xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 8190dfbb1d58a1c52f73992d84ae00c4fff35890)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 #include <dev/uart/uart_ppstypes.h>
55 #ifdef DEV_ACPI
56 #include <dev/uart/uart_cpu_acpi.h>
57 #include <contrib/dev/acpica/include/acpi.h>
58 #endif
59 
60 #include <dev/ic/ns16550.h>
61 
62 #include "uart_if.h"
63 
64 #define	DEFAULT_RCLK	1843200
65 
66 /*
67  * Set the default baudrate tolerance to 3.0%.
68  *
69  * Some embedded boards have odd reference clocks (eg 25MHz)
70  * and we need to handle higher variances in the target baud rate.
71  */
72 #ifndef	UART_DEV_TOLERANCE_PCT
73 #define	UART_DEV_TOLERANCE_PCT	30
74 #endif	/* UART_DEV_TOLERANCE_PCT */
75 
76 static int broken_txfifo = 0;
77 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
78 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
79 
80 /*
81  * To use early printf on x86, add the following to your kernel config:
82  *
83  * options UART_NS8250_EARLY_PORT=0x3f8
84  * options EARLY_PRINTF=ns8250
85 */
86 #if CHECK_EARLY_PRINTF(ns8250)
87 #if !(defined(__amd64__) || defined(__i386__))
88 #error ns8250 early putc is x86 specific as it uses inb/outb
89 #endif
90 static void
uart_ns8250_early_putc(int c)91 uart_ns8250_early_putc(int c)
92 {
93 	u_int stat = UART_NS8250_EARLY_PORT + REG_LSR;
94 	u_int tx = UART_NS8250_EARLY_PORT + REG_DATA;
95 	int limit = 10000; /* 10ms is plenty of time */
96 
97 	while ((inb(stat) & LSR_THRE) == 0 && --limit > 0)
98 		continue;
99 	outb(tx, c);
100 }
101 early_putc_t *early_putc = uart_ns8250_early_putc;
102 #endif /* EARLY_PRINTF */
103 
104 /*
105  * Clear pending interrupts. THRE is cleared by reading IIR. Data
106  * that may have been received gets lost here.
107  */
108 static void
ns8250_clrint(struct uart_bas * bas)109 ns8250_clrint(struct uart_bas *bas)
110 {
111 	uint8_t iir, lsr;
112 
113 	iir = uart_getreg(bas, REG_IIR);
114 	while ((iir & IIR_NOPEND) == 0) {
115 		iir &= IIR_IMASK;
116 		if (iir == IIR_RLS) {
117 			lsr = uart_getreg(bas, REG_LSR);
118 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
119 				(void)uart_getreg(bas, REG_DATA);
120 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
121 			(void)uart_getreg(bas, REG_DATA);
122 		else if (iir == IIR_MLSC)
123 			(void)uart_getreg(bas, REG_MSR);
124 		uart_barrier(bas);
125 		iir = uart_getreg(bas, REG_IIR);
126 	}
127 }
128 
129 static uint32_t
ns8250_get_divisor(struct uart_bas * bas)130 ns8250_get_divisor(struct uart_bas *bas)
131 {
132 	uint32_t divisor;
133 	uint8_t lcr;
134 
135 	lcr = uart_getreg(bas, REG_LCR);
136 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
137 	uart_barrier(bas);
138 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
139 	uart_barrier(bas);
140 	uart_setreg(bas, REG_LCR, lcr);
141 	uart_barrier(bas);
142 
143 	return (divisor);
144 }
145 
146 static int
ns8250_delay(struct uart_bas * bas)147 ns8250_delay(struct uart_bas *bas)
148 {
149 	int divisor;
150 
151 	divisor = ns8250_get_divisor(bas);
152 
153 	/* 1/10th the time to transmit 1 character (estimate). */
154 	if (divisor <= 134)
155 		return (16000000 * divisor / bas->rclk);
156 	return (16000 * divisor / (bas->rclk / 1000));
157 }
158 
159 static int
ns8250_divisor(int rclk,int baudrate)160 ns8250_divisor(int rclk, int baudrate)
161 {
162 	int actual_baud, divisor;
163 	int error;
164 
165 	if (baudrate == 0)
166 		return (0);
167 
168 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
169 	if (divisor == 0 || divisor >= 65536)
170 		return (0);
171 	actual_baud = rclk / (divisor << 4);
172 
173 	/* 10 times error in percent: */
174 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
175 
176 	/* enforce maximum error tolerance: */
177 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
178 		return (0);
179 
180 	return (divisor);
181 }
182 
183 static int
ns8250_drain(struct uart_bas * bas,int what)184 ns8250_drain(struct uart_bas *bas, int what)
185 {
186 	int delay, limit;
187 
188 	delay = ns8250_delay(bas);
189 
190 	if (what & UART_DRAIN_TRANSMITTER) {
191 		/*
192 		 * Pick an arbitrary high limit to avoid getting stuck in
193 		 * an infinite loop when the hardware is broken. Make the
194 		 * limit high enough to handle large FIFOs.
