 #include <sys/conf.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/cpuset.h>
56 #ifdef INTRNG
57 #include <sys/intr.h>
58 #endif
59
60 #include <net/vnet.h>
61
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64
65 #include <vm/uma.h>
66 #include <vm/vm.h>
67
68 #include <dev/iommu/iommu.h>
69
70 #include <ddb/ddb.h>
71
72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
73 NULL);
74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75 NULL);
76
77 static bool disable_failed_devs = false;
78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
79 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
80
81 /*
82 * Used to attach drivers to devclasses.
83 */
84 typedef struct driverlink *driverlink_t;
85 struct driverlink {
86 kobj_class_t driver;
87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
88 int pass;
89 int flags;
90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */
91 TAILQ_ENTRY(driverlink) passlink;
92 };
93
94 /*
95 * Forward declarations
96 */
97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
99 typedef TAILQ_HEAD(device_list, _device) device_list_t;
100
101 struct devclass {
102 TAILQ_ENTRY(devclass) link;
103 devclass_t parent; /* parent in devclass hierarchy */
104 driver_list_t drivers; /* bus devclasses store drivers for bus */
105 char *name;
106 device_t *devices; /* array of devices indexed by unit */
107 int maxunit; /* size of devices array */
108 int flags;
109 #define DC_HAS_CHILDREN 1
110
111 struct sysctl_ctx_list sysctl_ctx;
112 struct sysctl_oid *sysctl_tree;
113 };
114
115 struct device_prop_elm {
116 const char *name;
117 void *val;
118 void *dtr_ctx;
119 device_prop_dtr_t dtr;
120 LIST_ENTRY(device_prop_elm) link;
121 };
122
123 static void device_destroy_props(device_t dev);
124
125 /**
126 * @brief Implementation of _device.
127 *
128 * The structure is named "_device" instead of "device" to avoid type confusion
129 * caused by other subsystems defining a (struct device).
130 */
131 struct _device {
132 /*
133 * A device is a kernel object. The first field must be the
134 * current ops table for the object.
135 */
136 KOBJ_FIELDS;
137
138 /*
139 * Device hierarchy.
140 */
141 TAILQ_ENTRY(_device) link; /**< list of devices in parent */
142 TAILQ_ENTRY(_device) devlink; /**< global device list membership */
143 device_t parent; /**< parent of this device */
144 device_list_t children; /**< list of child devices */
145
146 /*
147 * Details of this device.
148 */
149 driver_t *driver; /**< current driver */
150 devclass_t devclass; /**< current device class */
151 int unit; /**< current unit number */
152 char* nameunit; /**< name+unit e.g. foodev0 */
153 char* desc; /**< driver specific description */
154 u_int busy; /**< count of calls to device_busy() */
155 device_state_t state; /**< current device state */
156 uint32_t devflags; /**< api level flags for device_get_flags() */
157 u_int flags; /**< internal device flags */
158 u_int order; /**< order from device_add_child_ordered() */
159 void *ivars; /**< instance variables */
160 void *softc; /**< current driver's variables */
161 LIST_HEAD(, device_prop_elm) props;
162
163 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
164 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
165 };
166
167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
169
170 EVENTHANDLER_LIST_DEFINE(device_attach);
171 EVENTHANDLER_LIST_DEFINE(device_detach);
172 EVENTHANDLER_LIST_DEFINE(device_nomatch);
173 EVENTHANDLER_LIST_DEFINE(dev_lookup);
174
175 static void devctl2_init(void);
176 static bool device_frozen;
177
178 #define DRIVERNAME(d) ((d)? d->name : "no driver")
179 #define DEVCLANAME(d) ((d)? d->name : "no devclass")
180
181 #ifdef BUS_DEBUG
182
183 static int bus_debug = 1;
184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
185 "Bus debug level");
186 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
187 #define DEVICENAME(d) ((d)? device_get_name(d): "no device")
188
189 /**
190 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
191 * prevent syslog from deleting initial spaces
192 */
193 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
194
195 static void print_device_short(device_t dev, int indent);
196 static void print_device(device_t dev, int indent);
197 void print_device_tree_short(device_t dev, int indent);
198 void print_device_tree(device_t dev, int indent);
199 static void print_driver_short(driver_t *driver, int indent);
200 static void print_driver(driver_t *driver, int indent);
201 static void print_driver_list(driver_list_t drivers, int indent);
202 static void print_devclass_short(devclass_t dc, int indent);
203 static void print_devclass(devclass_t dc, int indent);
204 void print_devclass_list_short(void);
205 void print_devclass_list(void);
206
207 #else
208 /* Make the compiler ignore the function calls */
209 #define PDEBUG(a) /* nop */
210 #define DEVICENAME(d) /* nop */
211
212 #define print_device_short(d,i) /* nop */
213 #define print_device(d,i) /* nop */
214 #define print_device_tree_short(d,i) /* nop */
215 #define print_device_tree(d,i) /* nop */
216 #define print_driver_short(d,i) /* nop */
217 #define print_driver(d,i) /* nop */
218 #define print_driver_list(d,i) /* nop */
219 #define print_devclass_short(d,i) /* nop */
220 #define print_devclass(d,i) /* nop */
221 #define print_devclass_list_short() /* nop */
222 #define print_devclass_list() /* nop */
223 #endif
224
225 /*
226 * dev sysctl tree
227 */
228
229 enum {
230 DEVCLASS_SYSCTL_PARENT,
231 };
232
233 static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
235 {
236 devclass_t dc = (devclass_t)arg1;
237 const char *value;
238
239 switch (arg2) {
240 case DEVCLASS_SYSCTL_PARENT:
241 value = dc->parent ? dc->parent->name : "";
242 break;
243 default:
244 return (EINVAL);
245 }
246 return (SYSCTL_OUT_STR(req, value));
247 }
248
249 static void
devclass_sysctl_init(devclass_t dc)250 devclass_sysctl_init(devclass_t dc)
251 {
252 if (dc->sysctl_tree != NULL)
253 return;
254 sysctl_ctx_init(&dc->sysctl_ctx);
255 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
256 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
257 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
258 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
259 OID_AUTO, "%parent",
260 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
261 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
262 "parent class");
263 }
264
265 enum {
266 DEVICE_SYSCTL_DESC,
267 DEVICE_SYSCTL_DRIVER,
268 DEVICE_SYSCTL_LOCATION,
269 DEVICE_SYSCTL_PNPINFO,
270 DEVICE_SYSCTL_PARENT,
271 DEVICE_SYSCTL_IOMMU,
272 };
273
274 static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)275 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
276 {
277 struct sbuf sb;
278 device_t dev = (device_t)arg1;
279 device_t iommu;
280 int error;
281 uint16_t rid;
282 const char *c;
283
284 sbuf_new_for_sysctl(&sb, NULL, 1024, req);
285 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
286 bus_topo_lock();
287 switch (arg2) {
288 case DEVICE_SYSCTL_DESC:
289 sbuf_cat(&sb, dev->desc ? dev->desc : "");
290 break;
291 case DEVICE_SYSCTL_DRIVER:
292 sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
293 break;
294 case DEVICE_SYSCTL_LOCATION:
295 bus_child_location(dev, &sb);
296 break;
297 case DEVICE_SYSCTL_PNPINFO:
298 bus_child_pnpinfo(dev, &sb);
299 break;
300 case DEVICE_SYSCTL_PARENT:
301 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
302 break;
303 case DEVICE_SYSCTL_IOMMU:
304 iommu = NULL;
305 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU,
306 (void **)&iommu);
307 c = "";
308 if (error == 0 && iommu != NULL) {
309 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu));
310 c = " ";
311 }
312 rid = 0;
313 #ifdef IOMMU
314 iommu_get_requester(dev, &rid);
315 #endif
316 if (rid != 0)
317 sbuf_printf(&sb, "%srid=%#x", c, rid);
318 break;
319 default:
320 error = EINVAL;
321 goto out;
322 }
323 error = sbuf_finish(&sb);
324 out:
325 bus_topo_unlock();
326 sbuf_delete(&sb);
327 return (error);
328 }
329
330 static void
device_sysctl_init(device_t dev)331 device_sysctl_init(device_t dev)
332 {
333 devclass_t dc = dev->devclass;
334 int domain;
335
336 if (dev->sysctl_tree != NULL)
337 return;
338 devclass_sysctl_init(dc);
339 sysctl_ctx_init(&dev->sysctl_ctx);
340 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
341 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
342 dev->nameunit + strlen(dc->name),
343 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
344 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
345 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
346 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
347 "device description");
348 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
349 OID_AUTO, "%driver",
350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
351 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
352 "device driver name");
353 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
354 OID_AUTO, "%location",
355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
356 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
357 "device location relative to parent");
358 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
359 OID_AUTO, "%pnpinfo",
360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
361 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
362 "device identification");
363 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
364 OID_AUTO, "%parent",
365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
366 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
367 "parent device");
368 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
369 OID_AUTO, "%iommu",
370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
371 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A",
372 "iommu unit handling the device requests");
373 if (bus_get_domain(dev, &domain) == 0)
374 SYSCTL_ADD_INT(&dev->sysctl_ctx,
375 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
376 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
377 }
378
379 static void
device_sysctl_update(device_t dev)380 device_sysctl_update(device_t dev)
381 {
382 devclass_t dc = dev->devclass;
383
384 if (dev->sysctl_tree == NULL)
385 return;
386 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
387 }
388
389 static void
device_sysctl_fini(device_t dev)390 device_sysctl_fini(device_t dev)
391 {
392 if (dev->sysctl_tree == NULL)
393 return;
394 sysctl_ctx_free(&dev->sysctl_ctx);
395 dev->sysctl_tree = NULL;
396 }
397
398 static struct device_list bus_data_devices;
399 static int bus_data_generation = 1;
400
401 static kobj_method_t null_methods[] = {
402 KOBJMETHOD_END
403 };
404
405 DEFINE_CLASS(null, null_methods, 0);
406
407 void
bus_topo_assert(void)408 bus_topo_assert(void)
409 {
410
411 GIANT_REQUIRED;
412 }
413
414 struct mtx *
bus_topo_mtx(void)415 bus_topo_mtx(void)
416 {
417
418 return (&Giant);
419 }
420
421 void
bus_topo_lock(void)422 bus_topo_lock(void)
423 {
424
425 mtx_lock(bus_topo_mtx());
426 }
427
428 void
bus_topo_unlock(void)429 bus_topo_unlock(void)
430 {
431
432 mtx_unlock(bus_topo_mtx());
433 }
434
435 /*
436 * Bus pass implementation
437 */
438
439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
440 static int bus_current_pass = BUS_PASS_ROOT;
441
442 /**
443 * @internal
444 * @brief Register the pass level of a new driver attachment
445 *
446 * Register a new driver attachment's pass level. If no driver
447 * attachment with the same pass level has been added, then @p new
448 * will be added to the global passes list.
449 *
450 * @param new the new driver attachment
451 */
452 static void
driver_register_pass(struct driverlink * new)453 driver_register_pass(struct driverlink *new)
454 {
455 struct driverlink *dl;
456
457 /* We only consider pass numbers during boot. */
458 if (bus_current_pass == BUS_PASS_DEFAULT)
459 return;
460
461 /*
462 * Walk the passes list. If we already know about this pass
463 * then there is nothing to do. If we don't, then insert this
464 * driver link into the list.
465 */
466 TAILQ_FOREACH(dl, &passes, passlink) {
467 if (dl->pass < new->pass)
468 continue;
469 if (dl->pass == new->pass)
470 return;
471 TAILQ_INSERT_BEFORE(dl, new, passlink);
472 return;
473 }
474 TAILQ_INSERT_TAIL(&passes, new, passlink);
475 }
476
477 /**
478 * @brief Retrieve the current bus pass
479 *
480 * Retrieves the current bus pass level. Call the BUS_NEW_PASS()
481 * method on the root bus to kick off a new device tree scan for each
482 * new pass level that has at least one driver.
483 */
484 int
bus_get_pass(void)485 bus_get_pass(void)
486 {
487
488 return (bus_current_pass);
489 }
490
491 /**
492 * @brief Raise the current bus pass
493 *
494 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS()
495 * method on the root bus to kick off a new device tree scan for each
496 * new pass level that has at least one driver.
497 */
498 static void
bus_set_pass(int pass)499 bus_set_pass(int pass)
500 {
501 struct driverlink *dl;
502
503 if (bus_current_pass > pass)
504 panic("Attempt to lower bus pass level");
505
506 TAILQ_FOREACH(dl, &passes, passlink) {
507 /* Skip pass values below the current pass level. */
508 if (dl->pass <= bus_current_pass)
509 continue;
510
511 /*
512 * Bail once we hit a driver with a pass level that is
513 * too high.
514 */
515 if (dl->pass > pass)
516 break;
517
518 /*
519 * Raise the pass level to the next level and rescan
520 * the tree.
521 */
522 bus_current_pass = dl->pass;
523 BUS_NEW_PASS(root_bus);
524 }
525
526 /*
527 * If there isn't a driver registered for the requested pass,
528 * then bus_current_pass might still be less than 'pass'. Set
529 * it to 'pass' in that case.
530 */
531 if (bus_current_pass < pass)
532 bus_current_pass = pass;
533 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
534 }
535
536 /*
537 * Devclass implementation
538 */
539
540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
541
542 /**
543 * @internal
544 * @brief Find or create a device class
545 *
546 * If a device class with the name @p classname exists, return it,
547 * otherwise if @p create is non-zero create and return a new device
548 * class.
549 *
550 * If @p parentname is non-NULL, the parent of the devclass is set to
551 * the devclass of that name.
552 *
553 * @param classname the devclass name to find or create
554 * @param parentname the parent devclass name or @c NULL
555 * @param create non-zero to create a devclass
556 */
557 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)558 devclass_find_internal(const char *classname, const char *parentname,
559 int create)
560 {
561 devclass_t dc;
562
563 PDEBUG(("looking for %s", classname));
564 if (!classname)
565 return (NULL);
566
567 TAILQ_FOREACH(dc, &devclasses, link) {
568 if (!strcmp(dc->name, classname))
569 break;
570 }
571
572 if (create && !dc) {
573 PDEBUG(("creating %s", classname));
574 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
575 M_BUS, M_NOWAIT | M_ZERO);
576 if (!dc)
577 return (NULL);
578 dc->parent = NULL;
579 dc->name = (char*) (dc + 1);
580 strcpy(dc->name, classname);
581 TAILQ_INIT(&dc->drivers);
582 TAILQ_INSERT_TAIL(&devclasses, dc, link);
583
584 bus_data_generation_update();
585 }
586
587 /*
588 * If a parent class is specified, then set that as our parent so
589 * that this devclass will support drivers for the parent class as
590 * well. If the parent class has the same name don't do this though
591 * as it creates a cycle that can trigger an infinite loop in
592 * device_probe_child() if a device exists for which there is no
593 * suitable driver.
594 */
595 if (parentname && dc && !dc->parent &&
596 strcmp(classname, parentname) != 0) {
597 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
598 dc->parent->flags |= DC_HAS_CHILDREN;
599 }
600
601 return (dc);
602 }
603
604 /**
605 * @brief Create a device class
606 *
607 * If a device class with the name @p classname exists, return it,
608 * otherwise create and return a new device class.
609 *
610 * @param classname the devclass name to find or create
611 */
612 devclass_t
devclass_create(const char * classname)613 devclass_create(const char *classname)
614 {
615 return (devclass_find_internal(classname, NULL, TRUE));
616 }
617
618 /**
619 * @brief Find a device class
620 *
621 * If a device class with the name @p classname exists, return it,
622 * otherwise return @c NULL.
623 *
624 * @param classname the devclass name to find
625 */
626 devclass_t
devclass_find(const char * classname)627 devclass_find(const char *classname)
628 {
629 return (devclass_find_internal(classname, NULL, FALSE));
630 }
631
632 /**
633 * @brief Register that a device driver has been added to a devclass
634 *
635 * Register that a device driver has been added to a devclass. This
636 * is called by devclass_add_driver to accomplish the recursive
637 * notification of all the children classes of dc, as well as dc.
638 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
639 * the devclass.
640 *
641 * We do a full search here of the devclass list at each iteration
642 * level to save storing children-lists in the devclass structure. If
643 * we ever move beyond a few dozen devices doing this, we may need to
644 * reevaluate...
645 *
646 * @param dc the devclass to edit
647 * @param driver the driver that was just added
648 */
649 static void
devclass_driver_added(devclass_t dc,driver_t * driver)650 devclass_driver_added(devclass_t dc, driver_t *driver)
651 {
652 devclass_t parent;
653 int i;
654
655 /*
656 * Call BUS_DRIVER_ADDED for any existing buses in this class.
657 */
658 for (i = 0; i < dc->maxunit; i++)
659 if (dc->devices[i] && device_is_attached(dc->devices[i]))
660 BUS_DRIVER_ADDED(dc->devices[i], driver);
661
662 /*
663 * Walk through the children classes. Since we only keep a
664 * single parent pointer around, we walk the entire list of
665 * devclasses looking for children. We set the
666 * DC_HAS_CHILDREN flag when a child devclass is created on
667 * the parent, so we only walk the list for those devclasses
668 * that have children.
669 */
670 if (!(dc->flags & DC_HAS_CHILDREN))
671 return;
672 parent = dc;
673 TAILQ_FOREACH(dc, &devclasses, link) {
674 if (dc->parent == parent)
675 devclass_driver_added(dc, driver);
676 }
677 }
678
679 static void
device_handle_nomatch(device_t dev)680 device_handle_nomatch(device_t dev)
681 {
682 BUS_PROBE_NOMATCH(dev->parent, dev);
683 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
684 dev->flags |= DF_DONENOMATCH;
685 }
686
687 /**
688 * @brief Add a device driver to a device class
689 *
690 * Add a device driver to a devclass. This is normally called
691 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
692 * all devices in the devclass will be called to allow them to attempt
693 * to re-probe any unmatched children.
694 *
695 * @param dc the devclass to edit
696 * @param driver the driver to register
697 */
698 int
devclass_add_driver(devclass_t dc,driver_t * driver,int pass,devclass_t * dcp)699 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
700 {
701 driverlink_t dl;
702 devclass_t child_dc;
703 const char *parentname;
704
705 PDEBUG(("%s", DRIVERNAME(driver)));
706
707 /* Don't allow invalid pass values. */
708 if (pass <= BUS_PASS_ROOT)
709 return (EINVAL);
710
711 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
712 if (!dl)
713 return (ENOMEM);
714
715 /*
716 * Compile the driver's methods. Also increase the reference count
717 * so that the class doesn't get freed when the last instance
718 * goes. This means we can safely use static methods and avoids a
719 * double-free in devclass_delete_driver.
720 */
721 kobj_class_compile((kobj_class_t) driver);
722
723 /*
724 * If the driver has any base classes, make the
725 * devclass inherit from the devclass of the driver's
726 * first base class. This will allow the system to
727 * search for drivers in both devclasses for children
728 * of a device using this driver.
729 */
730 if (driver->baseclasses)
731 parentname = driver->baseclasses[0]->name;
732 else
733 parentname = NULL;
734 child_dc = devclass_find_internal(driver->name, parentname, TRUE);
735 if (dcp != NULL)
736 *dcp = child_dc;
737
738 dl->driver = driver;
739 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
740 driver->refs++; /* XXX: kobj_mtx */
741 dl->pass = pass;
742 driver_register_pass(dl);
743
744 if (device_frozen) {
745 dl->flags |= DL_DEFERRED_PROBE;
746 } else {
747 devclass_driver_added(dc, driver);
748 }
749 bus_data_generation_update();
750 return (0);
751 }
752
753 /**
754 * @brief Register that a device driver has been deleted from a devclass
755 *
756 * Register that a device driver has been removed from a devclass.
757 * This is called by devclass_delete_driver to accomplish the
758 * recursive notification of all the children classes of busclass, as
759 * well as busclass. Each layer will attempt to detach the driver
760 * from any devices that are children of the bus's devclass. The function
761 * will return an error if a device fails to detach.
762 *
763 * We do a full search here of the devclass list at each iteration
764 * level to save storing children-lists in the devclass structure. If
765 * we ever move beyond a few dozen devices doing this, we may need to
766 * reevaluate...
767 *
768 * @param busclass the devclass of the parent bus
769 * @param dc the devclass of the driver being deleted
770 * @param driver the driver being deleted
771 */
772 static int
devclass_driver_deleted(devclass_t busclass,devclass_t dc,driver_t * driver)773 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
774 {
775 devclass_t parent;
776 device_t dev;
777 int error, i;
778
779 /*
780 * Disassociate from any devices. We iterate through all the
781 * devices in the devclass of the driver and detach any which are
782 * using the driver and which have a parent in the devclass which
783 * we are deleting from.
784 *
785 * Note that since a driver can be in multiple devclasses, we
786 * should not detach devices which are not children of devices in
787 * the affected devclass.
788 *
789 * If we're frozen, we don't generate NOMATCH events. Mark to
790 * generate later.
791 */
792 for (i = 0; i < dc->maxunit; i++) {
793 if (dc->devices[i]) {
794 dev = dc->devices[i];
795 if (dev->driver == driver && dev->parent &&
796 dev->parent->devclass == busclass) {
797 if ((error = device_detach(dev)) != 0)
798 return (error);
799 if (device_frozen) {
800 dev->flags &= ~DF_DONENOMATCH;
801 dev->flags |= DF_NEEDNOMATCH;
802 } else {
803 device_handle_nomatch(dev);
804 }
805 }
806 }
807 }
808
809 /*
810 * Walk through the children classes. Since we only keep a
811 * single parent pointer around, we walk the entire list of
812 * devclasses looking for children. We set the
813 * DC_HAS_CHILDREN flag when a child devclass is created on
814 * the parent, so we only walk the list for those devclasses
815 * that have children.
816 */
817 if (!(busclass->flags & DC_HAS_CHILDREN))
818 return (0);
819 parent = busclass;
820 TAILQ_FOREACH(busclass, &devclasses, link) {
821 if (busclass->parent == parent) {
822 error = devclass_driver_deleted(busclass, dc, driver);
823 if (error)
824 return (error);
825 }
826 }
827 return (0);
828 }
829
830 /**
831 * @brief Delete a device driver from a device class
832 *
833 * Delete a device driver from a devclass. This is normally called
834 * automatically by DRIVER_MODULE().
835 *
836 * If the driver is currently attached to any devices,
837 * devclass_delete_driver() will first attempt to detach from each
838 * device. If one of the detach calls fails, the driver will not be
839 * deleted.
840 *
841 * @param dc the devclass to edit
842 * @param driver the driver to unregister
843 */
844 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)845 devclass_delete_driver(devclass_t busclass, driver_t *driver)
846 {
847 devclass_t dc = devclass_find(driver->name);
848 driverlink_t dl;
849 int error;
850
851 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852
853 if (!dc)
854 return (0);
855
856 /*
857 * Find the link structure in the bus' list of drivers.
