1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2023-2024 Chelsio Communications, Inc.
5 * Written by: John Baldwin <jhb@FreeBSD.org>
6 */
7
8 #include <sys/param.h>
9 #include <sys/bus.h>
10 #include <sys/conf.h>
11 #include <sys/dnv.h>
12 #include <sys/eventhandler.h>
13 #include <sys/lock.h>
14 #include <sys/kernel.h>
15 #include <sys/malloc.h>
16 #include <sys/memdesc.h>
17 #include <sys/module.h>
18 #include <sys/mutex.h>
19 #include <sys/nv.h>
20 #include <sys/reboot.h>
21 #include <sys/sx.h>
22 #include <sys/sysctl.h>
23 #include <sys/taskqueue.h>
24 #include <dev/nvme/nvme.h>
25 #include <dev/nvmf/nvmf.h>
26 #include <dev/nvmf/nvmf_transport.h>
27 #include <dev/nvmf/host/nvmf_var.h>
28
29 static struct cdevsw nvmf_cdevsw;
30 static struct taskqueue *nvmf_tq;
31
32 bool nvmf_fail_disconnect = false;
33 SYSCTL_BOOL(_kern_nvmf, OID_AUTO, fail_on_disconnection, CTLFLAG_RWTUN,
34 &nvmf_fail_disconnect, 0, "Fail I/O requests on connection failure");
35
36 MALLOC_DEFINE(M_NVMF, "nvmf", "NVMe over Fabrics host");
37
38 static void nvmf_controller_loss_task(void *arg, int pending);
39 static void nvmf_disconnect_task(void *arg, int pending);
40 static void nvmf_request_reconnect(struct nvmf_softc *sc);
41 static void nvmf_request_reconnect_task(void *arg, int pending);
42 static void nvmf_shutdown_pre_sync(void *arg, int howto);
43 static void nvmf_shutdown_post_sync(void *arg, int howto);
44
45 void
nvmf_complete(void * arg,const struct nvme_completion * cqe)46 nvmf_complete(void *arg, const struct nvme_completion *cqe)
47 {
48 struct nvmf_completion_status *status = arg;
49 struct mtx *mtx;
50
51 status->cqe = *cqe;
52 mtx = mtx_pool_find(mtxpool_sleep, status);
53 mtx_lock(mtx);
54 status->done = true;
55 mtx_unlock(mtx);
56 wakeup(status);
57 }
58
59 void
nvmf_io_complete(void * arg,size_t xfered,int error)60 nvmf_io_complete(void *arg, size_t xfered, int error)
61 {
62 struct nvmf_completion_status *status = arg;
63 struct mtx *mtx;
64
65 status->io_error = error;
66 mtx = mtx_pool_find(mtxpool_sleep, status);
67 mtx_lock(mtx);
68 status->io_done = true;
69 mtx_unlock(mtx);
70 wakeup(status);
71 }
72
73 void
nvmf_wait_for_reply(struct nvmf_completion_status * status)74 nvmf_wait_for_reply(struct nvmf_completion_status *status)
75 {
76 struct mtx *mtx;
77
78 mtx = mtx_pool_find(mtxpool_sleep, status);
79 mtx_lock(mtx);
80 while (!status->done || !status->io_done)
81 mtx_sleep(status, mtx, 0, "nvmfcmd", 0);
82 mtx_unlock(mtx);
83 }
84
85 static int
nvmf_read_property(struct nvmf_softc * sc,uint32_t offset,uint8_t size,uint64_t * value)86 nvmf_read_property(struct nvmf_softc *sc, uint32_t offset, uint8_t size,
87 uint64_t *value)
88 {
89 const struct nvmf_fabric_prop_get_rsp *rsp;
90 struct nvmf_completion_status status;
91
92 nvmf_status_init(&status);
93 if (!nvmf_cmd_get_property(sc, offset, size, nvmf_complete, &status,
94 M_WAITOK))
95 return (ECONNABORTED);
96 nvmf_wait_for_reply(&status);
97
98 if (status.cqe.status != 0) {
99 device_printf(sc->dev, "PROPERTY_GET failed, status %#x\n",
100 le16toh(status.cqe.status));
101 return (EIO);
102 }
103
104 rsp = (const struct nvmf_fabric_prop_get_rsp *)&status.cqe;
105 if (size == 8)
106 *value = le64toh(rsp->value.u64);
107 else
108 *value = le32toh(rsp->value.u32.low);
109 return (0);
110 }
111
112 static int
nvmf_write_property(struct nvmf_softc * sc,uint32_t offset,uint8_t size,uint64_t value)113 nvmf_write_property(struct nvmf_softc *sc, uint32_t offset, uint8_t size,
114 uint64_t value)
115 {
116 struct nvmf_completion_status status;
117
118 nvmf_status_init(&status);
119 if (!nvmf_cmd_set_property(sc, offset, size, value, nvmf_complete, &status,
120 M_WAITOK))
121 return (ECONNABORTED);
122 nvmf_wait_for_reply(&status);
123
124 if (status.cqe.status != 0) {
125 device_printf(sc->dev, "PROPERTY_SET failed, status %#x\n",
126 le16toh(status.cqe.status));
127 return (EIO);
128 }
129 return (0);
130 }
131
132 static void
nvmf_shutdown_controller(struct nvmf_softc * sc)133 nvmf_shutdown_controller(struct nvmf_softc *sc)
134 {
135 uint64_t cc;
136 int error;
137
138 error = nvmf_read_property(sc, NVMF_PROP_CC, 4, &cc);
139 if (error != 0) {
140 device_printf(sc->dev, "Failed to fetch CC for shutdown\n");
141 return;
142 }
143
144 cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL);
145
146 error = nvmf_write_property(sc, NVMF_PROP_CC, 4, cc);
147 if (error != 0)
148 device_printf(sc->dev,
149 "Failed to set CC to trigger shutdown\n");
150 }
151
152 static void
nvmf_check_keep_alive(void * arg)153 nvmf_check_keep_alive(void *arg)
154 {
155 struct nvmf_softc *sc = arg;
156 int traffic;
157
158 traffic = atomic_readandclear_int(&sc->ka_active_rx_traffic);
159 if (traffic == 0) {
160 device_printf(sc->dev,
161 "disconnecting due to KeepAlive timeout\n");
162 nvmf_disconnect(sc);
163 return;
164 }
165
166 callout_schedule_sbt(&sc->ka_rx_timer, sc->ka_rx_sbt, 0, C_HARDCLOCK);
167 }
168
169 static void
nvmf_keep_alive_complete(void * arg,const struct nvme_completion * cqe)170 nvmf_keep_alive_complete(void *arg, const struct nvme_completion *cqe)
171 {
172 struct nvmf_softc *sc = arg;
173
174 atomic_store_int(&sc->ka_active_rx_traffic, 1);
175 if (cqe->status != 0) {
176 device_printf(sc->dev,
177 "KeepAlive response reported status %#x\n",
178 le16toh(cqe->status));
179 }
180 }
181
182 static void
nvmf_send_keep_alive(void * arg)183 nvmf_send_keep_alive(void *arg)
184 {
185 struct nvmf_softc *sc = arg;
186 int traffic;
187
188 /*
189 * Don't bother sending a KeepAlive command if TKAS is active
190 * and another command has been sent during the interval.