195 		 */
196 		limit = 10*1024;
197 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
198 			DELAY(delay);
199 		if (limit == 0) {
200 			/* printf("uart: ns8250: transmitter appears stuck... "); */
201 			return (EIO);
202 		}
203 	}
204 
205 	if (what & UART_DRAIN_RECEIVER) {
206 		/*
207 		 * Pick an arbitrary high limit to avoid getting stuck in
208 		 * an infinite loop when the hardware is broken. Make the
209 		 * limit high enough to handle large FIFOs and integrated
210 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
211 		 * management board that tend to get a lot of data send
212 		 * to it when the UART is first activated.  Assume that we
213 		 * have finished draining if LSR_RXRDY is not asserted both
214 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
215 		 * asserted, read (and discard) characters as quickly as
216 		 * possible.
217 		 */
218 		limit=10*4096;
219 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
220 			do {
221 				(void)uart_getreg(bas, REG_DATA);
222 				uart_barrier(bas);
223 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
224 			uart_barrier(bas);
225 			DELAY(delay << 2);
226 		}
227 		if (limit == 0) {
228 			/* printf("uart: ns8250: receiver appears broken... "); */
229 			return (EIO);
230 		}
231 	}
232 
233 	return (0);
234 }
235 
236 /*
237  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
238  * drained. WARNING: this function clobbers the FIFO setting!
239  */
240 static void
ns8250_flush(struct uart_bas * bas,int what)241 ns8250_flush(struct uart_bas *bas, int what)
242 {
243 	uint8_t fcr;
244 	uint8_t lsr;
245 	int drain = 0;
246 
247 	fcr = FCR_ENABLE;
248 	if (what & UART_FLUSH_TRANSMITTER)
249 		fcr |= FCR_XMT_RST;
250 	if (what & UART_FLUSH_RECEIVER)
251 		fcr |= FCR_RCV_RST;
252 	uart_setreg(bas, REG_FCR, fcr);
253 	uart_barrier(bas);
254 
255 	/*
256 	 * Detect and work around emulated UARTs which don't implement the
257 	 * FCR register; on these systems we need to drain the FIFO since
258 	 * the flush we request doesn't happen.  One such system is the
259 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
260 	 * https://github.com/rust-vmm/vm-superio/issues/83
261 	 */
262 	lsr = uart_getreg(bas, REG_LSR);
263 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
264 		drain |= UART_DRAIN_TRANSMITTER;
265 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
266 		drain |= UART_DRAIN_RECEIVER;
267 	if (drain != 0) {
268 		printf("uart: ns8250: UART FCR is broken\n");
269 		ns8250_drain(bas, drain);
270 	}
271 }
272 
273 static int
ns8250_param(struct uart_bas * bas,int baudrate,int databits,int stopbits,int parity)274 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
275     int parity)
276 {
277 	int divisor;
278 	uint8_t lcr;
279 
280 	/* Don't change settings when running on Hyper-V */
281 	if (vm_guest == VM_GUEST_HV)
282 		return (0);
283 
284 	lcr = 0;
285 	if (databits >= 8)
286 		lcr |= LCR_8BITS;
287 	else if (databits == 7)
288 		lcr |= LCR_7BITS;
289 	else if (databits == 6)
290 		lcr |= LCR_6BITS;
291 	else
292 		lcr |= LCR_5BITS;
293 	if (stopbits > 1)
294 		lcr |= LCR_STOPB;
295 	lcr |= parity << 3;
296 
297 	/* Set baudrate if we know a rclk and both are not 0. */
298 	if (baudrate > 0 && bas->rclk > 0) {
299 		divisor = ns8250_divisor(bas->rclk, baudrate);
300 		if (divisor == 0)
301 			return (EINVAL);
302 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
303 		uart_barrier(bas);
304 		uart_setreg(bas, REG_DLL, divisor & 0xff);
305 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
306 		uart_barrier(bas);
307 	}
308 
309 	/* Set LCR and clear DLAB. */
310 	uart_setreg(bas, REG_LCR, lcr);
311 	uart_barrier(bas);
312 	return (0);
313 }
314 
315 /*
316  * Low-level UART interface.