858 */
859 TAILQ_FOREACH(dl, &busclass->drivers, link) {
860 if (dl->driver == driver)
861 break;
862 }
863
864 if (!dl) {
865 PDEBUG(("%s not found in %s list", driver->name,
866 busclass->name));
867 return (ENOENT);
868 }
869
870 error = devclass_driver_deleted(busclass, dc, driver);
871 if (error != 0)
872 return (error);
873
874 TAILQ_REMOVE(&busclass->drivers, dl, link);
875 free(dl, M_BUS);
876
877 /* XXX: kobj_mtx */
878 driver->refs--;
879 if (driver->refs == 0)
880 kobj_class_free((kobj_class_t) driver);
881
882 bus_data_generation_update();
883 return (0);
884 }
885
886 /**
887 * @brief Quiesces a set of device drivers from a device class
888 *
889 * Quiesce a device driver from a devclass. This is normally called
890 * automatically by DRIVER_MODULE().
891 *
892 * If the driver is currently attached to any devices,
893 * devclass_quiesece_driver() will first attempt to quiesce each
894 * device.
895 *
896 * @param dc the devclass to edit
897 * @param driver the driver to unregister
898 */
899 static int
devclass_quiesce_driver(devclass_t busclass,driver_t * driver)900 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
901 {
902 devclass_t dc = devclass_find(driver->name);
903 driverlink_t dl;
904 device_t dev;
905 int i;
906 int error;
907
908 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
909
910 if (!dc)
911 return (0);
912
913 /*
914 * Find the link structure in the bus' list of drivers.
915 */
916 TAILQ_FOREACH(dl, &busclass->drivers, link) {
917 if (dl->driver == driver)
918 break;
919 }
920
921 if (!dl) {
922 PDEBUG(("%s not found in %s list", driver->name,
923 busclass->name));
924 return (ENOENT);
925 }
926
927 /*
928 * Quiesce all devices. We iterate through all the devices in
929 * the devclass of the driver and quiesce any which are using
930 * the driver and which have a parent in the devclass which we
931 * are quiescing.
932 *
933 * Note that since a driver can be in multiple devclasses, we
934 * should not quiesce devices which are not children of
935 * devices in the affected devclass.
936 */
937 for (i = 0; i < dc->maxunit; i++) {
938 if (dc->devices[i]) {
939 dev = dc->devices[i];
940 if (dev->driver == driver && dev->parent &&
941 dev->parent->devclass == busclass) {
942 if ((error = device_quiesce(dev)) != 0)
943 return (error);
944 }
945 }
946 }
947
948 return (0);
949 }
950
951 /**
952 * @internal
953 */
954 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)955 devclass_find_driver_internal(devclass_t dc, const char *classname)
956 {
957 driverlink_t dl;
958
959 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
960
961 TAILQ_FOREACH(dl, &dc->drivers, link) {
962 if (!strcmp(dl->driver->name, classname))
963 return (dl);
964 }
965
966 PDEBUG(("not found"));
967 return (NULL);
968 }
969
970 /**
971 * @brief Return the name of the devclass
972 */
973 const char *
devclass_get_name(devclass_t dc)974 devclass_get_name(devclass_t dc)
975 {
976 return (dc->name);
977 }
978
979 /**
980 * @brief Find a device given a unit number
981 *
982 * @param dc the devclass to search
983 * @param unit the unit number to search for
984 *
985 * @returns the device with the given unit number or @c
986 * NULL if there is no such device
987 */
988 device_t
devclass_get_device(devclass_t dc,int unit)989 devclass_get_device(devclass_t dc, int unit)
990 {
991 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
992 return (NULL);
993 return (dc->devices[unit]);
994 }
995
996 /**
997 * @brief Find the softc field of a device given a unit number
998 *
999 * @param dc the devclass to search
1000 * @param unit the unit number to search for
1001 *
1002 * @returns the softc field of the device with the given
1003 * unit number or @c NULL if there is no such
1004 * device
1005 */
1006 void *
devclass_get_softc(devclass_t dc,int unit)1007 devclass_get_softc(devclass_t dc, int unit)
1008 {
1009 device_t dev;
1010
1011 dev = devclass_get_device(dc, unit);
1012 if (!dev)
1013 return (NULL);
1014
1015 return (device_get_softc(dev));
1016 }
1017
1018 /**
1019 * @brief Get a list of devices in the devclass
1020 *
1021 * An array containing a list of all the devices in the given devclass
1022 * is allocated and returned in @p *devlistp. The number of devices
1023 * in the array is returned in @p *devcountp. The caller should free
1024 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1025 *
1026 * @param dc the devclass to examine
1027 * @param devlistp points at location for array pointer return
1028 * value
1029 * @param devcountp points at location for array size return value
1030 *
1031 * @retval 0 success
1032 * @retval ENOMEM the array allocation failed
1033 */
1034 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)1035 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1036 {
1037 int count, i;
1038 device_t *list;
1039
1040 count = devclass_get_count(dc);
1041 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1042 if (!list)
1043 return (ENOMEM);
1044
1045 count = 0;
1046 for (i = 0; i < dc->maxunit; i++) {
1047 if (dc->devices[i]) {
1048 list[count] = dc->devices[i];
1049 count++;
1050 }
1051 }
1052
1053 *devlistp = list;
1054 *devcountp = count;
1055
1056 return (0);
1057 }
1058
1059 /**
1060 * @brief Get a list of drivers in the devclass
1061 *
1062 * An array containing a list of pointers to all the drivers in the
1063 * given devclass is allocated and returned in @p *listp. The number
1064 * of drivers in the array is returned in @p *countp. The caller should
1065 * free the array using @c free(p, M_TEMP).
1066 *
1067 * @param dc the devclass to examine
1068 * @param listp gives location for array pointer return value
1069 * @param countp gives location for number of array elements
1070 * return value
1071 *
1072 * @retval 0 success
1073 * @retval ENOMEM the array allocation failed
1074 */
1075 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)1076 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1077 {
1078 driverlink_t dl;
1079 driver_t **list;
1080 int count;
1081
1082 count = 0;
1083 TAILQ_FOREACH(dl, &dc->drivers, link)
1084 count++;
1085 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1086 if (list == NULL)
1087 return (ENOMEM);
1088
1089 count = 0;
1090 TAILQ_FOREACH(dl, &dc->drivers, link) {
1091 list[count] = dl->driver;
1092 count++;
1093 }
1094 *listp = list;
1095 *countp = count;
1096
1097 return (0);
1098 }
1099
1100 /**
1101 * @brief Get the number of devices in a devclass
1102 *
1103 * @param dc the devclass to examine
1104 */
1105 int
devclass_get_count(devclass_t dc)1106 devclass_get_count(devclass_t dc)
1107 {
1108 int count, i;
1109
1110 count = 0;
1111 for (i = 0; i < dc->maxunit; i++)
1112 if (dc->devices[i])
1113 count++;
1114 return (count);
1115 }
1116
1117 /**
1118 * @brief Get the maximum unit number used in a devclass
1119 *
1120 * Note that this is one greater than the highest currently-allocated unit. If
1121 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1122 * been allocated yet.
1123 *
1124 * @param dc the devclass to examine
1125 */
1126 int
devclass_get_maxunit(devclass_t dc)1127 devclass_get_maxunit(devclass_t dc)
1128 {
1129 if (dc == NULL)
1130 return (-1);
1131 return (dc->maxunit);
1132 }
1133
1134 /**
1135 * @brief Find a free unit number in a devclass
1136 *
1137 * This function searches for the first unused unit number greater
1138 * that or equal to @p unit. Note: This can return INT_MAX which
1139 * may be rejected elsewhere.
1140 *
1141 * @param dc the devclass to examine
1142 * @param unit the first unit number to check
1143 */
1144 int
devclass_find_free_unit(devclass_t dc,int unit)1145 devclass_find_free_unit(devclass_t dc, int unit)
1146 {
1147 if (dc == NULL)
1148 return (unit);
1149 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1150 unit++;
1151 return (unit);
1152 }
1153
1154 /**
1155 * @brief Set the parent of a devclass
1156 *
1157 * The parent class is normally initialised automatically by
1158 * DRIVER_MODULE().
1159 *
1160 * @param dc the devclass to edit
1161 * @param pdc the new parent devclass
1162 */
1163 void
devclass_set_parent(devclass_t dc,devclass_t pdc)1164 devclass_set_parent(devclass_t dc, devclass_t pdc)
1165 {
1166 dc->parent = pdc;
1167 }
1168
1169 /**
1170 * @brief Get the parent of a devclass
1171 *
1172 * @param dc the devclass to examine
1173 */
1174 devclass_t
devclass_get_parent(devclass_t dc)1175 devclass_get_parent(devclass_t dc)
1176 {
1177 return (dc->parent);
1178 }
1179
1180 struct sysctl_ctx_list *
devclass_get_sysctl_ctx(devclass_t dc)1181 devclass_get_sysctl_ctx(devclass_t dc)
1182 {
1183 return (&dc->sysctl_ctx);
1184 }
1185
1186 struct sysctl_oid *
devclass_get_sysctl_tree(devclass_t dc)1187 devclass_get_sysctl_tree(devclass_t dc)
1188 {
1189 return (dc->sysctl_tree);
1190 }
1191
1192 /**
1193 * @internal
1194 * @brief Allocate a unit number
1195 *
1196 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1197 * will do). The allocated unit number is returned in @p *unitp.
1198 *
1199 * @param dc the devclass to allocate from
1200 * @param unitp points at the location for the allocated unit
1201 * number
1202 *
1203 * @retval 0 success
1204 * @retval EEXIST the requested unit number is already allocated
1205 * @retval ENOMEM memory allocation failure
1206 * @retval EINVAL unit is negative or we've run out of units
1207 */
1208 static int
devclass_alloc_unit(devclass_t dc,device_t dev,int * unitp)1209 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1210 {
1211 const char *s;
1212 int unit = *unitp;
1213
1214 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1215
1216 /* Ask the parent bus if it wants to wire this device. */
1217 if (unit == DEVICE_UNIT_ANY)
1218 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1219 &unit);
1220
1221 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */
1222 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX)
1223 return (EINVAL);
1224
1225 /* If we were given a wired unit number, check for existing device */
1226 if (unit != DEVICE_UNIT_ANY) {
1227 if (unit < dc->maxunit && dc->devices[unit] != NULL) {
1228 if (bootverbose)
1229 printf("%s: %s%d already exists; skipping it\n",
1230 dc->name, dc->name, *unitp);
1231 return (EEXIST);
1232 }
1233 } else {
1234 /* Unwired device, find the next available slot for it */
1235 unit = 0;
1236 for (unit = 0; unit < INT_MAX; unit++) {
1237 /* If this device slot is already in use, skip it. */
1238 if (unit < dc->maxunit && dc->devices[unit] != NULL)
1239 continue;
1240
1241 /* If there is an "at" hint for a unit then skip it. */
1242 if (resource_string_value(dc->name, unit, "at", &s) ==
1243 0)
1244 continue;
1245
1246 break;
1247 }
1248 }
1249
1250 /*
1251 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as
1252 * too large. We constrain maxunit below to be <= INT_MAX. This means we
1253 * can treat unit and maxunit as normal integers with normal math
1254 * everywhere and we only have to flag INT_MAX as invalid.
1255 */
1256 if (unit == INT_MAX)
1257 return (EINVAL);
1258
1259 /*
1260 * We've selected a unit beyond the length of the table, so let's extend
1261 * the table to make room for all units up to and including this one.
1262 */
1263 if (unit >= dc->maxunit) {
1264 int newsize;
1265
1266 newsize = unit + 1;
1267 dc->devices = reallocf(dc->devices,
1268 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK);
1269 memset(dc->devices + dc->maxunit, 0,
1270 sizeof(device_t) * (newsize - dc->maxunit));
1271 dc->maxunit = newsize;
1272 }
1273 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1274
1275 *unitp = unit;
1276 return (0);
1277 }
1278
1279 /**
1280 * @internal
1281 * @brief Add a device to a devclass
1282 *
1283 * A unit number is allocated for the device (using the device's
1284 * preferred unit number if any) and the device is registered in the
1285 * devclass. This allows the device to be looked up by its unit
1286 * number, e.g. by decoding a dev_t minor number.
1287 *
1288 * @param dc the devclass to add to
1289 * @param dev the device to add
1290 *
1291 * @retval 0 success
1292 * @retval EEXIST the requested unit number is already allocated
1293 * @retval ENOMEM memory allocation failure
1294 * @retval EINVAL Unit number invalid or too many units
1295 */
1296 static int
devclass_add_device(devclass_t dc,device_t dev)1297 devclass_add_device(devclass_t dc, device_t dev)
1298 {
1299 int buflen, error;
1300
1301 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1302
1303 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1304 if (buflen < 0)
1305 return (ENOMEM);
1306 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1307 if (!dev->nameunit)
1308 return (ENOMEM);
1309
1310 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1311 free(dev->nameunit, M_BUS);
1312 dev->nameunit = NULL;
1313 return (error);
1314 }
1315 dc->devices[dev->unit] = dev;
1316 dev->devclass = dc;
1317 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1318
1319 return (0);
1320 }
1321
1322 /**
1323 * @internal
1324 * @brief Delete a device from a devclass
1325 *
1326 * The device is removed from the devclass's device list and its unit
1327 * number is freed.
1328
1329 * @param dc the devclass to delete from
1330 * @param dev the device to delete
1331 *
1332 * @retval 0 success
1333 */
1334 static int
devclass_delete_device(devclass_t dc,device_t dev)1335 devclass_delete_device(devclass_t dc, device_t dev)
1336 {
1337 if (!dc || !dev)
1338 return (0);
1339
1340 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1341
1342 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1343 panic("devclass_delete_device: inconsistent device class");
1344 dc->devices[dev->unit] = NULL;
1345 if (dev->flags & DF_WILDCARD)
1346 dev->unit = DEVICE_UNIT_ANY;
1347 dev->devclass = NULL;
1348 free(dev->nameunit, M_BUS);
1349 dev->nameunit = NULL;
1350
1351 return (0);
1352 }
1353
1354 /**
1355 * @internal
1356 * @brief Make a new device and add it as a child of @p parent
1357 *
1358 * @param parent the parent of the new device
1359 * @param name the devclass name of the new device or @c NULL
1360 * to leave the devclass unspecified
1361 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY
1362 * to leave the unit number unspecified
1363 *
1364 * @returns the new device
1365 */
1366 static device_t
make_device(device_t parent,const char * name,int unit)1367 make_device(device_t parent, const char *name, int unit)
1368 {
1369 device_t dev;
1370 devclass_t dc;
1371
1372 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1373
1374 if (name) {
1375 dc = devclass_find_internal(name, NULL, TRUE);
1376 if (!dc) {
1377 printf("make_device: can't find device class %s\n",
1378 name);
1379 return (NULL);
1380 }
1381 } else {
1382 dc = NULL;
1383 }
1384
1385 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1386 if (!dev)
1387 return (NULL);
1388
1389 dev->parent = parent;
1390 TAILQ_INIT(&dev->children);
1391 kobj_init((kobj_t) dev, &null_class);
1392 dev->driver = NULL;
1393 dev->devclass = NULL;
1394 dev->unit = unit;
1395 dev->nameunit = NULL;
1396 dev->desc = NULL;
1397 dev->busy = 0;
1398 dev->devflags = 0;
1399 dev->flags = DF_ENABLED;
1400 dev->order = 0;
1401 if (unit == DEVICE_UNIT_ANY)
1402 dev->flags |= DF_WILDCARD;
1403 if (name) {
1404 dev->flags |= DF_FIXEDCLASS;
1405 if (devclass_add_device(dc, dev)) {
1406 kobj_delete((kobj_t) dev, M_BUS);
1407 return (NULL);
1408 }
1409 }
1410 if (parent != NULL && device_has_quiet_children(parent))
1411 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1412 dev->ivars = NULL;
1413 dev->softc = NULL;
1414 LIST_INIT(&dev->props);
1415
1416 dev->state = DS_NOTPRESENT;
1417
1418 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1419 bus_data_generation_update();
1420
1421 return (dev);
1422 }
1423
1424 /**
1425 * @internal
1426 * @brief Print a description of a device.
1427 */
1428 static int
device_print_child(device_t dev,device_t child)1429 device_print_child(device_t dev, device_t child)
1430 {
1431 int retval = 0;
1432
1433 if (device_is_alive(child))
1434 retval += BUS_PRINT_CHILD(dev, child);
1435 else
1436 retval += device_printf(child, " not found\n");
1437
1438 return (retval);
1439 }
1440
1441 /**
1442 * @brief Create a new device
1443 *
1444 * This creates a new device and adds it as a child of an existing
1445 * parent device. The new device will be added after the last existing
1446 * child with order zero.
1447 *
1448 * @param dev the device which will be the parent of the
1449 * new child device
1450 * @param name devclass name for new device or @c NULL if not
1451 * specified
1452 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1453 * specified
1454 *
1455 * @returns the new device
1456 */
1457 device_t
device_add_child(device_t dev,const char * name,int unit)1458 device_add_child(device_t dev, const char *name, int unit)
1459 {
1460 return (device_add_child_ordered(dev, 0, name, unit));
1461 }
1462
1463 /**
1464 * @brief Create a new device
1465 *
1466 * This creates a new device and adds it as a child of an existing
1467 * parent device. The new device will be added after the last existing
1468 * child with the same order.
1469 *
1470 * @param dev the device which will be the parent of the
1471 * new child device
1472 * @param order a value which is used to partially sort the
1473 * children of @p dev - devices created using
1474 * lower values of @p order appear first in @p
1475 * dev's list of children
1476 * @param name devclass name for new device or @c NULL if not
1477 * specified
1478 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1479 * specified
1480 *
1481 * @returns the new device
1482 */
1483 device_t
device_add_child_ordered(device_t dev,u_int order,const char * name,int unit)1484 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1485 {
1486 device_t child;
1487 device_t place;
1488
1489 PDEBUG(("%s at %s with order %u as unit %d",
1490 name, DEVICENAME(dev), order, unit));
1491 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1492 ("child device with wildcard name and specific unit number"));
1493
1494 child = make_device(dev, name, unit);
1495 if (child == NULL)
1496 return (child);
1497 child->order = order;
1498
1499 TAILQ_FOREACH(place, &dev->children, link) {
1500 if (place->order > order)
1501 break;
1502 }
1503
1504 if (place) {
1505 /*
1506 * The device 'place' is the first device whose order is
1507 * greater than the new child.
1508 */
1509 TAILQ_INSERT_BEFORE(place, child, link);
1510 } else {
1511 /*
1512 * The new child's order is greater or equal to the order of
1513 * any existing device. Add the child to the tail of the list.
1514 */
1515 TAILQ_INSERT_TAIL(&dev->children, child, link);
1516 }
1517
1518 bus_data_generation_update();
1519 return (child);
1520 }
1521
1522 /**
1523 * @brief Delete a device
1524 *
1525 * This function deletes a device along with all of its children. If
1526 * the device currently has a driver attached to it, the device is
1527 * detached first using device_detach().
1528 *
1529 * @param dev the parent device
1530 * @param child the device to delete
1531 *
1532 * @retval 0 success
1533 * @retval non-zero a unit error code describing the error
1534 */
1535 int
device_delete_child(device_t dev,device_t child)1536 device_delete_child(device_t dev, device_t child)
1537 {
1538 int error;
1539 device_t grandchild;
1540
1541 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1542
1543 /*
1544 * Detach child. Ideally this cleans up any grandchild
1545 * devices.
1546 */
1547 if ((error = device_detach(child)) != 0)
1548 return (error);
1549
1550 /* Delete any grandchildren left after detach. */
1551 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1552 error = device_delete_child(child, grandchild);
1553 if (error)
1554 return (error);
1555 }
1556
1557 device_destroy_props(dev);
1558 if (child->devclass)
1559 devclass_delete_device(child->devclass, child);
1560 if (child->parent)
1561 BUS_CHILD_DELETED(dev, child);
1562 TAILQ_REMOVE(&dev->children, child, link);
1563 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1564 kobj_delete((kobj_t) child, M_BUS);
1565
1566 bus_data_generation_update();
1567 return (0);
1568 }
1569
1570 /**
1571 * @brief Delete all children devices of the given device, if any.
1572 *
1573 * This function deletes all children devices of the given device, if
1574 * any, using the device_delete_child() function for each device it
1575 * finds. If a child device cannot be deleted, this function will
1576 * return an error code.
1577 *
1578 * @param dev the parent device
1579 *
1580 * @retval 0 success
1581 * @retval non-zero a device would not detach
1582 */
1583 int
device_delete_children(device_t dev)1584 device_delete_children(device_t dev)
1585 {
1586 device_t child;
1587 int error;
1588
1589 PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1590
1591 error = 0;
1592
1593 while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1594 error = device_delete_child(dev, child);
1595 if (error) {
1596 PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1597 break;
1598 }
1599 }
1600 return (error);
1601 }
1602
1603 /**
1604 * @brief Find a device given a unit number
1605 *
1606 * This is similar to devclass_get_devices() but only searches for
1607 * devices which have @p dev as a parent.
1608 *
1609 * @param dev the parent device to search
1610 * @param unit the unit number to search for. If the unit is
1611 * @c DEVICE_UNIT_ANY, return the first child of @p dev
1612 * which has name @p classname (that is, the one with the
1613 * lowest unit.)
1614 *
1615 * @returns the device with the given unit number or @c
1616 * NULL if there is no such device
1617 */
1618 device_t
device_find_child(device_t dev,const char * classname,int unit)1619 device_find_child(device_t dev, const char *classname, int unit)
1620 {
1621 devclass_t dc;
1622 device_t child;
1623
1624 dc = devclass_find(classname);
1625 if (!dc)
1626 return (NULL);
1627
1628 if (unit != DEVICE_UNIT_ANY) {
1629 child = devclass_get_device(dc, unit);
1630 if (child && child->parent == dev)
1631 return (child);
1632 } else {
1633 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1634 child = devclass_get_device(dc, unit);
1635 if (child && child->parent == dev)
1636 return (child);
1637 }
1638 }
1639 return (NULL);
1640 }
1641
1642 /**
1643 * @internal
1644 */
1645 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)1646 first_matching_driver(devclass_t dc, device_t dev)
1647 {
1648 if (dev->devclass)
1649 return (devclass_find_driver_internal(dc, dev->devclass->name));
1650 return (TAILQ_FIRST(&dc->drivers));
1651 }
1652
1653 /**
1654 * @internal
1655 */
1656 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)1657 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1658 {
1659 if (dev->devclass) {
1660 driverlink_t dl;
1661 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1662 if (!strcmp(dev->devclass->name, dl->driver->name))
1663 return (dl);
1664 return (NULL);
1665 }
1666 return (TAILQ_NEXT(last, link));
1667 }
1668
1669 /**
1670 * @internal
1671 */
1672 int
device_probe_child(device_t dev,device_t child)1673 device_probe_child(device_t dev, device_t child)
1674 {
1675 devclass_t dc;
1676 driverlink_t best = NULL;
1677 driverlink_t dl;
1678 int result, pri = 0;
1679 /* We should preserve the devclass (or lack of) set by the bus. */
1680 int hasclass = (child->devclass != NULL);
1681
1682 bus_topo_assert();
1683
1684 dc = dev->devclass;
1685 if (!dc)
1686 panic("device_probe_child: parent device has no devclass");
1687
1688 /*
1689 * If the state is already probed, then return.