191 */
192 traffic = atomic_load_int(&sc->ka_active_tx_traffic);
193 if (traffic == 0 && !nvmf_cmd_keep_alive(sc, nvmf_keep_alive_complete,
194 sc, M_NOWAIT))
195 device_printf(sc->dev,
196 "Failed to allocate KeepAlive command\n");
197
198 /* Clear ka_active_tx_traffic after sending the keep alive command. */
199 atomic_store_int(&sc->ka_active_tx_traffic, 0);
200
201 callout_schedule_sbt(&sc->ka_tx_timer, sc->ka_tx_sbt, 0, C_HARDCLOCK);
202 }
203
204 int
nvmf_copyin_handoff(const struct nvmf_ioc_nv * nv,nvlist_t ** nvlp)205 nvmf_copyin_handoff(const struct nvmf_ioc_nv *nv, nvlist_t **nvlp)
206 {
207 const struct nvme_discovery_log_entry *dle;
208 const struct nvme_controller_data *cdata;
209 const nvlist_t *const *io;
210 const nvlist_t *admin, *rparams;
211 nvlist_t *nvl;
212 size_t i, num_io_queues;
213 uint32_t qsize;
214 int error;
215
216 error = nvmf_unpack_ioc_nvlist(nv, &nvl);
217 if (error != 0)
218 return (error);
219
220 if (!nvlist_exists_number(nvl, "trtype") ||
221 !nvlist_exists_nvlist(nvl, "admin") ||
222 !nvlist_exists_nvlist_array(nvl, "io") ||
223 !nvlist_exists_binary(nvl, "cdata") ||
224 !nvlist_exists_nvlist(nvl, "rparams"))
225 goto invalid;
226
227 rparams = nvlist_get_nvlist(nvl, "rparams");
228 if (!nvlist_exists_binary(rparams, "dle") ||
229 !nvlist_exists_string(rparams, "hostnqn") ||
230 !nvlist_exists_number(rparams, "num_io_queues") ||
231 !nvlist_exists_number(rparams, "io_qsize"))
232 goto invalid;
233
234 admin = nvlist_get_nvlist(nvl, "admin");
235 if (!nvmf_validate_qpair_nvlist(admin, false))
236 goto invalid;
237 if (!nvlist_get_bool(admin, "admin"))
238 goto invalid;
239
240 io = nvlist_get_nvlist_array(nvl, "io", &num_io_queues);
241 if (num_io_queues < 1 ||
242 num_io_queues != nvlist_get_number(rparams, "num_io_queues"))
243 goto invalid;
244 for (i = 0; i < num_io_queues; i++) {
245 if (!nvmf_validate_qpair_nvlist(io[i], false))
246 goto invalid;
247 }
248
249 /* Require all I/O queues to be the same size. */
250 qsize = nvlist_get_number(rparams, "io_qsize");
251 for (i = 0; i < num_io_queues; i++) {
252 if (nvlist_get_number(io[i], "qsize") != qsize)
253 goto invalid;
254 }
255
256 cdata = nvlist_get_binary(nvl, "cdata", &i);
257 if (i != sizeof(*cdata))
258 goto invalid;
259 dle = nvlist_get_binary(rparams, "dle", &i);
260 if (i != sizeof(*dle))
261 goto invalid;
262
263 if (memcmp(dle->subnqn, cdata->subnqn, sizeof(cdata->subnqn)) != 0)
264 goto invalid;
265
266 *nvlp = nvl;
267 return (0);
268 invalid:
269 nvlist_destroy(nvl);
270 return (EINVAL);
271 }
272
273 static int
nvmf_probe(device_t dev)274 nvmf_probe(device_t dev)
275 {
276 const nvlist_t *nvl = device_get_ivars(dev);
277 const struct nvme_controller_data *cdata;
278
279 if (nvl == NULL)
280 return (ENXIO);
281
282 cdata = nvlist_get_binary(nvl, "cdata", NULL);
283 device_set_descf(dev, "Fabrics: %.256s", cdata->subnqn);
284 return (BUS_PROBE_DEFAULT);
285 }
286
287 static int
nvmf_establish_connection(struct nvmf_softc * sc,nvlist_t * nvl)288 nvmf_establish_connection(struct nvmf_softc *sc, nvlist_t *nvl)
289 {
290 const nvlist_t *const *io;
291 const nvlist_t *admin;
292 uint64_t kato;
293 size_t num_io_queues;
294 enum nvmf_trtype trtype;
295 char name[16];
296
297 trtype = nvlist_get_number(nvl, "trtype");
298 admin = nvlist_get_nvlist(nvl, "admin");
299 io = nvlist_get_nvlist_array(nvl, "io", &num_io_queues);
300 kato = dnvlist_get_number(nvl, "kato", 0);
301 sc->reconnect_delay = dnvlist_get_number(nvl, "reconnect_delay", 0);
302 sc->controller_loss_timeout = dnvlist_get_number(nvl,
303 "controller_loss_timeout", 0);
304
305 /* Setup the admin queue. */
306 sc->admin = nvmf_init_qp(sc, trtype, admin, "admin queue", 0);
307 if (sc->admin == NULL) {
308 device_printf(sc->dev, "Failed to setup admin queue\n");
309 return (ENXIO);
310 }
311
312 /* Setup I/O queues. */
313 sc->io = malloc(num_io_queues * sizeof(*sc->io), M_NVMF,
314 M_WAITOK | M_ZERO);
315 sc->num_io_queues = num_io_queues;
316 for (u_int i = 0; i < sc->num_io_queues; i++) {
317 snprintf(name, sizeof(name), "I/O queue %u", i);
318 sc->io[i] = nvmf_init_qp(sc, trtype, io[i], name, i);
319 if (sc->io[i] == NULL) {
320 device_printf(sc->dev, "Failed to setup I/O queue %u\n",
321 i);
322 return (ENXIO);
323 }
324 }
325
