1 /* 2 * ntp_calendar.c - calendar and helper functions 3 * 4 * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project. 5 * The contents of 'html/copyright.html' apply. 6 * 7 * -------------------------------------------------------------------- 8 * Some notes on the implementation: 9 * 10 * Calendar algorithms thrive on the division operation, which is one of 11 * the slowest numerical operations in any CPU. What saves us here from 12 * abysmal performance is the fact that all divisions are divisions by 13 * constant numbers, and most compilers can do this by a multiplication 14 * operation. But this might not work when using the div/ldiv/lldiv 15 * function family, because many compilers are not able to do inline 16 * expansion of the code with following optimisation for the 17 * constant-divider case. 18 * 19 * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which 20 * are inherently target dependent. Nothing that could not be cured with 21 * autoconf, but still a mess... 22 * 23 * Furthermore, we need floor division in many places. C either leaves 24 * the division behaviour undefined (< C99) or demands truncation to 25 * zero (>= C99), so additional steps are required to make sure the 26 * algorithms work. The {l,ll}div function family is requested to 27 * truncate towards zero, which is also the wrong direction for our 28 * purpose. 29 * 30 * For all this, all divisions by constant are coded manually, even when 31 * there is a joined div/mod operation: The optimiser should sort that 32 * out, if possible. Most of the calculations are done with unsigned 33 * types, explicitely using two's complement arithmetics where 34 * necessary. This minimises the dependecies to compiler and target, 35 * while still giving reasonable to good performance. 36 * 37 * The implementation uses a few tricks that exploit properties of the 38 * two's complement: Floor division on negative dividents can be 39 * executed by using the one's complement of the divident. One's 40 * complement can be easily created using XOR and a mask. 41 * 42 * Finally, check for overflow conditions is minimal. There are only two 43 * calculation steps in the whole calendar that potentially suffer from 44 * an internal overflow, and these are coded in a way that avoids 45 * it. All other functions do not suffer from internal overflow and 46 * simply return the result truncated to 32 bits. 47 */ 48 49 #include <config.h> 50 #include <sys/types.h> 51 52 #include "ntp_types.h" 53 #include "ntp_calendar.h" 54 #include "ntp_stdlib.h" 55 #include "ntp_fp.h" 56 #include "ntp_unixtime.h" 57 58 #include "ntpd.h" 59 60 /* For now, let's take the conservative approach: if the target property 61 * macros are not defined, check a few well-known compiler/architecture 62 * settings. Default is to assume that the representation of signed 63 * integers is unknown and shift-arithmetic-right is not available. 64 */ 65 #ifndef TARGET_HAS_2CPL 66 # if defined(__GNUC__) 67 # if defined(__i386__) || defined(__x86_64__) || defined(__arm__) 68 # define TARGET_HAS_2CPL 1 69 # else 70 # define TARGET_HAS_2CPL 0 71 # endif 72 # elif defined(_MSC_VER) 73 # if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) 74 # define TARGET_HAS_2CPL 1 75 # else 76 # define TARGET_HAS_2CPL 0 77 # endif 78 # else 79 # define TARGET_HAS_2CPL 0 80 # endif 81 #endif 82 83 #ifndef TARGET_HAS_SAR 84 # define TARGET_HAS_SAR 0 85 #endif 86 87 #if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX) 88 # define HAVE_64BITREGS 89 #endif 90 91 /* 92 *--------------------------------------------------------------------- 93 * replacing the 'time()' function 94 *--------------------------------------------------------------------- 95 */ 96 97 static systime_func_ptr systime_func = &time; 98 static inline time_t now(void); 99 100 101 systime_func_ptr 102 ntpcal_set_timefunc( 103 systime_func_ptr nfunc 104 ) 105 { 106 systime_func_ptr res; 107 108 res = systime_func; 109 if (NULL == nfunc) 110 nfunc = &time; 111 systime_func = nfunc; 112 113 return res; 114 } 115 116 117 static inline time_t 118 now(void) 119 { 120 return (*systime_func)(NULL); 121 } 122 123 /* 124 *--------------------------------------------------------------------- 125 * Get sign extension mask and unsigned 2cpl rep for a signed integer 126 *--------------------------------------------------------------------- 127 */ 128 129 static inline uint32_t 130 int32_sflag( 131 const int32_t v) 132 { 133 # if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4 134 135 /* Let's assume that shift is the fastest way to get the sign 136 * extension of of a signed integer. This might not always be 137 * true, though -- On 8bit CPUs or machines without barrel 138 * shifter this will kill the performance. So we make sure 139 * we do this only if 'int' has at least 4 bytes. 140 */ 141 return (uint32_t)(v >> 31); 142 143 # else 144 145 /* This should be a rather generic approach for getting a sign 146 * extension mask... 147 */ 148 return UINT32_C(0) - (uint32_t)(v < 0); 149 150 # endif 151 } 152 153 static inline int32_t 154 uint32_2cpl_to_int32( 155 const uint32_t vu) 156 { 157 int32_t v; 158 159 # if TARGET_HAS_2CPL 160 161 /* Just copy through the 32 bits from the unsigned value if 162 * we're on a two's complement target. 163 */ 164 v = (int32_t)vu; 165 166 # else 167 168 /* Convert to signed integer, making sure signed integer 169 * overflow cannot happen. Again, the optimiser might or might 170 * not find out that this is just a copy of 32 bits on a target 171 * with two's complement representation for signed integers. 172 */ 173 if (vu > INT32_MAX) 174 v = -(int32_t)(~vu) - 1; 175 else 176 v = (int32_t)vu; 177 178 # endif 179 180 return v; 181 } 182 183 /* 184 *--------------------------------------------------------------------- 185 * Convert between 'time_t' and 'vint64' 186 *--------------------------------------------------------------------- 187 */ 188 vint64 189 time_to_vint64( 190 const time_t * ptt 191 ) 192 { 193 vint64 res; 194 time_t tt; 195 196 tt = *ptt; 197 198 # if SIZEOF_TIME_T <= 4 199 200 res.D_s.hi = 0; 201 if (tt < 0) { 202 res.D_s.lo = (uint32_t)-tt; 203 M_NEG(res.D_s.hi, res.D_s.lo); 204 } else { 205 res.D_s.lo = (uint32_t)tt; 206 } 207 208 # elif defined(HAVE_INT64) 209 210 res.q_s = tt; 211 212 # else 213 /* 214 * shifting negative signed quantities is compiler-dependent, so 215 * we better avoid it and do it all manually. And shifting more 216 * than the width of a quantity is undefined. Also a don't do! 217 */ 218 if (tt < 0) { 219 tt = -tt; 220 res.D_s.lo = (uint32_t)tt; 221 res.D_s.hi = (uint32_t)(tt >> 32); 222 M_NEG(res.D_s.hi, res.D_s.lo); 223 } else { 224 res.D_s.lo = (uint32_t)tt; 225 res.D_s.hi = (uint32_t)(tt >> 32); 226 } 227 228 # endif 229 230 return res; 231 } 232 233 234 time_t 235 vint64_to_time( 236 const vint64 *tv 237 ) 238 { 239 time_t res; 240 241 # if SIZEOF_TIME_T <= 4 242 243 res = (time_t)tv->D_s.lo; 244 245 # elif defined(HAVE_INT64) 246 247 res = (time_t)tv->q_s; 248 249 # else 250 251 res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo; 252 253 # endif 254 255 return res; 256 } 257 258 /* 259 *--------------------------------------------------------------------- 260 * Get the build date & time 261 *--------------------------------------------------------------------- 262 */ 263 int 264 ntpcal_get_build_date( 265 struct calendar * jd 266 ) 267 { 268 /* The C standard tells us the format of '__DATE__': 269 * 270 * __DATE__ The date of translation of the preprocessing 271 * translation unit: a character string literal of the form "Mmm 272 * dd yyyy", where the names of the months are the same as those 273 * generated by the asctime function, and the first character of 274 * dd is a space character if the value is less than 10. If the 275 * date of translation is not available, an 276 * implementation-defined valid date shall be supplied. 277 * 278 * __TIME__ The time of translation of the preprocessing 279 * translation unit: a character string literal of the form 280 * "hh:mm:ss" as in the time generated by the asctime 281 * function. If the time of translation is not available, an 282 * implementation-defined valid time shall be supplied. 283 * 284 * Note that MSVC declares DATE and TIME to be in the local time 285 * zone, while neither the C standard nor the GCC docs make any 286 * statement about this. As a result, we may be +/-12hrs off 287 * UTC. But for practical purposes, this should not be a 288 * problem. 