1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24
25 /*
26 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/proc.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/session.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/poll.h>
46 #include <sys/systm.h>
47 #include <sys/cpuvar.h>
48 #include <sys/uio.h>
49 #include <sys/cmn_err.h>
50 #include <sys/priocntl.h>
51 #include <sys/procset.h>
52 #include <sys/vmem.h>
53 #include <sys/bitmap.h>
54 #include <sys/kmem.h>
55 #include <sys/siginfo.h>
56 #include <sys/vtrace.h>
57 #include <sys/callb.h>
58 #include <sys/debug.h>
59 #include <sys/modctl.h>
60 #include <sys/vmsystm.h>
61 #include <vm/page.h>
62 #include <sys/atomic.h>
63 #include <sys/suntpi.h>
64 #include <sys/strlog.h>
65 #include <sys/promif.h>
66 #include <sys/project.h>
67 #include <sys/vm.h>
68 #include <sys/taskq.h>
69 #include <sys/sunddi.h>
70 #include <sys/sunldi_impl.h>
71 #include <sys/strsun.h>
72 #include <sys/isa_defs.h>
73 #include <sys/multidata.h>
74 #include <sys/pattr.h>
75 #include <sys/strft.h>
76 #include <sys/fs/snode.h>
77 #include <sys/zone.h>
78 #include <sys/open.h>
79 #include <sys/sunldi.h>
80 #include <sys/sad.h>
81 #include <sys/netstack.h>
82
83 #define O_SAMESTR(q) (((q)->q_next) && \
84 (((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85
86 /*
87 * WARNING:
88 * The variables and routines in this file are private, belonging
89 * to the STREAMS subsystem. These should not be used by modules
90 * or drivers. Compatibility will not be guaranteed.
91 */
92
93 /*
94 * Id value used to distinguish between different multiplexor links.
95 */
96 static int32_t lnk_id = 0;
97
98 #define STREAMS_LOPRI MINCLSYSPRI
99 static pri_t streams_lopri = STREAMS_LOPRI;
100
101 #define STRSTAT(x) (str_statistics.x.value.ui64++)
102 typedef struct str_stat {
103 kstat_named_t sqenables;
104 kstat_named_t stenables;
105 kstat_named_t syncqservice;
106 kstat_named_t freebs;
107 kstat_named_t qwr_outer;
108 kstat_named_t rservice;
109 kstat_named_t strwaits;
110 kstat_named_t taskqfails;
111 kstat_named_t bufcalls;
112 kstat_named_t qhelps;
113 kstat_named_t qremoved;
114 kstat_named_t sqremoved;
115 kstat_named_t bcwaits;
116 kstat_named_t sqtoomany;
117 } str_stat_t;
118
119 static str_stat_t str_statistics = {
120 { "sqenables", KSTAT_DATA_UINT64 },
121 { "stenables", KSTAT_DATA_UINT64 },
122 { "syncqservice", KSTAT_DATA_UINT64 },
123 { "freebs", KSTAT_DATA_UINT64 },
124 { "qwr_outer", KSTAT_DATA_UINT64 },
125 { "rservice", KSTAT_DATA_UINT64 },
126 { "strwaits", KSTAT_DATA_UINT64 },
127 { "taskqfails", KSTAT_DATA_UINT64 },
128 { "bufcalls", KSTAT_DATA_UINT64 },
129 { "qhelps", KSTAT_DATA_UINT64 },
130 { "qremoved", KSTAT_DATA_UINT64 },
131 { "sqremoved", KSTAT_DATA_UINT64 },
132 { "bcwaits", KSTAT_DATA_UINT64 },
133 { "sqtoomany", KSTAT_DATA_UINT64 },
134 };
135
136 static kstat_t *str_kstat;
137
138 /*
139 * qrunflag was used previously to control background scheduling of queues. It
140 * is not used anymore, but kept here in case some module still wants to access
141 * it via qready() and setqsched macros.
142 */
143 char qrunflag; /* Unused */
144
145 /*
146 * Most of the streams scheduling is done via task queues. Task queues may fail
147 * for non-sleep dispatches, so there are two backup threads servicing failed
148 * requests for queues and syncqs. Both of these threads also service failed
149 * dispatches freebs requests. Queues are put in the list specified by `qhead'
150 * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151 * requests are put into `freebs_list' which has no tail pointer. All three
152 * lists are protected by a single `service_queue' lock and use
153 * `services_to_run' condition variable for signaling background threads. Use of
154 * a single lock should not be a problem because it is only used under heavy
155 * loads when task queues start to fail and at that time it may be a good idea
156 * to throttle scheduling requests.
157 *
158 * NOTE: queues and syncqs should be scheduled by two separate threads because
159 * queue servicing may be blocked waiting for a syncq which may be also
160 * scheduled for background execution. This may create a deadlock when only one
161 * thread is used for both.
162 */
163
164 static taskq_t *streams_taskq; /* Used for most STREAMS scheduling */
165
166 static kmutex_t service_queue; /* protects all of servicing vars */
167 static kcondvar_t services_to_run; /* wake up background service thread */
168 static kcondvar_t syncqs_to_run; /* wake up background service thread */
169
170 /*
171 * List of queues scheduled for background processing due to lack of resources
172 * in the task queues. Protected by service_queue lock;
173 */
174 static struct queue *qhead;
175 static struct queue *qtail;
176
177 /*
178 * Same list for syncqs
179 */
180 static syncq_t *sqhead;
181 static syncq_t *sqtail;
182
183 static mblk_t *freebs_list; /* list of buffers to free */
184
185 /*
186 * Backup threads for servicing queues and syncqs
187 */
188 kthread_t *streams_qbkgrnd_thread;
189 kthread_t *streams_sqbkgrnd_thread;
190
191 /*
192 * Bufcalls related variables.
193 */
194 struct bclist strbcalls; /* list of waiting bufcalls */
195 kmutex_t strbcall_lock; /* protects bufcall list (strbcalls) */
196 kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */
197 kmutex_t bcall_monitor; /* sleep/wakeup style monitor */
198 kcondvar_t bcall_cv; /* wait 'till executing bufcall completes */
199 kthread_t *bc_bkgrnd_thread; /* Thread to service bufcall requests */
200
201 kmutex_t strresources; /* protects global resources */
202 kmutex_t muxifier; /* single-threads multiplexor creation */
203
204 static void *str_stack_init(netstackid_t stackid, netstack_t *ns);
205 static void str_stack_shutdown(netstackid_t stackid, void *arg);
206 static void str_stack_fini(netstackid_t stackid, void *arg);
207
208 /*
209 * run_queues is no longer used, but is kept in case some 3rd party
210 * module/driver decides to use it.
211 */
212 int run_queues = 0;
213
214 /*
215 * sq_max_size is the depth of the syncq (in number of messages) before
216 * qfill_syncq() starts QFULL'ing destination queues. As its primary
217 * consumer - IP is no longer D_MTPERMOD, but there may be other
218 * modules/drivers depend on this syncq flow control, we prefer to
219 * choose a large number as the default value. For potential
220 * performance gain, this value is tunable in /etc/system.
221 */
222 int sq_max_size = 10000;
223
224 /*
225 * The number of ciputctrl structures per syncq and stream we create when
226 * needed.
227 */
228 int n_ciputctrl;
229 int max_n_ciputctrl = 16;
230 /*
231 * If n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
232 */
233 int min_n_ciputctrl = 2;
234
235 /*
236 * Per-driver/module syncqs
237 * ========================
238 *
239 * For drivers/modules that use PERMOD or outer syncqs we keep a list of
240 * perdm structures, new entries being added (and new syncqs allocated) when
241 * setq() encounters a module/driver with a streamtab that it hasn't seen
242 * before.
243 * The reason for this mechanism is that some modules and drivers share a
244 * common streamtab and it is necessary for those modules and drivers to also
245 * share a common PERMOD syncq.
246 *
247 * perdm_list --> dm_str == streamtab_1
248 * dm_sq == syncq_1
249 * dm_ref
250 * dm_next --> dm_str == streamtab_2
251 * dm_sq == syncq_2
252 * dm_ref
253 * dm_next --> ... NULL
254 *
255 * The dm_ref field is incremented for each new driver/module that takes
256 * a reference to the perdm structure and hence shares the syncq.
257 * References are held in the fmodsw_impl_t structure for each STREAMS module
258 * or the dev_impl array (indexed by device major number) for each driver.
259 *
260 * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
261 * ^ ^ ^ ^
262 * | ______________/ | |
263 * | / | |
264 * dev_impl: ...|x|y|... module A module B
265 *
266 * When a module/driver is unloaded the reference count is decremented and,
267 * when it falls to zero, the perdm structure is removed from the list and
268 * the syncq is freed (see rele_dm()).
269 */
270 perdm_t *perdm_list = NULL;
271 static krwlock_t perdm_rwlock;
272 cdevsw_impl_t *devimpl;
273
274 extern struct qinit strdata;
275 extern struct qinit stwdata;
276
277 static void runservice(queue_t *);
278 static void streams_bufcall_service(void);
279 static void streams_qbkgrnd_service(void);
280 static void streams_sqbkgrnd_service(void);
281 static syncq_t *new_syncq(void);
282 static void free_syncq(syncq_t *);
283 static void outer_insert(syncq_t *, syncq_t *);
284 static void outer_remove(syncq_t *, syncq_t *);
285 static void write_now(syncq_t *);
286 static void clr_qfull(queue_t *);
287 static void runbufcalls(void);
288 static void sqenable(syncq_t *);
289 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
290 static void wait_q_syncq(queue_t *);
291 static void backenable_insertedq(queue_t *);
292
293 static void queue_service(queue_t *);
294 static void stream_service(stdata_t *);
295 static void syncq_service(syncq_t *);
296 static void qwriter_outer_service(syncq_t *);
297 static void mblk_free(mblk_t *);
298 #ifdef DEBUG
299 static int qprocsareon(queue_t *);
300 #endif
301
302 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
303 static void reset_nfsrv_ptr(queue_t *, queue_t *);
304 void set_qfull(queue_t *);
305
306 static void sq_run_events(syncq_t *);
307 static int propagate_syncq(queue_t *);
308
309 static void blocksq(syncq_t *, ushort_t, int);
310 static void unblocksq(syncq_t *, ushort_t, int);
311 static int dropsq(syncq_t *, uint16_t);
312 static void emptysq(syncq_t *);
313 static sqlist_t *sqlist_alloc(struct stdata *, int);
314 static void sqlist_free(sqlist_t *);
315 static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t);
316 static void sqlist_insert(sqlist_t *, syncq_t *);
317 static void sqlist_insertall(sqlist_t *, queue_t *);
318
319 static void strsetuio(stdata_t *);
320
321 struct kmem_cache *stream_head_cache;
322 struct kmem_cache *queue_cache;
323 struct kmem_cache *syncq_cache;
324 struct kmem_cache *qband_cache;
325 struct kmem_cache *linkinfo_cache;
326 struct kmem_cache *ciputctrl_cache = NULL;
327
328 static linkinfo_t *linkinfo_list;
329
330 /* Global esballoc throttling queue */
331 static esb_queue_t system_esbq;
332
333 /* Array of esballoc throttling queues, of length esbq_nelem */
334 static esb_queue_t *volatile system_esbq_array;
335 static int esbq_nelem;
336 static kmutex_t esbq_lock;
337 static int esbq_log2_cpus_per_q = 0;
338
339 /* Scale the system_esbq length by setting number of CPUs per queue. */
340 uint_t esbq_cpus_per_q = 1;
341
342 /*
343 * esballoc tunable parameters.
344 */
345 int esbq_max_qlen = 0x16; /* throttled queue length */
346 clock_t esbq_timeout = 0x8; /* timeout to process esb queue */
347
348 /*
349 * Routines to handle esballoc queueing.
350 */
351 static void esballoc_process_queue(esb_queue_t *);
352 static void esballoc_enqueue_mblk(mblk_t *);
353 static void esballoc_timer(void *);
354 static void esballoc_set_timer(esb_queue_t *, clock_t);
355 static void esballoc_mblk_free(mblk_t *);
356
357 /*
358 * Qinit structure and Module_info structures
359 * for passthru read and write queues
360 */
361
362 static void pass_wput(queue_t *, mblk_t *);
363 static queue_t *link_addpassthru(stdata_t *);
364 static void link_rempassthru(queue_t *);
365
366 struct module_info passthru_info = {
367 0,
368 "passthru",
369 0,
370 INFPSZ,
371 STRHIGH,
372 STRLOW
373 };
374
375 struct qinit passthru_rinit = {
376 (int (*)())putnext,
377 NULL,
378 NULL,
379 NULL,
380 NULL,
381 &passthru_info,
382 NULL
383 };
384
385 struct qinit passthru_winit = {
386 (int (*)()) pass_wput,
387 NULL,
388 NULL,
389 NULL,
390 NULL,
391 &passthru_info,
392 NULL
393 };
394
395 /*
396 * Verify correctness of list head/tail pointers.
397 */
398 #define LISTCHECK(head, tail, link) { \
399 EQUIV(head, tail); \
400 IMPLY(tail != NULL, tail->link == NULL); \
401 }
402
403 /*
404 * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
405 * using a `link' field.
406 */
407 #define ENQUEUE(el, head, tail, link) { \
408 ASSERT(el->link == NULL); \
409 LISTCHECK(head, tail, link); \
410 if (head == NULL) \
411 head = el; \
412 else \
413 tail->link = el; \
414 tail = el; \
415 }
416
417 /*
418 * Dequeue the first element of the list denoted by `head' and `tail' pointers
419 * using a `link' field and put result into `el'.
420 */
421 #define DQ(el, head, tail, link) { \
422 LISTCHECK(head, tail, link); \
423 el = head; \
424 if (head != NULL) { \
425 head = head->link; \
426 if (head == NULL) \
427 tail = NULL; \
428 el->link = NULL; \
429 } \
430 }
431
432 /*
433 * Remove `el' from the list using `chase' and `curr' pointers and return result
434 * in `succeed'.
435 */
436 #define RMQ(el, head, tail, link, chase, curr, succeed) { \
437 LISTCHECK(head, tail, link); \
438 chase = NULL; \
439 succeed = 0; \
440 for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
441 chase = curr; \
442 if (curr != NULL) { \
443 succeed = 1; \
444 ASSERT(curr == el); \
445 if (chase != NULL) \
446 chase->link = curr->link; \
447 else \
448 head = curr->link; \
449 curr->link = NULL; \
450 if (curr == tail) \
451 tail = chase; \
452 } \
453 LISTCHECK(head, tail, link); \
454 }
455
456 /* Handling of delayed messages on the inner syncq. */
457
458 /*
459 * DEBUG versions should use function versions (to simplify tracing) and
460 * non-DEBUG kernels should use macro versions.
461 */
462
463 /*
464 * Put a queue on the syncq list of queues.
465 * Assumes SQLOCK held.
466 */
467 #define SQPUT_Q(sq, qp) \
468 { \
469 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
470 if (!(qp->q_sqflags & Q_SQQUEUED)) { \
471 /* The queue should not be linked anywhere */ \
472 ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
473 /* Head and tail may only be NULL simultaneously */ \
474 EQUIV(sq->sq_head, sq->sq_tail); \
475 /* Queue may be only enqueued on its syncq */ \
476 ASSERT(sq == qp->q_syncq); \
477 /* Check the correctness of SQ_MESSAGES flag */ \
478 EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES)); \
479 /* Sanity check first/last elements of the list */ \
480 IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
481 IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
482 /* \
483 * Sanity check of priority field: empty queue should \
484 * have zero priority \
485 * and nqueues equal to zero. \
486 */ \
487 IMPLY(sq->sq_head == NULL, sq->sq_pri == 0); \
488 /* Sanity check of sq_nqueues field */ \
489 EQUIV(sq->sq_head, sq->sq_nqueues); \
490 if (sq->sq_head == NULL) { \
491 sq->sq_head = sq->sq_tail = qp; \
492 sq->sq_flags |= SQ_MESSAGES; \
493 } else if (qp->q_spri == 0) { \
494 qp->q_sqprev = sq->sq_tail; \
495 sq->sq_tail->q_sqnext = qp; \
496 sq->sq_tail = qp; \
497 } else { \
498 /* \
499 * Put this queue in priority order: higher \
500 * priority gets closer to the head. \
501 */ \
502 queue_t **qpp = &sq->sq_tail; \
503 queue_t *qnext = NULL; \
504 \
505 while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
506 qnext = *qpp; \
507 qpp = &(*qpp)->q_sqprev; \
508 } \
509 qp->q_sqnext = qnext; \
510 qp->q_sqprev = *qpp; \
511 if (*qpp != NULL) { \
512 (*qpp)->q_sqnext = qp; \
513 } else { \
514 sq->sq_head = qp; \
515 sq->sq_pri = sq->sq_head->q_spri; \
516 } \
517 *qpp = qp; \
518 } \
519 qp->q_sqflags |= Q_SQQUEUED; \
520 qp->q_sqtstamp = ddi_get_lbolt(); \
521 sq->sq_nqueues++; \
522 } \
523 }
524
525 /*
526 * Remove a queue from the syncq list
527 * Assumes SQLOCK held.
528 */
529 #define SQRM_Q(sq, qp) \
530 { \
531 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
532 ASSERT(qp->q_sqflags & Q_SQQUEUED); \
533 ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL); \
534 ASSERT((sq->sq_flags & SQ_MESSAGES) != 0); \
535 /* Check that the queue is actually in the list */ \
536 ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp); \
537 ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp); \
538 ASSERT(sq->sq_nqueues != 0); \
539 if (qp->q_sqprev == NULL) { \
540 /* First queue on list, make head q_sqnext */ \
541 sq->sq_head = qp->q_sqnext; \
542 } else { \
543 /* Make prev->next == next */ \
544 qp->q_sqprev->q_sqnext = qp->q_sqnext; \
545 } \
546 if (qp->q_sqnext == NULL) { \
547 /* Last queue on list, make tail sqprev */ \
548 sq->sq_tail = qp->q_sqprev; \
549 } else { \
550 /* Make next->prev == prev */ \
551 qp->q_sqnext->q_sqprev = qp->q_sqprev; \
552 } \
553 /* clear out references on this queue */ \
554 qp->q_sqprev = qp->q_sqnext = NULL; \
555 qp->q_sqflags &= ~Q_SQQUEUED; \
556 /* If there is nothing queued, clear SQ_MESSAGES */ \
557 if (sq->sq_head != NULL) { \
558 sq->sq_pri = sq->sq_head->q_spri; \
559 } else { \
560 sq->sq_flags &= ~SQ_MESSAGES; \
561 sq->sq_pri = 0; \
562 } \
563 sq->sq_nqueues--; \
564 ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL || \
565 (sq->sq_flags & SQ_QUEUED) == 0); \
566 }
567
568 /* Hide the definition from the header file. */
569 #ifdef SQPUT_MP
570 #undef SQPUT_MP
571 #endif
572
573 /*
574 * Put a message on the queue syncq.
575 * Assumes QLOCK held.
576 */
577 #define SQPUT_MP(qp, mp) \
578 { \
579 ASSERT(MUTEX_HELD(QLOCK(qp))); \
580 ASSERT(qp->q_sqhead == NULL || \
581 (qp->q_sqtail != NULL && \
582 qp->q_sqtail->b_next == NULL)); \
583 qp->q_syncqmsgs++; \
584 ASSERT(qp->q_syncqmsgs != 0); /* Wraparound */ \
585 if (qp->q_sqhead == NULL) { \
586 qp->q_sqhead = qp->q_sqtail = mp; \
587 } else { \
588 qp->q_sqtail->b_next = mp; \
589 qp->q_sqtail = mp; \
590 } \
591 ASSERT(qp->q_syncqmsgs > 0); \
592 set_qfull(qp); \
593 }
594
595 #define SQ_PUTCOUNT_SETFAST_LOCKED(sq) { \
596 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
597 if ((sq)->sq_ciputctrl != NULL) { \
598 int i; \
599 int nlocks = (sq)->sq_nciputctrl; \
600 ciputctrl_t *cip = (sq)->sq_ciputctrl; \
601 ASSERT((sq)->sq_type & SQ_CIPUT); \
602 for (i = 0; i <= nlocks; i++) { \
603 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
604 cip[i].ciputctrl_count |= SQ_FASTPUT; \
605 } \
606 } \
607 }
608
609
610 #define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) { \
611 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
612 if ((sq)->sq_ciputctrl != NULL) { \
613 int i; \
614 int nlocks = (sq)->sq_nciputctrl; \
615 ciputctrl_t *cip = (sq)->sq_ciputctrl; \
616 ASSERT((sq)->sq_type & SQ_CIPUT); \
617 for (i = 0; i <= nlocks; i++) { \
618 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
619 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \
620 } \
621 } \
622 }
623
624 /*
625 * Run service procedures for all queues in the stream head.
626 */
627 #define STR_SERVICE(stp, q) { \
628 ASSERT(MUTEX_HELD(&stp->sd_qlock)); \
629 while (stp->sd_qhead != NULL) { \
630 DQ(q, stp->sd_qhead, stp->sd_qtail, q_link); \
631 ASSERT(stp->sd_nqueues > 0); \
632 stp->sd_nqueues--; \
633 ASSERT(!(q->q_flag & QINSERVICE)); \
634 mutex_exit(&stp->sd_qlock); \
635 queue_service(q); \
636 mutex_enter(&stp->sd_qlock); \
637 } \
638 ASSERT(stp->sd_nqueues == 0); \
639 ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL)); \
640 }
641
642 /*
643 * Constructor/destructor routines for the stream head cache
644 */
645 /* ARGSUSED */
646 static int
stream_head_constructor(void * buf,void * cdrarg,int kmflags)647 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
648 {
649 stdata_t *stp = buf;
650
651 mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
654 cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
655 cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
656 cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
657 cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
658 cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
659 stp->sd_wrq = NULL;
660
661 return (0);
662 }
663
664 /* ARGSUSED */
665 static void
stream_head_destructor(void * buf,void * cdrarg)666 stream_head_destructor(void *buf, void *cdrarg)
667 {
668 stdata_t *stp = buf;
669
670 mutex_destroy(&stp->sd_lock);
671 mutex_destroy(&stp->sd_reflock);
672 mutex_destroy(&stp->sd_qlock);
673 cv_destroy(&stp->sd_monitor);
674 cv_destroy(&stp->sd_iocmonitor);
675 cv_destroy(&stp->sd_refmonitor);
676 cv_destroy(&stp->sd_qcv);
677 cv_destroy(&stp->sd_zcopy_wait);
678 }
679
680 /*
681 * Constructor/destructor routines for the queue cache
682 */
683 /* ARGSUSED */
684 static int
queue_constructor(void * buf,void * cdrarg,int kmflags)685 queue_constructor(void *buf, void *cdrarg, int kmflags)
686 {
687 queinfo_t *qip = buf;
688 queue_t *qp = &qip->qu_rqueue;
689 queue_t *wqp = &qip->qu_wqueue;
690 syncq_t *sq = &qip->qu_syncq;
691
692 qp->q_first = NULL;
693 qp->q_link = NULL;
694 qp->q_count = 0;
695 qp->q_mblkcnt = 0;
696 qp->q_sqhead = NULL;
697 qp->q_sqtail = NULL;
698 qp->q_sqnext = NULL;
699 qp->q_sqprev = NULL;
700 qp->q_sqflags = 0;
701 qp->q_rwcnt = 0;
702 qp->q_spri = 0;
703
704 mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
705 cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
706
707 wqp->q_first = NULL;
708 wqp->q_link = NULL;
709 wqp->q_count = 0;
710 wqp->q_mblkcnt = 0;
711 wqp->q_sqhead = NULL;
712 wqp->q_sqtail = NULL;
713 wqp->q_sqnext = NULL;
714 wqp->q_sqprev = NULL;
715 wqp->q_sqflags = 0;
716 wqp->q_rwcnt = 0;
717 wqp->q_spri = 0;
718
719 mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
720 cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
721
722 sq->sq_head = NULL;
723 sq->sq_tail = NULL;
724 sq->sq_evhead = NULL;
725 sq->sq_evtail = NULL;
726 sq->sq_callbpend = NULL;
727 sq->sq_outer = NULL;
728 sq->sq_onext = NULL;
729 sq->sq_oprev = NULL;
730 sq->sq_next = NULL;
731 sq->sq_svcflags = 0;
732 sq->sq_servcount = 0;
733 sq->sq_needexcl = 0;
734 sq->sq_nqueues = 0;
735 sq->sq_pri = 0;
736
737 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
738 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
739 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
740
741 return (0);
742 }
743
744 /* ARGSUSED */
745 static void
queue_destructor(void * buf,void * cdrarg)746 queue_destructor(void *buf, void *cdrarg)
747 {
748 queinfo_t *qip = buf;
749 queue_t *qp = &qip->qu_rqueue;
750 queue_t *wqp = &qip->qu_wqueue;
751 syncq_t *sq = &qip->qu_syncq;
752
753 ASSERT(qp->q_sqhead == NULL);
754 ASSERT(wqp->q_sqhead == NULL);
755 ASSERT(qp->q_sqnext == NULL);
756 ASSERT(wqp->q_sqnext == NULL);
757 ASSERT(qp->q_rwcnt == 0);
758 ASSERT(wqp->q_rwcnt == 0);
759
760 mutex_destroy(&qp->q_lock);
761 cv_destroy(&qp->q_wait);
762
763 mutex_destroy(&wqp->q_lock);
764 cv_destroy(&wqp->q_wait);
765
766 mutex_destroy(&sq->sq_lock);
767 cv_destroy(&sq->sq_wait);
768 cv_destroy(&sq->sq_exitwait);
769 }
770
771 /*
772 * Constructor/destructor routines for the syncq cache
773 */
774 /* ARGSUSED */
775 static int
syncq_constructor(void * buf,void * cdrarg,int kmflags)776 syncq_constructor(void *buf, void *cdrarg, int kmflags)
777 {
778 syncq_t *sq = buf;
779
780 bzero(buf, sizeof (syncq_t));
781
782 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
783 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
784 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
785
786 return (0);
787 }
788
789 /* ARGSUSED */
790 static void
syncq_destructor(void * buf,void * cdrarg)791 syncq_destructor(void *buf, void *cdrarg)
792 {
793 syncq_t *sq = buf;
794
795 ASSERT(sq->sq_head == NULL);
796 ASSERT(sq->sq_tail == NULL);
797 ASSERT(sq->sq_evhead == NULL);
798 ASSERT(sq->sq_evtail == NULL);
799 ASSERT(sq->sq_callbpend == NULL);
800 ASSERT(sq->sq_callbflags == 0);
801 ASSERT(sq->sq_outer == NULL);
802 ASSERT(sq->sq_onext == NULL);
803 ASSERT(sq->sq_oprev == NULL);
804 ASSERT(sq->sq_next == NULL);
805 ASSERT(sq->sq_needexcl == 0);
806 ASSERT(sq->sq_svcflags == 0);
807 ASSERT(sq->sq_servcount == 0);
808 ASSERT(sq->sq_nqueues == 0);
809 ASSERT(sq->sq_pri == 0);
810 ASSERT(sq->sq_count == 0);
811 ASSERT(sq->sq_rmqcount == 0);
812 ASSERT(sq->sq_cancelid == 0);
813 ASSERT(sq->sq_ciputctrl == NULL);
814 ASSERT(sq->sq_nciputctrl == 0);
815 ASSERT(sq->sq_type == 0);
816 ASSERT(sq->sq_flags == 0);
817
818 mutex_destroy(&sq->sq_lock);
819 cv_destroy(&sq->sq_wait);
820 cv_destroy(&sq->sq_exitwait);
821 }
822
823 /* ARGSUSED */
824 static int
ciputctrl_constructor(void * buf,void * cdrarg,int kmflags)825 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
826 {
827 ciputctrl_t *cip = buf;
828 int i;
829
830 for (i = 0; i < n_ciputctrl; i++) {
831 cip[i].ciputctrl_count = SQ_FASTPUT;
832 mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
833 }
834
835 return (0);
836 }
837
838 /* ARGSUSED */
839 static void
ciputctrl_destructor(void * buf,void * cdrarg)840 ciputctrl_destructor(void *buf, void *cdrarg)
841 {
842 ciputctrl_t *cip = buf;
843 int i;
844
845 for (i = 0; i < n_ciputctrl; i++) {
846 ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
847 mutex_destroy(&cip[i].ciputctrl_lock);
848 }
849 }
850
851 /*
852 * Init routine run from main at boot time.
853 */
854 void
strinit(void)855 strinit(void)
856 {
857 int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
858
859 stream_head_cache = kmem_cache_create("stream_head_cache",
860 sizeof (stdata_t), 0,
861 stream_head_constructor, stream_head_destructor, NULL,
862 NULL, NULL, 0);
863
864 queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
865 queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
866
867 syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
868 syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
869
870 qband_cache = kmem_cache_create("qband_cache",
871 sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
872
873 linkinfo_cache = kmem_cache_create("linkinfo_cache",
874 sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
875
876 n_ciputctrl = ncpus;
877 n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
878 ASSERT(n_ciputctrl >= 1);
879 n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
880 if (n_ciputctrl >= min_n_ciputctrl) {
881 ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
882 sizeof (ciputctrl_t) * n_ciputctrl,
883 sizeof (ciputctrl_t), ciputctrl_constructor,
884 ciputctrl_destructor, NULL, NULL, NULL, 0);
885 }
886
887 streams_taskq = system_taskq;
888
889 if (streams_taskq == NULL)
890 panic("strinit: no memory for streams taskq!");
891
892 bc_bkgrnd_thread = thread_create(NULL, 0,
893 streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
894
895 streams_qbkgrnd_thread = thread_create(NULL, 0,
896 streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
897
898 streams_sqbkgrnd_thread = thread_create(NULL, 0,
899 streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
900
901 /*
902 * Create STREAMS kstats.
903 */
904 str_kstat = kstat_create("streams", 0, "strstat",
905 "net", KSTAT_TYPE_NAMED,
906 sizeof (str_statistics) / sizeof (kstat_named_t),
907 KSTAT_FLAG_VIRTUAL);
908
909 if (str_kstat != NULL) {
910 str_kstat->ks_data = &str_statistics;
911 kstat_install(str_kstat);
912 }
913
914 /*
915 * TPI support routine initialisation.
916 */
917 tpi_init();
918
919 /*
920 * Handle to have autopush and persistent link information per
921 * zone.
922 * Note: uses shutdown hook instead of destroy hook so that the
923 * persistent links can be torn down before the destroy hooks
924 * in the TCP/IP stack are called.
925 */
926 netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
927 str_stack_fini);
928 }
929
930 void
str_sendsig(vnode_t * vp,int event,uchar_t band,int error)931 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
932 {
933 struct stdata *stp;
934
935 ASSERT(vp->v_stream);
936 stp = vp->v_stream;
937 /* Have to hold sd_lock to prevent siglist from changing */
938 mutex_enter(&stp->sd_lock);
939 if (stp->sd_sigflags & event)
940 strsendsig(stp->sd_siglist, event, band, error);
941 mutex_exit(&stp->sd_lock);
942 }
943
944 /*
945 * Send the "sevent" set of signals to a process.
946 * This might send more than one signal if the process is registered
947 * for multiple events. The caller should pass in an sevent that only
948 * includes the events for which the process has registered.
949 */
950 static void
dosendsig(proc_t * proc,int events,int sevent,k_siginfo_t * info,uchar_t band,int error)951 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
952 uchar_t band, int error)
953 {
954 ASSERT(MUTEX_HELD(&proc->p_lock));
955
956 info->si_band = 0;
957 info->si_errno = 0;
958
959 if (sevent & S_ERROR) {
960 sevent &= ~S_ERROR;
961 info->si_code = POLL_ERR;
962 info->si_errno = error;
963 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
964 "strsendsig:proc %p info %p", proc, info);
965 sigaddq(proc, NULL, info, KM_NOSLEEP);
966 info->si_errno = 0;
967 }
968 if (sevent & S_HANGUP) {
969 sevent &= ~S_HANGUP;
970 info->si_code = POLL_HUP;
971 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
972 "strsendsig:proc %p info %p", proc, info);
973 sigaddq(proc, NULL, info, KM_NOSLEEP);
974 }
975 if (sevent & S_HIPRI) {
976 sevent &= ~S_HIPRI;
977 info->si_code = POLL_PRI;
978 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
979 "strsendsig:proc %p info %p", proc, info);
980 sigaddq(proc, NULL, info, KM_NOSLEEP);
981 }
982 if (sevent & S_RDBAND) {
983 sevent &= ~S_RDBAND;
984 if (events & S_BANDURG)
985 sigtoproc(proc, NULL, SIGURG);
986 else
987 sigtoproc(proc, NULL, SIGPOLL);
988 }
989 if (sevent & S_WRBAND) {
990 sevent &= ~S_WRBAND;
991 sigtoproc(proc, NULL, SIGPOLL);
992 }
993 if (sevent & S_INPUT) {
994 sevent &= ~S_INPUT;
995 info->si_code = POLL_IN;
996 info->si_band = band;
997 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
998 "strsendsig:proc %p info %p", proc, info);
999 sigaddq(proc, NULL, info, KM_NOSLEEP);
1000 info->si_band = 0;
1001 }
1002 if (sevent & S_OUTPUT) {
1003 sevent &= ~S_OUTPUT;
1004 info->si_code = POLL_OUT;
1005 info->si_band = band;
1006 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1007 "strsendsig:proc %p info %p", proc, info);
1008 sigaddq(proc, NULL, info, KM_NOSLEEP);
1009 info->si_band = 0;
1010 }
1011 if (sevent & S_MSG) {
1012 sevent &= ~S_MSG;
1013 info->si_code = POLL_MSG;
1014 info->si_band = band;
1015 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1016 "strsendsig:proc %p info %p", proc, info);
1017 sigaddq(proc, NULL, info, KM_NOSLEEP);
1018 info->si_band = 0;
1019 }
1020 if (sevent & S_RDNORM) {
1021 sevent &= ~S_RDNORM;
1022 sigtoproc(proc, NULL, SIGPOLL);
1023 }
1024 if (sevent != 0) {
1025 panic("strsendsig: unknown event(s) %x", sevent);
1026 }
1027 }
1028
1029 /*
1030 * Send SIGPOLL/SIGURG signal to all processes and process groups
1031 * registered on the given signal list that want a signal for at
1032 * least one of the specified events.
1033 *
1034 * Must be called with exclusive access to siglist (caller holding sd_lock).
1035 *
1036 * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1037 * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1038 * while it is in the siglist.
1039 *
1040 * For performance reasons (MP scalability) the code drops pidlock
1041 * when sending signals to a single process.
1042 * When sending to a process group the code holds
1043 * pidlock to prevent the membership in the process group from changing
1044 * while walking the p_pglink list.
1045 */
1046 void
strsendsig(strsig_t * siglist,int event,uchar_t band,int error)1047 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1048 {
1049 strsig_t *ssp;
1050 k_siginfo_t info;
1051 struct pid *pidp;
1052 proc_t *proc;
1053
1054 info.si_signo = SIGPOLL;
1055 info.si_errno = 0;
1056 for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1057 int sevent;
1058
1059 sevent = ssp->ss_events & event;
1060 if (sevent == 0)
1061 continue;
1062
1063 if ((pidp = ssp->ss_pidp) == NULL) {
1064 /* pid was released but still on event list */
1065 continue;
1066 }
1067
1068
1069 if (ssp->ss_pid > 0) {
1070 /*
1071 * XXX This unfortunately still generates
1072 * a signal when a fd is closed but
1073 * the proc is active.
1074 */
1075 ASSERT(ssp->ss_pid == pidp->pid_id);
1076
1077 mutex_enter(&pidlock);
1078 proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1079 if (proc == NULL) {
1080 mutex_exit(&pidlock);
1081 continue;
1082 }
1083 mutex_enter(&proc->p_lock);
1084 mutex_exit(&pidlock);
1085 dosendsig(proc, ssp->ss_events, sevent, &info,
1086 band, error);
1087 mutex_exit(&proc->p_lock);
1088 } else {
1089 /*
1090 * Send to process group. Hold pidlock across
1091 * calls to dosendsig().
1092 */
1093 pid_t pgrp = -ssp->ss_pid;
1094
1095 mutex_enter(&pidlock);
1096 proc = pgfind_zone(pgrp, ALL_ZONES);
1097 while (proc != NULL) {
1098 mutex_enter(&proc->p_lock);
1099 dosendsig(proc, ssp->ss_events, sevent,
1100 &info, band, error);
1101 mutex_exit(&proc->p_lock);
1102 proc = proc->p_pglink;
1103 }
1104 mutex_exit(&pidlock);
1105 }
1106 }
1107 }
1108
1109 /*
1110 * Attach a stream device or module.
1111 * qp is a read queue; the new queue goes in so its next
1112 * read ptr is the argument, and the write queue corresponding
1113 * to the argument points to this queue. Return 0 on success,
1114 * or a non-zero errno on failure.
1115 */
1116 int
qattach(queue_t * qp,dev_t * devp,int oflag,cred_t * crp,fmodsw_impl_t * fp,boolean_t is_insert)1117 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1118 boolean_t is_insert)
1119 {
1120 major_t major;
1121 cdevsw_impl_t *dp;
1122 struct streamtab *str;
1123 queue_t *rq;
1124 queue_t *wrq;
1125 uint32_t qflag;
1126 uint32_t sqtype;
1127 perdm_t *dmp;
1128 int error;
1129 int sflag;
1130
1131 rq = allocq();
1132 wrq = _WR(rq);
1133 STREAM(rq) = STREAM(wrq) = STREAM(qp);
1134
1135 if (fp != NULL) {
1136 str = fp->f_str;
1137 qflag = fp->f_qflag;
1138 sqtype = fp->f_sqtype;
1139 dmp = fp->f_dmp;
1140 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1141 sflag = MODOPEN;
1142
1143 /*
1144 * stash away a pointer to the module structure so we can
1145 * unref it in qdetach.