317  */
318 static int ns8250_probe(struct uart_bas *bas);
319 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
320 static void ns8250_term(struct uart_bas *bas);
321 static void ns8250_putc(struct uart_bas *bas, int);
322 static int ns8250_rxready(struct uart_bas *bas);
323 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
324 
325 struct uart_ops uart_ns8250_ops = {
326 	.probe = ns8250_probe,
327 	.init = ns8250_init,
328 	.term = ns8250_term,
329 	.putc = ns8250_putc,
330 	.rxready = ns8250_rxready,
331 	.getc = ns8250_getc,
332 };
333 
334 static int
ns8250_probe(struct uart_bas * bas)335 ns8250_probe(struct uart_bas *bas)
336 {
337 	u_char val;
338 
339 	/* Check known 0 bits that don't depend on DLAB. */
340 	val = uart_getreg(bas, REG_IIR);
341 	if (val & 0x30)
342 		return (ENXIO);
343 	/*
344 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
345 	 * chip, but otherwise doesn't seem to have a function. In
346 	 * other words, uart(4) works regardless. Ignore that bit so
347 	 * the probe succeeds.
348 	 */
349 	val = uart_getreg(bas, REG_MCR);
350 	if (val & 0xa0)
351 		return (ENXIO);
352 
353 	return (0);
354 }
355 
356 static void
ns8250_init(struct uart_bas * bas,int baudrate,int databits,int stopbits,int parity)357 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
358     int parity)
359 {
360 	u_char ier;
361 
362 	/* Disable all interrupt sources. */
363 	/*
364 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
365 	 * UARTs split the receive time-out interrupt bit out separately as
366 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
367 	 */
368 	ier = uart_getreg(bas, REG_IER) & 0xe0;
369 	uart_setreg(bas, REG_IER, ier);
370 	uart_barrier(bas);
371 
372 	/*
373 	 * Loader tells us to infer the rclk when it sets xo to 0 in
374 	 * hw.uart.console. We know the baudrate was set by the firmware, so
375 	 * calculate rclk from baudrate and the divisor register.  If 'div' is
376 	 * actually 0, the resulting 0 value will have us fall back to other
377 	 * rclk methods.
378 	 */
379 	if (bas->rclk_guess && bas->rclk == 0 && baudrate != 0) {
380 		uint32_t div;
381 
382 		div = ns8250_get_divisor(bas);
383 		bas->rclk = baudrate * div * 16;
384 	}
385 
386 	/*
387 	 * Pick a default because we just don't know. This likely needs future
388 	 * refinement, but that's hard outside of consoles to know what to use.
389 	 * But defer as long as possible if there's no defined baud rate.
390 	 */
391 	if (bas->rclk == 0 && baudrate != 0)
392 		bas->rclk = DEFAULT_RCLK;
393 
394 	ns8250_param(bas, baudrate, databits, stopbits, parity);
395 
396 	/* Disable the FIFO (if present). */
397 	uart_setreg(bas, REG_FCR, 0);
398 	uart_barrier(bas);
399 
400 	/* Set RTS & DTR. */
401 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
402 	uart_barrier(bas);
403 
404 	ns8250_clrint(bas);
405 }
406 
407 static void
ns8250_term(struct uart_bas * bas)408 ns8250_term(struct uart_bas *bas)
409 {
410 
411 	/* Clear RTS & DTR. */
412 	uart_setreg(bas, REG_MCR, MCR_IE);
413 	uart_barrier(bas);
414 }
415 
416 static void
ns8250_putc(struct uart_bas * bas,int c)417 ns8250_putc(struct uart_bas *bas, int c)
418 {
419 	int limit;
420 
421 	if (vm_guest != VM_GUEST_HV) {
422 		limit = 250000;
423 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
424 			DELAY(4);
425 	}
426 	uart_setreg(bas, REG_DATA, c);
427 	uart_barrier(bas);
428 }
429 
430 static int
ns8250_rxready(struct uart_bas * bas)431 ns8250_rxready(struct uart_bas *bas)
432 {
433 
434 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
435 }
436 
437 static int
ns8250_getc(struct uart_bas * bas,struct mtx * hwmtx)438 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
439 {
440 	int c;
441 
442 	uart_lock(hwmtx);
443 
444 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
445 		uart_unlock(hwmtx);
446 		DELAY(4);
447 		uart_lock(hwmtx);
448 	}
449 
450 	c = uart_getreg(bas, REG_DATA);
451 
452 	uart_unlock(hwmtx);
453 
454 	return (c);
455 }
456 
457 static kobj_method_t ns8250_methods[] = {
458 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
459 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
460 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
461 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
462 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
463 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
464 	KOBJMETHOD(uart_param,		ns8250_bus_param),
465 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
466 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
467 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
468 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
469 	KOBJMETHOD(uart_txbusy,		ns8250_bus_txbusy),
470 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
471 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
472 	KOBJMETHOD_END
473 };
474 
475 struct uart_class uart_ns8250_class = {
476 	"ns8250",
477 	ns8250_methods,
478 	sizeof(struct ns8250_softc),
479 	.uc_ops = &uart_ns8250_ops,
480 	.uc_range = 8,
481 	.uc_rclk = DEFAULT_RCLK,
482 	.uc_rshift = 0
483 };
484 UART_CLASS(uart_ns8250_class);
485 
486 /*
487  * XXX -- refactor out ACPI and FDT ifdefs
488  */
489 #ifdef DEV_ACPI
490 static struct acpi_uart_compat_data acpi_compat_data[] = {
491 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