1690 */
1691 if (child->state == DS_ALIVE)
1692 return (0);
1693
1694 for (; dc; dc = dc->parent) {
1695 for (dl = first_matching_driver(dc, child);
1696 dl;
1697 dl = next_matching_driver(dc, child, dl)) {
1698 /* If this driver's pass is too high, then ignore it. */
1699 if (dl->pass > bus_current_pass)
1700 continue;
1701
1702 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1703 result = device_set_driver(child, dl->driver);
1704 if (result == ENOMEM)
1705 return (result);
1706 else if (result != 0)
1707 continue;
1708 if (!hasclass) {
1709 if (device_set_devclass(child,
1710 dl->driver->name) != 0) {
1711 char const * devname =
1712 device_get_name(child);
1713 if (devname == NULL)
1714 devname = "(unknown)";
1715 printf("driver bug: Unable to set "
1716 "devclass (class: %s "
1717 "devname: %s)\n",
1718 dl->driver->name,
1719 devname);
1720 (void)device_set_driver(child, NULL);
1721 continue;
1722 }
1723 }
1724
1725 /* Fetch any flags for the device before probing. */
1726 resource_int_value(dl->driver->name, child->unit,
1727 "flags", &child->devflags);
1728
1729 result = DEVICE_PROBE(child);
1730
1731 /*
1732 * If probe returns 0, this is the driver that wins this
1733 * device.
1734 */
1735 if (result == 0) {
1736 best = dl;
1737 pri = 0;
1738 goto exact_match; /* C doesn't have break 2 */
1739 }
1740
1741 /* Reset flags and devclass before the next probe. */
1742 child->devflags = 0;
1743 if (!hasclass)
1744 (void)device_set_devclass(child, NULL);
1745
1746 /*
1747 * Reset DF_QUIET in case this driver doesn't
1748 * end up as the best driver.
1749 */
1750 device_verbose(child);
1751
1752 /*
1753 * Probes that return BUS_PROBE_NOWILDCARD or lower
1754 * only match on devices whose driver was explicitly
1755 * specified.
1756 */
1757 if (result <= BUS_PROBE_NOWILDCARD &&
1758 !(child->flags & DF_FIXEDCLASS)) {
1759 result = ENXIO;
1760 }
1761
1762 /*
1763 * The driver returned an error so it
1764 * certainly doesn't match.
1765 */
1766 if (result > 0) {
1767 (void)device_set_driver(child, NULL);
1768 continue;
1769 }
1770
1771 /*
1772 * A priority lower than SUCCESS, remember the
1773 * best matching driver. Initialise the value
1774 * of pri for the first match.
1775 */
1776 if (best == NULL || result > pri) {
1777 best = dl;
1778 pri = result;
1779 continue;
1780 }
1781 }
1782 }
1783
1784 if (best == NULL)
1785 return (ENXIO);
1786
1787 /*
1788 * If we found a driver, change state and initialise the devclass.
1789 * Set the winning driver, devclass, and flags.
1790 */
1791 result = device_set_driver(child, best->driver);
1792 if (result != 0)
1793 return (result);
1794 if (!child->devclass) {
1795 result = device_set_devclass(child, best->driver->name);
1796 if (result != 0) {
1797 (void)device_set_driver(child, NULL);
1798 return (result);
1799 }
1800 }
1801 resource_int_value(best->driver->name, child->unit,
1802 "flags", &child->devflags);
1803
1804 /*
1805 * A bit bogus. Call the probe method again to make sure that we have
1806 * the right description for the device.
1807 */
1808 result = DEVICE_PROBE(child);
1809 if (result > 0) {
1810 if (!hasclass)
1811 (void)device_set_devclass(child, NULL);
1812 (void)device_set_driver(child, NULL);
1813 return (result);
1814 }
1815
1816 exact_match:
1817 child->state = DS_ALIVE;
1818 bus_data_generation_update();
1819 return (0);
1820 }
1821
1822 /**
1823 * @brief Return the parent of a device
1824 */
1825 device_t
device_get_parent(device_t dev)1826 device_get_parent(device_t dev)
1827 {
1828 return (dev->parent);
1829 }
1830
1831 /**
1832 * @brief Get a list of children of a device
1833 *
1834 * An array containing a list of all the children of the given device
1835 * is allocated and returned in @p *devlistp. The number of devices
1836 * in the array is returned in @p *devcountp. The caller should free
1837 * the array using @c free(p, M_TEMP).
1838 *
1839 * @param dev the device to examine
1840 * @param devlistp points at location for array pointer return
1841 * value
1842 * @param devcountp points at location for array size return value
1843 *
1844 * @retval 0 success
1845 * @retval ENOMEM the array allocation failed
1846 */
1847 int
device_get_children(device_t dev,device_t ** devlistp,int * devcountp)1848 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1849 {
1850 int count;
1851 device_t child;
1852 device_t *list;
1853
1854 count = 0;
1855 TAILQ_FOREACH(child, &dev->children, link) {
1856 count++;
1857 }
1858 if (count == 0) {
1859 *devlistp = NULL;
1860 *devcountp = 0;
1861 return (0);
1862 }
1863
1864 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1865 if (!list)
1866 return (ENOMEM);
1867
1868 count = 0;
1869 TAILQ_FOREACH(child, &dev->children, link) {
1870 list[count] = child;
1871 count++;
1872 }
1873
1874 *devlistp = list;
1875 *devcountp = count;
1876
1877 return (0);
1878 }
1879
1880 /**
1881 * @brief Return the current driver for the device or @c NULL if there
1882 * is no driver currently attached
1883 */
1884 driver_t *
device_get_driver(device_t dev)1885 device_get_driver(device_t dev)
1886 {
1887 return (dev->driver);
1888 }
1889
1890 /**
1891 * @brief Return the current devclass for the device or @c NULL if
1892 * there is none.
1893 */
1894 devclass_t
device_get_devclass(device_t dev)1895 device_get_devclass(device_t dev)
1896 {
1897 return (dev->devclass);
1898 }
1899
1900 /**
1901 * @brief Return the name of the device's devclass or @c NULL if there
1902 * is none.
1903 */
1904 const char *
device_get_name(device_t dev)1905 device_get_name(device_t dev)
1906 {
1907 if (dev != NULL && dev->devclass)
1908 return (devclass_get_name(dev->devclass));
1909 return (NULL);
1910 }
1911
1912 /**
1913 * @brief Return a string containing the device's devclass name
1914 * followed by an ascii representation of the device's unit number
1915 * (e.g. @c "foo2").
1916 */
1917 const char *
device_get_nameunit(device_t dev)1918 device_get_nameunit(device_t dev)
1919 {
1920 return (dev->nameunit);
1921 }
1922
1923 /**
1924 * @brief Return the device's unit number.
1925 */
1926 int
device_get_unit(device_t dev)1927 device_get_unit(device_t dev)
1928 {
1929 return (dev->unit);
1930 }
1931
1932 /**
1933 * @brief Return the device's description string
1934 */
1935 const char *
device_get_desc(device_t dev)1936 device_get_desc(device_t dev)
1937 {
1938 return (dev->desc);
1939 }
1940
1941 /**
1942 * @brief Return the device's flags
1943 */
1944 uint32_t
device_get_flags(device_t dev)1945 device_get_flags(device_t dev)
1946 {
1947 return (dev->devflags);
1948 }
1949
1950 struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)1951 device_get_sysctl_ctx(device_t dev)
1952 {
1953 return (&dev->sysctl_ctx);
1954 }
1955
1956 struct sysctl_oid *
device_get_sysctl_tree(device_t dev)1957 device_get_sysctl_tree(device_t dev)
1958 {
1959 return (dev->sysctl_tree);
1960 }
1961
1962 /**
1963 * @brief Print the name of the device followed by a colon and a space
1964 *
1965 * @returns the number of characters printed
1966 */
1967 int
device_print_prettyname(device_t dev)1968 device_print_prettyname(device_t dev)
1969 {
1970 const char *name = device_get_name(dev);
1971
1972 if (name == NULL)
1973 return (printf("unknown: "));
1974 return (printf("%s%d: ", name, device_get_unit(dev)));
1975 }
1976
1977 /**
1978 * @brief Print the name of the device followed by a colon, a space
1979 * and the result of calling vprintf() with the value of @p fmt and
1980 * the following arguments.
1981 *
1982 * @returns the number of characters printed
1983 */
1984 int
device_printf(device_t dev,const char * fmt,...)1985 device_printf(device_t dev, const char * fmt, ...)
1986 {
1987 char buf[128];
1988 struct sbuf sb;
1989 const char *name;
1990 va_list ap;
1991 size_t retval;
1992
1993 retval = 0;
1994
1995 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1996 sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1997
1998 name = device_get_name(dev);
1999
2000 if (name == NULL)
2001 sbuf_cat(&sb, "unknown: ");
2002 else
2003 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2004
2005 va_start(ap, fmt);
2006 sbuf_vprintf(&sb, fmt, ap);
2007 va_end(ap);
2008
2009 sbuf_finish(&sb);
2010 sbuf_delete(&sb);
2011
2012 return (retval);
2013 }
2014
2015 /**
2016 * @brief Print the name of the device followed by a colon, a space
2017 * and the result of calling log() with the value of @p fmt and
2018 * the following arguments.
2019 *
2020 * @returns the number of characters printed
2021 */
2022 int
device_log(device_t dev,int pri,const char * fmt,...)2023 device_log(device_t dev, int pri, const char * fmt, ...)
2024 {
2025 char buf[128];
2026 struct sbuf sb;
2027 const char *name;
2028 va_list ap;
2029 size_t retval;
2030
2031 retval = 0;
2032
2033 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2034
2035 name = device_get_name(dev);
2036
2037 if (name == NULL)
2038 sbuf_cat(&sb, "unknown: ");
2039 else
2040 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2041
2042 va_start(ap, fmt);
2043 sbuf_vprintf(&sb, fmt, ap);
2044 va_end(ap);
2045
2046 sbuf_finish(&sb);
2047
2048 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2049 retval = sbuf_len(&sb);
2050
2051 sbuf_delete(&sb);
2052
2053 return (retval);
2054 }
2055
2056 /**
2057 * @internal
2058 */
2059 static void
device_set_desc_internal(device_t dev,const char * desc,bool allocated)2060 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2061 {
2062 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2063 free(dev->desc, M_BUS);
2064 dev->flags &= ~DF_DESCMALLOCED;
2065 dev->desc = NULL;
2066 }
2067
2068 if (allocated && desc)
2069 dev->flags |= DF_DESCMALLOCED;
2070 dev->desc = __DECONST(char *, desc);
2071
2072 bus_data_generation_update();
2073 }
2074
2075 /**
2076 * @brief Set the device's description
2077 *
2078 * The value of @c desc should be a string constant that will not
2079 * change (at least until the description is changed in a subsequent
2080 * call to device_set_desc() or device_set_desc_copy()).
2081 */
2082 void
device_set_desc(device_t dev,const char * desc)2083 device_set_desc(device_t dev, const char *desc)
2084 {
2085 device_set_desc_internal(dev, desc, false);
2086 }
2087
2088 /**
2089 * @brief Set the device's description
2090 *
2091 * A printf-like version of device_set_desc().
2092 */
2093 void
device_set_descf(device_t dev,const char * fmt,...)2094 device_set_descf(device_t dev, const char *fmt, ...)
2095 {
2096 va_list ap;
2097 char *buf = NULL;
2098
2099 va_start(ap, fmt);
2100 vasprintf(&buf, M_BUS, fmt, ap);
2101 va_end(ap);
2102 device_set_desc_internal(dev, buf, true);
2103 }
2104
2105 /**
2106 * @brief Set the device's description
2107 *
2108 * The string pointed to by @c desc is copied. Use this function if
2109 * the device description is generated, (e.g. with sprintf()).
2110 */
2111 void
device_set_desc_copy(device_t dev,const char * desc)2112 device_set_desc_copy(device_t dev, const char *desc)
2113 {
2114 char *buf;
2115
2116 buf = strdup_flags(desc, M_BUS, M_NOWAIT);
2117 device_set_desc_internal(dev, buf, true);
2118 }
2119
2120 /**
2121 * @brief Set the device's flags
2122 */
2123 void
device_set_flags(device_t dev,uint32_t flags)2124 device_set_flags(device_t dev, uint32_t flags)
2125 {
2126 dev->devflags = flags;
2127 }
2128
2129 /**
2130 * @brief Return the device's softc field
2131 *
2132 * The softc is allocated and zeroed when a driver is attached, based
2133 * on the size field of the driver.
2134 */
2135 void *
device_get_softc(device_t dev)2136 device_get_softc(device_t dev)
2137 {
2138 return (dev->softc);
2139 }
2140
2141 /**
2142 * @brief Set the device's softc field
2143 *
2144 * Most drivers do not need to use this since the softc is allocated
2145 * automatically when the driver is attached.
2146 */
2147 void
device_set_softc(device_t dev,void * softc)2148 device_set_softc(device_t dev, void *softc)
2149 {
2150 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2151 free(dev->softc, M_BUS_SC);
2152 dev->softc = softc;
2153 if (dev->softc)
2154 dev->flags |= DF_EXTERNALSOFTC;
2155 else
2156 dev->flags &= ~DF_EXTERNALSOFTC;
2157 }
2158
2159 /**
2160 * @brief Free claimed softc
2161 *
2162 * Most drivers do not need to use this since the softc is freed
2163 * automatically when the driver is detached.
2164 */
2165 void
device_free_softc(void * softc)2166 device_free_softc(void *softc)
2167 {
2168 free(softc, M_BUS_SC);
2169 }
2170
2171 /**
2172 * @brief Claim softc
2173 *
2174 * This function can be used to let the driver free the automatically
2175 * allocated softc using "device_free_softc()". This function is
2176 * useful when the driver is refcounting the softc and the softc
2177 * cannot be freed when the "device_detach" method is called.
2178 */
2179 void
device_claim_softc(device_t dev)2180 device_claim_softc(device_t dev)
2181 {
2182 if (dev->softc)
2183 dev->flags |= DF_EXTERNALSOFTC;
2184 else
2185 dev->flags &= ~DF_EXTERNALSOFTC;
2186 }
2187
2188 /**
2189 * @brief Get the device's ivars field
2190 *
2191 * The ivars field is used by the parent device to store per-device
2192 * state (e.g. the physical location of the device or a list of
2193 * resources).
2194 */
2195 void *
device_get_ivars(device_t dev)2196 device_get_ivars(device_t dev)
2197 {
2198 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2199 return (dev->ivars);
2200 }
2201
2202 /**
2203 * @brief Set the device's ivars field
2204 */
2205 void
device_set_ivars(device_t dev,void * ivars)2206 device_set_ivars(device_t dev, void * ivars)
2207 {
2208 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2209 dev->ivars = ivars;
2210 }
2211
2212 /**
2213 * @brief Return the device's state
2214 */
2215 device_state_t
device_get_state(device_t dev)2216 device_get_state(device_t dev)
2217 {
2218 return (dev->state);
2219 }
2220
2221 /**
2222 * @brief Set the DF_ENABLED flag for the device
2223 */
2224 void
device_enable(device_t dev)2225 device_enable(device_t dev)
2226 {
2227 dev->flags |= DF_ENABLED;
2228 }
2229
2230 /**
2231 * @brief Clear the DF_ENABLED flag for the device
2232 */
2233 void
device_disable(device_t dev)2234 device_disable(device_t dev)
2235 {
2236 dev->flags &= ~DF_ENABLED;
2237 }
2238
2239 /**
2240 * @brief Increment the busy counter for the device
2241 */
2242 void
device_busy(device_t dev)2243 device_busy(device_t dev)
2244 {
2245
2246 /*
2247 * Mark the device as busy, recursively up the tree if this busy count
2248 * goes 0->1.
2249 */
2250 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2251 device_busy(dev->parent);
2252 }
2253
2254 /**
2255 * @brief Decrement the busy counter for the device
2256 */
2257 void
device_unbusy(device_t dev)2258 device_unbusy(device_t dev)
2259 {
2260
2261 /*
2262 * Mark the device as unbsy, recursively if this is the last busy count.
2263 */
2264 if (refcount_release(&dev->busy) && dev->parent != NULL)
2265 device_unbusy(dev->parent);
2266 }
2267
2268 /**
2269 * @brief Set the DF_QUIET flag for the device
2270 */
2271 void
device_quiet(device_t dev)2272 device_quiet(device_t dev)
2273 {
2274 dev->flags |= DF_QUIET;
2275 }
2276
2277 /**
2278 * @brief Set the DF_QUIET_CHILDREN flag for the device
2279 */
2280 void
device_quiet_children(device_t dev)2281 device_quiet_children(device_t dev)
2282 {
2283 dev->flags |= DF_QUIET_CHILDREN;
2284 }
2285
2286 /**
2287 * @brief Clear the DF_QUIET flag for the device
2288 */
2289 void
device_verbose(device_t dev)2290 device_verbose(device_t dev)
2291 {
2292 dev->flags &= ~DF_QUIET;
2293 }
2294
2295 ssize_t
device_get_property(device_t dev,const char * prop,void * val,size_t sz,device_property_type_t type)2296 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2297 device_property_type_t type)
2298 {
2299 device_t bus = device_get_parent(dev);
2300
2301 switch (type) {
2302 case DEVICE_PROP_ANY:
2303 case DEVICE_PROP_BUFFER:
2304 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */
2305 break;
2306 case DEVICE_PROP_UINT32:
2307 if (sz % 4 != 0)
2308 return (-1);
2309 break;
2310 case DEVICE_PROP_UINT64:
2311 if (sz % 8 != 0)
2312 return (-1);
2313 break;
2314 default:
2315 return (-1);
2316 }
2317
2318 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2319 }
2320
2321 bool
device_has_property(device_t dev,const char * prop)2322 device_has_property(device_t dev, const char *prop)
2323 {
2324 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2325 }
2326
2327 /**
2328 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2329 */
2330 int
device_has_quiet_children(device_t dev)2331 device_has_quiet_children(device_t dev)
2332 {
2333 return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2334 }
2335
2336 /**
2337 * @brief Return non-zero if the DF_QUIET flag is set on the device
2338 */
2339 int
device_is_quiet(device_t dev)2340 device_is_quiet(device_t dev)
2341 {
2342 return ((dev->flags & DF_QUIET) != 0);
2343 }
2344
2345 /**
2346 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2347 */
2348 int
device_is_enabled(device_t dev)2349 device_is_enabled(device_t dev)
2350 {
2351 return ((dev->flags & DF_ENABLED) != 0);
2352 }
2353
2354 /**
2355 * @brief Return non-zero if the device was successfully probed
2356 */
2357 int
device_is_alive(device_t dev)2358 device_is_alive(device_t dev)
2359 {
2360 return (dev->state >= DS_ALIVE);
2361 }
2362
2363 /**
2364 * @brief Return non-zero if the device currently has a driver
2365 * attached to it
2366 */
2367 int
device_is_attached(device_t dev)2368 device_is_attached(device_t dev)
2369 {
2370 return (dev->state >= DS_ATTACHED);
2371 }
2372
2373 /**
2374 * @brief Return non-zero if the device is currently suspended.
2375 */
2376 int
device_is_suspended(device_t dev)2377 device_is_suspended(device_t dev)
2378 {
2379 return ((dev->flags & DF_SUSPENDED) != 0);
2380 }
2381
2382 /**
2383 * @brief Set the devclass of a device
2384 * @see devclass_add_device().
2385 */
2386 int
device_set_devclass(device_t dev,const char * classname)2387 device_set_devclass(device_t dev, const char *classname)
2388 {
2389 devclass_t dc;
2390 int error;
2391
2392 if (!classname) {
2393 if (dev->devclass)
2394 devclass_delete_device(dev->devclass, dev);
2395 return (0);
2396 }
2397
2398 if (dev->devclass) {
2399 printf("device_set_devclass: device class already set\n");
2400 return (EINVAL);
2401 }
2402
2403 dc = devclass_find_internal(classname, NULL, TRUE);
2404 if (!dc)
2405 return (ENOMEM);
2406
2407 error = devclass_add_device(dc, dev);
2408
2409 bus_data_generation_update();
2410 return (error);
2411 }
2412
2413 /**
2414 * @brief Set the devclass of a device and mark the devclass fixed.
2415 * @see device_set_devclass()
2416 */
2417 int
device_set_devclass_fixed(device_t dev,const char * classname)2418 device_set_devclass_fixed(device_t dev, const char *classname)
2419 {
2420 int error;
2421
2422 if (classname == NULL)
2423 return (EINVAL);
2424
2425 error = device_set_devclass(dev, classname);
2426 if (error)
2427 return (error);
2428 dev->flags |= DF_FIXEDCLASS;
2429 return (0);
2430 }
2431
2432 /**
2433 * @brief Query the device to determine if it's of a fixed devclass
2434 * @see device_set_devclass_fixed()
2435 */
2436 bool
device_is_devclass_fixed(device_t dev)2437 device_is_devclass_fixed(device_t dev)
2438 {
2439 return ((dev->flags & DF_FIXEDCLASS) != 0);
2440 }
2441
2442 /**
2443 * @brief Set the driver of a device
2444 *
2445 * @retval 0 success
2446 * @retval EBUSY the device already has a driver attached
2447 * @retval ENOMEM a memory allocation failure occurred
2448 */
2449 int
device_set_driver(device_t dev,driver_t * driver)2450 device_set_driver(device_t dev, driver_t *driver)
2451 {
2452 int domain;
2453 struct domainset *policy;
2454
2455 if (dev->state >= DS_ATTACHED)
2456 return (EBUSY);
2457
2458 if (dev->driver == driver)
2459 return (0);
2460
2461 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2462 free(dev->softc, M_BUS_SC);
2463 dev->softc = NULL;
2464 }
2465 device_set_desc(dev, NULL);
2466 kobj_delete((kobj_t) dev, NULL);
2467 dev->driver = driver;
2468 if (driver) {
2469 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2470 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2471 if (bus_get_domain(dev, &domain) == 0)
2472 policy = DOMAINSET_PREF(domain);
2473 else
2474 policy = DOMAINSET_RR();
2475 dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2476 policy, M_NOWAIT | M_ZERO);
2477 if (!dev->softc) {
2478 kobj_delete((kobj_t) dev, NULL);
2479 kobj_init((kobj_t) dev, &null_class);
2480 dev->driver = NULL;
2481 return (ENOMEM);
2482 }
2483 }
2484 } else {
2485 kobj_init((kobj_t) dev, &null_class);
2486 }
2487
2488 bus_data_generation_update();
2489 return (0);
2490 }
2491
2492 /**
2493 * @brief Probe a device, and return this status.