1146 */
1147 rq->q_fp = fp;
1148 } else {
1149 ASSERT(!is_insert);
1150
1151 major = getmajor(*devp);
1152 dp = &devimpl[major];
1153
1154 str = dp->d_str;
1155 ASSERT(str == STREAMSTAB(major));
1156
1157 qflag = dp->d_qflag;
1158 ASSERT(qflag & QISDRV);
1159 sqtype = dp->d_sqtype;
1160
1161 /* create perdm_t if needed */
1162 if (NEED_DM(dp->d_dmp, qflag))
1163 dp->d_dmp = hold_dm(str, qflag, sqtype);
1164
1165 dmp = dp->d_dmp;
1166 sflag = 0;
1167 }
1168
1169 TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1170 "qattach:qflag == %X(%X)", qflag, *devp);
1171
1172 /* setq might sleep in allocator - avoid holding locks. */
1173 setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1174
1175 /*
1176 * Before calling the module's open routine, set up the q_next
1177 * pointer for inserting a module in the middle of a stream.
1178 *
1179 * Note that we can always set _QINSERTING and set up q_next
1180 * pointer for both inserting and pushing a module. Then there
1181 * is no need for the is_insert parameter. In insertq(), called
1182 * by qprocson(), assume that q_next of the new module always points
1183 * to the correct queue and use it for insertion. Everything should
1184 * work out fine. But in the first release of _I_INSERT, we
1185 * distinguish between inserting and pushing to make sure that
1186 * pushing a module follows the same code path as before.
1187 */
1188 if (is_insert) {
1189 rq->q_flag |= _QINSERTING;
1190 rq->q_next = qp;
1191 }
1192
1193 /*
1194 * If there is an outer perimeter get exclusive access during
1195 * the open procedure. Bump up the reference count on the queue.
1196 */
1197 entersq(rq->q_syncq, SQ_OPENCLOSE);
1198 error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1199 if (error != 0)
1200 goto failed;
1201 leavesq(rq->q_syncq, SQ_OPENCLOSE);
1202 ASSERT(qprocsareon(rq));
1203 return (0);
1204
1205 failed:
1206 rq->q_flag &= ~_QINSERTING;
1207 if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1208 qprocsoff(rq);
1209 leavesq(rq->q_syncq, SQ_OPENCLOSE);
1210 rq->q_next = wrq->q_next = NULL;
1211 qdetach(rq, 0, 0, crp, B_FALSE);
1212 return (error);
1213 }
1214
1215 /*
1216 * Handle second open of stream. For modules, set the
1217 * last argument to MODOPEN and do not pass any open flags.
1218 * Ignore dummydev since this is not the first open.
1219 */
1220 int
qreopen(queue_t * qp,dev_t * devp,int flag,cred_t * crp)1221 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1222 {
1223 int error;
1224 dev_t dummydev;
1225 queue_t *wqp = _WR(qp);
1226
1227 ASSERT(qp->q_flag & QREADR);
1228 entersq(qp->q_syncq, SQ_OPENCLOSE);
1229
1230 dummydev = *devp;
1231 if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1232 (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1233 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1234 mutex_enter(&STREAM(qp)->sd_lock);
1235 qp->q_stream->sd_flag |= STREOPENFAIL;
1236 mutex_exit(&STREAM(qp)->sd_lock);
1237 return (error);
1238 }
1239 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1240
1241 /*
1242 * successful open should have done qprocson()
1243 */
1244 ASSERT(qprocsareon(_RD(qp)));
1245 return (0);
1246 }
1247
1248 /*
1249 * Detach a stream module or device.
1250 * If clmode == 1 then the module or driver was opened and its
1251 * close routine must be called. If clmode == 0, the module
1252 * or driver was never opened or the open failed, and so its close
1253 * should not be called.
1254 */
1255 void
qdetach(queue_t * qp,int clmode,int flag,cred_t * crp,boolean_t is_remove)1256 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1257 {
1258 queue_t *wqp = _WR(qp);
1259 ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1260
1261 if (STREAM_NEEDSERVICE(STREAM(qp)))
1262 stream_runservice(STREAM(qp));
1263
1264 if (clmode) {
1265 /*
1266 * Make sure that all the messages on the write side syncq are
1267 * processed and nothing is left. Since we are closing, no new
1268 * messages may appear there.
1269 */
1270 wait_q_syncq(wqp);
1271
1272 entersq(qp->q_syncq, SQ_OPENCLOSE);
1273 if (is_remove) {
1274 mutex_enter(QLOCK(qp));
1275 qp->q_flag |= _QREMOVING;
1276 mutex_exit(QLOCK(qp));
1277 }
1278 (*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1279 /*
1280 * Check that qprocsoff() was actually called.
1281 */
1282 ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1283
1284 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1285 } else {
1286 disable_svc(qp);
1287 }
1288
1289 /*
1290 * Allow any threads blocked in entersq to proceed and discover
1291 * the QWCLOSE is set.
1292 * Note: This assumes that all users of entersq check QWCLOSE.
1293 * Currently runservice is the only entersq that can happen
1294 * after removeq has finished.
1295 * Removeq will have discarded all messages destined to the closing
1296 * pair of queues from the syncq.
1297 * NOTE: Calling a function inside an assert is unconventional.
1298 * However, it does not cause any problem since flush_syncq() does
1299 * not change any state except when it returns non-zero i.e.
1300 * when the assert will trigger.
1301 */
1302 ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1303 ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1304 ASSERT((qp->q_flag & QPERMOD) ||
1305 ((qp->q_syncq->sq_head == NULL) &&
1306 (wqp->q_syncq->sq_head == NULL)));
1307
1308 /* release any fmodsw_impl_t structure held on behalf of the queue */
1309 ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1310 if (qp->q_fp != NULL)
1311 fmodsw_rele(qp->q_fp);
1312
1313 /* freeq removes us from the outer perimeter if any */
1314 freeq(qp);
1315 }
1316
1317 /* Prevent service procedures from being called */
1318 void
disable_svc(queue_t * qp)1319 disable_svc(queue_t *qp)
1320 {
1321 queue_t *wqp = _WR(qp);
1322
1323 ASSERT(qp->q_flag & QREADR);
1324 mutex_enter(QLOCK(qp));
1325 qp->q_flag |= QWCLOSE;
1326 mutex_exit(QLOCK(qp));
1327 mutex_enter(QLOCK(wqp));
1328 wqp->q_flag |= QWCLOSE;
1329 mutex_exit(QLOCK(wqp));
1330 }
1331
1332 /* Allow service procedures to be called again */
1333 void
enable_svc(queue_t * qp)1334 enable_svc(queue_t *qp)
1335 {
1336 queue_t *wqp = _WR(qp);
1337
1338 ASSERT(qp->q_flag & QREADR);
1339 mutex_enter(QLOCK(qp));
1340 qp->q_flag &= ~QWCLOSE;
1341 mutex_exit(QLOCK(qp));
1342 mutex_enter(QLOCK(wqp));
1343 wqp->q_flag &= ~QWCLOSE;
1344 mutex_exit(QLOCK(wqp));
1345 }
1346
1347 /*
1348 * Remove queue from qhead/qtail if it is enabled.
1349 * Only reset QENAB if the queue was removed from the runlist.
1350 * A queue goes through 3 stages:
1351 * It is on the service list and QENAB is set.
1352 * It is removed from the service list but QENAB is still set.
1353 * QENAB gets changed to QINSERVICE.
1354 * QINSERVICE is reset (when the service procedure is done)
1355 * Thus we can not reset QENAB unless we actually removed it from the service
1356 * queue.
1357 */
1358 void
remove_runlist(queue_t * qp)1359 remove_runlist(queue_t *qp)
1360 {
1361 if (qp->q_flag & QENAB && qhead != NULL) {
1362 queue_t *q_chase;
1363 queue_t *q_curr;
1364 int removed;
1365
1366 mutex_enter(&service_queue);
1367 RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1368 mutex_exit(&service_queue);
1369 if (removed) {
1370 STRSTAT(qremoved);
1371 qp->q_flag &= ~QENAB;
1372 }
1373 }
1374 }
1375
1376
1377 /*
1378 * Wait for any pending service processing to complete.
1379 * The removal of queues from the runlist is not atomic with the
1380 * clearing of the QENABLED flag and setting the INSERVICE flag.
1381 * consequently it is possible for remove_runlist in strclose
1382 * to not find the queue on the runlist but for it to be QENABLED
1383 * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1384 * as well as INSERVICE.
1385 */
1386 void
wait_svc(queue_t * qp)1387 wait_svc(queue_t *qp)
1388 {
1389 queue_t *wqp = _WR(qp);
1390
1391 ASSERT(qp->q_flag & QREADR);
1392
1393 /*
1394 * Try to remove queues from qhead/qtail list.
1395 */
1396 if (qhead != NULL) {
1397 remove_runlist(qp);
1398 remove_runlist(wqp);
1399 }
1400 /*
1401 * Wait till the syncqs associated with the queue disappear from the
1402 * background processing list.
1403 * This only needs to be done for non-PERMOD perimeters since
1404 * for PERMOD perimeters the syncq may be shared and will only be freed
1405 * when the last module/driver is unloaded.
1406 * If for PERMOD perimeters queue was on the syncq list, removeq()
1407 * should call propagate_syncq() or drain_syncq() for it. Both of these
1408 * functions remove the queue from its syncq list, so sqthread will not
1409 * try to access the queue.
1410 */
1411 if (!(qp->q_flag & QPERMOD)) {
1412 syncq_t *rsq = qp->q_syncq;
1413 syncq_t *wsq = wqp->q_syncq;
1414
1415 /*
1416 * Disable rsq and wsq and wait for any background processing of
1417 * syncq to complete.
1418 */
1419 wait_sq_svc(rsq);
1420 if (wsq != rsq)
1421 wait_sq_svc(wsq);
1422 }
1423
1424 mutex_enter(QLOCK(qp));
1425 while (qp->q_flag & (QINSERVICE|QENAB))
1426 cv_wait(&qp->q_wait, QLOCK(qp));
1427 mutex_exit(QLOCK(qp));
1428 mutex_enter(QLOCK(wqp));
1429 while (wqp->q_flag & (QINSERVICE|QENAB))
1430 cv_wait(&wqp->q_wait, QLOCK(wqp));
1431 mutex_exit(QLOCK(wqp));
1432 }
1433
1434 /*
1435 * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1436 * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1437 * also be set, and is passed through to allocb_cred_wait().
1438 *
1439 * Returns errno on failure, zero on success.
1440 */
1441 int
putiocd(mblk_t * bp,char * arg,int flag,cred_t * cr)1442 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1443 {
1444 mblk_t *tmp;
1445 ssize_t count;
1446 int error = 0;
1447
1448 ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1449 (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1450
1451 if (bp->b_datap->db_type == M_IOCTL) {
1452 count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1453 } else {
1454 ASSERT(bp->b_datap->db_type == M_COPYIN);
1455 count = ((struct copyreq *)bp->b_rptr)->cq_size;
1456 }
1457 /*
1458 * strdoioctl validates ioc_count, so if this assert fails it
1459 * cannot be due to user error.
1460 */
1461 ASSERT(count >= 0);
1462
1463 if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
1464 curproc->p_pid)) == NULL) {
1465 return (error);
1466 }
1467 error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1468 if (error != 0) {
1469 freeb(tmp);
1470 return (error);
1471 }
1472 DB_CPID(tmp) = curproc->p_pid;
1473 tmp->b_wptr += count;
1474 bp->b_cont = tmp;
1475
1476 return (0);
1477 }
1478
1479 /*
1480 * Copy ioctl data to user-land. Return non-zero errno on failure,
1481 * 0 for success.
1482 */
1483 int
getiocd(mblk_t * bp,char * arg,int copymode)1484 getiocd(mblk_t *bp, char *arg, int copymode)
1485 {
1486 ssize_t count;
1487 size_t n;
1488 int error;
1489
1490 if (bp->b_datap->db_type == M_IOCACK)
1491 count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1492 else {
1493 ASSERT(bp->b_datap->db_type == M_COPYOUT);
1494 count = ((struct copyreq *)bp->b_rptr)->cq_size;
1495 }
1496 ASSERT(count >= 0);
1497
1498 for (bp = bp->b_cont; bp && count;
1499 count -= n, bp = bp->b_cont, arg += n) {
1500 n = MIN(count, bp->b_wptr - bp->b_rptr);
1501 error = strcopyout(bp->b_rptr, arg, n, copymode);
1502 if (error)
1503 return (error);
1504 }
1505 ASSERT(count == 0);
1506 return (0);
1507 }
1508
1509 /*
1510 * Allocate a linkinfo entry given the write queue of the
1511 * bottom module of the top stream and the write queue of the
1512 * stream head of the bottom stream.
1513 */
1514 linkinfo_t *
alloclink(queue_t * qup,queue_t * qdown,file_t * fpdown)1515 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1516 {
1517 linkinfo_t *linkp;
1518
1519 linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1520
1521 linkp->li_lblk.l_qtop = qup;
1522 linkp->li_lblk.l_qbot = qdown;
1523 linkp->li_fpdown = fpdown;
1524
1525 mutex_enter(&strresources);
1526 linkp->li_next = linkinfo_list;
1527 linkp->li_prev = NULL;
1528 if (linkp->li_next)
1529 linkp->li_next->li_prev = linkp;
1530 linkinfo_list = linkp;
1531 linkp->li_lblk.l_index = ++lnk_id;
1532 ASSERT(lnk_id != 0); /* this should never wrap in practice */
1533 mutex_exit(&strresources);
1534
1535 return (linkp);
1536 }
1537
1538 /*
1539 * Free a linkinfo entry.
1540 */
1541 void
lbfree(linkinfo_t * linkp)1542 lbfree(linkinfo_t *linkp)
1543 {
1544 mutex_enter(&strresources);
1545 if (linkp->li_next)
1546 linkp->li_next->li_prev = linkp->li_prev;
1547 if (linkp->li_prev)
1548 linkp->li_prev->li_next = linkp->li_next;
1549 else
1550 linkinfo_list = linkp->li_next;
1551 mutex_exit(&strresources);
1552
1553 kmem_cache_free(linkinfo_cache, linkp);
1554 }
1555
1556 /*
1557 * Check for a potential linking cycle.
1558 * Return 1 if a link will result in a cycle,
1559 * and 0 otherwise.
1560 */
1561 int
linkcycle(stdata_t * upstp,stdata_t * lostp,str_stack_t * ss)1562 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1563 {
1564 struct mux_node *np;
1565 struct mux_edge *ep;
1566 int i;
1567 major_t lomaj;
1568 major_t upmaj;
1569 /*
1570 * if the lower stream is a pipe/FIFO, return, since link
1571 * cycles can not happen on pipes/FIFOs
1572 */
1573 if (lostp->sd_vnode->v_type == VFIFO)
1574 return (0);
1575
1576 for (i = 0; i < ss->ss_devcnt; i++) {
1577 np = &ss->ss_mux_nodes[i];
1578 MUX_CLEAR(np);
1579 }
1580 lomaj = getmajor(lostp->sd_vnode->v_rdev);
1581 upmaj = getmajor(upstp->sd_vnode->v_rdev);
1582 np = &ss->ss_mux_nodes[lomaj];
1583 for (;;) {
1584 if (!MUX_DIDVISIT(np)) {
1585 if (np->mn_imaj == upmaj)
1586 return (1);
1587 if (np->mn_outp == NULL) {
1588 MUX_VISIT(np);
1589 if (np->mn_originp == NULL)
1590 return (0);
1591 np = np->mn_originp;
1592 continue;
1593 }
1594 MUX_VISIT(np);
1595 np->mn_startp = np->mn_outp;
1596 } else {
1597 if (np->mn_startp == NULL) {
1598 if (np->mn_originp == NULL)
1599 return (0);
1600 else {
1601 np = np->mn_originp;
1602 continue;
1603 }
1604 }
1605 /*
1606 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1607 * ignore the edge and move on. ep->me_nodep gets
1608 * set to NULL in mux_addedge() if it is a FIFO.
1609 *
1610 */
1611 ep = np->mn_startp;
1612 np->mn_startp = ep->me_nextp;
1613 if (ep->me_nodep == NULL)
1614 continue;
1615 ep->me_nodep->mn_originp = np;
1616 np = ep->me_nodep;
1617 }
1618 }
1619 }
1620
1621 /*
1622 * Find linkinfo entry corresponding to the parameters.
1623 */
1624 linkinfo_t *
findlinks(stdata_t * stp,int index,int type,str_stack_t * ss)1625 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1626 {
1627 linkinfo_t *linkp;
1628 struct mux_edge *mep;
1629 struct mux_node *mnp;
1630 queue_t *qup;
1631
1632 mutex_enter(&strresources);
1633 if ((type & LINKTYPEMASK) == LINKNORMAL) {
1634 qup = getendq(stp->sd_wrq);
1635 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1636 if ((qup == linkp->li_lblk.l_qtop) &&
1637 (!index || (index == linkp->li_lblk.l_index))) {
1638 mutex_exit(&strresources);
1639 return (linkp);
1640 }
1641 }
1642 } else {
1643 ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1644 mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1645 mep = mnp->mn_outp;
1646 while (mep) {
1647 if ((index == 0) || (index == mep->me_muxid))
1648 break;
1649 mep = mep->me_nextp;
1650 }
1651 if (!mep) {
1652 mutex_exit(&strresources);
1653 return (NULL);
1654 }
1655 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1656 if ((!linkp->li_lblk.l_qtop) &&
1657 (mep->me_muxid == linkp->li_lblk.l_index)) {
1658 mutex_exit(&strresources);
1659 return (linkp);
1660 }
1661 }
1662 }
1663 mutex_exit(&strresources);
1664 return (NULL);
1665 }
1666
1667 /*
1668 * Given a queue ptr, follow the chain of q_next pointers until you reach the
1669 * last queue on the chain and return it.
1670 */
1671 queue_t *
getendq(queue_t * q)1672 getendq(queue_t *q)
1673 {
1674 ASSERT(q != NULL);
1675 while (_SAMESTR(q))
1676 q = q->q_next;
1677 return (q);
1678 }
1679
1680 /*
1681 * Wait for the syncq count to drop to zero.
1682 * sq could be either outer or inner.
1683 */
1684
1685 static void
wait_syncq(syncq_t * sq)1686 wait_syncq(syncq_t *sq)
1687 {
1688 uint16_t count;
1689
1690 mutex_enter(SQLOCK(sq));
1691 count = sq->sq_count;
1692 SQ_PUTLOCKS_ENTER(sq);
1693 SUM_SQ_PUTCOUNTS(sq, count);
1694 while (count != 0) {
1695 sq->sq_flags |= SQ_WANTWAKEUP;
1696 SQ_PUTLOCKS_EXIT(sq);
1697 cv_wait(&sq->sq_wait, SQLOCK(sq));
1698 count = sq->sq_count;
1699 SQ_PUTLOCKS_ENTER(sq);
1700 SUM_SQ_PUTCOUNTS(sq, count);
1701 }
1702 SQ_PUTLOCKS_EXIT(sq);
1703 mutex_exit(SQLOCK(sq));
1704 }
1705
1706 /*
1707 * Wait while there are any messages for the queue in its syncq.
1708 */
1709 static void
wait_q_syncq(queue_t * q)1710 wait_q_syncq(queue_t *q)
1711 {
1712 if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1713 syncq_t *sq = q->q_syncq;
1714
1715 mutex_enter(SQLOCK(sq));
1716 while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1717 sq->sq_flags |= SQ_WANTWAKEUP;
1718 cv_wait(&sq->sq_wait, SQLOCK(sq));
1719 }
1720 mutex_exit(SQLOCK(sq));
1721 }
1722 }
1723
1724
1725 int
mlink_file(vnode_t * vp,int cmd,struct file * fpdown,cred_t * crp,int * rvalp,int lhlink)1726 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1727 int lhlink)
1728 {
1729 struct stdata *stp;
1730 struct strioctl strioc;
1731 struct linkinfo *linkp;
1732 struct stdata *stpdown;
1733 struct streamtab *str;
1734 queue_t *passq;
1735 syncq_t *passyncq;
1736 queue_t *rq;
1737 cdevsw_impl_t *dp;
1738 uint32_t qflag;
1739 uint32_t sqtype;
1740 perdm_t *dmp;
1741 int error = 0;
1742 netstack_t *ns;
1743 str_stack_t *ss;
1744
1745 stp = vp->v_stream;
1746 TRACE_1(TR_FAC_STREAMS_FR,
1747 TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1748 /*
1749 * Test for invalid upper stream
1750 */
1751 if (stp->sd_flag & STRHUP) {
1752 return (ENXIO);
1753 }
1754 if (vp->v_type == VFIFO) {
1755 return (EINVAL);
1756 }
1757 if (stp->sd_strtab == NULL) {
1758 return (EINVAL);
1759 }
1760 if (!stp->sd_strtab->st_muxwinit) {
1761 return (EINVAL);
1762 }
1763 if (fpdown == NULL) {
1764 return (EBADF);
1765 }
1766 ns = netstack_find_by_cred(crp);
1767 ASSERT(ns != NULL);
1768 ss = ns->netstack_str;
1769 ASSERT(ss != NULL);
1770
1771 if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1772 netstack_rele(ss->ss_netstack);
1773 return (EINVAL);
1774 }
1775 mutex_enter(&muxifier);
1776 if (stp->sd_flag & STPLEX) {
1777 mutex_exit(&muxifier);
1778 netstack_rele(ss->ss_netstack);
1779 return (ENXIO);
1780 }
1781
1782 /*
1783 * Test for invalid lower stream.
1784 * The check for the v_type != VFIFO and having a major
1785 * number not >= devcnt is done to avoid problems with
1786 * adding mux_node entry past the end of mux_nodes[].
1787 * For FIFO's we don't add an entry so this isn't a
1788 * problem.
1789 */
1790 if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1791 (stpdown == stp) || (stpdown->sd_flag &
1792 (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1793 ((stpdown->sd_vnode->v_type != VFIFO) &&
1794 (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1795 linkcycle(stp, stpdown, ss)) {
1796 mutex_exit(&muxifier);
1797 netstack_rele(ss->ss_netstack);
1798 return (EINVAL);
1799 }
1800 TRACE_1(TR_FAC_STREAMS_FR,
1801 TR_STPDOWN, "stpdown:%p", stpdown);
1802 rq = getendq(stp->sd_wrq);
1803 if (cmd == I_PLINK)
1804 rq = NULL;
1805
1806 linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1807
1808 strioc.ic_cmd = cmd;
1809 strioc.ic_timout = INFTIM;
1810 strioc.ic_len = sizeof (struct linkblk);
1811 strioc.ic_dp = (char *)&linkp->li_lblk;
1812
1813 /*
1814 * STRPLUMB protects plumbing changes and should be set before
1815 * link_addpassthru()/link_rempassthru() are called, so it is set here
1816 * and cleared in the end of mlink when passthru queue is removed.
1817 * Setting of STRPLUMB prevents reopens of the stream while passthru
1818 * queue is in-place (it is not a proper module and doesn't have open
1819 * entry point).
1820 *
1821 * STPLEX prevents any threads from entering the stream from above. It
1822 * can't be set before the call to link_addpassthru() because putnext
1823 * from below may cause stream head I/O routines to be called and these
1824 * routines assert that STPLEX is not set. After link_addpassthru()
1825 * nothing may come from below since the pass queue syncq is blocked.
1826 * Note also that STPLEX should be cleared before the call to
1827 * link_rempassthru() since when messages start flowing to the stream
1828 * head (e.g. because of message propagation from the pass queue) stream
1829 * head I/O routines may be called with STPLEX flag set.
1830 *
1831 * When STPLEX is set, nothing may come into the stream from above and
1832 * it is safe to do a setq which will change stream head. So, the
1833 * correct sequence of actions is:
1834 *
1835 * 1) Set STRPLUMB
1836 * 2) Call link_addpassthru()
1837 * 3) Set STPLEX
1838 * 4) Call setq and update the stream state
1839 * 5) Clear STPLEX
1840 * 6) Call link_rempassthru()
1841 * 7) Clear STRPLUMB
1842 *
1843 * The same sequence applies to munlink() code.
1844 */
1845 mutex_enter(&stpdown->sd_lock);
1846 stpdown->sd_flag |= STRPLUMB;
1847 mutex_exit(&stpdown->sd_lock);
1848 /*
1849 * Add passthru queue below lower mux. This will block
1850 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1851 */
1852 passq = link_addpassthru(stpdown);
1853
1854 mutex_enter(&stpdown->sd_lock);
1855 stpdown->sd_flag |= STPLEX;
1856 mutex_exit(&stpdown->sd_lock);
1857
1858 rq = _RD(stpdown->sd_wrq);
1859 /*
1860 * There may be messages in the streamhead's syncq due to messages
1861 * that arrived before link_addpassthru() was done. To avoid
1862 * background processing of the syncq happening simultaneous with
1863 * setq processing, we disable the streamhead syncq and wait until
1864 * existing background thread finishes working on it.
1865 */
1866 wait_sq_svc(rq->q_syncq);
1867 passyncq = passq->q_syncq;
1868 if (!(passyncq->sq_flags & SQ_BLOCKED))
1869 blocksq(passyncq, SQ_BLOCKED, 0);
1870
1871 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1872 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1873 rq->q_ptr = _WR(rq)->q_ptr = NULL;
1874
1875 /* setq might sleep in allocator - avoid holding locks. */
1876 /* Note: we are holding muxifier here. */
1877
1878 str = stp->sd_strtab;
1879 dp = &devimpl[getmajor(vp->v_rdev)];
1880 ASSERT(dp->d_str == str);
1881
1882 qflag = dp->d_qflag;
1883 sqtype = dp->d_sqtype;
1884
1885 /* create perdm_t if needed */
1886 if (NEED_DM(dp->d_dmp, qflag))
1887 dp->d_dmp = hold_dm(str, qflag, sqtype);
1888
1889 dmp = dp->d_dmp;
1890
1891 setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1892 B_TRUE);
1893
1894 /*
1895 * XXX Remove any "odd" messages from the queue.
1896 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1897 */
1898 error = strdoioctl(stp, &strioc, FNATIVE,
1899 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1900 if (error != 0) {
1901 lbfree(linkp);
1902
1903 if (!(passyncq->sq_flags & SQ_BLOCKED))
1904 blocksq(passyncq, SQ_BLOCKED, 0);
1905 /*
1906 * Restore the stream head queue and then remove
1907 * the passq. Turn off STPLEX before we turn on
1908 * the stream by removing the passq.
1909 */
1910 rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1911 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1912 B_TRUE);
1913
1914 mutex_enter(&stpdown->sd_lock);
1915 stpdown->sd_flag &= ~STPLEX;
1916 mutex_exit(&stpdown->sd_lock);
1917
1918 link_rempassthru(passq);
1919
1920 mutex_enter(&stpdown->sd_lock);
1921 stpdown->sd_flag &= ~STRPLUMB;
1922 /* Wakeup anyone waiting for STRPLUMB to clear. */
1923 cv_broadcast(&stpdown->sd_monitor);
1924 mutex_exit(&stpdown->sd_lock);
1925
1926 mutex_exit(&muxifier);
1927 netstack_rele(ss->ss_netstack);
1928 return (error);
1929 }
1930 mutex_enter(&fpdown->f_tlock);
1931 fpdown->f_count++;
1932 mutex_exit(&fpdown->f_tlock);
1933
1934 /*
1935 * if we've made it here the linkage is all set up so we should also
1936 * set up the layered driver linkages
1937 */
1938
1939 ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1940 if (cmd == I_LINK) {
1941 ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1942 } else {
1943 ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1944 }
1945
1946 link_rempassthru(passq);
1947
1948 mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1949
1950 /*
1951 * Mark the upper stream as having dependent links
1952 * so that strclose can clean it up.
1953 */
1954 if (cmd == I_LINK) {
1955 mutex_enter(&stp->sd_lock);
1956 stp->sd_flag |= STRHASLINKS;
1957 mutex_exit(&stp->sd_lock);
1958 }
1959 /*
1960 * Wake up any other processes that may have been
1961 * waiting on the lower stream. These will all
1962 * error out.
1963 */
1964 mutex_enter(&stpdown->sd_lock);
1965 /* The passthru module is removed so we may release STRPLUMB */
1966 stpdown->sd_flag &= ~STRPLUMB;
1967 cv_broadcast(&rq->q_wait);
1968 cv_broadcast(&_WR(rq)->q_wait);
1969 cv_broadcast(&stpdown->sd_monitor);
1970 mutex_exit(&stpdown->sd_lock);
1971 mutex_exit(&muxifier);
1972 *rvalp = linkp->li_lblk.l_index;
1973 netstack_rele(ss->ss_netstack);
1974 return (0);
1975 }
1976
1977 int
mlink(vnode_t * vp,int cmd,int arg,cred_t * crp,int * rvalp,int lhlink)1978 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1979 {
1980 int ret;
1981 struct file *fpdown;
1982
1983 fpdown = getf(arg);
1984 ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1985 if (fpdown != NULL)
1986 releasef(arg);
1987 return (ret);
1988 }
1989
1990 /*
1991 * Unlink a multiplexor link. Stp is the controlling stream for the
1992 * link, and linkp points to the link's entry in the linkinfo list.
1993 * The muxifier lock must be held on entry and is dropped on exit.
1994 *
1995 * NOTE : Currently it is assumed that mux would process all the messages
1996 * sitting on it's queue before ACKing the UNLINK. It is the responsibility
1997 * of the mux to handle all the messages that arrive before UNLINK.
1998 * If the mux has to send down messages on its lower stream before
1999 * ACKing I_UNLINK, then it *should* know to handle messages even
2000 * after the UNLINK is acked (actually it should be able to handle till we
2001 * re-block the read side of the pass queue here). If the mux does not
2002 * open up the lower stream, any messages that arrive during UNLINK
2003 * will be put in the stream head. In the case of lower stream opening
2004 * up, some messages might land in the stream head depending on when
2005 * the message arrived and when the read side of the pass queue was
2006 * re-blocked.
2007 */
2008 int
munlink(stdata_t * stp,linkinfo_t * linkp,int flag,cred_t * crp,int * rvalp,str_stack_t * ss)2009 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2010 str_stack_t *ss)
2011 {
2012 struct strioctl strioc;
2013 struct stdata *stpdown;
2014 queue_t *rq, *wrq;
2015 queue_t *passq;
2016 syncq_t *passyncq;
2017 int error = 0;
2018 file_t *fpdown;
2019
2020 ASSERT(MUTEX_HELD(&muxifier));
2021
2022 stpdown = linkp->li_fpdown->f_vnode->v_stream;
2023
2024 /*
2025 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2026 */
2027 mutex_enter(&stpdown->sd_lock);
2028 stpdown->sd_flag |= STRPLUMB;
2029 mutex_exit(&stpdown->sd_lock);
2030
2031 /*
2032 * Add passthru queue below lower mux. This will block
2033 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2034 */
2035 passq = link_addpassthru(stpdown);
2036
2037 if ((flag & LINKTYPEMASK) == LINKNORMAL)
2038 strioc.ic_cmd = I_UNLINK;
2039 else
2040 strioc.ic_cmd = I_PUNLINK;
2041 strioc.ic_timout = INFTIM;
2042 strioc.ic_len = sizeof (struct linkblk);
2043 strioc.ic_dp = (char *)&linkp->li_lblk;
2044
2045 error = strdoioctl(stp, &strioc, FNATIVE,
2046 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2047
2048 /*
2049 * If there was an error and this is not called via strclose,
2050 * return to the user. Otherwise, pretend there was no error
2051 * and close the link.
2052 */
2053 if (error) {
2054 if (flag & LINKCLOSE) {
2055 cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2056 "unlink ioctl, closing anyway (%d)\n", error);
2057 } else {
2058 link_rempassthru(passq);
2059 mutex_enter(&stpdown->sd_lock);
2060 stpdown->sd_flag &= ~STRPLUMB;
2061 cv_broadcast(&stpdown->sd_monitor);
2062 mutex_exit(&stpdown->sd_lock);
2063 mutex_exit(&muxifier);
2064 return (error);
2065 }
2066 }
2067
2068 mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2069 fpdown = linkp->li_fpdown;
2070 lbfree(linkp);
2071
2072 /*
2073 * We go ahead and drop muxifier here--it's a nasty global lock that
2074 * can slow others down. It's okay to since attempts to mlink() this
2075 * stream will be stopped because STPLEX is still set in the stdata
2076 * structure, and munlink() is stopped because mux_rmvedge() and
2077 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2078 * respectively. Note that we defer the closef() of fpdown until
2079 * after we drop muxifier since strclose() can call munlinkall().
2080 */
2081 mutex_exit(&muxifier);
2082
2083 wrq = stpdown->sd_wrq;
2084 rq = _RD(wrq);
2085
2086 /*
2087 * Get rid of outstanding service procedure runs, before we make
2088 * it a stream head, since a stream head doesn't have any service
2089 * procedure.
2090 */
2091 disable_svc(rq);
2092 wait_svc(rq);
2093
2094 /*
2095 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2096 * is queued up to be finished. mux should take care that nothing is
2097 * send down to this queue. We should do it now as we're going to block
2098 * passyncq if it was unblocked.
2099 */
2100 if (wrq->q_flag & QPERMOD) {
2101 syncq_t *sq = wrq->q_syncq;
2102
2103 mutex_enter(SQLOCK(sq));
2104 while (wrq->q_sqflags & Q_SQQUEUED) {
2105 sq->sq_flags |= SQ_WANTWAKEUP;
2106 cv_wait(&sq->sq_wait, SQLOCK(sq));
2107 }
2108 mutex_exit(SQLOCK(sq));
2109 }
2110 passyncq = passq->q_syncq;
2111 if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2112
2113 syncq_t *sq, *outer;
2114
2115 /*
2116 * Messages could be flowing from underneath. We will
2117 * block the read side of the passq. This would be
2118 * sufficient for QPAIR and QPERQ muxes to ensure
2119 * that no data is flowing up into this queue
2120 * and hence no thread active in this instance of
2121 * lower mux. But for QPERMOD and QMTOUTPERIM there
2122 * could be messages on the inner and outer/inner
2123 * syncqs respectively. We will wait for them to drain.
2124 * Because passq is blocked messages end up in the syncq
2125 * And qfill_syncq could possibly end up setting QFULL
2126 * which will access the rq->q_flag. Hence, we have to
2127 * acquire the QLOCK in setq.
2128 *
2129 * XXX Messages can also flow from top into this
2130 * queue though the unlink is over (Ex. some instance
2131 * in putnext() called from top that has still not
2132 * accessed this queue. And also putq(lowerq) ?).
2133 * Solution : How about blocking the l_qtop queue ?
2134 * Do we really care about such pure D_MP muxes ?
2135 */
2136
2137 blocksq(passyncq, SQ_BLOCKED, 0);
2138
2139 sq = rq->q_syncq;
2140 if ((outer = sq->sq_outer) != NULL) {
2141
2142 /*
2143 * We have to just wait for the outer sq_count
2144 * drop to zero. As this does not prevent new
2145 * messages to enter the outer perimeter, this
2146 * is subject to starvation.
2147 *
2148 * NOTE :Because of blocksq above, messages could
2149 * be in the inner syncq only because of some
2150 * thread holding the outer perimeter exclusively.
2151 * Hence it would be sufficient to wait for the
2152 * exclusive holder of the outer perimeter to drain
2153 * the inner and outer syncqs. But we will not depend
2154 * on this feature and hence check the inner syncqs
2155 * separately.
2156 */
2157 wait_syncq(outer);
2158 }
2159
2160
2161 /*
2162 * There could be messages destined for
2163 * this queue. Let the exclusive holder
2164 * drain it.
2165 */
2166
2167 wait_syncq(sq);
2168 ASSERT((rq->q_flag & QPERMOD) ||
2169 ((rq->q_syncq->sq_head == NULL) &&
2170 (_WR(rq)->q_syncq->sq_head == NULL)));
2171 }
2172
2173 /*
2174 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2175 * case as we don't disable its syncq or remove it off the syncq
2176 * service list.
2177 */
2178 if (rq->q_flag & QPERMOD) {
2179 syncq_t *sq = rq->q_syncq;
2180
2181 mutex_enter(SQLOCK(sq));
2182 while (rq->q_sqflags & Q_SQQUEUED) {
2183 sq->sq_flags |= SQ_WANTWAKEUP;
2184 cv_wait(&sq->sq_wait, SQLOCK(sq));
2185 }
2186 mutex_exit(SQLOCK(sq));
2187 }
2188
2189 /*
2190 * flush_syncq changes states only when there are some messages to
2191 * free, i.e. when it returns non-zero value to return.
2192 */
2193 ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2194 ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2195
2196 /*
2197 * Nobody else should know about this queue now.
2198 * If the mux did not process the messages before
2199 * acking the I_UNLINK, free them now.
2200 */
2201
2202 flushq(rq, FLUSHALL);
2203 flushq(_WR(rq), FLUSHALL);
2204
2205 /*
2206 * Convert the mux lower queue into a stream head queue.
2207 * Turn off STPLEX before we turn on the stream by removing the passq.