492 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
493 	{"APMC0D08", &uart_ns8250_class, ACPI_DBG2_16550_COMPATIBLE, 2, 4, 0, 0, "APM compatible UART"},
494 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
495 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
496 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
497 	{"INTC1006", &uart_ns8250_class, 0, 2, 0, 25000000, 0, "Intel ARM64 UART"},
498 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
499 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
500 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
501 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
502 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
503 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
504 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
505 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
506 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
507 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
508 };
509 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
510 #endif
511 
512 #ifdef FDT
513 static struct ofw_compat_data compat_data[] = {
514 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
515 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
516 	{NULL,			(uintptr_t)NULL},
517 };
518 UART_FDT_CLASS_AND_DEVICE(compat_data);
519 #endif
520 
521 /* Use token-pasting to form SER_ and MSR_ named constants. */
522 #define	SER(sig)	SER_##sig
523 #define	SERD(sig)	SER_D##sig
524 #define	MSR(sig)	MSR_##sig
525 #define	MSRD(sig)	MSR_D##sig
526 
527 /*
528  * Detect signal changes using software delta detection.  The previous state of
529  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
530  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
531  * new state of both the signal and the delta bits.
532  */
533 #define SIGCHGSW(var, msr, sig)					\
534 	if ((msr) & MSR(sig)) {					\
535 		if ((var & SER(sig)) == 0)			\
536 			var |= SERD(sig) | SER(sig);		\
537 	} else {						\
538 		if ((var & SER(sig)) != 0)			\
539 			var = SERD(sig) | (var & ~SER(sig));	\
540 	}
541 
542 /*
543  * Detect signal changes using the hardware msr delta bits.  This is currently
544  * used only when PPS timing information is being captured using the "narrow
545  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
546  * by time the interrupt handler is invoked.  The hardware will latch the fact
547  * that it changed in the delta bits.
548  */
549 #define SIGCHGHW(var, msr, sig)					\
550 	if ((msr) & MSRD(sig)) {				\
551 		if (((msr) & MSR(sig)) != 0)			\
552 			var |= SERD(sig) | SER(sig);		\
553 		else						\
554 			var = SERD(sig) | (var & ~SER(sig));	\
555 	}
556 
557 int
ns8250_bus_attach(struct uart_softc * sc)558 ns8250_bus_attach(struct uart_softc *sc)
559 {
560 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
561 	struct uart_bas *bas;
562 	unsigned int ivar;
563 #ifdef FDT
564 	phandle_t node;
565 	pcell_t cell;
566 #endif
567 
568 #ifdef FDT
569 	/* Check whether uart has a broken txfifo. */
570 	node = ofw_bus_get_node(sc->sc_dev);
571 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
572 		broken_txfifo =  cell ? 1 : 0;
573 #endif
574 
575 	bas = &sc->sc_bas;
576 
577 	ns8250->busy_detect = bas->busy_detect;
578 	ns8250->mcr = uart_getreg(bas, REG_MCR);
579 	ns8250->fcr = FCR_ENABLE;
580 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
581 	    &ivar)) {
582 		if (UART_FLAGS_FCR_RX_LOW(ivar))
583 			ns8250->fcr |= FCR_RX_LOW;
584 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
585 			ns8250->fcr |= FCR_RX_MEDL;
586 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
587 			ns8250->fcr |= FCR_RX_HIGH;
588 		else
589 			ns8250->fcr |= FCR_RX_MEDH;
590 	} else
591 		ns8250->fcr |= FCR_RX_MEDH;
592 
593 	/* Get IER mask */
594 	ivar = 0xf0;
595 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
596 	    &ivar);
597 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
598 
599 	/* Get IER RX interrupt bits */
600 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
601 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
602 	    &ivar);
603 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
604 
605 	uart_setreg(bas, REG_FCR, ns8250->fcr);
606 	uart_barrier(bas);
607 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
608 
609 	if (ns8250->mcr & MCR_DTR)
610 		sc->sc_hwsig |= SER_DTR;
611 	if (ns8250->mcr & MCR_RTS)
612 		sc->sc_hwsig |= SER_RTS;
613 	ns8250_bus_getsig(sc);
614 
615 	ns8250_clrint(bas);
616 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
617 	ns8250->ier |= ns8250->ier_rxbits;
618 	uart_setreg(bas, REG_IER, ns8250->ier);
619 	uart_barrier(bas);
620 
621 	/*
622 	 * Timing of the H/W access was changed with r253161 of uart_core.c
623 	 * It has been observed that an ITE IT8513E would signal a break
624 	 * condition with pretty much every character it received, unless
625 	 * it had enough time to settle between ns8250_bus_attach() and
626 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
627 	 * It's not understood why the UART chip behaves this way and it
628 	 * could very well be that the DELAY make the H/W work in the same
629 	 * accidental manner as before. More analysis is warranted, but
630 	 * at least now we fixed a known regression.