326 /* Start KeepAlive timers. */
327 if (kato != 0) {
328 sc->ka_traffic = NVMEV(NVME_CTRLR_DATA_CTRATT_TBKAS,
329 sc->cdata->ctratt) != 0;
330 sc->ka_rx_sbt = mstosbt(kato);
331 sc->ka_tx_sbt = sc->ka_rx_sbt / 2;
332 callout_reset_sbt(&sc->ka_rx_timer, sc->ka_rx_sbt, 0,
333 nvmf_check_keep_alive, sc, C_HARDCLOCK);
334 callout_reset_sbt(&sc->ka_tx_timer, sc->ka_tx_sbt, 0,
335 nvmf_send_keep_alive, sc, C_HARDCLOCK);
336 }
337
338 memcpy(sc->cdata, nvlist_get_binary(nvl, "cdata", NULL),
339 sizeof(*sc->cdata));
340
341 /* Save reconnect parameters. */
342 nvlist_destroy(sc->rparams);
343 sc->rparams = nvlist_take_nvlist(nvl, "rparams");
344
345 return (0);
346 }
347
348 typedef bool nvmf_scan_active_ns_cb(struct nvmf_softc *, uint32_t,
349 const struct nvme_namespace_data *, void *);
350
351 static bool
nvmf_scan_active_nslist(struct nvmf_softc * sc,struct nvme_ns_list * nslist,struct nvme_namespace_data * data,uint32_t * nsidp,nvmf_scan_active_ns_cb * cb,void * cb_arg)352 nvmf_scan_active_nslist(struct nvmf_softc *sc, struct nvme_ns_list *nslist,
353 struct nvme_namespace_data *data, uint32_t *nsidp,
354 nvmf_scan_active_ns_cb *cb, void *cb_arg)
355 {
356 struct nvmf_completion_status status;
357 uint32_t nsid;
358
359 nvmf_status_init(&status);
360 nvmf_status_wait_io(&status);
361 if (!nvmf_cmd_identify_active_namespaces(sc, *nsidp, nslist,
362 nvmf_complete, &status, nvmf_io_complete, &status, M_WAITOK)) {
363 device_printf(sc->dev,
364 "failed to send IDENTIFY active namespaces command\n");
365 return (false);
366 }
367 nvmf_wait_for_reply(&status);
368
369 if (status.cqe.status != 0) {
370 device_printf(sc->dev,
371 "IDENTIFY active namespaces failed, status %#x\n",
372 le16toh(status.cqe.status));
373 return (false);
374 }
375
376 if (status.io_error != 0) {
377 device_printf(sc->dev,
378 "IDENTIFY active namespaces failed with I/O error %d\n",
379 status.io_error);
380 return (false);
381 }
382
383 for (u_int i = 0; i < nitems(nslist->ns); i++) {
384 nsid = nslist->ns[i];
385 if (nsid == 0) {
386 *nsidp = 0;
387 return (true);
388 }
389
390 nvmf_status_init(&status);
391 nvmf_status_wait_io(&status);
392 if (!nvmf_cmd_identify_namespace(sc, nsid, data, nvmf_complete,
393 &status, nvmf_io_complete, &status, M_WAITOK)) {
394 device_printf(sc->dev,
395 "failed to send IDENTIFY namespace %u command\n",
396 nsid);
397 return (false);
398 }
399 nvmf_wait_for_reply(&status);
400
401 if (status.cqe.status != 0) {
402 device_printf(sc->dev,
403 "IDENTIFY namespace %u failed, status %#x\n", nsid,
404 le16toh(status.cqe.status));
405 return (false);
406 }
407
408 if (status.io_error != 0) {
409 device_printf(sc->dev,
410 "IDENTIFY namespace %u failed with I/O error %d\n",
411 nsid, status.io_error);
412 return (false);
413 }
414
415 nvme_namespace_data_swapbytes(data);
416 if (!cb(sc, nsid, data, cb_arg))
417 return (false);
418 }
419
420 MPASS(nsid == nslist->ns[nitems(nslist->ns) - 1] && nsid != 0);
421
422 if (nsid >= NVME_GLOBAL_NAMESPACE_TAG - 1)
423 *nsidp = 0;
424 else
425 *nsidp = nsid;
426 return (true);
427 }
428
429 static bool
nvmf_scan_active_namespaces(struct nvmf_softc * sc,nvmf_scan_active_ns_cb * cb,void * cb_arg)430 nvmf_scan_active_namespaces(struct nvmf_softc *sc, nvmf_scan_active_ns_cb *cb,
431 void *cb_arg)
432 {
433 struct nvme_namespace_data *data;
434 struct nvme_ns_list *nslist;
435 uint32_t nsid;
436 bool retval;
437
438 nslist = malloc(sizeof(*nslist), M_NVMF, M_WAITOK);
439 data = malloc(sizeof(*data), M_NVMF, M_WAITOK);
440
441 nsid = 0;
442 retval = true;
443 for (;;) {
444 if (!nvmf_scan_active_nslist(sc, nslist, data, &nsid, cb,
445 cb_arg)) {
446 retval = false;
447 break;
448 }
449 if (nsid == 0)
450 break;
451 }
452
453 free(data, M_NVMF);
454 free(nslist, M_NVMF);
455 return (retval);
456 }
457
458 static bool
nvmf_add_ns(struct nvmf_softc * sc,uint32_t nsid,const struct nvme_namespace_data * data,void * arg __unused)459 nvmf_add_ns(struct nvmf_softc *sc, uint32_t nsid,
460 const struct nvme_namespace_data *data, void *arg __unused)
461 {
462 if (sc->ns[nsid - 1] != NULL) {
463 device_printf(sc->dev,
464 "duplicate namespace %u in active namespace list\n",
465 nsid);
466 return (false);
467 }
468
469 /*
470 * As in nvme_ns_construct, a size of zero indicates an
471 * invalid namespace.