2208 */
2209 rq->q_ptr = wrq->q_ptr = stpdown;
2210 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2211
2212 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2213 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2214
2215 enable_svc(rq);
2216
2217 /*
2218 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2219 * needs to be set to prevent reopen() of the stream - such reopen may
2220 * try to call non-existent pass queue open routine and panic.
2221 */
2222 mutex_enter(&stpdown->sd_lock);
2223 stpdown->sd_flag &= ~STPLEX;
2224 mutex_exit(&stpdown->sd_lock);
2225
2226 ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2227 ((flag & LINKTYPEMASK) == LINKPERSIST));
2228
2229 /* clean up the layered driver linkages */
2230 if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2231 ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2232 } else {
2233 ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2234 }
2235
2236 link_rempassthru(passq);
2237
2238 /*
2239 * Now all plumbing changes are finished and STRPLUMB is no
2240 * longer needed.
2241 */
2242 mutex_enter(&stpdown->sd_lock);
2243 stpdown->sd_flag &= ~STRPLUMB;
2244 cv_broadcast(&stpdown->sd_monitor);
2245 mutex_exit(&stpdown->sd_lock);
2246
2247 (void) closef(fpdown);
2248 return (0);
2249 }
2250
2251 /*
2252 * Unlink all multiplexor links for which stp is the controlling stream.
2253 * Return 0, or a non-zero errno on failure.
2254 */
2255 int
munlinkall(stdata_t * stp,int flag,cred_t * crp,int * rvalp,str_stack_t * ss)2256 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2257 {
2258 linkinfo_t *linkp;
2259 int error = 0;
2260
2261 mutex_enter(&muxifier);
2262 while (linkp = findlinks(stp, 0, flag, ss)) {
2263 /*
2264 * munlink() releases the muxifier lock.
2265 */
2266 if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2267 return (error);
2268 mutex_enter(&muxifier);
2269 }
2270 mutex_exit(&muxifier);
2271 return (0);
2272 }
2273
2274 /*
2275 * A multiplexor link has been made. Add an
2276 * edge to the directed graph.
2277 */
2278 void
mux_addedge(stdata_t * upstp,stdata_t * lostp,int muxid,str_stack_t * ss)2279 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2280 {
2281 struct mux_node *np;
2282 struct mux_edge *ep;
2283 major_t upmaj;
2284 major_t lomaj;
2285
2286 upmaj = getmajor(upstp->sd_vnode->v_rdev);
2287 lomaj = getmajor(lostp->sd_vnode->v_rdev);
2288 np = &ss->ss_mux_nodes[upmaj];
2289 if (np->mn_outp) {
2290 ep = np->mn_outp;
2291 while (ep->me_nextp)
2292 ep = ep->me_nextp;
2293 ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2294 ep = ep->me_nextp;
2295 } else {
2296 np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2297 ep = np->mn_outp;
2298 }
2299 ep->me_nextp = NULL;
2300 ep->me_muxid = muxid;
2301 /*
2302 * Save the dev_t for the purposes of str_stack_shutdown.
2303 * str_stack_shutdown assumes that the device allows reopen, since
2304 * this dev_t is the one after any cloning by xx_open().
2305 * Would prefer finding the dev_t from before any cloning,
2306 * but specfs doesn't retain that.
2307 */
2308 ep->me_dev = upstp->sd_vnode->v_rdev;
2309 if (lostp->sd_vnode->v_type == VFIFO)
2310 ep->me_nodep = NULL;
2311 else
2312 ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2313 }
2314
2315 /*
2316 * A multiplexor link has been removed. Remove the
2317 * edge in the directed graph.
2318 */
2319 void
mux_rmvedge(stdata_t * upstp,int muxid,str_stack_t * ss)2320 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2321 {
2322 struct mux_node *np;
2323 struct mux_edge *ep;
2324 struct mux_edge *pep = NULL;
2325 major_t upmaj;
2326
2327 upmaj = getmajor(upstp->sd_vnode->v_rdev);
2328 np = &ss->ss_mux_nodes[upmaj];
2329 ASSERT(np->mn_outp != NULL);
2330 ep = np->mn_outp;
2331 while (ep) {
2332 if (ep->me_muxid == muxid) {
2333 if (pep)
2334 pep->me_nextp = ep->me_nextp;
2335 else
2336 np->mn_outp = ep->me_nextp;
2337 kmem_free(ep, sizeof (struct mux_edge));
2338 return;
2339 }
2340 pep = ep;
2341 ep = ep->me_nextp;
2342 }
2343 ASSERT(0); /* should not reach here */
2344 }
2345
2346 /*
2347 * Translate the device flags (from conf.h) to the corresponding
2348 * qflag and sq_flag (type) values.
2349 */
2350 int
devflg_to_qflag(struct streamtab * stp,uint32_t devflag,uint32_t * qflagp,uint32_t * sqtypep)2351 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2352 uint32_t *sqtypep)
2353 {
2354 uint32_t qflag = 0;
2355 uint32_t sqtype = 0;
2356
2357 if (devflag & _D_OLD)
2358 goto bad;
2359
2360 /* Inner perimeter presence and scope */
2361 switch (devflag & D_MTINNER_MASK) {
2362 case D_MP:
2363 qflag |= QMTSAFE;
2364 sqtype |= SQ_CI;
2365 break;
2366 case D_MTPERQ|D_MP:
2367 qflag |= QPERQ;
2368 break;
2369 case D_MTQPAIR|D_MP:
2370 qflag |= QPAIR;
2371 break;
2372 case D_MTPERMOD|D_MP:
2373 qflag |= QPERMOD;
2374 break;
2375 default:
2376 goto bad;
2377 }
2378
2379 /* Outer perimeter */
2380 if (devflag & D_MTOUTPERIM) {
2381 switch (devflag & D_MTINNER_MASK) {
2382 case D_MP:
2383 case D_MTPERQ|D_MP:
2384 case D_MTQPAIR|D_MP:
2385 break;
2386 default:
2387 goto bad;
2388 }
2389 qflag |= QMTOUTPERIM;
2390 }
2391
2392 /* Inner perimeter modifiers */
2393 if (devflag & D_MTINNER_MOD) {
2394 switch (devflag & D_MTINNER_MASK) {
2395 case D_MP:
2396 goto bad;
2397 default:
2398 break;
2399 }
2400 if (devflag & D_MTPUTSHARED)
2401 sqtype |= SQ_CIPUT;
2402 if (devflag & _D_MTOCSHARED) {
2403 /*
2404 * The code in putnext assumes that it has the
2405 * highest concurrency by not checking sq_count.
2406 * Thus _D_MTOCSHARED can only be supported when
2407 * D_MTPUTSHARED is set.
2408 */
2409 if (!(devflag & D_MTPUTSHARED))
2410 goto bad;
2411 sqtype |= SQ_CIOC;
2412 }
2413 if (devflag & _D_MTCBSHARED) {
2414 /*
2415 * The code in putnext assumes that it has the
2416 * highest concurrency by not checking sq_count.
2417 * Thus _D_MTCBSHARED can only be supported when
2418 * D_MTPUTSHARED is set.
2419 */
2420 if (!(devflag & D_MTPUTSHARED))
2421 goto bad;
2422 sqtype |= SQ_CICB;
2423 }
2424 if (devflag & _D_MTSVCSHARED) {
2425 /*
2426 * The code in putnext assumes that it has the
2427 * highest concurrency by not checking sq_count.
2428 * Thus _D_MTSVCSHARED can only be supported when
2429 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2430 * supported only for QPERMOD.
2431 */
2432 if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2433 goto bad;
2434 sqtype |= SQ_CISVC;
2435 }
2436 }
2437
2438 /* Default outer perimeter concurrency */
2439 sqtype |= SQ_CO;
2440
2441 /* Outer perimeter modifiers */
2442 if (devflag & D_MTOCEXCL) {
2443 if (!(devflag & D_MTOUTPERIM)) {
2444 /* No outer perimeter */
2445 goto bad;
2446 }
2447 sqtype &= ~SQ_COOC;
2448 }
2449
2450 /* Synchronous Streams extended qinit structure */
2451 if (devflag & D_SYNCSTR)
2452 qflag |= QSYNCSTR;
2453
2454 /*
2455 * Private flag used by a transport module to indicate
2456 * to sockfs that it supports direct-access mode without
2457 * having to go through STREAMS.
2458 */
2459 if (devflag & _D_DIRECT) {
2460 /* Reject unless the module is fully-MT (no perimeter) */
2461 if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2462 goto bad;
2463 qflag |= _QDIRECT;
2464 }
2465
2466 *qflagp = qflag;
2467 *sqtypep = sqtype;
2468 return (0);
2469
2470 bad:
2471 cmn_err(CE_WARN,
2472 "stropen: bad MT flags (0x%x) in driver '%s'",
2473 (int)(qflag & D_MTSAFETY_MASK),
2474 stp->st_rdinit->qi_minfo->mi_idname);
2475
2476 return (EINVAL);
2477 }
2478
2479 /*
2480 * Set the interface values for a pair of queues (qinit structure,
2481 * packet sizes, water marks).
2482 * setq assumes that the caller does not have a claim (entersq or claimq)
2483 * on the queue.
2484 */
2485 void
setq(queue_t * rq,struct qinit * rinit,struct qinit * winit,perdm_t * dmp,uint32_t qflag,uint32_t sqtype,boolean_t lock_needed)2486 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2487 perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2488 {
2489 queue_t *wq;
2490 syncq_t *sq, *outer;
2491
2492 ASSERT(rq->q_flag & QREADR);
2493 ASSERT((qflag & QMT_TYPEMASK) != 0);
2494 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2495
2496 wq = _WR(rq);
2497 rq->q_qinfo = rinit;
2498 rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2499 rq->q_lowat = rinit->qi_minfo->mi_lowat;
2500 rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2501 rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2502 wq->q_qinfo = winit;
2503 wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2504 wq->q_lowat = winit->qi_minfo->mi_lowat;
2505 wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2506 wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2507
2508 /* Remove old syncqs */
2509 sq = rq->q_syncq;
2510 outer = sq->sq_outer;
2511 if (outer != NULL) {
2512 ASSERT(wq->q_syncq->sq_outer == outer);
2513 outer_remove(outer, rq->q_syncq);
2514 if (wq->q_syncq != rq->q_syncq)
2515 outer_remove(outer, wq->q_syncq);
2516 }
2517 ASSERT(sq->sq_outer == NULL);
2518 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2519
2520 if (sq != SQ(rq)) {
2521 if (!(rq->q_flag & QPERMOD))
2522 free_syncq(sq);
2523 if (wq->q_syncq == rq->q_syncq)
2524 wq->q_syncq = NULL;
2525 rq->q_syncq = NULL;
2526 }
2527 if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2528 wq->q_syncq != SQ(rq)) {
2529 free_syncq(wq->q_syncq);
2530 wq->q_syncq = NULL;
2531 }
2532 ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2533 rq->q_syncq->sq_tail == NULL));
2534 ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2535 wq->q_syncq->sq_tail == NULL));
2536
2537 if (!(rq->q_flag & QPERMOD) &&
2538 rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2539 ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2540 SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2541 rq->q_syncq->sq_nciputctrl, 0);
2542 ASSERT(ciputctrl_cache != NULL);
2543 kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2544 rq->q_syncq->sq_ciputctrl = NULL;
2545 rq->q_syncq->sq_nciputctrl = 0;
2546 }
2547
2548 if (!(wq->q_flag & QPERMOD) &&
2549 wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2550 ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2551 SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2552 wq->q_syncq->sq_nciputctrl, 0);
2553 ASSERT(ciputctrl_cache != NULL);
2554 kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2555 wq->q_syncq->sq_ciputctrl = NULL;
2556 wq->q_syncq->sq_nciputctrl = 0;
2557 }
2558
2559 sq = SQ(rq);
2560 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2561 ASSERT(sq->sq_outer == NULL);
2562 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2563
2564 /*
2565 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2566 * bits in sq_flag based on the sqtype.
2567 */
2568 ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2569
2570 rq->q_syncq = wq->q_syncq = sq;
2571 sq->sq_type = sqtype;
2572 sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2573
2574 /*
2575 * We are making sq_svcflags zero,
2576 * resetting SQ_DISABLED in case it was set by
2577 * wait_svc() in the munlink path.
2578 *
2579 */
2580 ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2581 sq->sq_svcflags = 0;
2582
2583 /*
2584 * We need to acquire the lock here for the mlink and munlink case,
2585 * where canputnext, backenable, etc can access the q_flag.
2586 */
2587 if (lock_needed) {
2588 mutex_enter(QLOCK(rq));
2589 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2590 mutex_exit(QLOCK(rq));
2591 mutex_enter(QLOCK(wq));
2592 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2593 mutex_exit(QLOCK(wq));
2594 } else {
2595 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2596 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2597 }
2598
2599 if (qflag & QPERQ) {
2600 /* Allocate a separate syncq for the write side */
2601 sq = new_syncq();
2602 sq->sq_type = rq->q_syncq->sq_type;
2603 sq->sq_flags = rq->q_syncq->sq_flags;
2604 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2605 sq->sq_oprev == NULL);
2606 wq->q_syncq = sq;
2607 }
2608 if (qflag & QPERMOD) {
2609 sq = dmp->dm_sq;
2610
2611 /*
2612 * Assert that we do have an inner perimeter syncq and that it
2613 * does not have an outer perimeter associated with it.
2614 */
2615 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2616 sq->sq_oprev == NULL);
2617 rq->q_syncq = wq->q_syncq = sq;
2618 }
2619 if (qflag & QMTOUTPERIM) {
2620 outer = dmp->dm_sq;
2621
2622 ASSERT(outer->sq_outer == NULL);
2623 outer_insert(outer, rq->q_syncq);
2624 if (wq->q_syncq != rq->q_syncq)
2625 outer_insert(outer, wq->q_syncq);
2626 }
2627 ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2628 (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2629 ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2630 (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2631 ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2632
2633 /*
2634 * Initialize struio() types.
2635 */
2636 rq->q_struiot =
2637 (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2638 wq->q_struiot =
2639 (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2640 }
2641
2642 perdm_t *
hold_dm(struct streamtab * str,uint32_t qflag,uint32_t sqtype)2643 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2644 {
2645 syncq_t *sq;
2646 perdm_t **pp;
2647 perdm_t *p;
2648 perdm_t *dmp;
2649
2650 ASSERT(str != NULL);
2651 ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2652
2653 rw_enter(&perdm_rwlock, RW_READER);
2654 for (p = perdm_list; p != NULL; p = p->dm_next) {
2655 if (p->dm_str == str) { /* found one */
2656 atomic_inc_32(&(p->dm_ref));
2657 rw_exit(&perdm_rwlock);
2658 return (p);
2659 }
2660 }
2661 rw_exit(&perdm_rwlock);
2662
2663 sq = new_syncq();
2664 if (qflag & QPERMOD) {
2665 sq->sq_type = sqtype | SQ_PERMOD;
2666 sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2667 } else {
2668 ASSERT(qflag & QMTOUTPERIM);
2669 sq->sq_onext = sq->sq_oprev = sq;
2670 }
2671
2672 dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2673 dmp->dm_sq = sq;
2674 dmp->dm_str = str;
2675 dmp->dm_ref = 1;
2676 dmp->dm_next = NULL;
2677
2678 rw_enter(&perdm_rwlock, RW_WRITER);
2679 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2680 if (p->dm_str == str) { /* already present */
2681 p->dm_ref++;
2682 rw_exit(&perdm_rwlock);
2683 free_syncq(sq);
2684 kmem_free(dmp, sizeof (perdm_t));
2685 return (p);
2686 }
2687 }
2688
2689 *pp = dmp;
2690 rw_exit(&perdm_rwlock);
2691 return (dmp);
2692 }
2693
2694 void
rele_dm(perdm_t * dmp)2695 rele_dm(perdm_t *dmp)
2696 {
2697 perdm_t **pp;
2698 perdm_t *p;
2699
2700 rw_enter(&perdm_rwlock, RW_WRITER);
2701 ASSERT(dmp->dm_ref > 0);
2702
2703 if (--dmp->dm_ref > 0) {
2704 rw_exit(&perdm_rwlock);
2705 return;
2706 }
2707
2708 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2709 if (p == dmp)
2710 break;
2711 ASSERT(p == dmp);
2712 *pp = p->dm_next;
2713 rw_exit(&perdm_rwlock);
2714
2715 /*
2716 * Wait for any background processing that relies on the
2717 * syncq to complete before it is freed.
2718 */
2719 wait_sq_svc(p->dm_sq);
2720 free_syncq(p->dm_sq);
2721 kmem_free(p, sizeof (perdm_t));
2722 }
2723
2724 /*
2725 * Make a protocol message given control and data buffers.
2726 * n.b., this can block; be careful of what locks you hold when calling it.
2727 *
2728 * If sd_maxblk is less than *iosize this routine can fail part way through
2729 * (due to an allocation failure). In this case on return *iosize will contain
2730 * the amount that was consumed. Otherwise *iosize will not be modified
2731 * i.e. it will contain the amount that was consumed.
2732 */
2733 int
strmakemsg(struct strbuf * mctl,ssize_t * iosize,struct uio * uiop,stdata_t * stp,int32_t flag,mblk_t ** mpp)2734 strmakemsg(
2735 struct strbuf *mctl,
2736 ssize_t *iosize,
2737 struct uio *uiop,
2738 stdata_t *stp,
2739 int32_t flag,
2740 mblk_t **mpp)
2741 {
2742 mblk_t *mpctl = NULL;
2743 mblk_t *mpdata = NULL;
2744 int error;
2745
2746 ASSERT(uiop != NULL);
2747
2748 *mpp = NULL;
2749 /* Create control part, if any */
2750 if ((mctl != NULL) && (mctl->len >= 0)) {
2751 error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2752 if (error)
2753 return (error);
2754 }
2755 /* Create data part, if any */
2756 if (*iosize >= 0) {
2757 error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2758 if (error) {
2759 freemsg(mpctl);
2760 return (error);
2761 }
2762 }
2763 if (mpctl != NULL) {
2764 if (mpdata != NULL)
2765 linkb(mpctl, mpdata);
2766 *mpp = mpctl;
2767 } else {
2768 *mpp = mpdata;
2769 }
2770 return (0);
2771 }
2772
2773 /*
2774 * Make the control part of a protocol message given a control buffer.
2775 * n.b., this can block; be careful of what locks you hold when calling it.
2776 */
2777 int
strmakectl(struct strbuf * mctl,int32_t flag,int32_t fflag,mblk_t ** mpp)2778 strmakectl(
2779 struct strbuf *mctl,
2780 int32_t flag,
2781 int32_t fflag,
2782 mblk_t **mpp)
2783 {
2784 mblk_t *bp = NULL;
2785 unsigned char msgtype;
2786 int error = 0;
2787 cred_t *cr = CRED();
2788
2789 /* We do not support interrupt threads using the stream head to send */
2790 ASSERT(cr != NULL);
2791
2792 *mpp = NULL;
2793 /*
2794 * Create control part of message, if any.
2795 */
2796 if ((mctl != NULL) && (mctl->len >= 0)) {
2797 caddr_t base;
2798 int ctlcount;
2799 int allocsz;
2800
2801 if (flag & RS_HIPRI)
2802 msgtype = M_PCPROTO;
2803 else
2804 msgtype = M_PROTO;
2805
2806 ctlcount = mctl->len;
2807 base = mctl->buf;
2808
2809 /*
2810 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2811 * blocks by increasing the size to something more usable.
2812 */
2813 allocsz = MAX(ctlcount, 64);
2814
2815 /*
2816 * Range checking has already been done; simply try
2817 * to allocate a message block for the ctl part.
2818 */
2819 while ((bp = allocb_cred(allocsz, cr,
2820 curproc->p_pid)) == NULL) {
2821 if (fflag & (FNDELAY|FNONBLOCK))
2822 return (EAGAIN);
2823 if (error = strwaitbuf(allocsz, BPRI_MED))
2824 return (error);
2825 }
2826
2827 bp->b_datap->db_type = msgtype;
2828 if (copyin(base, bp->b_wptr, ctlcount)) {
2829 freeb(bp);
2830 return (EFAULT);
2831 }
2832 bp->b_wptr += ctlcount;
2833 }
2834 *mpp = bp;
2835 return (0);
2836 }
2837
2838 /*
2839 * Make a protocol message given data buffers.
2840 * n.b., this can block; be careful of what locks you hold when calling it.
2841 *
2842 * If sd_maxblk is less than *iosize this routine can fail part way through
2843 * (due to an allocation failure). In this case on return *iosize will contain
2844 * the amount that was consumed. Otherwise *iosize will not be modified
2845 * i.e. it will contain the amount that was consumed.
2846 */
2847 int
strmakedata(ssize_t * iosize,struct uio * uiop,stdata_t * stp,int32_t flag,mblk_t ** mpp)2848 strmakedata(
2849 ssize_t *iosize,
2850 struct uio *uiop,
2851 stdata_t *stp,
2852 int32_t flag,
2853 mblk_t **mpp)
2854 {
2855 mblk_t *mp = NULL;
2856 mblk_t *bp;
2857 int wroff = (int)stp->sd_wroff;
2858 int tail_len = (int)stp->sd_tail;
2859 int extra = wroff + tail_len;
2860 int error = 0;
2861 ssize_t maxblk;
2862 ssize_t count = *iosize;
2863 cred_t *cr;
2864
2865 *mpp = NULL;
2866 if (count < 0)
2867 return (0);
2868
2869 /* We do not support interrupt threads using the stream head to send */
2870 cr = CRED();
2871 ASSERT(cr != NULL);
2872
2873 maxblk = stp->sd_maxblk;
2874 if (maxblk == INFPSZ)
2875 maxblk = count;
2876
2877 /*
2878 * Create data part of message, if any.
2879 */
2880 do {
2881 ssize_t size;
2882 dblk_t *dp;
2883
2884 ASSERT(uiop);
2885
2886 size = MIN(count, maxblk);
2887
2888 while ((bp = allocb_cred(size + extra, cr,
2889 curproc->p_pid)) == NULL) {
2890 error = EAGAIN;
2891 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2892 (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2893 if (count == *iosize) {
2894 freemsg(mp);
2895 return (error);
2896 } else {
2897 *iosize -= count;
2898 *mpp = mp;
2899 return (0);
2900 }
2901 }
2902 }
2903 dp = bp->b_datap;
2904 dp->db_cpid = curproc->p_pid;
2905 ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2906 bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2907
2908 if (flag & STRUIO_POSTPONE) {
2909 /*
2910 * Setup the stream uio portion of the
2911 * dblk for subsequent use by struioget().
2912 */
2913 dp->db_struioflag = STRUIO_SPEC;
2914 dp->db_cksumstart = 0;
2915 dp->db_cksumstuff = 0;
2916 dp->db_cksumend = size;
2917 *(long long *)dp->db_struioun.data = 0ll;
2918 bp->b_wptr += size;
2919 } else {
2920 if (stp->sd_copyflag & STRCOPYCACHED)
2921 uiop->uio_extflg |= UIO_COPY_CACHED;
2922
2923 if (size != 0) {
2924 error = uiomove(bp->b_wptr, size, UIO_WRITE,
2925 uiop);
2926 if (error != 0) {
2927 freeb(bp);
2928 freemsg(mp);
2929 return (error);
2930 }
2931 }
2932 bp->b_wptr += size;
2933
2934 if (stp->sd_wputdatafunc != NULL) {
2935 mblk_t *newbp;
2936
2937 newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2938 bp, NULL, NULL, NULL, NULL);
2939 if (newbp == NULL) {
2940 freeb(bp);
2941 freemsg(mp);
2942 return (ECOMM);
2943 }
2944 bp = newbp;
2945 }
2946 }
2947
2948 count -= size;
2949
2950 if (mp == NULL)
2951 mp = bp;
2952 else
2953 linkb(mp, bp);
2954 } while (count > 0);
2955
2956 *mpp = mp;
2957 return (0);
2958 }
2959
2960 /*
2961 * Wait for a buffer to become available. Return non-zero errno
2962 * if not able to wait, 0 if buffer is probably there.
2963 */
2964 int
strwaitbuf(size_t size,int pri)2965 strwaitbuf(size_t size, int pri)
2966 {
2967 bufcall_id_t id;
2968
2969 mutex_enter(&bcall_monitor);
2970 if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2971 &ttoproc(curthread)->p_flag_cv)) == 0) {
2972 mutex_exit(&bcall_monitor);
2973 return (ENOSR);
2974 }
2975 if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2976 unbufcall(id);
2977 mutex_exit(&bcall_monitor);
2978 return (EINTR);
2979 }
2980 unbufcall(id);
2981 mutex_exit(&bcall_monitor);
2982 return (0);
2983 }
2984
2985 /*
2986 * This function waits for a read or write event to happen on a stream.
2987 * fmode can specify FNDELAY and/or FNONBLOCK.
2988 * The timeout is in ms with -1 meaning infinite.
2989 * The flag values work as follows:
2990 * READWAIT Check for read side errors, send M_READ
2991 * GETWAIT Check for read side errors, no M_READ
2992 * WRITEWAIT Check for write side errors.
2993 * NOINTR Do not return error if nonblocking or timeout.
2994 * STR_NOERROR Ignore all errors except STPLEX.
2995 * STR_NOSIG Ignore/hold signals during the duration of the call.
2996 * STR_PEEK Pass through the strgeterr().
2997 */
2998 int
strwaitq(stdata_t * stp,int flag,ssize_t count,int fmode,clock_t timout,int * done)2999 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3000 int *done)
3001 {
3002 int slpflg, errs;
3003 int error;
3004 kcondvar_t *sleepon;
3005 mblk_t *mp;
3006 ssize_t *rd_count;
3007 clock_t rval;
3008
3009 ASSERT(MUTEX_HELD(&stp->sd_lock));
3010 if ((flag & READWAIT) || (flag & GETWAIT)) {
3011 slpflg = RSLEEP;
3012 sleepon = &_RD(stp->sd_wrq)->q_wait;
3013 errs = STRDERR|STPLEX;
3014 } else {
3015 slpflg = WSLEEP;
3016 sleepon = &stp->sd_wrq->q_wait;
3017 errs = STWRERR|STRHUP|STPLEX;
3018 }
3019 if (flag & STR_NOERROR)
3020 errs = STPLEX;
3021
3022 if (stp->sd_wakeq & slpflg) {
3023 /*
3024 * A strwakeq() is pending, no need to sleep.
3025 */
3026 stp->sd_wakeq &= ~slpflg;
3027 *done = 0;
3028 return (0);
3029 }
3030
3031 if (stp->sd_flag & errs) {
3032 /*
3033 * Check for errors before going to sleep since the
3034 * caller might not have checked this while holding
3035 * sd_lock.
3036 */
3037 error = strgeterr(stp, errs, (flag & STR_PEEK));
3038 if (error != 0) {
3039 *done = 1;
3040 return (error);
3041 }
3042 }
3043
3044 /*
3045 * If any module downstream has requested read notification
3046 * by setting SNDMREAD flag using M_SETOPTS, send a message
3047 * down stream.
3048 */
3049 if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3050 mutex_exit(&stp->sd_lock);
3051 if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3052 (flag & STR_NOSIG), &error))) {
3053 mutex_enter(&stp->sd_lock);
3054 *done = 1;
3055 return (error);
3056 }
3057 mp->b_datap->db_type = M_READ;
3058 rd_count = (ssize_t *)mp->b_wptr;
3059 *rd_count = count;
3060 mp->b_wptr += sizeof (ssize_t);
3061 /*
3062 * Send the number of bytes requested by the
3063 * read as the argument to M_READ.
3064 */
3065 stream_willservice(stp);
3066 putnext(stp->sd_wrq, mp);
3067 stream_runservice(stp);
3068 mutex_enter(&stp->sd_lock);
3069
3070 /*
3071 * If any data arrived due to inline processing
3072 * of putnext(), don't sleep.
3073 */
3074 if (_RD(stp->sd_wrq)->q_first != NULL) {
3075 *done = 0;
3076 return (0);
3077 }
3078 }
3079
3080 if (fmode & (FNDELAY|FNONBLOCK)) {
3081 if (!(flag & NOINTR))
3082 error = EAGAIN;
3083 else
3084 error = 0;
3085 *done = 1;
3086 return (error);
3087 }
3088
3089 stp->sd_flag |= slpflg;
3090 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3091 "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3092 stp, flag, count, fmode, done);
3093
3094 rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3095 if (rval > 0) {
3096 /* EMPTY */
3097 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3098 "strwaitq awakes(2):%X, %X, %X, %X, %X",
3099 stp, flag, count, fmode, done);
3100 } else if (rval == 0) {
3101 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3102 "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3103 stp, flag, count, fmode, done);
3104 stp->sd_flag &= ~slpflg;
3105 cv_broadcast(sleepon);
3106 if (!(flag & NOINTR))
3107 error = EINTR;
3108 else
3109 error = 0;
3110 *done = 1;
3111 return (error);
3112 } else {
3113 /* timeout */
3114 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3115 "strwaitq timeout:%p, %X, %lX, %X, %p",
3116 stp, flag, count, fmode, done);
3117 *done = 1;
3118 if (!(flag & NOINTR))
3119 return (ETIME);
3120 else
3121 return (0);
3122 }
3123 /*
3124 * If the caller implements delayed errors (i.e. queued after data)
3125 * we can not check for errors here since data as well as an
3126 * error might have arrived at the stream head. We return to
3127 * have the caller check the read queue before checking for errors.
3128 */
3129 if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3130 error = strgeterr(stp, errs, (flag & STR_PEEK));
3131 if (error != 0) {
3132 *done = 1;
3133 return (error);
3134 }
3135 }
3136 *done = 0;
3137 return (0);
3138 }
3139
3140 /*
3141 * Perform job control discipline access checks.
3142 * Return 0 for success and the errno for failure.
3143 */
3144
3145 #define cantsend(p, t, sig) \
3146 (sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3147
3148 int
straccess(struct stdata * stp,enum jcaccess mode)3149 straccess(struct stdata *stp, enum jcaccess mode)
3150 {
3151 extern kcondvar_t lbolt_cv; /* XXX: should be in a header file */
3152 kthread_t *t = curthread;
3153 proc_t *p = ttoproc(t);
3154 sess_t *sp;
3155
3156 ASSERT(mutex_owned(&stp->sd_lock));
3157
3158 if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3159 return (0);
3160
3161 mutex_enter(&p->p_lock); /* protects p_pgidp */
3162
3163 for (;;) {
3164 mutex_enter(&p->p_splock); /* protects p->p_sessp */
3165 sp = p->p_sessp;
3166 mutex_enter(&sp->s_lock); /* protects sp->* */
3167
3168 /*
3169 * If this is not the calling process's controlling terminal
3170 * or if the calling process is already in the foreground
3171 * then allow access.
3172 */
3173 if (sp->s_dev != stp->sd_vnode->v_rdev ||
3174 p->p_pgidp == stp->sd_pgidp) {
3175 mutex_exit(&sp->s_lock);
3176 mutex_exit(&p->p_splock);
3177 mutex_exit(&p->p_lock);
3178 return (0);
3179 }
3180
3181 /*
3182 * Check to see if controlling terminal has been deallocated.
3183 */
3184 if (sp->s_vp == NULL) {
3185 if (!cantsend(p, t, SIGHUP))
3186 sigtoproc(p, t, SIGHUP);
3187 mutex_exit(&sp->s_lock);
3188 mutex_exit(&p->p_splock);
3189 mutex_exit(&p->p_lock);
3190 return (EIO);
3191 }
3192
3193 mutex_exit(&sp->s_lock);
3194 mutex_exit(&p->p_splock);
3195
3196 if (mode == JCGETP) {
3197 mutex_exit(&p->p_lock);
3198 return (0);
3199 }
3200
3201 if (mode == JCREAD) {
3202 if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3203 mutex_exit(&p->p_lock);
3204 return (EIO);
3205 }
3206 mutex_exit(&p->p_lock);
3207 mutex_exit(&stp->sd_lock);
3208 pgsignal(p->p_pgidp, SIGTTIN);
3209 mutex_enter(&stp->sd_lock);
3210 mutex_enter(&p->p_lock);
3211 } else { /* mode == JCWRITE or JCSETP */
3212 if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3213 cantsend(p, t, SIGTTOU)) {
3214 mutex_exit(&p->p_lock);
3215 return (0);
3216 }
3217 if (p->p_detached) {
3218 mutex_exit(&p->p_lock);
3219 return (EIO);
3220 }
3221 mutex_exit(&p->p_lock);
3222 mutex_exit(&stp->sd_lock);
3223 pgsignal(p->p_pgidp, SIGTTOU);
3224 mutex_enter(&stp->sd_lock);
3225 mutex_enter(&p->p_lock);
3226 }
3227
3228 /*
3229 * We call cv_wait_sig_swap() to cause the appropriate
3230 * action for the jobcontrol signal to take place.
3231 * If the signal is being caught, we will take the
3232 * EINTR error return. Otherwise, the default action
3233 * of causing the process to stop will take place.
3234 * In this case, we rely on the periodic cv_broadcast() on
3235 * &lbolt_cv to wake us up to loop around and test again.
3236 * We can't get here if the signal is ignored or
3237 * if the current thread is blocking the signal.
3238 */
3239 mutex_exit(&stp->sd_lock);
3240 if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3241 mutex_exit(&p->p_lock);
3242 mutex_enter(&stp->sd_lock);
3243 return (EINTR);
3244 }
3245 mutex_exit(&p->p_lock);
3246 mutex_enter(&stp->sd_lock);
3247 mutex_enter(&p->p_lock);
3248 }
3249 }
3250
3251 /*
3252 * Return size of message of block type (bp->b_datap->db_type)
3253 */
3254 size_t
xmsgsize(mblk_t * bp)3255 xmsgsize(mblk_t *bp)
3256 {
3257 unsigned char type;
3258 size_t count = 0;
3259
3260 type = bp->b_datap->db_type;
3261
3262 for (; bp; bp = bp->b_cont) {
3263 if (type != bp->b_datap->db_type)
3264 break;
3265 ASSERT(bp->b_wptr >= bp->b_rptr);
3266 count += bp->b_wptr - bp->b_rptr;
3267 }
3268 return (count);
3269 }
3270
3271 /*
3272 * Allocate a stream head.
3273 */
3274 struct stdata *
shalloc(queue_t * qp)3275 shalloc(queue_t *qp)
3276 {
3277 stdata_t *stp;
3278
3279 stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3280
3281 stp->sd_wrq = _WR(qp);
3282 stp->sd_strtab = NULL;
3283 stp->sd_iocid = 0;
3284 stp->sd_mate = NULL;
3285 stp->sd_freezer = NULL;
3286 stp->sd_refcnt = 0;
3287 stp->sd_wakeq = 0;
3288 stp->sd_anchor = 0;
3289 stp->sd_struiowrq = NULL;
3290 stp->sd_struiordq = NULL;
3291 stp->sd_struiodnak = 0;
3292 stp->sd_struionak = NULL;
3293 stp->sd_t_audit_data = NULL;
3294 stp->sd_rput_opt = 0;
3295 stp->sd_wput_opt = 0;
3296 stp->sd_read_opt = 0;
3297 stp->sd_rprotofunc = strrput_proto;
3298 stp->sd_rmiscfunc = strrput_misc;
3299 stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3300 stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3301 stp->sd_ciputctrl = NULL;
3302 stp->sd_nciputctrl = 0;
3303 stp->sd_qhead = NULL;
3304 stp->sd_qtail = NULL;
3305 stp->sd_servid = NULL;
3306 stp->sd_nqueues = 0;
3307 stp->sd_svcflags = 0;
3308 stp->sd_copyflag = 0;
3309
3310 return (stp);
3311 }
3312
3313 /*
3314 * Free a stream head.
3315 */
3316 void
shfree(stdata_t * stp)3317 shfree(stdata_t *stp)
3318 {
3319 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3320
3321 stp->sd_wrq = NULL;
3322
3323 mutex_enter(&stp->sd_qlock);
3324 while (stp->sd_svcflags & STRS_SCHEDULED) {
3325 STRSTAT(strwaits);
3326 cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3327 }
3328 mutex_exit(&stp->sd_qlock);
3329
3330 if (stp->sd_ciputctrl != NULL) {
3331 ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3332 SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3333 stp->sd_nciputctrl, 0);
3334 ASSERT(ciputctrl_cache != NULL);
3335 kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3336 stp->sd_ciputctrl = NULL;
3337 stp->sd_nciputctrl = 0;
3338 }
3339 ASSERT(stp->sd_qhead == NULL);
3340 ASSERT(stp->sd_qtail == NULL);
3341 ASSERT(stp->sd_nqueues == 0);
3342 kmem_cache_free(stream_head_cache, stp);
3343 }
3344
3345 /*
3346 * Allocate a pair of queues and a syncq for the pair
3347 */
3348 queue_t *
allocq(void)3349 allocq(void)
3350 {
3351 queinfo_t *qip;
3352 queue_t *qp, *wqp;
3353 syncq_t *sq;
3354
3355 qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3356
3357 qp = &qip->qu_rqueue;
3358 wqp = &qip->qu_wqueue;
3359 sq = &qip->qu_syncq;
3360
3361 qp->q_last = NULL;
3362 qp->q_next = NULL;
3363 qp->q_ptr = NULL;
3364 qp->q_flag = QUSE | QREADR;
3365 qp->q_bandp = NULL;
3366 qp->q_stream = NULL;
3367 qp->q_syncq = sq;
3368 qp->q_nband = 0;
3369 qp->q_nfsrv = NULL;
3370 qp->q_draining = 0;
3371 qp->q_syncqmsgs = 0;
3372 qp->q_spri = 0;
3373 qp->q_qtstamp = 0;
3374 qp->q_sqtstamp = 0;
3375 qp->q_fp = NULL;
3376
3377 wqp->q_last = NULL;
3378 wqp->q_next = NULL;
3379 wqp->q_ptr = NULL;
3380 wqp->q_flag = QUSE;
3381 wqp->q_bandp = NULL;
3382 wqp->q_stream = NULL;
3383 wqp->q_syncq = sq;
3384 wqp->q_nband = 0;
3385 wqp->q_nfsrv = NULL;
3386 wqp->q_draining = 0;
3387 wqp->q_syncqmsgs = 0;
3388 wqp->q_qtstamp = 0;
3389 wqp->q_sqtstamp = 0;
3390 wqp->q_spri = 0;
3391
3392 sq->sq_count = 0;
3393 sq->sq_rmqcount = 0;
3394 sq->sq_flags = 0;
3395 sq->sq_type = 0;
3396 sq->sq_callbflags = 0;
3397 sq->sq_cancelid = 0;
3398 sq->sq_ciputctrl = NULL;
3399 sq->sq_nciputctrl = 0;
3400 sq->sq_needexcl = 0;
3401 sq->sq_svcflags = 0;
3402
3403 return (qp);
3404 }
3405
3406 /*
3407 * Free a pair of queues and the "attached" syncq.