289 * 290 */ 291 # ifdef MKREPRO_DATE 292 static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE; 293 # else 294 static const char build[] = __TIME__ "/" __DATE__; 295 # endif 296 static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec"; 297 298 char monstr[4]; 299 const char * cp; 300 unsigned short hour, minute, second, day, year; 301 /* Note: The above quantities are used for sscanf 'hu' format, 302 * so using 'uint16_t' is contra-indicated! 303 */ 304 305 # ifdef DEBUG 306 static int ignore = 0; 307 # endif 308 309 ZERO(*jd); 310 jd->year = 1970; 311 jd->month = 1; 312 jd->monthday = 1; 313 314 # ifdef DEBUG 315 /* check environment if build date should be ignored */ 316 if (0 == ignore) { 317 const char * envstr; 318 envstr = getenv("NTPD_IGNORE_BUILD_DATE"); 319 ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes"))); 320 } 321 if (ignore > 1) 322 return FALSE; 323 # endif 324 325 if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu", 326 &hour, &minute, &second, monstr, &day, &year)) { 327 cp = strstr(mlist, monstr); 328 if (NULL != cp) { 329 jd->year = year; 330 jd->month = (uint8_t)((cp - mlist) / 3 + 1); 331 jd->monthday = (uint8_t)day; 332 jd->hour = (uint8_t)hour; 333 jd->minute = (uint8_t)minute; 334 jd->second = (uint8_t)second; 335 336 return TRUE; 337 } 338 } 339 340 return FALSE; 341 } 342 343 344 /* 345 *--------------------------------------------------------------------- 346 * basic calendar stuff 347 *--------------------------------------------------------------------- 348 */ 349 350 /* 351 * Some notes on the terminology: 352 * 353 * We use the proleptic Gregorian calendar, which is the Gregorian 354 * calendar extended in both directions ad infinitum. This totally 355 * disregards the fact that this calendar was invented in 1582, and 356 * was adopted at various dates over the world; sometimes even after 357 * the start of the NTP epoch. 358 * 359 * Normally date parts are given as current cycles, while time parts 360 * are given as elapsed cycles: 361 * 362 * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month, 363 * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed. 364 * 365 * The basic calculations for this calendar implementation deal with 366 * ELAPSED date units, which is the number of full years, full months 367 * and full days before a date: 1970-01-01 would be (1969, 0, 0) in 368 * that notation. 369 * 370 * To ease the numeric computations, month and day values outside the 371 * normal range are acceptable: 2001-03-00 will be treated as the day 372 * before 2001-03-01, 2000-13-32 will give the same result as 373 * 2001-02-01 and so on. 374 * 375 * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die' 376 * (day number). This is the number of days elapsed since 0000-12-31 377 * in the proleptic Gregorian calendar. The begin of the Christian Era 378 * (0001-01-01) is RD(1). 379 */ 380 381 /* 382 * ==================================================================== 383 * 384 * General algorithmic stuff 385 * 386 * ==================================================================== 387 */ 388 389 /* 390 *--------------------------------------------------------------------- 391 * fast modulo 7 operations (floor/mathematical convention) 392 *--------------------------------------------------------------------- 393 */ 394 int 395 u32mod7( 396 uint32_t x 397 ) 398 { 399 /* This is a combination of tricks from "Hacker's Delight" with 400 * some modifications, like a multiplication that rounds up to 401 * drop the final adjustment stage. 402 * 403 * Do a partial reduction by digit sum to keep the value in the 404 * range permitted for the mul/shift stage. There are several 405 * possible and absolutely equivalent shift/mask combinations; 406 * this one is ARM-friendly because of a mask that fits into 16 407 * bit. 408 */ 409 x = (x >> 15) + (x & UINT32_C(0x7FFF)); 410 /* Take reminder as (mod 8) by mul/shift. Since the multiplier 411 * was calculated using ceil() instead of floor(), it skips the 412 * value '7' properly. 413 * M <- ceil(ldexp(8/7, 29)) 414 */ 415 return (int)((x * UINT32_C(0x24924925)) >> 29); 416 } 417 418 int 419 i32mod7( 420 int32_t x 421 ) 422 { 423 /* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative 424 * numbers to map them into the postive range. Only the term '-4' 425 * survives, obviously. 426 */ 427 uint32_t ux = (uint32_t)x; 428 return u32mod7((x < 0) ? (ux - 4u) : ux); 429 } 430 431 uint32_t 432 i32fmod( 433 int32_t x, 434 uint32_t d 435 ) 436 { 437 uint32_t ux = (uint32_t)x; 438 uint32_t sf = UINT32_C(0) - (x < 0); 439 ux = (sf ^ ux ) % d; 440 return (d & sf) + (sf ^ ux); 441 } 442 443 /* 444 *--------------------------------------------------------------------- 445 * Do a periodic extension of 'value' around 'pivot' with a period of 446 * 'cycle'. 447 * 448 * The result 'res' is a number that holds to the following properties: 449 * 450 * 1) res MOD cycle == value MOD cycle 451 * 2) pivot <= res < pivot + cycle 452 * (replace </<= with >/>= for negative cycles) 453 * 454 * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which 455 * is not the same as the '%' operator in C: C requires division to be 456 * a truncated division, where remainder and dividend have the same 457 * sign if the remainder is not zero, whereas floor division requires 458 * divider and modulus to have the same sign for a non-zero modulus. 459 * 460 * This function has some useful applications: 461 * 462 * + let Y be a calendar year and V a truncated 2-digit year: then 463 * periodic_extend(Y-50, V, 100) 464 * is the closest expansion of the truncated year with respect to 465 * the full year, that is a 4-digit year with a difference of less 466 * than 50 years to the year Y. ("century unfolding") 467 * 468 * + let T be a UN*X time stamp and V be seconds-of-day: then 469 * perodic_extend(T-43200, V, 86400) 470 * is a time stamp that has the same seconds-of-day as the input 471 * value, with an absolute difference to T of <= 12hrs. ("day 472 * unfolding") 473 * 474 * + Wherever you have a truncated periodic value and a non-truncated 475 * base value and you want to match them somehow... 476 * 477 * Basically, the function delivers 'pivot + (value - pivot) % cycle', 478 * but the implementation takes some pains to avoid internal signed 479 * integer overflows in the '(value - pivot) % cycle' part and adheres 480 * to the floor division convention. 481 * 482 * If 64bit scalars where available on all intended platforms, writing a 483 * version that uses 64 bit ops would be easy; writing a general 484 * division routine for 64bit ops on a platform that can only do 485 * 32/16bit divisions and is still performant is a bit more 486 * difficult. Since most usecases can be coded in a way that does only 487 * require the 32bit version a 64bit version is NOT provided here. 488 *--------------------------------------------------------------------- 489 */ 490 int32_t 491 ntpcal_periodic_extend( 492 int32_t pivot, 493 int32_t value, 494 int32_t cycle 495 ) 496 { 497 /* Implement a 4-quadrant modulus calculation by 2 2-quadrant 498 * branches, one for positive and one for negative dividers. 499 * Everything else can be handled by bit level logic and 500 * conditional one's complement arithmetic. By convention, we 501 * assume 502 * 503 * x % b == 0 if |b| < 2 504 * 505 * that is, we don't actually divide for cycles of -1,0,1 and 506 * return the pivot value in that case. 507 */ 508 uint32_t uv = (uint32_t)value; 509 uint32_t up = (uint32_t)pivot; 510 uint32_t uc, sf; 511 512 if (cycle > 1) 513 { 514 uc = (uint32_t)cycle; 515 sf = UINT32_C(0) - (value < pivot); 516 517 uv = sf ^ (uv - up); 518 uv %= uc; 519 pivot += (uc & sf) + (sf ^ uv); 520 } 521 else if (cycle < -1) 522 { 523 uc = ~(uint32_t)cycle + 1; 524 sf = UINT32_C(0) - (value > pivot); 525 526 uv = sf ^ (up - uv); 527 uv %= uc; 528 pivot -= (uc & sf) + (sf ^ uv); 529 } 530 return pivot; 531 } 532 533 /*--------------------------------------------------------------------- 534 * Note to the casual reader 535 * 536 * In the next two functions you will find (or would have found...) 537 * the expression 538 * 539 * res.Q_s -= 0x80000000; 540 * 541 * There was some ruckus about a possible programming error due to 542 * integer overflow and sign propagation. 