2494 *
2495 * This function is the core of the device autoconfiguration
2496 * system. Its purpose is to select a suitable driver for a device and
2497 * then call that driver to initialise the hardware appropriately. The
2498 * driver is selected by calling the DEVICE_PROBE() method of a set of
2499 * candidate drivers and then choosing the driver which returned the
2500 * best value. This driver is then attached to the device using
2501 * device_attach().
2502 *
2503 * The set of suitable drivers is taken from the list of drivers in
2504 * the parent device's devclass. If the device was originally created
2505 * with a specific class name (see device_add_child()), only drivers
2506 * with that name are probed, otherwise all drivers in the devclass
2507 * are probed. If no drivers return successful probe values in the
2508 * parent devclass, the search continues in the parent of that
2509 * devclass (see devclass_get_parent()) if any.
2510 *
2511 * @param dev the device to initialise
2512 *
2513 * @retval 0 success
2514 * @retval ENXIO no driver was found
2515 * @retval ENOMEM memory allocation failure
2516 * @retval non-zero some other unix error code
2517 * @retval -1 Device already attached
2518 */
2519 int
device_probe(device_t dev)2520 device_probe(device_t dev)
2521 {
2522 int error;
2523
2524 bus_topo_assert();
2525
2526 if (dev->state >= DS_ALIVE)
2527 return (-1);
2528
2529 if (!(dev->flags & DF_ENABLED)) {
2530 if (bootverbose && device_get_name(dev) != NULL) {
2531 device_print_prettyname(dev);
2532 printf("not probed (disabled)\n");
2533 }
2534 return (-1);
2535 }
2536 if ((error = device_probe_child(dev->parent, dev)) != 0) {
2537 if (bus_current_pass == BUS_PASS_DEFAULT &&
2538 !(dev->flags & DF_DONENOMATCH)) {
2539 device_handle_nomatch(dev);
2540 }
2541 return (error);
2542 }
2543 return (0);
2544 }
2545
2546 /**
2547 * @brief Probe a device and attach a driver if possible
2548 *
2549 * calls device_probe() and attaches if that was successful.
2550 */
2551 int
device_probe_and_attach(device_t dev)2552 device_probe_and_attach(device_t dev)
2553 {
2554 int error;
2555
2556 bus_topo_assert();
2557
2558 error = device_probe(dev);
2559 if (error == -1)
2560 return (0);
2561 else if (error != 0)
2562 return (error);
2563
2564 return (device_attach(dev));
2565 }
2566
2567 /**
2568 * @brief Attach a device driver to a device
2569 *
2570 * This function is a wrapper around the DEVICE_ATTACH() driver
2571 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2572 * device's sysctl tree, optionally prints a description of the device
2573 * and queues a notification event for user-based device management
2574 * services.
2575 *
2576 * Normally this function is only called internally from
2577 * device_probe_and_attach().
2578 *
2579 * @param dev the device to initialise
2580 *
2581 * @retval 0 success
2582 * @retval ENXIO no driver was found
2583 * @retval ENOMEM memory allocation failure
2584 * @retval non-zero some other unix error code
2585 */
2586 int
device_attach(device_t dev)2587 device_attach(device_t dev)
2588 {
2589 uint64_t attachtime;
2590 uint16_t attachentropy;
2591 int error;
2592
2593 if (resource_disabled(dev->driver->name, dev->unit)) {
2594 device_disable(dev);
2595 if (bootverbose)
2596 device_printf(dev, "disabled via hints entry\n");
2597 return (ENXIO);
2598 }
2599
2600 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)),
2601 ("device_attach: curthread is not in default vnet"));
2602 CURVNET_SET_QUIET(TD_TO_VNET(curthread));
2603
2604 device_sysctl_init(dev);
2605 if (!device_is_quiet(dev))
2606 device_print_child(dev->parent, dev);
2607 attachtime = get_cyclecount();
2608 dev->state = DS_ATTACHING;
2609 if ((error = DEVICE_ATTACH(dev)) != 0) {
2610 printf("device_attach: %s%d attach returned %d\n",
2611 dev->driver->name, dev->unit, error);
2612 BUS_CHILD_DETACHED(dev->parent, dev);
2613 if (disable_failed_devs) {
2614 /*
2615 * When the user has asked to disable failed devices, we
2616 * directly disable the device, but leave it in the
2617 * attaching state. It will not try to probe/attach the
2618 * device further. This leaves the device numbering
2619 * intact for other similar devices in the system. It
2620 * can be removed from this state with devctl.
2621 */
2622 device_disable(dev);
2623 } else {
2624 /*
2625 * Otherwise, when attach fails, tear down the state
2626 * around that so we can retry when, for example, new
2627 * drivers are loaded.
2628 */
2629 if (!(dev->flags & DF_FIXEDCLASS))
2630 devclass_delete_device(dev->devclass, dev);
2631 (void)device_set_driver(dev, NULL);
2632 device_sysctl_fini(dev);
2633 KASSERT(dev->busy == 0, ("attach failed but busy"));
2634 dev->state = DS_NOTPRESENT;
2635 }
2636 CURVNET_RESTORE();
2637 return (error);
2638 }
2639 CURVNET_RESTORE();
2640 dev->flags |= DF_ATTACHED_ONCE;
2641 /*
2642 * We only need the low bits of this time, but ranges from tens to thousands
2643 * have been seen, so keep 2 bytes' worth.
2644 */
2645 attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2646 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2647 device_sysctl_update(dev);
2648 dev->state = DS_ATTACHED;
2649 dev->flags &= ~DF_DONENOMATCH;
2650 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2651 return (0);
2652 }
2653
2654 /**
2655 * @brief Detach a driver from a device
2656 *
2657 * This function is a wrapper around the DEVICE_DETACH() driver
2658 * method. If the call to DEVICE_DETACH() succeeds, it calls
2659 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2660 * notification event for user-based device management services and
2661 * cleans up the device's sysctl tree.
2662 *
2663 * @param dev the device to un-initialise
2664 *
2665 * @retval 0 success
2666 * @retval ENXIO no driver was found
2667 * @retval ENOMEM memory allocation failure
2668 * @retval non-zero some other unix error code
2669 */
2670 int
device_detach(device_t dev)2671 device_detach(device_t dev)
2672 {
2673 int error;
2674
2675 bus_topo_assert();
2676
2677 PDEBUG(("%s", DEVICENAME(dev)));
2678 if (dev->busy > 0)
2679 return (EBUSY);
2680 if (dev->state == DS_ATTACHING) {
2681 device_printf(dev, "device in attaching state! Deferring detach.\n");
2682 return (EBUSY);
2683 }
2684 if (dev->state != DS_ATTACHED)
2685 return (0);
2686
2687 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2688 if ((error = DEVICE_DETACH(dev)) != 0) {
2689 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2690 EVHDEV_DETACH_FAILED);
2691 return (error);
2692 } else {
2693 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2694 EVHDEV_DETACH_COMPLETE);
2695 }
2696 if (!device_is_quiet(dev))
2697 device_printf(dev, "detached\n");
2698 if (dev->parent)
2699 BUS_CHILD_DETACHED(dev->parent, dev);
2700
2701 if (!(dev->flags & DF_FIXEDCLASS))
2702 devclass_delete_device(dev->devclass, dev);
2703
2704 device_verbose(dev);
2705 dev->state = DS_NOTPRESENT;
2706 (void)device_set_driver(dev, NULL);
2707 device_sysctl_fini(dev);
2708
2709 return (0);
2710 }
2711
2712 /**
2713 * @brief Tells a driver to quiesce itself.
2714 *
2715 * This function is a wrapper around the DEVICE_QUIESCE() driver
2716 * method. If the call to DEVICE_QUIESCE() succeeds.
2717 *
2718 * @param dev the device to quiesce
2719 *
2720 * @retval 0 success
2721 * @retval ENXIO no driver was found
2722 * @retval ENOMEM memory allocation failure
2723 * @retval non-zero some other unix error code
2724 */
2725 int
device_quiesce(device_t dev)2726 device_quiesce(device_t dev)
2727 {
2728 PDEBUG(("%s", DEVICENAME(dev)));
2729 if (dev->busy > 0)
2730 return (EBUSY);
2731 if (dev->state != DS_ATTACHED)
2732 return (0);
2733
2734 return (DEVICE_QUIESCE(dev));
2735 }
2736
2737 /**
2738 * @brief Notify a device of system shutdown
2739 *
2740 * This function calls the DEVICE_SHUTDOWN() driver method if the
2741 * device currently has an attached driver.
2742 *
2743 * @returns the value returned by DEVICE_SHUTDOWN()
2744 */
2745 int
device_shutdown(device_t dev)2746 device_shutdown(device_t dev)
2747 {
2748 if (dev->state < DS_ATTACHED)
2749 return (0);
2750 return (DEVICE_SHUTDOWN(dev));
2751 }
2752
2753 /**
2754 * @brief Set the unit number of a device
2755 *
2756 * This function can be used to override the unit number used for a
2757 * device (e.g. to wire a device to a pre-configured unit number).
2758 */
2759 int
device_set_unit(device_t dev,int unit)2760 device_set_unit(device_t dev, int unit)
2761 {
2762 devclass_t dc;
2763 int err;
2764
2765 if (unit == dev->unit)
2766 return (0);
2767 dc = device_get_devclass(dev);
2768 if (unit < dc->maxunit && dc->devices[unit])
2769 return (EBUSY);
2770 err = devclass_delete_device(dc, dev);
2771 if (err)
2772 return (err);
2773 dev->unit = unit;
2774 err = devclass_add_device(dc, dev);
2775 if (err)
2776 return (err);
2777
2778 bus_data_generation_update();
2779 return (0);
2780 }
2781
2782 /*======================================*/
2783 /*
2784 * Some useful method implementations to make life easier for bus drivers.
2785 */
2786
2787 /**
2788 * @brief Initialize a resource mapping request
2789 *
2790 * This is the internal implementation of the public API
2791 * resource_init_map_request. Callers may be using a different layout
2792 * of struct resource_map_request than the kernel, so callers pass in
2793 * the size of the structure they are using to identify the structure
2794 * layout.
2795 */
2796 void
resource_init_map_request_impl(struct resource_map_request * args,size_t sz)2797 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2798 {
2799 bzero(args, sz);
2800 args->size = sz;
2801 args->memattr = VM_MEMATTR_DEVICE;
2802 }
2803
2804 /**
2805 * @brief Validate a resource mapping request
2806 *
2807 * Translate a device driver's mapping request (@p in) to a struct
2808 * resource_map_request using the current structure layout (@p out).
2809 * In addition, validate the offset and length from the mapping
2810 * request against the bounds of the resource @p r. If the offset or
2811 * length are invalid, fail with EINVAL. If the offset and length are
2812 * valid, the absolute starting address of the requested mapping is
2813 * returned in @p startp and the length of the requested mapping is
2814 * returned in @p lengthp.
2815 */
2816 int
resource_validate_map_request(struct resource * r,struct resource_map_request * in,struct resource_map_request * out,rman_res_t * startp,rman_res_t * lengthp)2817 resource_validate_map_request(struct resource *r,
2818 struct resource_map_request *in, struct resource_map_request *out,
2819 rman_res_t *startp, rman_res_t *lengthp)
2820 {
2821 rman_res_t end, length, start;
2822
2823 /*
2824 * This assumes that any callers of this function are compiled
2825 * into the kernel and use the same version of the structure
2826 * as this file.
2827 */
2828 MPASS(out->size == sizeof(struct resource_map_request));
2829
2830 if (in != NULL)
2831 bcopy(in, out, imin(in->size, out->size));
2832 start = rman_get_start(r) + out->offset;
2833 if (out->length == 0)
2834 length = rman_get_size(r);
2835 else
2836 length = out->length;
2837 end = start + length - 1;
2838 if (start > rman_get_end(r) || start < rman_get_start(r))
2839 return (EINVAL);
2840 if (end > rman_get_end(r) || end < start)
2841 return (EINVAL);
2842 *lengthp = length;
2843 *startp = start;
2844 return (0);
2845 }
2846
2847 /**
2848 * @brief Initialise a resource list.
2849 *
2850 * @param rl the resource list to initialise
2851 */
2852 void
resource_list_init(struct resource_list * rl)2853 resource_list_init(struct resource_list *rl)
2854 {
2855 STAILQ_INIT(rl);
2856 }
2857
2858 /**
2859 * @brief Reclaim memory used by a resource list.
2860 *
2861 * This function frees the memory for all resource entries on the list
2862 * (if any).
2863 *
2864 * @param rl the resource list to free
2865 */
2866 void
resource_list_free(struct resource_list * rl)2867 resource_list_free(struct resource_list *rl)
2868 {
2869 struct resource_list_entry *rle;
2870
2871 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2872 if (rle->res)
2873 panic("resource_list_free: resource entry is busy");
2874 STAILQ_REMOVE_HEAD(rl, link);
2875 free(rle, M_BUS);
2876 }
2877 }
2878
2879 /**
2880 * @brief Add a resource entry.
2881 *
2882 * This function adds a resource entry using the given @p type, @p
2883 * start, @p end and @p count values. A rid value is chosen by
2884 * searching sequentially for the first unused rid starting at zero.
2885 *
2886 * @param rl the resource list to edit
2887 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2888 * @param start the start address of the resource
2889 * @param end the end address of the resource
2890 * @param count XXX end-start+1
2891 */
2892 int
resource_list_add_next(struct resource_list * rl,int type,rman_res_t start,rman_res_t end,rman_res_t count)2893 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2894 rman_res_t end, rman_res_t count)
2895 {
2896 int rid;
2897
2898 rid = 0;
2899 while (resource_list_find(rl, type, rid) != NULL)
2900 rid++;
2901 resource_list_add(rl, type, rid, start, end, count);
2902 return (rid);
2903 }
2904
2905 /**
2906 * @brief Add or modify a resource entry.
2907 *
2908 * If an existing entry exists with the same type and rid, it will be
2909 * modified using the given values of @p start, @p end and @p
2910 * count. If no entry exists, a new one will be created using the
2911 * given values. The resource list entry that matches is then returned.
2912 *
2913 * @param rl the resource list to edit
2914 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2915 * @param rid the resource identifier
2916 * @param start the start address of the resource
2917 * @param end the end address of the resource
2918 * @param count XXX end-start+1
2919 */
2920 struct resource_list_entry *
resource_list_add(struct resource_list * rl,int type,int rid,rman_res_t start,rman_res_t end,rman_res_t count)2921 resource_list_add(struct resource_list *rl, int type, int rid,
2922 rman_res_t start, rman_res_t end, rman_res_t count)
2923 {
2924 struct resource_list_entry *rle;
2925
2926 rle = resource_list_find(rl, type, rid);
2927 if (!rle) {
2928 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2929 M_NOWAIT);
2930 if (!rle)
2931 panic("resource_list_add: can't record entry");
2932 STAILQ_INSERT_TAIL(rl, rle, link);
2933 rle->type = type;
2934 rle->rid = rid;
2935 rle->res = NULL;
2936 rle->flags = 0;
2937 }
2938
2939 if (rle->res)
2940 panic("resource_list_add: resource entry is busy");
2941
2942 rle->start = start;
2943 rle->end = end;
2944 rle->count = count;
2945 return (rle);
2946 }
2947
2948 /**
2949 * @brief Determine if a resource entry is busy.
2950 *
2951 * Returns true if a resource entry is busy meaning that it has an
2952 * associated resource that is not an unallocated "reserved" resource.
2953 *
2954 * @param rl the resource list to search
2955 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2956 * @param rid the resource identifier
2957 *
2958 * @returns Non-zero if the entry is busy, zero otherwise.
2959 */
2960 int
resource_list_busy(struct resource_list * rl,int type,int rid)2961 resource_list_busy(struct resource_list *rl, int type, int rid)
2962 {
2963 struct resource_list_entry *rle;
2964
2965 rle = resource_list_find(rl, type, rid);
2966 if (rle == NULL || rle->res == NULL)
2967 return (0);
2968 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2969 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2970 ("reserved resource is active"));
2971 return (0);
2972 }
2973 return (1);
2974 }
2975
2976 /**
2977 * @brief Determine if a resource entry is reserved.
2978 *
2979 * Returns true if a resource entry is reserved meaning that it has an
2980 * associated "reserved" resource. The resource can either be
2981 * allocated or unallocated.
2982 *
2983 * @param rl the resource list to search
2984 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2985 * @param rid the resource identifier
2986 *
2987 * @returns Non-zero if the entry is reserved, zero otherwise.
2988 */
2989 int
resource_list_reserved(struct resource_list * rl,int type,int rid)2990 resource_list_reserved(struct resource_list *rl, int type, int rid)
2991 {
2992 struct resource_list_entry *rle;
2993
2994 rle = resource_list_find(rl, type, rid);
2995 if (rle != NULL && rle->flags & RLE_RESERVED)
2996 return (1);
2997 return (0);
2998 }
2999
3000 /**
3001 * @brief Find a resource entry by type and rid.
3002 *
3003 * @param rl the resource list to search
3004 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3005 * @param rid the resource identifier
3006 *
3007 * @returns the resource entry pointer or NULL if there is no such
3008 * entry.
3009 */
3010 struct resource_list_entry *
resource_list_find(struct resource_list * rl,int type,int rid)3011 resource_list_find(struct resource_list *rl, int type, int rid)
3012 {
3013 struct resource_list_entry *rle;
3014
3015 STAILQ_FOREACH(rle, rl, link) {
3016 if (rle->type == type && rle->rid == rid)
3017 return (rle);
3018 }
3019 return (NULL);
3020 }
3021
3022 /**
3023 * @brief Delete a resource entry.
3024 *
3025 * @param rl the resource list to edit
3026 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3027 * @param rid the resource identifier
3028 */
3029 void
resource_list_delete(struct resource_list * rl,int type,int rid)3030 resource_list_delete(struct resource_list *rl, int type, int rid)
3031 {
3032 struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3033
3034 if (rle) {
3035 if (rle->res != NULL)
3036 panic("resource_list_delete: resource has not been released");
3037 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3038 free(rle, M_BUS);
3039 }
3040 }
3041
3042 /**
3043 * @brief Allocate a reserved resource
3044 *
3045 * This can be used by buses to force the allocation of resources
3046 * that are always active in the system even if they are not allocated
3047 * by a driver (e.g. PCI BARs). This function is usually called when
3048 * adding a new child to the bus. The resource is allocated from the
3049 * parent bus when it is reserved. The resource list entry is marked
3050 * with RLE_RESERVED to note that it is a reserved resource.
3051 *
3052 * Subsequent attempts to allocate the resource with
3053 * resource_list_alloc() will succeed the first time and will set
3054 * RLE_ALLOCATED to note that it has been allocated. When a reserved
3055 * resource that has been allocated is released with
3056 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3057 * the actual resource remains allocated. The resource can be released to
3058 * the parent bus by calling resource_list_unreserve().
3059 *
3060 * @param rl the resource list to allocate from
3061 * @param bus the parent device of @p child
3062 * @param child the device for which the resource is being reserved
3063 * @param type the type of resource to allocate
3064 * @param rid a pointer to the resource identifier
3065 * @param start hint at the start of the resource range - pass
3066 * @c 0 for any start address
3067 * @param end hint at the end of the resource range - pass
3068 * @c ~0 for any end address
3069 * @param count hint at the size of range required - pass @c 1
3070 * for any size
3071 * @param flags any extra flags to control the resource
3072 * allocation - see @c RF_XXX flags in
3073 * <sys/rman.h> for details
3074 *
3075 * @returns the resource which was allocated or @c NULL if no
3076 * resource could be allocated
3077 */
3078 struct resource *
resource_list_reserve(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3079 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3080 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3081 {
3082 struct resource_list_entry *rle = NULL;
3083 int passthrough = (device_get_parent(child) != bus);
3084 struct resource *r;
3085
3086 if (passthrough)
3087 panic(
3088 "resource_list_reserve() should only be called for direct children");
3089 if (flags & RF_ACTIVE)
3090 panic(
3091 "resource_list_reserve() should only reserve inactive resources");
3092
3093 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3094 flags);
3095 if (r != NULL) {
3096 rle = resource_list_find(rl, type, *rid);
3097 rle->flags |= RLE_RESERVED;
3098 }
3099 return (r);
3100 }
3101
3102 /**
3103 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3104 *
3105 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3106 * and passing the allocation up to the parent of @p bus. This assumes
3107 * that the first entry of @c device_get_ivars(child) is a struct
3108 * resource_list. This also handles 'passthrough' allocations where a
3109 * child is a remote descendant of bus by passing the allocation up to
3110 * the parent of bus.
3111 *
3112 * Typically, a bus driver would store a list of child resources
3113 * somewhere in the child device's ivars (see device_get_ivars()) and
3114 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3115 * then call resource_list_alloc() to perform the allocation.
3116 *
3117 * @param rl the resource list to allocate from
3118 * @param bus the parent device of @p child
3119 * @param child the device which is requesting an allocation
3120 * @param type the type of resource to allocate
3121 * @param rid a pointer to the resource identifier
3122 * @param start hint at the start of the resource range - pass
3123 * @c 0 for any start address
3124 * @param end hint at the end of the resource range - pass
3125 * @c ~0 for any end address
3126 * @param count hint at the size of range required - pass @c 1
3127 * for any size
3128 * @param flags any extra flags to control the resource
3129 * allocation - see @c RF_XXX flags in
3130 * <sys/rman.h> for details
3131 *
3132 * @returns the resource which was allocated or @c NULL if no
3133 * resource could be allocated
3134 */
3135 struct resource *
resource_list_alloc(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3136 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3137 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3138 {
3139 struct resource_list_entry *rle = NULL;
3140 int passthrough = (device_get_parent(child) != bus);
3141 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3142
3143 if (passthrough) {
3144 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3145 type, rid, start, end, count, flags));
3146 }
3147
3148 rle = resource_list_find(rl, type, *rid);
3149
3150 if (!rle)
3151 return (NULL); /* no resource of that type/rid */
3152
3153 if (rle->res) {
3154 if (rle->flags & RLE_RESERVED) {
3155 if (rle->flags & RLE_ALLOCATED)
3156 return (NULL);
3157 if ((flags & RF_ACTIVE) &&
3158 bus_activate_resource(child, type, *rid,
3159 rle->res) != 0)
3160 return (NULL);
3161 rle->flags |= RLE_ALLOCATED;
3162 return (rle->res);
3163 }
3164 device_printf(bus,
3165 "resource entry %#x type %d for child %s is busy\n", *rid,
3166 type, device_get_nameunit(child));
3167 return (NULL);
3168 }
3169
3170 if (isdefault) {
3171 start = rle->start;
3172 count = ulmax(count, rle->count);
3173 end = ulmax(rle->end, start + count - 1);
3174 }
3175
3176 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3177 type, rid, start, end, count, flags);
3178
3179 /*
3180 * Record the new range.