631 	 */
632 	DELAY(200);
633 	return (0);
634 }
635 
636 int
ns8250_bus_detach(struct uart_softc * sc)637 ns8250_bus_detach(struct uart_softc *sc)
638 {
639 	struct ns8250_softc *ns8250;
640 	struct uart_bas *bas;
641 	u_char ier;
642 
643 	ns8250 = (struct ns8250_softc *)sc;
644 	bas = &sc->sc_bas;
645 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
646 	uart_setreg(bas, REG_IER, ier);
647 	uart_barrier(bas);
648 	ns8250_clrint(bas);
649 	return (0);
650 }
651 
652 int
ns8250_bus_flush(struct uart_softc * sc,int what)653 ns8250_bus_flush(struct uart_softc *sc, int what)
654 {
655 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
656 	struct uart_bas *bas;
657 	int error;
658 
659 	bas = &sc->sc_bas;
660 	uart_lock(sc->sc_hwmtx);
661 	if (sc->sc_rxfifosz > 1) {
662 		ns8250_flush(bas, what);
663 		uart_setreg(bas, REG_FCR, ns8250->fcr);
664 		uart_barrier(bas);
665 		error = 0;
666 	} else
667 		error = ns8250_drain(bas, what);
668 	uart_unlock(sc->sc_hwmtx);
669 	return (error);
670 }
671 
672 int
ns8250_bus_getsig(struct uart_softc * sc)673 ns8250_bus_getsig(struct uart_softc *sc)
674 {
675 	uint32_t old, sig;
676 	uint8_t msr;
677 
678 	/*
679 	 * The delta bits are reputed to be broken on some hardware, so use
680 	 * software delta detection by default.  Use the hardware delta bits
681 	 * when capturing PPS pulses which are too narrow for software detection
682 	 * to see the edges.  Hardware delta for RI doesn't work like the
683 	 * others, so always use software for it.  Other threads may be changing
684 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
685 	 * update without other changes happening.  Note that the SIGCHGxx()
686 	 * macros carefully preserve the delta bits when we have to loop several
687 	 * times and a signal transitions between iterations.
688 	 */
689 	do {
690 		old = sc->sc_hwsig;
691 		sig = old;
692 		uart_lock(sc->sc_hwmtx);
693 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
694 		uart_unlock(sc->sc_hwmtx);
695 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
696 			SIGCHGHW(sig, msr, DSR);
697 			SIGCHGHW(sig, msr, CTS);
698 			SIGCHGHW(sig, msr, DCD);
699 		} else {
700 			SIGCHGSW(sig, msr, DSR);
701 			SIGCHGSW(sig, msr, CTS);
702 			SIGCHGSW(sig, msr, DCD);
703 		}
704 		SIGCHGSW(sig, msr, RI);
705 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
706 	return (sig);
707 }
708 
709 int
ns8250_bus_ioctl(struct uart_softc * sc,int request,intptr_t data)710 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
711 {
712 	struct uart_bas *bas;
713 	int baudrate, divisor, error;
714 	uint8_t efr, lcr;
715 
716 	bas = &sc->sc_bas;
717 	error = 0;
718 	uart_lock(sc->sc_hwmtx);
719 	switch (request) {
720 	case UART_IOCTL_BREAK:
721 		lcr = uart_getreg(bas, REG_LCR);
722 		if (data)
723 			lcr |= LCR_SBREAK;
724 		else
725 			lcr &= ~LCR_SBREAK;
726 		uart_setreg(bas, REG_LCR, lcr);
727 		uart_barrier(bas);
728 		break;
729 	case UART_IOCTL_IFLOW:
730 		lcr = uart_getreg(bas, REG_LCR);
731 		uart_barrier(bas);
732 		uart_setreg(bas, REG_LCR, 0xbf);
733 		uart_barrier(bas);
734 		efr = uart_getreg(bas, REG_EFR);
735 		if (data)
736 			efr |= EFR_RTS;
737 		else
738 			efr &= ~EFR_RTS;
739 		uart_setreg(bas, REG_EFR, efr);
740 		uart_barrier(bas);
741 		uart_setreg(bas, REG_LCR, lcr);
742 		uart_barrier(bas);
743 		break;
744 	case UART_IOCTL_OFLOW:
745 		lcr = uart_getreg(bas, REG_LCR);
746 		uart_barrier(bas);
747 		uart_setreg(bas, REG_LCR, 0xbf);
748 		uart_barrier(bas);
749 		efr = uart_getreg(bas, REG_EFR);
750 		if (data)
751 			efr |= EFR_CTS;
752 		else
753 			efr &= ~EFR_CTS;
754 		uart_setreg(bas, REG_EFR, efr);