543 * 544 * This assumption is based on a lack of understanding of the C 545 * standard. (Though this is admittedly not one of the most 'natural' 546 * aspects of the 'C' language and easily to get wrong.) 547 * 548 * see 549 * http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf 550 * "ISO/IEC 9899:201x Committee Draft — April 12, 2011" 551 * 6.4.4.1 Integer constants, clause 5 552 * 553 * why there is no sign extension/overflow problem here. 554 * 555 * But to ease the minds of the doubtful, I added back the 'u' qualifiers 556 * that somehow got lost over the last years. 557 */ 558 559 560 /* 561 *--------------------------------------------------------------------- 562 * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X 563 * scale with proper epoch unfolding around a given pivot or the current 564 * system time. This function happily accepts negative pivot values as 565 * timestamps before 1970-01-01, so be aware of possible trouble on 566 * platforms with 32bit 'time_t'! 567 * 568 * This is also a periodic extension, but since the cycle is 2^32 and 569 * the shift is 2^31, we can do some *very* fast math without explicit 570 * divisions. 571 *--------------------------------------------------------------------- 572 */ 573 vint64 574 ntpcal_ntp_to_time( 575 uint32_t ntp, 576 const time_t * pivot 577 ) 578 { 579 vint64 res; 580 581 # if defined(HAVE_INT64) 582 583 res.q_s = (pivot != NULL) 584 ? *pivot 585 : now(); 586 res.Q_s -= 0x80000000u; /* unshift of half range */ 587 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ 588 ntp -= res.D_s.lo; /* cycle difference */ 589 res.Q_s += (uint64_t)ntp; /* get expanded time */ 590 591 # else /* no 64bit scalars */ 592 593 time_t tmp; 594 595 tmp = (pivot != NULL) 596 ? *pivot 597 : now(); 598 res = time_to_vint64(&tmp); 599 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); 600 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ 601 ntp -= res.D_s.lo; /* cycle difference */ 602 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); 603 604 # endif /* no 64bit scalars */ 605 606 return res; 607 } 608 609 /* 610 *--------------------------------------------------------------------- 611 * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP 612 * scale with proper epoch unfolding around a given pivot or the current 613 * system time. 614 * 615 * Note: The pivot must be given in the UN*X time domain! 616 * 617 * This is also a periodic extension, but since the cycle is 2^32 and 618 * the shift is 2^31, we can do some *very* fast math without explicit 619 * divisions. 620 *--------------------------------------------------------------------- 621 */ 622 vint64 623 ntpcal_ntp_to_ntp( 624 uint32_t ntp, 625 const time_t *pivot 626 ) 627 { 628 vint64 res; 629 630 # if defined(HAVE_INT64) 631 632 res.q_s = (pivot) 633 ? *pivot 634 : now(); 635 res.Q_s -= 0x80000000u; /* unshift of half range */ 636 res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */ 637 ntp -= res.D_s.lo; /* cycle difference */ 638 res.Q_s += (uint64_t)ntp; /* get expanded time */ 639 640 # else /* no 64bit scalars */ 641 642 time_t tmp; 643 644 tmp = (pivot) 645 ? *pivot 646 : now(); 647 res = time_to_vint64(&tmp); 648 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); 649 M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */ 650 ntp -= res.D_s.lo; /* cycle difference */ 651 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); 652 653 # endif /* no 64bit scalars */ 654 655 return res; 656 } 657 658 659 /* 660 * ==================================================================== 661 * 662 * Splitting values to composite entities 663 * 664 * ==================================================================== 665 */ 666 667 /* 668 *--------------------------------------------------------------------- 669 * Split a 64bit seconds value into elapsed days in 'res.hi' and 670 * elapsed seconds since midnight in 'res.lo' using explicit floor 671 * division. This function happily accepts negative time values as 672 * timestamps before the respective epoch start. 673 *--------------------------------------------------------------------- 674 */ 675 ntpcal_split 676 ntpcal_daysplit( 677 const vint64 *ts 678 ) 679 { 680 ntpcal_split res; 681 uint32_t Q, R; 682 683 # if defined(HAVE_64BITREGS) 684 685 /* Assume we have 64bit registers an can do a divison by 686 * constant reasonably fast using the one's complement trick.. 687 */ 688 uint64_t sf64 = (uint64_t)-(ts->q_s < 0); 689 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY)); 690 R = (uint32_t)(ts->Q_s - Q * SECSPERDAY); 691 692 # elif defined(UINT64_MAX) && !defined(__arm__) 693 694 /* We rely on the compiler to do efficient 64bit divisions as 695 * good as possible. Which might or might not be true. At least 696 * for ARM CPUs, the sum-by-digit code in the next section is 697 * faster for many compilers. (This might change over time, but 698 * the 64bit-by-32bit division will never outperform the exact 699 * division by a substantial factor....) 700 */ 701 if (ts->q_s < 0) 702 Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY); 703 else 704 Q = (uint32_t)( ts->Q_s / SECSPERDAY); 705 R = ts->D_s.lo - Q * SECSPERDAY; 706 707 # else 708 709 /* We don't have 64bit regs. That hurts a bit. 710 * 711 * Here we use a mean trick to get away with just one explicit 712 * modulo operation and pure 32bit ops. 713 * 714 * Remember: 86400 <--> 128 * 675 715 * 716 * So we discard the lowest 7 bit and do an exact division by 717 * 675, modulo 2**32. 718 * 719 * First we shift out the lower 7 bits. 720 * 721 * Then we use a digit-wise pseudo-reduction, where a 'digit' is 722 * actually a 16-bit group. This is followed by a full reduction 723 * with a 'true' division step. This yields the modulus of the 724 * full 64bit value. The sign bit gets some extra treatment. 725 * 726 * Then we decrement the lower limb by that modulus, so it is 727 * exactly divisible by 675. [*] 728 * 729 * Then we multiply with the modular inverse of 675 (mod 2**32) 730 * and voila, we have the result. 731 * 732 * Special Thanks to Henry S. Warren and his "Hacker's delight" 733 * for giving that idea. 734 * 735 * (Note[*]: that's not the full truth. We would have to 736 * subtract the modulus from the full 64 bit number to get a 737 * number that is divisible by 675. But since we use the 738 * multiplicative inverse (mod 2**32) there's no reason to carry 739 * the subtraction into the upper bits!) 740 */ 741 uint32_t al = ts->D_s.lo; 742 uint32_t ah = ts->D_s.hi; 743 744 /* shift out the lower 7 bits, smash sign bit */ 745 al = (al >> 7) | (ah << 25); 746 ah = (ah >> 7) & 0x00FFFFFFu; 747 748 R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */ 749 R += (al & 0xFFFF); 750 R += (al >> 16 ) * 61u; /* 2**16 % 675 */ 751 R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */ 752 R += (ah >> 16 ) * 181u; /* 2**48 % 675 */ 753 R %= 675u; /* final reduction */ 754 Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */ 755 R = (R << 7) | (ts->d_s.lo & 0x07F); 756 757 # endif 758 759 res.hi = uint32_2cpl_to_int32(Q); 760 res.lo = R; 761 762 return res; 763 } 764 765 /* 766 *--------------------------------------------------------------------- 767 * Split a 64bit seconds value into elapsed weeks in 'res.hi' and 768 * elapsed seconds since week start in 'res.lo' using explicit floor 769 * division. This function happily accepts negative time values as 770 * timestamps before the respective epoch start. 771 *--------------------------------------------------------------------- 772 */ 773 ntpcal_split 774 ntpcal_weeksplit( 775 const vint64 *ts 776 ) 777 { 778 ntpcal_split res; 779 uint32_t Q, R; 780 781 /* This is a very close relative to the day split function; for 782 * details, see there! 