3408 * Discard any messages left on the syncq(s), remove the syncq(s) from the
3409 * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3410 */
3411 void
freeq(queue_t * qp)3412 freeq(queue_t *qp)
3413 {
3414 qband_t *qbp, *nqbp;
3415 syncq_t *sq, *outer;
3416 queue_t *wqp = _WR(qp);
3417
3418 ASSERT(qp->q_flag & QREADR);
3419
3420 /*
3421 * If a previously dispatched taskq job is scheduled to run
3422 * sync_service() or a service routine is scheduled for the
3423 * queues about to be freed, wait here until all service is
3424 * done on the queue and all associated queues and syncqs.
3425 */
3426 wait_svc(qp);
3427
3428 (void) flush_syncq(qp->q_syncq, qp);
3429 (void) flush_syncq(wqp->q_syncq, wqp);
3430 ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3431
3432 /*
3433 * Flush the queues before q_next is set to NULL This is needed
3434 * in order to backenable any downstream queue before we go away.
3435 * Note: we are already removed from the stream so that the
3436 * backenabling will not cause any messages to be delivered to our
3437 * put procedures.
3438 */
3439 flushq(qp, FLUSHALL);
3440 flushq(wqp, FLUSHALL);
3441
3442 /* Tidy up - removeq only does a half-remove from stream */
3443 qp->q_next = wqp->q_next = NULL;
3444 ASSERT(!(qp->q_flag & QENAB));
3445 ASSERT(!(wqp->q_flag & QENAB));
3446
3447 outer = qp->q_syncq->sq_outer;
3448 if (outer != NULL) {
3449 outer_remove(outer, qp->q_syncq);
3450 if (wqp->q_syncq != qp->q_syncq)
3451 outer_remove(outer, wqp->q_syncq);
3452 }
3453 /*
3454 * Free any syncqs that are outside what allocq returned.
3455 */
3456 if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3457 free_syncq(qp->q_syncq);
3458 if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3459 free_syncq(wqp->q_syncq);
3460
3461 ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3462 ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3463 ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3464 ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3465 sq = SQ(qp);
3466 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3467 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3468 ASSERT(sq->sq_outer == NULL);
3469 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3470 ASSERT(sq->sq_callbpend == NULL);
3471 ASSERT(sq->sq_needexcl == 0);
3472
3473 if (sq->sq_ciputctrl != NULL) {
3474 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3475 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3476 sq->sq_nciputctrl, 0);
3477 ASSERT(ciputctrl_cache != NULL);
3478 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3479 sq->sq_ciputctrl = NULL;
3480 sq->sq_nciputctrl = 0;
3481 }
3482
3483 ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3484 ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3485 ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3486
3487 qp->q_flag &= ~QUSE;
3488 wqp->q_flag &= ~QUSE;
3489
3490 /* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3491 /* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3492
3493 qbp = qp->q_bandp;
3494 while (qbp) {
3495 nqbp = qbp->qb_next;
3496 freeband(qbp);
3497 qbp = nqbp;
3498 }
3499 qbp = wqp->q_bandp;
3500 while (qbp) {
3501 nqbp = qbp->qb_next;
3502 freeband(qbp);
3503 qbp = nqbp;
3504 }
3505 kmem_cache_free(queue_cache, qp);
3506 }
3507
3508 /*
3509 * Allocate a qband structure.
3510 */
3511 qband_t *
allocband(void)3512 allocband(void)
3513 {
3514 qband_t *qbp;
3515
3516 qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3517 if (qbp == NULL)
3518 return (NULL);
3519
3520 qbp->qb_next = NULL;
3521 qbp->qb_count = 0;
3522 qbp->qb_mblkcnt = 0;
3523 qbp->qb_first = NULL;
3524 qbp->qb_last = NULL;
3525 qbp->qb_flag = 0;
3526
3527 return (qbp);
3528 }
3529
3530 /*
3531 * Free a qband structure.
3532 */
3533 void
freeband(qband_t * qbp)3534 freeband(qband_t *qbp)
3535 {
3536 kmem_cache_free(qband_cache, qbp);
3537 }
3538
3539 /*
3540 * Just like putnextctl(9F), except that allocb_wait() is used.
3541 *
3542 * Consolidation Private, and of course only callable from the stream head or
3543 * routines that may block.
3544 */
3545 int
putnextctl_wait(queue_t * q,int type)3546 putnextctl_wait(queue_t *q, int type)
3547 {
3548 mblk_t *bp;
3549 int error;
3550
3551 if ((datamsg(type) && (type != M_DELAY)) ||
3552 (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3553 return (0);
3554
3555 bp->b_datap->db_type = (unsigned char)type;
3556 putnext(q, bp);
3557 return (1);
3558 }
3559
3560 /*
3561 * Run any possible bufcalls.
3562 */
3563 void
runbufcalls(void)3564 runbufcalls(void)
3565 {
3566 strbufcall_t *bcp;
3567
3568 mutex_enter(&bcall_monitor);
3569 mutex_enter(&strbcall_lock);
3570
3571 if (strbcalls.bc_head) {
3572 size_t count;
3573 int nevent;
3574
3575 /*
3576 * count how many events are on the list
3577 * now so we can check to avoid looping
3578 * in low memory situations
3579 */
3580 nevent = 0;
3581 for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3582 nevent++;
3583
3584 /*
3585 * get estimate of available memory from kmem_avail().
3586 * awake all bufcall functions waiting for
3587 * memory whose request could be satisfied
3588 * by 'count' memory and let 'em fight for it.
3589 */
3590 count = kmem_avail();
3591 while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3592 STRSTAT(bufcalls);
3593 --nevent;
3594 if (bcp->bc_size <= count) {
3595 bcp->bc_executor = curthread;
3596 mutex_exit(&strbcall_lock);
3597 (*bcp->bc_func)(bcp->bc_arg);
3598 mutex_enter(&strbcall_lock);
3599 bcp->bc_executor = NULL;
3600 cv_broadcast(&bcall_cv);
3601 strbcalls.bc_head = bcp->bc_next;
3602 kmem_free(bcp, sizeof (strbufcall_t));
3603 } else {
3604 /*
3605 * too big, try again later - note
3606 * that nevent was decremented above
3607 * so we won't retry this one on this
3608 * iteration of the loop
3609 */
3610 if (bcp->bc_next != NULL) {
3611 strbcalls.bc_head = bcp->bc_next;
3612 bcp->bc_next = NULL;
3613 strbcalls.bc_tail->bc_next = bcp;
3614 strbcalls.bc_tail = bcp;
3615 }
3616 }
3617 }
3618 if (strbcalls.bc_head == NULL)
3619 strbcalls.bc_tail = NULL;
3620 }
3621
3622 mutex_exit(&strbcall_lock);
3623 mutex_exit(&bcall_monitor);
3624 }
3625
3626
3627 /*
3628 * Actually run queue's service routine.
3629 */
3630 static void
runservice(queue_t * q)3631 runservice(queue_t *q)
3632 {
3633 qband_t *qbp;
3634
3635 ASSERT(q->q_qinfo->qi_srvp);
3636 again:
3637 entersq(q->q_syncq, SQ_SVC);
3638 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3639 "runservice starts:%p", q);
3640
3641 if (!(q->q_flag & QWCLOSE))
3642 (*q->q_qinfo->qi_srvp)(q);
3643
3644 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3645 "runservice ends:(%p)", q);
3646
3647 leavesq(q->q_syncq, SQ_SVC);
3648
3649 mutex_enter(QLOCK(q));
3650 if (q->q_flag & QENAB) {
3651 q->q_flag &= ~QENAB;
3652 mutex_exit(QLOCK(q));
3653 goto again;
3654 }
3655 q->q_flag &= ~QINSERVICE;
3656 q->q_flag &= ~QBACK;
3657 for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3658 qbp->qb_flag &= ~QB_BACK;
3659 /*
3660 * Wakeup thread waiting for the service procedure
3661 * to be run (strclose and qdetach).
3662 */
3663 cv_broadcast(&q->q_wait);
3664
3665 mutex_exit(QLOCK(q));
3666 }
3667
3668 /*
3669 * Background processing of bufcalls.
3670 */
3671 void
streams_bufcall_service(void)3672 streams_bufcall_service(void)
3673 {
3674 callb_cpr_t cprinfo;
3675
3676 CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3677 "streams_bufcall_service");
3678
3679 mutex_enter(&strbcall_lock);
3680
3681 for (;;) {
3682 if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3683 mutex_exit(&strbcall_lock);
3684 runbufcalls();
3685 mutex_enter(&strbcall_lock);
3686 }
3687 if (strbcalls.bc_head != NULL) {
3688 STRSTAT(bcwaits);
3689 /* Wait for memory to become available */
3690 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3691 (void) cv_reltimedwait(&memavail_cv, &strbcall_lock,
3692 SEC_TO_TICK(60), TR_CLOCK_TICK);
3693 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3694 }
3695
3696 /* Wait for new work to arrive */
3697 if (strbcalls.bc_head == NULL) {
3698 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3699 cv_wait(&strbcall_cv, &strbcall_lock);
3700 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3701 }
3702 }
3703 }
3704
3705 /*
3706 * Background processing of streams background tasks which failed
3707 * taskq_dispatch.
3708 */
3709 static void
streams_qbkgrnd_service(void)3710 streams_qbkgrnd_service(void)
3711 {
3712 callb_cpr_t cprinfo;
3713 queue_t *q;
3714
3715 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3716 "streams_bkgrnd_service");
3717
3718 mutex_enter(&service_queue);
3719
3720 for (;;) {
3721 /*
3722 * Wait for work to arrive.
3723 */
3724 while ((freebs_list == NULL) && (qhead == NULL)) {
3725 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3726 cv_wait(&services_to_run, &service_queue);
3727 CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3728 }
3729 /*
3730 * Handle all pending freebs requests to free memory.
3731 */
3732 while (freebs_list != NULL) {
3733 mblk_t *mp = freebs_list;
3734 freebs_list = mp->b_next;
3735 mutex_exit(&service_queue);
3736 mblk_free(mp);
3737 mutex_enter(&service_queue);
3738 }
3739 /*
3740 * Run pending queues.
3741 */
3742 while (qhead != NULL) {
3743 DQ(q, qhead, qtail, q_link);
3744 ASSERT(q != NULL);
3745 mutex_exit(&service_queue);
3746 queue_service(q);
3747 mutex_enter(&service_queue);
3748 }
3749 ASSERT(qhead == NULL && qtail == NULL);
3750 }
3751 }
3752
3753 /*
3754 * Background processing of streams background tasks which failed
3755 * taskq_dispatch.
3756 */
3757 static void
streams_sqbkgrnd_service(void)3758 streams_sqbkgrnd_service(void)
3759 {
3760 callb_cpr_t cprinfo;
3761 syncq_t *sq;
3762
3763 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3764 "streams_sqbkgrnd_service");
3765
3766 mutex_enter(&service_queue);
3767
3768 for (;;) {
3769 /*
3770 * Wait for work to arrive.
3771 */
3772 while (sqhead == NULL) {
3773 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3774 cv_wait(&syncqs_to_run, &service_queue);
3775 CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3776 }
3777
3778 /*
3779 * Run pending syncqs.
3780 */
3781 while (sqhead != NULL) {
3782 DQ(sq, sqhead, sqtail, sq_next);
3783 ASSERT(sq != NULL);
3784 ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3785 mutex_exit(&service_queue);
3786 syncq_service(sq);
3787 mutex_enter(&service_queue);
3788 }
3789 }
3790 }
3791
3792 /*
3793 * Disable the syncq and wait for background syncq processing to complete.
3794 * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3795 * list.
3796 */
3797 void
wait_sq_svc(syncq_t * sq)3798 wait_sq_svc(syncq_t *sq)
3799 {
3800 mutex_enter(SQLOCK(sq));
3801 sq->sq_svcflags |= SQ_DISABLED;
3802 if (sq->sq_svcflags & SQ_BGTHREAD) {
3803 syncq_t *sq_chase;
3804 syncq_t *sq_curr;
3805 int removed;
3806
3807 ASSERT(sq->sq_servcount == 1);
3808 mutex_enter(&service_queue);
3809 RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3810 mutex_exit(&service_queue);
3811 if (removed) {
3812 sq->sq_svcflags &= ~SQ_BGTHREAD;
3813 sq->sq_servcount = 0;
3814 STRSTAT(sqremoved);
3815 goto done;
3816 }
3817 }
3818 while (sq->sq_servcount != 0) {
3819 sq->sq_flags |= SQ_WANTWAKEUP;
3820 cv_wait(&sq->sq_wait, SQLOCK(sq));
3821 }
3822 done:
3823 mutex_exit(SQLOCK(sq));
3824 }
3825
3826 /*
3827 * Put a syncq on the list of syncq's to be serviced by the sqthread.
3828 * Add the argument to the end of the sqhead list and set the flag
3829 * indicating this syncq has been enabled. If it has already been
3830 * enabled, don't do anything.
3831 * This routine assumes that SQLOCK is held.
3832 * NOTE that the lock order is to have the SQLOCK first,
3833 * so if the service_syncq lock is held, we need to release it
3834 * before acquiring the SQLOCK (mostly relevant for the background
3835 * thread, and this seems to be common among the STREAMS global locks).
3836 * Note that the sq_svcflags are protected by the SQLOCK.
3837 */
3838 void
sqenable(syncq_t * sq)3839 sqenable(syncq_t *sq)
3840 {
3841 /*
3842 * This is probably not important except for where I believe it
3843 * is being called. At that point, it should be held (and it
3844 * is a pain to release it just for this routine, so don't do
3845 * it).
3846 */
3847 ASSERT(MUTEX_HELD(SQLOCK(sq)));
3848
3849 IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3850 IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3851
3852 /*
3853 * Do not put on list if background thread is scheduled or
3854 * syncq is disabled.
3855 */
3856 if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3857 return;
3858
3859 /*
3860 * Check whether we should enable sq at all.
3861 * Non PERMOD syncqs may be drained by at most one thread.
3862 * PERMOD syncqs may be drained by several threads but we limit the
3863 * total amount to the lesser of
3864 * Number of queues on the squeue and
3865 * Number of CPUs.
3866 */
3867 if (sq->sq_servcount != 0) {
3868 if (((sq->sq_type & SQ_PERMOD) == 0) ||
3869 (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3870 STRSTAT(sqtoomany);
3871 return;
3872 }
3873 }
3874
3875 sq->sq_tstamp = ddi_get_lbolt();
3876 STRSTAT(sqenables);
3877
3878 /* Attempt a taskq dispatch */
3879 sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3880 (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3881 if (sq->sq_servid != NULL) {
3882 sq->sq_servcount++;
3883 return;
3884 }
3885
3886 /*
3887 * This taskq dispatch failed, but a previous one may have succeeded.
3888 * Don't try to schedule on the background thread whilst there is
3889 * outstanding taskq processing.
3890 */
3891 if (sq->sq_servcount != 0)
3892 return;
3893
3894 /*
3895 * System is low on resources and can't perform a non-sleeping
3896 * dispatch. Schedule the syncq for a background thread and mark the
3897 * syncq to avoid any further taskq dispatch attempts.
3898 */
3899 mutex_enter(&service_queue);
3900 STRSTAT(taskqfails);
3901 ENQUEUE(sq, sqhead, sqtail, sq_next);
3902 sq->sq_svcflags |= SQ_BGTHREAD;
3903 sq->sq_servcount = 1;
3904 cv_signal(&syncqs_to_run);
3905 mutex_exit(&service_queue);
3906 }
3907
3908 /*
3909 * Note: fifo_close() depends on the mblk_t on the queue being freed
3910 * asynchronously. The asynchronous freeing of messages breaks the
3911 * recursive call chain of fifo_close() while there are I_SENDFD type of
3912 * messages referring to other file pointers on the queue. Then when
3913 * closing pipes it can avoid stack overflow in case of daisy-chained
3914 * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3915 * share the same fifolock_t).
3916 *
3917 * No need to kpreempt_disable to access cpu_seqid. If we migrate and
3918 * the esb queue does not match the new CPU, that is OK.
3919 */
3920 void
freebs_enqueue(mblk_t * mp,dblk_t * dbp)3921 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3922 {
3923 int qindex = CPU->cpu_seqid >> esbq_log2_cpus_per_q;
3924 esb_queue_t *eqp;
3925
3926 ASSERT(dbp->db_mblk == mp);
3927 ASSERT(qindex < esbq_nelem);
3928
3929 eqp = system_esbq_array;
3930 if (eqp != NULL) {
3931 eqp += qindex;
3932 } else {
3933 mutex_enter(&esbq_lock);
3934 if (kmem_ready && system_esbq_array == NULL)
3935 system_esbq_array = (esb_queue_t *)kmem_zalloc(
3936 esbq_nelem * sizeof (esb_queue_t), KM_NOSLEEP);
3937 mutex_exit(&esbq_lock);
3938 eqp = system_esbq_array;
3939 if (eqp != NULL)
3940 eqp += qindex;
3941 else
3942 eqp = &system_esbq;
3943 }
3944
3945 /*
3946 * Check data sanity. The dblock should have non-empty free function.
3947 * It is better to panic here then later when the dblock is freed
3948 * asynchronously when the context is lost.
3949 */
3950 if (dbp->db_frtnp->free_func == NULL) {
3951 panic("freebs_enqueue: dblock %p has a NULL free callback",
3952 (void *)dbp);
3953 }
3954
3955 mutex_enter(&eqp->eq_lock);
3956 /* queue the new mblk on the esballoc queue */
3957 if (eqp->eq_head == NULL) {
3958 eqp->eq_head = eqp->eq_tail = mp;
3959 } else {
3960 eqp->eq_tail->b_next = mp;
3961 eqp->eq_tail = mp;
3962 }
3963 eqp->eq_len++;
3964
3965 /* If we're the first thread to reach the threshold, process */
3966 if (eqp->eq_len >= esbq_max_qlen &&
3967 !(eqp->eq_flags & ESBQ_PROCESSING))
3968 esballoc_process_queue(eqp);
3969
3970 esballoc_set_timer(eqp, esbq_timeout);
3971 mutex_exit(&eqp->eq_lock);
3972 }
3973
3974 static void
esballoc_process_queue(esb_queue_t * eqp)3975 esballoc_process_queue(esb_queue_t *eqp)
3976 {
3977 mblk_t *mp;
3978
3979 ASSERT(MUTEX_HELD(&eqp->eq_lock));
3980
3981 eqp->eq_flags |= ESBQ_PROCESSING;
3982
3983 do {
3984 /*
3985 * Detach the message chain for processing.
3986 */
3987 mp = eqp->eq_head;
3988 eqp->eq_tail->b_next = NULL;
3989 eqp->eq_head = eqp->eq_tail = NULL;
3990 eqp->eq_len = 0;
3991 mutex_exit(&eqp->eq_lock);
3992
3993 /*
3994 * Process the message chain.
3995 */
3996 esballoc_enqueue_mblk(mp);
3997 mutex_enter(&eqp->eq_lock);
3998 } while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3999
4000 eqp->eq_flags &= ~ESBQ_PROCESSING;
4001 }
4002
4003 /*
4004 * taskq callback routine to free esballoced mblk's
4005 */
4006 static void
esballoc_mblk_free(mblk_t * mp)4007 esballoc_mblk_free(mblk_t *mp)
4008 {
4009 mblk_t *nextmp;
4010
4011 for (; mp != NULL; mp = nextmp) {
4012 nextmp = mp->b_next;
4013 mp->b_next = NULL;
4014 mblk_free(mp);
4015 }
4016 }
4017
4018 static void
esballoc_enqueue_mblk(mblk_t * mp)4019 esballoc_enqueue_mblk(mblk_t *mp)
4020 {
4021
4022 if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4023 TQ_NOSLEEP) == NULL) {
4024 mblk_t *first_mp = mp;
4025 /*
4026 * System is low on resources and can't perform a non-sleeping
4027 * dispatch. Schedule for a background thread.
4028 */
4029 mutex_enter(&service_queue);
4030 STRSTAT(taskqfails);
4031
4032 while (mp->b_next != NULL)
4033 mp = mp->b_next;
4034
4035 mp->b_next = freebs_list;
4036 freebs_list = first_mp;
4037 cv_signal(&services_to_run);
4038 mutex_exit(&service_queue);
4039 }
4040 }
4041
4042 static void
esballoc_timer(void * arg)4043 esballoc_timer(void *arg)
4044 {
4045 esb_queue_t *eqp = arg;
4046
4047 mutex_enter(&eqp->eq_lock);
4048 eqp->eq_flags &= ~ESBQ_TIMER;
4049
4050 if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4051 eqp->eq_len > 0)
4052 esballoc_process_queue(eqp);
4053
4054 esballoc_set_timer(eqp, esbq_timeout);
4055 mutex_exit(&eqp->eq_lock);
4056 }
4057
4058 static void
esballoc_set_timer(esb_queue_t * eqp,clock_t eq_timeout)4059 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4060 {
4061 ASSERT(MUTEX_HELD(&eqp->eq_lock));
4062
4063 if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4064 (void) timeout(esballoc_timer, eqp, eq_timeout);
4065 eqp->eq_flags |= ESBQ_TIMER;
4066 }
4067 }
4068
4069 /*
4070 * Setup esbq array length based upon NCPU scaled by CPUs per
4071 * queue. Use static system_esbq until kmem_ready and we can
4072 * create an array in freebs_enqueue().
4073 */
4074 void
esballoc_queue_init(void)4075 esballoc_queue_init(void)
4076 {
4077 esbq_log2_cpus_per_q = highbit(esbq_cpus_per_q - 1);
4078 esbq_cpus_per_q = 1 << esbq_log2_cpus_per_q;
4079 esbq_nelem = howmany(NCPU, esbq_cpus_per_q);
4080 system_esbq.eq_len = 0;
4081 system_esbq.eq_head = system_esbq.eq_tail = NULL;
4082 system_esbq.eq_flags = 0;
4083 }
4084
4085 /*
4086 * Set the QBACK or QB_BACK flag in the given queue for
4087 * the given priority band.
4088 */
4089 void
setqback(queue_t * q,unsigned char pri)4090 setqback(queue_t *q, unsigned char pri)
4091 {
4092 int i;
4093 qband_t *qbp;
4094 qband_t **qbpp;
4095
4096 ASSERT(MUTEX_HELD(QLOCK(q)));
4097 if (pri != 0) {
4098 if (pri > q->q_nband) {
4099 qbpp = &q->q_bandp;
4100 while (*qbpp)
4101 qbpp = &(*qbpp)->qb_next;
4102 while (pri > q->q_nband) {
4103 if ((*qbpp = allocband()) == NULL) {
4104 cmn_err(CE_WARN,
4105 "setqback: can't allocate qband\n");
4106 return;
4107 }
4108 (*qbpp)->qb_hiwat = q->q_hiwat;
4109 (*qbpp)->qb_lowat = q->q_lowat;
4110 q->q_nband++;
4111 qbpp = &(*qbpp)->qb_next;
4112 }
4113 }
4114 qbp = q->q_bandp;
4115 i = pri;
4116 while (--i)
4117 qbp = qbp->qb_next;
4118 qbp->qb_flag |= QB_BACK;
4119 } else {
4120 q->q_flag |= QBACK;
4121 }
4122 }
4123
4124 int
strcopyin(void * from,void * to,size_t len,int copyflag)4125 strcopyin(void *from, void *to, size_t len, int copyflag)
4126 {
4127 if (copyflag & U_TO_K) {
4128 ASSERT((copyflag & K_TO_K) == 0);
4129 if (copyin(from, to, len))
4130 return (EFAULT);
4131 } else {
4132 ASSERT(copyflag & K_TO_K);
4133 bcopy(from, to, len);
4134 }
4135 return (0);
4136 }
4137
4138 int
strcopyout(void * from,void * to,size_t len,int copyflag)4139 strcopyout(void *from, void *to, size_t len, int copyflag)
4140 {
4141 if (copyflag & U_TO_K) {
4142 if (copyout(from, to, len))
4143 return (EFAULT);
4144 } else {
4145 ASSERT(copyflag & K_TO_K);
4146 bcopy(from, to, len);
4147 }
4148 return (0);
4149 }
4150
4151 /*
4152 * strsignal_nolock() posts a signal to the process(es) at the stream head.
4153 * It assumes that the stream head lock is already held, whereas strsignal()
4154 * acquires the lock first. This routine was created because a few callers
4155 * release the stream head lock before calling only to re-acquire it after
4156 * it returns.
4157 */
4158 void
strsignal_nolock(stdata_t * stp,int sig,uchar_t band)4159 strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4160 {
4161 ASSERT(MUTEX_HELD(&stp->sd_lock));
4162 switch (sig) {
4163 case SIGPOLL:
4164 if (stp->sd_sigflags & S_MSG)
4165 strsendsig(stp->sd_siglist, S_MSG, band, 0);
4166 break;
4167 default:
4168 if (stp->sd_pgidp)
4169 pgsignal(stp->sd_pgidp, sig);
4170 break;
4171 }
4172 }
4173
4174 void
strsignal(stdata_t * stp,int sig,int32_t band)4175 strsignal(stdata_t *stp, int sig, int32_t band)
4176 {
4177 TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4178 "strsignal:%p, %X, %X", stp, sig, band);
4179
4180 mutex_enter(&stp->sd_lock);
4181 switch (sig) {
4182 case SIGPOLL:
4183 if (stp->sd_sigflags & S_MSG)
4184 strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4185 break;
4186
4187 default:
4188 if (stp->sd_pgidp) {
4189 pgsignal(stp->sd_pgidp, sig);
4190 }
4191 break;
4192 }
4193 mutex_exit(&stp->sd_lock);
4194 }
4195
4196 void
strhup(stdata_t * stp)4197 strhup(stdata_t *stp)
4198 {
4199 ASSERT(mutex_owned(&stp->sd_lock));
4200 pollwakeup(&stp->sd_pollist, POLLHUP);
4201 if (stp->sd_sigflags & S_HANGUP)
4202 strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4203 }
4204
4205 /*
4206 * Backenable the first queue upstream from `q' with a service procedure.
4207 */
4208 void
backenable(queue_t * q,uchar_t pri)4209 backenable(queue_t *q, uchar_t pri)
4210 {
4211 queue_t *nq;
4212
4213 /*
4214 * Our presence might not prevent other modules in our own
4215 * stream from popping/pushing since the caller of getq might not
4216 * have a claim on the queue (some drivers do a getq on somebody
4217 * else's queue - they know that the queue itself is not going away
4218 * but the framework has to guarantee q_next in that stream).
4219 */
4220 claimstr(q);
4221
4222 /* Find nearest back queue with service proc */
4223 for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4224 ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4225 }
4226
4227 if (nq) {
4228 kthread_t *freezer;
4229 /*
4230 * backenable can be called either with no locks held
4231 * or with the stream frozen (the latter occurs when a module
4232 * calls rmvq with the stream frozen). If the stream is frozen
4233 * by the caller the caller will hold all qlocks in the stream.
4234 * Note that a frozen stream doesn't freeze a mated stream,
4235 * so we explicitly check for that.
4236 */
4237 freezer = STREAM(q)->sd_freezer;
4238 if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4239 mutex_enter(QLOCK(nq));
4240 }
4241 #ifdef DEBUG
4242 else {
4243 ASSERT(frozenstr(q));
4244 ASSERT(MUTEX_HELD(QLOCK(q)));
4245 ASSERT(MUTEX_HELD(QLOCK(nq)));
4246 }
4247 #endif
4248 setqback(nq, pri);
4249 qenable_locked(nq);
4250 if (freezer != curthread || STREAM(q) != STREAM(nq))
4251 mutex_exit(QLOCK(nq));
4252 }
4253 releasestr(q);
4254 }
4255
4256 /*
4257 * Return the appropriate errno when one of flags_to_check is set
4258 * in sd_flags. Uses the exported error routines if they are set.
4259 * Will return 0 if non error is set (or if the exported error routines
4260 * do not return an error).
4261 *
4262 * If there is both a read and write error to check, we prefer the read error.
4263 * Also, give preference to recorded errno's over the error functions.
4264 * The flags that are handled are:
4265 * STPLEX return EINVAL
4266 * STRDERR return sd_rerror (and clear if STRDERRNONPERSIST)
4267 * STWRERR return sd_werror (and clear if STWRERRNONPERSIST)
4268 * STRHUP return sd_werror
4269 *
4270 * If the caller indicates that the operation is a peek, a nonpersistent error
4271 * is not cleared.
4272 */
4273 int
strgeterr(stdata_t * stp,int32_t flags_to_check,int ispeek)4274 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4275 {
4276 int32_t sd_flag = stp->sd_flag & flags_to_check;
4277 int error = 0;
4278
4279 ASSERT(MUTEX_HELD(&stp->sd_lock));
4280 ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4281 if (sd_flag & STPLEX)
4282 error = EINVAL;
4283 else if (sd_flag & STRDERR) {
4284 error = stp->sd_rerror;
4285 if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4286 /*
4287 * Read errors are non-persistent i.e. discarded once
4288 * returned to a non-peeking caller,
4289 */
4290 stp->sd_rerror = 0;
4291 stp->sd_flag &= ~STRDERR;
4292 }
4293 if (error == 0 && stp->sd_rderrfunc != NULL) {
4294 int clearerr = 0;
4295
4296 error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4297 &clearerr);
4298 if (clearerr) {
4299 stp->sd_flag &= ~STRDERR;
4300 stp->sd_rderrfunc = NULL;
4301 }
4302 }
4303 } else if (sd_flag & STWRERR) {
4304 error = stp->sd_werror;
4305 if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4306 /*
4307 * Write errors are non-persistent i.e. discarded once
4308 * returned to a non-peeking caller,
4309 */
4310 stp->sd_werror = 0;
4311 stp->sd_flag &= ~STWRERR;
4312 }
4313 if (error == 0 && stp->sd_wrerrfunc != NULL) {
4314 int clearerr = 0;
4315
4316 error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4317 &clearerr);
4318 if (clearerr) {
4319 stp->sd_flag &= ~STWRERR;
4320 stp->sd_wrerrfunc = NULL;
4321 }
4322 }
4323 } else if (sd_flag & STRHUP) {
4324 /* sd_werror set when STRHUP */
4325 error = stp->sd_werror;
4326 }
4327 return (error);
4328 }
4329
4330
4331 /*
4332 * Single-thread open/close/push/pop
4333 * for twisted streams also
4334 */
4335 int
strstartplumb(stdata_t * stp,int flag,int cmd)4336 strstartplumb(stdata_t *stp, int flag, int cmd)
4337 {
4338 int waited = 1;
4339 int error = 0;
4340
4341 if (STRMATED(stp)) {
4342 struct stdata *stmatep = stp->sd_mate;
4343
4344 STRLOCKMATES(stp);
4345 while (waited) {
4346 waited = 0;
4347 while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4348 if ((cmd == I_POP) &&
4349 (flag & (FNDELAY|FNONBLOCK))) {
4350 STRUNLOCKMATES(stp);
4351 return (EAGAIN);
4352 }
4353 waited = 1;
4354 mutex_exit(&stp->sd_lock);
4355 if (!cv_wait_sig(&stmatep->sd_monitor,
4356 &stmatep->sd_lock)) {
4357 mutex_exit(&stmatep->sd_lock);
4358 return (EINTR);
4359 }
4360 mutex_exit(&stmatep->sd_lock);
4361 STRLOCKMATES(stp);
4362 }
4363 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4364 if ((cmd == I_POP) &&
4365 (flag & (FNDELAY|FNONBLOCK))) {
4366 STRUNLOCKMATES(stp);
4367 return (EAGAIN);
4368 }
4369 waited = 1;
4370 mutex_exit(&stmatep->sd_lock);
4371 if (!cv_wait_sig(&stp->sd_monitor,
4372 &stp->sd_lock)) {
4373 mutex_exit(&stp->sd_lock);
4374 return (EINTR);
4375 }
4376 mutex_exit(&stp->sd_lock);
4377 STRLOCKMATES(stp);
4378 }
4379 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4380 error = strgeterr(stp,
4381 STRDERR|STWRERR|STRHUP|STPLEX, 0);
4382 if (error != 0) {
4383 STRUNLOCKMATES(stp);
4384 return (error);
4385 }
4386 }
4387 }
4388 stp->sd_flag |= STRPLUMB;
4389 STRUNLOCKMATES(stp);
4390 } else {
4391 mutex_enter(&stp->sd_lock);
4392 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4393 if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4394 (flag & (FNDELAY|FNONBLOCK))) {
4395 mutex_exit(&stp->sd_lock);
4396 return (EAGAIN);
4397 }
4398 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4399 mutex_exit(&stp->sd_lock);
4400 return (EINTR);
4401 }
4402 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4403 error = strgeterr(stp,
4404 STRDERR|STWRERR|STRHUP|STPLEX, 0);
4405 if (error != 0) {
4406 mutex_exit(&stp->sd_lock);
4407 return (error);
4408 }
4409 }
4410 }
4411 stp->sd_flag |= STRPLUMB;
4412 mutex_exit(&stp->sd_lock);
4413 }
4414 return (0);
4415 }
4416
4417 /*
4418 * Complete the plumbing operation associated with stream `stp'.
4419 */
4420 void
strendplumb(stdata_t * stp)4421 strendplumb(stdata_t *stp)
4422 {
4423 ASSERT(MUTEX_HELD(&stp->sd_lock));
4424 ASSERT(stp->sd_flag & STRPLUMB);
4425 stp->sd_flag &= ~STRPLUMB;
4426 cv_broadcast(&stp->sd_monitor);
4427 }
4428
4429 /*
4430 * This describes how the STREAMS framework handles synchronization
4431 * during open/push and close/pop.
4432 * The key interfaces for open and close are qprocson and qprocsoff,
4433 * respectively. While the close case in general is harder both open
4434 * have close have significant similarities.
4435 *
4436 * During close the STREAMS framework has to both ensure that there
4437 * are no stale references to the queue pair (and syncq) that
4438 * are being closed and also provide the guarantees that are documented
4439 * in qprocsoff(9F).
4440 * If there are stale references to the queue that is closing it can
4441 * result in kernel memory corruption or kernel panics.
4442 *
4443 * Note that is it up to the module/driver to ensure that it itself
4444 * does not have any stale references to the closing queues once its close
4445 * routine returns. This includes:
4446 * - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4447 * associated with the queues. For timeout and bufcall callbacks the
4448 * module/driver also has to ensure (or wait for) any callbacks that
4449 * are in progress.
4450 * - If the module/driver is using esballoc it has to ensure that any
4451 * esballoc free functions do not refer to a queue that has closed.
4452 * (Note that in general the close routine can not wait for the esballoc'ed
4453 * messages to be freed since that can cause a deadlock.)
4454 * - Cancelling any interrupts that refer to the closing queues and
4455 * also ensuring that there are no interrupts in progress that will
4456 * refer to the closing queues once the close routine returns.
4457 * - For multiplexors removing any driver global state that refers to
4458 * the closing queue and also ensuring that there are no threads in
4459 * the multiplexor that has picked up a queue pointer but not yet
4460 * finished using it.
4461 *
4462 * In addition, a driver/module can only reference the q_next pointer
4463 * in its open, close, put, or service procedures or in a
4464 * qtimeout/qbufcall callback procedure executing "on" the correct
4465 * stream. Thus it can not reference the q_next pointer in an interrupt
4466 * routine or a timeout, bufcall or esballoc callback routine. Likewise
4467 * it can not reference q_next of a different queue e.g. in a mux that
4468 * passes messages from one queues put/service procedure to another queue.
4469 * In all the cases when the driver/module can not access the q_next
4470 * field it must use the *next* versions e.g. canputnext instead of
4471 * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4472 *
4473 *
4474 * Assuming that the driver/module conforms to the above constraints
4475 * the STREAMS framework has to avoid stale references to q_next for all
4476 * the framework internal cases which include (but are not limited to):
4477 * - Threads in canput/canputnext/backenable and elsewhere that are
4478 * walking q_next.
4479 * - Messages on a syncq that have a reference to the queue through b_queue.
4480 * - Messages on an outer perimeter (syncq) that have a reference to the
4481 * queue through b_queue.
4482 * - Threads that use q_nfsrv (e.g. canput) to find a queue.