755 		uart_barrier(bas);
756 		uart_setreg(bas, REG_LCR, lcr);
757 		uart_barrier(bas);
758 		break;
759 	case UART_IOCTL_BAUD:
760 		divisor = ns8250_get_divisor(bas);
761 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
762 		if (baudrate > 0)
763 			*(int*)data = baudrate;
764 		else
765 			error = ENXIO;
766 		break;
767 	default:
768 		error = EINVAL;
769 		break;
770 	}
771 	uart_unlock(sc->sc_hwmtx);
772 	return (error);
773 }
774 
775 int
ns8250_bus_ipend(struct uart_softc * sc)776 ns8250_bus_ipend(struct uart_softc *sc)
777 {
778 	struct uart_bas *bas;
779 	struct ns8250_softc *ns8250;
780 	int ipend;
781 	uint8_t iir, lsr;
782 
783 	ns8250 = (struct ns8250_softc *)sc;
784 	bas = &sc->sc_bas;
785 	uart_lock(sc->sc_hwmtx);
786 	iir = uart_getreg(bas, REG_IIR);
787 
788 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
789 		(void)uart_getreg(bas, DW_REG_USR);
790 		uart_unlock(sc->sc_hwmtx);
791 		return (0);
792 	}
793 	if (iir & IIR_NOPEND) {
794 		uart_unlock(sc->sc_hwmtx);
795 		return (0);
796 	}
797 	ipend = 0;
798 	if (iir & IIR_RXRDY) {
799 		lsr = uart_getreg(bas, REG_LSR);
800 		if (lsr & LSR_OE)
801 			ipend |= SER_INT_OVERRUN;
802 		if (lsr & LSR_BI)
803 			ipend |= SER_INT_BREAK;
804 		if (lsr & LSR_RXRDY)
805 			ipend |= SER_INT_RXREADY;
806 	} else {
807 		if (iir & IIR_TXRDY) {
808 			ipend |= SER_INT_TXIDLE;
809 			ns8250->ier &= ~IER_ETXRDY;
810 			uart_setreg(bas, REG_IER, ns8250->ier);
811 			uart_barrier(bas);
812 		} else
813 			ipend |= SER_INT_SIGCHG;
814 	}
815 	if (ipend == 0)
816 		ns8250_clrint(bas);
817 	uart_unlock(sc->sc_hwmtx);
818 	return (ipend);
819 }
820 
821 int
ns8250_bus_param(struct uart_softc * sc,int baudrate,int databits,int stopbits,int parity)822 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
823     int stopbits, int parity)
824 {
825 	struct ns8250_softc *ns8250;
826 	struct uart_bas *bas;
827 	int error, limit;
828 
829 	ns8250 = (struct ns8250_softc*)sc;
830 	bas = &sc->sc_bas;
831 	uart_lock(sc->sc_hwmtx);
832 	/*
833 	 * When using DW UART with BUSY detection it is necessary to wait
834 	 * until all serial transfers are finished before manipulating the
835 	 * line control. LCR will not be affected when UART is busy.
836 	 */
837 	if (ns8250->busy_detect != 0) {
838 		/*
839 		 * Pick an arbitrary high limit to avoid getting stuck in
840 		 * an infinite loop in case when the hardware is broken.
841 		 */
842 		limit = 10 * 1024;
843 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
844 		    --limit)
845 			DELAY(4);
846 
847 		if (limit <= 0) {
848 			/* UART appears to be stuck */
849 			uart_unlock(sc->sc_hwmtx);
850 			return (EIO);
851 		}
852 	}
853 
854 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
855 	uart_unlock(sc->sc_hwmtx);
856 	return (error);
857 }
858 
859 int
ns8250_bus_probe(struct uart_softc * sc)860 ns8250_bus_probe(struct uart_softc *sc)
861 {
862 	struct uart_bas *bas;
863 	int count, delay, error, limit;
864 	uint8_t lsr, mcr, ier;
865 
866 	bas = &sc->sc_bas;
867 
868 	error = ns8250_probe(bas);
869 	if (error)
870 		return (error);
871 
872 	mcr = MCR_IE;
873 	if (sc->sc_sysdev == NULL) {
874 		/* By using ns8250_init() we also set DTR and RTS. */
875 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
876 	} else
877 		mcr |= MCR_DTR | MCR_RTS;
878 
879 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
880 	if (error)
881 		return (error);
882 
883 	/*
884 	 * Set loopback mode. This avoids having garbage on the wire and
885 	 * also allows us send and receive data. We set DTR and RTS to
886 	 * avoid the possibility that automatic flow-control prevents
887 	 * any data from being sent.