783 */ 784 785 # if defined(HAVE_64BITREGS) 786 787 uint64_t sf64 = (uint64_t)-(ts->q_s < 0); 788 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK)); 789 R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK); 790 791 # elif defined(UINT64_MAX) && !defined(__arm__) 792 793 if (ts->q_s < 0) 794 Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK); 795 else 796 Q = (uint32_t)( ts->Q_s / SECSPERWEEK); 797 R = ts->D_s.lo - Q * SECSPERWEEK; 798 799 # else 800 801 /* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */ 802 uint32_t al = ts->D_s.lo; 803 uint32_t ah = ts->D_s.hi; 804 805 al = (al >> 7) | (ah << 25); 806 ah = (ah >> 7) & 0x00FFFFFF; 807 808 R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */ 809 R += (al & 0xFFFF); 810 R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */ 811 R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */ 812 R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */ 813 R %= 4725u; /* final reduction */ 814 Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */ 815 R = (R << 7) | (ts->d_s.lo & 0x07F); 816 817 # endif 818 819 res.hi = uint32_2cpl_to_int32(Q); 820 res.lo = R; 821 822 return res; 823 } 824 825 /* 826 *--------------------------------------------------------------------- 827 * Split a 32bit seconds value into h/m/s and excessive days. This 828 * function happily accepts negative time values as timestamps before 829 * midnight. 830 *--------------------------------------------------------------------- 831 */ 832 static int32_t 833 priv_timesplit( 834 int32_t split[3], 835 int32_t ts 836 ) 837 { 838 /* Do 3 chained floor divisions by positive constants, using the 839 * one's complement trick and factoring out the intermediate XOR 840 * ops to reduce the number of operations. 841 */ 842 uint32_t us, um, uh, ud, sf32; 843 844 sf32 = int32_sflag(ts); 845 846 us = (uint32_t)ts; 847 um = (sf32 ^ us) / SECSPERMIN; 848 uh = um / MINSPERHR; 849 ud = uh / HRSPERDAY; 850 851 um ^= sf32; 852 uh ^= sf32; 853 ud ^= sf32; 854 855 split[0] = (int32_t)(uh - ud * HRSPERDAY ); 856 split[1] = (int32_t)(um - uh * MINSPERHR ); 857 split[2] = (int32_t)(us - um * SECSPERMIN); 858 859 return uint32_2cpl_to_int32(ud); 860 } 861 862 /* 863 *--------------------------------------------------------------------- 864 * Given the number of elapsed days in the calendar era, split this 865 * number into the number of elapsed years in 'res.hi' and the number 866 * of elapsed days of that year in 'res.lo'. 867 * 868 * if 'isleapyear' is not NULL, it will receive an integer that is 0 for 869 * regular years and a non-zero value for leap years. 870 *--------------------------------------------------------------------- 871 */ 872 ntpcal_split 873 ntpcal_split_eradays( 874 int32_t days, 875 int *isleapyear 876 ) 877 { 878 /* Use the fast cycle split algorithm here, to calculate the 879 * centuries and years in a century with one division each. This 880 * reduces the number of division operations to two, but is 881 * susceptible to internal range overflow. We take some extra 882 * steps to avoid the gap. 883 */ 884 ntpcal_split res; 885 int32_t n100, n001; /* calendar year cycles */ 886 uint32_t uday, Q; 887 888 /* split off centuries first 889 * 890 * We want to execute '(days * 4 + 3) /% 146097' under floor 891 * division rules in the first step. Well, actually we want to 892 * calculate 'floor((days + 0.75) / 36524.25)', but we want to 893 * do it in scaled integer calculation. 894 */ 895 # if defined(HAVE_64BITREGS) 896 897 /* not too complicated with an intermediate 64bit value */ 898 uint64_t ud64, sf64; 899 ud64 = ((uint64_t)days << 2) | 3u; 900 sf64 = (uint64_t)-(days < 0); 901 Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS)); 902 uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS); 903 n100 = uint32_2cpl_to_int32(Q); 904 905 # else 906 907 /* '4*days+3' suffers from range overflow when going to the 908 * limits. We solve this by doing an exact division (mod 2^32) 909 * after caclulating the remainder first. 910 * 911 * We start with a partial reduction by digit sums, extracting 912 * the upper bits from the original value before they get lost 913 * by scaling, and do one full division step to get the true 914 * remainder. Then a final multiplication with the 915 * multiplicative inverse of 146097 (mod 2^32) gives us the full 916 * quotient. 917 * 918 * (-2^33) % 146097 --> 130717 : the sign bit value 919 * ( 2^20) % 146097 --> 25897 : the upper digit value 920 * modinv(146097, 2^32) --> 660721233 : the inverse 921 */ 922 uint32_t ux = ((uint32_t)days << 2) | 3; 923 uday = (days < 0) ? 130717u : 0u; /* sign dgt */ 924 uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */ 925 uday += (ux & 0xFFFFFu); /* lo dgt */ 926 uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */ 927 Q = (ux - uday) * 660721233u; /* exact div */ 928 n100 = uint32_2cpl_to_int32(Q); 929 930 # endif 931 932 /* Split off years in century -- days >= 0 here, and we're far 933 * away from integer overflow trouble now. */ 934 uday |= 3; 935 n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; 936 uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; 937 938 /* Assemble the year and day in year */ 939 res.hi = n100 * 100 + n001; 940 res.lo = uday / 4u; 941 942 /* Possibly set the leap year flag */ 943 if (isleapyear) { 944 uint32_t tc = (uint32_t)n100 + 1; 945 uint32_t ty = (uint32_t)n001 + 1; 946 *isleapyear = !(ty & 3) 947 && ((ty != 100) || !(tc & 3)); 948 } 949 return res; 950 } 951 952 /* 953 *--------------------------------------------------------------------- 954 * Given a number of elapsed days in a year and a leap year indicator, 955 * split the number of elapsed days into the number of elapsed months in 956 * 'res.hi' and the number of elapsed days of that month in 'res.lo'. 957 * 958 * This function will fail and return {-1,-1} if the number of elapsed 959 * days is not in the valid range! 960 *--------------------------------------------------------------------- 961 */ 962 ntpcal_split 963 ntpcal_split_yeardays( 964 int32_t eyd, 965 int isleap 966 ) 967 { 968 /* Use the unshifted-year, February-with-30-days approach here. 969 * Fractional interpolations are used in both directions, with 970 * the smallest power-of-two divider to avoid any true division. 971 */ 972 ntpcal_split res = {-1, -1}; 973 974 /* convert 'isleap' to number of defective days */ 975 isleap = 1 + !isleap; 976 /* adjust for February of 30 nominal days */ 977 if (eyd >= 61 - isleap) 978 eyd += isleap; 979 /* if in range, convert to months and days in month */ 980 if (eyd >= 0 && eyd < 367) { 981 res.hi = (eyd * 67 + 32) >> 11; 982 res.lo = eyd - ((489 * res.hi + 8) >> 4); 983 } 984 985 return res; 986 } 987 988 /* 989 *--------------------------------------------------------------------- 990 * Convert a RD into the date part of a 'struct calendar'. 991 *--------------------------------------------------------------------- 992 */ 993 int 994 ntpcal_rd_to_date( 995 struct calendar *jd, 996 int32_t rd 997 ) 998 { 999 ntpcal_split split; 1000 int leapy; 1001 u_int ymask; 1002 1003 /* Get day-of-week first. It's simply the RD (mod 7)... */ 1004 jd->weekday = i32mod7(rd); 1005 1006 split = ntpcal_split_eradays(rd - 1, &leapy); 1007 /* Get year and day-of-year, with overflow check. If any of the 1008 * upper 16 bits is set after shifting to unity-based years, we 1009 * will have an overflow when converting to an unsigned 16bit 1010 * year. Shifting to the right is OK here, since it does not 1011 * matter if the shift is logic or arithmetic. 1012 */ 1013 split.hi += 1; 1014 ymask = 0u - ((split.hi >> 16) == 0); 1015 jd->year = (uint16_t)(split.hi & ymask); 1016 jd->yearday = (uint16_t)split.lo + 1; 1017 1018 /* convert to month and mday */ 1019 split = ntpcal_split_yeardays(split.lo, leapy); 1020 jd->month = (uint8_t)split.hi + 1; 1021 jd->monthday = (uint8_t)split.lo + 1; 1022 1023 return ymask ? leapy : -1; 1024 } 1025 1026 /* 1027 *--------------------------------------------------------------------- 1028 * Convert a RD into the date part of a 'struct tm'. 1029 *--------------------------------------------------------------------- 1030 */ 1031 int 1032 ntpcal_rd_to_tm( 1033 struct tm *utm, 1034 int32_t rd 1035 ) 1036 { 1037 ntpcal_split split; 1038 int leapy; 1039 1040 /* get day-of-week first */ 1041 utm->tm_wday = i32mod7(rd); 1042 1043 /* get year and day-of-year */ 1044 split = ntpcal_split_eradays(rd - 1, &leapy); 1045 utm->tm_year = split.hi - 1899; 1046 utm->tm_yday = split.lo; /* 0-based */ 1047 1048 /* convert to month and mday */ 1049 split = ntpcal_split_yeardays(split.lo, leapy); 1050 utm->tm_mon = split.hi; /* 0-based */ 1051 utm->tm_mday = split.lo + 1; /* 1-based */ 1052 1053 return leapy; 1054 } 1055 1056 /* 1057 *--------------------------------------------------------------------- 1058 * Take a value of seconds since midnight and split it into hhmmss in a 1059 * 'struct calendar'. 