472 */
473 if (data->nsze == 0) {
474 device_printf(sc->dev,
475 "ignoring active namespace %u with zero size\n", nsid);
476 return (true);
477 }
478
479 sc->ns[nsid - 1] = nvmf_init_ns(sc, nsid, data);
480
481 nvmf_sim_rescan_ns(sc, nsid);
482 return (true);
483 }
484
485 static bool
nvmf_add_namespaces(struct nvmf_softc * sc)486 nvmf_add_namespaces(struct nvmf_softc *sc)
487 {
488 sc->ns = mallocarray(sc->cdata->nn, sizeof(*sc->ns), M_NVMF,
489 M_WAITOK | M_ZERO);
490 return (nvmf_scan_active_namespaces(sc, nvmf_add_ns, NULL));
491 }
492
493 static int
nvmf_attach(device_t dev)494 nvmf_attach(device_t dev)
495 {
496 struct make_dev_args mda;
497 struct nvmf_softc *sc = device_get_softc(dev);
498 nvlist_t *nvl = device_get_ivars(dev);
499 const nvlist_t * const *io;
500 struct sysctl_oid *oid;
501 uint64_t val;
502 u_int i;
503 int error;
504
505 if (nvl == NULL)
506 return (ENXIO);
507
508 sc->dev = dev;
509 sc->trtype = nvlist_get_number(nvl, "trtype");
510 callout_init(&sc->ka_rx_timer, 1);
511 callout_init(&sc->ka_tx_timer, 1);
512 sx_init(&sc->connection_lock, "nvmf connection");
513 TASK_INIT(&sc->disconnect_task, 0, nvmf_disconnect_task, sc);
514 TIMEOUT_TASK_INIT(nvmf_tq, &sc->controller_loss_task, 0,
515 nvmf_controller_loss_task, sc);
516 TIMEOUT_TASK_INIT(nvmf_tq, &sc->request_reconnect_task, 0,
517 nvmf_request_reconnect_task, sc);
518
519 oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
520 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "ioq",
521 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "I/O Queues");
522 sc->ioq_oid_list = SYSCTL_CHILDREN(oid);
523
524 sc->cdata = malloc(sizeof(*sc->cdata), M_NVMF, M_WAITOK);
525
526 nvmf_init_aer(sc);
527
528 error = nvmf_establish_connection(sc, nvl);
529 if (error != 0)
530 goto out;
531
532 error = nvmf_read_property(sc, NVMF_PROP_CAP, 8, &sc->cap);
533 if (error != 0) {
534 device_printf(sc->dev, "Failed to fetch CAP\n");
535 error = ENXIO;
536 goto out;
537 }
538
539 error = nvmf_read_property(sc, NVMF_PROP_VS, 4, &val);
540 if (error != 0) {
541 device_printf(sc->dev, "Failed to fetch VS\n");
542 error = ENXIO;
543 goto out;
544 }
545 sc->vs = val;
546
547 /* Honor MDTS if it is set. */
548 sc->max_xfer_size = maxphys;
549 if (sc->cdata->mdts != 0) {
550 sc->max_xfer_size = ulmin(sc->max_xfer_size,
551 1 << (sc->cdata->mdts + NVME_MPS_SHIFT +
552 NVME_CAP_HI_MPSMIN(sc->cap >> 32)));
553 }
554
555 io = nvlist_get_nvlist_array(nvl, "io", NULL);
556 sc->max_pending_io = nvlist_get_number(io[0], "qsize") *
557 sc->num_io_queues;
558
559 error = nvmf_init_sim(sc);
560 if (error != 0)
561 goto out;
562
563 error = nvmf_start_aer(sc);
564 if (error != 0) {
565 nvmf_destroy_sim(sc);
566 goto out;
567 }
568
569 if (!nvmf_add_namespaces(sc)) {
570 nvmf_destroy_sim(sc);
571 goto out;
572 }
573
574 make_dev_args_init(&mda);
575 mda.mda_devsw = &nvmf_cdevsw;
576 mda.mda_uid = UID_ROOT;
577 mda.mda_gid = GID_WHEEL;
578 mda.mda_mode = 0600;
579 mda.mda_si_drv1 = sc;
580 error = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
581 if (error != 0) {
582 nvmf_destroy_sim(sc);
583 goto out;
584 }
585
586 sc->shutdown_pre_sync_eh = EVENTHANDLER_REGISTER(shutdown_pre_sync,
587 nvmf_shutdown_pre_sync, sc, SHUTDOWN_PRI_FIRST);
588 sc->shutdown_post_sync_eh = EVENTHANDLER_REGISTER(shutdown_post_sync,
589 nvmf_shutdown_post_sync, sc, SHUTDOWN_PRI_LAST);
590
591 return (0);
592 out:
593 if (sc->ns != NULL) {
594 for (i = 0; i < sc->cdata->nn; i++) {
595 if (sc->ns[i] != NULL)
596 nvmf_destroy_ns(sc->ns[i]);
597 }
598 free(sc->ns, M_NVMF);
599 }
600
601 callout_drain(&sc->ka_tx_timer);
602 callout_drain(&sc->ka_rx_timer);
603
604 if (sc->admin != NULL)
605 nvmf_shutdown_controller(sc);
606
607 for (i = 0; i < sc->num_io_queues; i++) {
608 if (sc->io[i] != NULL)
609 nvmf_destroy_qp(sc->io[i]);
610 }
611 free(sc->io, M_NVMF);
612 if (sc->admin != NULL)
613 nvmf_destroy_qp(sc->admin);
614
615 nvmf_destroy_aer(sc);
616
617 taskqueue_drain_timeout(nvmf_tq, &sc->request_reconnect_task);
618 taskqueue_drain_timeout(nvmf_tq, &sc->controller_loss_task);
619 taskqueue_drain(nvmf_tq, &sc->disconnect_task);
620 sx_destroy(&sc->connection_lock);
621 nvlist_destroy(sc->rparams);
622 free(sc->cdata, M_NVMF);
623 return (error);
624 }
625
626 void
nvmf_disconnect(struct nvmf_softc * sc)627 nvmf_disconnect(struct nvmf_softc *sc)
628 {
629 taskqueue_enqueue(nvmf_tq, &sc->disconnect_task);
630 }
631
632 static void
nvmf_disconnect_task(void * arg,int pending __unused)633 nvmf_disconnect_task(void *arg, int pending __unused)
634 {
635 struct nvmf_softc *sc = arg;
636 u_int i;
637
638 sx_xlock(&sc->connection_lock);
639 if (sc->admin == NULL) {
640 /*
641 * Ignore transport errors if there is no active
642 * association.