888 	 */
889 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
890 	uart_barrier(bas);
891 
892 	/*
893 	 * Enable FIFOs. And check that the UART has them. If not, we're
894 	 * done. Since this is the first time we enable the FIFOs, we reset
895 	 * them.
896 	 */
897 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
898 	uart_barrier(bas);
899 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
900 		/*
901 		 * NS16450 or INS8250. We don't bother to differentiate
902 		 * between them. They're too old to be interesting.
903 		 */
904 		uart_setreg(bas, REG_MCR, mcr);
905 		uart_barrier(bas);
906 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
907 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
908 		return (0);
909 	}
910 
911 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
912 	uart_barrier(bas);
913 
914 	count = 0;
915 	delay = ns8250_delay(bas);
916 
917 	/* We have FIFOs. Drain the transmitter and receiver. */
918 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
919 	if (error) {
920 		uart_setreg(bas, REG_MCR, mcr);
921 		uart_setreg(bas, REG_FCR, 0);
922 		uart_barrier(bas);
923 		goto describe;
924 	}
925 
926 	/*
927 	 * We should have a sufficiently clean "pipe" to determine the
928 	 * size of the FIFOs. We send as much characters as is reasonable
929 	 * and wait for the overflow bit in the LSR register to be
930 	 * asserted, counting the characters as we send them. Based on
931 	 * that count we know the FIFO size.
932 	 */
933 	do {
934 		uart_setreg(bas, REG_DATA, 0);
935 		uart_barrier(bas);
936 		count++;
937 
938 		limit = 30;
939 		lsr = 0;
940 		/*
941 		 * LSR bits are cleared upon read, so we must accumulate
942 		 * them to be able to test LSR_OE below.
943 		 */
944 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
945 		    --limit)
946 			DELAY(delay);
947 		if (limit == 0) {
948 			/* See the comment in ns8250_init(). */
949 			ier = uart_getreg(bas, REG_IER) & 0xe0;
950 			uart_setreg(bas, REG_IER, ier);
951 			uart_setreg(bas, REG_MCR, mcr);
952 			uart_setreg(bas, REG_FCR, 0);
953 			uart_barrier(bas);
954 			count = 0;
955 			goto describe;
956 		}
957 	} while ((lsr & LSR_OE) == 0 && count < 260);
958 	count--;
959 
960 	uart_setreg(bas, REG_MCR, mcr);
961 
962 	/* Reset FIFOs. */
963 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
964 
965  describe:
966 	if (count >= 14 && count <= 16) {
967 		sc->sc_rxfifosz = 16;
968 		device_set_desc(sc->sc_dev, "16550 or compatible");
969 	} else if (count >= 28 && count <= 32) {
970 		sc->sc_rxfifosz = 32;
971 		device_set_desc(sc->sc_dev, "16650 or compatible");
972 	} else if (count >= 56 && count <= 64) {
973 		sc->sc_rxfifosz = 64;
974 		device_set_desc(sc->sc_dev, "16750 or compatible");
975 	} else if (count >= 112 && count <= 128) {
976 		sc->sc_rxfifosz = 128;
977 		device_set_desc(sc->sc_dev, "16950 or compatible");
978 	} else if (count >= 224 && count <= 256) {
979 		sc->sc_rxfifosz = 256;
980 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
981 	} else {
982 		sc->sc_rxfifosz = 16;
983 		device_set_desc(sc->sc_dev,
984 		    "Non-standard ns8250 class UART with FIFOs");
985 	}
986 
987 	/*
988 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
989 	 * Tx trigger. Also, we assume that all data has been sent when the
990 	 * interrupt happens.
991 	 */
992 	sc->sc_txfifosz = 16;
993 
994 #if 0
995 	/*
996 	 * XXX there are some issues related to hardware flow control and
997 	 * it's likely that uart(4) is the cause. This basically needs more
998 	 * investigation, but we avoid using for hardware flow control
999 	 * until then.