1060 *--------------------------------------------------------------------- 1061 */ 1062 int32_t 1063 ntpcal_daysec_to_date( 1064 struct calendar *jd, 1065 int32_t sec 1066 ) 1067 { 1068 int32_t days; 1069 int ts[3]; 1070 1071 days = priv_timesplit(ts, sec); 1072 jd->hour = (uint8_t)ts[0]; 1073 jd->minute = (uint8_t)ts[1]; 1074 jd->second = (uint8_t)ts[2]; 1075 1076 return days; 1077 } 1078 1079 /* 1080 *--------------------------------------------------------------------- 1081 * Take a value of seconds since midnight and split it into hhmmss in a 1082 * 'struct tm'. 1083 *--------------------------------------------------------------------- 1084 */ 1085 int32_t 1086 ntpcal_daysec_to_tm( 1087 struct tm *utm, 1088 int32_t sec 1089 ) 1090 { 1091 int32_t days; 1092 int32_t ts[3]; 1093 1094 days = priv_timesplit(ts, sec); 1095 utm->tm_hour = ts[0]; 1096 utm->tm_min = ts[1]; 1097 utm->tm_sec = ts[2]; 1098 1099 return days; 1100 } 1101 1102 /* 1103 *--------------------------------------------------------------------- 1104 * take a split representation for day/second-of-day and day offset 1105 * and convert it to a 'struct calendar'. The seconds will be normalised 1106 * into the range of a day, and the day will be adjusted accordingly. 1107 * 1108 * returns >0 if the result is in a leap year, 0 if in a regular 1109 * year and <0 if the result did not fit into the calendar struct. 1110 *--------------------------------------------------------------------- 1111 */ 1112 int 1113 ntpcal_daysplit_to_date( 1114 struct calendar *jd, 1115 const ntpcal_split *ds, 1116 int32_t dof 1117 ) 1118 { 1119 dof += ntpcal_daysec_to_date(jd, ds->lo); 1120 return ntpcal_rd_to_date(jd, ds->hi + dof); 1121 } 1122 1123 /* 1124 *--------------------------------------------------------------------- 1125 * take a split representation for day/second-of-day and day offset 1126 * and convert it to a 'struct tm'. The seconds will be normalised 1127 * into the range of a day, and the day will be adjusted accordingly. 1128 * 1129 * returns 1 if the result is in a leap year and zero if in a regular 1130 * year. 1131 *--------------------------------------------------------------------- 1132 */ 1133 int 1134 ntpcal_daysplit_to_tm( 1135 struct tm *utm, 1136 const ntpcal_split *ds , 1137 int32_t dof 1138 ) 1139 { 1140 dof += ntpcal_daysec_to_tm(utm, ds->lo); 1141 1142 return ntpcal_rd_to_tm(utm, ds->hi + dof); 1143 } 1144 1145 /* 1146 *--------------------------------------------------------------------- 1147 * Take a UN*X time and convert to a calendar structure. 1148 *--------------------------------------------------------------------- 1149 */ 1150 int 1151 ntpcal_time_to_date( 1152 struct calendar *jd, 1153 const vint64 *ts 1154 ) 1155 { 1156 ntpcal_split ds; 1157 1158 ds = ntpcal_daysplit(ts); 1159 ds.hi += ntpcal_daysec_to_date(jd, ds.lo); 1160 ds.hi += DAY_UNIX_STARTS; 1161 1162 return ntpcal_rd_to_date(jd, ds.hi); 1163 } 1164 1165 1166 /* 1167 * ==================================================================== 1168 * 1169 * merging composite entities 1170 * 1171 * ==================================================================== 1172 */ 1173 1174 #if !defined(HAVE_INT64) 1175 /* multiplication helper. Seconds in days and weeks are multiples of 128, 1176 * and without that factor fit well into 16 bit. So a multiplication 1177 * of 32bit by 16bit and some shifting can be used on pure 32bit machines 1178 * with compilers that do not support 64bit integers. 1179 * 1180 * Calculate ( hi * mul * 128 ) + lo 1181 */ 1182 static vint64 1183 _dwjoin( 1184 uint16_t mul, 1185 int32_t hi, 1186 int32_t lo 1187 ) 1188 { 1189 vint64 res; 1190 uint32_t p1, p2, sf; 1191 1192 /* get sign flag and absolute value of 'hi' in p1 */ 1193 sf = (uint32_t)-(hi < 0); 1194 p1 = ((uint32_t)hi + sf) ^ sf; 1195 1196 /* assemble major units: res <- |hi| * mul */ 1197 res.D_s.lo = (p1 & 0xFFFF) * mul; 1198 res.D_s.hi = 0; 1199 p1 = (p1 >> 16) * mul; 1200 p2 = p1 >> 16; 1201 p1 = p1 << 16; 1202 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); 1203 1204 /* mul by 128, using shift: res <-- res << 7 */ 1205 res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25); 1206 res.D_s.lo = (res.D_s.lo << 7); 1207 1208 /* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */ 1209 M_ADD(res.D_s.hi, res.D_s.lo, sf, sf); 1210 res.D_s.lo ^= sf; 1211 res.D_s.hi ^= sf; 1212 1213 /* properly add seconds: res <-- res + [sx(lo)|lo] */ 1214 p2 = (uint32_t)-(lo < 0); 1215 p1 = (uint32_t)lo; 1216 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); 1217 return res; 1218 } 1219 #endif 1220 1221 /* 1222 *--------------------------------------------------------------------- 1223 * Merge a number of days and a number of seconds into seconds, 1224 * expressed in 64 bits to avoid overflow. 1225 *--------------------------------------------------------------------- 1226 */ 1227 vint64 1228 ntpcal_dayjoin( 1229 int32_t days, 1230 int32_t secs 1231 ) 1232 { 1233 vint64 res; 1234 1235 # if defined(HAVE_INT64) 1236 1237 res.q_s = days; 1238 res.q_s *= SECSPERDAY; 1239 res.q_s += secs; 1240 1241 # else 1242 1243 res = _dwjoin(675, days, secs); 1244 1245 # endif 1246 1247 return res; 1248 } 1249 1250 /* 1251 *--------------------------------------------------------------------- 1252 * Merge a number of weeks and a number of seconds into seconds, 1253 * expressed in 64 bits to avoid overflow. 1254 *--------------------------------------------------------------------- 1255 */ 1256 vint64 1257 ntpcal_weekjoin( 1258 int32_t week, 1259 int32_t secs 1260 ) 1261 { 1262 vint64 res; 1263 1264 # if defined(HAVE_INT64) 1265 1266 res.q_s = week; 1267 res.q_s *= SECSPERWEEK; 1268 res.q_s += secs; 1269 1270 # else 1271 1272 res = _dwjoin(4725, week, secs); 1273 1274 # endif 1275 1276 return res; 1277 } 1278 1279 /* 1280 *--------------------------------------------------------------------- 1281 * get leap years since epoch in elapsed years 1282 *--------------------------------------------------------------------- 1283 */ 1284 int32_t 1285 ntpcal_leapyears_in_years( 1286 int32_t years 1287 ) 1288 { 1289 /* We use the in-out-in algorithm here, using the one's 1290 * complement division trick for negative numbers. The chained 1291 * division sequence by 4/25/4 gives the compiler the chance to 1292 * get away with only one true division and doing shifts otherwise. 1293 */ 1294 1295 uint32_t sf32, sum, uyear; 1296 1297 sf32 = int32_sflag(years); 1298 uyear = (uint32_t)years; 1299 uyear ^= sf32; 1300 1301 sum = (uyear /= 4u); /* 4yr rule --> IN */ 1302 sum -= (uyear /= 25u); /* 100yr rule --> OUT */ 1303 sum += (uyear /= 4u); /* 400yr rule --> IN */ 1304 1305 /* Thanks to the alternation of IN/OUT/IN we can do the sum 1306 * directly and have a single one's complement operation 1307 * here. (Only if the years are negative, of course.) Otherwise 1308 * the one's complement would have to be done when 1309 * adding/subtracting the terms. 1310 */ 1311 return uint32_2cpl_to_int32(sf32 ^ sum); 1312 } 1313 1314 /* 1315 *--------------------------------------------------------------------- 1316 * Convert elapsed years in Era into elapsed days in Era. 1317 *--------------------------------------------------------------------- 1318 */ 1319 int32_t 1320 ntpcal_days_in_years( 1321 int32_t years 1322 ) 1323 { 1324 return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years); 1325 } 1326 1327 /* 1328 *--------------------------------------------------------------------- 1329 * Convert a number of elapsed month in a year into elapsed days in year. 1330 * 1331 * The month will be normalized, and 'res.hi' will contain the 1332 * excessive years that must be considered when converting the years, 1333 * while 'res.lo' will contain the number of elapsed days since start 1334 * of the year. 1335 * 1336 * This code uses the shifted-month-approach to convert month to days, 1337 * because then there is no need to have explicit leap year 1338 * information. The slight disadvantage is that for most month values 1339 * the result is a negative value, and the year excess is one; the 1340 * conversion is then simply based on the start of the following year. 1341 *--------------------------------------------------------------------- 1342 */ 1343 ntpcal_split 1344 ntpcal_days_in_months( 1345 int32_t m 1346 ) 1347 { 1348 ntpcal_split res; 1349 1350 /* Add ten months with proper year adjustment. */ 1351 if (m < 2) { 1352 res.lo = m + 10; 1353 res.hi = 0; 1354 } else { 1355 res.lo = m - 2; 1356 res.hi = 1; 1357 } 1358 1359 /* Possibly normalise by floor division. This does not hapen for 1360 * input in normal range. */ 1361 if (res.lo < 0 || res.lo >= 12) { 1362 uint32_t mu, Q, sf32; 1363 sf32 = int32_sflag(res.lo); 1364 mu = (uint32_t)res.lo; 1365 Q = sf32 ^ ((sf32 ^ mu) / 12u); 1366 1367 res.hi += uint32_2cpl_to_int32(Q); 1368 res.lo = mu - Q * 12u; 1369 } 1370 1371 /* Get cummulated days in year with unshift. Use the fractional 1372 * interpolation with smallest possible power of two in the 1373 * divider. 