643 */
644 sx_xunlock(&sc->connection_lock);
645 return;
646 }
647
648 if (sc->detaching) {
649 if (sc->admin != NULL) {
650 /*
651 * This unsticks the detach process if a
652 * transport error occurs during detach.
653 */
654 nvmf_shutdown_qp(sc->admin);
655 }
656 sx_xunlock(&sc->connection_lock);
657 return;
658 }
659
660 if (sc->cdev == NULL) {
661 /*
662 * Transport error occurred during attach (nvmf_add_namespaces).
663 * Shutdown the admin queue.
664 */
665 nvmf_shutdown_qp(sc->admin);
666 sx_xunlock(&sc->connection_lock);
667 return;
668 }
669
670 nanotime(&sc->last_disconnect);
671 callout_drain(&sc->ka_tx_timer);
672 callout_drain(&sc->ka_rx_timer);
673 sc->ka_traffic = false;
674
675 /* Quiesce namespace consumers. */
676 nvmf_disconnect_sim(sc);
677 for (i = 0; i < sc->cdata->nn; i++) {
678 if (sc->ns[i] != NULL)
679 nvmf_disconnect_ns(sc->ns[i]);
680 }
681
682 /* Shutdown the existing qpairs. */
683 for (i = 0; i < sc->num_io_queues; i++) {
684 nvmf_destroy_qp(sc->io[i]);
685 }
686 free(sc->io, M_NVMF);
687 sc->io = NULL;
688 sc->num_io_queues = 0;
689 nvmf_destroy_qp(sc->admin);
690 sc->admin = NULL;
691
692 if (sc->reconnect_delay != 0)
693 nvmf_request_reconnect(sc);
694 if (sc->controller_loss_timeout != 0)
695 taskqueue_enqueue_timeout(nvmf_tq,
696 &sc->controller_loss_task, sc->controller_loss_timeout *
697 hz);
698
699 sx_xunlock(&sc->connection_lock);
700 }
701
702 static void
nvmf_controller_loss_task(void * arg,int pending)703 nvmf_controller_loss_task(void *arg, int pending)
704 {
705 struct nvmf_softc *sc = arg;
706 device_t dev;
707 int error;
708
709 bus_topo_lock();
710 sx_xlock(&sc->connection_lock);
711 if (sc->admin != NULL || sc->detaching) {
712 /* Reconnected or already detaching. */
713 sx_xunlock(&sc->connection_lock);
714 bus_topo_unlock();
715 return;
716 }
717
718 sc->controller_timedout = true;
719 sx_xunlock(&sc->connection_lock);
720
721 /*
722 * XXX: Doing this from here is a bit ugly. We don't have an
723 * extra reference on `dev` but bus_topo_lock should block any
724 * concurrent device_delete_child invocations.
725 */
726 dev = sc->dev;
727 error = device_delete_child(root_bus, dev);
728 if (error != 0)
729 device_printf(dev,
730 "failed to detach after controller loss: %d\n", error);
731 bus_topo_unlock();
732 }
733
734 static void
nvmf_request_reconnect(struct nvmf_softc * sc)735 nvmf_request_reconnect(struct nvmf_softc *sc)
736 {
737 char buf[64];
738
739 sx_assert(&sc->connection_lock, SX_LOCKED);
740
741 snprintf(buf, sizeof(buf), "name=\"%s\"", device_get_nameunit(sc->dev));
742 devctl_notify("nvme", "controller", "RECONNECT", buf);
743 taskqueue_enqueue_timeout(nvmf_tq, &sc->request_reconnect_task,
744 sc->reconnect_delay * hz);
745 }
746
747 static void
nvmf_request_reconnect_task(void * arg,int pending)748 nvmf_request_reconnect_task(void *arg, int pending)
749 {
750 struct nvmf_softc *sc = arg;
751
752 sx_xlock(&sc->connection_lock);
753 if (sc->admin != NULL || sc->detaching || sc->controller_timedout) {
754 /* Reconnected or already detaching. */
755 sx_xunlock(&sc->connection_lock);
756 return;
757 }
758
759 nvmf_request_reconnect(sc);
760 sx_xunlock(&sc->connection_lock);
761 }
762
763 static int
nvmf_reconnect_host(struct nvmf_softc * sc,struct nvmf_ioc_nv * nv)764 nvmf_reconnect_host(struct nvmf_softc *sc, struct nvmf_ioc_nv *nv)
765 {
766 const struct nvme_controller_data *cdata;
767 nvlist_t *nvl;
768 u_int i;
769 int error;
770
771 error = nvmf_copyin_handoff(nv, &nvl);
772 if (error != 0)
773 return (error);
774
775 /* XXX: Should we permit changing the transport type? */
776 if (sc->trtype != nvlist_get_number(nvl, "trtype")) {
777 device_printf(sc->dev,
778 "transport type mismatch on reconnect\n");
779 return (EINVAL);
780 }
781
782 sx_xlock(&sc->connection_lock);
783 if (sc->admin != NULL || sc->detaching || sc->controller_timedout) {
784 error = EBUSY;
785 goto out;
786 }
787
788 /*
789 * Ensure this is for the same controller. Note that the
790 * controller ID can vary across associations if the remote
791 * system is using the dynamic controller model. This merely
792 * ensures the new association is connected to the same NVMe
793 * subsystem.
794 */
795 cdata = nvlist_get_binary(nvl, "cdata", NULL);
796 if (memcmp(sc->cdata->subnqn, cdata->subnqn,
797 sizeof(cdata->subnqn)) != 0) {
798 device_printf(sc->dev,
799 "controller subsystem NQN mismatch on reconnect\n");
800 error = EINVAL;
801 goto out;
802 }
803
804 /*
805 * XXX: Require same number and size of I/O queues so that
806 * max_pending_io is still correct?