4483 * Note that only canput and bcanput use q_nfsrv without any locking.
4484 *
4485 * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4486 * after qprocsoff returns, the framework has to ensure that no threads can
4487 * enter the put or service routines for the closing read or write-side queue.
4488 * In addition to preventing "direct" entry into the put procedures
4489 * the framework also has to prevent messages being drained from
4490 * the syncq or the outer perimeter.
4491 * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4492 * mechanism to prevent qwriter(PERIM_OUTER) from running after
4493 * qprocsoff has returned.
4494 * Note that if a module/driver uses put(9F) on one of its own queues
4495 * it is up to the module/driver to ensure that the put() doesn't
4496 * get called when the queue is closing.
4497 *
4498 *
4499 * The framework aspects of the above "contract" is implemented by
4500 * qprocsoff, removeq, and strlock:
4501 * - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4502 * entering the service procedures.
4503 * - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4504 * canputnext, backenable etc from dereferencing the q_next that will
4505 * soon change.
4506 * - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4507 * or other q_next walker that uses claimstr/releasestr to finish.
4508 * - optionally for every syncq in the stream strlock acquires all the
4509 * sq_lock's and waits for all sq_counts to drop to a value that indicates
4510 * that no thread executes in the put or service procedures and that no
4511 * thread is draining into the module/driver. This ensures that no
4512 * open, close, put, service, or qtimeout/qbufcall callback procedure is
4513 * currently executing hence no such thread can end up with the old stale
4514 * q_next value and no canput/backenable can have the old stale
4515 * q_nfsrv/q_next.
4516 * - qdetach (wait_svc) makes sure that any scheduled or running threads
4517 * have either finished or observed the QWCLOSE flag and gone away.
4518 */
4519
4520
4521 /*
4522 * Get all the locks necessary to change q_next.
4523 *
4524 * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
4525 * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4526 * the only threads inside the syncq are threads currently calling removeq().
4527 * Since threads calling removeq() are in the process of removing their queues
4528 * from the stream, we do not need to worry about them accessing a stale q_next
4529 * pointer and thus we do not need to wait for them to exit (in fact, waiting
4530 * for them can cause deadlock).
4531 *
4532 * This routine is subject to starvation since it does not set any flag to
4533 * prevent threads from entering a module in the stream (i.e. sq_count can
4534 * increase on some syncq while it is waiting on some other syncq).
4535 *
4536 * Assumes that only one thread attempts to call strlock for a given
4537 * stream. If this is not the case the two threads would deadlock.
4538 * This assumption is guaranteed since strlock is only called by insertq
4539 * and removeq and streams plumbing changes are single-threaded for
4540 * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4541 *
4542 * For pipes, it is not difficult to atomically designate a pair of streams
4543 * to be mated. Once mated atomically by the framework the twisted pair remain
4544 * configured that way until dismantled atomically by the framework.
4545 * When plumbing takes place on a twisted stream it is necessary to ensure that
4546 * this operation is done exclusively on the twisted stream since two such
4547 * operations, each initiated on different ends of the pipe will deadlock
4548 * waiting for each other to complete.
4549 *
4550 * On entry, no locks should be held.
4551 * The locks acquired and held by strlock depends on a few factors.
4552 * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4553 * and held on exit and all sq_count are at an acceptable level.
4554 * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4555 * sd_refcnt being zero.
4556 */
4557
4558 static void
strlock(struct stdata * stp,sqlist_t * sqlist)4559 strlock(struct stdata *stp, sqlist_t *sqlist)
4560 {
4561 syncql_t *sql, *sql2;
4562 retry:
4563 /*
4564 * Wait for any claimstr to go away.
4565 */
4566 if (STRMATED(stp)) {
4567 struct stdata *stp1, *stp2;
4568
4569 STRLOCKMATES(stp);
4570 /*
4571 * Note that the selection of locking order is not
4572 * important, just that they are always acquired in
4573 * the same order. To assure this, we choose this
4574 * order based on the value of the pointer, and since
4575 * the pointer will not change for the life of this
4576 * pair, we will always grab the locks in the same
4577 * order (and hence, prevent deadlocks).
4578 */
4579 if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4580 stp1 = stp;
4581 stp2 = stp->sd_mate;
4582 } else {
4583 stp2 = stp;
4584 stp1 = stp->sd_mate;
4585 }
4586 mutex_enter(&stp1->sd_reflock);
4587 if (stp1->sd_refcnt > 0) {
4588 STRUNLOCKMATES(stp);
4589 cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4590 mutex_exit(&stp1->sd_reflock);
4591 goto retry;
4592 }
4593 mutex_enter(&stp2->sd_reflock);
4594 if (stp2->sd_refcnt > 0) {
4595 STRUNLOCKMATES(stp);
4596 mutex_exit(&stp1->sd_reflock);
4597 cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4598 mutex_exit(&stp2->sd_reflock);
4599 goto retry;
4600 }
4601 STREAM_PUTLOCKS_ENTER(stp1);
4602 STREAM_PUTLOCKS_ENTER(stp2);
4603 } else {
4604 mutex_enter(&stp->sd_lock);
4605 mutex_enter(&stp->sd_reflock);
4606 while (stp->sd_refcnt > 0) {
4607 mutex_exit(&stp->sd_lock);
4608 cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4609 if (mutex_tryenter(&stp->sd_lock) == 0) {
4610 mutex_exit(&stp->sd_reflock);
4611 mutex_enter(&stp->sd_lock);
4612 mutex_enter(&stp->sd_reflock);
4613 }
4614 }
4615 STREAM_PUTLOCKS_ENTER(stp);
4616 }
4617
4618 if (sqlist == NULL)
4619 return;
4620
4621 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4622 syncq_t *sq = sql->sql_sq;
4623 uint16_t count;
4624
4625 mutex_enter(SQLOCK(sq));
4626 count = sq->sq_count;
4627 ASSERT(sq->sq_rmqcount <= count);
4628 SQ_PUTLOCKS_ENTER(sq);
4629 SUM_SQ_PUTCOUNTS(sq, count);
4630 if (count == sq->sq_rmqcount)
4631 continue;
4632
4633 /* Failed - drop all locks that we have acquired so far */
4634 if (STRMATED(stp)) {
4635 STREAM_PUTLOCKS_EXIT(stp);
4636 STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4637 STRUNLOCKMATES(stp);
4638 mutex_exit(&stp->sd_reflock);
4639 mutex_exit(&stp->sd_mate->sd_reflock);
4640 } else {
4641 STREAM_PUTLOCKS_EXIT(stp);
4642 mutex_exit(&stp->sd_lock);
4643 mutex_exit(&stp->sd_reflock);
4644 }
4645 for (sql2 = sqlist->sqlist_head; sql2 != sql;
4646 sql2 = sql2->sql_next) {
4647 SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4648 mutex_exit(SQLOCK(sql2->sql_sq));
4649 }
4650
4651 /*
4652 * The wait loop below may starve when there are many threads
4653 * claiming the syncq. This is especially a problem with permod
4654 * syncqs (IP). To lessen the impact of the problem we increment
4655 * sq_needexcl and clear fastbits so that putnexts will slow
4656 * down and call sqenable instead of draining right away.
4657 */
4658 sq->sq_needexcl++;
4659 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4660 while (count > sq->sq_rmqcount) {
4661 sq->sq_flags |= SQ_WANTWAKEUP;
4662 SQ_PUTLOCKS_EXIT(sq);
4663 cv_wait(&sq->sq_wait, SQLOCK(sq));
4664 count = sq->sq_count;
4665 SQ_PUTLOCKS_ENTER(sq);
4666 SUM_SQ_PUTCOUNTS(sq, count);
4667 }
4668 sq->sq_needexcl--;
4669 if (sq->sq_needexcl == 0)
4670 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4671 SQ_PUTLOCKS_EXIT(sq);
4672 ASSERT(count == sq->sq_rmqcount);
4673 mutex_exit(SQLOCK(sq));
4674 goto retry;
4675 }
4676 }
4677
4678 /*
4679 * Drop all the locks that strlock acquired.
4680 */
4681 static void
strunlock(struct stdata * stp,sqlist_t * sqlist)4682 strunlock(struct stdata *stp, sqlist_t *sqlist)
4683 {
4684 syncql_t *sql;
4685
4686 if (STRMATED(stp)) {
4687 STREAM_PUTLOCKS_EXIT(stp);
4688 STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4689 STRUNLOCKMATES(stp);
4690 mutex_exit(&stp->sd_reflock);
4691 mutex_exit(&stp->sd_mate->sd_reflock);
4692 } else {
4693 STREAM_PUTLOCKS_EXIT(stp);
4694 mutex_exit(&stp->sd_lock);
4695 mutex_exit(&stp->sd_reflock);
4696 }
4697
4698 if (sqlist == NULL)
4699 return;
4700
4701 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4702 SQ_PUTLOCKS_EXIT(sql->sql_sq);
4703 mutex_exit(SQLOCK(sql->sql_sq));
4704 }
4705 }
4706
4707 /*
4708 * When the module has service procedure, we need check if the next
4709 * module which has service procedure is in flow control to trigger
4710 * the backenable.
4711 */
4712 static void
backenable_insertedq(queue_t * q)4713 backenable_insertedq(queue_t *q)
4714 {
4715 qband_t *qbp;
4716
4717 claimstr(q);
4718 if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4719 if (q->q_next->q_nfsrv->q_flag & QWANTW)
4720 backenable(q, 0);
4721
4722 qbp = q->q_next->q_nfsrv->q_bandp;
4723 for (; qbp != NULL; qbp = qbp->qb_next)
4724 if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4725 backenable(q, qbp->qb_first->b_band);
4726 }
4727 releasestr(q);
4728 }
4729
4730 /*
4731 * Given two read queues, insert a new single one after another.
4732 *
4733 * This routine acquires all the necessary locks in order to change
4734 * q_next and related pointer using strlock().
4735 * It depends on the stream head ensuring that there are no concurrent
4736 * insertq or removeq on the same stream. The stream head ensures this
4737 * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4738 *
4739 * Note that no syncq locks are held during the q_next change. This is
4740 * applied to all streams since, unlike removeq, there is no problem of stale
4741 * pointers when adding a module to the stream. Thus drivers/modules that do a
4742 * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4743 * applied this optimization to all streams.
4744 */
4745 void
insertq(struct stdata * stp,queue_t * new)4746 insertq(struct stdata *stp, queue_t *new)
4747 {
4748 queue_t *after;
4749 queue_t *wafter;
4750 queue_t *wnew = _WR(new);
4751 boolean_t have_fifo = B_FALSE;
4752
4753 if (new->q_flag & _QINSERTING) {
4754 ASSERT(stp->sd_vnode->v_type != VFIFO);
4755 after = new->q_next;
4756 wafter = _WR(new->q_next);
4757 } else {
4758 after = _RD(stp->sd_wrq);
4759 wafter = stp->sd_wrq;
4760 }
4761
4762 TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4763 "insertq:%p, %p", after, new);
4764 ASSERT(after->q_flag & QREADR);
4765 ASSERT(new->q_flag & QREADR);
4766
4767 strlock(stp, NULL);
4768
4769 /* Do we have a FIFO? */
4770 if (wafter->q_next == after) {
4771 have_fifo = B_TRUE;
4772 wnew->q_next = new;
4773 } else {
4774 wnew->q_next = wafter->q_next;
4775 }
4776 new->q_next = after;
4777
4778 set_nfsrv_ptr(new, wnew, after, wafter);
4779 /*
4780 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4781 * so only reset this flag after calling it.
4782 */
4783 new->q_flag &= ~_QINSERTING;
4784
4785 if (have_fifo) {
4786 wafter->q_next = wnew;
4787 } else {
4788 if (wafter->q_next)
4789 _OTHERQ(wafter->q_next)->q_next = new;
4790 wafter->q_next = wnew;
4791 }
4792
4793 set_qend(new);
4794 /* The QEND flag might have to be updated for the upstream guy */
4795 set_qend(after);
4796
4797 ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4798 ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4799 ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4800 ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4801 strsetuio(stp);
4802
4803 /*
4804 * If this was a module insertion, bump the push count.
4805 */
4806 if (!(new->q_flag & QISDRV))
4807 stp->sd_pushcnt++;
4808
4809 strunlock(stp, NULL);
4810
4811 /* check if the write Q needs backenable */
4812 backenable_insertedq(wnew);
4813
4814 /* check if the read Q needs backenable */
4815 backenable_insertedq(new);
4816 }
4817
4818 /*
4819 * Given a read queue, unlink it from any neighbors.
4820 *
4821 * This routine acquires all the necessary locks in order to
4822 * change q_next and related pointers and also guard against
4823 * stale references (e.g. through q_next) to the queue that
4824 * is being removed. It also plays part of the role in ensuring
4825 * that the module's/driver's put procedure doesn't get called
4826 * after qprocsoff returns.
4827 *
4828 * Removeq depends on the stream head ensuring that there are
4829 * no concurrent insertq or removeq on the same stream. The
4830 * stream head ensures this using the flags STWOPEN, STRCLOSE and
4831 * STRPLUMB.
4832 *
4833 * The set of locks needed to remove the queue is different in
4834 * different cases:
4835 *
4836 * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4837 * waiting for the syncq reference count to drop to 0 indicating that no
4838 * non-close threads are present anywhere in the stream. This ensures that any
4839 * module/driver can reference q_next in its open, close, put, or service
4840 * procedures.
4841 *
4842 * The sq_rmqcount counter tracks the number of threads inside removeq().
4843 * strlock() ensures that there is either no threads executing inside perimeter
4844 * or there is only a thread calling qprocsoff().
4845 *
4846 * strlock() compares the value of sq_count with the number of threads inside
4847 * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4848 * any threads waiting in strlock() when the sq_rmqcount increases.
4849 */
4850
4851 void
removeq(queue_t * qp)4852 removeq(queue_t *qp)
4853 {
4854 queue_t *wqp = _WR(qp);
4855 struct stdata *stp = STREAM(qp);
4856 sqlist_t *sqlist = NULL;
4857 boolean_t isdriver;
4858 int moved;
4859 syncq_t *sq = qp->q_syncq;
4860 syncq_t *wsq = wqp->q_syncq;
4861
4862 ASSERT(stp);
4863
4864 TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4865 "removeq:%p %p", qp, wqp);
4866 ASSERT(qp->q_flag&QREADR);
4867
4868 /*
4869 * For queues using Synchronous streams, we must wait for all threads in
4870 * rwnext() to drain out before proceeding.
4871 */
4872 if (qp->q_flag & QSYNCSTR) {
4873 /* First, we need wakeup any threads blocked in rwnext() */
4874 mutex_enter(SQLOCK(sq));
4875 if (sq->sq_flags & SQ_WANTWAKEUP) {
4876 sq->sq_flags &= ~SQ_WANTWAKEUP;
4877 cv_broadcast(&sq->sq_wait);
4878 }
4879 mutex_exit(SQLOCK(sq));
4880
4881 if (wsq != sq) {
4882 mutex_enter(SQLOCK(wsq));
4883 if (wsq->sq_flags & SQ_WANTWAKEUP) {
4884 wsq->sq_flags &= ~SQ_WANTWAKEUP;
4885 cv_broadcast(&wsq->sq_wait);
4886 }
4887 mutex_exit(SQLOCK(wsq));
4888 }
4889
4890 mutex_enter(QLOCK(qp));
4891 while (qp->q_rwcnt > 0) {
4892 qp->q_flag |= QWANTRMQSYNC;
4893 cv_wait(&qp->q_wait, QLOCK(qp));
4894 }
4895 mutex_exit(QLOCK(qp));
4896
4897 mutex_enter(QLOCK(wqp));
4898 while (wqp->q_rwcnt > 0) {
4899 wqp->q_flag |= QWANTRMQSYNC;
4900 cv_wait(&wqp->q_wait, QLOCK(wqp));
4901 }
4902 mutex_exit(QLOCK(wqp));
4903 }
4904
4905 mutex_enter(SQLOCK(sq));
4906 sq->sq_rmqcount++;
4907 if (sq->sq_flags & SQ_WANTWAKEUP) {
4908 sq->sq_flags &= ~SQ_WANTWAKEUP;
4909 cv_broadcast(&sq->sq_wait);
4910 }
4911 mutex_exit(SQLOCK(sq));
4912
4913 isdriver = (qp->q_flag & QISDRV);
4914
4915 sqlist = sqlist_build(qp, stp, STRMATED(stp));
4916 strlock(stp, sqlist);
4917
4918 reset_nfsrv_ptr(qp, wqp);
4919
4920 ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4921 ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4922 /* Do we have a FIFO? */
4923 if (wqp->q_next == qp) {
4924 stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4925 } else {
4926 if (wqp->q_next)
4927 backq(qp)->q_next = qp->q_next;
4928 if (qp->q_next)
4929 backq(wqp)->q_next = wqp->q_next;
4930 }
4931
4932 /* The QEND flag might have to be updated for the upstream guy */
4933 if (qp->q_next)
4934 set_qend(qp->q_next);
4935
4936 ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4937 ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4938
4939 /*
4940 * Move any messages destined for the put procedures to the next
4941 * syncq in line. Otherwise free them.
4942 */
4943 moved = 0;
4944 /*
4945 * Quick check to see whether there are any messages or events.
4946 */
4947 if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4948 moved += propagate_syncq(qp);
4949 if (wqp->q_syncqmsgs != 0 ||
4950 (wqp->q_syncq->sq_flags & SQ_EVENTS))
4951 moved += propagate_syncq(wqp);
4952
4953 strsetuio(stp);
4954
4955 /*
4956 * If this was a module removal, decrement the push count.
4957 */
4958 if (!isdriver)
4959 stp->sd_pushcnt--;
4960
4961 strunlock(stp, sqlist);
4962 sqlist_free(sqlist);
4963
4964 /*
4965 * Make sure any messages that were propagated are drained.
4966 * Also clear any QFULL bit caused by messages that were propagated.
4967 */
4968
4969 if (qp->q_next != NULL) {
4970 clr_qfull(qp);
4971 /*
4972 * For the driver calling qprocsoff, propagate_syncq
4973 * frees all the messages instead of putting it in
4974 * the stream head
4975 */
4976 if (!isdriver && (moved > 0))
4977 emptysq(qp->q_next->q_syncq);
4978 }
4979 if (wqp->q_next != NULL) {
4980 clr_qfull(wqp);
4981 /*
4982 * We come here for any pop of a module except for the
4983 * case of driver being removed. We don't call emptysq
4984 * if we did not move any messages. This will avoid holding
4985 * PERMOD syncq locks in emptysq
4986 */
4987 if (moved > 0)
4988 emptysq(wqp->q_next->q_syncq);
4989 }
4990
4991 mutex_enter(SQLOCK(sq));
4992 sq->sq_rmqcount--;
4993 mutex_exit(SQLOCK(sq));
4994 }
4995
4996 /*
4997 * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4998 * SQ_WRITER) on a syncq.
4999 * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
5000 * sync queue and waits until sq_count reaches maxcnt.
5001 *
5002 * If maxcnt is -1 there's no need to grab sq_putlocks since the caller
5003 * does not care about putnext threads that are in the middle of calling put
5004 * entry points.
5005 *
5006 * This routine is used for both inner and outer syncqs.
5007 */
5008 static void
blocksq(syncq_t * sq,ushort_t flag,int maxcnt)5009 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
5010 {
5011 uint16_t count = 0;
5012
5013 mutex_enter(SQLOCK(sq));
5014 /*
5015 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
5016 * SQ_FROZEN will be set if there is a frozen stream that has a
5017 * queue which also refers to this "shared" syncq.
5018 * SQ_BLOCKED will be set if there is "off" queue which also
5019 * refers to this "shared" syncq.
5020 */
5021 if (maxcnt != -1) {
5022 count = sq->sq_count;
5023 SQ_PUTLOCKS_ENTER(sq);
5024 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5025 SUM_SQ_PUTCOUNTS(sq, count);
5026 }
5027 sq->sq_needexcl++;
5028 ASSERT(sq->sq_needexcl != 0); /* wraparound */
5029
5030 while ((sq->sq_flags & flag) ||
5031 (maxcnt != -1 && count > (unsigned)maxcnt)) {
5032 sq->sq_flags |= SQ_WANTWAKEUP;
5033 if (maxcnt != -1) {
5034 SQ_PUTLOCKS_EXIT(sq);
5035 }
5036 cv_wait(&sq->sq_wait, SQLOCK(sq));
5037 if (maxcnt != -1) {
5038 count = sq->sq_count;
5039 SQ_PUTLOCKS_ENTER(sq);
5040 SUM_SQ_PUTCOUNTS(sq, count);
5041 }
5042 }
5043 sq->sq_needexcl--;
5044 sq->sq_flags |= flag;
5045 ASSERT(maxcnt == -1 || count == maxcnt);
5046 if (maxcnt != -1) {
5047 if (sq->sq_needexcl == 0) {
5048 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5049 }
5050 SQ_PUTLOCKS_EXIT(sq);
5051 } else if (sq->sq_needexcl == 0) {
5052 SQ_PUTCOUNT_SETFAST(sq);
5053 }
5054
5055 mutex_exit(SQLOCK(sq));
5056 }
5057
5058 /*
5059 * Reset a flag that was set with blocksq.
5060 *
5061 * Can not use this routine to reset SQ_WRITER.
5062 *
5063 * If "isouter" is set then the syncq is assumed to be an outer perimeter
5064 * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5065 * to handle the queued qwriter operations.
5066 *
5067 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5068 * sq_putlocks are used.
5069 */
5070 static void
unblocksq(syncq_t * sq,uint16_t resetflag,int isouter)5071 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5072 {
5073 uint16_t flags;
5074
5075 mutex_enter(SQLOCK(sq));
5076 ASSERT(resetflag != SQ_WRITER);
5077 ASSERT(sq->sq_flags & resetflag);
5078 flags = sq->sq_flags & ~resetflag;
5079 sq->sq_flags = flags;
5080 if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5081 if (flags & SQ_WANTWAKEUP) {
5082 flags &= ~SQ_WANTWAKEUP;
5083 cv_broadcast(&sq->sq_wait);
5084 }
5085 sq->sq_flags = flags;
5086 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5087 if (!isouter) {
5088 /* drain_syncq drops SQLOCK */
5089 drain_syncq(sq);
5090 return;
5091 }
5092 }
5093 }
5094 mutex_exit(SQLOCK(sq));
5095 }
5096
5097 /*
5098 * Reset a flag that was set with blocksq.
5099 * Does not drain the syncq. Use emptysq() for that.
5100 * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5101 *
5102 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5103 * sq_putlocks are used.
5104 */
5105 static int
dropsq(syncq_t * sq,uint16_t resetflag)5106 dropsq(syncq_t *sq, uint16_t resetflag)
5107 {
5108 uint16_t flags;
5109
5110 mutex_enter(SQLOCK(sq));
5111 ASSERT(sq->sq_flags & resetflag);
5112 flags = sq->sq_flags & ~resetflag;
5113 if (flags & SQ_WANTWAKEUP) {
5114 flags &= ~SQ_WANTWAKEUP;
5115 cv_broadcast(&sq->sq_wait);
5116 }
5117 sq->sq_flags = flags;
5118 mutex_exit(SQLOCK(sq));
5119 if (flags & SQ_QUEUED)
5120 return (1);
5121 return (0);
5122 }
5123
5124 /*
5125 * Empty all the messages on a syncq.
5126 *
5127 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5128 * sq_putlocks are used.
5129 */
5130 static void
emptysq(syncq_t * sq)5131 emptysq(syncq_t *sq)
5132 {
5133 uint16_t flags;
5134
5135 mutex_enter(SQLOCK(sq));
5136 flags = sq->sq_flags;
5137 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5138 /*
5139 * To prevent potential recursive invocation of drain_syncq we
5140 * do not call drain_syncq if count is non-zero.
5141 */
5142 if (sq->sq_count == 0) {
5143 /* drain_syncq() drops SQLOCK */
5144 drain_syncq(sq);
5145 return;
5146 } else
5147 sqenable(sq);
5148 }
5149 mutex_exit(SQLOCK(sq));
5150 }
5151
5152 /*
5153 * Ordered insert while removing duplicates.
5154 */
5155 static void
sqlist_insert(sqlist_t * sqlist,syncq_t * sqp)5156 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5157 {
5158 syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5159
5160 prev_sqlpp = &sqlist->sqlist_head;
5161 while ((sqlp = *prev_sqlpp) != NULL) {
5162 if (sqlp->sql_sq >= sqp) {
5163 if (sqlp->sql_sq == sqp) /* duplicate */
5164 return;
5165 break;
5166 }
5167 prev_sqlpp = &sqlp->sql_next;
5168 }
5169 new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5170 ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5171 new_sqlp->sql_next = sqlp;
5172 new_sqlp->sql_sq = sqp;
5173 *prev_sqlpp = new_sqlp;
5174 }
5175
5176 /*
5177 * Walk the write side queues until we hit either the driver
5178 * or a twist in the stream (_SAMESTR will return false in both
5179 * these cases) then turn around and walk the read side queues
5180 * back up to the stream head.
5181 */
5182 static void
sqlist_insertall(sqlist_t * sqlist,queue_t * q)5183 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5184 {
5185 while (q != NULL) {
5186 sqlist_insert(sqlist, q->q_syncq);
5187
5188 if (_SAMESTR(q))
5189 q = q->q_next;
5190 else if (!(q->q_flag & QREADR))
5191 q = _RD(q);
5192 else
5193 q = NULL;
5194 }
5195 }
5196
5197 /*
5198 * Allocate and build a list of all syncqs in a stream and the syncq(s)
5199 * associated with the "q" parameter. The resulting list is sorted in a
5200 * canonical order and is free of duplicates.
5201 * Assumes the passed queue is a _RD(q).
5202 */
5203 static sqlist_t *
sqlist_build(queue_t * q,struct stdata * stp,boolean_t do_twist)5204 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5205 {
5206 sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5207
5208 /*
5209 * start with the current queue/qpair
5210 */
5211 ASSERT(q->q_flag & QREADR);
5212
5213 sqlist_insert(sqlist, q->q_syncq);
5214 sqlist_insert(sqlist, _WR(q)->q_syncq);
5215
5216 sqlist_insertall(sqlist, stp->sd_wrq);
5217 if (do_twist)
5218 sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5219
5220 return (sqlist);
5221 }
5222
5223 static sqlist_t *
sqlist_alloc(struct stdata * stp,int kmflag)5224 sqlist_alloc(struct stdata *stp, int kmflag)
5225 {
5226 size_t sqlist_size;
5227 sqlist_t *sqlist;
5228
5229 /*
5230 * Allocate 2 syncql_t's for each pushed module. Note that
5231 * the sqlist_t structure already has 4 syncql_t's built in:
5232 * 2 for the stream head, and 2 for the driver/other stream head.
5233 */
5234 sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5235 sizeof (sqlist_t);
5236 if (STRMATED(stp))
5237 sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5238 sqlist = kmem_alloc(sqlist_size, kmflag);
5239
5240 sqlist->sqlist_head = NULL;
5241 sqlist->sqlist_size = sqlist_size;
5242 sqlist->sqlist_index = 0;
5243
5244 return (sqlist);
5245 }
5246
5247 /*
5248 * Free the list created by sqlist_alloc()
5249 */
5250 static void
sqlist_free(sqlist_t * sqlist)5251 sqlist_free(sqlist_t *sqlist)
5252 {
5253 kmem_free(sqlist, sqlist->sqlist_size);
5254 }
5255
5256 /*
5257 * Prevent any new entries into any syncq in this stream.
5258 * Used by freezestr.
5259 */
5260 void
strblock(queue_t * q)5261 strblock(queue_t *q)
5262 {
5263 struct stdata *stp;
5264 syncql_t *sql;
5265 sqlist_t *sqlist;
5266
5267 q = _RD(q);
5268
5269 stp = STREAM(q);
5270 ASSERT(stp != NULL);
5271
5272 /*
5273 * Get a sorted list with all the duplicates removed containing
5274 * all the syncqs referenced by this stream.
5275 */
5276 sqlist = sqlist_build(q, stp, B_FALSE);
5277 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5278 blocksq(sql->sql_sq, SQ_FROZEN, -1);
5279 sqlist_free(sqlist);
5280 }
5281
5282 /*
5283 * Release the block on new entries into this stream
5284 */
5285 void
strunblock(queue_t * q)5286 strunblock(queue_t *q)
5287 {
5288 struct stdata *stp;
5289 syncql_t *sql;
5290 sqlist_t *sqlist;
5291 int drain_needed;
5292
5293 q = _RD(q);
5294
5295 /*
5296 * Get a sorted list with all the duplicates removed containing
5297 * all the syncqs referenced by this stream.
5298 * Have to drop the SQ_FROZEN flag on all the syncqs before
5299 * starting to drain them; otherwise the draining might
5300 * cause a freezestr in some module on the stream (which
5301 * would deadlock).
5302 */
5303 stp = STREAM(q);
5304 ASSERT(stp != NULL);
5305 sqlist = sqlist_build(q, stp, B_FALSE);
5306 drain_needed = 0;
5307 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5308 drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5309 if (drain_needed) {
5310 for (sql = sqlist->sqlist_head; sql != NULL;
5311 sql = sql->sql_next)
5312 emptysq(sql->sql_sq);
5313 }
5314 sqlist_free(sqlist);
5315 }
5316
5317 #ifdef DEBUG
5318 static int
qprocsareon(queue_t * rq)5319 qprocsareon(queue_t *rq)
5320 {
5321 if (rq->q_next == NULL)
5322 return (0);
5323 return (_WR(rq->q_next)->q_next == _WR(rq));
5324 }
5325
5326 int
qclaimed(queue_t * q)5327 qclaimed(queue_t *q)
5328 {
5329 uint_t count;
5330
5331 count = q->q_syncq->sq_count;
5332 SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5333 return (count != 0);
5334 }
5335
5336 /*
5337 * Check if anyone has frozen this stream with freezestr
5338 */
5339 int
frozenstr(queue_t * q)5340 frozenstr(queue_t *q)
5341 {
5342 return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5343 }
5344 #endif /* DEBUG */
5345
5346 /*
5347 * Enter a queue.
5348 * Obsoleted interface. Should not be used.
5349 */
5350 void
enterq(queue_t * q)5351 enterq(queue_t *q)
5352 {
5353 entersq(q->q_syncq, SQ_CALLBACK);
5354 }
5355
5356 void
leaveq(queue_t * q)5357 leaveq(queue_t *q)
5358 {
5359 leavesq(q->q_syncq, SQ_CALLBACK);
5360 }
5361
5362 /*
5363 * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5364 * to check.
5365 * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5366 * calls and the running of open, close and service procedures.
5367 *
5368 * If c_inner bit is set no need to grab sq_putlocks since we don't care
5369 * if other threads have entered or are entering put entry point.
5370 *
5371 * If c_inner bit is set it might have been possible to use
5372 * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5373 * open/close path for IP) but since the count may need to be decremented in
5374 * qwait() we wouldn't know which counter to decrement. Currently counter is
5375 * selected by current cpu_seqid and current CPU can change at any moment. XXX
5376 * in the future we might use curthread id bits to select the counter and this
5377 * would stay constant across routine calls.
5378 */
5379 void
entersq(syncq_t * sq,int entrypoint)5380 entersq(syncq_t *sq, int entrypoint)
5381 {
5382 uint16_t count = 0;
5383 uint16_t flags;
5384 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5385 uint16_t type;
5386 uint_t c_inner = entrypoint & SQ_CI;
5387 uint_t c_outer = entrypoint & SQ_CO;
5388
5389 /*
5390 * Increment ref count to keep closes out of this queue.
5391 */
5392 ASSERT(sq);
5393 ASSERT(c_inner && c_outer);
5394 mutex_enter(SQLOCK(sq));
5395 flags = sq->sq_flags;
5396 type = sq->sq_type;
5397 if (!(type & c_inner)) {
5398 /* Make sure all putcounts now use slowlock. */
5399 count = sq->sq_count;
5400 SQ_PUTLOCKS_ENTER(sq);
5401 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5402 SUM_SQ_PUTCOUNTS(sq, count);
5403 sq->sq_needexcl++;
5404 ASSERT(sq->sq_needexcl != 0); /* wraparound */
5405 waitflags |= SQ_MESSAGES;
5406 }
5407 /*
5408 * Wait until we can enter the inner perimeter.
5409 * If we want exclusive access we wait until sq_count is 0.
5410 * We have to do this before entering the outer perimeter in order
5411 * to preserve put/close message ordering.
5412 */
5413 while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5414 sq->sq_flags = flags | SQ_WANTWAKEUP;
5415 if (!(type & c_inner)) {
5416 SQ_PUTLOCKS_EXIT(sq);
5417 }
5418 cv_wait(&sq->sq_wait, SQLOCK(sq));
5419 if (!(type & c_inner)) {
5420 count = sq->sq_count;
5421 SQ_PUTLOCKS_ENTER(sq);
5422 SUM_SQ_PUTCOUNTS(sq, count);
5423 }
5424 flags = sq->sq_flags;
5425 }
5426
5427 if (!(type & c_inner)) {
5428 ASSERT(sq->sq_needexcl > 0);
5429 sq->sq_needexcl--;
5430 if (sq->sq_needexcl == 0) {
5431 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5432 }
5433 }
5434
5435 /* Check if we need to enter the outer perimeter */
5436 if (!(type & c_outer)) {
5437 /*
5438 * We have to enter the outer perimeter exclusively before
5439 * we can increment sq_count to avoid deadlock. This implies
5440 * that we have to re-check sq_flags and sq_count.
5441 *
5442 * is it possible to have c_inner set when c_outer is not set?
5443 */
5444 if (!(type & c_inner)) {
5445 SQ_PUTLOCKS_EXIT(sq);
5446 }
5447 mutex_exit(SQLOCK(sq));
5448 outer_enter(sq->sq_outer, SQ_GOAWAY);
5449 mutex_enter(SQLOCK(sq));
5450 flags = sq->sq_flags;
5451 /*
5452 * there should be no need to recheck sq_putcounts
5453 * because outer_enter() has already waited for them to clear
5454 * after setting SQ_WRITER.
5455 */
5456 count = sq->sq_count;
5457 #ifdef DEBUG
5458 /*
5459 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5460 * of doing an ASSERT internally. Others should do
5461 * something like
5462 * ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5463 * without the need to #ifdef DEBUG it.
5464 */
5465 SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5466 #endif
5467 while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5468 (!(type & c_inner) && count != 0)) {
5469 sq->sq_flags = flags | SQ_WANTWAKEUP;
5470 cv_wait(&sq->sq_wait, SQLOCK(sq));
5471 count = sq->sq_count;
5472 flags = sq->sq_flags;
5473 }
5474 }
5475
5476 sq->sq_count++;
5477 ASSERT(sq->sq_count != 0); /* Wraparound */
5478 if (!(type & c_inner)) {
5479 /* Exclusive entry */
5480 ASSERT(sq->sq_count == 1);
5481 sq->sq_flags |= SQ_EXCL;
5482 if (type & c_outer) {
5483 SQ_PUTLOCKS_EXIT(sq);
5484 }
5485 }
5486 mutex_exit(SQLOCK(sq));
5487 }
5488
5489 /*
5490 * Leave a syncq. Announce to framework that closes may proceed.
5491 * c_inner and c_outer specify which concurrency bits to check.
5492 *
5493 * Must never be called from driver or module put entry point.
5494 *
5495 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5496 * sq_putlocks are used.
5497 */
5498 void
leavesq(syncq_t * sq,int entrypoint)5499 leavesq(syncq_t *sq, int entrypoint)
5500 {
5501 uint16_t flags;
5502 uint16_t type;
5503 uint_t c_outer = entrypoint & SQ_CO;
5504 #ifdef DEBUG
5505 uint_t c_inner = entrypoint & SQ_CI;
5506 #endif
5507
5508 /*
5509 * Decrement ref count, drain the syncq if possible, and wake up
5510 * any waiting close.
5511 */
5512 ASSERT(sq);
5513 ASSERT(c_inner && c_outer);
5514 mutex_enter(SQLOCK(sq));
5515 flags = sq->sq_flags;
5516 type = sq->sq_type;
5517 if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5518
5519 if (flags & SQ_WANTWAKEUP) {
5520 flags &= ~SQ_WANTWAKEUP;
5521 cv_broadcast(&sq->sq_wait);
5522 }
5523 if (flags & SQ_WANTEXWAKEUP) {
5524 flags &= ~SQ_WANTEXWAKEUP;
5525 cv_broadcast(&sq->sq_exitwait);
5526 }
5527
5528 if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5529 /*
5530 * The syncq needs to be drained. "Exit" the syncq
5531 * before calling drain_syncq.
5532 */
5533 ASSERT(sq->sq_count != 0);
5534 sq->sq_count--;
5535 ASSERT((flags & SQ_EXCL) || (type & c_inner));
5536 sq->sq_flags = flags & ~SQ_EXCL;
5537 drain_syncq(sq);
5538 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5539 /* Check if we need to exit the outer perimeter */
5540 /* XXX will this ever be true? */
5541 if (!(type & c_outer))
5542 outer_exit(sq->sq_outer);
5543 return;
5544 }
5545 }
5546 ASSERT(sq->sq_count != 0);
5547 sq->sq_count--;
5548 ASSERT((flags & SQ_EXCL) || (type & c_inner));
5549 sq->sq_flags = flags & ~SQ_EXCL;
5550 mutex_exit(SQLOCK(sq));
5551
5552 /* Check if we need to exit the outer perimeter */
5553 if (!(sq->sq_type & c_outer))
5554 outer_exit(sq->sq_outer);
5555 }
5556
5557 /*
5558 * Prevent q_next from changing in this stream by incrementing sq_count.