3181 */
3182 if (rle->res) {
3183 rle->start = rman_get_start(rle->res);
3184 rle->end = rman_get_end(rle->res);
3185 rle->count = count;
3186 }
3187
3188 return (rle->res);
3189 }
3190
3191 /**
3192 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3193 *
3194 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3195 * used with resource_list_alloc().
3196 *
3197 * @param rl the resource list which was allocated from
3198 * @param bus the parent device of @p child
3199 * @param child the device which is requesting a release
3200 * @param res the resource to release
3201 *
3202 * @retval 0 success
3203 * @retval non-zero a standard unix error code indicating what
3204 * error condition prevented the operation
3205 */
3206 int
resource_list_release(struct resource_list * rl,device_t bus,device_t child,struct resource * res)3207 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3208 struct resource *res)
3209 {
3210 struct resource_list_entry *rle = NULL;
3211 int passthrough = (device_get_parent(child) != bus);
3212 int error;
3213
3214 if (passthrough) {
3215 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3216 res));
3217 }
3218
3219 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3220
3221 if (!rle)
3222 panic("resource_list_release: can't find resource");
3223 if (!rle->res)
3224 panic("resource_list_release: resource entry is not busy");
3225 if (rle->flags & RLE_RESERVED) {
3226 if (rle->flags & RLE_ALLOCATED) {
3227 if (rman_get_flags(res) & RF_ACTIVE) {
3228 error = bus_deactivate_resource(child, res);
3229 if (error)
3230 return (error);
3231 }
3232 rle->flags &= ~RLE_ALLOCATED;
3233 return (0);
3234 }
3235 return (EINVAL);
3236 }
3237
3238 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3239 if (error)
3240 return (error);
3241
3242 rle->res = NULL;
3243 return (0);
3244 }
3245
3246 /**
3247 * @brief Release all active resources of a given type
3248 *
3249 * Release all active resources of a specified type. This is intended
3250 * to be used to cleanup resources leaked by a driver after detach or
3251 * a failed attach.
3252 *
3253 * @param rl the resource list which was allocated from
3254 * @param bus the parent device of @p child
3255 * @param child the device whose active resources are being released
3256 * @param type the type of resources to release
3257 *
3258 * @retval 0 success
3259 * @retval EBUSY at least one resource was active
3260 */
3261 int
resource_list_release_active(struct resource_list * rl,device_t bus,device_t child,int type)3262 resource_list_release_active(struct resource_list *rl, device_t bus,
3263 device_t child, int type)
3264 {
3265 struct resource_list_entry *rle;
3266 int error, retval;
3267
3268 retval = 0;
3269 STAILQ_FOREACH(rle, rl, link) {
3270 if (rle->type != type)
3271 continue;
3272 if (rle->res == NULL)
3273 continue;
3274 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3275 RLE_RESERVED)
3276 continue;
3277 retval = EBUSY;
3278 error = resource_list_release(rl, bus, child, rle->res);
3279 if (error != 0)
3280 device_printf(bus,
3281 "Failed to release active resource: %d\n", error);
3282 }
3283 return (retval);
3284 }
3285
3286 /**
3287 * @brief Fully release a reserved resource
3288 *
3289 * Fully releases a resource reserved via resource_list_reserve().
3290 *
3291 * @param rl the resource list which was allocated from
3292 * @param bus the parent device of @p child
3293 * @param child the device whose reserved resource is being released
3294 * @param type the type of resource to release
3295 * @param rid the resource identifier
3296 * @param res the resource to release
3297 *
3298 * @retval 0 success
3299 * @retval non-zero a standard unix error code indicating what
3300 * error condition prevented the operation
3301 */
3302 int
resource_list_unreserve(struct resource_list * rl,device_t bus,device_t child,int type,int rid)3303 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3304 int type, int rid)
3305 {
3306 struct resource_list_entry *rle = NULL;
3307 int passthrough = (device_get_parent(child) != bus);
3308
3309 if (passthrough)
3310 panic(
3311 "resource_list_unreserve() should only be called for direct children");
3312
3313 rle = resource_list_find(rl, type, rid);
3314
3315 if (!rle)
3316 panic("resource_list_unreserve: can't find resource");
3317 if (!(rle->flags & RLE_RESERVED))
3318 return (EINVAL);
3319 if (rle->flags & RLE_ALLOCATED)
3320 return (EBUSY);
3321 rle->flags &= ~RLE_RESERVED;
3322 return (resource_list_release(rl, bus, child, rle->res));
3323 }
3324
3325 /**
3326 * @brief Print a description of resources in a resource list
3327 *
3328 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3329 * The name is printed if at least one resource of the given type is available.
3330 * The format is used to print resource start and end.
3331 *
3332 * @param rl the resource list to print
3333 * @param name the name of @p type, e.g. @c "memory"
3334 * @param type type type of resource entry to print
3335 * @param format printf(9) format string to print resource
3336 * start and end values
3337 *
3338 * @returns the number of characters printed
3339 */
3340 int
resource_list_print_type(struct resource_list * rl,const char * name,int type,const char * format)3341 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3342 const char *format)
3343 {
3344 struct resource_list_entry *rle;
3345 int printed, retval;
3346
3347 printed = 0;
3348 retval = 0;
3349 /* Yes, this is kinda cheating */
3350 STAILQ_FOREACH(rle, rl, link) {
3351 if (rle->type == type) {
3352 if (printed == 0)
3353 retval += printf(" %s ", name);
3354 else
3355 retval += printf(",");
3356 printed++;
3357 retval += printf(format, rle->start);
3358 if (rle->count > 1) {
3359 retval += printf("-");
3360 retval += printf(format, rle->start +
3361 rle->count - 1);
3362 }
3363 }
3364 }
3365 return (retval);
3366 }
3367
3368 /**
3369 * @brief Releases all the resources in a list.
3370 *
3371 * @param rl The resource list to purge.
3372 *
3373 * @returns nothing
3374 */
3375 void
resource_list_purge(struct resource_list * rl)3376 resource_list_purge(struct resource_list *rl)
3377 {
3378 struct resource_list_entry *rle;
3379
3380 while ((rle = STAILQ_FIRST(rl)) != NULL) {
3381 if (rle->res)
3382 bus_release_resource(rman_get_device(rle->res),
3383 rle->type, rle->rid, rle->res);
3384 STAILQ_REMOVE_HEAD(rl, link);
3385 free(rle, M_BUS);
3386 }
3387 }
3388
3389 device_t
bus_generic_add_child(device_t dev,u_int order,const char * name,int unit)3390 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3391 {
3392 return (device_add_child_ordered(dev, order, name, unit));
3393 }
3394
3395 /**
3396 * @brief Helper function for implementing DEVICE_PROBE()
3397 *
3398 * This function can be used to help implement the DEVICE_PROBE() for
3399 * a bus (i.e. a device which has other devices attached to it). It
3400 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3401 * devclass.
3402 */
3403 int
bus_generic_probe(device_t dev)3404 bus_generic_probe(device_t dev)
3405 {
3406 devclass_t dc = dev->devclass;
3407 driverlink_t dl;
3408
3409 TAILQ_FOREACH(dl, &dc->drivers, link) {
3410 /*
3411 * If this driver's pass is too high, then ignore it.
3412 * For most drivers in the default pass, this will
3413 * never be true. For early-pass drivers they will
3414 * only call the identify routines of eligible drivers
3415 * when this routine is called. Drivers for later
3416 * passes should have their identify routines called
3417 * on early-pass buses during BUS_NEW_PASS().
3418 */
3419 if (dl->pass > bus_current_pass)
3420 continue;
3421 DEVICE_IDENTIFY(dl->driver, dev);
3422 }
3423
3424 return (0);
3425 }
3426
3427 /**
3428 * @brief Helper function for implementing DEVICE_ATTACH()
3429 *
3430 * This function can be used to help implement the DEVICE_ATTACH() for
3431 * a bus. It calls device_probe_and_attach() for each of the device's
3432 * children.
3433 */
3434 int
bus_generic_attach(device_t dev)3435 bus_generic_attach(device_t dev)
3436 {
3437 device_t child;
3438
3439 TAILQ_FOREACH(child, &dev->children, link) {
3440 device_probe_and_attach(child);
3441 }
3442
3443 return (0);
3444 }
3445
3446 /**
3447 * @brief Helper function for delaying attaching children
3448 *
3449 * Many buses can't run transactions on the bus which children need to probe and
3450 * attach until after interrupts and/or timers are running. This function
3451 * delays their attach until interrupts and timers are enabled.
3452 */
3453 int
bus_delayed_attach_children(device_t dev)3454 bus_delayed_attach_children(device_t dev)
3455 {
3456 /* Probe and attach the bus children when interrupts are available */
3457 config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3458
3459 return (0);
3460 }
3461
3462 /**
3463 * @brief Helper function for implementing DEVICE_DETACH()
3464 *
3465 * This function can be used to help implement the DEVICE_DETACH() for
3466 * a bus. It calls device_detach() for each of the device's
3467 * children.
3468 */
3469 int
bus_generic_detach(device_t dev)3470 bus_generic_detach(device_t dev)
3471 {
3472 device_t child;
3473 int error;
3474
3475 /*
3476 * Detach children in the reverse order.
3477 * See bus_generic_suspend for details.
3478 */
3479 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3480 if ((error = device_detach(child)) != 0)
3481 return (error);
3482 }
3483
3484 return (0);
3485 }
3486
3487 /**
3488 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3489 *
3490 * This function can be used to help implement the DEVICE_SHUTDOWN()
3491 * for a bus. It calls device_shutdown() for each of the device's
3492 * children.
3493 */
3494 int
bus_generic_shutdown(device_t dev)3495 bus_generic_shutdown(device_t dev)
3496 {
3497 device_t child;
3498
3499 /*
3500 * Shut down children in the reverse order.
3501 * See bus_generic_suspend for details.
3502 */
3503 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3504 device_shutdown(child);
3505 }
3506
3507 return (0);
3508 }
3509
3510 /**
3511 * @brief Default function for suspending a child device.
3512 *
3513 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3514 */
3515 int
bus_generic_suspend_child(device_t dev,device_t child)3516 bus_generic_suspend_child(device_t dev, device_t child)
3517 {
3518 int error;
3519
3520 error = DEVICE_SUSPEND(child);
3521
3522 if (error == 0) {
3523 child->flags |= DF_SUSPENDED;
3524 } else {
3525 printf("DEVICE_SUSPEND(%s) failed: %d\n",
3526 device_get_nameunit(child), error);
3527 }
3528
3529 return (error);
3530 }
3531
3532 /**
3533 * @brief Default function for resuming a child device.
3534 *
3535 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3536 */
3537 int
bus_generic_resume_child(device_t dev,device_t child)3538 bus_generic_resume_child(device_t dev, device_t child)
3539 {
3540 DEVICE_RESUME(child);
3541 child->flags &= ~DF_SUSPENDED;
3542
3543 return (0);
3544 }
3545
3546 /**
3547 * @brief Helper function for implementing DEVICE_SUSPEND()
3548 *
3549 * This function can be used to help implement the DEVICE_SUSPEND()
3550 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3551 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3552 * operation is aborted and any devices which were suspended are
3553 * resumed immediately by calling their DEVICE_RESUME() methods.
3554 */
3555 int
bus_generic_suspend(device_t dev)3556 bus_generic_suspend(device_t dev)
3557 {
3558 int error;
3559 device_t child;
3560
3561 /*
3562 * Suspend children in the reverse order.
3563 * For most buses all children are equal, so the order does not matter.
3564 * Other buses, such as acpi, carefully order their child devices to
3565 * express implicit dependencies between them. For such buses it is
3566 * safer to bring down devices in the reverse order.
3567 */
3568 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3569 error = BUS_SUSPEND_CHILD(dev, child);
3570 if (error != 0) {
3571 child = TAILQ_NEXT(child, link);
3572 if (child != NULL) {
3573 TAILQ_FOREACH_FROM(child, &dev->children, link)
3574 BUS_RESUME_CHILD(dev, child);
3575 }
3576 return (error);
3577 }
3578 }
3579 return (0);
3580 }
3581
3582 /**
3583 * @brief Helper function for implementing DEVICE_RESUME()
3584 *
3585 * This function can be used to help implement the DEVICE_RESUME() for
3586 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3587 */
3588 int
bus_generic_resume(device_t dev)3589 bus_generic_resume(device_t dev)
3590 {
3591 device_t child;
3592
3593 TAILQ_FOREACH(child, &dev->children, link) {
3594 BUS_RESUME_CHILD(dev, child);
3595 /* if resume fails, there's nothing we can usefully do... */
3596 }
3597 return (0);
3598 }
3599
3600 /**
3601 * @brief Helper function for implementing BUS_RESET_POST
3602 *
3603 * Bus can use this function to implement common operations of
3604 * re-attaching or resuming the children after the bus itself was
3605 * reset, and after restoring bus-unique state of children.
3606 *
3607 * @param dev The bus
3608 * #param flags DEVF_RESET_*
3609 */
3610 int
bus_helper_reset_post(device_t dev,int flags)3611 bus_helper_reset_post(device_t dev, int flags)
3612 {
3613 device_t child;
3614 int error, error1;
3615
3616 error = 0;
3617 TAILQ_FOREACH(child, &dev->children,link) {
3618 BUS_RESET_POST(dev, child);
3619 error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3620 device_probe_and_attach(child) :
3621 BUS_RESUME_CHILD(dev, child);
3622 if (error == 0 && error1 != 0)
3623 error = error1;
3624 }
3625 return (error);
3626 }
3627
3628 static void
bus_helper_reset_prepare_rollback(device_t dev,device_t child,int flags)3629 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3630 {
3631 child = TAILQ_NEXT(child, link);
3632 if (child == NULL)
3633 return;
3634 TAILQ_FOREACH_FROM(child, &dev->children,link) {
3635 BUS_RESET_POST(dev, child);
3636 if ((flags & DEVF_RESET_DETACH) != 0)
3637 device_probe_and_attach(child);
3638 else
3639 BUS_RESUME_CHILD(dev, child);
3640 }
3641 }
3642
3643 /**
3644 * @brief Helper function for implementing BUS_RESET_PREPARE
3645 *
3646 * Bus can use this function to implement common operations of
3647 * detaching or suspending the children before the bus itself is
3648 * reset, and then save bus-unique state of children that must
3649 * persists around reset.
3650 *
3651 * @param dev The bus
3652 * #param flags DEVF_RESET_*
3653 */
3654 int
bus_helper_reset_prepare(device_t dev,int flags)3655 bus_helper_reset_prepare(device_t dev, int flags)
3656 {
3657 device_t child;
3658 int error;
3659
3660 if (dev->state != DS_ATTACHED)
3661 return (EBUSY);
3662
3663 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3664 if ((flags & DEVF_RESET_DETACH) != 0) {
3665 error = device_get_state(child) == DS_ATTACHED ?
3666 device_detach(child) : 0;
3667 } else {
3668 error = BUS_SUSPEND_CHILD(dev, child);
3669 }
3670 if (error == 0) {
3671 error = BUS_RESET_PREPARE(dev, child);
3672 if (error != 0) {
3673 if ((flags & DEVF_RESET_DETACH) != 0)
3674 device_probe_and_attach(child);
3675 else
3676 BUS_RESUME_CHILD(dev, child);
3677 }
3678 }
3679 if (error != 0) {
3680 bus_helper_reset_prepare_rollback(dev, child, flags);
3681 return (error);
3682 }
3683 }
3684 return (0);
3685 }
3686
3687 /**
3688 * @brief Helper function for implementing BUS_PRINT_CHILD().
3689 *
3690 * This function prints the first part of the ascii representation of
3691 * @p child, including its name, unit and description (if any - see
3692 * device_set_desc()).
3693 *
3694 * @returns the number of characters printed
3695 */
3696 int
bus_print_child_header(device_t dev,device_t child)3697 bus_print_child_header(device_t dev, device_t child)
3698 {
3699 int retval = 0;
3700
3701 if (device_get_desc(child)) {
3702 retval += device_printf(child, "<%s>", device_get_desc(child));
3703 } else {
3704 retval += printf("%s", device_get_nameunit(child));
3705 }
3706
3707 return (retval);
3708 }
3709
3710 /**
3711 * @brief Helper function for implementing BUS_PRINT_CHILD().
3712 *
3713 * This function prints the last part of the ascii representation of
3714 * @p child, which consists of the string @c " on " followed by the
3715 * name and unit of the @p dev.
3716 *
3717 * @returns the number of characters printed
3718 */
3719 int
bus_print_child_footer(device_t dev,device_t child)3720 bus_print_child_footer(device_t dev, device_t child)
3721 {
3722 return (printf(" on %s\n", device_get_nameunit(dev)));
3723 }
3724
3725 /**
3726 * @brief Helper function for implementing BUS_PRINT_CHILD().
3727 *
3728 * This function prints out the VM domain for the given device.
3729 *
3730 * @returns the number of characters printed
3731 */
3732 int
bus_print_child_domain(device_t dev,device_t child)3733 bus_print_child_domain(device_t dev, device_t child)
3734 {
3735 int domain;
3736
3737 /* No domain? Don't print anything */
3738 if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3739 return (0);
3740
3741 return (printf(" numa-domain %d", domain));
3742 }
3743
3744 /**
3745 * @brief Helper function for implementing BUS_PRINT_CHILD().
3746 *
3747 * This function simply calls bus_print_child_header() followed by
3748 * bus_print_child_footer().
3749 *
3750 * @returns the number of characters printed
3751 */
3752 int
bus_generic_print_child(device_t dev,device_t child)3753 bus_generic_print_child(device_t dev, device_t child)
3754 {
3755 int retval = 0;
3756
3757 retval += bus_print_child_header(dev, child);
3758 retval += bus_print_child_domain(dev, child);
3759 retval += bus_print_child_footer(dev, child);
3760
3761 return (retval);
3762 }
3763
3764 /**
3765 * @brief Stub function for implementing BUS_READ_IVAR().
3766 *
3767 * @returns ENOENT
3768 */
3769 int
bus_generic_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)3770 bus_generic_read_ivar(device_t dev, device_t child, int index,
3771 uintptr_t * result)
3772 {
3773 return (ENOENT);
3774 }
3775
3776 /**
3777 * @brief Stub function for implementing BUS_WRITE_IVAR().
3778 *
3779 * @returns ENOENT
3780 */
3781 int
bus_generic_write_ivar(device_t dev,device_t child,int index,uintptr_t value)3782 bus_generic_write_ivar(device_t dev, device_t child, int index,
3783 uintptr_t value)
3784 {
3785 return (ENOENT);
3786 }
3787
3788 /**
3789 * @brief Helper function for implementing BUS_GET_PROPERTY().
3790 *
3791 * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3792 * until a non-default implementation is found.
3793 */
3794 ssize_t
bus_generic_get_property(device_t dev,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)3795 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3796 void *propvalue, size_t size, device_property_type_t type)
3797 {
3798 if (device_get_parent(dev) != NULL)
3799 return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3800 propname, propvalue, size, type));
3801
3802 return (-1);
3803 }
3804
3805 /**
3806 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3807 *
3808 * @returns NULL
3809 */
3810 struct resource_list *
bus_generic_get_resource_list(device_t dev,device_t child)3811 bus_generic_get_resource_list(device_t dev, device_t child)
3812 {
3813 return (NULL);
3814 }
3815
3816 /**
3817 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3818 *
3819 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3820 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3821 * and then calls device_probe_and_attach() for each unattached child.
3822 */
3823 void
bus_generic_driver_added(device_t dev,driver_t * driver)3824 bus_generic_driver_added(device_t dev, driver_t *driver)
3825 {
3826 device_t child;
3827
3828 DEVICE_IDENTIFY(driver, dev);
3829 TAILQ_FOREACH(child, &dev->children, link) {
3830 if (child->state == DS_NOTPRESENT)
3831 device_probe_and_attach(child);
3832 }
3833 }
3834
3835 /**
3836 * @brief Helper function for implementing BUS_NEW_PASS().
3837 *
3838 * This implementing of BUS_NEW_PASS() first calls the identify
3839 * routines for any drivers that probe at the current pass. Then it
3840 * walks the list of devices for this bus. If a device is already
3841 * attached, then it calls BUS_NEW_PASS() on that device. If the
3842 * device is not already attached, it attempts to attach a driver to
3843 * it.
3844 */
3845 void
bus_generic_new_pass(device_t dev)3846 bus_generic_new_pass(device_t dev)
3847 {
3848 driverlink_t dl;
3849 devclass_t dc;
3850 device_t child;
3851
3852 dc = dev->devclass;
3853 TAILQ_FOREACH(dl, &dc->drivers, link) {
3854 if (dl->pass == bus_current_pass)
3855 DEVICE_IDENTIFY(dl->driver, dev);
3856 }
3857 TAILQ_FOREACH(child, &dev->children, link) {
3858 if (child->state >= DS_ATTACHED)
3859 BUS_NEW_PASS(child);
3860 else if (child->state == DS_NOTPRESENT)
3861 device_probe_and_attach(child);
3862 }
3863 }
3864
3865 /**
3866 * @brief Helper function for implementing BUS_SETUP_INTR().
3867 *
3868 * This simple implementation of BUS_SETUP_INTR() simply calls the
3869 * BUS_SETUP_INTR() method of the parent of @p dev.
3870 */
3871 int
bus_generic_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)3872 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3873 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3874 void **cookiep)
3875 {
3876 /* Propagate up the bus hierarchy until someone handles it. */
3877 if (dev->parent)
3878 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3879 filter, intr, arg, cookiep));
3880 return (EINVAL);
3881 }
3882
3883 /**
3884 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3885 *
3886 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3887 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3888 */
3889 int
bus_generic_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)3890 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3891 void *cookie)
3892 {
3893 /* Propagate up the bus hierarchy until someone handles it. */
3894 if (dev->parent)
3895 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3896 return (EINVAL);
3897 }
3898
3899 /**
3900 * @brief Helper function for implementing BUS_SUSPEND_INTR().
3901 *
3902 * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3903 * BUS_SUSPEND_INTR() method of the parent of @p dev.
3904 */
3905 int
bus_generic_suspend_intr(device_t dev,device_t child,struct resource * irq)3906 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3907 {
3908 /* Propagate up the bus hierarchy until someone handles it. */
3909 if (dev->parent)
3910 return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3911 return (EINVAL);
3912 }
3913
3914 /**
3915 * @brief Helper function for implementing BUS_RESUME_INTR().