807 */
808
809 error = nvmf_establish_connection(sc, nvl);
810 if (error != 0)
811 goto out;
812
813 error = nvmf_start_aer(sc);
814 if (error != 0)
815 goto out;
816
817 device_printf(sc->dev,
818 "established new association with %u I/O queues\n",
819 sc->num_io_queues);
820
821 /* Restart namespace consumers. */
822 for (i = 0; i < sc->cdata->nn; i++) {
823 if (sc->ns[i] != NULL)
824 nvmf_reconnect_ns(sc->ns[i]);
825 }
826 nvmf_reconnect_sim(sc);
827
828 nvmf_rescan_all_ns(sc);
829
830 taskqueue_cancel_timeout(nvmf_tq, &sc->request_reconnect_task, NULL);
831 taskqueue_cancel_timeout(nvmf_tq, &sc->controller_loss_task, NULL);
832 out:
833 sx_xunlock(&sc->connection_lock);
834 nvlist_destroy(nvl);
835 return (error);
836 }
837
838 static void
nvmf_shutdown_pre_sync(void * arg,int howto)839 nvmf_shutdown_pre_sync(void *arg, int howto)
840 {
841 struct nvmf_softc *sc = arg;
842
843 if ((howto & RB_NOSYNC) != 0 || SCHEDULER_STOPPED())
844 return;
845
846 /*
847 * If this association is disconnected, abort any pending
848 * requests with an error to permit filesystems to unmount
849 * without hanging.
850 */
851 sx_xlock(&sc->connection_lock);
852 if (sc->admin != NULL || sc->detaching) {
853 sx_xunlock(&sc->connection_lock);
854 return;
855 }
856
857 for (u_int i = 0; i < sc->cdata->nn; i++) {
858 if (sc->ns[i] != NULL)
859 nvmf_shutdown_ns(sc->ns[i]);
860 }
861 nvmf_shutdown_sim(sc);
862 sx_xunlock(&sc->connection_lock);
863 }
864
865 static void
nvmf_shutdown_post_sync(void * arg,int howto)866 nvmf_shutdown_post_sync(void *arg, int howto)
867 {
868 struct nvmf_softc *sc = arg;
869
870 if ((howto & RB_NOSYNC) != 0 || SCHEDULER_STOPPED())
871 return;
872
873 /*
874 * If this association is connected, disconnect gracefully.
875 */
876 sx_xlock(&sc->connection_lock);
877 if (sc->admin == NULL || sc->detaching) {
878 sx_xunlock(&sc->connection_lock);
879 return;
880 }
881
882 callout_drain(&sc->ka_tx_timer);
883 callout_drain(&sc->ka_rx_timer);
884
885 nvmf_shutdown_controller(sc);
886
887 /*
888 * Quiesce consumers so that any commands submitted after this
889 * fail with an error. Notably, nda(4) calls nda_flush() from
890 * a post_sync handler that might be ordered after this one.
891 */
892 for (u_int i = 0; i < sc->cdata->nn; i++) {
893 if (sc->ns[i] != NULL)
894 nvmf_shutdown_ns(sc->ns[i]);
895 }
896 nvmf_shutdown_sim(sc);
897
898 for (u_int i = 0; i < sc->num_io_queues; i++) {
899 nvmf_destroy_qp(sc->io[i]);
900 }
901 nvmf_destroy_qp(sc->admin);
902 sc->admin = NULL;
903 sx_xunlock(&sc->connection_lock);
904 }
905
906 static int
nvmf_detach(device_t dev)907 nvmf_detach(device_t dev)
908 {
909 struct nvmf_softc *sc = device_get_softc(dev);
910 u_int i;
911
912 destroy_dev(sc->cdev);
913
914 sx_xlock(&sc->connection_lock);
915 sc->detaching = true;
916 sx_xunlock(&sc->connection_lock);
917
918 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, sc->shutdown_pre_sync_eh);
919 EVENTHANDLER_DEREGISTER(shutdown_post_sync, sc->shutdown_post_sync_eh);
920
921 nvmf_destroy_sim(sc);
922 for (i = 0; i < sc->cdata->nn; i++) {
923 if (sc->ns[i] != NULL)
924 nvmf_destroy_ns(sc->ns[i]);
925 }
926 free(sc->ns, M_NVMF);
927
928 callout_drain(&sc->ka_tx_timer);
929 callout_drain(&sc->ka_rx_timer);
930
931 if (sc->admin != NULL)
932 nvmf_shutdown_controller(sc);
933
934 for (i = 0; i < sc->num_io_queues; i++) {
935 nvmf_destroy_qp(sc->io[i]);
936 }
937 free(sc->io, M_NVMF);
938
939 taskqueue_drain(nvmf_tq, &sc->disconnect_task);
940 if (taskqueue_cancel_timeout(nvmf_tq, &sc->request_reconnect_task,
941 NULL) != 0)
942 taskqueue_drain_timeout(nvmf_tq, &sc->request_reconnect_task);
943
944 /*
945 * Don't cancel/drain the controller loss task if that task
946 * has fired and is triggering the detach.