5559 *
5560 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5561 * sq_putlocks are used.
5562 */
5563 void
claimq(queue_t * qp)5564 claimq(queue_t *qp)
5565 {
5566 syncq_t *sq = qp->q_syncq;
5567
5568 mutex_enter(SQLOCK(sq));
5569 sq->sq_count++;
5570 ASSERT(sq->sq_count != 0); /* Wraparound */
5571 mutex_exit(SQLOCK(sq));
5572 }
5573
5574 /*
5575 * Undo claimq.
5576 *
5577 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5578 * sq_putlocks are used.
5579 */
5580 void
releaseq(queue_t * qp)5581 releaseq(queue_t *qp)
5582 {
5583 syncq_t *sq = qp->q_syncq;
5584 uint16_t flags;
5585
5586 mutex_enter(SQLOCK(sq));
5587 ASSERT(sq->sq_count > 0);
5588 sq->sq_count--;
5589
5590 flags = sq->sq_flags;
5591 if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5592 if (flags & SQ_WANTWAKEUP) {
5593 flags &= ~SQ_WANTWAKEUP;
5594 cv_broadcast(&sq->sq_wait);
5595 }
5596 sq->sq_flags = flags;
5597 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5598 /*
5599 * To prevent potential recursive invocation of
5600 * drain_syncq we do not call drain_syncq if count is
5601 * non-zero.
5602 */
5603 if (sq->sq_count == 0) {
5604 drain_syncq(sq);
5605 return;
5606 } else
5607 sqenable(sq);
5608 }
5609 }
5610 mutex_exit(SQLOCK(sq));
5611 }
5612
5613 /*
5614 * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5615 */
5616 void
claimstr(queue_t * qp)5617 claimstr(queue_t *qp)
5618 {
5619 struct stdata *stp = STREAM(qp);
5620
5621 mutex_enter(&stp->sd_reflock);
5622 stp->sd_refcnt++;
5623 ASSERT(stp->sd_refcnt != 0); /* Wraparound */
5624 mutex_exit(&stp->sd_reflock);
5625 }
5626
5627 /*
5628 * Undo claimstr.
5629 */
5630 void
releasestr(queue_t * qp)5631 releasestr(queue_t *qp)
5632 {
5633 struct stdata *stp = STREAM(qp);
5634
5635 mutex_enter(&stp->sd_reflock);
5636 ASSERT(stp->sd_refcnt != 0);
5637 if (--stp->sd_refcnt == 0)
5638 cv_broadcast(&stp->sd_refmonitor);
5639 mutex_exit(&stp->sd_reflock);
5640 }
5641
5642 static syncq_t *
new_syncq(void)5643 new_syncq(void)
5644 {
5645 return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5646 }
5647
5648 static void
free_syncq(syncq_t * sq)5649 free_syncq(syncq_t *sq)
5650 {
5651 ASSERT(sq->sq_head == NULL);
5652 ASSERT(sq->sq_outer == NULL);
5653 ASSERT(sq->sq_callbpend == NULL);
5654 ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5655 (sq->sq_onext == sq && sq->sq_oprev == sq));
5656
5657 if (sq->sq_ciputctrl != NULL) {
5658 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5659 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5660 sq->sq_nciputctrl, 0);
5661 ASSERT(ciputctrl_cache != NULL);
5662 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5663 }
5664
5665 sq->sq_tail = NULL;
5666 sq->sq_evhead = NULL;
5667 sq->sq_evtail = NULL;
5668 sq->sq_ciputctrl = NULL;
5669 sq->sq_nciputctrl = 0;
5670 sq->sq_count = 0;
5671 sq->sq_rmqcount = 0;
5672 sq->sq_callbflags = 0;
5673 sq->sq_cancelid = 0;
5674 sq->sq_next = NULL;
5675 sq->sq_needexcl = 0;
5676 sq->sq_svcflags = 0;
5677 sq->sq_nqueues = 0;
5678 sq->sq_pri = 0;
5679 sq->sq_onext = NULL;
5680 sq->sq_oprev = NULL;
5681 sq->sq_flags = 0;
5682 sq->sq_type = 0;
5683 sq->sq_servcount = 0;
5684
5685 kmem_cache_free(syncq_cache, sq);
5686 }
5687
5688 /* Outer perimeter code */
5689
5690 /*
5691 * The outer syncq uses the fields and flags in the syncq slightly
5692 * differently from the inner syncqs.
5693 * sq_count Incremented when there are pending or running
5694 * writers at the outer perimeter to prevent the set of
5695 * inner syncqs that belong to the outer perimeter from
5696 * changing.
5697 * sq_head/tail List of deferred qwriter(OUTER) operations.
5698 *
5699 * SQ_BLOCKED Set to prevent traversing of sq_next,sq_prev while
5700 * inner syncqs are added to or removed from the
5701 * outer perimeter.
5702 * SQ_QUEUED sq_head/tail has messages or events queued.
5703 *
5704 * SQ_WRITER A thread is currently traversing all the inner syncqs
5705 * setting the SQ_WRITER flag.
5706 */
5707
5708 /*
5709 * Get write access at the outer perimeter.
5710 * Note that read access is done by entersq, putnext, and put by simply
5711 * incrementing sq_count in the inner syncq.
5712 *
5713 * Waits until "flags" is no longer set in the outer to prevent multiple
5714 * threads from having write access at the same time. SQ_WRITER has to be part
5715 * of "flags".
5716 *
5717 * Increases sq_count on the outer syncq to keep away outer_insert/remove
5718 * until the outer_exit is finished.
5719 *
5720 * outer_enter is vulnerable to starvation since it does not prevent new
5721 * threads from entering the inner syncqs while it is waiting for sq_count to
5722 * go to zero.
5723 */
5724 void
outer_enter(syncq_t * outer,uint16_t flags)5725 outer_enter(syncq_t *outer, uint16_t flags)
5726 {
5727 syncq_t *sq;
5728 int wait_needed;
5729 uint16_t count;
5730
5731 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5732 outer->sq_oprev != NULL);
5733 ASSERT(flags & SQ_WRITER);
5734
5735 retry:
5736 mutex_enter(SQLOCK(outer));
5737 while (outer->sq_flags & flags) {
5738 outer->sq_flags |= SQ_WANTWAKEUP;
5739 cv_wait(&outer->sq_wait, SQLOCK(outer));
5740 }
5741
5742 ASSERT(!(outer->sq_flags & SQ_WRITER));
5743 outer->sq_flags |= SQ_WRITER;
5744 outer->sq_count++;
5745 ASSERT(outer->sq_count != 0); /* wraparound */
5746 wait_needed = 0;
5747 /*
5748 * Set SQ_WRITER on all the inner syncqs while holding
5749 * the SQLOCK on the outer syncq. This ensures that the changing
5750 * of SQ_WRITER is atomic under the outer SQLOCK.
5751 */
5752 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5753 mutex_enter(SQLOCK(sq));
5754 count = sq->sq_count;
5755 SQ_PUTLOCKS_ENTER(sq);
5756 sq->sq_flags |= SQ_WRITER;
5757 SUM_SQ_PUTCOUNTS(sq, count);
5758 if (count != 0)
5759 wait_needed = 1;
5760 SQ_PUTLOCKS_EXIT(sq);
5761 mutex_exit(SQLOCK(sq));
5762 }
5763 mutex_exit(SQLOCK(outer));
5764
5765 /*
5766 * Get everybody out of the syncqs sequentially.
5767 * Note that we don't actually need to acquire the PUTLOCKS, since
5768 * we have already cleared the fastbit, and set QWRITER. By
5769 * definition, the count can not increase since putnext will
5770 * take the slowlock path (and the purpose of acquiring the
5771 * putlocks was to make sure it didn't increase while we were
5772 * waiting).
5773 *
5774 * Note that we still acquire the PUTLOCKS to be safe.
5775 */
5776 if (wait_needed) {
5777 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5778 mutex_enter(SQLOCK(sq));
5779 count = sq->sq_count;
5780 SQ_PUTLOCKS_ENTER(sq);
5781 SUM_SQ_PUTCOUNTS(sq, count);
5782 while (count != 0) {
5783 sq->sq_flags |= SQ_WANTWAKEUP;
5784 SQ_PUTLOCKS_EXIT(sq);
5785 cv_wait(&sq->sq_wait, SQLOCK(sq));
5786 count = sq->sq_count;
5787 SQ_PUTLOCKS_ENTER(sq);
5788 SUM_SQ_PUTCOUNTS(sq, count);
5789 }
5790 SQ_PUTLOCKS_EXIT(sq);
5791 mutex_exit(SQLOCK(sq));
5792 }
5793 /*
5794 * Verify that none of the flags got set while we
5795 * were waiting for the sq_counts to drop.
5796 * If this happens we exit and retry entering the
5797 * outer perimeter.
5798 */
5799 mutex_enter(SQLOCK(outer));
5800 if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5801 mutex_exit(SQLOCK(outer));
5802 outer_exit(outer);
5803 goto retry;
5804 }
5805 mutex_exit(SQLOCK(outer));
5806 }
5807 }
5808
5809 /*
5810 * Drop the write access at the outer perimeter.
5811 * Read access is dropped implicitly (by putnext, put, and leavesq) by
5812 * decrementing sq_count.
5813 */
5814 void
outer_exit(syncq_t * outer)5815 outer_exit(syncq_t *outer)
5816 {
5817 syncq_t *sq;
5818 int drain_needed;
5819 uint16_t flags;
5820
5821 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5822 outer->sq_oprev != NULL);
5823 ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5824
5825 /*
5826 * Atomically (from the perspective of threads calling become_writer)
5827 * drop the write access at the outer perimeter by holding
5828 * SQLOCK(outer) across all the dropsq calls and the resetting of
5829 * SQ_WRITER.
5830 * This defines a locking order between the outer perimeter
5831 * SQLOCK and the inner perimeter SQLOCKs.
5832 */
5833 mutex_enter(SQLOCK(outer));
5834 flags = outer->sq_flags;
5835 ASSERT(outer->sq_flags & SQ_WRITER);
5836 if (flags & SQ_QUEUED) {
5837 write_now(outer);
5838 flags = outer->sq_flags;
5839 }
5840
5841 /*
5842 * sq_onext is stable since sq_count has not yet been decreased.
5843 * Reset the SQ_WRITER flags in all syncqs.
5844 * After dropping SQ_WRITER on the outer syncq we empty all the
5845 * inner syncqs.
5846 */
5847 drain_needed = 0;
5848 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5849 drain_needed += dropsq(sq, SQ_WRITER);
5850 ASSERT(!(outer->sq_flags & SQ_QUEUED));
5851 flags &= ~SQ_WRITER;
5852 if (drain_needed) {
5853 outer->sq_flags = flags;
5854 mutex_exit(SQLOCK(outer));
5855 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5856 emptysq(sq);
5857 mutex_enter(SQLOCK(outer));
5858 flags = outer->sq_flags;
5859 }
5860 if (flags & SQ_WANTWAKEUP) {
5861 flags &= ~SQ_WANTWAKEUP;
5862 cv_broadcast(&outer->sq_wait);
5863 }
5864 outer->sq_flags = flags;
5865 ASSERT(outer->sq_count > 0);
5866 outer->sq_count--;
5867 mutex_exit(SQLOCK(outer));
5868 }
5869
5870 /*
5871 * Add another syncq to an outer perimeter.
5872 * Block out all other access to the outer perimeter while it is being
5873 * changed using blocksq.
5874 * Assumes that the caller has *not* done an outer_enter.
5875 *
5876 * Vulnerable to starvation in blocksq.
5877 */
5878 static void
outer_insert(syncq_t * outer,syncq_t * sq)5879 outer_insert(syncq_t *outer, syncq_t *sq)
5880 {
5881 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5882 outer->sq_oprev != NULL);
5883 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5884 sq->sq_oprev == NULL); /* Can't be in an outer perimeter */
5885
5886 /* Get exclusive access to the outer perimeter list */
5887 blocksq(outer, SQ_BLOCKED, 0);
5888 ASSERT(outer->sq_flags & SQ_BLOCKED);
5889 ASSERT(!(outer->sq_flags & SQ_WRITER));
5890
5891 mutex_enter(SQLOCK(sq));
5892 sq->sq_outer = outer;
5893 outer->sq_onext->sq_oprev = sq;
5894 sq->sq_onext = outer->sq_onext;
5895 outer->sq_onext = sq;
5896 sq->sq_oprev = outer;
5897 mutex_exit(SQLOCK(sq));
5898 unblocksq(outer, SQ_BLOCKED, 1);
5899 }
5900
5901 /*
5902 * Remove a syncq from an outer perimeter.
5903 * Block out all other access to the outer perimeter while it is being
5904 * changed using blocksq.
5905 * Assumes that the caller has *not* done an outer_enter.
5906 *
5907 * Vulnerable to starvation in blocksq.
5908 */
5909 static void
outer_remove(syncq_t * outer,syncq_t * sq)5910 outer_remove(syncq_t *outer, syncq_t *sq)
5911 {
5912 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5913 outer->sq_oprev != NULL);
5914 ASSERT(sq->sq_outer == outer);
5915
5916 /* Get exclusive access to the outer perimeter list */
5917 blocksq(outer, SQ_BLOCKED, 0);
5918 ASSERT(outer->sq_flags & SQ_BLOCKED);
5919 ASSERT(!(outer->sq_flags & SQ_WRITER));
5920
5921 mutex_enter(SQLOCK(sq));
5922 sq->sq_outer = NULL;
5923 sq->sq_onext->sq_oprev = sq->sq_oprev;
5924 sq->sq_oprev->sq_onext = sq->sq_onext;
5925 sq->sq_oprev = sq->sq_onext = NULL;
5926 mutex_exit(SQLOCK(sq));
5927 unblocksq(outer, SQ_BLOCKED, 1);
5928 }
5929
5930 /*
5931 * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5932 * If this is the first callback for this outer perimeter then add
5933 * this outer perimeter to the list of outer perimeters that
5934 * the qwriter_outer_thread will process.
5935 *
5936 * Increments sq_count in the outer syncq to prevent the membership
5937 * of the outer perimeter (in terms of inner syncqs) to change while
5938 * the callback is pending.
5939 */
5940 static void
queue_writer(syncq_t * outer,void (* func)(),queue_t * q,mblk_t * mp)5941 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5942 {
5943 ASSERT(MUTEX_HELD(SQLOCK(outer)));
5944
5945 mp->b_prev = (mblk_t *)func;
5946 mp->b_queue = q;
5947 mp->b_next = NULL;
5948 outer->sq_count++; /* Decremented when dequeued */
5949 ASSERT(outer->sq_count != 0); /* Wraparound */
5950 if (outer->sq_evhead == NULL) {
5951 /* First message. */
5952 outer->sq_evhead = outer->sq_evtail = mp;
5953 outer->sq_flags |= SQ_EVENTS;
5954 mutex_exit(SQLOCK(outer));
5955 STRSTAT(qwr_outer);
5956 (void) taskq_dispatch(streams_taskq,
5957 (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5958 } else {
5959 ASSERT(outer->sq_flags & SQ_EVENTS);
5960 outer->sq_evtail->b_next = mp;
5961 outer->sq_evtail = mp;
5962 mutex_exit(SQLOCK(outer));
5963 }
5964 }
5965
5966 /*
5967 * Try and upgrade to write access at the outer perimeter. If this can
5968 * not be done without blocking then queue the callback to be done
5969 * by the qwriter_outer_thread.
5970 *
5971 * This routine can only be called from put or service procedures plus
5972 * asynchronous callback routines that have properly entered the queue (with
5973 * entersq). Thus qwriter(OUTER) assumes the caller has one claim on the syncq
5974 * associated with q.
5975 */
5976 void
qwriter_outer(queue_t * q,mblk_t * mp,void (* func)())5977 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5978 {
5979 syncq_t *osq, *sq, *outer;
5980 int failed;
5981 uint16_t flags;
5982
5983 osq = q->q_syncq;
5984 outer = osq->sq_outer;
5985 if (outer == NULL)
5986 panic("qwriter(PERIM_OUTER): no outer perimeter");
5987 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5988 outer->sq_oprev != NULL);
5989
5990 mutex_enter(SQLOCK(outer));
5991 flags = outer->sq_flags;
5992 /*
5993 * If some thread is traversing sq_next, or if we are blocked by
5994 * outer_insert or outer_remove, or if the we already have queued
5995 * callbacks, then queue this callback for later processing.
5996 *
5997 * Also queue the qwriter for an interrupt thread in order
5998 * to reduce the time spent running at high IPL.
5999 * to identify there are events.
6000 */
6001 if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
6002 /*
6003 * Queue the become_writer request.
6004 * The queueing is atomic under SQLOCK(outer) in order
6005 * to synchronize with outer_exit.
6006 * queue_writer will drop the outer SQLOCK
6007 */
6008 if (flags & SQ_BLOCKED) {
6009 /* Must set SQ_WRITER on inner perimeter */
6010 mutex_enter(SQLOCK(osq));
6011 osq->sq_flags |= SQ_WRITER;
6012 mutex_exit(SQLOCK(osq));
6013 } else {
6014 if (!(flags & SQ_WRITER)) {
6015 /*
6016 * The outer could have been SQ_BLOCKED thus
6017 * SQ_WRITER might not be set on the inner.
6018 */
6019 mutex_enter(SQLOCK(osq));
6020 osq->sq_flags |= SQ_WRITER;
6021 mutex_exit(SQLOCK(osq));
6022 }
6023 ASSERT(osq->sq_flags & SQ_WRITER);
6024 }
6025 queue_writer(outer, func, q, mp);
6026 return;
6027 }
6028 /*
6029 * We are half-way to exclusive access to the outer perimeter.
6030 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6031 * while the inner syncqs are traversed.
6032 */
6033 outer->sq_count++;
6034 ASSERT(outer->sq_count != 0); /* wraparound */
6035 flags |= SQ_WRITER;
6036 /*
6037 * Check if we can run the function immediately. Mark all
6038 * syncqs with the writer flag to prevent new entries into
6039 * put and service procedures.
6040 *
6041 * Set SQ_WRITER on all the inner syncqs while holding
6042 * the SQLOCK on the outer syncq. This ensures that the changing
6043 * of SQ_WRITER is atomic under the outer SQLOCK.
6044 */
6045 failed = 0;
6046 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6047 uint16_t count;
6048 uint_t maxcnt = (sq == osq) ? 1 : 0;
6049
6050 mutex_enter(SQLOCK(sq));
6051 count = sq->sq_count;
6052 SQ_PUTLOCKS_ENTER(sq);
6053 SUM_SQ_PUTCOUNTS(sq, count);
6054 if (sq->sq_count > maxcnt)
6055 failed = 1;
6056 sq->sq_flags |= SQ_WRITER;
6057 SQ_PUTLOCKS_EXIT(sq);
6058 mutex_exit(SQLOCK(sq));
6059 }
6060 if (failed) {
6061 /*
6062 * Some other thread has a read claim on the outer perimeter.
6063 * Queue the callback for deferred processing.
6064 *
6065 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6066 * so that other qwriter(OUTER) calls will queue their
6067 * callbacks as well. queue_writer increments sq_count so we
6068 * decrement to compensate for the our increment.
6069 *
6070 * Dropping SQ_WRITER enables the writer thread to work
6071 * on this outer perimeter.
6072 */
6073 outer->sq_flags = flags;
6074 queue_writer(outer, func, q, mp);
6075 /* queue_writer dropper the lock */
6076 mutex_enter(SQLOCK(outer));
6077 ASSERT(outer->sq_count > 0);
6078 outer->sq_count--;
6079 ASSERT(outer->sq_flags & SQ_WRITER);
6080 flags = outer->sq_flags;
6081 flags &= ~SQ_WRITER;
6082 if (flags & SQ_WANTWAKEUP) {
6083 flags &= ~SQ_WANTWAKEUP;
6084 cv_broadcast(&outer->sq_wait);
6085 }
6086 outer->sq_flags = flags;
6087 mutex_exit(SQLOCK(outer));
6088 return;
6089 } else {
6090 outer->sq_flags = flags;
6091 mutex_exit(SQLOCK(outer));
6092 }
6093
6094 /* Can run it immediately */
6095 (*func)(q, mp);
6096
6097 outer_exit(outer);
6098 }
6099
6100 /*
6101 * Dequeue all writer callbacks from the outer perimeter and run them.
6102 */
6103 static void
write_now(syncq_t * outer)6104 write_now(syncq_t *outer)
6105 {
6106 mblk_t *mp;
6107 queue_t *q;
6108 void (*func)();
6109
6110 ASSERT(MUTEX_HELD(SQLOCK(outer)));
6111 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6112 outer->sq_oprev != NULL);
6113 while ((mp = outer->sq_evhead) != NULL) {
6114 /*
6115 * queues cannot be placed on the queuelist on the outer
6116 * perimeter.
6117 */
6118 ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6119 ASSERT((outer->sq_flags & SQ_EVENTS));
6120
6121 outer->sq_evhead = mp->b_next;
6122 if (outer->sq_evhead == NULL) {
6123 outer->sq_evtail = NULL;
6124 outer->sq_flags &= ~SQ_EVENTS;
6125 }
6126 ASSERT(outer->sq_count != 0);
6127 outer->sq_count--; /* Incremented when enqueued. */
6128 mutex_exit(SQLOCK(outer));
6129 /*
6130 * Drop the message if the queue is closing.
6131 * Make sure that the queue is "claimed" when the callback
6132 * is run in order to satisfy various ASSERTs.
6133 */
6134 q = mp->b_queue;
6135 func = (void (*)())mp->b_prev;
6136 ASSERT(func != NULL);
6137 mp->b_next = mp->b_prev = NULL;
6138 if (q->q_flag & QWCLOSE) {
6139 freemsg(mp);
6140 } else {
6141 claimq(q);
6142 (*func)(q, mp);
6143 releaseq(q);
6144 }
6145 mutex_enter(SQLOCK(outer));
6146 }
6147 ASSERT(MUTEX_HELD(SQLOCK(outer)));
6148 }
6149
6150 /*
6151 * The list of messages on the inner syncq is effectively hashed
6152 * by destination queue. These destination queues are doubly
6153 * linked lists (hopefully) in priority order. Messages are then
6154 * put on the queue referenced by the q_sqhead/q_sqtail elements.
6155 * Additional messages are linked together by the b_next/b_prev
6156 * elements in the mblk, with (similar to putq()) the first message
6157 * having a NULL b_prev and the last message having a NULL b_next.
6158 *
6159 * Events, such as qwriter callbacks, are put onto a list in FIFO
6160 * order referenced by sq_evhead, and sq_evtail. This is a singly
6161 * linked list, and messages here MUST be processed in the order queued.
6162 */
6163
6164 /*
6165 * Run the events on the syncq event list (sq_evhead).
6166 * Assumes there is only one claim on the syncq, it is
6167 * already exclusive (SQ_EXCL set), and the SQLOCK held.
6168 * Messages here are processed in order, with the SQ_EXCL bit
6169 * held all the way through till the last message is processed.
6170 */
6171 void
sq_run_events(syncq_t * sq)6172 sq_run_events(syncq_t *sq)
6173 {
6174 mblk_t *bp;
6175 queue_t *qp;
6176 uint16_t flags = sq->sq_flags;
6177 void (*func)();
6178
6179 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6180 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6181 sq->sq_oprev == NULL) ||
6182 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6183 sq->sq_oprev != NULL));
6184
6185 ASSERT(flags & SQ_EXCL);
6186 ASSERT(sq->sq_count == 1);
6187
6188 /*
6189 * We need to process all of the events on this list. It
6190 * is possible that new events will be added while we are
6191 * away processing a callback, so on every loop, we start
6192 * back at the beginning of the list.
6193 */
6194 /*
6195 * We have to reaccess sq_evhead since there is a
6196 * possibility of a new entry while we were running
6197 * the callback.
6198 */
6199 for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6200 ASSERT(bp->b_queue->q_syncq == sq);
6201 ASSERT(sq->sq_flags & SQ_EVENTS);
6202
6203 qp = bp->b_queue;
6204 func = (void (*)())bp->b_prev;
6205 ASSERT(func != NULL);
6206
6207 /*
6208 * Messages from the event queue must be taken off in
6209 * FIFO order.
6210 */
6211 ASSERT(sq->sq_evhead == bp);
6212 sq->sq_evhead = bp->b_next;
6213
6214 if (bp->b_next == NULL) {
6215 /* Deleting last */
6216 ASSERT(sq->sq_evtail == bp);
6217 sq->sq_evtail = NULL;
6218 sq->sq_flags &= ~SQ_EVENTS;
6219 }
6220 bp->b_prev = bp->b_next = NULL;
6221 ASSERT(bp->b_datap->db_ref != 0);
6222
6223 mutex_exit(SQLOCK(sq));
6224
6225 (*func)(qp, bp);
6226
6227 mutex_enter(SQLOCK(sq));
6228 /*
6229 * re-read the flags, since they could have changed.
6230 */
6231 flags = sq->sq_flags;
6232 ASSERT(flags & SQ_EXCL);
6233 }
6234 ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6235 ASSERT(!(sq->sq_flags & SQ_EVENTS));
6236
6237 if (flags & SQ_WANTWAKEUP) {
6238 flags &= ~SQ_WANTWAKEUP;
6239 cv_broadcast(&sq->sq_wait);
6240 }
6241 if (flags & SQ_WANTEXWAKEUP) {
6242 flags &= ~SQ_WANTEXWAKEUP;
6243 cv_broadcast(&sq->sq_exitwait);
6244 }
6245 sq->sq_flags = flags;
6246 }
6247
6248 /*
6249 * Put messages on the event list.
6250 * If we can go exclusive now, do so and process the event list, otherwise
6251 * let the last claim service this list (or wake the sqthread).
6252 * This procedure assumes SQLOCK is held. To run the event list, it
6253 * must be called with no claims.
6254 */
6255 static void
sqfill_events(syncq_t * sq,queue_t * q,mblk_t * mp,void (* func)())6256 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6257 {
6258 uint16_t count;
6259
6260 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6261 ASSERT(func != NULL);
6262
6263 /*
6264 * This is a callback. Add it to the list of callbacks
6265 * and see about upgrading.
6266 */
6267 mp->b_prev = (mblk_t *)func;
6268 mp->b_queue = q;
6269 mp->b_next = NULL;
6270 if (sq->sq_evhead == NULL) {
6271 sq->sq_evhead = sq->sq_evtail = mp;
6272 sq->sq_flags |= SQ_EVENTS;
6273 } else {
6274 ASSERT(sq->sq_evtail != NULL);
6275 ASSERT(sq->sq_evtail->b_next == NULL);
6276 ASSERT(sq->sq_flags & SQ_EVENTS);
6277 sq->sq_evtail->b_next = mp;
6278 sq->sq_evtail = mp;
6279 }
6280 /*
6281 * We have set SQ_EVENTS, so threads will have to
6282 * unwind out of the perimeter, and new entries will
6283 * not grab a putlock. But we still need to know
6284 * how many threads have already made a claim to the
6285 * syncq, so grab the putlocks, and sum the counts.
6286 * If there are no claims on the syncq, we can upgrade
6287 * to exclusive, and run the event list.
6288 * NOTE: We hold the SQLOCK, so we can just grab the
6289 * putlocks.
6290 */
6291 count = sq->sq_count;
6292 SQ_PUTLOCKS_ENTER(sq);
6293 SUM_SQ_PUTCOUNTS(sq, count);
6294 /*
6295 * We have no claim, so we need to check if there
6296 * are no others, then we can upgrade.
6297 */
6298 /*
6299 * There are currently no claims on
6300 * the syncq by this thread (at least on this entry). The thread who has
6301 * the claim should drain syncq.
6302 */
6303 if (count > 0) {
6304 /*
6305 * Can't upgrade - other threads inside.
6306 */
6307 SQ_PUTLOCKS_EXIT(sq);
6308 mutex_exit(SQLOCK(sq));
6309 return;
6310 }
6311 /*
6312 * Need to set SQ_EXCL and make a claim on the syncq.
6313 */
6314 ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6315 sq->sq_flags |= SQ_EXCL;
6316 ASSERT(sq->sq_count == 0);
6317 sq->sq_count++;
6318 SQ_PUTLOCKS_EXIT(sq);
6319
6320 /* Process the events list */
6321 sq_run_events(sq);
6322
6323 /*
6324 * Release our claim...
6325 */
6326 sq->sq_count--;
6327
6328 /*
6329 * And release SQ_EXCL.
6330 * We don't need to acquire the putlocks to release
6331 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6332 */
6333 sq->sq_flags &= ~SQ_EXCL;
6334
6335 /*
6336 * sq_run_events should have released SQ_EXCL
6337 */
6338 ASSERT(!(sq->sq_flags & SQ_EXCL));
6339
6340 /*
6341 * If anything happened while we were running the
6342 * events (or was there before), we need to process
6343 * them now. We shouldn't be exclusive sine we
6344 * released the perimeter above (plus, we asserted
6345 * for it).
6346 */
6347 if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6348 drain_syncq(sq);
6349 else
6350 mutex_exit(SQLOCK(sq));
6351 }
6352
6353 /*
6354 * Perform delayed processing. The caller has to make sure that it is safe
6355 * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6356 * set).
6357 *
6358 * Assume that the caller has NO claims on the syncq. However, a claim
6359 * on the syncq does not indicate that a thread is draining the syncq.
6360 * There may be more claims on the syncq than there are threads draining
6361 * (i.e. #_threads_draining <= sq_count)
6362 *
6363 * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6364 * in order to preserve qwriter(OUTER) ordering constraints.
6365 *
6366 * sq_putcount only needs to be checked when dispatching the queued
6367 * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6368 */
6369 void
drain_syncq(syncq_t * sq)6370 drain_syncq(syncq_t *sq)
6371 {
6372 queue_t *qp;
6373 uint16_t count;
6374 uint16_t type = sq->sq_type;
6375 uint16_t flags = sq->sq_flags;
6376 boolean_t bg_service = sq->sq_svcflags & SQ_SERVICE;
6377
6378 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6379 "drain_syncq start:%p", sq);
6380 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6381 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6382 sq->sq_oprev == NULL) ||
6383 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6384 sq->sq_oprev != NULL));
6385
6386 /*
6387 * Drop SQ_SERVICE flag.
6388 */
6389 if (bg_service)
6390 sq->sq_svcflags &= ~SQ_SERVICE;
6391
6392 /*
6393 * If SQ_EXCL is set, someone else is processing this syncq - let him
6394 * finish the job.
6395 */
6396 if (flags & SQ_EXCL) {
6397 if (bg_service) {
6398 ASSERT(sq->sq_servcount != 0);
6399 sq->sq_servcount--;
6400 }
6401 mutex_exit(SQLOCK(sq));
6402 return;
6403 }
6404
6405 /*
6406 * This routine can be called by a background thread if
6407 * it was scheduled by a hi-priority thread. SO, if there are
6408 * NOT messages queued, return (remember, we have the SQLOCK,
6409 * and it cannot change until we release it). Wakeup any waiters also.
6410 */
6411 if (!(flags & SQ_QUEUED)) {
6412 if (flags & SQ_WANTWAKEUP) {
6413 flags &= ~SQ_WANTWAKEUP;
6414 cv_broadcast(&sq->sq_wait);
6415 }
6416 if (flags & SQ_WANTEXWAKEUP) {
6417 flags &= ~SQ_WANTEXWAKEUP;
6418 cv_broadcast(&sq->sq_exitwait);
6419 }
6420 sq->sq_flags = flags;
6421 if (bg_service) {
6422 ASSERT(sq->sq_servcount != 0);
6423 sq->sq_servcount--;
6424 }
6425 mutex_exit(SQLOCK(sq));
6426 return;
6427 }
6428
6429 /*
6430 * If this is not a concurrent put perimeter, we need to
6431 * become exclusive to drain. Also, if not CIPUT, we would
6432 * not have acquired a putlock, so we don't need to check
6433 * the putcounts. If not entering with a claim, we test
6434 * for sq_count == 0.
6435 */
6436 type = sq->sq_type;
6437 if (!(type & SQ_CIPUT)) {
6438 if (sq->sq_count > 1) {
6439 if (bg_service) {
6440 ASSERT(sq->sq_servcount != 0);
6441 sq->sq_servcount--;
6442 }
6443 mutex_exit(SQLOCK(sq));
6444 return;
6445 }
6446 sq->sq_flags |= SQ_EXCL;
6447 }
6448
6449 /*
6450 * This is where we make a claim to the syncq.
6451 * This can either be done by incrementing a putlock, or
6452 * the sq_count. But since we already have the SQLOCK
6453 * here, we just bump the sq_count.
6454 *
6455 * Note that after we make a claim, we need to let the code
6456 * fall through to the end of this routine to clean itself
6457 * up. A return in the while loop will put the syncq in a
6458 * very bad state.
6459 */
6460 sq->sq_count++;
6461 ASSERT(sq->sq_count != 0); /* wraparound */
6462
6463 while ((flags = sq->sq_flags) & SQ_QUEUED) {
6464 /*
6465 * If we are told to stayaway or went exclusive,
6466 * we are done.
6467 */
6468 if (flags & (SQ_STAYAWAY)) {
6469 break;
6470 }
6471
6472 /*
6473 * If there are events to run, do so.
6474 * We have one claim to the syncq, so if there are
6475 * more than one, other threads are running.
6476 */
6477 if (sq->sq_evhead != NULL) {
6478 ASSERT(sq->sq_flags & SQ_EVENTS);
6479
6480 count = sq->sq_count;
6481 SQ_PUTLOCKS_ENTER(sq);
6482 SUM_SQ_PUTCOUNTS(sq, count);
6483 if (count > 1) {
6484 SQ_PUTLOCKS_EXIT(sq);
6485 /* Can't upgrade - other threads inside */
6486 break;
6487 }
6488 ASSERT((flags & SQ_EXCL) == 0);
6489 sq->sq_flags = flags | SQ_EXCL;
6490 SQ_PUTLOCKS_EXIT(sq);
6491 /*
6492 * we have the only claim, run the events,
6493 * sq_run_events will clear the SQ_EXCL flag.
6494 */
6495 sq_run_events(sq);
6496
6497 /*
6498 * If this is a CIPUT perimeter, we need
6499 * to drop the SQ_EXCL flag so we can properly
6500 * continue draining the syncq.
6501 */
6502 if (type & SQ_CIPUT) {
6503 ASSERT(sq->sq_flags & SQ_EXCL);
6504 sq->sq_flags &= ~SQ_EXCL;
6505 }
6506
6507 /*
6508 * And go back to the beginning just in case
6509 * anything changed while we were away.
6510 */
6511 ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6512 continue;
6513 }
6514
6515 ASSERT(sq->sq_evhead == NULL);
6516 ASSERT(!(sq->sq_flags & SQ_EVENTS));
6517
6518 /*
6519 * Find the queue that is not draining.
6520 *
6521 * q_draining is protected by QLOCK which we do not hold.
6522 * But if it was set, then a thread was draining, and if it gets
6523 * cleared, then it was because the thread has successfully
6524 * drained the syncq, or a GOAWAY state occurred. For the GOAWAY
6525 * state to happen, a thread needs the SQLOCK which we hold, and
6526 * if there was such a flag, we would have already seen it.
6527 */
6528
6529 for (qp = sq->sq_head;
6530 qp != NULL && (qp->q_draining ||
6531 (qp->q_sqflags & Q_SQDRAINING));
6532 qp = qp->q_sqnext)
6533 ;
6534
6535 if (qp == NULL)
6536 break;
6537
6538 /*
6539 * We have a queue to work on, and we hold the
6540 * SQLOCK and one claim, call qdrain_syncq.
6541 * This means we need to release the SQLOCK and
6542 * acquire the QLOCK (OK since we have a claim).
6543 * Note that qdrain_syncq will actually dequeue
6544 * this queue from the sq_head list when it is
6545 * convinced all the work is done and release
6546 * the QLOCK before returning.
6547 */
6548 qp->q_sqflags |= Q_SQDRAINING;
6549 mutex_exit(SQLOCK(sq));
6550 mutex_enter(QLOCK(qp));
6551 qdrain_syncq(sq, qp);
6552 mutex_enter(SQLOCK(sq));
6553
6554 /* The queue is drained */
6555 ASSERT(qp->q_sqflags & Q_SQDRAINING);
6556 qp->q_sqflags &= ~Q_SQDRAINING;
6557 /*
6558 * NOTE: After this point qp should not be used since it may be
6559 * closed.
6560 */
6561 }
6562
6563 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6564 flags = sq->sq_flags;
6565
6566 /*
6567 * sq->sq_head cannot change because we hold the
6568 * sqlock. However, a thread CAN decide that it is no longer
6569 * going to drain that queue. However, this should be due to
6570 * a GOAWAY state, and we should see that here.
6571 *
6572 * This loop is not very efficient. One solution may be adding a second
6573 * pointer to the "draining" queue, but it is difficult to do when
6574 * queues are inserted in the middle due to priority ordering. Another
6575 * possibility is to yank the queue out of the sq list and put it onto
6576 * the "draining list" and then put it back if it can't be drained.