3916 *
3917 * This simple implementation of BUS_RESUME_INTR() simply calls the
3918 * BUS_RESUME_INTR() method of the parent of @p dev.
3919 */
3920 int
bus_generic_resume_intr(device_t dev,device_t child,struct resource * irq)3921 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3922 {
3923 /* Propagate up the bus hierarchy until someone handles it. */
3924 if (dev->parent)
3925 return (BUS_RESUME_INTR(dev->parent, child, irq));
3926 return (EINVAL);
3927 }
3928
3929 /**
3930 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3931 *
3932 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3933 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3934 */
3935 int
bus_generic_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)3936 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3937 rman_res_t start, rman_res_t end)
3938 {
3939 /* Propagate up the bus hierarchy until someone handles it. */
3940 if (dev->parent)
3941 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
3942 return (EINVAL);
3943 }
3944
3945 /*
3946 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3947 *
3948 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3949 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no
3950 * parent, no translation happens.
3951 */
3952 int
bus_generic_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)3953 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3954 rman_res_t *newstart)
3955 {
3956 if (dev->parent)
3957 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3958 newstart));
3959 *newstart = start;
3960 return (0);
3961 }
3962
3963 /**
3964 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3965 *
3966 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3967 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3968 */
3969 struct resource *
bus_generic_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3970 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3971 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3972 {
3973 /* Propagate up the bus hierarchy until someone handles it. */
3974 if (dev->parent)
3975 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3976 start, end, count, flags));
3977 return (NULL);
3978 }
3979
3980 /**
3981 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3982 *
3983 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3984 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3985 */
3986 int
bus_generic_release_resource(device_t dev,device_t child,struct resource * r)3987 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
3988 {
3989 /* Propagate up the bus hierarchy until someone handles it. */
3990 if (dev->parent)
3991 return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
3992 return (EINVAL);
3993 }
3994
3995 /**
3996 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3997 *
3998 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3999 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4000 */
4001 int
bus_generic_activate_resource(device_t dev,device_t child,struct resource * r)4002 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
4003 {
4004 /* Propagate up the bus hierarchy until someone handles it. */
4005 if (dev->parent)
4006 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
4007 return (EINVAL);
4008 }
4009
4010 /**
4011 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4012 *
4013 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4014 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4015 */
4016 int
bus_generic_deactivate_resource(device_t dev,device_t child,struct resource * r)4017 bus_generic_deactivate_resource(device_t dev, device_t child,
4018 struct resource *r)
4019 {
4020 /* Propagate up the bus hierarchy until someone handles it. */
4021 if (dev->parent)
4022 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
4023 return (EINVAL);
4024 }
4025
4026 /**
4027 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4028 *
4029 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4030 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4031 */
4032 int
bus_generic_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * args,struct resource_map * map)4033 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
4034 struct resource_map_request *args, struct resource_map *map)
4035 {
4036 /* Propagate up the bus hierarchy until someone handles it. */
4037 if (dev->parent)
4038 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
4039 return (EINVAL);
4040 }
4041
4042 /**
4043 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4044 *
4045 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4046 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4047 */
4048 int
bus_generic_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)4049 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
4050 struct resource_map *map)
4051 {
4052 /* Propagate up the bus hierarchy until someone handles it. */
4053 if (dev->parent)
4054 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
4055 return (EINVAL);
4056 }
4057
4058 /**
4059 * @brief Helper function for implementing BUS_BIND_INTR().
4060 *
4061 * This simple implementation of BUS_BIND_INTR() simply calls the
4062 * BUS_BIND_INTR() method of the parent of @p dev.
4063 */
4064 int
bus_generic_bind_intr(device_t dev,device_t child,struct resource * irq,int cpu)4065 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4066 int cpu)
4067 {
4068 /* Propagate up the bus hierarchy until someone handles it. */
4069 if (dev->parent)
4070 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4071 return (EINVAL);
4072 }
4073
4074 /**
4075 * @brief Helper function for implementing BUS_CONFIG_INTR().
4076 *
4077 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4078 * BUS_CONFIG_INTR() method of the parent of @p dev.
4079 */
4080 int
bus_generic_config_intr(device_t dev,int irq,enum intr_trigger trig,enum intr_polarity pol)4081 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4082 enum intr_polarity pol)
4083 {
4084 /* Propagate up the bus hierarchy until someone handles it. */
4085 if (dev->parent)
4086 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4087 return (EINVAL);
4088 }
4089
4090 /**
4091 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4092 *
4093 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4094 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4095 */
4096 int
bus_generic_describe_intr(device_t dev,device_t child,struct resource * irq,void * cookie,const char * descr)4097 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4098 void *cookie, const char *descr)
4099 {
4100 /* Propagate up the bus hierarchy until someone handles it. */
4101 if (dev->parent)
4102 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4103 descr));
4104 return (EINVAL);
4105 }
4106
4107 /**
4108 * @brief Helper function for implementing BUS_GET_CPUS().
4109 *
4110 * This simple implementation of BUS_GET_CPUS() simply calls the
4111 * BUS_GET_CPUS() method of the parent of @p dev.
4112 */
4113 int
bus_generic_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)4114 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4115 size_t setsize, cpuset_t *cpuset)
4116 {
4117 /* Propagate up the bus hierarchy until someone handles it. */
4118 if (dev->parent != NULL)
4119 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4120 return (EINVAL);
4121 }
4122
4123 /**
4124 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4125 *
4126 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4127 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4128 */
4129 bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev,device_t child)4130 bus_generic_get_dma_tag(device_t dev, device_t child)
4131 {
4132 /* Propagate up the bus hierarchy until someone handles it. */
4133 if (dev->parent != NULL)
4134 return (BUS_GET_DMA_TAG(dev->parent, child));
4135 return (NULL);
4136 }
4137
4138 /**
4139 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4140 *
4141 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4142 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4143 */
4144 bus_space_tag_t
bus_generic_get_bus_tag(device_t dev,device_t child)4145 bus_generic_get_bus_tag(device_t dev, device_t child)
4146 {
4147 /* Propagate up the bus hierarchy until someone handles it. */
4148 if (dev->parent != NULL)
4149 return (BUS_GET_BUS_TAG(dev->parent, child));
4150 return ((bus_space_tag_t)0);
4151 }
4152
4153 /**
4154 * @brief Helper function for implementing BUS_GET_RESOURCE().
4155 *
4156 * This implementation of BUS_GET_RESOURCE() uses the
4157 * resource_list_find() function to do most of the work. It calls
4158 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4159 * search.
4160 */
4161 int
bus_generic_rl_get_resource(device_t dev,device_t child,int type,int rid,rman_res_t * startp,rman_res_t * countp)4162 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4163 rman_res_t *startp, rman_res_t *countp)
4164 {
4165 struct resource_list * rl = NULL;
4166 struct resource_list_entry * rle = NULL;
4167
4168 rl = BUS_GET_RESOURCE_LIST(dev, child);
4169 if (!rl)
4170 return (EINVAL);
4171
4172 rle = resource_list_find(rl, type, rid);
4173 if (!rle)
4174 return (ENOENT);
4175
4176 if (startp)
4177 *startp = rle->start;
4178 if (countp)
4179 *countp = rle->count;
4180
4181 return (0);
4182 }
4183
4184 /**
4185 * @brief Helper function for implementing BUS_SET_RESOURCE().
4186 *
4187 * This implementation of BUS_SET_RESOURCE() uses the
4188 * resource_list_add() function to do most of the work. It calls
4189 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4190 * edit.
4191 */
4192 int
bus_generic_rl_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)4193 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4194 rman_res_t start, rman_res_t count)
4195 {
4196 struct resource_list * rl = NULL;
4197
4198 rl = BUS_GET_RESOURCE_LIST(dev, child);
4199 if (!rl)
4200 return (EINVAL);
4201
4202 resource_list_add(rl, type, rid, start, (start + count - 1), count);
4203
4204 return (0);
4205 }
4206
4207 /**
4208 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4209 *
4210 * This implementation of BUS_DELETE_RESOURCE() uses the
4211 * resource_list_delete() function to do most of the work. It calls
4212 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4213 * edit.
4214 */
4215 void
bus_generic_rl_delete_resource(device_t dev,device_t child,int type,int rid)4216 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4217 {
4218 struct resource_list * rl = NULL;
4219
4220 rl = BUS_GET_RESOURCE_LIST(dev, child);
4221 if (!rl)
4222 return;
4223
4224 resource_list_delete(rl, type, rid);
4225
4226 return;
4227 }
4228
4229 /**
4230 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4231 *
4232 * This implementation of BUS_RELEASE_RESOURCE() uses the
4233 * resource_list_release() function to do most of the work. It calls
4234 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4235 */
4236 int
bus_generic_rl_release_resource(device_t dev,device_t child,struct resource * r)4237 bus_generic_rl_release_resource(device_t dev, device_t child,
4238 struct resource *r)
4239 {
4240 struct resource_list * rl = NULL;
4241
4242 if (device_get_parent(child) != dev)
4243 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4244
4245 rl = BUS_GET_RESOURCE_LIST(dev, child);
4246 if (!rl)
4247 return (EINVAL);
4248
4249 return (resource_list_release(rl, dev, child, r));
4250 }
4251
4252 /**
4253 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4254 *
4255 * This implementation of BUS_ALLOC_RESOURCE() uses the
4256 * resource_list_alloc() function to do most of the work. It calls
4257 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4258 */
4259 struct resource *
bus_generic_rl_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4260 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4261 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4262 {
4263 struct resource_list * rl = NULL;
4264
4265 if (device_get_parent(child) != dev)
4266 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4267 type, rid, start, end, count, flags));
4268
4269 rl = BUS_GET_RESOURCE_LIST(dev, child);
4270 if (!rl)
4271 return (NULL);
4272
4273 return (resource_list_alloc(rl, dev, child, type, rid,
4274 start, end, count, flags));
4275 }
4276
4277 /**
4278 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4279 *
4280 * This implementation of BUS_ALLOC_RESOURCE() allocates a
4281 * resource from a resource manager. It uses BUS_GET_RMAN()
4282 * to obtain the resource manager.
4283 */
4284 struct resource *
bus_generic_rman_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4285 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4286 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4287 {
4288 struct resource *r;
4289 struct rman *rm;
4290
4291 rm = BUS_GET_RMAN(dev, type, flags);
4292 if (rm == NULL)
4293 return (NULL);
4294
4295 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4296 child);
4297 if (r == NULL)
4298 return (NULL);
4299 rman_set_rid(r, *rid);
4300 rman_set_type(r, type);
4301
4302 if (flags & RF_ACTIVE) {
4303 if (bus_activate_resource(child, type, *rid, r) != 0) {
4304 rman_release_resource(r);
4305 return (NULL);
4306 }
4307 }
4308
4309 return (r);
4310 }
4311
4312 /**
4313 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4314 *
4315 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4316 * if they were allocated from the resource manager returned by
4317 * BUS_GET_RMAN().
4318 */
4319 int
bus_generic_rman_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)4320 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4321 struct resource *r, rman_res_t start, rman_res_t end)
4322 {
4323 struct rman *rm;
4324
4325 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4326 if (rm == NULL)
4327 return (ENXIO);
4328 if (!rman_is_region_manager(r, rm))
4329 return (EINVAL);
4330 return (rman_adjust_resource(r, start, end));
4331 }
4332
4333 /**
4334 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4335 *
4336 * This implementation of BUS_RELEASE_RESOURCE() releases resources
4337 * allocated by bus_generic_rman_alloc_resource.
4338 */
4339 int
bus_generic_rman_release_resource(device_t dev,device_t child,struct resource * r)4340 bus_generic_rman_release_resource(device_t dev, device_t child,
4341 struct resource *r)
4342 {
4343 #ifdef INVARIANTS
4344 struct rman *rm;
4345 #endif
4346 int error;
4347
4348 #ifdef INVARIANTS
4349 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4350 KASSERT(rman_is_region_manager(r, rm),
4351 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4352 #endif
4353
4354 if (rman_get_flags(r) & RF_ACTIVE) {
4355 error = bus_deactivate_resource(child, r);
4356 if (error != 0)
4357 return (error);
4358 }
4359 return (rman_release_resource(r));
4360 }
4361
4362 /**
4363 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4364 *
4365 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4366 * allocated by bus_generic_rman_alloc_resource.
4367 */
4368 int
bus_generic_rman_activate_resource(device_t dev,device_t child,struct resource * r)4369 bus_generic_rman_activate_resource(device_t dev, device_t child,
4370 struct resource *r)
4371 {
4372 struct resource_map map;
4373 #ifdef INVARIANTS
4374 struct rman *rm;
4375 #endif
4376 int error, type;
4377
4378 type = rman_get_type(r);
4379 #ifdef INVARIANTS
4380 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4381 KASSERT(rman_is_region_manager(r, rm),
4382 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4383 #endif
4384
4385 error = rman_activate_resource(r);
4386 if (error != 0)
4387 return (error);
4388
4389 switch (type) {
4390 case SYS_RES_IOPORT:
4391 case SYS_RES_MEMORY:
4392 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4393 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4394 if (error != 0)
4395 break;
4396
4397 rman_set_mapping(r, &map);
4398 }
4399 break;
4400 #ifdef INTRNG
4401 case SYS_RES_IRQ:
4402 error = intr_activate_irq(child, r);
4403 break;
4404 #endif
4405 }
4406 if (error != 0)
4407 rman_deactivate_resource(r);
4408 return (error);
4409 }
4410
4411 /**
4412 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4413 *
4414 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4415 * resources allocated by bus_generic_rman_alloc_resource.
4416 */
4417 int
bus_generic_rman_deactivate_resource(device_t dev,device_t child,struct resource * r)4418 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4419 struct resource *r)
4420 {
4421 struct resource_map map;
4422 #ifdef INVARIANTS
4423 struct rman *rm;
4424 #endif
4425 int error, type;
4426
4427 type = rman_get_type(r);
4428 #ifdef INVARIANTS
4429 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4430 KASSERT(rman_is_region_manager(r, rm),
4431 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4432 #endif
4433
4434 error = rman_deactivate_resource(r);
4435 if (error != 0)
4436 return (error);
4437
4438 switch (type) {
4439 case SYS_RES_IOPORT:
4440 case SYS_RES_MEMORY:
4441 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4442 rman_get_mapping(r, &map);
4443 BUS_UNMAP_RESOURCE(dev, child, r, &map);
4444 }
4445 break;
4446 #ifdef INTRNG
4447 case SYS_RES_IRQ:
4448 intr_deactivate_irq(child, r);
4449 break;
4450 #endif
4451 }
4452 return (0);
4453 }
4454
4455 /**
4456 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4457 *
4458 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4459 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4460 */
4461 int
bus_generic_child_present(device_t dev,device_t child)4462 bus_generic_child_present(device_t dev, device_t child)
4463 {
4464 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4465 }
4466
4467 /**
4468 * @brief Helper function for implementing BUS_GET_DOMAIN().
4469 *
4470 * This simple implementation of BUS_GET_DOMAIN() calls the
4471 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev
4472 * does not have a parent, the function fails with ENOENT.
4473 */
4474 int
bus_generic_get_domain(device_t dev,device_t child,int * domain)4475 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4476 {
4477 if (dev->parent)
4478 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4479
4480 return (ENOENT);
4481 }
4482
4483 /**
4484 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4485 *
4486 * This function knows how to (a) pass the request up the tree if there's
4487 * a parent and (b) Knows how to supply a FreeBSD locator.
4488 *
4489 * @param bus bus in the walk up the tree
4490 * @param child leaf node to print information about
4491 * @param locator BUS_LOCATOR_xxx string for locator
4492 * @param sb Buffer to print information into
4493 */
4494 int
bus_generic_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)4495 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4496 struct sbuf *sb)
4497 {
4498 int rv = 0;
4499 device_t parent;
4500
4501 /*
4502 * We don't recurse on ACPI since either we know the handle for the
4503 * device or we don't. And if we're in the generic routine, we don't
4504 * have a ACPI override. All other locators build up a path by having
4505 * their parents create a path and then adding the path element for this
4506 * node. That's why we recurse with parent, bus rather than the typical
4507 * parent, child: each spot in the tree is independent of what our child
4508 * will do with this path.
4509 */
4510 parent = device_get_parent(bus);
4511 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4512 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4513 }
4514 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4515 if (rv == 0) {
4516 sbuf_printf(sb, "/%s", device_get_nameunit(child));
4517 }
4518 return (rv);
4519 }
4520 /*
4521 * Don't know what to do. So assume we do nothing. Not sure that's
4522 * the right thing, but keeps us from having a big list here.
4523 */
4524 return (0);
4525 }
4526
4527
4528 /**
4529 * @brief Helper function for implementing BUS_RESCAN().
4530 *
4531 * This null implementation of BUS_RESCAN() always fails to indicate
4532 * the bus does not support rescanning.
4533 */
4534 int
bus_null_rescan(device_t dev)4535 bus_null_rescan(device_t dev)
4536 {
4537 return (ENODEV);
4538 }
4539
4540 /*
4541 * Some convenience functions to make it easier for drivers to use the
4542 * resource-management functions. All these really do is hide the
4543 * indirection through the parent's method table, making for slightly
4544 * less-wordy code. In the future, it might make sense for this code
4545 * to maintain some sort of a list of resources allocated by each device.
4546 */
4547
4548 int
bus_alloc_resources(device_t dev,struct resource_spec * rs,struct resource ** res)4549 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4550 struct resource **res)
4551 {
4552 int i;
4553
4554 for (i = 0; rs[i].type != -1; i++)
4555 res[i] = NULL;
4556 for (i = 0; rs[i].type != -1; i++) {
4557 res[i] = bus_alloc_resource_any(dev,
4558 rs[i].type, &rs[i].rid, rs[i].flags);
4559 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4560 bus_release_resources(dev, rs, res);
4561 return (ENXIO);
4562 }
4563 }
4564 return (0);
4565 }
4566
4567 void
bus_release_resources(device_t dev,const struct resource_spec * rs,struct resource ** res)4568 bus_release_resources(device_t dev, const struct resource_spec *rs,
4569 struct resource **res)
4570 {
4571 int i;
4572
4573 for (i = 0; rs[i].type != -1; i++)
4574 if (res[i] != NULL) {
4575 bus_release_resource(
4576 dev, rs[i].type, rs[i].rid, res[i]);
4577 res[i] = NULL;
4578 }
4579 }
4580
4581 /**
4582 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4583 *
4584 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4585 * parent of @p dev.
4586 */
4587 struct resource *
bus_alloc_resource(device_t dev,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4588 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4589 rman_res_t end, rman_res_t count, u_int flags)
4590 {
4591 struct resource *res;
4592
4593 if (dev->parent == NULL)
4594 return (NULL);
4595 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4596 count, flags);
4597 return (res);
4598 }
4599
4600 /**
4601 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4602 *
4603 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4604 * parent of @p dev.
4605 */
4606 int
bus_adjust_resource(device_t dev,struct resource * r,rman_res_t start,rman_res_t end)4607 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4608 rman_res_t end)
4609 {
4610 if (dev->parent == NULL)
4611 return (EINVAL);
4612 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4613 }
4614
4615 int
bus_adjust_resource_old(device_t dev,int type __unused,struct resource * r,rman_res_t start,rman_res_t end)4616 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4617 rman_res_t start, rman_res_t end)
4618 {
4619 return (bus_adjust_resource(dev, r, start, end));
4620 }
4621
4622 /**
4623 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4624 *
4625 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4626 * parent of @p dev.
4627 */
4628 int
bus_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4629 bus_translate_resource(device_t dev, int type, rman_res_t start,
4630 rman_res_t *newstart)
4631 {
4632 if (dev->parent == NULL)
4633 return (EINVAL);
4634 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4635 }
4636
4637 /**
4638 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4639 *
4640 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4641 * parent of @p dev.
4642 */
4643 int
bus_activate_resource(device_t dev,struct resource * r)4644 bus_activate_resource(device_t dev, struct resource *r)
4645 {
4646 if (dev->parent == NULL)
4647 return (EINVAL);
4648 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4649 }
4650
4651 int
bus_activate_resource_old(device_t dev,int type,int rid,struct resource * r)4652 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4653 {
4654 return (bus_activate_resource(dev, r));
4655 }
4656
4657 /**
4658 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4659 *
4660 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4661 * parent of @p dev.
4662 */
4663 int
bus_deactivate_resource(device_t dev,struct resource * r)4664 bus_deactivate_resource(device_t dev, struct resource *r)
4665 {
4666 if (dev->parent == NULL)
4667 return (EINVAL);
4668 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4669 }
4670
4671 int
bus_deactivate_resource_old(device_t dev,int type,int rid,struct resource * r)4672 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4673 {
4674 return (bus_deactivate_resource(dev, r));
4675 }
4676
4677 /**
4678 * @brief Wrapper function for BUS_MAP_RESOURCE().
4679 *
4680 * This function simply calls the BUS_MAP_RESOURCE() method of the
4681 * parent of @p dev.
4682 */
4683 int
bus_map_resource(device_t dev,struct resource * r,struct resource_map_request * args,struct resource_map * map)4684 bus_map_resource(device_t dev, struct resource *r,
4685 struct resource_map_request *args, struct resource_map *map)
4686 {
4687 if (dev->parent == NULL)
4688 return (EINVAL);
4689 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4690 }
4691
4692 int
bus_map_resource_old(device_t dev,int type,struct resource * r,struct resource_map_request * args,struct resource_map * map)4693 bus_map_resource_old(device_t dev, int type, struct resource *r,
4694 struct resource_map_request *args, struct resource_map *map)
4695 {
4696 return (bus_map_resource(dev, r, args, map));
4697 }
4698
4699 /**
4700 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4701 *
4702 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4703 * parent of @p dev.
4704 */
4705 int
bus_unmap_resource(device_t dev,struct resource * r,struct resource_map * map)4706 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4707 {
4708 if (dev->parent == NULL)
4709 return (EINVAL);
4710 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4711 }
4712
4713 int
bus_unmap_resource_old(device_t dev,int type,struct resource * r,struct resource_map * map)4714 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4715 struct resource_map *map)
4716 {
4717 return (bus_unmap_resource(dev, r, map));
4718 }
4719
4720 /**
4721 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4722 *
4723 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4724 * parent of @p dev.
4725 */
4726 int
bus_release_resource(device_t dev,struct resource * r)4727 bus_release_resource(device_t dev, struct resource *r)
4728 {
4729 int rv;
4730
4731 if (dev->parent == NULL)
4732 return (EINVAL);
4733 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4734 return (rv);
4735 }
4736
4737 int
bus_release_resource_old(device_t dev,int type,int rid,struct resource * r)4738 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4739 {
4740 return (bus_release_resource(dev, r));
4741 }
4742
4743 /**
4744 * @brief Wrapper function for BUS_SETUP_INTR().