1000 	 */
1001 	/* 16650s or higher have automatic flow control. */
1002 	if (sc->sc_rxfifosz > 16) {
1003 		sc->sc_hwiflow = 1;
1004 		sc->sc_hwoflow = 1;
1005 	}
1006 #endif
1007 
1008 	return (0);
1009 }
1010 
1011 int
ns8250_bus_receive(struct uart_softc * sc)1012 ns8250_bus_receive(struct uart_softc *sc)
1013 {
1014 	struct uart_bas *bas;
1015 	int xc;
1016 	uint8_t lsr;
1017 
1018 	bas = &sc->sc_bas;
1019 	uart_lock(sc->sc_hwmtx);
1020 	lsr = uart_getreg(bas, REG_LSR);
1021 	while (lsr & LSR_RXRDY) {
1022 		if (uart_rx_full(sc)) {
1023 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1024 			break;
1025 		}
1026 		xc = uart_getreg(bas, REG_DATA);
1027 		if (lsr & LSR_FE)
1028 			xc |= UART_STAT_FRAMERR;
1029 		if (lsr & LSR_PE)
1030 			xc |= UART_STAT_PARERR;
1031 		uart_rx_put(sc, xc);
1032 		lsr = uart_getreg(bas, REG_LSR);
1033 	}
1034 	/* Discard everything left in the Rx FIFO. */
1035 	while (lsr & LSR_RXRDY) {
1036 		(void)uart_getreg(bas, REG_DATA);
1037 		uart_barrier(bas);
1038 		lsr = uart_getreg(bas, REG_LSR);
1039 	}
1040 	uart_unlock(sc->sc_hwmtx);
1041  	return (0);
1042 }
1043 
1044 int
ns8250_bus_setsig(struct uart_softc * sc,int sig)1045 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1046 {
1047 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1048 	struct uart_bas *bas;
1049 	uint32_t new, old;
1050 
1051 	bas = &sc->sc_bas;
1052 	do {
1053 		old = sc->sc_hwsig;
1054 		new = old;
1055 		if (sig & SER_DDTR) {
1056 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1057 		}
1058 		if (sig & SER_DRTS) {
1059 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1060 		}
1061 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1062 	uart_lock(sc->sc_hwmtx);
1063 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1064 	if (new & SER_DTR)
1065 		ns8250->mcr |= MCR_DTR;
1066 	if (new & SER_RTS)
1067 		ns8250->mcr |= MCR_RTS;
1068 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1069 	uart_barrier(bas);
1070 	uart_unlock(sc->sc_hwmtx);
1071 	return (0);
1072 }
1073 
1074 int
ns8250_bus_transmit(struct uart_softc * sc)1075 ns8250_bus_transmit(struct uart_softc *sc)
1076 {
1077 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1078 	struct uart_bas *bas;
1079 	int i;
1080 
1081 	bas = &sc->sc_bas;
1082 	uart_lock(sc->sc_hwmtx);
1083 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1084 		DELAY(4);
1085 	for (i = 0; i < sc->sc_txdatasz; i++) {
1086 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1087 		uart_barrier(bas);
1088 	}
1089 	if (!broken_txfifo)
1090 		ns8250->ier |= IER_ETXRDY;
1091 	uart_setreg(bas, REG_IER, ns8250->ier);
1092 	uart_barrier(bas);
1093 	if (broken_txfifo)
1094 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1095 	else
1096 		sc->sc_txbusy = 1;
1097 	uart_unlock(sc->sc_hwmtx);
1098 	if (broken_txfifo)
1099 		uart_sched_softih(sc, SER_INT_TXIDLE);
1100 	return (0);
1101 }
1102 
1103 bool
ns8250_bus_txbusy(struct uart_softc * sc)1104 ns8250_bus_txbusy(struct uart_softc *sc)
1105 {
1106 	struct uart_bas *bas = &sc->sc_bas;
1107 
1108 	if ((uart_getreg(bas, REG_LSR) & (LSR_TEMT | LSR_THRE)) !=
1109 	    (LSR_TEMT | LSR_THRE))
1110 		return (true);
1111 	return (false);
1112 }
1113 
1114 void
ns8250_bus_grab(struct uart_softc * sc)1115 ns8250_bus_grab(struct uart_softc *sc)
1116 {
1117 	struct uart_bas *bas = &sc->sc_bas;
1118 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1119 	u_char ier;
1120 
1121 	/*
1122 	 * turn off all interrupts to enter polling mode. Leave the
1123 	 * saved mask alone. We'll restore whatever it was in ungrab.
1124 	 * All pending interrupt signals are reset when IER is set to 0.
1125 	 */
1126 	uart_lock(sc->sc_hwmtx);
1127 	ier = uart_getreg(bas, REG_IER);
1128 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1129 	uart_barrier(bas);
1130 	uart_unlock(sc->sc_hwmtx);
1131 }
1132 
1133 void
ns8250_bus_ungrab(struct uart_softc * sc)1134 ns8250_bus_ungrab(struct uart_softc *sc)
1135 {
1136 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1137 	struct uart_bas *bas = &sc->sc_bas;
1138 
1139 	/*
1140 	 * Restore previous interrupt mask
1141 	 */
1142 	uart_lock(sc->sc_hwmtx);
1143 	uart_setreg(bas, REG_IER, ns8250->ier);
1144 	uart_barrier(bas);
1145 	uart_unlock(sc->sc_hwmtx);
1146 }
1147