6577 */
6578
6579 ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6580 (type & SQ_CI) || sq->sq_head->q_draining);
6581
6582 /* Drop SQ_EXCL for non-CIPUT perimeters */
6583 if (!(type & SQ_CIPUT))
6584 flags &= ~SQ_EXCL;
6585 ASSERT((flags & SQ_EXCL) == 0);
6586
6587 /* Wake up any waiters. */
6588 if (flags & SQ_WANTWAKEUP) {
6589 flags &= ~SQ_WANTWAKEUP;
6590 cv_broadcast(&sq->sq_wait);
6591 }
6592 if (flags & SQ_WANTEXWAKEUP) {
6593 flags &= ~SQ_WANTEXWAKEUP;
6594 cv_broadcast(&sq->sq_exitwait);
6595 }
6596 sq->sq_flags = flags;
6597
6598 ASSERT(sq->sq_count != 0);
6599 /* Release our claim. */
6600 sq->sq_count--;
6601
6602 if (bg_service) {
6603 ASSERT(sq->sq_servcount != 0);
6604 sq->sq_servcount--;
6605 }
6606
6607 mutex_exit(SQLOCK(sq));
6608
6609 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6610 "drain_syncq end:%p", sq);
6611 }
6612
6613
6614 /*
6615 *
6616 * qdrain_syncq can be called (currently) from only one of two places:
6617 * drain_syncq
6618 * putnext (or some variation of it).
6619 * and eventually
6620 * qwait(_sig)
6621 *
6622 * If called from drain_syncq, we found it in the list of queues needing
6623 * service, so there is work to be done (or it wouldn't be in the list).
6624 *
6625 * If called from some putnext variation, it was because the
6626 * perimeter is open, but messages are blocking a putnext and
6627 * there is not a thread working on it. Now a thread could start
6628 * working on it while we are getting ready to do so ourself, but
6629 * the thread would set the q_draining flag, and we can spin out.
6630 *
6631 * As for qwait(_sig), I think I shall let it continue to call
6632 * drain_syncq directly (after all, it will get here eventually).
6633 *
6634 * qdrain_syncq has to terminate when:
6635 * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6636 * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6637 *
6638 * ASSUMES:
6639 * One claim
6640 * QLOCK held
6641 * SQLOCK not held
6642 * Will release QLOCK before returning
6643 */
6644 void
qdrain_syncq(syncq_t * sq,queue_t * q)6645 qdrain_syncq(syncq_t *sq, queue_t *q)
6646 {
6647 mblk_t *bp;
6648 #ifdef DEBUG
6649 uint16_t count;
6650 #endif
6651
6652 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6653 "drain_syncq start:%p", sq);
6654 ASSERT(q->q_syncq == sq);
6655 ASSERT(MUTEX_HELD(QLOCK(q)));
6656 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6657 /*
6658 * For non-CIPUT perimeters, we should be called with the exclusive bit
6659 * set already. For CIPUT perimeters, we will be doing a concurrent
6660 * drain, so it better not be set.
6661 */
6662 ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6663 ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6664 ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6665 /*
6666 * All outer pointers are set, or none of them are
6667 */
6668 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6669 sq->sq_oprev == NULL) ||
6670 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6671 sq->sq_oprev != NULL));
6672 #ifdef DEBUG
6673 count = sq->sq_count;
6674 /*
6675 * This is OK without the putlocks, because we have one
6676 * claim either from the sq_count, or a putcount. We could
6677 * get an erroneous value from other counts, but ours won't
6678 * change, so one way or another, we will have at least a
6679 * value of one.
6680 */
6681 SUM_SQ_PUTCOUNTS(sq, count);
6682 ASSERT(count >= 1);
6683 #endif /* DEBUG */
6684
6685 /*
6686 * The first thing to do is find out if a thread is already draining
6687 * this queue. If so, we are done, just return.
6688 */
6689 if (q->q_draining) {
6690 mutex_exit(QLOCK(q));
6691 return;
6692 }
6693
6694 /*
6695 * If the perimeter is exclusive, there is nothing we can do right now,
6696 * go away. Note that there is nothing to prevent this case from
6697 * changing right after this check, but the spin-out will catch it.
6698 */
6699
6700 /* Tell other threads that we are draining this queue */
6701 q->q_draining = 1; /* Protected by QLOCK */
6702
6703 /*
6704 * If there is nothing to do, clear QFULL as necessary. This caters for
6705 * the case where an empty queue was enqueued onto the syncq.
6706 */
6707 if (q->q_sqhead == NULL) {
6708 ASSERT(q->q_syncqmsgs == 0);
6709 mutex_exit(QLOCK(q));
6710 clr_qfull(q);
6711 mutex_enter(QLOCK(q));
6712 }
6713
6714 /*
6715 * Note that q_sqhead must be re-checked here in case another message
6716 * was enqueued whilst QLOCK was dropped during the call to clr_qfull.
6717 */
6718 for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6719 /*
6720 * Because we can enter this routine just because a putnext is
6721 * blocked, we need to spin out if the perimeter wants to go
6722 * exclusive as well as just blocked. We need to spin out also
6723 * if events are queued on the syncq.
6724 * Don't check for SQ_EXCL, because non-CIPUT perimeters would
6725 * set it, and it can't become exclusive while we hold a claim.
6726 */
6727 if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6728 break;
6729 }
6730
6731 #ifdef DEBUG
6732 /*
6733 * Since we are in qdrain_syncq, we already know the queue,
6734 * but for sanity, we want to check this against the qp that
6735 * was passed in by bp->b_queue.
6736 */
6737
6738 ASSERT(bp->b_queue == q);
6739 ASSERT(bp->b_queue->q_syncq == sq);
6740 bp->b_queue = NULL;
6741
6742 /*
6743 * We would have the following check in the DEBUG code:
6744 *
6745 * if (bp->b_prev != NULL) {
6746 * ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6747 * }
6748 *
6749 * This can't be done, however, since IP modifies qinfo
6750 * structure at run-time (switching between IPv4 qinfo and IPv6
6751 * qinfo), invalidating the check.
6752 * So the assignment to func is left here, but the ASSERT itself
6753 * is removed until the whole issue is resolved.
6754 */
6755 #endif
6756 ASSERT(q->q_sqhead == bp);
6757 q->q_sqhead = bp->b_next;
6758 bp->b_prev = bp->b_next = NULL;
6759 ASSERT(q->q_syncqmsgs > 0);
6760 mutex_exit(QLOCK(q));
6761
6762 ASSERT(bp->b_datap->db_ref != 0);
6763
6764 (void) (*q->q_qinfo->qi_putp)(q, bp);
6765
6766 mutex_enter(QLOCK(q));
6767
6768 /*
6769 * q_syncqmsgs should only be decremented after executing the
6770 * put procedure to avoid message re-ordering. This is due to an
6771 * optimisation in putnext() which can call the put procedure
6772 * directly if it sees q_syncqmsgs == 0 (despite Q_SQQUEUED
6773 * being set).
6774 *
6775 * We also need to clear QFULL in the next service procedure
6776 * queue if this is the last message destined for that queue.
6777 *
6778 * It would make better sense to have some sort of tunable for
6779 * the low water mark, but these semantics are not yet defined.
6780 * So, alas, we use a constant.
6781 */
6782 if (--q->q_syncqmsgs == 0) {
6783 mutex_exit(QLOCK(q));
6784 clr_qfull(q);
6785 mutex_enter(QLOCK(q));
6786 }
6787
6788 /*
6789 * Always clear SQ_EXCL when CIPUT in order to handle
6790 * qwriter(INNER). The putp() can call qwriter and get exclusive
6791 * access IFF this is the only claim. So, we need to test for
6792 * this possibility, acquire the mutex and clear the bit.
6793 */
6794 if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6795 mutex_enter(SQLOCK(sq));
6796 sq->sq_flags &= ~SQ_EXCL;
6797 mutex_exit(SQLOCK(sq));
6798 }
6799 }
6800
6801 /*
6802 * We should either have no messages on this queue, or we were told to
6803 * goaway by a waiter (which we will wake up at the end of this
6804 * function).
6805 */
6806 ASSERT((q->q_sqhead == NULL) ||
6807 (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6808
6809 ASSERT(MUTEX_HELD(QLOCK(q)));
6810 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6811
6812 /* Remove the q from the syncq list if all the messages are drained. */
6813 if (q->q_sqhead == NULL) {
6814 ASSERT(q->q_syncqmsgs == 0);
6815 mutex_enter(SQLOCK(sq));
6816 if (q->q_sqflags & Q_SQQUEUED)
6817 SQRM_Q(sq, q);
6818 mutex_exit(SQLOCK(sq));
6819 /*
6820 * Since the queue is removed from the list, reset its priority.
6821 */
6822 q->q_spri = 0;
6823 }
6824
6825 /*
6826 * Remember, the q_draining flag is used to let another thread know
6827 * that there is a thread currently draining the messages for a queue.
6828 * Since we are now done with this queue (even if there may be messages
6829 * still there), we need to clear this flag so some thread will work on
6830 * it if needed.
6831 */
6832 ASSERT(q->q_draining);
6833 q->q_draining = 0;
6834
6835 /* Called with a claim, so OK to drop all locks. */
6836 mutex_exit(QLOCK(q));
6837
6838 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6839 "drain_syncq end:%p", sq);
6840 }
6841 /* END OF QDRAIN_SYNCQ */
6842
6843
6844 /*
6845 * This is the mate to qdrain_syncq, except that it is putting the message onto
6846 * the queue instead of draining. Since the message is destined for the queue
6847 * that is selected, there is no need to identify the function because the
6848 * message is intended for the put routine for the queue. For debug kernels,
6849 * this routine will do it anyway just in case.
6850 *
6851 * After the message is enqueued on the syncq, it calls putnext_tail()
6852 * which will schedule a background thread to actually process the message.
6853 *
6854 * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6855 * SQLOCK(sq) and QLOCK(q) are not held.
6856 */
6857 void
qfill_syncq(syncq_t * sq,queue_t * q,mblk_t * mp)6858 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6859 {
6860 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6861 ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6862 ASSERT(sq->sq_count > 0);
6863 ASSERT(q->q_syncq == sq);
6864 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6865 sq->sq_oprev == NULL) ||
6866 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6867 sq->sq_oprev != NULL));
6868
6869 mutex_enter(QLOCK(q));
6870
6871 #ifdef DEBUG
6872 /*
6873 * This is used for debug in the qfill_syncq/qdrain_syncq case
6874 * to trace the queue that the message is intended for. Note
6875 * that the original use was to identify the queue and function
6876 * to call on the drain. In the new syncq, we have the context
6877 * of the queue that we are draining, so call it's putproc and
6878 * don't rely on the saved values. But for debug this is still
6879 * useful information.
6880 */
6881 mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6882 mp->b_queue = q;
6883 mp->b_next = NULL;
6884 #endif
6885 ASSERT(q->q_syncq == sq);
6886 /*
6887 * Enqueue the message on the list.
6888 * SQPUT_MP() accesses q_syncqmsgs. We are already holding QLOCK to
6889 * protect it. So it's ok to acquire SQLOCK after SQPUT_MP().
6890 */
6891 SQPUT_MP(q, mp);
6892 mutex_enter(SQLOCK(sq));
6893
6894 /*
6895 * And queue on syncq for scheduling, if not already queued.
6896 * Note that we need the SQLOCK for this, and for testing flags
6897 * at the end to see if we will drain. So grab it now, and
6898 * release it before we call qdrain_syncq or return.
6899 */
6900 if (!(q->q_sqflags & Q_SQQUEUED)) {
6901 q->q_spri = curthread->t_pri;
6902 SQPUT_Q(sq, q);
6903 }
6904 #ifdef DEBUG
6905 else {
6906 /*
6907 * All of these conditions MUST be true!
6908 */
6909 ASSERT(sq->sq_tail != NULL);
6910 if (sq->sq_tail == sq->sq_head) {
6911 ASSERT((q->q_sqprev == NULL) &&
6912 (q->q_sqnext == NULL));
6913 } else {
6914 ASSERT((q->q_sqprev != NULL) ||
6915 (q->q_sqnext != NULL));
6916 }
6917 ASSERT(sq->sq_flags & SQ_QUEUED);
6918 ASSERT(q->q_syncqmsgs != 0);
6919 ASSERT(q->q_sqflags & Q_SQQUEUED);
6920 }
6921 #endif
6922 mutex_exit(QLOCK(q));
6923 /*
6924 * SQLOCK is still held, so sq_count can be safely decremented.
6925 */
6926 sq->sq_count--;
6927
6928 putnext_tail(sq, q, 0);
6929 /* Should not reference sq or q after this point. */
6930 }
6931
6932 /* End of qfill_syncq */
6933
6934 /*
6935 * Remove all messages from a syncq (if qp is NULL) or remove all messages
6936 * that would be put into qp by drain_syncq.
6937 * Used when deleting the syncq (qp == NULL) or when detaching
6938 * a queue (qp != NULL).
6939 * Return non-zero if one or more messages were freed.
6940 *
6941 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
6942 * sq_putlocks are used.
6943 *
6944 * NOTE: This function assumes that it is called from the close() context and
6945 * that all the queues in the syncq are going away. For this reason it doesn't
6946 * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6947 * currently valid, but it is useful to rethink this function to behave properly
6948 * in other cases.
6949 */
6950 int
flush_syncq(syncq_t * sq,queue_t * qp)6951 flush_syncq(syncq_t *sq, queue_t *qp)
6952 {
6953 mblk_t *bp, *mp_head, *mp_next, *mp_prev;
6954 queue_t *q;
6955 int ret = 0;
6956
6957 mutex_enter(SQLOCK(sq));
6958
6959 /*
6960 * Before we leave, we need to make sure there are no
6961 * events listed for this queue. All events for this queue
6962 * will just be freed.
6963 */
6964 if (qp != NULL && sq->sq_evhead != NULL) {
6965 ASSERT(sq->sq_flags & SQ_EVENTS);
6966
6967 mp_prev = NULL;
6968 for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6969 mp_next = bp->b_next;
6970 if (bp->b_queue == qp) {
6971 /* Delete this message */
6972 if (mp_prev != NULL) {
6973 mp_prev->b_next = mp_next;
6974 /*
6975 * Update sq_evtail if the last element
6976 * is removed.
6977 */
6978 if (bp == sq->sq_evtail) {
6979 ASSERT(mp_next == NULL);
6980 sq->sq_evtail = mp_prev;
6981 }
6982 } else
6983 sq->sq_evhead = mp_next;
6984 if (sq->sq_evhead == NULL)
6985 sq->sq_flags &= ~SQ_EVENTS;
6986 bp->b_prev = bp->b_next = NULL;
6987 freemsg(bp);
6988 ret++;
6989 } else {
6990 mp_prev = bp;
6991 }
6992 }
6993 }
6994
6995 /*
6996 * Walk sq_head and:
6997 * - match qp if qp is set, remove it's messages
6998 * - all if qp is not set
6999 */
7000 q = sq->sq_head;
7001 while (q != NULL) {
7002 ASSERT(q->q_syncq == sq);
7003 if ((qp == NULL) || (qp == q)) {
7004 /*
7005 * Yank the messages as a list off the queue
7006 */
7007 mp_head = q->q_sqhead;
7008 /*
7009 * We do not have QLOCK(q) here (which is safe due to
7010 * assumptions mentioned above). To obtain the lock we
7011 * need to release SQLOCK which may allow lots of things
7012 * to change upon us. This place requires more analysis.
7013 */
7014 q->q_sqhead = q->q_sqtail = NULL;
7015 ASSERT(mp_head->b_queue &&
7016 mp_head->b_queue->q_syncq == sq);
7017
7018 /*
7019 * Free each of the messages.
7020 */
7021 for (bp = mp_head; bp != NULL; bp = mp_next) {
7022 mp_next = bp->b_next;
7023 bp->b_prev = bp->b_next = NULL;
7024 freemsg(bp);
7025 ret++;
7026 }
7027 /*
7028 * Now remove the queue from the syncq.
7029 */
7030 ASSERT(q->q_sqflags & Q_SQQUEUED);
7031 SQRM_Q(sq, q);
7032 q->q_spri = 0;
7033 q->q_syncqmsgs = 0;
7034
7035 /*
7036 * If qp was specified, we are done with it and are
7037 * going to drop SQLOCK(sq) and return. We wakeup syncq
7038 * waiters while we still have the SQLOCK.
7039 */
7040 if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7041 sq->sq_flags &= ~SQ_WANTWAKEUP;
7042 cv_broadcast(&sq->sq_wait);
7043 }
7044 /* Drop SQLOCK across clr_qfull */
7045 mutex_exit(SQLOCK(sq));
7046
7047 /*
7048 * We avoid doing the test that drain_syncq does and
7049 * unconditionally clear qfull for every flushed
7050 * message. Since flush_syncq is only called during
7051 * close this should not be a problem.
7052 */
7053 clr_qfull(q);
7054 if (qp != NULL) {
7055 return (ret);
7056 } else {
7057 mutex_enter(SQLOCK(sq));
7058 /*
7059 * The head was removed by SQRM_Q above.
7060 * reread the new head and flush it.
7061 */
7062 q = sq->sq_head;
7063 }
7064 } else {
7065 q = q->q_sqnext;
7066 }
7067 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7068 }
7069
7070 if (sq->sq_flags & SQ_WANTWAKEUP) {
7071 sq->sq_flags &= ~SQ_WANTWAKEUP;
7072 cv_broadcast(&sq->sq_wait);
7073 }
7074
7075 mutex_exit(SQLOCK(sq));
7076 return (ret);
7077 }
7078
7079 /*
7080 * Propagate all messages from a syncq to the next syncq that are associated
7081 * with the specified queue. If the queue is attached to a driver or if the
7082 * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7083 *
7084 * Assumes that the stream is strlock()'ed. We don't come here if there
7085 * are no messages to propagate.
7086 *
7087 * NOTE : If the queue is attached to a driver, all the messages are freed
7088 * as there is no point in propagating the messages from the driver syncq
7089 * to the closing stream head which will in turn get freed later.
7090 */
7091 static int
propagate_syncq(queue_t * qp)7092 propagate_syncq(queue_t *qp)
7093 {
7094 mblk_t *bp, *head, *tail, *prev, *next;
7095 syncq_t *sq;
7096 queue_t *nqp;
7097 syncq_t *nsq;
7098 boolean_t isdriver;
7099 int moved = 0;
7100 uint16_t flags;
7101 pri_t priority = curthread->t_pri;
7102 #ifdef DEBUG
7103 void (*func)();
7104 #endif
7105
7106 sq = qp->q_syncq;
7107 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7108 /* debug macro */
7109 SQ_PUTLOCKS_HELD(sq);
7110 /*
7111 * As entersq() does not increment the sq_count for
7112 * the write side, check sq_count for non-QPERQ
7113 * perimeters alone.
7114 */
7115 ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7116
7117 /*
7118 * propagate_syncq() can be called because of either messages on the
7119 * queue syncq or because on events on the queue syncq. Do actual
7120 * message propagations if there are any messages.
7121 */
7122 if (qp->q_syncqmsgs) {
7123 isdriver = (qp->q_flag & QISDRV);
7124
7125 if (!isdriver) {
7126 nqp = qp->q_next;
7127 nsq = nqp->q_syncq;
7128 ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7129 /* debug macro */
7130 SQ_PUTLOCKS_HELD(nsq);
7131 #ifdef DEBUG
7132 func = (void (*)())nqp->q_qinfo->qi_putp;
7133 #endif
7134 }
7135
7136 SQRM_Q(sq, qp);
7137 priority = MAX(qp->q_spri, priority);
7138 qp->q_spri = 0;
7139 head = qp->q_sqhead;
7140 tail = qp->q_sqtail;
7141 qp->q_sqhead = qp->q_sqtail = NULL;
7142 qp->q_syncqmsgs = 0;
7143
7144 /*
7145 * Walk the list of messages, and free them if this is a driver,
7146 * otherwise reset the b_prev and b_queue value to the new putp.
7147 * Afterward, we will just add the head to the end of the next
7148 * syncq, and point the tail to the end of this one.
7149 */
7150
7151 for (bp = head; bp != NULL; bp = next) {
7152 next = bp->b_next;
7153 if (isdriver) {
7154 bp->b_prev = bp->b_next = NULL;
7155 freemsg(bp);
7156 continue;
7157 }
7158 /* Change the q values for this message */
7159 bp->b_queue = nqp;
7160 #ifdef DEBUG
7161 bp->b_prev = (mblk_t *)func;
7162 #endif
7163 moved++;
7164 }
7165 /*
7166 * Attach list of messages to the end of the new queue (if there
7167 * is a list of messages).
7168 */
7169
7170 if (!isdriver && head != NULL) {
7171 ASSERT(tail != NULL);
7172 if (nqp->q_sqhead == NULL) {
7173 nqp->q_sqhead = head;
7174 } else {
7175 ASSERT(nqp->q_sqtail != NULL);
7176 nqp->q_sqtail->b_next = head;
7177 }
7178 nqp->q_sqtail = tail;
7179 /*
7180 * When messages are moved from high priority queue to
7181 * another queue, the destination queue priority is
7182 * upgraded.
7183 */
7184
7185 if (priority > nqp->q_spri)
7186 nqp->q_spri = priority;
7187
7188 SQPUT_Q(nsq, nqp);
7189
7190 nqp->q_syncqmsgs += moved;
7191 ASSERT(nqp->q_syncqmsgs != 0);
7192 }
7193 }
7194
7195 /*
7196 * Before we leave, we need to make sure there are no
7197 * events listed for this queue. All events for this queue
7198 * will just be freed.
7199 */
7200 if (sq->sq_evhead != NULL) {
7201 ASSERT(sq->sq_flags & SQ_EVENTS);
7202 prev = NULL;
7203 for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7204 next = bp->b_next;
7205 if (bp->b_queue == qp) {
7206 /* Delete this message */
7207 if (prev != NULL) {
7208 prev->b_next = next;
7209 /*
7210 * Update sq_evtail if the last element
7211 * is removed.
7212 */
7213 if (bp == sq->sq_evtail) {
7214 ASSERT(next == NULL);
7215 sq->sq_evtail = prev;
7216 }
7217 } else
7218 sq->sq_evhead = next;
7219 if (sq->sq_evhead == NULL)
7220 sq->sq_flags &= ~SQ_EVENTS;
7221 bp->b_prev = bp->b_next = NULL;
7222 freemsg(bp);
7223 } else {
7224 prev = bp;
7225 }
7226 }
7227 }
7228
7229 flags = sq->sq_flags;
7230
7231 /* Wake up any waiter before leaving. */
7232 if (flags & SQ_WANTWAKEUP) {
7233 flags &= ~SQ_WANTWAKEUP;
7234 cv_broadcast(&sq->sq_wait);
7235 }
7236 sq->sq_flags = flags;
7237
7238 return (moved);
7239 }
7240
7241 /*
7242 * Try and upgrade to exclusive access at the inner perimeter. If this can
7243 * not be done without blocking then request will be queued on the syncq
7244 * and drain_syncq will run it later.
7245 *
7246 * This routine can only be called from put or service procedures plus
7247 * asynchronous callback routines that have properly entered the queue (with
7248 * entersq). Thus qwriter_inner assumes the caller has one claim on the syncq
7249 * associated with q.
7250 */
7251 void
qwriter_inner(queue_t * q,mblk_t * mp,void (* func)())7252 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7253 {
7254 syncq_t *sq = q->q_syncq;
7255 uint16_t count;
7256
7257 mutex_enter(SQLOCK(sq));
7258 count = sq->sq_count;
7259 SQ_PUTLOCKS_ENTER(sq);
7260 SUM_SQ_PUTCOUNTS(sq, count);
7261 ASSERT(count >= 1);
7262 ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7263
7264 if (count == 1) {
7265 /*
7266 * Can upgrade. This case also handles nested qwriter calls
7267 * (when the qwriter callback function calls qwriter). In that
7268 * case SQ_EXCL is already set.
7269 */
7270 sq->sq_flags |= SQ_EXCL;
7271 SQ_PUTLOCKS_EXIT(sq);
7272 mutex_exit(SQLOCK(sq));
7273 (*func)(q, mp);
7274 /*
7275 * Assumes that leavesq, putnext, and drain_syncq will reset
7276 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7277 * until putnext, leavesq, or drain_syncq drops it.
7278 * That way we handle nested qwriter(INNER) without dropping
7279 * SQ_EXCL until the outermost qwriter callback routine is
7280 * done.
7281 */
7282 return;
7283 }
7284 SQ_PUTLOCKS_EXIT(sq);
7285 sqfill_events(sq, q, mp, func);
7286 }
7287
7288 /*
7289 * Synchronous callback support functions
7290 */
7291
7292 /*
7293 * Allocate a callback parameter structure.
7294 * Assumes that caller initializes the flags and the id.
7295 * Acquires SQLOCK(sq) if non-NULL is returned.
7296 */
7297 callbparams_t *
callbparams_alloc(syncq_t * sq,void (* func)(void *),void * arg,int kmflags)7298 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7299 {
7300 callbparams_t *cbp;
7301 size_t size = sizeof (callbparams_t);
7302
7303 cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7304
7305 /*
7306 * Only try tryhard allocation if the caller is ready to panic.
7307 * Otherwise just fail.
7308 */
7309 if (cbp == NULL) {
7310 if (kmflags & KM_PANIC)
7311 cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7312 &size, kmflags);
7313 else
7314 return (NULL);
7315 }
7316
7317 ASSERT(size >= sizeof (callbparams_t));
7318 cbp->cbp_size = size;
7319 cbp->cbp_sq = sq;
7320 cbp->cbp_func = func;
7321 cbp->cbp_arg = arg;
7322 mutex_enter(SQLOCK(sq));
7323 cbp->cbp_next = sq->sq_callbpend;
7324 sq->sq_callbpend = cbp;
7325 return (cbp);
7326 }
7327
7328 void
callbparams_free(syncq_t * sq,callbparams_t * cbp)7329 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7330 {
7331 callbparams_t **pp, *p;
7332
7333 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7334
7335 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7336 if (p == cbp) {
7337 *pp = p->cbp_next;
7338 kmem_free(p, p->cbp_size);
7339 return;
7340 }
7341 }
7342 (void) (STRLOG(0, 0, 0, SL_CONSOLE,
7343 "callbparams_free: not found\n"));
7344 }
7345
7346 void
callbparams_free_id(syncq_t * sq,callbparams_id_t id,int32_t flag)7347 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7348 {
7349 callbparams_t **pp, *p;
7350
7351 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7352
7353 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7354 if (p->cbp_id == id && p->cbp_flags == flag) {
7355 *pp = p->cbp_next;
7356 kmem_free(p, p->cbp_size);
7357 return;
7358 }
7359 }
7360 (void) (STRLOG(0, 0, 0, SL_CONSOLE,
7361 "callbparams_free_id: not found\n"));
7362 }
7363
7364 /*
7365 * Callback wrapper function used by once-only callbacks that can be
7366 * cancelled (qtimeout and qbufcall)
7367 * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7368 * cancelled by the qun* functions.
7369 */
7370 void
qcallbwrapper(void * arg)7371 qcallbwrapper(void *arg)
7372 {
7373 callbparams_t *cbp = arg;
7374 syncq_t *sq;
7375 uint16_t count = 0;
7376 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7377 uint16_t type;
7378
7379 sq = cbp->cbp_sq;
7380 mutex_enter(SQLOCK(sq));
7381 type = sq->sq_type;
7382 if (!(type & SQ_CICB)) {
7383 count = sq->sq_count;
7384 SQ_PUTLOCKS_ENTER(sq);
7385 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7386 SUM_SQ_PUTCOUNTS(sq, count);
7387 sq->sq_needexcl++;
7388 ASSERT(sq->sq_needexcl != 0); /* wraparound */
7389 waitflags |= SQ_MESSAGES;
7390 }
7391 /* Can not handle exclusive entry at outer perimeter */
7392 ASSERT(type & SQ_COCB);
7393
7394 while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7395 if ((sq->sq_callbflags & cbp->cbp_flags) &&
7396 (sq->sq_cancelid == cbp->cbp_id)) {
7397 /* timeout has been cancelled */
7398 sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7399 callbparams_free(sq, cbp);
7400 if (!(type & SQ_CICB)) {
7401 ASSERT(sq->sq_needexcl > 0);
7402 sq->sq_needexcl--;
7403 if (sq->sq_needexcl == 0) {
7404 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7405 }
7406 SQ_PUTLOCKS_EXIT(sq);
7407 }
7408 mutex_exit(SQLOCK(sq));
7409 return;
7410 }
7411 sq->sq_flags |= SQ_WANTWAKEUP;
7412 if (!(type & SQ_CICB)) {
7413 SQ_PUTLOCKS_EXIT(sq);
7414 }
7415 cv_wait(&sq->sq_wait, SQLOCK(sq));
7416 if (!(type & SQ_CICB)) {
7417 count = sq->sq_count;
7418 SQ_PUTLOCKS_ENTER(sq);
7419 SUM_SQ_PUTCOUNTS(sq, count);
7420 }
7421 }
7422
7423 sq->sq_count++;
7424 ASSERT(sq->sq_count != 0); /* Wraparound */
7425 if (!(type & SQ_CICB)) {
7426 ASSERT(count == 0);
7427 sq->sq_flags |= SQ_EXCL;
7428 ASSERT(sq->sq_needexcl > 0);
7429 sq->sq_needexcl--;
7430 if (sq->sq_needexcl == 0) {
7431 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7432 }
7433 SQ_PUTLOCKS_EXIT(sq);
7434 }
7435
7436 mutex_exit(SQLOCK(sq));
7437
7438 cbp->cbp_func(cbp->cbp_arg);
7439
7440 /*
7441 * We drop the lock only for leavesq to re-acquire it.
7442 * Possible optimization is inline of leavesq.
7443 */
7444 mutex_enter(SQLOCK(sq));
7445 callbparams_free(sq, cbp);
7446 mutex_exit(SQLOCK(sq));
7447 leavesq(sq, SQ_CALLBACK);
7448 }
7449
7450 /*
7451 * No need to grab sq_putlocks here. See comment in strsubr.h that
7452 * explains when sq_putlocks are used.
7453 *
7454 * sq_count (or one of the sq_putcounts) has already been
7455 * decremented by the caller, and if SQ_QUEUED, we need to call
7456 * drain_syncq (the global syncq drain).
7457 * If putnext_tail is called with the SQ_EXCL bit set, we are in
7458 * one of two states, non-CIPUT perimeter, and we need to clear
7459 * it, or we went exclusive in the put procedure. In any case,
7460 * we want to clear the bit now, and it is probably easier to do
7461 * this at the beginning of this function (remember, we hold
7462 * the SQLOCK). Lastly, if there are other messages queued
7463 * on the syncq (and not for our destination), enable the syncq
7464 * for background work.
7465 */
7466
7467 /* ARGSUSED */
7468 void
putnext_tail(syncq_t * sq,queue_t * qp,uint32_t passflags)7469 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7470 {
7471 uint16_t flags = sq->sq_flags;
7472
7473 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7474 ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7475
7476 /* Clear SQ_EXCL if set in passflags */
7477 if (passflags & SQ_EXCL) {
7478 flags &= ~SQ_EXCL;
7479 }
7480 if (flags & SQ_WANTWAKEUP) {
7481 flags &= ~SQ_WANTWAKEUP;
7482 cv_broadcast(&sq->sq_wait);
7483 }
7484 if (flags & SQ_WANTEXWAKEUP) {
7485 flags &= ~SQ_WANTEXWAKEUP;
7486 cv_broadcast(&sq->sq_exitwait);
7487 }
7488 sq->sq_flags = flags;
7489
7490 /*
7491 * We have cleared SQ_EXCL if we were asked to, and started
7492 * the wakeup process for waiters. If there are no writers
7493 * then we need to drain the syncq if we were told to, or
7494 * enable the background thread to do it.
7495 */
7496 if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7497 if ((passflags & SQ_QUEUED) ||
7498 (sq->sq_svcflags & SQ_DISABLED)) {
7499 /* drain_syncq will take care of events in the list */
7500 drain_syncq(sq);
7501 return;
7502 } else if (flags & SQ_QUEUED) {
7503 sqenable(sq);
7504 }
7505 }
7506 /* Drop the SQLOCK on exit */
7507 mutex_exit(SQLOCK(sq));
7508 TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7509 "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7510 }
7511
7512 void
set_qend(queue_t * q)7513 set_qend(queue_t *q)
7514 {
7515 mutex_enter(QLOCK(q));
7516 if (!O_SAMESTR(q))
7517 q->q_flag |= QEND;
7518 else
7519 q->q_flag &= ~QEND;
7520 mutex_exit(QLOCK(q));
7521 q = _OTHERQ(q);
7522 mutex_enter(QLOCK(q));
7523 if (!O_SAMESTR(q))
7524 q->q_flag |= QEND;
7525 else
7526 q->q_flag &= ~QEND;
7527 mutex_exit(QLOCK(q));
7528 }
7529
7530 /*
7531 * Set QFULL in next service procedure queue (that cares) if not already
7532 * set and if there are already more messages on the syncq than
7533 * sq_max_size. If sq_max_size is 0, no flow control will be asserted on
7534 * any syncq.
7535 *
7536 * The fq here is the next queue with a service procedure. This is where
7537 * we would fail canputnext, so this is where we need to set QFULL.
7538 * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7539 *
7540 * We already have QLOCK at this point. To avoid cross-locks with
7541 * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7542 * SQLOCK and sd_reflock, we need to drop respective locks first.
7543 */
7544 void
set_qfull(queue_t * q)7545 set_qfull(queue_t *q)
7546 {
7547 queue_t *fq = NULL;
7548
7549 ASSERT(MUTEX_HELD(QLOCK(q)));
7550 if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7551 (q->q_syncqmsgs > sq_max_size)) {
7552 if ((fq = q->q_nfsrv) == q) {
7553 fq->q_flag |= QFULL;
7554 } else {
7555 mutex_exit(QLOCK(q));
7556 mutex_enter(QLOCK(fq));
7557 fq->q_flag |= QFULL;
7558 mutex_exit(QLOCK(fq));
7559 mutex_enter(QLOCK(q));
7560 }
7561 }
7562 }
7563
7564 void
clr_qfull(queue_t * q)7565 clr_qfull(queue_t *q)
7566 {
7567 queue_t *oq = q;
7568
7569 q = q->q_nfsrv;
7570 /* Fast check if there is any work to do before getting the lock. */
7571 if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7572 return;
7573 }
7574
7575 /*
7576 * Do not reset QFULL (and backenable) if the q_count is the reason
7577 * for QFULL being set.
7578 */
7579 mutex_enter(QLOCK(q));
7580 /*
7581 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7582 * Hence clear the QFULL.
7583 * If both q_count and q_mblkcnt are less than the hiwat mark,
7584 * clear the QFULL.
7585 */
7586 if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7587 (q->q_mblkcnt < q->q_hiwat))) {
7588 q->q_flag &= ~QFULL;
7589 /*
7590 * A little more confusing, how about this way:
7591 * if someone wants to write,
7592 * AND
7593 * both counts are less than the lowat mark
7594 * OR
7595 * the lowat mark is zero
7596 * THEN
7597 * backenable
7598 */
7599 if ((q->q_flag & QWANTW) &&
7600 (((q->q_count < q->q_lowat) &&
7601 (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7602 q->q_flag &= ~QWANTW;
7603 mutex_exit(QLOCK(q));
7604 backenable(oq, 0);
7605 } else
7606 mutex_exit(QLOCK(q));
7607 } else
7608 mutex_exit(QLOCK(q));
7609 }
7610
7611 /*
7612 * Set the forward service procedure pointer.
7613 *
7614 * Called at insert-time to cache a queue's next forward service procedure in
7615 * q_nfsrv; used by canput() and canputnext(). If the queue to be inserted
7616 * has a service procedure then q_nfsrv points to itself. If the queue to be
7617 * inserted does not have a service procedure, then q_nfsrv points to the next
7618 * queue forward that has a service procedure. If the queue is at the logical
7619 * end of the stream (driver for write side, stream head for the read side)
7620 * and does not have a service procedure, then q_nfsrv also points to itself.
7621 */
7622 void
set_nfsrv_ptr(queue_t * rnew,queue_t * wnew,queue_t * prev_rq,queue_t * prev_wq)7623 set_nfsrv_ptr(
7624 queue_t *rnew, /* read queue pointer to new module */
7625 queue_t *wnew, /* write queue pointer to new module */
7626 queue_t *prev_rq, /* read queue pointer to the module above */
7627 queue_t *prev_wq) /* write queue pointer to the module above */
7628 {
7629 queue_t *qp;
7630
7631 if (prev_wq->q_next == NULL) {
7632 /*
7633 * Insert the driver, initialize the driver and stream head.
7634 * In this case, prev_rq/prev_wq should be the stream head.
7635 * _I_INSERT does not allow inserting a driver. Make sure
7636 * that it is not an insertion.
7637 */
7638 ASSERT(!(rnew->q_flag & _QINSERTING));
7639 wnew->q_nfsrv = wnew;
7640 if (rnew->q_qinfo->qi_srvp)
7641 rnew->q_nfsrv = rnew;
7642 else
7643 rnew->q_nfsrv = prev_rq;
7644 prev_rq->q_nfsrv = prev_rq;
7645 prev_wq->q_nfsrv = prev_wq;
7646 } else {
7647 /*
7648 * set up read side q_nfsrv pointer. This MUST be done
7649 * before setting the write side, because the setting of
7650 * the write side for a fifo may depend on it.
7651 *
7652 * Suppose we have a fifo that only has pipemod pushed.
7653 * pipemod has no read or write service procedures, so
7654 * nfsrv for both pipemod queues points to prev_rq (the
7655 * stream read head). Now push bufmod (which has only a
7656 * read service procedure). Doing the write side first,
7657 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7658 * is WRONG; the next queue forward from wnew with a
7659 * service procedure will be rnew, not the stream read head.