4745 *
4746 * This function simply calls the BUS_SETUP_INTR() method of the
4747 * parent of @p dev.
4748 */
4749 int
bus_setup_intr(device_t dev,struct resource * r,int flags,driver_filter_t filter,driver_intr_t handler,void * arg,void ** cookiep)4750 bus_setup_intr(device_t dev, struct resource *r, int flags,
4751 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4752 {
4753 int error;
4754
4755 if (dev->parent == NULL)
4756 return (EINVAL);
4757 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4758 arg, cookiep);
4759 if (error != 0)
4760 return (error);
4761 if (handler != NULL && !(flags & INTR_MPSAFE))
4762 device_printf(dev, "[GIANT-LOCKED]\n");
4763 return (0);
4764 }
4765
4766 /**
4767 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4768 *
4769 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4770 * parent of @p dev.
4771 */
4772 int
bus_teardown_intr(device_t dev,struct resource * r,void * cookie)4773 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4774 {
4775 if (dev->parent == NULL)
4776 return (EINVAL);
4777 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4778 }
4779
4780 /**
4781 * @brief Wrapper function for BUS_SUSPEND_INTR().
4782 *
4783 * This function simply calls the BUS_SUSPEND_INTR() method of the
4784 * parent of @p dev.
4785 */
4786 int
bus_suspend_intr(device_t dev,struct resource * r)4787 bus_suspend_intr(device_t dev, struct resource *r)
4788 {
4789 if (dev->parent == NULL)
4790 return (EINVAL);
4791 return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4792 }
4793
4794 /**
4795 * @brief Wrapper function for BUS_RESUME_INTR().
4796 *
4797 * This function simply calls the BUS_RESUME_INTR() method of the
4798 * parent of @p dev.
4799 */
4800 int
bus_resume_intr(device_t dev,struct resource * r)4801 bus_resume_intr(device_t dev, struct resource *r)
4802 {
4803 if (dev->parent == NULL)
4804 return (EINVAL);
4805 return (BUS_RESUME_INTR(dev->parent, dev, r));
4806 }
4807
4808 /**
4809 * @brief Wrapper function for BUS_BIND_INTR().
4810 *
4811 * This function simply calls the BUS_BIND_INTR() method of the
4812 * parent of @p dev.
4813 */
4814 int
bus_bind_intr(device_t dev,struct resource * r,int cpu)4815 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4816 {
4817 if (dev->parent == NULL)
4818 return (EINVAL);
4819 return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4820 }
4821
4822 /**
4823 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4824 *
4825 * This function first formats the requested description into a
4826 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4827 * the parent of @p dev.
4828 */
4829 int
bus_describe_intr(device_t dev,struct resource * irq,void * cookie,const char * fmt,...)4830 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4831 const char *fmt, ...)
4832 {
4833 va_list ap;
4834 char descr[MAXCOMLEN + 1];
4835
4836 if (dev->parent == NULL)
4837 return (EINVAL);
4838 va_start(ap, fmt);
4839 vsnprintf(descr, sizeof(descr), fmt, ap);
4840 va_end(ap);
4841 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4842 }
4843
4844 /**
4845 * @brief Wrapper function for BUS_SET_RESOURCE().
4846 *
4847 * This function simply calls the BUS_SET_RESOURCE() method of the
4848 * parent of @p dev.
4849 */
4850 int
bus_set_resource(device_t dev,int type,int rid,rman_res_t start,rman_res_t count)4851 bus_set_resource(device_t dev, int type, int rid,
4852 rman_res_t start, rman_res_t count)
4853 {
4854 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4855 start, count));
4856 }
4857
4858 /**
4859 * @brief Wrapper function for BUS_GET_RESOURCE().
4860 *
4861 * This function simply calls the BUS_GET_RESOURCE() method of the
4862 * parent of @p dev.
4863 */
4864 int
bus_get_resource(device_t dev,int type,int rid,rman_res_t * startp,rman_res_t * countp)4865 bus_get_resource(device_t dev, int type, int rid,
4866 rman_res_t *startp, rman_res_t *countp)
4867 {
4868 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4869 startp, countp));
4870 }
4871
4872 /**
4873 * @brief Wrapper function for BUS_GET_RESOURCE().
4874 *
4875 * This function simply calls the BUS_GET_RESOURCE() method of the
4876 * parent of @p dev and returns the start value.
4877 */
4878 rman_res_t
bus_get_resource_start(device_t dev,int type,int rid)4879 bus_get_resource_start(device_t dev, int type, int rid)
4880 {
4881 rman_res_t start;
4882 rman_res_t count;
4883 int error;
4884
4885 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4886 &start, &count);
4887 if (error)
4888 return (0);
4889 return (start);
4890 }
4891
4892 /**
4893 * @brief Wrapper function for BUS_GET_RESOURCE().
4894 *
4895 * This function simply calls the BUS_GET_RESOURCE() method of the
4896 * parent of @p dev and returns the count value.
4897 */
4898 rman_res_t
bus_get_resource_count(device_t dev,int type,int rid)4899 bus_get_resource_count(device_t dev, int type, int rid)
4900 {
4901 rman_res_t start;
4902 rman_res_t count;
4903 int error;
4904
4905 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4906 &start, &count);
4907 if (error)
4908 return (0);
4909 return (count);
4910 }
4911
4912 /**
4913 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4914 *
4915 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4916 * parent of @p dev.
4917 */
4918 void
bus_delete_resource(device_t dev,int type,int rid)4919 bus_delete_resource(device_t dev, int type, int rid)
4920 {
4921 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4922 }
4923
4924 /**
4925 * @brief Wrapper function for BUS_CHILD_PRESENT().
4926 *
4927 * This function simply calls the BUS_CHILD_PRESENT() method of the
4928 * parent of @p dev.
4929 */
4930 int
bus_child_present(device_t child)4931 bus_child_present(device_t child)
4932 {
4933 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4934 }
4935
4936 /**
4937 * @brief Wrapper function for BUS_CHILD_PNPINFO().
4938 *
4939 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4940 * dev.
4941 */
4942 int
bus_child_pnpinfo(device_t child,struct sbuf * sb)4943 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4944 {
4945 device_t parent;
4946
4947 parent = device_get_parent(child);
4948 if (parent == NULL)
4949 return (0);
4950 return (BUS_CHILD_PNPINFO(parent, child, sb));
4951 }
4952
4953 /**
4954 * @brief Generic implementation that does nothing for bus_child_pnpinfo
4955 *
4956 * This function has the right signature and returns 0 since the sbuf is passed
4957 * to us to append to.
4958 */
4959 int
bus_generic_child_pnpinfo(device_t dev,device_t child,struct sbuf * sb)4960 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
4961 {
4962 return (0);
4963 }
4964
4965 /**
4966 * @brief Wrapper function for BUS_CHILD_LOCATION().
4967 *
4968 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
4969 * @p dev.
4970 */
4971 int
bus_child_location(device_t child,struct sbuf * sb)4972 bus_child_location(device_t child, struct sbuf *sb)
4973 {
4974 device_t parent;
4975
4976 parent = device_get_parent(child);
4977 if (parent == NULL)
4978 return (0);
4979 return (BUS_CHILD_LOCATION(parent, child, sb));
4980 }
4981
4982 /**
4983 * @brief Generic implementation that does nothing for bus_child_location
4984 *
4985 * This function has the right signature and returns 0 since the sbuf is passed
4986 * to us to append to.
4987 */
4988 int
bus_generic_child_location(device_t dev,device_t child,struct sbuf * sb)4989 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
4990 {
4991 return (0);
4992 }
4993
4994 /**
4995 * @brief Wrapper function for BUS_GET_CPUS().
4996 *
4997 * This function simply calls the BUS_GET_CPUS() method of the
4998 * parent of @p dev.
4999 */
5000 int
bus_get_cpus(device_t dev,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5001 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5002 {
5003 device_t parent;
5004
5005 parent = device_get_parent(dev);
5006 if (parent == NULL)
5007 return (EINVAL);
5008 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5009 }
5010
5011 /**
5012 * @brief Wrapper function for BUS_GET_DMA_TAG().
5013 *
5014 * This function simply calls the BUS_GET_DMA_TAG() method of the
5015 * parent of @p dev.
5016 */
5017 bus_dma_tag_t
bus_get_dma_tag(device_t dev)5018 bus_get_dma_tag(device_t dev)
5019 {
5020 device_t parent;
5021
5022 parent = device_get_parent(dev);
5023 if (parent == NULL)
5024 return (NULL);
5025 return (BUS_GET_DMA_TAG(parent, dev));
5026 }
5027
5028 /**
5029 * @brief Wrapper function for BUS_GET_BUS_TAG().
5030 *
5031 * This function simply calls the BUS_GET_BUS_TAG() method of the
5032 * parent of @p dev.
5033 */
5034 bus_space_tag_t
bus_get_bus_tag(device_t dev)5035 bus_get_bus_tag(device_t dev)
5036 {
5037 device_t parent;
5038
5039 parent = device_get_parent(dev);
5040 if (parent == NULL)
5041 return ((bus_space_tag_t)0);
5042 return (BUS_GET_BUS_TAG(parent, dev));
5043 }
5044
5045 /**
5046 * @brief Wrapper function for BUS_GET_DOMAIN().
5047 *
5048 * This function simply calls the BUS_GET_DOMAIN() method of the
5049 * parent of @p dev.
5050 */
5051 int
bus_get_domain(device_t dev,int * domain)5052 bus_get_domain(device_t dev, int *domain)
5053 {
5054 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5055 }
5056
5057 /* Resume all devices and then notify userland that we're up again. */
5058 static int
root_resume(device_t dev)5059 root_resume(device_t dev)
5060 {
5061 int error;
5062
5063 error = bus_generic_resume(dev);
5064 if (error == 0) {
5065 devctl_notify("kernel", "power", "resume", NULL);
5066 }
5067 return (error);
5068 }
5069
5070 static int
root_print_child(device_t dev,device_t child)5071 root_print_child(device_t dev, device_t child)
5072 {
5073 int retval = 0;
5074
5075 retval += bus_print_child_header(dev, child);
5076 retval += printf("\n");
5077
5078 return (retval);
5079 }
5080
5081 static int
root_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)5082 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5083 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5084 {
5085 /*
5086 * If an interrupt mapping gets to here something bad has happened.
5087 */
5088 panic("root_setup_intr");
5089 }
5090
5091 /*
5092 * If we get here, assume that the device is permanent and really is
5093 * present in the system. Removable bus drivers are expected to intercept
5094 * this call long before it gets here. We return -1 so that drivers that
5095 * really care can check vs -1 or some ERRNO returned higher in the food
5096 * chain.
5097 */
5098 static int
root_child_present(device_t dev,device_t child)5099 root_child_present(device_t dev, device_t child)
5100 {
5101 return (-1);
5102 }
5103
5104 static int
root_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5105 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5106 cpuset_t *cpuset)
5107 {
5108 switch (op) {
5109 case INTR_CPUS:
5110 /* Default to returning the set of all CPUs. */
5111 if (setsize != sizeof(cpuset_t))
5112 return (EINVAL);
5113 *cpuset = all_cpus;
5114 return (0);
5115 default:
5116 return (EINVAL);
5117 }
5118 }
5119
5120 static kobj_method_t root_methods[] = {
5121 /* Device interface */
5122 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
5123 KOBJMETHOD(device_suspend, bus_generic_suspend),
5124 KOBJMETHOD(device_resume, root_resume),
5125
5126 /* Bus interface */
5127 KOBJMETHOD(bus_print_child, root_print_child),
5128 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
5129 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
5130 KOBJMETHOD(bus_setup_intr, root_setup_intr),
5131 KOBJMETHOD(bus_child_present, root_child_present),
5132 KOBJMETHOD(bus_get_cpus, root_get_cpus),
5133
5134 KOBJMETHOD_END
5135 };
5136
5137 static driver_t root_driver = {
5138 "root",
5139 root_methods,
5140 1, /* no softc */
5141 };
5142
5143 device_t root_bus;
5144 devclass_t root_devclass;
5145
5146 static int
root_bus_module_handler(module_t mod,int what,void * arg)5147 root_bus_module_handler(module_t mod, int what, void* arg)
5148 {
5149 switch (what) {
5150 case MOD_LOAD:
5151 TAILQ_INIT(&bus_data_devices);
5152 kobj_class_compile((kobj_class_t) &root_driver);
5153 root_bus = make_device(NULL, "root", 0);
5154 root_bus->desc = "System root bus";
5155 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5156 root_bus->driver = &root_driver;
5157 root_bus->state = DS_ATTACHED;
5158 root_devclass = devclass_find_internal("root", NULL, FALSE);
5159 devctl2_init();
5160 return (0);
5161
5162 case MOD_SHUTDOWN:
5163 device_shutdown(root_bus);
5164 return (0);
5165 default:
5166 return (EOPNOTSUPP);
5167 }
5168
5169 return (0);
5170 }
5171
5172 static moduledata_t root_bus_mod = {
5173 "rootbus",
5174 root_bus_module_handler,
5175 NULL
5176 };
5177 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5178
5179 /**
5180 * @brief Automatically configure devices
5181 *
5182 * This function begins the autoconfiguration process by calling
5183 * device_probe_and_attach() for each child of the @c root0 device.
5184 */
5185 void
root_bus_configure(void)5186 root_bus_configure(void)
5187 {
5188 PDEBUG(("."));
5189
5190 /* Eventually this will be split up, but this is sufficient for now. */
5191 bus_set_pass(BUS_PASS_DEFAULT);
5192 }
5193
5194 /**
5195 * @brief Module handler for registering device drivers
5196 *
5197 * This module handler is used to automatically register device
5198 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5199 * devclass_add_driver() for the driver described by the
5200 * driver_module_data structure pointed to by @p arg
5201 */
5202 int
driver_module_handler(module_t mod,int what,void * arg)5203 driver_module_handler(module_t mod, int what, void *arg)
5204 {
5205 struct driver_module_data *dmd;
5206 devclass_t bus_devclass;
5207 kobj_class_t driver;
5208 int error, pass;
5209
5210 dmd = (struct driver_module_data *)arg;
5211 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5212 error = 0;
5213
5214 switch (what) {
5215 case MOD_LOAD:
5216 if (dmd->dmd_chainevh)
5217 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5218
5219 pass = dmd->dmd_pass;
5220 driver = dmd->dmd_driver;
5221 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5222 DRIVERNAME(driver), dmd->dmd_busname, pass));
5223 error = devclass_add_driver(bus_devclass, driver, pass,
5224 dmd->dmd_devclass);
5225 break;
5226
5227 case MOD_UNLOAD:
5228 PDEBUG(("Unloading module: driver %s from bus %s",
5229 DRIVERNAME(dmd->dmd_driver),
5230 dmd->dmd_busname));
5231 error = devclass_delete_driver(bus_devclass,
5232 dmd->dmd_driver);
5233
5234 if (!error && dmd->dmd_chainevh)
5235 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5236 break;
5237 case MOD_QUIESCE:
5238 PDEBUG(("Quiesce module: driver %s from bus %s",
5239 DRIVERNAME(dmd->dmd_driver),
5240 dmd->dmd_busname));
5241 error = devclass_quiesce_driver(bus_devclass,
5242 dmd->dmd_driver);
5243
5244 if (!error && dmd->dmd_chainevh)
5245 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5246 break;
5247 default:
5248 error = EOPNOTSUPP;
5249 break;
5250 }
5251
5252 return (error);
5253 }
5254
5255 /**
5256 * @brief Enumerate all hinted devices for this bus.
5257 *
5258 * Walks through the hints for this bus and calls the bus_hinted_child
5259 * routine for each one it fines. It searches first for the specific
5260 * bus that's being probed for hinted children (eg isa0), and then for
5261 * generic children (eg isa).
5262 *
5263 * @param dev bus device to enumerate
5264 */
5265 void
bus_enumerate_hinted_children(device_t bus)5266 bus_enumerate_hinted_children(device_t bus)
5267 {
5268 int i;
5269 const char *dname, *busname;
5270 int dunit;
5271
5272 /*
5273 * enumerate all devices on the specific bus
5274 */
5275 busname = device_get_nameunit(bus);
5276 i = 0;
5277 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5278 BUS_HINTED_CHILD(bus, dname, dunit);
5279
5280 /*
5281 * and all the generic ones.
5282 */
5283 busname = device_get_name(bus);
5284 i = 0;
5285 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5286 BUS_HINTED_CHILD(bus, dname, dunit);
5287 }
5288
5289 #ifdef BUS_DEBUG
5290
5291 /* the _short versions avoid iteration by not calling anything that prints
5292 * more than oneliners. I love oneliners.
5293 */
5294
5295 static void
print_device_short(device_t dev,int indent)5296 print_device_short(device_t dev, int indent)
5297 {
5298 if (!dev)
5299 return;
5300
5301 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5302 dev->unit, dev->desc,
5303 (dev->parent? "":"no "),
5304 (TAILQ_EMPTY(&dev->children)? "no ":""),
5305 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5306 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5307 (dev->flags&DF_WILDCARD? "wildcard,":""),
5308 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5309 (dev->flags&DF_SUSPENDED? "suspended,":""),
5310 (dev->ivars? "":"no "),
5311 (dev->softc? "":"no "),
5312 dev->busy));
5313 }
5314
5315 static void
print_device(device_t dev,int indent)5316 print_device(device_t dev, int indent)
5317 {
5318 if (!dev)
5319 return;
5320
5321 print_device_short(dev, indent);
5322
5323 indentprintf(("Parent:\n"));
5324 print_device_short(dev->parent, indent+1);
5325 indentprintf(("Driver:\n"));
5326 print_driver_short(dev->driver, indent+1);
5327 indentprintf(("Devclass:\n"));
5328 print_devclass_short(dev->devclass, indent+1);
5329 }
5330
5331 void
print_device_tree_short(device_t dev,int indent)5332 print_device_tree_short(device_t dev, int indent)
5333 /* print the device and all its children (indented) */
5334 {
5335 device_t child;
5336
5337 if (!dev)
5338 return;
5339
5340 print_device_short(dev, indent);
5341
5342 TAILQ_FOREACH(child, &dev->children, link) {
5343 print_device_tree_short(child, indent+1);
5344 }
5345 }
5346
5347 void
print_device_tree(device_t dev,int indent)5348 print_device_tree(device_t dev, int indent)
5349 /* print the device and all its children (indented) */
5350 {
5351 device_t child;
5352
5353 if (!dev)
5354 return;
5355
5356 print_device(dev, indent);
5357
5358 TAILQ_FOREACH(child, &dev->children, link) {
5359 print_device_tree(child, indent+1);
5360 }
5361 }
5362
5363 static void
print_driver_short(driver_t * driver,int indent)5364 print_driver_short(driver_t *driver, int indent)
5365 {
5366 if (!driver)
5367 return;
5368
5369 indentprintf(("driver %s: softc size = %zd\n",
5370 driver->name, driver->size));
5371 }
5372
5373 static void
print_driver(driver_t * driver,int indent)5374 print_driver(driver_t *driver, int indent)
5375 {
5376 if (!driver)
5377 return;
5378
5379 print_driver_short(driver, indent);
5380 }
5381
5382 static void
print_driver_list(driver_list_t drivers,int indent)5383 print_driver_list(driver_list_t drivers, int indent)
5384 {
5385 driverlink_t driver;
5386
5387 TAILQ_FOREACH(driver, &drivers, link) {
5388 print_driver(driver->driver, indent);
5389 }
5390 }
5391
5392 static void
print_devclass_short(devclass_t dc,int indent)5393 print_devclass_short(devclass_t dc, int indent)
5394 {
5395 if ( !dc )
5396 return;
5397
5398 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5399 }
5400
5401 static void
print_devclass(devclass_t dc,int indent)5402 print_devclass(devclass_t dc, int indent)
5403 {
5404 int i;
5405
5406 if ( !dc )
5407 return;
5408
5409 print_devclass_short(dc, indent);
5410 indentprintf(("Drivers:\n"));
5411 print_driver_list(dc->drivers, indent+1);
5412
5413 indentprintf(("Devices:\n"));
5414 for (i = 0; i < dc->maxunit; i++)
5415 if (dc->devices[i])
5416 print_device(dc->devices[i], indent+1);
5417 }
5418
5419 void
print_devclass_list_short(void)5420 print_devclass_list_short(void)
5421 {
5422 devclass_t dc;
5423
5424 printf("Short listing of devclasses, drivers & devices:\n");
5425 TAILQ_FOREACH(dc, &devclasses, link) {
5426 print_devclass_short(dc, 0);
5427 }
5428 }
5429
5430 void
print_devclass_list(void)5431 print_devclass_list(void)
5432 {
5433 devclass_t dc;
5434
5435 printf("Full listing of devclasses, drivers & devices:\n");
5436 TAILQ_FOREACH(dc, &devclasses, link) {
5437 print_devclass(dc, 0);
5438 }
5439 }
5440
5441 #endif
5442
5443 /*
5444 * User-space access to the device tree.
5445 *
5446 * We implement a small set of nodes:
5447 *
5448 * hw.bus Single integer read method to obtain the
5449 * current generation count.
5450 * hw.bus.devices Reads the entire device tree in flat space.
5451 * hw.bus.rman Resource manager interface
5452 *
5453 * We might like to add the ability to scan devclasses and/or drivers to
5454 * determine what else is currently loaded/available.
5455 */
5456
5457 static int
sysctl_bus_info(SYSCTL_HANDLER_ARGS)5458 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5459 {
5460 struct u_businfo ubus;
5461
5462 ubus.ub_version = BUS_USER_VERSION;
5463 ubus.ub_generation = bus_data_generation;
5464
5465 return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5466 }
5467 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5468 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5469 "bus-related data");
5470
5471 static int
sysctl_devices(SYSCTL_HANDLER_ARGS)5472 sysctl_devices(SYSCTL_HANDLER_ARGS)
5473 {
5474 struct sbuf sb;
5475 int *name = (int *)arg1;
5476 u_int namelen = arg2;
5477 int index;
5478 device_t dev;
5479 struct u_device *udev;
5480 int error;
5481
5482 if (namelen != 2)
5483 return (EINVAL);
5484
5485 if (bus_data_generation_check(name[0]))
5486 return (EINVAL);
5487
5488 index = name[1];
5489
5490 /*
5491 * Scan the list of devices, looking for the requested index.
5492 */
5493 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5494 if (index-- == 0)
5495 break;
5496 }
5497 if (dev == NULL)
5498 return (ENOENT);
5499
5500 /*
5501 * Populate the return item, careful not to overflow the buffer.