947 */
948 if (!sc->controller_timedout) {
949 if (taskqueue_cancel_timeout(nvmf_tq, &sc->controller_loss_task,
950 NULL) != 0)
951 taskqueue_drain_timeout(nvmf_tq,
952 &sc->controller_loss_task);
953 }
954
955 if (sc->admin != NULL)
956 nvmf_destroy_qp(sc->admin);
957
958 nvmf_destroy_aer(sc);
959
960 sx_destroy(&sc->connection_lock);
961 nvlist_destroy(sc->rparams);
962 free(sc->cdata, M_NVMF);
963 return (0);
964 }
965
966 static void
nvmf_rescan_ns_1(struct nvmf_softc * sc,uint32_t nsid,const struct nvme_namespace_data * data)967 nvmf_rescan_ns_1(struct nvmf_softc *sc, uint32_t nsid,
968 const struct nvme_namespace_data *data)
969 {
970 struct nvmf_namespace *ns;
971
972 /* XXX: Needs locking around sc->ns[]. */
973 ns = sc->ns[nsid - 1];
974 if (data->nsze == 0) {
975 /* XXX: Needs locking */
976 if (ns != NULL) {
977 nvmf_destroy_ns(ns);
978 sc->ns[nsid - 1] = NULL;
979 }
980 } else {
981 /* XXX: Needs locking */
982 if (ns == NULL) {
983 sc->ns[nsid - 1] = nvmf_init_ns(sc, nsid, data);
984 } else {
985 if (!nvmf_update_ns(ns, data)) {
986 nvmf_destroy_ns(ns);
987 sc->ns[nsid - 1] = NULL;
988 }
989 }
990 }
991
992 nvmf_sim_rescan_ns(sc, nsid);
993 }
994
995 void
nvmf_rescan_ns(struct nvmf_softc * sc,uint32_t nsid)996 nvmf_rescan_ns(struct nvmf_softc *sc, uint32_t nsid)
997 {
998 struct nvmf_completion_status status;
999 struct nvme_namespace_data *data;
1000
1001 data = malloc(sizeof(*data), M_NVMF, M_WAITOK);
1002
1003 nvmf_status_init(&status);
1004 nvmf_status_wait_io(&status);
1005 if (!nvmf_cmd_identify_namespace(sc, nsid, data, nvmf_complete,
1006 &status, nvmf_io_complete, &status, M_WAITOK)) {
1007 device_printf(sc->dev,
1008 "failed to send IDENTIFY namespace %u command\n", nsid);
1009 free(data, M_NVMF);
1010 return;
1011 }
1012 nvmf_wait_for_reply(&status);
1013
1014 if (status.cqe.status != 0) {
1015 device_printf(sc->dev,
1016 "IDENTIFY namespace %u failed, status %#x\n", nsid,
1017 le16toh(status.cqe.status));
1018 free(data, M_NVMF);
1019 return;
1020 }
1021
1022 if (status.io_error != 0) {
1023 device_printf(sc->dev,
1024 "IDENTIFY namespace %u failed with I/O error %d\n",
1025 nsid, status.io_error);
1026 free(data, M_NVMF);
1027 return;
1028 }
1029
1030 nvme_namespace_data_swapbytes(data);
1031
1032 nvmf_rescan_ns_1(sc, nsid, data);
1033
1034 free(data, M_NVMF);
1035 }
1036
1037 static void
nvmf_purge_namespaces(struct nvmf_softc * sc,uint32_t first_nsid,uint32_t next_valid_nsid)1038 nvmf_purge_namespaces(struct nvmf_softc *sc, uint32_t first_nsid,
1039 uint32_t next_valid_nsid)
1040 {
1041 struct nvmf_namespace *ns;
1042
1043 for (uint32_t nsid = first_nsid; nsid < next_valid_nsid; nsid++)
1044 {
1045 /* XXX: Needs locking around sc->ns[]. */
1046 ns = sc->ns[nsid - 1];
1047 if (ns != NULL) {
1048 nvmf_destroy_ns(ns);
1049 sc->ns[nsid - 1] = NULL;
1050
1051 nvmf_sim_rescan_ns(sc, nsid);
1052 }
1053 }
1054 }
1055
1056 static bool
nvmf_rescan_ns_cb(struct nvmf_softc * sc,uint32_t nsid,const struct nvme_namespace_data * data,void * arg)1057 nvmf_rescan_ns_cb(struct nvmf_softc *sc, uint32_t nsid,
1058 const struct nvme_namespace_data *data, void *arg)
1059 {
1060 uint32_t *last_nsid = arg;
1061
1062 /* Check for any gaps prior to this namespace. */
1063 nvmf_purge_namespaces(sc, *last_nsid + 1, nsid);
1064 *last_nsid = nsid;
1065
1066 nvmf_rescan_ns_1(sc, nsid, data);
1067 return (true);
1068 }
1069
1070 void
nvmf_rescan_all_ns(struct nvmf_softc * sc)1071 nvmf_rescan_all_ns(struct nvmf_softc *sc)
1072 {
1073 uint32_t last_nsid;
1074
1075 last_nsid = 0;
1076 if (!nvmf_scan_active_namespaces(sc, nvmf_rescan_ns_cb, &last_nsid))
1077 return;
1078
1079 /*
1080 * Check for any namespace devices after the last active
1081 * namespace.
1082 */
1083 nvmf_purge_namespaces(sc, last_nsid + 1, sc->cdata->nn + 1);
1084 }
1085
1086 int
nvmf_passthrough_cmd(struct nvmf_softc * sc,struct nvme_pt_command * pt,bool admin)1087 nvmf_passthrough_cmd(struct nvmf_softc *sc, struct nvme_pt_command *pt,
1088 bool admin)
1089 {
1090 struct nvmf_completion_status status;
1091 struct nvme_command cmd;
1092 struct memdesc mem;
1093 struct nvmf_host_qpair *qp;
1094 struct nvmf_request *req;
1095 void *buf;
1096 int error;
1097
1098 if (pt->len > sc->max_xfer_size)
1099 return (EINVAL);
1100
1101 buf = NULL;
1102 if (pt->len != 0) {
1103 /*
1104 * XXX: Depending on the size we may want to pin the
1105 * user pages and use a memdesc with vm_page_t's
1106 * instead.