7660 * Since the downstream queue (which in the case of a fifo
7661 * is the read queue rnew) can affect upstream queues, it
7662 * needs to be done first. Setting up the read side first
7663 * sets nfsrv for both pipemod queues to rnew and then
7664 * when the write side is set up, wnew-q_nfsrv will also
7665 * point to rnew.
7666 */
7667 if (rnew->q_qinfo->qi_srvp) {
7668 /*
7669 * use _OTHERQ() because, if this is a pipe, next
7670 * module may have been pushed from other end and
7671 * q_next could be a read queue.
7672 */
7673 qp = _OTHERQ(prev_wq->q_next);
7674 while (qp && qp->q_nfsrv != qp) {
7675 qp->q_nfsrv = rnew;
7676 qp = backq(qp);
7677 }
7678 rnew->q_nfsrv = rnew;
7679 } else
7680 rnew->q_nfsrv = prev_rq->q_nfsrv;
7681
7682 /* set up write side q_nfsrv pointer */
7683 if (wnew->q_qinfo->qi_srvp) {
7684 wnew->q_nfsrv = wnew;
7685
7686 /*
7687 * For insertion, need to update nfsrv of the modules
7688 * above which do not have a service routine.
7689 */
7690 if (rnew->q_flag & _QINSERTING) {
7691 for (qp = prev_wq;
7692 qp != NULL && qp->q_nfsrv != qp;
7693 qp = backq(qp)) {
7694 qp->q_nfsrv = wnew->q_nfsrv;
7695 }
7696 }
7697 } else {
7698 if (prev_wq->q_next == prev_rq)
7699 /*
7700 * Since prev_wq/prev_rq are the middle of a
7701 * fifo, wnew/rnew will also be the middle of
7702 * a fifo and wnew's nfsrv is same as rnew's.
7703 */
7704 wnew->q_nfsrv = rnew->q_nfsrv;
7705 else
7706 wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7707 }
7708 }
7709 }
7710
7711 /*
7712 * Reset the forward service procedure pointer; called at remove-time.
7713 */
7714 void
reset_nfsrv_ptr(queue_t * rqp,queue_t * wqp)7715 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7716 {
7717 queue_t *tmp_qp;
7718
7719 /* Reset the write side q_nfsrv pointer for _I_REMOVE */
7720 if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7721 for (tmp_qp = backq(wqp);
7722 tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7723 tmp_qp = backq(tmp_qp)) {
7724 tmp_qp->q_nfsrv = wqp->q_nfsrv;
7725 }
7726 }
7727
7728 /* reset the read side q_nfsrv pointer */
7729 if (rqp->q_qinfo->qi_srvp) {
7730 if (wqp->q_next) { /* non-driver case */
7731 tmp_qp = _OTHERQ(wqp->q_next);
7732 while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7733 /* Note that rqp->q_next cannot be NULL */
7734 ASSERT(rqp->q_next != NULL);
7735 tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7736 tmp_qp = backq(tmp_qp);
7737 }
7738 }
7739 }
7740 }
7741
7742 /*
7743 * This routine should be called after all stream geometry changes to update
7744 * the stream head cached struio() rd/wr queue pointers. Note must be called
7745 * with the streamlock()ed.
7746 *
7747 * Note: only enables Synchronous STREAMS for a side of a Stream which has
7748 * an explicit synchronous barrier module queue. That is, a queue that
7749 * has specified a struio() type.
7750 */
7751 static void
strsetuio(stdata_t * stp)7752 strsetuio(stdata_t *stp)
7753 {
7754 queue_t *wrq;
7755
7756 if (stp->sd_flag & STPLEX) {
7757 /*
7758 * Not streamhead, but a mux, so no Synchronous STREAMS.
7759 */
7760 stp->sd_struiowrq = NULL;
7761 stp->sd_struiordq = NULL;
7762 return;
7763 }
7764 /*
7765 * Scan the write queue(s) while synchronous
7766 * until we find a qinfo uio type specified.
7767 */
7768 wrq = stp->sd_wrq->q_next;
7769 while (wrq) {
7770 if (wrq->q_struiot == STRUIOT_NONE) {
7771 wrq = 0;
7772 break;
7773 }
7774 if (wrq->q_struiot != STRUIOT_DONTCARE)
7775 break;
7776 if (! _SAMESTR(wrq)) {
7777 wrq = 0;
7778 break;
7779 }
7780 wrq = wrq->q_next;
7781 }
7782 stp->sd_struiowrq = wrq;
7783 /*
7784 * Scan the read queue(s) while synchronous
7785 * until we find a qinfo uio type specified.
7786 */
7787 wrq = stp->sd_wrq->q_next;
7788 while (wrq) {
7789 if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7790 wrq = 0;
7791 break;
7792 }
7793 if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7794 break;
7795 if (! _SAMESTR(wrq)) {
7796 wrq = 0;
7797 break;
7798 }
7799 wrq = wrq->q_next;
7800 }
7801 stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7802 }
7803
7804 /*
7805 * pass_wput, unblocks the passthru queues, so that
7806 * messages can arrive at muxs lower read queue, before
7807 * I_LINK/I_UNLINK is acked/nacked.
7808 */
7809 static void
pass_wput(queue_t * q,mblk_t * mp)7810 pass_wput(queue_t *q, mblk_t *mp)
7811 {
7812 syncq_t *sq;
7813
7814 sq = _RD(q)->q_syncq;
7815 if (sq->sq_flags & SQ_BLOCKED)
7816 unblocksq(sq, SQ_BLOCKED, 0);
7817 putnext(q, mp);
7818 }
7819
7820 /*
7821 * Set up queues for the link/unlink.
7822 * Create a new queue and block it and then insert it
7823 * below the stream head on the lower stream.
7824 * This prevents any messages from arriving during the setq
7825 * as well as while the mux is processing the LINK/I_UNLINK.
7826 * The blocked passq is unblocked once the LINK/I_UNLINK has
7827 * been acked or nacked or if a message is generated and sent
7828 * down muxs write put procedure.
7829 * See pass_wput().
7830 *
7831 * After the new queue is inserted, all messages coming from below are
7832 * blocked. The call to strlock will ensure that all activity in the stream head
7833 * read queue syncq is stopped (sq_count drops to zero).
7834 */
7835 static queue_t *
link_addpassthru(stdata_t * stpdown)7836 link_addpassthru(stdata_t *stpdown)
7837 {
7838 queue_t *passq;
7839 sqlist_t sqlist;
7840
7841 passq = allocq();
7842 STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7843 /* setq might sleep in allocator - avoid holding locks. */
7844 setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7845 SQ_CI|SQ_CO, B_FALSE);
7846 claimq(passq);
7847 blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7848 insertq(STREAM(passq), passq);
7849
7850 /*
7851 * Use strlock() to wait for the stream head sq_count to drop to zero
7852 * since we are going to change q_ptr in the stream head. Note that
7853 * insertq() doesn't wait for any syncq counts to drop to zero.
7854 */
7855 sqlist.sqlist_head = NULL;
7856 sqlist.sqlist_index = 0;
7857 sqlist.sqlist_size = sizeof (sqlist_t);
7858 sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7859 strlock(stpdown, &sqlist);
7860 strunlock(stpdown, &sqlist);
7861
7862 releaseq(passq);
7863 return (passq);
7864 }
7865
7866 /*
7867 * Let messages flow up into the mux by removing
7868 * the passq.
7869 */
7870 static void
link_rempassthru(queue_t * passq)7871 link_rempassthru(queue_t *passq)
7872 {
7873 claimq(passq);
7874 removeq(passq);
7875 releaseq(passq);
7876 freeq(passq);
7877 }
7878
7879 /*
7880 * Wait for the condition variable pointed to by `cvp' to be signaled,
7881 * or for `tim' milliseconds to elapse, whichever comes first. If `tim'
7882 * is negative, then there is no time limit. If `nosigs' is non-zero,
7883 * then the wait will be non-interruptible.
7884 *
7885 * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7886 */
7887 clock_t
str_cv_wait(kcondvar_t * cvp,kmutex_t * mp,clock_t tim,int nosigs)7888 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7889 {
7890 clock_t ret;
7891
7892 if (tim < 0) {
7893 if (nosigs) {
7894 cv_wait(cvp, mp);
7895 ret = 1;
7896 } else {
7897 ret = cv_wait_sig(cvp, mp);
7898 }
7899 } else if (tim > 0) {
7900 /*
7901 * convert milliseconds to clock ticks
7902 */
7903 if (nosigs) {
7904 ret = cv_reltimedwait(cvp, mp,
7905 MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7906 } else {
7907 ret = cv_reltimedwait_sig(cvp, mp,
7908 MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7909 }
7910 } else {
7911 ret = -1;
7912 }
7913 return (ret);
7914 }
7915
7916 /*
7917 * Wait until the stream head can determine if it is at the mark but
7918 * don't wait forever to prevent a race condition between the "mark" state
7919 * in the stream head and any mark state in the caller/user of this routine.
7920 *
7921 * This is used by sockets and for a socket it would be incorrect
7922 * to return a failure for SIOCATMARK when there is no data in the receive
7923 * queue and the marked urgent data is traveling up the stream.
7924 *
7925 * This routine waits until the mark is known by waiting for one of these
7926 * three events:
7927 * The stream head read queue becoming non-empty (including an EOF).
7928 * The STRATMARK flag being set (due to a MSGMARKNEXT message).
7929 * The STRNOTATMARK flag being set (which indicates that the transport
7930 * has sent a MSGNOTMARKNEXT message to indicate that it is not at
7931 * the mark).
7932 *
7933 * The routine returns 1 if the stream is at the mark; 0 if it can
7934 * be determined that the stream is not at the mark.
7935 * If the wait times out and it can't determine
7936 * whether or not the stream might be at the mark the routine will return -1.
7937 *
7938 * Note: This routine should only be used when a mark is pending i.e.,
7939 * in the socket case the SIGURG has been posted.
7940 * Note2: This can not wakeup just because synchronous streams indicate
7941 * that data is available since it is not possible to use the synchronous
7942 * streams interfaces to determine the b_flag value for the data queued below
7943 * the stream head.
7944 */
7945 int
strwaitmark(vnode_t * vp)7946 strwaitmark(vnode_t *vp)
7947 {
7948 struct stdata *stp = vp->v_stream;
7949 queue_t *rq = _RD(stp->sd_wrq);
7950 int mark;
7951
7952 mutex_enter(&stp->sd_lock);
7953 while (rq->q_first == NULL &&
7954 !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7955 stp->sd_flag |= RSLEEP;
7956
7957 /* Wait for 100 milliseconds for any state change. */
7958 if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7959 mutex_exit(&stp->sd_lock);
7960 return (-1);
7961 }
7962 }
7963 if (stp->sd_flag & STRATMARK)
7964 mark = 1;
7965 else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7966 mark = 1;
7967 else
7968 mark = 0;
7969
7970 mutex_exit(&stp->sd_lock);
7971 return (mark);
7972 }
7973
7974 /*
7975 * Set a read side error. If persist is set change the socket error
7976 * to persistent. If errfunc is set install the function as the exported
7977 * error handler.
7978 */
7979 void
strsetrerror(vnode_t * vp,int error,int persist,errfunc_t errfunc)7980 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7981 {
7982 struct stdata *stp = vp->v_stream;
7983
7984 mutex_enter(&stp->sd_lock);
7985 stp->sd_rerror = error;
7986 if (error == 0 && errfunc == NULL)
7987 stp->sd_flag &= ~STRDERR;
7988 else
7989 stp->sd_flag |= STRDERR;
7990 if (persist) {
7991 stp->sd_flag &= ~STRDERRNONPERSIST;
7992 } else {
7993 stp->sd_flag |= STRDERRNONPERSIST;
7994 }
7995 stp->sd_rderrfunc = errfunc;
7996 if (error != 0 || errfunc != NULL) {
7997 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
7998 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
7999 cv_broadcast(&stp->sd_monitor); /* ioctllers */
8000
8001 mutex_exit(&stp->sd_lock);
8002 pollwakeup(&stp->sd_pollist, POLLERR);
8003 mutex_enter(&stp->sd_lock);
8004
8005 if (stp->sd_sigflags & S_ERROR)
8006 strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8007 }
8008 mutex_exit(&stp->sd_lock);
8009 }
8010
8011 /*
8012 * Set a write side error. If persist is set change the socket error
8013 * to persistent.
8014 */
8015 void
strsetwerror(vnode_t * vp,int error,int persist,errfunc_t errfunc)8016 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8017 {
8018 struct stdata *stp = vp->v_stream;
8019
8020 mutex_enter(&stp->sd_lock);
8021 stp->sd_werror = error;
8022 if (error == 0 && errfunc == NULL)
8023 stp->sd_flag &= ~STWRERR;
8024 else
8025 stp->sd_flag |= STWRERR;
8026 if (persist) {
8027 stp->sd_flag &= ~STWRERRNONPERSIST;
8028 } else {
8029 stp->sd_flag |= STWRERRNONPERSIST;
8030 }
8031 stp->sd_wrerrfunc = errfunc;
8032 if (error != 0 || errfunc != NULL) {
8033 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
8034 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
8035 cv_broadcast(&stp->sd_monitor); /* ioctllers */
8036
8037 mutex_exit(&stp->sd_lock);
8038 pollwakeup(&stp->sd_pollist, POLLERR);
8039 mutex_enter(&stp->sd_lock);
8040
8041 if (stp->sd_sigflags & S_ERROR)
8042 strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8043 }
8044 mutex_exit(&stp->sd_lock);
8045 }
8046
8047 /*
8048 * Make the stream return 0 (EOF) when all data has been read.
8049 * No effect on write side.
8050 */
8051 void
strseteof(vnode_t * vp,int eof)8052 strseteof(vnode_t *vp, int eof)
8053 {
8054 struct stdata *stp = vp->v_stream;
8055
8056 mutex_enter(&stp->sd_lock);
8057 if (!eof) {
8058 stp->sd_flag &= ~STREOF;
8059 mutex_exit(&stp->sd_lock);
8060 return;
8061 }
8062 stp->sd_flag |= STREOF;
8063 if (stp->sd_flag & RSLEEP) {
8064 stp->sd_flag &= ~RSLEEP;
8065 cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8066 }
8067
8068 mutex_exit(&stp->sd_lock);
8069 pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8070 mutex_enter(&stp->sd_lock);
8071
8072 if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8073 strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8074 mutex_exit(&stp->sd_lock);
8075 }
8076
8077 void
strflushrq(vnode_t * vp,int flag)8078 strflushrq(vnode_t *vp, int flag)
8079 {
8080 struct stdata *stp = vp->v_stream;
8081
8082 mutex_enter(&stp->sd_lock);
8083 flushq(_RD(stp->sd_wrq), flag);
8084 mutex_exit(&stp->sd_lock);
8085 }
8086
8087 void
strsetrputhooks(vnode_t * vp,uint_t flags,msgfunc_t protofunc,msgfunc_t miscfunc)8088 strsetrputhooks(vnode_t *vp, uint_t flags,
8089 msgfunc_t protofunc, msgfunc_t miscfunc)
8090 {
8091 struct stdata *stp = vp->v_stream;
8092
8093 mutex_enter(&stp->sd_lock);
8094
8095 if (protofunc == NULL)
8096 stp->sd_rprotofunc = strrput_proto;
8097 else
8098 stp->sd_rprotofunc = protofunc;
8099
8100 if (miscfunc == NULL)
8101 stp->sd_rmiscfunc = strrput_misc;
8102 else
8103 stp->sd_rmiscfunc = miscfunc;
8104
8105 if (flags & SH_CONSOL_DATA)
8106 stp->sd_rput_opt |= SR_CONSOL_DATA;
8107 else
8108 stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8109
8110 if (flags & SH_SIGALLDATA)
8111 stp->sd_rput_opt |= SR_SIGALLDATA;
8112 else
8113 stp->sd_rput_opt &= ~SR_SIGALLDATA;
8114
8115 if (flags & SH_IGN_ZEROLEN)
8116 stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8117 else
8118 stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8119
8120 mutex_exit(&stp->sd_lock);
8121 }
8122
8123 void
strsetwputhooks(vnode_t * vp,uint_t flags,clock_t closetime)8124 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8125 {
8126 struct stdata *stp = vp->v_stream;
8127
8128 mutex_enter(&stp->sd_lock);
8129 stp->sd_closetime = closetime;
8130
8131 if (flags & SH_SIGPIPE)
8132 stp->sd_wput_opt |= SW_SIGPIPE;
8133 else
8134 stp->sd_wput_opt &= ~SW_SIGPIPE;
8135 if (flags & SH_RECHECK_ERR)
8136 stp->sd_wput_opt |= SW_RECHECK_ERR;
8137 else
8138 stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8139
8140 mutex_exit(&stp->sd_lock);
8141 }
8142
8143 void
strsetrwputdatahooks(vnode_t * vp,msgfunc_t rdatafunc,msgfunc_t wdatafunc)8144 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8145 {
8146 struct stdata *stp = vp->v_stream;
8147
8148 mutex_enter(&stp->sd_lock);
8149
8150 stp->sd_rputdatafunc = rdatafunc;
8151 stp->sd_wputdatafunc = wdatafunc;
8152
8153 mutex_exit(&stp->sd_lock);
8154 }
8155
8156 /* Used within framework when the queue is already locked */
8157 void
qenable_locked(queue_t * q)8158 qenable_locked(queue_t *q)
8159 {
8160 stdata_t *stp = STREAM(q);
8161
8162 ASSERT(MUTEX_HELD(QLOCK(q)));
8163
8164 if (!q->q_qinfo->qi_srvp)
8165 return;
8166
8167 /*
8168 * Do not place on run queue if already enabled or closing.
8169 */
8170 if (q->q_flag & (QWCLOSE|QENAB))
8171 return;
8172
8173 /*
8174 * mark queue enabled and place on run list if it is not already being
8175 * serviced. If it is serviced, the runservice() function will detect
8176 * that QENAB is set and call service procedure before clearing
8177 * QINSERVICE flag.
8178 */
8179 q->q_flag |= QENAB;
8180 if (q->q_flag & QINSERVICE)
8181 return;
8182
8183 /* Record the time of qenable */
8184 q->q_qtstamp = ddi_get_lbolt();
8185
8186 /*
8187 * Put the queue in the stp list and schedule it for background
8188 * processing if it is not already scheduled or if stream head does not
8189 * intent to process it in the foreground later by setting
8190 * STRS_WILLSERVICE flag.
8191 */
8192 mutex_enter(&stp->sd_qlock);
8193 /*
8194 * If there are already something on the list, stp flags should show
8195 * intention to drain it.
8196 */
8197 IMPLY(STREAM_NEEDSERVICE(stp),
8198 (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8199
8200 ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8201 stp->sd_nqueues++;
8202
8203 /*
8204 * If no one will drain this stream we are the first producer and
8205 * need to schedule it for background thread.
8206 */
8207 if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8208 /*
8209 * No one will service this stream later, so we have to
8210 * schedule it now.
8211 */
8212 STRSTAT(stenables);
8213 stp->sd_svcflags |= STRS_SCHEDULED;
8214 stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8215 (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8216
8217 if (stp->sd_servid == NULL) {
8218 /*
8219 * Task queue failed so fail over to the backup
8220 * servicing thread.
8221 */
8222 STRSTAT(taskqfails);
8223 /*
8224 * It is safe to clear STRS_SCHEDULED flag because it
8225 * was set by this thread above.
8226 */
8227 stp->sd_svcflags &= ~STRS_SCHEDULED;
8228
8229 /*
8230 * Failover scheduling is protected by service_queue
8231 * lock.
8232 */
8233 mutex_enter(&service_queue);
8234 ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8235 ASSERT(q->q_link == NULL);
8236 /*
8237 * Append the queue to qhead/qtail list.
8238 */
8239 if (qhead == NULL)
8240 qhead = q;
8241 else
8242 qtail->q_link = q;
8243 qtail = q;
8244 /*
8245 * Clear stp queue list.
8246 */
8247 stp->sd_qhead = stp->sd_qtail = NULL;
8248 stp->sd_nqueues = 0;
8249 /*
8250 * Wakeup background queue processing thread.
8251 */
8252 cv_signal(&services_to_run);
8253 mutex_exit(&service_queue);
8254 }
8255 }
8256 mutex_exit(&stp->sd_qlock);
8257 }
8258
8259 static void
queue_service(queue_t * q)8260 queue_service(queue_t *q)
8261 {
8262 /*
8263 * The queue in the list should have
8264 * QENAB flag set and should not have
8265 * QINSERVICE flag set. QINSERVICE is
8266 * set when the queue is dequeued and
8267 * qenable_locked doesn't enqueue a
8268 * queue with QINSERVICE set.
8269 */
8270
8271 ASSERT(!(q->q_flag & QINSERVICE));
8272 ASSERT((q->q_flag & QENAB));
8273 mutex_enter(QLOCK(q));
8274 q->q_flag &= ~QENAB;
8275 q->q_flag |= QINSERVICE;
8276 mutex_exit(QLOCK(q));
8277 runservice(q);
8278 }
8279
8280 static void
syncq_service(syncq_t * sq)8281 syncq_service(syncq_t *sq)
8282 {
8283 STRSTAT(syncqservice);
8284 mutex_enter(SQLOCK(sq));
8285 ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8286 ASSERT(sq->sq_servcount != 0);
8287 ASSERT(sq->sq_next == NULL);
8288
8289 /* if we came here from the background thread, clear the flag */
8290 if (sq->sq_svcflags & SQ_BGTHREAD)
8291 sq->sq_svcflags &= ~SQ_BGTHREAD;
8292
8293 /* let drain_syncq know that it's being called in the background */
8294 sq->sq_svcflags |= SQ_SERVICE;
8295 drain_syncq(sq);
8296 }
8297
8298 static void
qwriter_outer_service(syncq_t * outer)8299 qwriter_outer_service(syncq_t *outer)
8300 {
8301 /*
8302 * Note that SQ_WRITER is used on the outer perimeter
8303 * to signal that a qwriter(OUTER) is either investigating
8304 * running or that it is actually running a function.
8305 */
8306 outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8307
8308 /*
8309 * All inner syncq are empty and have SQ_WRITER set
8310 * to block entering the outer perimeter.
8311 *
8312 * We do not need to explicitly call write_now since
8313 * outer_exit does it for us.
8314 */
8315 outer_exit(outer);
8316 }
8317
8318 static void
mblk_free(mblk_t * mp)8319 mblk_free(mblk_t *mp)
8320 {
8321 dblk_t *dbp = mp->b_datap;
8322 frtn_t *frp = dbp->db_frtnp;
8323
8324 mp->b_next = NULL;
8325 if (dbp->db_fthdr != NULL)
8326 str_ftfree(dbp);
8327
8328 ASSERT(dbp->db_fthdr == NULL);
8329 frp->free_func(frp->free_arg);
8330 ASSERT(dbp->db_mblk == mp);
8331
8332 if (dbp->db_credp != NULL) {
8333 crfree(dbp->db_credp);
8334 dbp->db_credp = NULL;
8335 }
8336 dbp->db_cpid = -1;
8337 dbp->db_struioflag = 0;
8338 dbp->db_struioun.cksum.flags = 0;
8339
8340 kmem_cache_free(dbp->db_cache, dbp);
8341 }
8342
8343 /*
8344 * Background processing of the stream queue list.
8345 */
8346 static void
stream_service(stdata_t * stp)8347 stream_service(stdata_t *stp)
8348 {
8349 queue_t *q;
8350
8351 mutex_enter(&stp->sd_qlock);
8352
8353 STR_SERVICE(stp, q);
8354
8355 stp->sd_svcflags &= ~STRS_SCHEDULED;
8356 stp->sd_servid = NULL;
8357 cv_signal(&stp->sd_qcv);
8358 mutex_exit(&stp->sd_qlock);
8359 }
8360
8361 /*
8362 * Foreground processing of the stream queue list.
8363 */
8364 void
stream_runservice(stdata_t * stp)8365 stream_runservice(stdata_t *stp)
8366 {
8367 queue_t *q;
8368
8369 mutex_enter(&stp->sd_qlock);
8370 STRSTAT(rservice);
8371 /*
8372 * We are going to drain this stream queue list, so qenable_locked will
8373 * not schedule it until we finish.
8374 */
8375 stp->sd_svcflags |= STRS_WILLSERVICE;
8376
8377 STR_SERVICE(stp, q);
8378
8379 stp->sd_svcflags &= ~STRS_WILLSERVICE;
8380 mutex_exit(&stp->sd_qlock);
8381 /*
8382 * Help backup background thread to drain the qhead/qtail list.
8383 */
8384 while (qhead != NULL) {
8385 STRSTAT(qhelps);
8386 mutex_enter(&service_queue);
8387 DQ(q, qhead, qtail, q_link);
8388 mutex_exit(&service_queue);
8389 if (q != NULL)
8390 queue_service(q);
8391 }
8392 }
8393
8394 void
stream_willservice(stdata_t * stp)8395 stream_willservice(stdata_t *stp)
8396 {
8397 mutex_enter(&stp->sd_qlock);
8398 stp->sd_svcflags |= STRS_WILLSERVICE;
8399 mutex_exit(&stp->sd_qlock);
8400 }
8401
8402 /*
8403 * Replace the cred currently in the mblk with a different one.
8404 * Also update db_cpid.
8405 */
8406 void
mblk_setcred(mblk_t * mp,cred_t * cr,pid_t cpid)8407 mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
8408 {
8409 dblk_t *dbp = mp->b_datap;
8410 cred_t *ocr = dbp->db_credp;
8411
8412 ASSERT(cr != NULL);
8413
8414 if (cr != ocr) {
8415 crhold(dbp->db_credp = cr);
8416 if (ocr != NULL)
8417 crfree(ocr);
8418 }
8419 /* Don't overwrite with NOPID */
8420 if (cpid != NOPID)
8421 dbp->db_cpid = cpid;
8422 }
8423
8424 /*
8425 * If the src message has a cred, then replace the cred currently in the mblk
8426 * with it.
8427 * Also update db_cpid.
8428 */
8429 void
mblk_copycred(mblk_t * mp,const mblk_t * src)8430 mblk_copycred(mblk_t *mp, const mblk_t *src)
8431 {
8432 dblk_t *dbp = mp->b_datap;
8433 cred_t *cr, *ocr;
8434 pid_t cpid;
8435
8436 cr = msg_getcred(src, &cpid);
8437 if (cr == NULL)
8438 return;
8439
8440 ocr = dbp->db_credp;
8441 if (cr != ocr) {
8442 crhold(dbp->db_credp = cr);
8443 if (ocr != NULL)
8444 crfree(ocr);
8445 }
8446 /* Don't overwrite with NOPID */
8447 if (cpid != NOPID)
8448 dbp->db_cpid = cpid;
8449 }
8450
8451 int
hcksum_assoc(mblk_t * mp,multidata_t * mmd,pdesc_t * pd,uint32_t start,uint32_t stuff,uint32_t end,uint32_t value,uint32_t flags,int km_flags)8452 hcksum_assoc(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8453 uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8454 uint32_t flags, int km_flags)
8455 {
8456 int rc = 0;
8457
8458 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8459 if (mp->b_datap->db_type == M_DATA) {
8460 /* Associate values for M_DATA type */
8461 DB_CKSUMSTART(mp) = (intptr_t)start;
8462 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8463 DB_CKSUMEND(mp) = (intptr_t)end;
8464 DB_CKSUMFLAGS(mp) = flags;
8465 DB_CKSUM16(mp) = (uint16_t)value;
8466
8467 } else {
8468 pattrinfo_t pa_info;
8469
8470 ASSERT(mmd != NULL);
8471
8472 pa_info.type = PATTR_HCKSUM;
8473 pa_info.len = sizeof (pattr_hcksum_t);
8474
8475 if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8476 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8477
8478 hck->hcksum_start_offset = start;
8479 hck->hcksum_stuff_offset = stuff;
8480 hck->hcksum_end_offset = end;
8481 hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8482 hck->hcksum_flags = flags;
8483 } else {
8484 rc = -1;
8485 }
8486 }
8487 return (rc);
8488 }
8489
8490 void
hcksum_retrieve(mblk_t * mp,multidata_t * mmd,pdesc_t * pd,uint32_t * start,uint32_t * stuff,uint32_t * end,uint32_t * value,uint32_t * flags)8491 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8492 uint32_t *start, uint32_t *stuff, uint32_t *end,
8493 uint32_t *value, uint32_t *flags)
8494 {
8495 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8496 if (mp->b_datap->db_type == M_DATA) {
8497 if (flags != NULL) {
8498 *flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
8499 if ((*flags & (HCK_PARTIALCKSUM |
8500 HCK_FULLCKSUM)) != 0) {
8501 if (value != NULL)
8502 *value = (uint32_t)DB_CKSUM16(mp);
8503 if ((*flags & HCK_PARTIALCKSUM) != 0) {
8504 if (start != NULL)
8505 *start =
8506 (uint32_t)DB_CKSUMSTART(mp);
8507 if (stuff != NULL)
8508 *stuff =
8509 (uint32_t)DB_CKSUMSTUFF(mp);
8510 if (end != NULL)
8511 *end =
8512 (uint32_t)DB_CKSUMEND(mp);
8513 }
8514 }
8515 }
8516 } else {
8517 pattrinfo_t hck_attr = {PATTR_HCKSUM};
8518
8519 ASSERT(mmd != NULL);
8520
8521 /* get hardware checksum attribute */
8522 if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8523 pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8524
8525 ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8526 if (flags != NULL)
8527 *flags = hck->hcksum_flags;
8528 if (start != NULL)
8529 *start = hck->hcksum_start_offset;
8530 if (stuff != NULL)
8531 *stuff = hck->hcksum_stuff_offset;
8532 if (end != NULL)
8533 *end = hck->hcksum_end_offset;
8534 if (value != NULL)
8535 *value = (uint32_t)
8536 hck->hcksum_cksum_val.inet_cksum;
8537 }
8538 }
8539 }
8540
8541 void
lso_info_set(mblk_t * mp,uint32_t mss,uint32_t flags)8542 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8543 {
8544 ASSERT(DB_TYPE(mp) == M_DATA);
8545 ASSERT((flags & ~HW_LSO_FLAGS) == 0);
8546
8547 /* Set the flags */
8548 DB_LSOFLAGS(mp) |= flags;
8549 DB_LSOMSS(mp) = mss;
8550 }
8551
8552 void
lso_info_cleanup(mblk_t * mp)8553 lso_info_cleanup(mblk_t *mp)
8554 {
8555 ASSERT(DB_TYPE(mp) == M_DATA);
8556
8557 /* Clear the flags */
8558 DB_LSOFLAGS(mp) &= ~HW_LSO_FLAGS;
8559 DB_LSOMSS(mp) = 0;
8560 }
8561
8562 /*
8563 * Checksum buffer *bp for len bytes with psum partial checksum,
8564 * or 0 if none, and return the 16 bit partial checksum.
8565 */
8566 unsigned
bcksum(uchar_t * bp,int len,unsigned int psum)8567 bcksum(uchar_t *bp, int len, unsigned int psum)
8568 {
8569 int odd = len & 1;
8570 extern unsigned int ip_ocsum();
8571
8572 if (((intptr_t)bp & 1) == 0 && !odd) {
8573 /*
8574 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8575 */
8576 return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8577 }
8578 if (((intptr_t)bp & 1) != 0) {
8579 /*
8580 * Bp isn't 16 bit aligned.
8581 */
8582 unsigned int tsum;
8583
8584 #ifdef _LITTLE_ENDIAN
8585 psum += *bp;
8586 #else
8587 psum += *bp << 8;
8588 #endif
8589 len--;
8590 bp++;
8591 tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8592 psum += (tsum << 8) & 0xffff | (tsum >> 8);
8593 if (len & 1) {
8594 bp += len - 1;
8595 #ifdef _LITTLE_ENDIAN
8596 psum += *bp << 8;
8597 #else
8598 psum += *bp;
8599 #endif
8600 }
8601 } else {
8602 /*
8603 * Bp is 16 bit aligned.
8604 */
8605 psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8606 if (odd) {
8607 bp += len - 1;
8608 #ifdef _LITTLE_ENDIAN
8609 psum += *bp;
8610 #else
8611 psum += *bp << 8;
8612 #endif
8613 }
8614 }
8615 /*
8616 * Normalize psum to 16 bits before returning the new partial
8617 * checksum. The max psum value before normalization is 0x3FDFE.
8618 */
8619 return ((psum >> 16) + (psum & 0xFFFF));
8620 }
8621
8622 boolean_t
is_vmloaned_mblk(mblk_t * mp,multidata_t * mmd,pdesc_t * pd)8623 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8624 {
8625 boolean_t rc;
8626
8627 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8628 if (DB_TYPE(mp) == M_DATA) {
8629 rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8630 } else {
8631 pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8632
8633 ASSERT(mmd != NULL);
8634 rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8635 }
8636 return (rc);
8637 }
8638
8639 void
freemsgchain(mblk_t * mp)8640 freemsgchain(mblk_t *mp)
8641 {
8642 mblk_t *next;
8643
8644 while (mp != NULL) {
8645 next = mp->b_next;
8646 mp->b_next = NULL;
8647
8648 freemsg(mp);
8649 mp = next;
8650 }
8651 }
8652
8653 mblk_t *
copymsgchain(mblk_t * mp)8654 copymsgchain(mblk_t *mp)
8655 {
8656 mblk_t *nmp = NULL;
8657 mblk_t **nmpp = &nmp;
8658
8659 for (; mp != NULL; mp = mp->b_next) {
8660 if ((*nmpp = copymsg(mp)) == NULL) {
8661 freemsgchain(nmp);
8662 return (NULL);
8663 }
8664
8665 nmpp = &((*nmpp)->b_next);
8666 }
8667
8668 return (nmp);
8669 }
8670
8671 /* NOTE: Do not add code after this point. */
8672 #undef QLOCK
8673
8674 /*
8675 * Replacement for QLOCK macro for those that can't use it.
8676 */
8677 kmutex_t *
QLOCK(queue_t * q)8678 QLOCK(queue_t *q)
8679 {
8680 return (&(q)->q_lock);
8681 }
8682
8683 /*
8684 * Dummy runqueues/queuerun functions functions for backwards compatibility.
8685 */
8686 #undef runqueues
8687 void
runqueues(void)8688 runqueues(void)
8689 {
8690 }
8691
8692 #undef queuerun
8693 void
queuerun(void)8694 queuerun(void)
8695 {
8696 }
8697
8698 /*
8699 * Initialize the STR stack instance, which tracks autopush and persistent
8700 * links.
8701 */
8702 /* ARGSUSED */
8703 static void *
str_stack_init(netstackid_t stackid,netstack_t * ns)8704 str_stack_init(netstackid_t stackid, netstack_t *ns)
8705 {
8706 str_stack_t *ss;
8707 int i;
8708
8709 ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8710 ss->ss_netstack = ns;
8711
8712 /*
8713 * set up autopush
8714 */
8715 sad_initspace(ss);
8716
8717 /*
8718 * set up mux_node structures.
8719 */
8720 ss->ss_devcnt = devcnt; /* In case it should change before free */
8721 ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8722 ss->ss_devcnt), KM_SLEEP);
8723 for (i = 0; i < ss->ss_devcnt; i++)
8724 ss->ss_mux_nodes[i].mn_imaj = i;
8725 return (ss);
8726 }
8727
8728 /*
8729 * Note: run at zone shutdown and not destroy so that the PLINKs are
8730 * gone by the time other cleanup happens from the destroy callbacks.
8731 */
8732 static void
str_stack_shutdown(netstackid_t stackid,void * arg)8733 str_stack_shutdown(netstackid_t stackid, void *arg)
8734 {
8735 str_stack_t *ss = (str_stack_t *)arg;
8736 int i;
8737 cred_t *cr;
8738
8739 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8740 ASSERT(cr != NULL);
8741
8742 /* Undo all the I_PLINKs for this zone */
8743 for (i = 0; i < ss->ss_devcnt; i++) {
8744 struct mux_edge *ep;
8745 ldi_handle_t lh;
8746 ldi_ident_t li;
8747 int ret;
8748 int rval;
8749 dev_t rdev;
8750
8751 ep = ss->ss_mux_nodes[i].mn_outp;
8752 if (ep == NULL)
8753 continue;
8754 ret = ldi_ident_from_major((major_t)i, &li);
8755 if (ret != 0) {
8756 continue;
8757 }
8758 rdev = ep->me_dev;
8759 ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8760 cr, &lh, li);
8761 if (ret != 0) {
8762 ldi_ident_release(li);
8763 continue;
8764 }
8765
8766 ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8767 cr, &rval);
8768 if (ret) {
8769 (void) ldi_close(lh, FREAD|FWRITE, cr);
8770 ldi_ident_release(li);
8771 continue;
8772 }
8773 (void) ldi_close(lh, FREAD|FWRITE, cr);
8774
8775 /* Close layered handles */
8776 ldi_ident_release(li);
8777 }
8778 crfree(cr);
8779
8780 sad_freespace(ss);
8781
8782 kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8783 ss->ss_mux_nodes = NULL;
8784 }
8785
8786 /*
8787 * Free the structure; str_stack_shutdown did the other cleanup work.
8788 */
8789 /* ARGSUSED */
8790 static void
str_stack_fini(netstackid_t stackid,void * arg)8791 str_stack_fini(netstackid_t stackid, void *arg)
8792 {
8793 str_stack_t *ss = (str_stack_t *)arg;
8794
8795 kmem_free(ss, sizeof (*ss));
8796 }
8797