1374 */ 1375 res.lo = ((res.lo * 979 + 16) >> 5) - 306; 1376 1377 return res; 1378 } 1379 1380 /* 1381 *--------------------------------------------------------------------- 1382 * Convert ELAPSED years/months/days of gregorian calendar to elapsed 1383 * days in Gregorian epoch. 1384 * 1385 * If you want to convert years and days-of-year, just give a month of 1386 * zero. 1387 *--------------------------------------------------------------------- 1388 */ 1389 int32_t 1390 ntpcal_edate_to_eradays( 1391 int32_t years, 1392 int32_t mons, 1393 int32_t mdays 1394 ) 1395 { 1396 ntpcal_split tmp; 1397 int32_t res; 1398 1399 if (mons) { 1400 tmp = ntpcal_days_in_months(mons); 1401 res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo; 1402 } else 1403 res = ntpcal_days_in_years(years); 1404 res += mdays; 1405 1406 return res; 1407 } 1408 1409 /* 1410 *--------------------------------------------------------------------- 1411 * Convert ELAPSED years/months/days of gregorian calendar to elapsed 1412 * days in year. 1413 * 1414 * Note: This will give the true difference to the start of the given 1415 * year, even if months & days are off-scale. 1416 *--------------------------------------------------------------------- 1417 */ 1418 int32_t 1419 ntpcal_edate_to_yeardays( 1420 int32_t years, 1421 int32_t mons, 1422 int32_t mdays 1423 ) 1424 { 1425 ntpcal_split tmp; 1426 1427 if (0 <= mons && mons < 12) { 1428 if (mons >= 2) 1429 mdays -= 2 - is_leapyear(years+1); 1430 mdays += (489 * mons + 8) >> 4; 1431 } else { 1432 tmp = ntpcal_days_in_months(mons); 1433 mdays += tmp.lo 1434 + ntpcal_days_in_years(years + tmp.hi) 1435 - ntpcal_days_in_years(years); 1436 } 1437 1438 return mdays; 1439 } 1440 1441 /* 1442 *--------------------------------------------------------------------- 1443 * Convert elapsed days and the hour/minute/second information into 1444 * total seconds. 1445 * 1446 * If 'isvalid' is not NULL, do a range check on the time specification 1447 * and tell if the time input is in the normal range, permitting for a 1448 * single leapsecond. 1449 *--------------------------------------------------------------------- 1450 */ 1451 int32_t 1452 ntpcal_etime_to_seconds( 1453 int32_t hours, 1454 int32_t minutes, 1455 int32_t seconds 1456 ) 1457 { 1458 int32_t res; 1459 1460 res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds; 1461 1462 return res; 1463 } 1464 1465 /* 1466 *--------------------------------------------------------------------- 1467 * Convert the date part of a 'struct tm' (that is, year, month, 1468 * day-of-month) into the RD of that day. 1469 *--------------------------------------------------------------------- 1470 */ 1471 int32_t 1472 ntpcal_tm_to_rd( 1473 const struct tm *utm 1474 ) 1475 { 1476 return ntpcal_edate_to_eradays(utm->tm_year + 1899, 1477 utm->tm_mon, 1478 utm->tm_mday - 1) + 1; 1479 } 1480 1481 /* 1482 *--------------------------------------------------------------------- 1483 * Convert the date part of a 'struct calendar' (that is, year, month, 1484 * day-of-month) into the RD of that day. 1485 *--------------------------------------------------------------------- 1486 */ 1487 int32_t 1488 ntpcal_date_to_rd( 1489 const struct calendar *jd 1490 ) 1491 { 1492 return ntpcal_edate_to_eradays((int32_t)jd->year - 1, 1493 (int32_t)jd->month - 1, 1494 (int32_t)jd->monthday - 1) + 1; 1495 } 1496 1497 /* 1498 *--------------------------------------------------------------------- 1499 * convert a year number to rata die of year start 1500 *--------------------------------------------------------------------- 1501 */ 1502 int32_t 1503 ntpcal_year_to_ystart( 1504 int32_t year 1505 ) 1506 { 1507 return ntpcal_days_in_years(year - 1) + 1; 1508 } 1509 1510 /* 1511 *--------------------------------------------------------------------- 1512 * For a given RD, get the RD of the associated year start, 1513 * that is, the RD of the last January,1st on or before that day. 1514 *--------------------------------------------------------------------- 1515 */ 1516 int32_t 1517 ntpcal_rd_to_ystart( 1518 int32_t rd 1519 ) 1520 { 1521 /* 1522 * Rather simple exercise: split the day number into elapsed 1523 * years and elapsed days, then remove the elapsed days from the 1524 * input value. Nice'n sweet... 1525 */ 1526 return rd - ntpcal_split_eradays(rd - 1, NULL).lo; 1527 } 1528 1529 /* 1530 *--------------------------------------------------------------------- 1531 * For a given RD, get the RD of the associated month start. 1532 *--------------------------------------------------------------------- 1533 */ 1534 int32_t 1535 ntpcal_rd_to_mstart( 1536 int32_t rd 1537 ) 1538 { 1539 ntpcal_split split; 1540 int leaps; 1541 1542 split = ntpcal_split_eradays(rd - 1, &leaps); 1543 split = ntpcal_split_yeardays(split.lo, leaps); 1544 1545 return rd - split.lo; 1546 } 1547 1548 /* 1549 *--------------------------------------------------------------------- 1550 * take a 'struct calendar' and get the seconds-of-day from it. 1551 *--------------------------------------------------------------------- 1552 */ 1553 int32_t 1554 ntpcal_date_to_daysec( 1555 const struct calendar *jd 1556 ) 1557 { 1558 return ntpcal_etime_to_seconds(jd->hour, jd->minute, 1559 jd->second); 1560 } 1561 1562 /* 1563 *--------------------------------------------------------------------- 1564 * take a 'struct tm' and get the seconds-of-day from it. 1565 *--------------------------------------------------------------------- 1566 */ 1567 int32_t 1568 ntpcal_tm_to_daysec( 1569 const struct tm *utm 1570 ) 1571 { 1572 return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min, 1573 utm->tm_sec); 1574 } 1575 1576 /* 1577 *--------------------------------------------------------------------- 1578 * take a 'struct calendar' and convert it to a 'time_t' 1579 *--------------------------------------------------------------------- 1580 */ 1581 time_t 1582 ntpcal_date_to_time( 1583 const struct calendar *jd 1584 ) 1585 { 1586 vint64 join; 1587 int32_t days, secs; 1588 1589 days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS; 1590 secs = ntpcal_date_to_daysec(jd); 1591 join = ntpcal_dayjoin(days, secs); 1592 1593 return vint64_to_time(&join); 1594 } 1595 1596 1597 /* 1598 * ==================================================================== 1599 * 1600 * extended and unchecked variants of caljulian/caltontp 1601 * 1602 * ==================================================================== 1603 */ 1604 int 1605 ntpcal_ntp64_to_date( 1606 struct calendar *jd, 1607 const vint64 *ntp 1608 ) 1609 { 1610 ntpcal_split ds; 1611 1612 ds = ntpcal_daysplit(ntp); 1613 ds.hi += ntpcal_daysec_to_date(jd, ds.lo); 1614 1615 return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS); 1616 } 1617 1618 int 1619 ntpcal_ntp_to_date( 1620 struct calendar *jd, 1621 uint32_t ntp, 1622 const time_t *piv 1623 ) 1624 { 1625 vint64 ntp64; 1626 1627 /* 1628 * Unfold ntp time around current time into NTP domain. Split 1629 * into days and seconds, shift days into CE domain and 1630 * process the parts. 