1107 */
1108 buf = malloc(pt->len, M_NVMF, M_WAITOK);
1109 if (pt->is_read == 0) {
1110 error = copyin(pt->buf, buf, pt->len);
1111 if (error != 0) {
1112 free(buf, M_NVMF);
1113 return (error);
1114 }
1115 } else {
1116 /* Ensure no kernel data is leaked to userland. */
1117 memset(buf, 0, pt->len);
1118 }
1119 }
1120
1121 memset(&cmd, 0, sizeof(cmd));
1122 cmd.opc = pt->cmd.opc;
1123 cmd.fuse = pt->cmd.fuse;
1124 cmd.nsid = pt->cmd.nsid;
1125 cmd.cdw10 = pt->cmd.cdw10;
1126 cmd.cdw11 = pt->cmd.cdw11;
1127 cmd.cdw12 = pt->cmd.cdw12;
1128 cmd.cdw13 = pt->cmd.cdw13;
1129 cmd.cdw14 = pt->cmd.cdw14;
1130 cmd.cdw15 = pt->cmd.cdw15;
1131
1132 sx_slock(&sc->connection_lock);
1133 if (sc->admin == NULL || sc->detaching) {
1134 device_printf(sc->dev,
1135 "failed to send passthrough command\n");
1136 error = ECONNABORTED;
1137 sx_sunlock(&sc->connection_lock);
1138 goto error;
1139 }
1140 if (admin)
1141 qp = sc->admin;
1142 else
1143 qp = nvmf_select_io_queue(sc);
1144 nvmf_status_init(&status);
1145 req = nvmf_allocate_request(qp, &cmd, nvmf_complete, &status, M_WAITOK);
1146 sx_sunlock(&sc->connection_lock);
1147 if (req == NULL) {
1148 device_printf(sc->dev, "failed to send passthrough command\n");
1149 error = ECONNABORTED;
1150 goto error;
1151 }
1152
1153 if (pt->len != 0) {
1154 mem = memdesc_vaddr(buf, pt->len);
1155 nvmf_capsule_append_data(req->nc, &mem, pt->len,
1156 pt->is_read == 0, nvmf_io_complete, &status);
1157 nvmf_status_wait_io(&status);
1158 }
1159
1160 nvmf_submit_request(req);
1161 nvmf_wait_for_reply(&status);
1162
1163 memset(&pt->cpl, 0, sizeof(pt->cpl));
1164 pt->cpl.cdw0 = status.cqe.cdw0;
1165 pt->cpl.status = status.cqe.status;
1166
1167 error = status.io_error;
1168 if (error == 0 && pt->len != 0 && pt->is_read != 0)
1169 error = copyout(buf, pt->buf, pt->len);
1170 error:
1171 free(buf, M_NVMF);
1172 return (error);
1173 }
1174
1175 static int
nvmf_reconnect_params(struct nvmf_softc * sc,struct nvmf_ioc_nv * nv)1176 nvmf_reconnect_params(struct nvmf_softc *sc, struct nvmf_ioc_nv *nv)
1177 {
1178 int error;
1179
1180 sx_slock(&sc->connection_lock);
1181 error = nvmf_pack_ioc_nvlist(sc->rparams, nv);
1182 sx_sunlock(&sc->connection_lock);
1183
1184 return (error);
1185 }
1186
1187 static int
nvmf_connection_status(struct nvmf_softc * sc,struct nvmf_ioc_nv * nv)1188 nvmf_connection_status(struct nvmf_softc *sc, struct nvmf_ioc_nv *nv)
1189 {
1190 nvlist_t *nvl, *nvl_ts;
1191 int error;
1192
1193 nvl = nvlist_create(0);
1194 nvl_ts = nvlist_create(0);
1195
1196 sx_slock(&sc->connection_lock);
1197 nvlist_add_bool(nvl, "connected", sc->admin != NULL);
1198 nvlist_add_number(nvl_ts, "tv_sec", sc->last_disconnect.tv_sec);
1199 nvlist_add_number(nvl_ts, "tv_nsec", sc->last_disconnect.tv_nsec);
1200 sx_sunlock(&sc->connection_lock);
1201 nvlist_move_nvlist(nvl, "last_disconnect", nvl_ts);
1202
1203 error = nvmf_pack_ioc_nvlist(nvl, nv);
1204 nvlist_destroy(nvl);
1205 return (error);
1206 }
1207
1208 static int
nvmf_ioctl(struct cdev * cdev,u_long cmd,caddr_t arg,int flag,struct thread * td)1209 nvmf_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1210 struct thread *td)
1211 {
1212 struct nvmf_softc *sc = cdev->si_drv1;
1213 struct nvme_get_nsid *gnsid;
1214 struct nvme_pt_command *pt;
1215 struct nvmf_ioc_nv *nv;
1216
1217 switch (cmd) {
1218 case NVME_PASSTHROUGH_CMD:
1219 pt = (struct nvme_pt_command *)arg;
1220 return (nvmf_passthrough_cmd(sc, pt, true));
1221 case NVME_GET_NSID:
1222 gnsid = (struct nvme_get_nsid *)arg;
1223 strlcpy(gnsid->cdev, device_get_nameunit(sc->dev),
1224 sizeof(gnsid->cdev));
1225 gnsid->nsid = 0;
1226 return (0);
1227 case NVME_GET_MAX_XFER_SIZE:
1228 *(uint64_t *)arg = sc->max_xfer_size;
1229 return (0);
1230 case NVME_GET_CONTROLLER_DATA:
1231 memcpy(arg, sc->cdata, sizeof(*sc->cdata));
1232 return (0);
1233 case NVMF_RECONNECT_PARAMS:
1234 nv = (struct nvmf_ioc_nv *)arg;
1235 return (nvmf_reconnect_params(sc, nv));
1236 case NVMF_RECONNECT_HOST:
1237 nv = (struct nvmf_ioc_nv *)arg;
1238 return (nvmf_reconnect_host(sc, nv));
1239 case NVMF_CONNECTION_STATUS:
1240 nv = (struct nvmf_ioc_nv *)arg;
1241 return (nvmf_connection_status(sc, nv));
1242 default:
1243 return (ENOTTY);
1244 }
1245 }
1246
1247 static struct cdevsw nvmf_cdevsw = {
1248 .d_version = D_VERSION,
1249 .d_ioctl = nvmf_ioctl
1250 };
1251
1252 static int
nvmf_modevent(module_t mod,int what,void * arg)1253 nvmf_modevent(module_t mod, int what, void *arg)
1254 {
1255 int error;
1256
1257 switch (what) {
1258 case MOD_LOAD:
1259 error = nvmf_ctl_load();
1260 if (error != 0)
1261 return (error);
1262
1263 nvmf_tq = taskqueue_create("nvmf", M_WAITOK | M_ZERO,
1264 taskqueue_thread_enqueue, &nvmf_tq);
1265 taskqueue_start_threads(&nvmf_tq, 1, PWAIT, "nvmf taskq");
1266 return (0);
1267 case MOD_QUIESCE:
1268 return (0);
1269 case MOD_UNLOAD:
1270 nvmf_ctl_unload();
1271 destroy_dev_drain(&nvmf_cdevsw);
1272 if (nvmf_tq != NULL)
1273 taskqueue_free(nvmf_tq);
1274 return (0);
1275 default:
1276 return (EOPNOTSUPP);
1277 }
1278 }
1279
1280 static device_method_t nvmf_methods[] = {
1281 /* Device interface */
1282 DEVMETHOD(device_probe, nvmf_probe),
1283 DEVMETHOD(device_attach, nvmf_attach),
1284 DEVMETHOD(device_detach, nvmf_detach),
1285 DEVMETHOD_END
1286 };
1287
1288 driver_t nvme_nvmf_driver = {
1289 "nvme",
1290 nvmf_methods,
1291 sizeof(struct nvmf_softc),
1292 };
1293
1294 DRIVER_MODULE(nvme, root, nvme_nvmf_driver, nvmf_modevent, NULL);
1295 MODULE_DEPEND(nvmf, nvmf_transport, 1, 1, 1);
1296