5502 */
5503 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5504 udev->dv_handle = (uintptr_t)dev;
5505 udev->dv_parent = (uintptr_t)dev->parent;
5506 udev->dv_devflags = dev->devflags;
5507 udev->dv_flags = dev->flags;
5508 udev->dv_state = dev->state;
5509 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5510 if (dev->nameunit != NULL)
5511 sbuf_cat(&sb, dev->nameunit);
5512 sbuf_putc(&sb, '\0');
5513 if (dev->desc != NULL)
5514 sbuf_cat(&sb, dev->desc);
5515 sbuf_putc(&sb, '\0');
5516 if (dev->driver != NULL)
5517 sbuf_cat(&sb, dev->driver->name);
5518 sbuf_putc(&sb, '\0');
5519 bus_child_pnpinfo(dev, &sb);
5520 sbuf_putc(&sb, '\0');
5521 bus_child_location(dev, &sb);
5522 sbuf_putc(&sb, '\0');
5523 error = sbuf_finish(&sb);
5524 if (error == 0)
5525 error = SYSCTL_OUT(req, udev, sizeof(*udev));
5526 sbuf_delete(&sb);
5527 free(udev, M_BUS);
5528 return (error);
5529 }
5530
5531 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5532 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5533 "system device tree");
5534
5535 int
bus_data_generation_check(int generation)5536 bus_data_generation_check(int generation)
5537 {
5538 if (generation != bus_data_generation)
5539 return (1);
5540
5541 /* XXX generate optimised lists here? */
5542 return (0);
5543 }
5544
5545 void
bus_data_generation_update(void)5546 bus_data_generation_update(void)
5547 {
5548 atomic_add_int(&bus_data_generation, 1);
5549 }
5550
5551 int
bus_free_resource(device_t dev,int type,struct resource * r)5552 bus_free_resource(device_t dev, int type, struct resource *r)
5553 {
5554 if (r == NULL)
5555 return (0);
5556 return (bus_release_resource(dev, type, rman_get_rid(r), r));
5557 }
5558
5559 device_t
device_lookup_by_name(const char * name)5560 device_lookup_by_name(const char *name)
5561 {
5562 device_t dev;
5563
5564 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5565 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5566 return (dev);
5567 }
5568 return (NULL);
5569 }
5570
5571 /*
5572 * /dev/devctl2 implementation. The existing /dev/devctl device has
5573 * implicit semantics on open, so it could not be reused for this.
5574 * Another option would be to call this /dev/bus?
5575 */
5576 static int
find_device(struct devreq * req,device_t * devp)5577 find_device(struct devreq *req, device_t *devp)
5578 {
5579 device_t dev;
5580
5581 /*
5582 * First, ensure that the name is nul terminated.
5583 */
5584 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5585 return (EINVAL);
5586
5587 /*
5588 * Second, try to find an attached device whose name matches
5589 * 'name'.
5590 */
5591 dev = device_lookup_by_name(req->dr_name);
5592 if (dev != NULL) {
5593 *devp = dev;
5594 return (0);
5595 }
5596
5597 /* Finally, give device enumerators a chance. */
5598 dev = NULL;
5599 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5600 if (dev == NULL)
5601 return (ENOENT);
5602 *devp = dev;
5603 return (0);
5604 }
5605
5606 static bool
driver_exists(device_t bus,const char * driver)5607 driver_exists(device_t bus, const char *driver)
5608 {
5609 devclass_t dc;
5610
5611 for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5612 if (devclass_find_driver_internal(dc, driver) != NULL)
5613 return (true);
5614 }
5615 return (false);
5616 }
5617
5618 static void
device_gen_nomatch(device_t dev)5619 device_gen_nomatch(device_t dev)
5620 {
5621 device_t child;
5622
5623 if (dev->flags & DF_NEEDNOMATCH &&
5624 dev->state == DS_NOTPRESENT) {
5625 device_handle_nomatch(dev);
5626 }
5627 dev->flags &= ~DF_NEEDNOMATCH;
5628 TAILQ_FOREACH(child, &dev->children, link) {
5629 device_gen_nomatch(child);
5630 }
5631 }
5632
5633 static void
device_do_deferred_actions(void)5634 device_do_deferred_actions(void)
5635 {
5636 devclass_t dc;
5637 driverlink_t dl;
5638
5639 /*
5640 * Walk through the devclasses to find all the drivers we've tagged as
5641 * deferred during the freeze and call the driver added routines. They
5642 * have already been added to the lists in the background, so the driver
5643 * added routines that trigger a probe will have all the right bidders
5644 * for the probe auction.
5645 */
5646 TAILQ_FOREACH(dc, &devclasses, link) {
5647 TAILQ_FOREACH(dl, &dc->drivers, link) {
5648 if (dl->flags & DL_DEFERRED_PROBE) {
5649 devclass_driver_added(dc, dl->driver);
5650 dl->flags &= ~DL_DEFERRED_PROBE;
5651 }
5652 }
5653 }
5654
5655 /*
5656 * We also defer no-match events during a freeze. Walk the tree and
5657 * generate all the pent-up events that are still relevant.
5658 */
5659 device_gen_nomatch(root_bus);
5660 bus_data_generation_update();
5661 }
5662
5663 static int
device_get_path(device_t dev,const char * locator,struct sbuf * sb)5664 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5665 {
5666 device_t parent;
5667 int error;
5668
5669 KASSERT(sb != NULL, ("sb is NULL"));
5670 parent = device_get_parent(dev);
5671 if (parent == NULL) {
5672 error = sbuf_putc(sb, '/');
5673 } else {
5674 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5675 if (error == 0) {
5676 error = sbuf_error(sb);
5677 if (error == 0 && sbuf_len(sb) <= 1)
5678 error = EIO;
5679 }
5680 }
5681 sbuf_finish(sb);
5682 return (error);
5683 }
5684
5685 static int
devctl2_ioctl(struct cdev * cdev,u_long cmd,caddr_t data,int fflag,struct thread * td)5686 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5687 struct thread *td)
5688 {
5689 struct devreq *req;
5690 device_t dev;
5691 int error, old;
5692
5693 /* Locate the device to control. */
5694 bus_topo_lock();
5695 req = (struct devreq *)data;
5696 switch (cmd) {
5697 case DEV_ATTACH:
5698 case DEV_DETACH:
5699 case DEV_ENABLE:
5700 case DEV_DISABLE:
5701 case DEV_SUSPEND:
5702 case DEV_RESUME:
5703 case DEV_SET_DRIVER:
5704 case DEV_CLEAR_DRIVER:
5705 case DEV_RESCAN:
5706 case DEV_DELETE:
5707 case DEV_RESET:
5708 error = priv_check(td, PRIV_DRIVER);
5709 if (error == 0)
5710 error = find_device(req, &dev);
5711 break;
5712 case DEV_FREEZE:
5713 case DEV_THAW:
5714 error = priv_check(td, PRIV_DRIVER);
5715 break;
5716 case DEV_GET_PATH:
5717 error = find_device(req, &dev);
5718 break;
5719 default:
5720 error = ENOTTY;
5721 break;
5722 }
5723 if (error) {
5724 bus_topo_unlock();
5725 return (error);
5726 }
5727
5728 /* Perform the requested operation. */
5729 switch (cmd) {
5730 case DEV_ATTACH:
5731 if (device_is_attached(dev))
5732 error = EBUSY;
5733 else if (!device_is_enabled(dev))
5734 error = ENXIO;
5735 else
5736 error = device_probe_and_attach(dev);
5737 break;
5738 case DEV_DETACH:
5739 if (!device_is_attached(dev)) {
5740 error = ENXIO;
5741 break;
5742 }
5743 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5744 error = device_quiesce(dev);
5745 if (error)
5746 break;
5747 }
5748 error = device_detach(dev);
5749 break;
5750 case DEV_ENABLE:
5751 if (device_is_enabled(dev)) {
5752 error = EBUSY;
5753 break;
5754 }
5755
5756 /*
5757 * If the device has been probed but not attached (e.g.
5758 * when it has been disabled by a loader hint), just
5759 * attach the device rather than doing a full probe.
5760 */
5761 device_enable(dev);
5762 if (device_is_alive(dev)) {
5763 /*
5764 * If the device was disabled via a hint, clear
5765 * the hint.
5766 */
5767 if (resource_disabled(dev->driver->name, dev->unit))
5768 resource_unset_value(dev->driver->name,
5769 dev->unit, "disabled");
5770 error = device_attach(dev);
5771 } else
5772 error = device_probe_and_attach(dev);
5773 break;
5774 case DEV_DISABLE:
5775 if (!device_is_enabled(dev)) {
5776 error = ENXIO;
5777 break;
5778 }
5779
5780 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5781 error = device_quiesce(dev);
5782 if (error)
5783 break;
5784 }
5785
5786 /*
5787 * Force DF_FIXEDCLASS on around detach to preserve
5788 * the existing name.
5789 */
5790 old = dev->flags;
5791 dev->flags |= DF_FIXEDCLASS;
5792 error = device_detach(dev);
5793 if (!(old & DF_FIXEDCLASS))
5794 dev->flags &= ~DF_FIXEDCLASS;
5795 if (error == 0)
5796 device_disable(dev);
5797 break;
5798 case DEV_SUSPEND:
5799 if (device_is_suspended(dev)) {
5800 error = EBUSY;
5801 break;
5802 }
5803 if (device_get_parent(dev) == NULL) {
5804 error = EINVAL;
5805 break;
5806 }
5807 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5808 break;
5809 case DEV_RESUME:
5810 if (!device_is_suspended(dev)) {
5811 error = EINVAL;
5812 break;
5813 }
5814 if (device_get_parent(dev) == NULL) {
5815 error = EINVAL;
5816 break;
5817 }
5818 error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5819 break;
5820 case DEV_SET_DRIVER: {
5821 devclass_t dc;
5822 char driver[128];
5823
5824 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5825 if (error)
5826 break;
5827 if (driver[0] == '\0') {
5828 error = EINVAL;
5829 break;
5830 }
5831 if (dev->devclass != NULL &&
5832 strcmp(driver, dev->devclass->name) == 0)
5833 /* XXX: Could possibly force DF_FIXEDCLASS on? */
5834 break;
5835
5836 /*
5837 * Scan drivers for this device's bus looking for at
5838 * least one matching driver.
5839 */
5840 if (dev->parent == NULL) {
5841 error = EINVAL;
5842 break;
5843 }
5844 if (!driver_exists(dev->parent, driver)) {
5845 error = ENOENT;
5846 break;
5847 }
5848 dc = devclass_create(driver);
5849 if (dc == NULL) {
5850 error = ENOMEM;
5851 break;
5852 }
5853
5854 /* Detach device if necessary. */
5855 if (device_is_attached(dev)) {
5856 if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5857 error = device_detach(dev);
5858 else
5859 error = EBUSY;
5860 if (error)
5861 break;
5862 }
5863
5864 /* Clear any previously-fixed device class and unit. */
5865 if (dev->flags & DF_FIXEDCLASS)
5866 devclass_delete_device(dev->devclass, dev);
5867 dev->flags |= DF_WILDCARD;
5868 dev->unit = DEVICE_UNIT_ANY;
5869
5870 /* Force the new device class. */
5871 error = devclass_add_device(dc, dev);
5872 if (error)
5873 break;
5874 dev->flags |= DF_FIXEDCLASS;
5875 error = device_probe_and_attach(dev);
5876 break;
5877 }
5878 case DEV_CLEAR_DRIVER:
5879 if (!(dev->flags & DF_FIXEDCLASS)) {
5880 error = 0;
5881 break;
5882 }
5883 if (device_is_attached(dev)) {
5884 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5885 error = device_detach(dev);
5886 else
5887 error = EBUSY;
5888 if (error)
5889 break;
5890 }
5891
5892 dev->flags &= ~DF_FIXEDCLASS;
5893 dev->flags |= DF_WILDCARD;
5894 devclass_delete_device(dev->devclass, dev);
5895 error = device_probe_and_attach(dev);
5896 break;
5897 case DEV_RESCAN:
5898 if (!device_is_attached(dev)) {
5899 error = ENXIO;
5900 break;
5901 }
5902 error = BUS_RESCAN(dev);
5903 break;
5904 case DEV_DELETE: {
5905 device_t parent;
5906
5907 parent = device_get_parent(dev);
5908 if (parent == NULL) {
5909 error = EINVAL;
5910 break;
5911 }
5912 if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5913 if (bus_child_present(dev) != 0) {
5914 error = EBUSY;
5915 break;
5916 }
5917 }
5918
5919 error = device_delete_child(parent, dev);
5920 break;
5921 }
5922 case DEV_FREEZE:
5923 if (device_frozen)
5924 error = EBUSY;
5925 else
5926 device_frozen = true;
5927 break;
5928 case DEV_THAW:
5929 if (!device_frozen)
5930 error = EBUSY;
5931 else {
5932 device_do_deferred_actions();
5933 device_frozen = false;
5934 }
5935 break;
5936 case DEV_RESET:
5937 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5938 error = EINVAL;
5939 break;
5940 }
5941 if (device_get_parent(dev) == NULL) {
5942 error = EINVAL;
5943 break;
5944 }
5945 error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5946 req->dr_flags);
5947 break;
5948 case DEV_GET_PATH: {
5949 struct sbuf *sb;
5950 char locator[64];
5951 ssize_t len;
5952
5953 error = copyinstr(req->dr_buffer.buffer, locator,
5954 sizeof(locator), NULL);
5955 if (error != 0)
5956 break;
5957 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
5958 SBUF_INCLUDENUL /* | SBUF_WAITOK */);
5959 error = device_get_path(dev, locator, sb);
5960 if (error == 0) {
5961 len = sbuf_len(sb);
5962 if (req->dr_buffer.length < len) {
5963 error = ENAMETOOLONG;
5964 } else {
5965 error = copyout(sbuf_data(sb),
5966 req->dr_buffer.buffer, len);
5967 }
5968 req->dr_buffer.length = len;
5969 }
5970 sbuf_delete(sb);
5971 break;
5972 }
5973 }
5974 bus_topo_unlock();
5975 return (error);
5976 }
5977
5978 static struct cdevsw devctl2_cdevsw = {
5979 .d_version = D_VERSION,
5980 .d_ioctl = devctl2_ioctl,
5981 .d_name = "devctl2",
5982 };
5983
5984 static void
devctl2_init(void)5985 devctl2_init(void)
5986 {
5987 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5988 UID_ROOT, GID_WHEEL, 0644, "devctl2");
5989 }
5990
5991 /*
5992 * For maintaining device 'at' location info to avoid recomputing it
5993 */
5994 struct device_location_node {
5995 const char *dln_locator;
5996 const char *dln_path;
5997 TAILQ_ENTRY(device_location_node) dln_link;
5998 };
5999 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
6000
6001 struct device_location_cache {
6002 device_location_list_t dlc_list;
6003 };
6004
6005
6006 /*
6007 * Location cache for wired devices.
6008 */
6009 device_location_cache_t *
dev_wired_cache_init(void)6010 dev_wired_cache_init(void)
6011 {
6012 device_location_cache_t *dcp;
6013
6014 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
6015 TAILQ_INIT(&dcp->dlc_list);
6016
6017 return (dcp);
6018 }
6019
6020 void
dev_wired_cache_fini(device_location_cache_t * dcp)6021 dev_wired_cache_fini(device_location_cache_t *dcp)
6022 {
6023 struct device_location_node *dln, *tdln;
6024
6025 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
6026 free(dln, M_BUS);
6027 }
6028 free(dcp, M_BUS);
6029 }
6030
6031 static struct device_location_node *
dev_wired_cache_lookup(device_location_cache_t * dcp,const char * locator)6032 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
6033 {
6034 struct device_location_node *dln;
6035
6036 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
6037 if (strcmp(locator, dln->dln_locator) == 0)
6038 return (dln);
6039 }
6040
6041 return (NULL);
6042 }
6043
6044 static struct device_location_node *
dev_wired_cache_add(device_location_cache_t * dcp,const char * locator,const char * path)6045 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
6046 {
6047 struct device_location_node *dln;
6048 size_t loclen, pathlen;
6049
6050 loclen = strlen(locator) + 1;
6051 pathlen = strlen(path) + 1;
6052 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
6053 dln->dln_locator = (char *)(dln + 1);
6054 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
6055 dln->dln_path = dln->dln_locator + loclen;
6056 memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
6057 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
6058
6059 return (dln);
6060 }
6061
6062 bool
dev_wired_cache_match(device_location_cache_t * dcp,device_t dev,const char * at)6063 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
6064 const char *at)
6065 {
6066 struct sbuf *sb;
6067 const char *cp;
6068 char locator[32];
6069 int error, len;
6070 struct device_location_node *res;
6071
6072 cp = strchr(at, ':');
6073 if (cp == NULL)
6074 return (false);
6075 len = cp - at;
6076 if (len > sizeof(locator) - 1) /* Skip too long locator */
6077 return (false);
6078 memcpy(locator, at, len);
6079 locator[len] = '\0';
6080 cp++;
6081
6082 error = 0;
6083 /* maybe cache this inside device_t and look that up, but not yet */
6084 res = dev_wired_cache_lookup(dcp, locator);
6085 if (res == NULL) {
6086 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6087 SBUF_INCLUDENUL | SBUF_NOWAIT);
6088 if (sb != NULL) {
6089 error = device_get_path(dev, locator, sb);
6090 if (error == 0) {
6091 res = dev_wired_cache_add(dcp, locator,
6092 sbuf_data(sb));
6093 }
6094 sbuf_delete(sb);
6095 }
6096 }
6097 if (error != 0 || res == NULL || res->dln_path == NULL)
6098 return (false);
6099
6100 return (strcmp(res->dln_path, cp) == 0);
6101 }
6102
6103 static struct device_prop_elm *
device_prop_find(device_t dev,const char * name)6104 device_prop_find(device_t dev, const char *name)
6105 {
6106 struct device_prop_elm *e;
6107
6108 bus_topo_assert();
6109
6110 LIST_FOREACH(e, &dev->props, link) {
6111 if (strcmp(name, e->name) == 0)
6112 return (e);
6113 }
6114 return (NULL);
6115 }
6116
6117 int
device_set_prop(device_t dev,const char * name,void * val,device_prop_dtr_t dtr,void * dtr_ctx)6118 device_set_prop(device_t dev, const char *name, void *val,
6119 device_prop_dtr_t dtr, void *dtr_ctx)
6120 {
6121 struct device_prop_elm *e, *e1;
6122
6123 bus_topo_assert();
6124
6125 e = device_prop_find(dev, name);
6126 if (e != NULL)
6127 goto found;
6128
6129 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK);
6130 e = device_prop_find(dev, name);
6131 if (e != NULL) {
6132 free(e1, M_BUS);
6133 goto found;
6134 }
6135
6136 e1->name = name;
6137 e1->val = val;
6138 e1->dtr = dtr;
6139 e1->dtr_ctx = dtr_ctx;
6140 LIST_INSERT_HEAD(&dev->props, e1, link);
6141 return (0);
6142
6143 found:
6144 LIST_REMOVE(e, link);
6145 if (e->dtr != NULL)
6146 e->dtr(dev, name, e->val, e->dtr_ctx);
6147 e->val = val;
6148 e->dtr = dtr;
6149 e->dtr_ctx = dtr_ctx;
6150 LIST_INSERT_HEAD(&dev->props, e, link);
6151 return (EEXIST);
6152 }
6153
6154 int
device_get_prop(device_t dev,const char * name,void ** valp)6155 device_get_prop(device_t dev, const char *name, void **valp)
6156 {
6157 struct device_prop_elm *e;
6158
6159 bus_topo_assert();
6160
6161 e = device_prop_find(dev, name);
6162 if (e == NULL)
6163 return (ENOENT);
6164 *valp = e->val;
6165 return (0);
6166 }
6167
6168 int
device_clear_prop(device_t dev,const char * name)6169 device_clear_prop(device_t dev, const char *name)
6170 {
6171 struct device_prop_elm *e;
6172
6173 bus_topo_assert();
6174
6175 e = device_prop_find(dev, name);
6176 if (e == NULL)
6177 return (ENOENT);
6178 LIST_REMOVE(e, link);
6179 if (e->dtr != NULL)
6180 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6181 free(e, M_BUS);
6182 return (0);
6183 }
6184
6185 static void
device_destroy_props(device_t dev)6186 device_destroy_props(device_t dev)
6187 {
6188 struct device_prop_elm *e;
6189
6190 bus_topo_assert();
6191
6192 while ((e = LIST_FIRST(&dev->props)) != NULL) {
6193 LIST_REMOVE_HEAD(&dev->props, link);
6194 if (e->dtr != NULL)
6195 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6196 free(e, M_BUS);
6197 }
6198 }
6199
6200 void
device_clear_prop_alldev(const char * name)6201 device_clear_prop_alldev(const char *name)
6202 {
6203 device_t dev;
6204
6205 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6206 device_clear_prop(dev, name);
6207 }
6208 }
6209
6210 /*
6211 * APIs to manage deprecation and obsolescence.
6212 */
6213 static int obsolete_panic = 0;
6214 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6215 "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6216 "2 = if deprecated)");
6217
6218 static void
gone_panic(int major,int running,const char * msg)6219 gone_panic(int major, int running, const char *msg)
6220 {
6221 switch (obsolete_panic)
6222 {
6223 case 0:
6224 return;
6225 case 1:
6226 if (running < major)
6227 return;
6228 /* FALLTHROUGH */
6229 default:
6230 panic("%s", msg);
6231 }
6232 }
6233
6234 void
_gone_in(int major,const char * msg)6235 _gone_in(int major, const char *msg)
6236 {
6237 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6238 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6239 printf("Obsolete code will be removed soon: %s\n", msg);
6240 else
6241 printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6242 major, msg);
6243 }
6244
6245 void
_gone_in_dev(device_t dev,int major,const char * msg)6246 _gone_in_dev(device_t dev, int major, const char *msg)
6247 {
6248 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6249 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6250 device_printf(dev,
6251 "Obsolete code will be removed soon: %s\n", msg);
6252 else
6253 device_printf(dev,
6254 "Deprecated code (to be removed in FreeBSD %d): %s\n",
6255 major, msg);
6256 }
6257
6258 #ifdef DDB
DB_SHOW_COMMAND(device,db_show_device)6259 DB_SHOW_COMMAND(device, db_show_device)
6260 {
6261 device_t dev;
6262
6263 if (!have_addr)
6264 return;
6265
6266 dev = (device_t)addr;
6267
6268 db_printf("name: %s\n", device_get_nameunit(dev));
6269 db_printf(" driver: %s\n", DRIVERNAME(dev->driver));
6270 db_printf(" class: %s\n", DEVCLANAME(dev->devclass));
6271 db_printf(" addr: %p\n", dev);
6272 db_printf(" parent: %p\n", dev->parent);
6273 db_printf(" softc: %p\n", dev->softc);
6274 db_printf(" ivars: %p\n", dev->ivars);
6275 }
6276
DB_SHOW_ALL_COMMAND(devices,db_show_all_devices)6277 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6278 {
6279 device_t dev;
6280
6281 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6282 db_show_device((db_expr_t)dev, true, count, modif);
6283 }
6284 }
6285 #endif
6286