1631 */ 1632 ntp64 = ntpcal_ntp_to_ntp(ntp, piv); 1633 return ntpcal_ntp64_to_date(jd, &ntp64); 1634 } 1635 1636 1637 vint64 1638 ntpcal_date_to_ntp64( 1639 const struct calendar *jd 1640 ) 1641 { 1642 /* 1643 * Convert date to NTP. Ignore yearday, use d/m/y only. 1644 */ 1645 return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS, 1646 ntpcal_date_to_daysec(jd)); 1647 } 1648 1649 1650 uint32_t 1651 ntpcal_date_to_ntp( 1652 const struct calendar *jd 1653 ) 1654 { 1655 /* 1656 * Get lower half of 64bit NTP timestamp from date/time. 1657 */ 1658 return ntpcal_date_to_ntp64(jd).d_s.lo; 1659 } 1660 1661 1662 1663 /* 1664 * ==================================================================== 1665 * 1666 * day-of-week calculations 1667 * 1668 * ==================================================================== 1669 */ 1670 /* 1671 * Given a RataDie and a day-of-week, calculate a RDN that is reater-than, 1672 * greater-or equal, closest, less-or-equal or less-than the given RDN 1673 * and denotes the given day-of-week 1674 */ 1675 int32_t 1676 ntpcal_weekday_gt( 1677 int32_t rdn, 1678 int32_t dow 1679 ) 1680 { 1681 return ntpcal_periodic_extend(rdn+1, dow, 7); 1682 } 1683 1684 int32_t 1685 ntpcal_weekday_ge( 1686 int32_t rdn, 1687 int32_t dow 1688 ) 1689 { 1690 return ntpcal_periodic_extend(rdn, dow, 7); 1691 } 1692 1693 int32_t 1694 ntpcal_weekday_close( 1695 int32_t rdn, 1696 int32_t dow 1697 ) 1698 { 1699 return ntpcal_periodic_extend(rdn-3, dow, 7); 1700 } 1701 1702 int32_t 1703 ntpcal_weekday_le( 1704 int32_t rdn, 1705 int32_t dow 1706 ) 1707 { 1708 return ntpcal_periodic_extend(rdn, dow, -7); 1709 } 1710 1711 int32_t 1712 ntpcal_weekday_lt( 1713 int32_t rdn, 1714 int32_t dow 1715 ) 1716 { 1717 return ntpcal_periodic_extend(rdn-1, dow, -7); 1718 } 1719 1720 /* 1721 * ==================================================================== 1722 * 1723 * ISO week-calendar conversions 1724 * 1725 * The ISO8601 calendar defines a calendar of years, weeks and weekdays. 1726 * It is related to the Gregorian calendar, and a ISO year starts at the 1727 * Monday closest to Jan,1st of the corresponding Gregorian year. A ISO 1728 * calendar year has always 52 or 53 weeks, and like the Grogrian 1729 * calendar the ISO8601 calendar repeats itself every 400 years, or 1730 * 146097 days, or 20871 weeks. 1731 * 1732 * While it is possible to write ISO calendar functions based on the 1733 * Gregorian calendar functions, the following implementation takes a 1734 * different approach, based directly on years and weeks. 1735 * 1736 * Analysis of the tabulated data shows that it is not possible to 1737 * interpolate from years to weeks over a full 400 year range; cyclic 1738 * shifts over 400 years do not provide a solution here. But it *is* 1739 * possible to interpolate over every single century of the 400-year 1740 * cycle. (The centennial leap year rule seems to be the culprit here.) 1741 * 1742 * It can be shown that a conversion from years to weeks can be done 1743 * using a linear transformation of the form 1744 * 1745 * w = floor( y * a + b ) 1746 * 1747 * where the slope a must hold to 1748 * 1749 * 52.1780821918 <= a < 52.1791044776 1750 * 1751 * and b must be chosen according to the selected slope and the number 1752 * of the century in a 400-year period. 1753 * 1754 * The inverse calculation can also be done in this way. Careful scaling 1755 * provides an unlimited set of integer coefficients a,k,b that enable 1756 * us to write the calulation in the form 1757 * 1758 * w = (y * a + b ) / k 1759 * y = (w * a' + b') / k' 1760 * 1761 * In this implementation the values of k and k' are chosen to be the 1762 * smallest possible powers of two, so the division can be implemented 1763 * as shifts if the optimiser chooses to do so. 1764 * 1765 * ==================================================================== 1766 */ 1767 1768 /* 1769 * Given a number of elapsed (ISO-)years since the begin of the 1770 * christian era, return the number of elapsed weeks corresponding to 1771 * the number of years. 1772 */ 1773 int32_t 1774 isocal_weeks_in_years( 1775 int32_t years 1776 ) 1777 { 1778 /* 1779 * use: w = (y * 53431 + b[c]) / 1024 as interpolation 1780 */ 1781 static const uint16_t bctab[4] = { 157, 449, 597, 889 }; 1782 1783 int32_t cs, cw; 1784 uint32_t cc, ci, yu, sf32; 1785 1786 sf32 = int32_sflag(years); 1787 yu = (uint32_t)years; 1788 1789 /* split off centuries, using floor division */ 1790 cc = sf32 ^ ((sf32 ^ yu) / 100u); 1791 yu -= cc * 100u; 1792 1793 /* calculate century cycles shift and cycle index: 1794 * Assuming a century is 5217 weeks, we have to add a cycle 1795 * shift that is 3 for every 4 centuries, because 3 of the four 1796 * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual 1797 * correction, and the second century is the defective one. 1798 * 1799 * Needs floor division by 4, which is done with masking and 1800 * shifting. 1801 */ 1802 ci = cc * 3u + 1; 1803 cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2)); 1804 ci = ci & 3u; 1805 1806 /* Get weeks in century. Can use plain division here as all ops 1807 * are >= 0, and let the compiler sort out the possible 1808 * optimisations. 1809 */ 1810 cw = (yu * 53431u + bctab[ci]) / 1024u; 1811 1812 return uint32_2cpl_to_int32(cc) * 5217 + cs + cw; 1813 } 1814 1815 /* 1816 * Given a number of elapsed weeks since the begin of the christian 1817 * era, split this number into the number of elapsed years in res.hi 1818 * and the excessive number of weeks in res.lo. (That is, res.lo is 1819 * the number of elapsed weeks in the remaining partial year.) 1820 */ 1821 ntpcal_split 1822 isocal_split_eraweeks( 1823 int32_t weeks 1824 ) 1825 { 1826 /* 1827 * use: y = (w * 157 + b[c]) / 8192 as interpolation 1828 */ 1829 1830 static const uint16_t bctab[4] = { 85, 130, 17, 62 }; 1831 1832 ntpcal_split res; 1833 int32_t cc, ci; 1834 uint32_t sw, cy, Q; 1835 1836 /* Use two fast cycle-split divisions again. Herew e want to 1837 * execute '(weeks * 4 + 2) /% 20871' under floor division rules 1838 * in the first step. 1839 * 1840 * This is of course (again) susceptible to internal overflow if 1841 * coded directly in 32bit. And again we use 64bit division on 1842 * a 64bit target and exact division after calculating the 1843 * remainder first on a 32bit target. With the smaller divider, 1844 * that's even a bit neater. 1845 */ 1846 # if defined(HAVE_64BITREGS) 1847 1848 /* Full floor division with 64bit values. */ 1849 uint64_t sf64, sw64; 1850 sf64 = (uint64_t)-(weeks < 0); 1851 sw64 = ((uint64_t)weeks << 2) | 2u; 1852 Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS)); 1853 sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS); 1854 1855 # else 1856 1857 /* Exact division after calculating the remainder via partial 1858 * reduction by digit sum. 1859 * (-2^33) % 20871 --> 5491 : the sign bit value 1860 * ( 2^20) % 20871 --> 5026 : the upper digit value 1861 * modinv(20871, 2^32) --> 330081335 : the inverse 1862 */ 1863 uint32_t ux = ((uint32_t)weeks << 2) | 2; 1864 sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */ 1865 sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */ 1866 sw += (ux & 0xFFFFFu); /* lo dgt */ 1867 sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */ 1868 Q = (ux - sw) * 330081335u; /* exact div */ 1869 1870 # endif 1871 1872 ci = Q & 3u; 1873 cc = uint32_2cpl_to_int32(Q); 1874 1875 /* Split off years; sw >= 0 here! The scaled weeks in the years 1876 * are scaled up by 157 afterwards. 1877 */ 1878 sw = (sw / 4u) * 157u + bctab[ci]; 1879 cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */ 1880 sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */ 1881 1882 /* assemble elapsed years and downscale the elapsed weeks in 1883 * the year. 1884 */ 1885 res.hi = 100*cc + cy; 1886 res.lo = sw / 157u; 1887 1888 return res; 1889 } 1890 1891 /* 1892 * Given a second in the NTP time scale and a pivot, expand the NTP 1893 * time stamp around the pivot and convert into an ISO calendar time 1894 * stamp. 1895 */ 1896 int 1897 isocal_ntp64_to_date( 1898 struct isodate *id, 1899 const vint64 *ntp 1900 ) 1901 { 1902 ntpcal_split ds; 1903 int32_t ts[3]; 1904 uint32_t uw, ud, sf32; 1905 1906 /* 1907 * Split NTP time into days and seconds, shift days into CE 1908 * domain and process the parts. 1909 */ 1910 ds = ntpcal_daysplit(ntp); 1911 1912 /* split time part */ 1913 ds.hi += priv_timesplit(ts, ds.lo); 1914 id->hour = (uint8_t)ts[0]; 1915 id->minute = (uint8_t)ts[1]; 1916 id->second = (uint8_t)ts[2]; 1917 1918 /* split days into days and weeks, using floor division in unsigned */ 1919 ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */ 1920 sf32 = int32_sflag(ds.hi); 1921 ud = (uint32_t)ds.hi; 1922 uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK); 1923 ud -= uw * DAYSPERWEEK; 1924 1925 ds.hi = uint32_2cpl_to_int32(uw); 1926 ds.lo = ud; 1927 1928 id->weekday = (uint8_t)ds.lo + 1; /* weekday result */ 1929 1930 /* get year and week in year */ 1931 ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/ 1932 id->year = (uint16_t)ds.hi + 1; /* shift to current */ 1933 id->week = (uint8_t )ds.lo + 1; 1934 1935 return (ds.hi >= 0 && ds.hi < 0x0000FFFF); 1936 } 1937 1938 int 1939 isocal_ntp_to_date( 1940 struct isodate *id, 1941 uint32_t ntp, 1942 const time_t *piv 1943 ) 1944 { 1945 vint64 ntp64; 1946 1947 /* 1948 * Unfold ntp time around current time into NTP domain, then 1949 * convert the full time stamp. 1950 */ 1951 ntp64 = ntpcal_ntp_to_ntp(ntp, piv); 1952 return isocal_ntp64_to_date(id, &ntp64); 1953 } 1954 1955 /* 1956 * Convert a ISO date spec into a second in the NTP time scale, 1957 * properly truncated to 32 bit. 1958 */ 1959 vint64 1960 isocal_date_to_ntp64( 1961 const struct isodate *id 1962 ) 1963 { 1964 int32_t weeks, days, secs; 1965 1966 weeks = isocal_weeks_in_years((int32_t)id->year - 1) 1967 + (int32_t)id->week - 1; 1968 days = weeks * 7 + (int32_t)id->weekday; 1969 /* days is RDN of ISO date now */ 1970 secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second); 1971 1972 return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs); 1973 } 1974 1975 uint32_t 1976 isocal_date_to_ntp( 1977 const struct isodate *id 1978 ) 1979 { 1980 /* 1981 * Get lower half of 64bit NTP timestamp from date/time. 1982 */ 1983 return isocal_date_to_ntp64(id).d_s.lo; 1984 } 1985 1986 /* 1987 * ==================================================================== 1988 * 'basedate' support functions 1989 * ==================================================================== 1990 */ 1991 1992 static int32_t s_baseday = NTP_TO_UNIX_DAYS; 1993 static int32_t s_gpsweek = 0; 1994 1995 int32_t 1996 basedate_eval_buildstamp(void) 1997 { 1998 struct calendar jd; 1999 int32_t ed; 2000 2001 if (!ntpcal_get_build_date(&jd)) 2002 return NTP_TO_UNIX_DAYS; 2003 2004 /* The time zone of the build stamp is unspecified; we remove 2005 * one day to provide a certain slack. And in case somebody 2006 * fiddled with the system clock, we make sure we do not go 2007 * before the UNIX epoch (1970-01-01). It's probably not possible 2008 * to do this to the clock on most systems, but there are other 2009 * ways to tweak the build stamp. 2010 */ 2011 jd.monthday -= 1; 2012 ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS; 2013 return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed; 2014 } 2015 2016 int32_t 2017 basedate_eval_string( 2018 const char * str 2019 ) 2020 { 2021 u_short y,m,d; 2022 u_long ned; 2023 int rc, nc; 2024 size_t sl; 2025 2026 sl = strlen(str); 2027 rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc); 2028 if (rc == 3 && (size_t)nc == sl) { 2029 if (m >= 1 && m <= 12 && d >= 1 && d <= 31) 2030 return ntpcal_edate_to_eradays(y-1, m-1, d) 2031 - DAY_NTP_STARTS; 2032 goto buildstamp; 2033 } 2034 2035 rc = sscanf(str, "%lu%n", &ned, &nc); 2036 if (rc == 1 && (size_t)nc == sl) { 2037 if (ned <= INT32_MAX) 2038 return (int32_t)ned; 2039 goto buildstamp; 2040 } 2041 2042 buildstamp: 2043 msyslog(LOG_WARNING, 2044 "basedate string \"%s\" invalid, build date substituted!", 2045 str); 2046 return basedate_eval_buildstamp(); 2047 } 2048 2049 uint32_t 2050 basedate_get_day(void) 2051 { 2052 return s_baseday; 2053 } 2054 2055 int32_t 2056 basedate_set_day( 2057 int32_t day 2058 ) 2059 { 2060 struct calendar jd; 2061 int32_t retv; 2062 2063 /* set NTP base date for NTP era unfolding */ 2064 if (day < NTP_TO_UNIX_DAYS) { 2065 msyslog(LOG_WARNING, 2066 "baseday_set_day: invalid day (%lu), UNIX epoch substituted", 2067 (unsigned long)day); 2068 day = NTP_TO_UNIX_DAYS; 2069 } 2070 retv = s_baseday; 2071 s_baseday = day; 2072 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); 2073 msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu", 2074 jd.year, (u_short)jd.month, (u_short)jd.monthday); 2075 2076 /* set GPS base week for GPS week unfolding */ 2077 day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY) 2078 - DAY_NTP_STARTS; 2079 if (day < NTP_TO_GPS_DAYS) 2080 day = NTP_TO_GPS_DAYS; 2081 s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK; 2082 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); 2083 msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)", 2084 jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek); 2085 2086 return retv; 2087 } 2088 2089 time_t 2090 basedate_get_eracenter(void) 2091 { 2092 time_t retv; 2093 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); 2094 retv *= SECSPERDAY; 2095 retv += (UINT32_C(1) << 31); 2096 return retv; 2097 } 2098 2099 time_t 2100 basedate_get_erabase(void) 2101 { 2102 time_t retv; 2103 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); 2104 retv *= SECSPERDAY; 2105 return retv; 2106 } 2107 2108 uint32_t 2109 basedate_get_gpsweek(void) 2110 { 2111 return s_gpsweek; 2112 } 2113 2114 uint32_t 2115 basedate_expand_gpsweek( 2116 unsigned short weekno 2117 ) 2118 { 2119 /* We do a fast modulus expansion here. Since all quantities are 2120 * unsigned and we cannot go before the start of the GPS epoch 2121 * anyway, and since the truncated GPS week number is 10 bit, the 2122 * expansion becomes a simple sub/and/add sequence. 2123 */ 2124 #if GPSWEEKS != 1024 2125 # error GPSWEEKS defined wrong -- should be 1024! 2126 #endif 2127 2128 uint32_t diff; 2129 diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1); 2130 return s_gpsweek + diff; 2131 } 2132 2133 /* 2134 * ==================================================================== 2135 * misc. helpers 2136 * ==================================================================== 2137 */ 2138 2139 /* -------------------------------------------------------------------- 2140 * reconstruct the centrury from a truncated date and a day-of-week 2141 * 2142 * Given a date with truncated year (2-digit, 0..99) and a day-of-week 2143 * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD. 2144 */ 2145 int32_t 2146 ntpcal_expand_century( 2147 uint32_t y, 2148 uint32_t m, 2149 uint32_t d, 2150 uint32_t wd) 2151 { 2152 /* This algorithm is short but tricky... It's related to 2153 * Zeller's congruence, partially done backwards. 2154 * 2155 * A few facts to remember: 2156 * 1) The Gregorian calendar has a cycle of 400 years. 2157 * 2) The weekday of the 1st day of a century shifts by 5 days 2158 * during a great cycle. 2159 * 3) For calendar math, a century starts with the 1st year, 2160 * which is year 1, !not! zero. 2161 * 2162 * So we start with taking the weekday difference (mod 7) 2163 * between the truncated date (which is taken as an absolute 2164 * date in the 1st century in the proleptic calendar) and the 2165 * weekday given. 2166 * 2167 * When dividing this residual by 5, we obtain the number of 2168 * centuries to add to the base. But since the residual is (mod 2169 * 7), we have to make this an exact division by multiplication 2170 * with the modular inverse of 5 (mod 7), which is 3: 2171 * 3*5 === 1 (mod 7). 2172 * 2173 * If this yields a result of 4/5/6, the given date/day-of-week 2174 * combination is impossible, and we return zero as resulting 2175 * year to indicate failure. 2176 * 2177 * Then we remap the century to the range starting with year 2178 * 1900. 2179 */ 2180 2181 uint32_t c; 2182 2183 /* check basic constraints */ 2184 if ((y >= 100u) || (--m >= 12u) || (--d >= 31u)) 2185 return 0; 2186 2187 if ((m += 10u) >= 12u) /* shift base to prev. March,1st */ 2188 m -= 12u; 2189 else if (--y >= 100u) 2190 y += 100u; 2191 d += y + (y >> 2) + 2u; /* year share */ 2192 d += (m * 83u + 16u) >> 5; /* month share */ 2193 2194 /* get (wd - d), shifted to positive value, and multiply with 2195 * 3(mod 7). (Exact division, see to comment) 2196 * Note: 1) d <= 184 at this point. 2197 * 2) 252 % 7 == 0, but 'wd' is off by one since we did 2198 * '--d' above, so we add just 251 here! 2199 */ 2200 c = u32mod7(3 * (251u + wd - d)); 2201 if (c > 3u) 2202 return 0; 2203 2204 if ((m > 9u) && (++y >= 100u)) {/* undo base shift */ 2205 y -= 100u; 2206 c = (c + 1) & 3u; 2207 } 2208 y += (c * 100u); /* combine into 1st cycle */ 2209 y += (y < 300u) ? 2000 : 1600; /* map to destination era */ 2210 return (int)y; 2211 } 2212 2213 char * 2214 ntpcal_iso8601std( 2215 char * buf, 2216 size_t len, 2217 TcCivilDate * cdp 2218 ) 2219 { 2220 if (!buf) { 2221 LIB_GETBUF(buf); 2222 len = LIB_BUFLENGTH; 2223 } 2224 if (len) { 2225 len = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u", 2226 cdp->year, cdp->month, cdp->monthday, 2227 cdp->hour, cdp->minute, cdp->second); 2228 if (len < 0) 2229 *buf = '\0'; 2230 } 2231 return buf; 2232 } 2233 2234 /* -*-EOF-*- */ 2235